Science.gov

Sample records for pulsed mev positron

  1. Relativistic Positron Creation Using Ultra-Intense Short Pulse Lasers

    SciTech Connect

    Chen, H; Wilks, S; Bonlie, J; Liang, E; Myatt, J; Price, D; Meyerhofer, D; Beiersdorfer, P

    2008-08-25

    We measure up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets when illuminated with short ({approx} 1 ps) ultra-intense ({approx} 1 x 10{sup 20} W/cm{sup 2}) laser pulses. Positrons produced predominately by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. The measurements indicate the laser produced, relativistic positron densities ({approx} 10{sup 16} positrons/cm{sup 3}) are the highest ever created in the laboratory.

  2. Making relativistic positrons using ultraintense short pulse lasers

    SciTech Connect

    Chen Hui; Wilks, S. C.; Bonlie, J. D.; Chen, S. N.; Cone, K. V.; Elberson, L. N.; Price, D. F.; Schneider, M. B.; Shepherd, R.; Stafford, D. C.; Tommasini, R.; Van Maren, R.; Beiersdorfer, P.; Gregori, G.; Meyerhofer, D. D.; Myatt, J.

    2009-12-15

    This paper describes a new positron source using ultraintense short pulse lasers. Although it has been theoretically studied since the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at the Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2x10{sup 10} positrons/s ejected at the back of approximately millimeter thick gold targets were detected. The targets were illuminated with short (approx1 ps) ultraintense (approx1x10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser-based positron source with its unique characteristics may complement the existing sources based on radioactive isotopes and accelerators.

  3. Making Relativistic Positrons Using Ultra-Intense Short Pulse Lasers

    SciTech Connect

    Chen, H; Wilks, S; Bonlie, J; Chen, C; Chen, S; Cone, K; Elberson, L; Gregori, G; Liang, E; Price, D; Van Maren, R; Meyerhofer, D D; Mithen, J; Murphy, C V; Myatt, J; Schneider, M; Shepherd, R; Stafford, D; Tommasini, R; Beiersdorfer, P

    2009-08-24

    This paper describes a new positron source produced using ultra-intense short pulse lasers. Although it has been studied in theory since as early as the 1970s, the use of lasers as a valuable new positron source was not demonstrated experimentally until recent years, when the petawatt-class short pulse lasers were developed. In 2008 and 2009, in a series of experiments performed at Lawrence Livermore National Laboratory, a large number of positrons were observed after shooting a millimeter thick solid gold target. Up to 2 x 10{sup 10} positrons per steradian ejected out the back of {approx}mm thick gold targets were detected. The targets were illuminated with short ({approx}1 ps) ultra-intense ({approx}1 x 10{sup 20} W/cm{sup 2}) laser pulses. These positrons are produced predominantly by the Bethe-Heitler process, and have an effective temperature of 2-4 MeV, with the distribution peaking at 4-7 MeV. The angular distribution of the positrons is anisotropic. For a wide range of applications, this new laser based positron source with its unique characteristics may complements the existing sources using radioactive isotopes and accelerators.

  4. Positron Creation Using the TITAN Short Pulse Laser

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Wilks, S. C.; Liang, E.; Myatt, J.; Cone, K.; Elberson, L.; Meyerhofer, D. D.; Schneider, M.; Shepherd, R.; Stafford, D.; Tommasini, R.; Beiersdorfer, P.

    2008-11-01

    Using ultra-intense lasers to generate positrons was theorized some time ago[1] and demonstrated in principle in two previous experiments[2] where small numbers of positrons were measured. Recently, new experiments were performed on the LLNL Titan laser to study positron creation, where the laser pulse length, pre-plasma condition, target material and thickness were varied. Using newly built positron spectrometers, copious positron production was observed with good signal-to-background ratio. Hot electron spectra (out to 100 MeV) and bremsstrahlung photons were measured simultaneously to further constrain models for the experiment. This talk will present detailed experimental results and their comparison with theory and previous experimental data. [1] Shearer et al, PRA,(1973);Liang, AIP Conf. Proc.(1994); Shkolnikov et al, APL,(1997), Liang, Wilks and Tabak, PRL(1998); Nakashima and Takabe, PoP,(2002); Myatt et al,PRE (2008).[2] Cowan et al, LPB(1999); Gahn et al, APL(1998)

  5. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    NASA Astrophysics Data System (ADS)

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; Camsonne, A.; Cardman, L. S.; Clark, J.; Cole, P.; Covert, S.; Cuevas, C.; Dadoun, O.; Dale, D.; Dong, H.; Dumas, J.; Fanchini, E.; Forest, T.; Forman, E.; Freyberger, A.; Froidefond, E.; Golge, S.; Grames, J.; Guèye, P.; Hansknecht, J.; Harrell, P.; Hoskins, J.; Hyde, C.; Josey, B.; Kazimi, R.; Kim, Y.; Machie, D.; Mahoney, K.; Mammei, R.; Marton, M.; McCarter, J.; McCaughan, M.; McHugh, M.; McNulty, D.; Mesick, K. E.; Michaelides, T.; Michaels, R.; Moffit, B.; Moser, D.; Muñoz Camacho, C.; Muraz, J.-F.; Opper, A.; Poelker, M.; Réal, J.-S.; Richardson, L.; Setiniyaz, S.; Stutzman, M.; Suleiman, R.; Tennant, C.; Tsai, C.; Turner, D.; Ungaro, M.; Variola, A.; Voutier, E.; Wang, Y.; Zhang, Y.; PEPPo Collaboration

    2016-05-01

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19 MeV /c , limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  6. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies.

    PubMed

    Abbott, D; Adderley, P; Adeyemi, A; Aguilera, P; Ali, M; Areti, H; Baylac, M; Benesch, J; Bosson, G; Cade, B; Camsonne, A; Cardman, L S; Clark, J; Cole, P; Covert, S; Cuevas, C; Dadoun, O; Dale, D; Dong, H; Dumas, J; Fanchini, E; Forest, T; Forman, E; Freyberger, A; Froidefond, E; Golge, S; Grames, J; Guèye, P; Hansknecht, J; Harrell, P; Hoskins, J; Hyde, C; Josey, B; Kazimi, R; Kim, Y; Machie, D; Mahoney, K; Mammei, R; Marton, M; McCarter, J; McCaughan, M; McHugh, M; McNulty, D; Mesick, K E; Michaelides, T; Michaels, R; Moffit, B; Moser, D; Muñoz Camacho, C; Muraz, J-F; Opper, A; Poelker, M; Réal, J-S; Richardson, L; Setiniyaz, S; Stutzman, M; Suleiman, R; Tennant, C; Tsai, C; Turner, D; Ungaro, M; Variola, A; Voutier, E; Wang, Y; Zhang, Y

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19  MeV/c, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community. PMID:27284661

  7. Production of Highly Polarized Positrons Using Polarized Electrons at MeV Energies

    DOE PAGESBeta

    Abbott, D.; Adderley, P.; Adeyemi, A.; Aguilera, P.; Ali, M.; Areti, H.; Baylac, M.; Benesch, J.; Bosson, G.; Cade, B.; et al

    2016-05-27

    The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-Z target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/c, limited only by the electron beam polarization. We report that this technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.

  8. A novel source of MeV positron bunches driven by energetic protons for PAS application

    NASA Astrophysics Data System (ADS)

    Tan, Zongquan; Xu, Wenzhen; Liu, Yanfen; Xiao, Ran; Kong, Wei; Ye, Bangjiao

    2014-11-01

    This paper proposes a novel methodology of MeV positrons generation for PAS application. Feasibility of this proposal analyzed by G4Beamline and Transport have shown reasonable success. Using 2 Hz, 1.6 GeV, 100 ns and 1.5 μC/bunch proton bunches for bombarding a graphite target, about 100 ns e+ bunches are generated. Quasi-monochromatic positrons in the range of 1-10 MeV included in these bunches have a flux of >107/s, peak brightness of 1014/s. A magnetic-confinement beamline is utilized to transport the positrons and a "Fast Beam Chopper" is unprecedentedly extended to chop those relativistic bunches. The positron beam can be finally characterized by the energy range of 1-10 MeV and bunch width from one hundred ps up to 1 ns. Such ultrashort bunches can be useful in tomography-type positron annihilation spectroscopy (PAS) as well as other applications.

  9. A 0. 5 to 3. 0 MeV monoenergetic positron beam

    SciTech Connect

    Huomo, H.; AsokaKumar, P.; Henderson, S.D.; Phlips, B.F.; Mayer, R.; McDonough, J.; Hacker, H.; McCorkle, S.; Schnitzenbaumer, P.; Greenberg, J.S.

    1988-01-01

    An adjustable, 0.5--3 MeV monoenergetic positron beam has been constructed at Brookhaven. Currently a /sup 22/Na source with a W(100) foil transmission moderator produces a 1.1 mm FWHN beam with an intensity of 3/times/10/sup 5/ e/sup +//sec at a target located downstream from the accelerator. The divergence of the beam is less than 0.1/degree/ at 2.2 MeV energy. A SOA gun with 2 lens transport system brings the beam to a focus at the entrance of an electrostatic 3 MeV Dynamitron accelerator. The post acceleration beam transport system comprises 3 focusing solenolds, 4 sets of steering magnets and a 90/degree/ double focusing bending magnet. The beam energy spread at the target is <1 keV FWHN deduced from the beam size. Below we describe the positron extraction optics and acceleration, the construction of the beamline and the beam diagnostic devices. The salient beam parameters are listed at the end of this paper. 2 refs., 3 figs., 1 tab.

  10. Possibilities with pulsed polarized high density slow positrons

    NASA Astrophysics Data System (ADS)

    Mills, A. P., Jr.

    2014-04-01

    A particularly bright and intense polarized slow positron beam could be formed from isotopically enriched 79Kr produced at a reactor. After moderation with solid Ne, accumulation, compression, and bunching, this type of positron beam would enable a number of experiments including: (1) Long term storage of a neutral polarized electron-positron plasma in a cold box; (2) Pulsed e+ ACAR with a pulsed magnet to measure Fermi surfaces of paramagnetic metals; (3) Single shot measurements of positron annihilation in laser-imploding plasmas; (4) Study of a spin-polarized positronium gas at a density around that of ordinary air to produce a Ps Bose-Einstein condensate at room temperature; (5) High energy polarized positron channelling experiments to study polarized electron spatial wave functions in ferromagnets; and (6) Study of supersonic free expansion spin polarized BEC Ps jets formed from, for example, 1011 m=1 triplet Ps atoms created within an open ended 1 μm diameter cylindrical cavity 100 μm in length.

  11. Design of a pulsed positron system at Trombay

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Sharma, S. K.; Maheshwari, Priya; Gupta, S. K.; Pujari, P. K.

    2015-06-01

    We present here the design of a pulsed beam setup to deliver narrow time width positron pulses. The major constituents of the setup include- 22Na radioactive source and moderator assembly, ExB deflector for filtering out high energy positron and gamma rays, chopper-prebuncher-buncher assembly for time bunching of the slow positrons. In the ExB section, crossed electric and magnetic fields guide the slow positrons through an off-centered hole in a tungsten block. The initial beam will then be time bunched by using a reflection type chopper and a double gap prebuncher. The main buncheris designed as a quarter wave resonator with base frequency of 150 MHz.To prevent the sagging of the cantilevered inner tube of the resonator, we will support the inner conductor using an alumina post. There will be provision of tuning the frequency by using a tuner made of conducting material. The incident beam energy will be varied by biasing the sample.

  12. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    SciTech Connect

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-15

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90 Degree-Sign collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF{sub 2} scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF{sub 2} scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  13. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses.

    PubMed

    Taira, Y; Toyokawa, H; Kuroda, R; Yamamoto, N; Adachi, M; Tanaka, S; Katoh, M

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured. PMID:23742543

  14. Photon-induced positron annihilation lifetime spectroscopy using ultrashort laser-Compton-scattered gamma-ray pulses

    NASA Astrophysics Data System (ADS)

    Taira, Y.; Toyokawa, H.; Kuroda, R.; Yamamoto, N.; Adachi, M.; Tanaka, S.; Katoh, M.

    2013-05-01

    High-energy ultrashort gamma-ray pulses can be generated via laser Compton scattering with 90° collisions at the UVSOR-II electron storage ring. As an applied study of ultrashort gamma-ray pulses, a new photon-induced positron annihilation lifetime spectroscopy approach has been developed. Ultrashort gamma-ray pulses with a maximum energy of 6.6 MeV and pulse width of 2.2 ps created positrons throughout bulk lead via pair production. Annihilation gamma rays were detected by a BaF2 scintillator mounted on a photomultiplier tube. A positron lifetime spectrum was obtained by measuring the time difference between the RF frequency of the electron storage ring and the detection time of the annihilation gamma rays. We calculated the response of the BaF2 scintillator and the time jitter caused by the variation in the total path length of the ultrashort gamma-ray pulses, annihilation gamma rays, and scintillation light using a Monte Carlo simulation code. The positron lifetime for bulk lead was successfully measured.

  15. Interpretation of recent positron-electron measurements between 20 and 800 MeV. [interplanetary cosmic ray solar modulation

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J.; Hartman, R. C.

    1975-01-01

    Recently measured positron and negatron spectra are discussed with regard to the problem of solar modulation. At energies above 180 MeV, the spherically symmetric Fokker-Planck equation with a diffusion coefficient proportional to particle rigidity provides reasonable fits to both the positron and total electron data. At energies below 180 MeV, the data are consistent with a continuation of the same diffusion coefficient and a local source of negatrons or with a change in the diffusion coefficient to a constant value.

  16. Optimization of drift bias in an UHV based pulsed positron beam system

    SciTech Connect

    Anto, C. Varghese; Rajaraman, R.; Rao, G. Venugopal; Abhaya, S.; Parimala, J.; Amarendra, G.

    2012-06-05

    We report here the design of ultra high vacuum (UHV) compatible pulsed positron beam lifetime system, which combines the principles of a conventional slow positron beam and RF based pulsing scheme. The mechanical design and construction of the UHV system to house the beam has been completed and it has been tested for a vacuum of {approx} 10{sup -10} mbar. The voltages applied to the drift tube as a function of positron energies have been optimized using SIMION.

  17. Measurement of cosmic ray positron and negatron spectra between 50 and 800 MeV. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.

    1974-01-01

    A balloon-borne magnetic spectrometer was used to measure the spectra of cosmic ray positrons and negatrons at energies between 50 and 800 MeV. Comparisons of the separate positron and negatron spectra observed near the earth with their expected intensities in interstellar space can be used to investigate the complex (and variable) interaction of galactic cosmic rays with the expanding solar wind. The present measurements, which have established finite values or upper limits for the positron and negatron spectral between 50 and 800 MeV, have confirmed earlier evidence for the existence of a dominant component of negatrons from primary sources in the galaxy. The present results are shown to be consistent with the hypothesis that the positron component is in fact mainly attributable to collisions between cosmic ray nuclei and the interstellar gas. The estimate of the absolute intensities confirm the indications from neutron monitors that in 1972 the interplanetary cosmic ray intensities were already recovering toward their high levels observed in 1965.

  18. Laser Created Relativistic Positron Jets

    SciTech Connect

    Chen, H; Wilks, S C; Meyerhofer, D D; Bonlie, J; Chen, C D; Chen, S N; Courtois, C; Elberson, L; Gregori, G; Kruer, W; Landoas, O; Mithen, J; Murphy, C; Nilson, P; Price, D; Scheider, M; Shepherd, R; Stoeckl, C; Tabak, M; Tommasini, R; Beiersdorder, P

    2009-10-08

    Electron-positron jets with MeV temperature are thought to be present in a wide variety of astrophysical phenomena such as active galaxies, quasars, gamma ray bursts and black holes. They have now been created in the laboratory in a controlled fashion by irradiating a gold target with an intense picosecond duration laser pulse. About 10{sup 11} MeV positrons are emitted from the rear surface of the target in a 15 to 22-degree cone for a duration comparable to the laser pulse. These positron jets are quasi-monoenergetic (E/{delta}E {approx} 5) with peak energies controllable from 3-19 MeV. They have temperatures from 1-4 MeV in the beam frame in both the longitudinal and transverse directions. Positron production has been studied extensively in recent decades at low energies (sub-MeV) in areas related to surface science, positron emission tomography, basic antimatter science such as antihydrogen experiments, Bose-Einstein condensed positronium, and basic plasma physics. However, the experimental tools to produce very high temperature positrons and high-flux positron jets needed to simulate astrophysical positron conditions have so far been absent. The MeV temperature jets of positrons and electrons produced in our experiments offer a first step to evaluate the physics models used to explain some of the most energetic phenomena in the universe.

  19. A new scheme to accumulate positrons in a Penning-Malmberg trap with a linac-based positron pulsed source

    SciTech Connect

    Dupre, P.

    2013-03-19

    The Gravitational Behaviour of Antimatter at Rest experiment (GBAR) is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration of anti-hydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium (Ps) cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. The Ps target will be produced by a pulse of few 10{sup 10} positrons injected onto a positron-positronium converter. For this purpose, a slow positron source using an electron Linac has been constructed at Saclay. The present flux is comparable with that of {sup 22}Na-based sources using solid neon moderator. A new positron accumulation scheme with a Penning-Malmberg trap has been proposed taking advantage of the pulsed time structure of the beam. In the trap, the positrons are cooled by interaction with a dense electron plasma. The overall trapping efficiency has been estimated to be {approx}70% by numerical simulations.

  20. Design of a Pulsed Flux Concentrator for the ILC Positron Source

    SciTech Connect

    Gronberg, J; Abbott, R; Brown, C; Javedani, J; Piggott, W T; Clarke, J

    2010-05-17

    The Positron Source for the International Linear Collider requires an optical matching device after the target to increase the capture efficiency for positrons. Pulsed flux concentrators have been used by previous machines to improve the capture efficiency but the ILC has a 1 ms long pulse train which is too long for a standard flux concentrator. A pulsed flux concentrator with a 40 ms flat top was created for a hyperon experiment in 1965 which used liquid nitrogen cooling to reduce the resistance of the concentrating plates and extend the lifetime of the pulse. We report on a design for a 1 ms device based on this concept.

  1. ION SOLITARY PULSES IN WARM PLASMAS WITH ULTRARELATIVISTIC DEGENERATE ELECTRONS AND POSITRONS

    SciTech Connect

    Zeba, I.; Moslem, W. M.; Shukla, P. K. E-mail: zeba.israr@rub.de E-mail: wmm@tp4.rub.de

    2012-05-01

    The nonlinear propagation of ion solitary pulses in a warm collisionless electron-positron-ion plasma with ultrarelativistic degenerate electrons and positrons has been investigated. Arbitrary and small- (but finite-) amplitude ion solitary pulses are investigated by deriving the Korteweg-de Vries equation and an energy-balance-like expression involving a Sagdeev-like pseudopotential. The existence regions for ion solitary pulses have been precisely defined and numerically investigated. The ion solitary pulse profiles are also displayed. Applications to the interior of white dwarf stars and the corona of magnetars are discussed.

  2. Production of slow-positron beams with an electron linac

    SciTech Connect

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-03-26

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources.

  3. Novel pulsed particle accelerator for energy dependent positron re-emission experiments.

    PubMed

    Grill, Niklas; Piochacz, Christian; Zimnik, Samantha; Hugenschmidt, Christoph

    2016-05-01

    We report on a novel device for particle acceleration based on elevation of the potential energy of beam pulses. This so-called energy elevator is particularly beneficial if both the particle source and the sample have to be near ground potential due to experimental constraints. We applied this new technique to enable depth dependent measurements of re-emitted positrons using the surface spectrometer at the NEPOMUC positron beam facility. First, a two-stage bunching system is used to generate positron pulses with a repetition rate of 5 MHz and a duration of 1.663(5) ns before their energy is raised to several keV. The whole system was shown to work with an exceptional efficiency of 88%. We demonstrated the usability of our setup by investigating the positron re-emission spectra of Ni and Pd as function of positron implantation energy. For Ni the positron work function could be determined to be ΦNi (+)=-1.4(2)eV. In addition, as predicted by theory, our experimental findings imply a positive positron work function for Pd. PMID:27250411

  4. Electromagnetic cascade in high-energy electron, positron, and photon interactions with intense laser pulses

    NASA Astrophysics Data System (ADS)

    Bulanov, S. S.; Schroeder, C. B.; Esarey, E.; Leemans, W. P.

    2013-06-01

    The interaction of high-energy electrons, positrons, and photons with intense laser pulses is studied in head-on collision geometry. It is shown that electrons and/or positrons undergo a cascade-type process involving multiple emissions of photons. These photons can consequently convert into electron-positron pairs. As a result charged particles quickly lose their energy developing an exponentially decaying energy distribution, which suppresses the emission of high-energy photons, thus reducing the number of electron-positron pairs being generated. Therefore, this type of interaction suppresses the development of the electromagnetic avalanche-type discharge, i.e., the exponential growth of the number of electrons, positrons, and photons does not occur in the course of interaction. The suppression will occur when three-dimensional effects can be neglected in the transverse particle orbits, i.e., for sufficiently broad laser pulses with intensities that are not too extreme. The final distributions of electrons, positrons, and photons are calculated for the case of a high-energy e-beam interacting with a counterstreaming, short intense laser pulse. The energy loss of the e-beam, which requires a self-consistent quantum description, plays an important role in this process, as well as provides a clear experimental observable for the transition from the classical to quantum regime of interaction.

  5. Radio frequency elevator for a pulsed positron beam

    NASA Astrophysics Data System (ADS)

    Dickmann, Marcel; Mitteneder, Johannes; Kögel, Gottfried; Egger, Werner; Sperr, Peter; Ackermann, Ulrich; Piochacz, Christian; Dollinger, Günther

    2016-06-01

    An elevator increases the potential energy of a particle beam with respect to ground potential without any alteration of kinetic energy and other beam parameters. This elevator is necessary for the implementation of the Munich Scanning Positron Microscope (SPM) at the intense positron source NEPOMUC at the research reactor FRM II in Munich. The principles of the rf elevator for pure electrostatically guided positrons are described. Measurements of beam quality behind the elevator are reported, which confirm that after the implementation of elevator and SPM at NEPOMUC the SPM can be operated at a considerably improved resolution (~ 0.3 μm) and event rate (~3.7 kHz) compared to the laboratory based β+-source.

  6. A trap-based pulsed positron beam optimised for positronium laser spectroscopy.

    PubMed

    Cooper, B S; Alonso, A M; Deller, A; Wall, T E; Cassidy, D B

    2015-10-01

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10(5) positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10(7) cm(-3) is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields. PMID:26520934

  7. A trap-based pulsed positron beam optimised for positronium laser spectroscopy

    SciTech Connect

    Cooper, B. S. Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B.

    2015-10-15

    We describe a pulsed positron beam that is optimised for positronium (Ps) laser-spectroscopy experiments. The system is based on a two-stage Surko-type buffer gas trap that produces 4 ns wide pulses containing up to 5 × 10{sup 5} positrons at a rate of 0.5-10 Hz. By implanting positrons from the trap into a suitable target material, a dilute positronium gas with an initial density of the order of 10{sup 7} cm{sup −3} is created in vacuum. This is then probed with pulsed (ns) laser systems, where various Ps-laser interactions have been observed via changes in Ps annihilation rates using a fast gamma ray detector. We demonstrate the capabilities of the apparatus and detection methodology via the observation of Rydberg positronium atoms with principal quantum numbers ranging from 11 to 22 and the Stark broadening of the n = 2 → 11 transition in electric fields.

  8. Positron annihilation lifetime measurement and X-ray analysis on 120 MeV Au+7 irradiated polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Dube, Charu Lata; Kulriya, Pawan Kumar; Dutta, Dhanadeep; Pujari, Pradeep K.; Patil, Yashashri; Mehta, Mayur; Patel, Priyanka; Khirwadkar, Samir S.

    2015-12-01

    In order to simulate radiation damages in tungsten, potential plasma facing materials in future fusion reactors, surrogate approach of heavy ion irradiation on polycrystalline tungsten is employed. Tungsten specimen is irradiated with gold heavy ions of energy 120 MeV at different fluences. Positron annihilation lifetime measurements are carried out on pristine and ion beam irradiated tungsten specimens. The variation in positron annihilation lifetime in ion irradiated specimens confirms evolution of vacancy clusters under heavy ion irradiation. The pristine and irradiated tungsten specimens have also been characterized for their microstructural, structural, electrical, thermal, and mechanical properties. X-ray diffractograms of irradiated tungsten specimens show structural integrity of polycrystalline tungsten even after irradiation. Nevertheless, the increase in microstrain, electrical resistivity and microhardness on irradiation indicates creation of lattice damages inside polycrystalline tungsten specimen. On the other hand, the thermal diffusivity has not change much on heavy ion irradiation. The induction of damages in metallic tungsten is mainly attributed to high electronic energy loss, which is 40 keV/nm in present case as obtained from SRIM program. Although, concomitant effect of nuclear losses on damage creation cannot be ignored. It is believed that the energy received by the electronic system is being transferred to the atomic system by electron-phonon coupling. Eventually, elastic nuclear collisions and the transfer of energy from electronic to atomic system via inelastic collision is leading to significant defect generation in tungsten lattice.

  9. Long pulse H- ion beam acceleration in MeV accelerator.

    PubMed

    Taniguchi, M; Mizuno, T; Umeda, N; Kashiwagi, M; Watanabe, K; Tobari, H; Kojima, A; Tanaka, Y; Dairaku, M; Hanada, M; Sakamoto, K; Inoue, T

    2010-02-01

    A multiaperture multigrid accelerator called "MeV accelerator" has been developed for neutral beam injection system of international thermonuclear experimental reactor. In the present work, long pulse H(-) ion beam acceleration was performed by the MeV accelerator equipped with new water-cooled grids. At present, the pulse length was extended to 5 s for the beams of 750 keV, 221 mA, and 10 s for the beams of 600 keV, 158 mA. Energy density, defined as products of beam energy (keV), current (mA), and pulse (s) divided by aperture area (m(2)), increased more than one order of magnitude higher compared with original MeV accelerator without water cooling in its grids. At higher energy and current, the grid was melted by beam deflection. Due to this grid melting, breakdowns occurred between the grids, and hence, the pulse length was limited. Beam deflection will be compensated by aperture displacement in next experiment. PMID:20192408

  10. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    NASA Astrophysics Data System (ADS)

    Arutyunov, N. Yu.; Emtsev, V. V.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Oganesyan, G. A.; Kozlovski, V. V.

    2014-02-01

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K - 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V2- and V2--) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ˜ T-3 law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ˜1.7×10-12 cm2 (66 - 100 K) to ˜2×10-14 cm2 (≈ 250 K). The characteristic length of trapping of the positron by V2-- divacancy was estimated to be l0(V2--)≈(3.4±0.2)×10-8 cm.

  11. Pulse compression system for the ANL 20 MeV linac

    SciTech Connect

    Mavrogenes, G.; Norem, J.; Simpson, J.

    1986-01-01

    This paper describes the pulse compression system being built on the Argonne 20 MeV electron linac. The system is designed to rotate the bunch from the present measured pulse length of 38 psec FWHM, to pulse lengths of 5 to 6 ps with the large instantaneous currents (1 to 4 kA) possible instantaneous current. This system was necessary to extend the study of reactive fragments of molecules to the time scale of a few picoseconds, in particular to examine the chemistry of electrons and ions before and during relaxation of the surrounding media. These experiments are not sensitive to the beam energy spread, High Energy Physics experiments studying wake fields have also been proposed using the short bunches and the facility was designed so that the wake field experiment could share the beam bunching system. The 20 MeV electron linac uses a double gap, 12th subharmonic prebuncher together with a one wavelength 1.3 Ghz prebuncher to produce a single pulse of 38 ps from one occupied rf bucket. Beam emittances of 15.7 mmmr have been measured for 40 nC of accelerated charge and 8 mmmr at 10 nC. The energy spread of dE/E = 1% (FWHM) has been measured at 40 nC. Thus the accelerated beam has excellent time structure, high current, and good emittance.

  12. Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Kim, I. Jong; Pae, Ki Hong; Choi, Il Woo; Lee, Chang-Lyoul; Kim, Hyung Taek; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V.; Jeong, Tae Moon; Kim, Chul Min; Nam, Chang Hee

    2016-07-01

    The radiation pressure acceleration (RPA) of charged particles has been a challenging task in laser-driven proton/ion acceleration due to its stringent requirements in laser and target conditions. The realization of radiation-pressure-driven proton acceleration requires irradiating ultrathin targets with an ultrahigh contrast and ultraintense laser pulses. We report the generation of 93-MeV proton beams achieved by applying 800-nm 30-fs circularly polarized laser pulses with an intensity of 6.1 × 10 20 W / cm 2 to 15-nm-thick polymer targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and three-dimensional particle-in-cell simulations. We expect this clear demonstration of RPA to facilitate the realization of laser-driven proton/ion sources delivering energetic and short-pulse particle beams for novel applications.

  13. Generation of high-energy (>15 MeV) neutrons using short pulse high intensity lasers

    SciTech Connect

    Petrov, G. M.; Davis, J.; Petrova, Tz. B.; Higginson, D. P.; McNaney, J. M.; McGuffey, C.; Qiao, B.; Beg, F. N.

    2012-09-15

    A roadmap is suggested and demonstrated experimentally for the production of high-energy (>15 MeV) neutrons using short pulse lasers. Investigation with a 3D Monte Carlo model has been employed to quantify the production of energetic neutrons. Numerical simulations have been performed for three nuclear reactions, d(d,n){sup 3}He, {sup 7}Li(d,n){sup 8}Be, and {sup 7}Li(p,n){sup 7}Be, driven by monoenergetic ion beams. Quantitative estimates for the driver ion beam energy and number have been made and the neutron spectra and yield in the ion propagation direction have been evaluated for various incident ion energies. In order to generate neutron fluence above a detection limit of 10{sup 6} neutrons/sr, either {approx}10{sup 10} protons with energy 20-30 MeV or comparable amount of deuterons with energy 5-10 MeV are required. Experimental verification of the concept with deuterons driven by the Titan laser (peak intensity 2 Multiplication-Sign 10{sup 19} W/cm{sup 2}, pulse duration of 9 ps, wavelength 1.05 {mu}m, and energy of 360 J) is provided with the generation of neutrons with energy of up to 18 MeV from {sup 7}Li(d,n){sup 8}Be reactions. Future research will focus on optimized schemes for ion acceleration for production of high-energy neutrons, which will involve efficient target design, laser parameter optimization, and converter material.

  14. MeV electron acceleration by sub-terawatt laser pulses in near critical density plasmas

    NASA Astrophysics Data System (ADS)

    Goers, Andy; Hine, George; Feder, Linus; Miao, Bo; Salehi, Fatholah; Milchberg, Howard

    2015-11-01

    We demonstrate laser-plasma acceleration of high charge electron beams to the 10 MeV scale using ultrashort laser pulses with as little energy as 10 mJ. This result is made possible by an extremely dense and thin hydrogen gas jet where even sub-terawatt laser pulses are well above the critical power for relativistic self-focusing, and the 10 mJ pulses can drive a self-modulated wakefield accelerator. Total charge up to 0.5 nC is measured for energies >1 MeV. Acceleration is correlated to the presence of an intense, coherent, broadband light flash, associated with wavebreaking, which can radiate more than 3% of the laser energy in a sub-femtosecond bandwidth consistent with half-cycle optical emission. Our results enable truly portable applications of laser-driven acceleration, such as low dose radiography, ultrafast probing of matter, and isotope production. This work supported by DTRA and the US Department of Energy.

  15. Repetitive production of positron emitters using deuterons accelerated by multiterawatt laser pulses

    NASA Astrophysics Data System (ADS)

    Fujimoto, Masatoshi; Matsukado, Koji; Takahashi, Hironori; Kawada, Yoichi; Ohsuka, Shinji; Aoshima, Shin-Ichiro

    2009-11-01

    Positron emitters C11, N13, and O15, which can be used in positron emission tomography, were produced using deuterons accelerated by irradiation of laser pulses ˜70 TW in peak power and ˜30 fs in duration with a repetition of 10 Hz during a period of as long as 200 s. Every laser pulse irradiates the fresh surface of a long strip of a solid-state thin film. Deuterons contained in the film are accelerated in the relativistic plasma induced by the pulse. The deuterons are repetitively incident on solid plates, which are placed near the film, to produce positron emitters by nuclear reactions. The radioactivities of the activated plates are measured after the termination of laser irradiation. In activation of graphite, boron-nitride, and melamine plates, the products had total activities of 64, 46, and 153 Bq, respectively. Contamination in the setup was negligible even after several thousands of laser shots. Our apparatus is expected to greatly contribute to the construction of a compact PET diagnostic system in the future.

  16. Positron microprobe at LLNL

    SciTech Connect

    Asoka, P; Howell, R; Stoeffl, W

    1998-11-01

    The electron linac based positron source at Lawrence Livermore National Laboratory (LLNL) provides the world's highest current beam of keV positrons. We are building a positron microprobe that will produce a pulsed, focused positron beam for 3-dimensional scans of defect size and concentration with sub-micron resolution. The widely spaced and intense positron packets from the tungsten moderator at the end of the 100 MeV LLNL linac are captured and trapped in a magnetic bottle. The positrons are then released in 1 ns bunches at a 20 MHz repetition rate. With a three-stage re-moderation we will compress the cm-sized original beam to a 1 micro-meter diameter final spot on the target. The buncher will compress the arrival time of positrons on the target to less than 100 ps. A detector array with up to 60 BaF2 crystals in paired coincidence will measure the annihilation radiation with high efficiency and low background. The energy of the positrons can be varied from less than 1 keV up to 50 keV.

  17. Cascade phonon-assisted trapping of positrons by divacancies in n-FZ-Si(P) single crystals irradiated with 15 MeV protons

    SciTech Connect

    Arutyunov, N. Yu.; Emtsev, V. V.; Oganesyan, G. A.; Krause-Rehberg, R.; Kessler, C.; Elsayed, M.; Kozlovski, V. V.

    2014-02-21

    The trapping of positrons by the radiation defects in moderately doped oxygen-lean n-FZ-Si(P) single crystal irradiated with 15 MeV protons has been investigated in a comparative way using the positron lifetime spectroscopy and Hall effect measurements. The experiments were carried out within a wide temperature interval ranging from 25 K – 29 K to 300 K. The positron trapping rate for divacancies was reconstructed in the course of many-stage isochronal annealing. The concentration and the charged states of divacancies (V{sub 2}{sup −} and V{sub 2}{sup −−}) were estimated. The temperature dependency of the trapping cross section of positrons by the negatively charged divacancies is in a good agreement with the data of calculations based on the assumptions of the cascade phonon-assisted mechanism of exchange of the energy between the positron and acoustic long-wave phonons. Obeying ∼ T{sup −3} law, the cross-section of the trapping of positrons by divacancies changes considerably ranging from ∼1.7×10{sup −12} cm{sup 2} (66 – 100 K) to ∼2×10{sup −14} cm{sup 2} (≈ 250 K). The characteristic length of trapping of the positron by V{sub 2}{sup −−} divacancy was estimated to be l{sub 0}(V{sub 2}{sup −−})≈(3.4±0.2)×10{sup −8} cm.

  18. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  19. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    NASA Astrophysics Data System (ADS)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  20. Optimization of the profile of a pulsed slow positron beam extracted from a buffer-gas positron trap for the production of a variable energy positronium beam

    NASA Astrophysics Data System (ADS)

    Gladen, R.; Michishio, K.; Chiari, L.; Oshima, N.; Nagashima, Y.

    In this poster we will present some details of steps taken to optimize the beam profile of a pulsed slow positron beam extracted from a buffer-gas positron trap. The beam will be employed for the production of a novel positronium beam by the acceleration and photodetachment of positronium negative ions. The TUS group is planning on using this beam to study positronium diffraction from solid surfaces, providing a unique neutral-particle spectroscopic method with several advantages over conventional neutral-particle spectroscopy, such as a reduced particle mass and, hence, the reduction of damage to the sample surface This work was performed at the Tokyo University of Science. The visit of R. G. to the laboratory was sponsored in part by the NSF EAPSI fellowship and the JSPS Summer Program.

  1. A time-pulsed positronium beam and a study of oxides on silicon using positrons

    SciTech Connect

    Khatri, R.K.

    1993-01-01

    The studies on rare gas solid moderators were carried out with a 350 [mu]Ci [sup 22]Na radioactive source. The corrected efficiency for neon moderator in conical geometrical configuration was as high as (1.4 [+-] 0.2)%. The conical configuration moderator performed better by a factor of (2.2 [+-] 0.2) than the cylindrical configuration. A time pulsed positron beam was built to carry out investigations on the positronium formation processes and positronium beam. This beam has the capability to store low energy e[sup +] in a magnetic bottle, with a magnetic bottle at one end and an electrostatic mirror at the other. These stored e[sup +] are then bunched to form a pulse with a buncher. The bunched beam had a FWHM of 17 nsec and contained 1 to 2 e[sup +]/pulse. A thin carbon foil of 50 [angstrom] thickness was used for positronium formation by process of charge exchange. Positronium Annihilation Spectroscopy (PAS) was utilized to carry out studies on the activation energy of hydrogen at the interface of oxide and silicon substrate and the effect of irradiation on the oxides in SiO[sub 2]/Si(100) sample. The activation energy of hydrogen at the interface of SiO[sub 2]/Si(100) samples with n- and p-type substrate was measured to be 2.60(6) eV and 2.47(6) eV respectively. The investigations of the samples irradiated with x-ray and [gamma]-ray led to the first time identification of creation of E[prime] centers with PAS.

  2. Threshold for Trapping Positrons in the Wake Driven by a Ultra-relativistic Electron Bunch

    SciTech Connect

    Wang, X.; Muggli, P.; Katsouleas, T.; Ischebeck, R.; Hogan, M. J.; Joshi, C.; Mori, W. B.

    2009-01-22

    We have recently proposed a new concept for generating, injecting and accelerating positrons in a plasma using a double-pulse electron bunch. Monte Carlo simulations show that the number of the positrons produced in a foil target has an exponentially decay energy spectrum. The energy threshold for the trapping of these positrons in a ultra-relativistic electron wake is investigated numerically. For a typical 28.5 GeV electron drive bunch, the trapping threshold for the positrons is a few MeV, and therefore a majority of positrons generated in the foil target are focused and accelerated by the plasma wake.

  3. Applications and advances of positron beam spectroscopy

    SciTech Connect

    Howell, R., LLNL

    1998-03-18

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center, the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques would play in materials analysis and the demand for the data. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of stockpile stewardship. The Livermore facilities now include the world`s highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. It was concluded that the positron microprobe under development at LLNL and other new instruments that would be relocated at LLNL at the high current keV source are an exciting step forward in providing results for the positron technique. These new data will impact a wide variety of applications.

  4. Long pulse acceleration of MeV class high power density negative H- ion beam for ITER

    NASA Astrophysics Data System (ADS)

    Umeda, N.; Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-01

    R&D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H- ion beam acceleration up to 1 MeV with 200 A/m2 for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m2 of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  5. Nuclear physics in the 10--300 MeV energy range using a pulsed white neutron source

    SciTech Connect

    Bowman, C.D.; Wender, S.A.; Auchampaugh, G.F.

    1985-01-20

    A new pulsed white neutron source is under construction at the Los Alamos WNR facility. The neutrons are produced by LAMPF proton micropulses striking thick targets of various materials. Beam parameters include energy of 800 MeV, pulse rate of approximately 50,000 Hz, 0.4 nsec pulse width, average current as high as 6..mu..a, and a useful neutron energy range from 3 to 300 MeV. The facility will receive beam approximately 80% of the time LAMPF is operational; it increases by a factor of 1000 the experimental capability over the present system at the WNR when beam intensity, angular distribution, and availability are taken into account. In addition to established white source techniques, the facility is also highly competitive with monoenergetic sources for a wide class of experiments such as neutron capture ..gamma.. ray spectroscopy and neutron-induced charged particle reactions. The facility should be operational in about nine months. Arrangements are underway to make the facility readily accessible to visiting experiments.

  6. Nuclear physics in the 10 to 300 MeV energy range using a pulsed white neutron source

    SciTech Connect

    Bowman, C.D.; Wender, S.A.; Auchampaugh, G.F.

    1984-01-01

    A new pulsed white neutron source is under construction at the Los Alamos WNR facility. The neutrons are produced by LAMPF proton micropulses striking thick targets of various materials. Beam parameters include energy of 800 MeV, pulse rate of approximately 50,000 Hz, 0.4 nsec pulse width, average current as high as 6..mu..a, and a useful neutron energy range from 3 to 300 MeV. The facility will receive beam approximately 80% of the time LAMPF is operational; it increased by a factor of 1000 the experimental capability over the present system at the WNR when beam intensity, angular distribution, and availability are taken into account. In addition to established white source techniques, the facility is also highly competitive with monoenergetic sources for a wide class of experiments such as neutron capture ..gamma.. ray spectroscopy and neutron-induced charged particle reactions. The facility should be operational in about nine months. Arrangements are underway to make the facility readily accessible to visiting experimenters.

  7. Nuclear physics in the 10-300 MeV energy range using a pulsed white neutron source

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Wender, S. A.; Auchampaugh, G. F.

    1985-01-01

    A new pulsed white neutron source is under construction at the Los Alamos WNR facility. The neutrons are produced by LAMPF proton micropulses striking thick targets of various materials. Beam parameters include energy of 800 MeV, pulse rate of approximately 50,000 Hz, 0.4 nsec pulse width, average current as high as 6μa, and a useful neutron energy range from 3 to 300 MeV. The facility will receive beam approximately 80% of the time LAMPF is operational; it increases by a factor of 1000 the experimental capability over the present system at the WNR when beam intensity, angular distribution, and availability are taken into account. In addition to established white source techniques, the facility is also highly competitive with monoenergetic sources for a wide class of experiments such as neutron capture γ ray spectroscopy and neutron-induced charged particle reactions. The facility should be operational in about nine months. Arrangements are underway to make the facility readily accessible to visiting experiments.

  8. Nuclear physics in the 10 to 300 MeV energy range using a pulsed white neutron source

    NASA Astrophysics Data System (ADS)

    Bowman, C. D.; Wender, S. A.; Auchampaugh, G. F.

    A new pulsed white neutron source is under construction at the Los Alamos WNR facility. The neutrons are produced by LAMPF proton micropulses striking thick targets of various materials. Beam parameters include energy of 800 MeV, pulse rate of approximately 50,000 Hz, 0.4 nsec pulse width, average current as high as 6(MU)a, and a useful neutron energy range from 3 to 300 MeV. The facility will receive beam approximately 80% of the time LAMPF is operational; it increased by a factor of 1000 the experimental capability over the present system at the WNR when beam intensity, angular distribution, and availability are taken into account. In addition to established white source techniques, the facility is also highly competitive with monoenergetic sources for a wide class of experiments such as neutron capture (GAMMA) ray spectroscopy and neutron-induced charged particle reactions. The facility should be operational in about nine months. Arrangements are underway to make the facility readily accessible to visiting experimenters.

  9. Long pulse acceleration of MeV class high power density negative H{sup −} ion beam for ITER

    SciTech Connect

    Umeda, N. Kojima, A.; Kashiwagi, M.; Tobari, H.; Hiratsuka, J.; Watanabe, K.; Dairaku, M.; Yamanaka, H.; Hanada, M.

    2015-04-08

    R and D of high power density negative ion beam acceleration has been carried out at MeV test facility in JAEA to realize ITER neutral beam accelerator. The main target is H{sup −} ion beam acceleration up to 1 MeV with 200 A/m{sup 2} for 60 s whose pulse length is the present facility limit. For long pulse acceleration at high power density, new extraction grid (EXG) has been developed with high cooling capability, which electron suppression magnet is placed under cooling channel similar to ITER. In addition, aperture size of electron suppression grid (ESG) is enlarged from 14 mm to 16 mm to reduce direct interception on the ESG and emission of secondary electron which leads to high heat load on the upstream acceleration grid. By enlarging ESG aperture, beam current increased 10 % at high current beam and total acceleration grid heat load reduced from 13 % to 10 % of input power at long pulse beam. In addition, heat load by back stream positive ion into the EXG is measured for the first time and is estimated as 0.3 % of beam power, while heat load by back stream ion into the source chamber is estimated as 3.5 ~ 4.0 % of beam power. Beam acceleration up to 60 s which is the facility limit, has achieved at 683 keV, 100 A/m{sup 2} of negative ion beam, whose energy density increases two orders of magnitude since 2011.

  10. Production of neutrons up to 18 MeV in high-intensity, short-pulse laser matter interactions

    SciTech Connect

    Higginson, D. P.; McNaney, J. M.; Swift, D. C.; Mackinnon, A. J.; Patel, P. K.; Petrov, G. M.; Davis, J.; Frenje, J. A.; Jarrott, L. C.; Tynan, G.; Beg, F. N.; Kodama, R.; Nakamura, H.; Lancaster, K. L.

    2011-10-15

    The generation of high-energy neutrons using laser-accelerated ions is demonstrated experimentally using the Titan laser with 360 J of laser energy in a 9 ps pulse. In this technique, a short-pulse, high-energy laser accelerates deuterons from a CD{sub 2} foil. These are incident on a LiF foil and subsequently create high energy neutrons through the {sup 7}Li(d,xn) nuclear reaction (Q = 15 MeV). Radiochromic film and a Thomson parabola ion-spectrometer were used to diagnose the laser accelerated deuterons and protons. Conversion efficiency into protons was 0.5%, an order of magnitude greater than into deuterons. Maximum neutron energy was shown to be angularly dependent with up to 18 MeV neutrons observed in the forward direction using neutron time-of-flight spectrometry. Absolutely calibrated CR-39 detected spectrally integrated neutron fluence of up to 8 x 10{sup 8} n sr{sup -1} in the forward direction.

  11. Generation of relativistic ions, electrons and positrons in high-intensity short-pulse laser-solid interactions

    NASA Astrophysics Data System (ADS)

    Hill, Matthew; Allan, Peter; Brown, Colin; Hobbs, Lauren; James, Steven; Oades, Kevin; Hoarty, David; Chen, Hui

    2012-10-01

    The newly-commissioned Orion laser facility at AWE Aldermaston can deliver intense (10^21 W/cm^2), short (0.6 ps) laser pulses at 1φ (1 μ m) and 3x10^20 W/cm^2 at 2φ with pulse contrasts of 10^7 and 10^13, respectively, in addition to ten 3φ, 500 J long-pulse (˜ns) beams. All can be delivered to target synchronized to ˜20 ps. We report on the production and characterization of multi-MeV protons, ions, positrons and electrons at the Orion facility using 500 J, 0.6 ps, 1φ pulses and 100 J, 0.6 ps, 2φ pulses onto both thin (20 μ m) and thick (1 mm) gold targets. Laser intensities were scanned from 10^19 to 10^21 W/cm^2 by altering pulse energy and length while maintaining a consistent focal spot size of 10 μ. Particle energies were recorded by use of a magnetic and a Thomson spectrometer, with X-ray emissions imaged using a time-integrating pinhole camera in addition to time-integrating crystal spectrometers. The implications for future experiments such as investigations into electron transport mechanisms and proton heating are briefly discussed.

  12. Numerical simulation study of positron production by intense laser-accelerated electrons

    SciTech Connect

    Yan, Yonghong; Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 ; Dong, Kegong; Wu, Yuchi; Zhang, Bo; Gu, Yuqiu; Yao, Zeen

    2013-10-15

    Positron production by ultra-intense laser-accelerated electrons has been studied with two-dimensional particle-in-cell and Monte Carlo simulations. The dependence of the positron yield on plasma density, plasma length, and converter thickness was investigated in detail with fixed parameters of a typical 100 TW laser system. The results show that with the optimal plasma and converter parameters a positron beam containing up to 1.9 × 10{sup 10} positrons can be generated, which has a small divergence angle (10°), a high temperature (67.2 MeV), and a short pulse duration (1.7 ps)

  13. A ROLE OF MAGNETOSONIC PULSES ON VARIATIONS OF VOYAGER-1 MeV ELECTRON INTENSITY IN THE HELIOSHEATH

    SciTech Connect

    Washimi, H.; Zank, G. P.; Hu, Q.; Florinski, V.; Webber, W.; Adams, J.; Kubo, Y.

    2012-09-20

    Voyager 1 (V1) spacecraft observed electrons of 6-14 MeV in the heliosheath which showed several enhancements of significant flux variation. We compare these temporal electron flux variations, from the time when V1 crossed the termination shock (TS) up to mid-2008, with dynamical phenomena in the heliosheath that are obtained from our MHD simulations which are based on Voyager 2 (V2) observed solar-wind data. Our simulations indicate that all electron flux enhancements, except for one, correspond fairly well to the times when a magnetosonic (MS) pulse was driven downstream of the TS due to collision of interplanetary shock (IPS) or shock-driven MS pulse and its reflection in the heliosheath that either passed V1, or collided with the TS or with the plasma sheet near the heliopause (HP). This result suggests that these enhancements in the electron flux should correspond to either direct or indirect effects of MS pulses in the heliosheath driven by IPSs. The scale of the heliosphere is estimated by comparing V1-observed magnetic field intensity with the simulated intensity which suggests that V1 is possibly located near the HP within 4-8 AU at the present time.

  14. A Role of Magnetosonic Pulses on Variations of Voyager-1 MeV Electron Intensity in the Heliosheath

    NASA Astrophysics Data System (ADS)

    Washimi, H.; Webber, W.; Zank, G. P.; Hu, Q.; Florinski, V.; Adams, J.; Kubo, Y.

    2012-09-01

    Voyager 1 (V1) spacecraft observed electrons of 6-14 MeV in the heliosheath which showed several enhancements of significant flux variation. We compare these temporal electron flux variations, from the time when V1 crossed the termination shock (TS) up to mid-2008, with dynamical phenomena in the heliosheath that are obtained from our MHD simulations which are based on Voyager 2 (V2) observed solar-wind data. Our simulations indicate that all electron flux enhancements, except for one, correspond fairly well to the times when a magnetosonic (MS) pulse was driven downstream of the TS due to collision of interplanetary shock (IPS) or shock-driven MS pulse and its reflection in the heliosheath that either passed V1, or collided with the TS or with the plasma sheet near the heliopause (HP). This result suggests that these enhancements in the electron flux should correspond to either direct or indirect effects of MS pulses in the heliosheath driven by IPSs. The scale of the heliosphere is estimated by comparing V1-observed magnetic field intensity with the simulated intensity which suggests that V1 is possibly located near the HP within 4-8 AU at the present time.

  15. Characterization of MeV Electron Generation using 527 nm Laser Pulses for Fast Ignition

    NASA Astrophysics Data System (ADS)

    Fedosejevs, Robert; Higginson, D. P.; Friesen, H.; Sorokovikova, A.; Jarrott, C. C.; Link, A.; Kemp, G. E.; Hey, D.; Ping, Y.; Bush, I.; Tiedje, H. F.; Mo, M. Z.; Tsui, Y. Y.; Westover, B.; Beg, F. N.; Akli, K. U.; Freeman, R. R.; van Woerkom, L. D.; Schumacher, D.; Chen, C.; McLean, H. S.; Patel, P.; Doeppner, T.; Stephens, R. B.; Pasley, J.

    2011-10-01

    J WESTWOOD, J TAIT, A BEAUDRY, S SINGH, U of Alberta, and MH Key, LLNL. We investigate electron generation at intensities of relevance to Fast Ignition using second harmonic laser pulses, motivated by the need to understand the wavelength scaling of the processes and also the ability to obtain clean, prepulse free, target interaction conditions. 700fs duration pulses with peak intensities up to 5 x 1019 W cm-2 were employed at the TITAN laser facility at LLNL. Both planar and cone target geometries were studied using copper k-alpha imaging of tracer layers, Bremsstrahlung x-ray emission measurements of conversion efficiency and beam divergence and magnetic spectrometer measurements of escaping electrons to characterize the electron generation and propagation. Results of electron temperature and angular divergence will be presented.

  16. MeV femtosecond electron pulses from direct-field acceleration in low density atomic gases

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Marceau, Vincent; Hogan-Lamarre, Pascal; Fennel, Thomas; Piché, Michel; Brabec, Thomas

    2016-01-01

    Using three-dimensional particle-in-cell (3DPIC) simulations, we show that few-MeV electrons can be produced by tightly focusing few-cycle radially-polarized laser pulses in a low-density atomic gas. In particular, it is observed that for the few-TW laser power needed to reach relativistic electron energies, longitudinal attosecond microbunching occurs naturally, resulting in femtosecond structures with high-contrast attosecond density modulations. The 3DPIC simulations show that in the relativistic regime the leading pulse of these attosecond substructures survives to propagation over extended distances, suggesting that it could be delivered to a distant target, with the help of a properly designed transport beamline.

  17. Towards laboratory produced relativistic electron–positron pair plasmas

    SciTech Connect

    Chen, Hui; Meyerhofer, D. D.; Wilks, S. C.; Cauble, R.; Dollar, F.; Falk, K.; Gregori, G.; Hazi, A.; Moses, E. I.; Murphy, C. D.; Myatt, J.; Park, J.; Seely, J.; Shepherd, R.; Spitkovsky, A.; Stoeckl, C.; Szabo, C. I.; Tommasini, R.; Zulick, C.; Beiersdorfer, P.

    2011-12-01

    We review recent experimental results on the path to producing electron–positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 1016 cm-3 and 1013 cm-3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 1018 cm-3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.

  18. Inter-pulse high-resolution gamma-ray spectra using a 14 MeV pulsed neutron generator

    USGS Publications Warehouse

    Evans, L.G.; Trombka, J.I.; Jensen, D.H.; Stephenson, W.A.; Hoover, R.A.; Mikesell, J.L.; Tanner, A.B.; Senftle, F.E.

    1984-01-01

    A neutron generator pulsed at 100 s-1 was suspended in an artificial borehole containing a 7.7 metric ton mixture of sand, aragonite, magnetite, sulfur, and salt. Two Ge(HP) gamma-ray detectors were used: one in a borehole sonde, and one at the outside wall of the sample tank opposite the neutron generator target. Gamma-ray spectra were collected by the outside detector during each of 10 discrete time windows during the 10 ms period following the onset of gamma-ray build-up after each neutron burst. The sample was measured first when dry and then when saturated with water. In the dry sample, gamma rays due to inelastic neutron scattering, neutron capture, and decay were counted during the first (150 ??s) time window. Subsequently only capture and decay gamma rays were observed. In the wet sample, only neutron capture and decay gamma rays were observed. Neutron capture gamma rays dominated the spectrum during the period from 150 to 400 ??s after the neutron burst in both samples, but decreased with time much more rapidly in the wet sample. A signal-to-noise-ratio (S/N) analysis indicates that optimum conditions for neutron capture analysis occurred in the 350-800 ??s window. A poor S/N in the first 100-150 ??s is due to a large background continuum during the first time interval. Time gating can be used to enhance gamma-ray spectra, depending on the nuclides in the target material and the reactions needed to produce them, and should improve the sensitivity of in situ well logging. ?? 1984.

  19. A positron trap and beam apparatus for atomic and molecular scattering experiments.

    PubMed

    Sullivan, J P; Jones, A; Caradonna, P; Makochekanwa, C; Buckman, S J

    2008-11-01

    An instrument has been designed and constructed to provide new insights into fundamental, low energy positron scattering processes. The design is based on the Surko trap system and produces a pulsed positron beam with an energy resolution of as good as 54 meV. The design and operation of the apparatus is explained, while the first experimental results from this apparatus have been demonstrated in recent publications. PMID:19045887

  20. Temporally controlled modulation of antihydrogen production and the temperature scaling of antiproton-positron recombination.

    PubMed

    Fujiwara, M C; Amoretti, M; Amsler, C; Bonomi, G; Bouchta, A; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Jørgensen, L V; Kellerbauer, A; Lagomarsino, V; Landua, R; Lodi-Rizzini, E; Macri, M; Madsen, N; Manuzio, G; Mitchard, D; Montagna, P; Pruys, H; Regenfus, C; Rotondi, A; Testera, G; Variola, A; Venturelli, L; van der Werf, D P; Yamazaki, Y; Zurlo, N

    2008-08-01

    We demonstrate temporally controlled modulation of cold antihydrogen production by periodic RF heating of a positron plasma during antiproton-positron mixing in a Penning trap. Our observations have established a pulsed source of atomic antimatter, with a rise time of about 1 s, and a pulse length ranging from 3 to 100 s. Time-sensitive antihydrogen detection and positron plasma diagnostics, both capabilities of the ATHENA apparatus, allowed detailed studies of the pulsing behavior, which in turn gave information on the dependence of the antihydrogen production process on the positron temperature T. Our data are consistent with power law scaling T (-1.1+/-0.5) for the production rate in the high temperature regime from approximately 100 meV up to 1.5 eV. This is not in accord with the behavior accepted for conventional three-body recombination. PMID:18764390

  1. Generation of energetic (>15 MeV) neutron beams from proton- and deuteron-driven nuclear reactions using short pulse lasers

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; Higginson, D. P.; Davis, J.; Petrova, Tz B.; McGuffey, C.; Qiao, B.; Beg, F. N.

    2013-10-01

    A roadmap is proposed for the production of high-energy (>15 MeV) neutrons using short pulse lasers. Different approaches are suggested for the two limiting cases of small (E1 ≪ Q) and large (E1 ≫ Q) projectile energies E1 depending on the Q-value of the nuclear reaction. The neutron fluence from many converter materials is evaluated for two projectiles: protons and deuterons. We found profound differences between proton- and deuteron-driven reactions with regard to both converter material and generated neutron fluence. The optimum converter material for deuteron-driven reactions is low-Z elements such as Li and Be, while for proton-driven reactions the converter material is not critical. For a projectile energy of 50 MeV the deuteron-driven reactions are two orders of magnitude more efficient compared to the proton-driven reactions. Two-dimensional particle-in-cell simulations have been performed for laser pulses with peak intensity 3 × 1020 W cm-2, pulse duration 40 fs, spot size 5 µm and energy 3 J interacting with ultrathin (0.1 µm) CD foil. The calculated deuteron beam is highly directional along the laser propagation direction with maximum energy of 45 MeV. The interaction of the deuteron beam with a lithium converter and the production of neutrons is modeled using a Monte Carlo code. The computed neutron spectra show that a forward directed neutron beam is generated with an opening angle of ˜1 sr, maximum energy of 60 MeV and a fluence in the forward direction 1.8 × 108 n sr-1, ˜20% of which are with energy above 15 MeV.

  2. Oxygen-Atom Defects In 6H Silicon Carbide Implanted Using 24- MeV O3+ Ions Measured Using Three-Dimensional Positron Annihilation Spectroscopy System (3DPASS)

    NASA Astrophysics Data System (ADS)

    Williams, Christopher S.; Duan, Xiaofeng F.; Petrosky, James C.; Burggraf, Larry W.

    2011-06-01

    Three dimensional electron-positron (e--e+) momentum distributions were measured for single crystal 6H silicon carbide (SiC); both virgin and having implanted oxygen-atom defects. 6H SiC samples were irradiated by 24- MeV O3+ ions at 20 particle-nanoamps at the Sandia National Laboratory's Ion Beam Facility. O3+ ions were implanted 10.8 μm deep normal to the (0001) face of one side of the SiC samples. During positron annihilation measurements, the opposite face of the 254.0-μm thick SiC samples was exposed to positrons from a 22Na source. This technique reduced the influence on the momentum measurements of vacancy-type defects resulting from knock-on damage by the O3+ ions. A three-dimensional positron annihilation spectroscopy system (3DPASS) was used to measure e--e+ momentum distributions for virgin and irradiated 6H SiC crystal both before and following annealing. 3DPASS simultaneously measures coincident Doppler-broadening (DBAR) and angular correlation of annihilation radiation (ACAR) spectra. DBAR ratio plots and 2D ACAR spectra are presented. Changes in the momentum anisotropies relative to crystal orientation observed in 2D ACAR spectra for annealed O-implanted SiC agree with the local structure of defect distortion predicted using Surface Integrated Molecular Orbital/Molecular Mechanics (SIMOMM). Oxygen atoms insert between Si and C atoms increasing their separation by 0.9 Å forming a Si-O-C bond angle of ˜150°.

  3. Oxygen-Atom Defects In 6H Silicon Carbide Implanted Using 24- MeV O{sup 3+} Ions Measured Using Three-Dimensional Positron Annihilation Spectroscopy System (3DPASS)

    SciTech Connect

    Williams, Christopher S.; Petrosky, James C.; Burggraf, Larry W.

    2011-06-01

    Three dimensional electron-positron (e{sup -}-e{sup +}) momentum distributions were measured for single crystal 6H silicon carbide (SiC); both virgin and having implanted oxygen-atom defects. 6H SiC samples were irradiated by 24- MeV O{sup 3+} ions at 20 particle-nanoamps at the Sandia National Laboratory's Ion Beam Facility. O{sup 3+} ions were implanted 10.8 {mu}m deep normal to the (0001) face of one side of the SiC samples. During positron annihilation measurements, the opposite face of the 254.0-{mu}m thick SiC samples was exposed to positrons from a {sup 22}Na source. This technique reduced the influence on the momentum measurements of vacancy-type defects resulting from knock-on damage by the O{sup 3+} ions. A three-dimensional positron annihilation spectroscopy system (3DPASS) was used to measure e{sup -}-e{sup +} momentum distributions for virgin and irradiated 6H SiC crystal both before and following annealing. 3DPASS simultaneously measures coincident Doppler-broadening (DBAR) and angular correlation of annihilation radiation (ACAR) spectra. DBAR ratio plots and 2D ACAR spectra are presented. Changes in the momentum anisotropies relative to crystal orientation observed in 2D ACAR spectra for annealed O-implanted SiC agree with the local structure of defect distortion predicted using Surface Integrated Molecular Orbital/Molecular Mechanics (SIMOMM). Oxygen atoms insert between Si and C atoms increasing their separation by 0.9 A forming a Si-O-C bond angle of {approx}150 deg.

  4. ON THE SPECTRUM OF THE PULSED GAMMA-RAY EMISSION OF THE CRAB PULSAR FROM 10 MeV TO 400 GeV

    SciTech Connect

    Chkheidze, N.; Machabeli, G.; Osmanov, Z.

    2013-08-20

    In the present paper, a self-consistent theory, interpreting VERITAS and the MAGIC observations of the very high-energy pulsed emission from the Crab pulsar, is considered. The photon spectrum between 10 MeV and 400 GeV can be described by two power-law functions with spectral indices of 2.0 and 3.8. The source of the pulsed emission above 10 MeV is assumed to be synchrotron radiation, which is generated near the light cylinder during the quasi-linear stage of the cyclotron instability. The emitting particles are the primary beam electrons with Lorentz factors up to 10{sup 9}. Such high energies of beam particles can be reached due to Landau damping of the Langmuir waves in the light cylinder region.

  5. Ultra-Intense Short-Pulse Pair Creation Using the Texas Petawatt Laser

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Henderson, Alexander; Clarke, Taylor; Taylor, Devin; Chaguine, Petr; Serratto, Kristina; Riley, Nathan; Dyer, Gilliss; Donovan, Michael; Ditmire, Todd

    2013-10-01

    We report results from the 2012 pair creation experiment using the Texas Petawatt Laser. Up to 1011 positrons per steradian were detected using 100 Joule pulses from the Texas Petawatt Laser to irradiate gold targets, with peak laser intensities up to 1.9 × 1021W/cm2 and pulse durations as short as 130 fs. Positron-to-electron ratios exceeding 20% were measured on some shots. The positron energy, positron yield per unit laser energy, and inferred positron density are significantly higher than those reported in previous experiments. This confirms that, for a given laser energy, higher intensity and shorter pulses irradiating thicker targets are more favorable for pair creation. Narrow-band high-energy positrons up to 23 MeV were observed from thin targets. Supported by DOE Grant DE-SC-0001481 and Rice FIF.

  6. The Fermi LAT/GBM detection of pulsed gamma-ray emission from PSR J1846-0258 up to 100 MeV

    NASA Astrophysics Data System (ADS)

    Kuiper, Lucien; Dekker, Ariane

    2016-05-01

    Applying phase coherent timing models, created using RXTE PCA and Swift XRT monitoring data of PSR J1846-0258 covering the period August 4, 2008 - March 11, 2016 (MJD 54682 - 57458), in timing analyses of Fermi LAT (PASS8) and Fermi GBM (TTE) data yielded for the first time the detection of pulsed gamma-ray emission from PSR J1846-0258 up to 100 MeV. Phase folding the barycentered Fermi LAT events (period MJD 56185-56338, i.e. Sept.

  7. Ultrafast electron diffraction with megahertz MeV electron pulses from a superconducting radio-frequency photoinjector

    SciTech Connect

    Feng, L. W.; Lin, L.; Huang, S. L.; Quan, S. W.; Hao, J. K.; Zhu, F.; Wang, F.; Liu, K. X.; Jiang, T.; Zhu, P. F.; Fu, F.; Wang, R.; Zhao, L.; Xiang, D.

    2015-11-30

    We report ultrafast relativistic electron diffraction operating at the megahertz repetition rate where the electron beam is produced in a superconducting radio-frequency (rf) photoinjector. We show that the beam quality is sufficiently high to provide clear diffraction patterns from gold and aluminium samples. With the number of electrons, several orders of magnitude higher than that from a normal conducting photocathode rf gun, such high repetition rate ultrafast MeV electron diffraction may open up many new opportunities in ultrafast science.

  8. Formation mechanisms and optimization of trap-based positron beams

    NASA Astrophysics Data System (ADS)

    Natisin, M. R.; Danielson, J. R.; Surko, C. M.

    2016-02-01

    Described here are simulations of pulsed, magnetically guided positron beams formed by ejection from Penning-Malmberg-style traps. In a previous paper [M. R. Natisin et al., Phys. Plasmas 22, 033501 (2015)], simulations were developed and used to describe the operation of an existing trap-based beam system and provided good agreement with experimental measurements. These techniques are used here to study the processes underlying beam formation in more detail and under more general conditions, therefore further optimizing system design. The focus is on low-energy beams (˜eV) with the lowest possible spread in energies (<10 meV), while maintaining microsecond pulse durations. The simulations begin with positrons trapped within a potential well and subsequently ejected by raising the bottom of the trapping well, forcing the particles over an end-gate potential barrier. Under typical conditions, the beam formation process is intrinsically dynamical, with the positron dynamics near the well lip, just before ejection, particularly crucial to setting beam quality. In addition to an investigation of the effects of beam formation on beam quality under typical conditions, two other regimes are discussed; one occurring at low positron temperatures in which significantly lower energy and temporal spreads may be obtained, and a second in cases where the positrons are ejected on time scales significantly faster than the axial bounce time, which results in the ejection process being essentially non-dynamical.

  9. Applications and advances of positron beam spectroscopy: appendix a

    SciTech Connect

    Howell, R. H., LLNL

    1997-11-05

    Over 50 scientists from DOE-DP, DOE-ER, the national laboratories, academia and industry attended a workshop held on November 5-7, 1997 at Lawrence Livermore National Laboratory jointly sponsored by the DOE-Division of Materials Science, The Materials Research Institute at LLNL and the University of California Presidents Office. Workshop participants were charged to address two questions: Is there a need for a national center for materials analysis using positron techniques and can the capabilities at Lawrence Livermore National Laboratory serve this need. To demonstrate the need for a national center the workshop participants discussed the technical advantages enabled by high positron currents and advanced measurement techniques, the role that these techniques will play in materials analysis and the demand for the data. There were general discussions lead by review talks on positron analysis techniques, and their applications to problems in semiconductors, polymers and composites, metals and engineering materials, surface analysis and advanced techniques. These were followed by focus sessions on positron analysis opportunities in these same areas. Livermore now leads the world in materials analysis capabilities by positrons due to developments in response to demands of science based stockpile stewardship. There was a detailed discussion of the LLNL capabilities and a tour of the facilities. The Livermore facilities now include the worlds highest current beam of keV positrons, a scanning pulsed positron microprobe under development capable of three dimensional maps of defect size and concentration, an MeV positron beam for defect analysis of large samples, and electron momentum spectroscopy by positrons. This document is a supplement to the written summary report. It contains a complete schedule, list of attendees and the vuegraphs for the presentations in the review and focus sessions.

  10. Positron Injector Accelerator and RF System for the ILC

    SciTech Connect

    Wang, J.W.; Adolphsen, C.; Bharadwaj, V.; Bowden, G.; Jongewaard, E.; Li, Z.; Miller, R.; Sheppard, J.C.; /SLAC

    2007-03-28

    Due to the extremely high energy deposition from positrons, electrons, photons and neutrons behind the positron target, and because a solenoid is required to focus the large emittance positron beam, the 1.3 GHz preaccelerator has to use normal conducting structures up to energy of 400 MeV. There are many challenges in the design of the normal-conducting portion of the ILC positron injector system such as obtaining high positron yield with required emittance, achieving adequate cooling with the high RF and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. Considering issues of feasibility, reliability and cost savings for the ILC, the proposed design for the positron injector contains both standing-wave (SW) and traveling-wave (TW) L-band accelerator structures. A short version of the new type of the SW section is under fabrication and testing. An updated status report is given. This paper also covers acceleration vs. deceleration for pre-accelerator sections, SW vs. TW structures, as well as longitudinal matching from target to linac and linac to damping ring.

  11. Positron binding to molecules

    NASA Astrophysics Data System (ADS)

    Danielson, J. R.

    2011-05-01

    While there is theoretical evidence that positrons can bind to atoms, calculations for molecules are much less precise. Unfortunately, there have been no measurements of positron-atom binding, due primarily to the difficulty in forming positron-atom bound states in two-body collisions. In contrast, positrons attach to molecules via Feshbach resonances (VFR) in which a vibrational mode absorbs the excess energy. Using a high-resolution positron beam, this VFR process has been studied to measure binding energies for more than 40 molecules. New measurements will be described in two areas: positron binding to relatively simple molecules, for which theoretical calculations appear to be possible; and positron binding to molecules with large permanent dipole moments, which can be compared to analogous, weakly bound electron-molecule (negative-ion) states. Binding energies range from 75 meV for CS2 (no dipole moment) to 180 meV for acetonitrile (CH3CN). Other species studied include aldehydes and ketones, which have permanent dipole moments in the range 2.5 - 3.0 debye. The measured binding energies are surprisingly large (by a factor of 10 to 100) compared to those for the analogous negative ions, and these differences will be discussed. New theoretical calculations for positron-molecule binding are in progress, and a recent result for acetonitrile will be discussed. This ability to compare theory and experiment represents a significant step in attempts to understand positron binding to matter. In collaboration with A. C. L. Jones, J. J. Gosselin, and C. M. Surko, and supported by NSF grant PHY 07-55809.

  12. Towards laboratory-produced relativistic electron-positron pair-plasmas

    SciTech Connect

    Chen, H; Wilks, S C; Meyerhofer, D D; Beiersdorfer, P; Cauble, R; Dollar, F; Falk, K; Hazi, A; Murphy, C D; Park, J; Seely, J; Szabo, C I; Shepherd, R; Tommasini, R; Zulick, K

    2010-08-31

    Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the last few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 10{sup 16} cm{sup -3} and 10{sup 13} cm{sup -3}, respectively. With the advent of high-energy ultra-short laser pulses, we expect that a charge-neutral, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter. This talk will present some details of the laser-produced pair-plasma experiments.

  13. Modification of a pulsed 14-MeV fast neutron generator to a medium-energy ion accelerator for TOF-RBS application

    NASA Astrophysics Data System (ADS)

    Junphong, P.; Suwannakachorn, D.; Yu, L. D.; Singkarat, S.

    2011-12-01

    The first drift-tube neutron generator in Thailand, developed during 1980s under the support by the International Atomic Energy Agency (IAEA), was a 150 kV deuteron accelerator-based 14 MeV fast neutron generator. The accelerator was featured by a nanosecond pulsing system consisting of a beam chopper in combination with a beam buncher. Following the rapid development of ion beam technology and increasing needs for materials applications in the laboratory, the accelerator has been upgraded and modified to a large extent into a medium-energy ion-accelerator for time-of-flight Rutherford backscattering spectrometry (TOF-RBS) applications. The modification of the accelerator included the changing of the ion source, the accelerating tube and the mass-analyzing magnet, the upgrading of the pulsing system, and the installation of a TOF-RBS detecting system. The new accelerator is capable of supplying a 400-keV He-ion beam with ns-pulses for nano-layered materials analysis. This paper provides technical details of the modification.

  14. MeV proton beams generated by 3 mJ ultrafast laser pulses at 0.5 kHz

    SciTech Connect

    Hou Bixue; Nees, John; Easter, James; Thomas, Alexander; Krushelnick, Karl; Davis, Jack; Petrov, George

    2009-09-07

    Well-collimated proton beams are generated from bulk glass along the target normal direction by tightly focused 55 fs, 3 mJ pulses from a laser operating at 0.5 kHz repetition rate. Proton beams with energies of >265 keV have an emission angle of about 16 deg. full width at half maximum. Spectral measurements indicate proton energies exceeding 0.5 MeV with a flux of 3.2x10{sup 9} s{sup -1} sr{sup -1} and the flux of measured protons with energies of greater than 90 keV is 8.5x10{sup 11} s{sup -1} sr{sup -1} on center.

  15. Use of radial self-field geometry for intense pulsed ion beam generation above 6 MeV on Hermes III.

    SciTech Connect

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Ginn, William Craig; Mikkelson, Kenneth A.; Schall, Michael; Cooper, Gary Wayne

    2012-12-01

    We investigate the generation and propagation of intense pulsed ion beams at the 6 MeV level and above using the Hermes III facility at Sandia National Laboratories. While high-power ion beams have previously been produced using Hermes III, we have conducted systematic studies of several ion diode geometries for the purpose of maximizing focused ion energy for a number of applications. A self-field axial-gap diode of the pinch reflex type and operated in positive polarity yielded beam power below predicted levels. This is ascribed both to power flow losses of unknown origin upstream of the diode load in Hermes positive polarity operation, and to anomalies in beam focusing in this configuration. A change to a radial self-field geometry and negative polarity operation resulted in greatly increased beam voltage (> 6 MeV) and estimated ion current. A comprehensive diagnostic set was developed to characterize beam performance, including both time-dependent and time-integrated measurements of local and total beam power. A substantial high-energy ion population was identified propagating in reverse direction, i.e. from the back side of the anode in the electron beam dump. While significant progress was made in increasing beam power, further improvements in assessing the beam focusing envelope will be required before ultimate ion generation efficiency with this geometry can be completely determined.

  16. Comparison of direct and indirect positron-generation by an ultra-intense femtosecond laser

    SciTech Connect

    Yan, Yonghong; Zhang, Bo; Wu, Yuchi; Dong, Kegong; Gu, Yuqiu; Yao, Zeen

    2013-10-15

    An extensive comparison of the properties of positron beams produced by an ultra-intense femtosecond laser in direct and indirect schemes has been performed with two-dimensional particle-in-cell and Monte Carlo simulations. It is shown that the positron beam generated in the indirect scheme has a higher yield (10{sup 10}), a higher temperature (28.8 MeV), a shorter pulse duration (5 ps), and a smaller divergence (8°) than in the direct case (10{sup 9} yield, 4.4 MeV temperature, 40 ps pulse duration, and 60° divergence). In addition, it was found that the positron/gamma ratio in the indirect scheme is one order of magnitude higher than that in the direct one, which represents a higher signal/noise ratio in positron detection. Nevertheless, the direct generation method still has its own unique advantage, the so-called target normal sheath acceleration, which can result in quasi-monoenergetic positron beams that may serve in some specialized applications.

  17. Comparison of direct and indirect positron-generation by an ultra-intense femtosecond laser

    NASA Astrophysics Data System (ADS)

    Yan, Yonghong; Zhang, Bo; Wu, Yuchi; Dong, Kegong; Yao, Zeen; Gu, Yuqiu

    2013-10-01

    An extensive comparison of the properties of positron beams produced by an ultra-intense femtosecond laser in direct and indirect schemes has been performed with two-dimensional particle-in-cell and Monte Carlo simulations. It is shown that the positron beam generated in the indirect scheme has a higher yield (1010), a higher temperature (28.8 MeV), a shorter pulse duration (5 ps), and a smaller divergence (8°) than in the direct case (109 yield, 4.4 MeV temperature, 40 ps pulse duration, and 60° divergence). In addition, it was found that the positron/gamma ratio in the indirect scheme is one order of magnitude higher than that in the direct one, which represents a higher signal/noise ratio in positron detection. Nevertheless, the direct generation method still has its own unique advantage, the so-called target normal sheath acceleration, which can result in quasi-monoenergetic positron beams that may serve in some specialized applications.

  18. Implementation of water calorimetry in a 180 MeV scanned pulsed proton beam including an experimental determination of kQ for a Farmer chamber

    NASA Astrophysics Data System (ADS)

    Medin, Joakim

    2010-06-01

    Water calorimetric measurements have been performed in a 180 MeV scanned pulsed proton beam and the absorbed dose determined has been compared with the results obtained using two NE2571 Farmer chambers and the IAEA TRS-398 code of practice. The depth of measurement in water corresponded to a residual range of Rres = 16.5 cm, corresponding to a mean energy of about 150 MeV. Ionization chambers were calibrated in terms of the absorbed dose to water in 60Co at the Swedish Secondary Standard Dosimetry Laboratory, directly traceable to Bureau International des Poids et Mesures. The present experimental investigation has shown that water calorimetry is feasible in a high-energy scanned pulsed proton beam. When comparing the results obtained with water calorimetry and ionometry, the beam quality correction factor, kQ, could be determined for the two NE2571 ionization chambers used. The kQ-factor was found to be 1.032 ± 0.013, which is in good agreement with the factor tabulated in IAEA TRS-398 for this chamber type (1.039 ± 0.018). The present result has also been compared with a previously obtained result in a passively scattered proton beam having similar energy. This comparison yielded a 1.1% deviation, which is not significant considering the combined uncertainties of the two experimental determinations of kQ. The dominating contribution to the combined uncertainty stems from the correction factor for ion recombination in the scanned proton beam (1%), and further studies are required in order to reduce this uncertainty and reveal any possible differences in the kQ-factor between these two proton beam delivery techniques.

  19. Primary cosmic ray positrons and galactic annihilation radiation

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1980-01-01

    The observation (Leventhal et al, 1978) of positron annihilation radiation at 0.511 MeV from the direction of the Galactic Center is reexamined, suggesting the possibility of a primary positron component of the cosmic rays. The observed 0.511 MeV emission requires a positron production rate nearly two orders of magnitude greater than the production rate of secondary cosmic ray positrons from pion decay produced in cosmic ray interactions. Possible sources of positrons are reviewed with both supernovae and pulsars appearing to be the more likely candidates. If only about 1% of these positrons were accelerated along with the cosmic ray nucleons and electrons to energies not less than 100 MeV, it is believed that these primary positrons would be comparable in intensity to those secondary positrons resulting from pion decay. Some observational evidence for the existence of primary positrons in the cosmic rays is also discussed.

  20. Intense positron beam at KEK

    NASA Astrophysics Data System (ADS)

    Kurihara, Toshikazu; Yagishita, Akira; Enomoto, Atsushi; Kobayashi, Hitoshi; Shidara, Tetsuo; Shirakawa, Akihiro; Nakahara, Kazuo; Saitou, Haruo; Inoue, Kouji; Nagashima, Yasuyuki; Hyodo, Toshio; Nagai, Yasuyoshi; Hasegawa, Masayuki; Inoue, Yoshi; Kogure, Yoshiaki; Doyama, Masao

    2000-08-01

    A positron beam is a useful probe for investigating the electronic states in solids, especially concerning the surface states. The advantage of utilizing positron beams is in their simpler interactions with matter, owing to the absence of any exchange forces, in contrast to the case of low-energy electrons. However, such studies as low-energy positron diffraction, positron microscopy and positronium (Ps) spectroscopy, which require high intensity slow-positron beams, are very limited due to the poor intensity obtained from a conventional radioactive-isotope-based positron source. In conventional laboratories, the slow-positron intensity is restricted to 10 6 e +/s due to the strength of the available radioactive source. An accelerator based slow-positron source is a good candidate for increasing the slow-positron intensity. One of the results using a high intensity pulsed positron beam is presented as a study of the origins of a Ps emitted from SiO 2. We also describe the two-dimensional angular correlation of annihilation radiation (2D-ACAR) measurement system with slow-positron beams and a positron microscope.

  1. a Search for Peak Structures in the Positron-Electron Sum-Energy Spectra for the URANIUM-238 + TANTALUM-181 System at 6.3, 6.1, and 5.95 Mev/u.

    NASA Astrophysics Data System (ADS)

    Perera, P. A. Aloy

    1995-01-01

    The discovery of unexpected sharp peak structures in the positron energy spectra, and also in the positron -electron sum energy spectra, in the heavy-ion collision experiments carried out at GSI, Germany has initiated a great amount of experimental and theoretical interest. There is no fully consistent explanation for the origin of these peaks. APEX--the ATLAS Positron experiment--has been designed to gain insight into this puzzling positron-line phenomenon. With the data from the APEX spectrometer a search for peak structures in the positron-electron sum energy spectra was carried out for the ^{238}U+ ^{181}Ta system at 6.3, 6.1 and 5.95 MeV/u. The possibility of revealing the previously reported peak structures in positron-electron sum-energy spectra by applying cuts on the distance of closest approach, the difference-energy between positron and electron, the positron-electron opening angle, and the positron emission angle relative to the beam direction was investigated. No statistically significant peaks were observed in the APEX data.

  2. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    NASA Astrophysics Data System (ADS)

    Renk, T. J.; Harper-Slaboszewicz, V.; Mikkelson, K. A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-01

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an "axial" pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. A new "radial" pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. In addition, a substantial high-energy ion population is also identified propagating in the "reverse" direction, i.e., from the back side of the anode foil in the electron beam dump.

  3. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    SciTech Connect

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometry that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.

  4. Use of a radial self-field diode geometry for intense pulsed ion beam generation at 6 MeV on Hermes III

    DOE PAGESBeta

    Renk, Timothy Jerome; Harper-Slaboszewicz, Victor Jozef; Mikkelson, Kenneth A.; Ginn, W. C.; Ottinger, P. F.; Schumer, J. W.

    2014-12-15

    We investigate the generation of intense pulsed focused ion beams at the 6 MeV level using an inductive voltage adder (IVA) pulsed-power generator, which employs a magnetically insulated transmission line (MITL). Such IVA machines typical run at an impedance of few tens of Ohms. Previous successful intense ion beam generation experiments have often featured an “axial” pinch-reflex ion diode (i.e., with an axial anode-cathode gap) and operated on a conventional Marx generator/water line driver with an impedance of a few Ohms and no need for an MITL. The goals of these experiments are to develop a pinch-reflex ion diode geometrymore » that has an impedance to efficiently match to an IVA, produces a reasonably high ion current fraction, captures the vacuum electron current flowing forward in the MITL, and focuses the resulting ion beam to small spot size. Furthermore, a new “radial” pinch-reflex ion diode (i.e., with a radial anode-cathode gap) is found to best demonstrate these properties. Operation in both positive and negative polarities was undertaken, although the negative polarity experiments are emphasized. Particle-in-cell (PIC) simulations are consistent with experimental results indicating that, for diode impedances less than the self-limited impedance of the MITL, almost all of the forward-going IVA vacuum electron flow current is incorporated into the diode current. PIC results also provide understanding of the diode-impedance and ion-focusing properties of the diode. Additionally, a substantial high-energy ion population is also identified propagating in the “reverse” direction, i.e., from the back side of the anode foil in the electron beam dump.« less

  5. Adventures in Gaseous Positronics - An Ultra-High-Energy-Resolution Cryogenic Beam

    NASA Astrophysics Data System (ADS)

    Natisin, Mike

    2016-05-01

    While positron interactions with matter are important in a variety of contexts, many important experiments have been inhibited due to the difficulties encountered in creating beams with narrow energy spreads. This talk focuses on the development of a pulsed positron beam with a total energy spread of 7 meV FWHM; this represents a factor of five improvement over the previous state-of-the-art. Current positron atomic physics experiments rely on high quality beams from buffer gas traps. Although widely used, the physical phenomena operative in beam formation had not previously been fully investigated, and understanding these processes proved crucial to improving beam quality. Experimental measurements and simulation results of positron cooling and beam formation are discussed, with an emphasis on beam energy resolution. Using these results, a new cryogenic, trap-based beam system was built. Positrons are cooled to 50 K using a CO buffer gas, resulting in beams with total energy spreads as low as 6.9 meV FWHM, sub-microsecond temporal spreads and beam diameters as small as 1 mm. Details of this beam system, as well as new experiments that will be enabled by it, will be discussed. Work supported by NSF Grant PHY-1401794.

  6. Positron microscopy

    SciTech Connect

    Hulett, L.D. Jr.; Xu, J.

    1995-02-01

    The negative work function property that some materials have for positrons make possible the development of positron reemission microscopy (PRM). Because of the low energies with which the positrons are emitted, some unique applications, such as the imaging of defects, can be made. The history of the concept of PRM, and its present state of development will be reviewed. The potential of positron microprobe techniques will be discussed also.

  7. Intense source of slow positrons

    NASA Astrophysics Data System (ADS)

    Perez, P.; Rosowsky, A.

    2004-10-01

    We describe a novel design for an intense source of slow positrons based on pair production with a beam of electrons from a 10 MeV accelerator hitting a thin target at a low incidence angle. The positrons are collected with a set of coils adapted to the large production angle. The collection system is designed to inject the positrons into a Greaves-Surko trap (Phys. Rev. A 46 (1992) 5696). Such a source could be the basis for a series of experiments in fundamental and applied research and would also be a prototype source for industrial applications, which concern the field of defect characterization in the nanometer scale.

  8. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu; Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-01

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 1023 W/cm2, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >1015 is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ˜15° with an effective temperature of ˜674 MeV. When the laser intensity is doubled, both the positron flux (>1016) and temperature (963 MeV) increase, while the divergence angle gets smaller (˜13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  9. Positrons from accelerated particle interactions

    NASA Technical Reports Server (NTRS)

    Kozlovsky, B.; Lingenfelter, R. E.; Ramaty, R.

    1987-01-01

    Positron production from the decay of radioactive nuclei produced in nuclear interactions of accelerated particles is treated in detail. Laboratory data as well as theoretical considerations are used to construct energy-dependent cross sections for the production of a large number of radioactive positron emitters resulting from proton and alpha-particle interactions with ambient cosmic matter. Using these cross sections, positron production rates are calculated for a variety of energetic particle spectra, assuming solar abundances for both the energetic particles and the ambient medium. These results can be used for the study of astrophysical sites which emit annihilation radiation. In particular, the results have been applied to solar flares, where the observed 0.511 MeV line is shown to be due to positrons resulting from accelerated particle reactions.

  10. The Japanese Positron Factory

    NASA Astrophysics Data System (ADS)

    Okada, S.; Sunaga, H.; Kaneko, H.; Takizawa, H.; Kawasuso, A.; Yotsumoto, K.; Tanaka, R.

    1999-06-01

    The Positron Factory has been planned at Japan Atomic Energy Research Institute (JAERI). The factory is expected to produce linac-based monoenergetic positron beams having world-highest intensities of more than 1010e+/sec, which will be applied for R&D of materials science, biotechnology and basic physics & chemistry. In this article, results of the design studies are demonstrated for the following essential components of the facilities: 1) Conceptual design of a high-power electron linac with 100 MeV in beam energy and 100 kW in averaged beam power, 2) Performance tests of the RF window in the high-power klystron and of the electron beam window, 3) Development of a self-driven rotating electron-to-positron converter and the performance tests, 4) Proposal of multi-channel beam generation system for monoenergetic positrons, with a series of moderator assemblies based on a newly developed Monte Carlo simulation and the demonstrative experiment, 5) Proposal of highly efficient moderator structures, 6) Conceptual design of a local shield to suppress the surrounding radiation and activation levels.

  11. Conceptual design of a slow positron source based on a magnetic trap

    NASA Astrophysics Data System (ADS)

    Volosov, V. I.; Meshkov, O. I.; Mezentsev, N. A.

    2001-09-01

    A unique 10.3 T superconducting wiggler was designed and manufactured at BINP SB RAS. The installation of this wiggler in the SPring-8 storage ring provides a possibility to generate a high-intensity beam of photons (SR) with energy above 1 MeV (Ando et al., J. Synchrotron Radiat. 5 (1998) 360). Conversion of photons to positrons on high- Z material (tungsten) targets creates an integrated positron flux more than 10 13 particles per second. The energy spectrum of the positrons has a maximum at 0.5 MeV and the half-width about 1 MeV (Plokhoi et al., Jpn. J. Appl. Phys. 38 (1999) 604). The traditional methods of positron moderation have the efficiency ɛ= Ns/ Nf of 10 -4 (metallic moderators) to 10 -2 (solid rare gas moderators) (Mills and Gullikson, Appl. Phys. Lett. 49 (1986) 1121). The high flux of primary positrons restricts the choice to a tungsten moderator that has ɛ≈10 -4only (Schultz, Nuc. Instr. and Meth. B 30 (1988) 94). The aim of our project is to obtain the moderation efficiency ɛ⩾10 -1. We propose to moderate the positrons inside a multi-stage magnetic trap based on several (3-6) electromagnetic traps that are connected in series. Magnetic field of the traps grows consecutively from stage to stage. We propose to release the positrons from the converter with the use of an additional relativistic electron beam passing in synchronism with the SR pulse in the vicinity of the converter. The average electron beam energy and current are 1-2 MeV and 100 mA, respectively. The electrical field of the beam is high enough to distort the positron paths by an amount comparable with the Larmor radius. The further drift of the positrons to the trap axis will occur due to the strengthening of the magnetic field. The magnetic field amplitude of adjacent traps varies in time in the antiphase and increases from 0.9 T in the first stage to 6 T in the last one. The positron transition from stage to stage takes place at the moment of the field equalization. The removal

  12. Pulse

    MedlinePlus

    Heart rate; Heart beat ... The pulse can be measured at areas where an artery passes close to the skin. These areas include the: ... side of the foot Wrist To measure the pulse at the wrist, place the index and middle ...

  13. Prototyping of the ILC Baseline Positron Target

    SciTech Connect

    Gronberg, J; Brooksby, C; Piggott, T; Abbott, R; Javedani, J; Cook, E

    2012-02-29

    The ILC positron system uses novel helical undulators to create a powerful photon beam from the main electron beam. This beam is passed through a titanium target to convert it into electron-positron pairs. The target is constructed as a 1 m diameter wheel spinning at 2000 RPM to smear the 1 ms ILC pulse train over 10 cm. A pulsed flux concentrating magnet is used to increase the positron capture efficiency. It is cooled to liquid nitrogen temperatures to maximize the flatness of the magnetic field over the 1 ms ILC pulse train. We report on prototyping effort on this system.

  14. E166: Polarized Positrons & Polarimetry

    SciTech Connect

    Schuler, K.Peter; /DESY

    2011-12-06

    A proof-of-principle experiment has been carried out in the Final Focus Test Beam (FFTB) at Stanford Linear Accelerator Center (SLAC) to demonstrate production of polarized positrons in a manner suitable for implementation at the International Linear Collider (ILC). A helical undulator of 2.54 mm period and 1 -m length produced circularly polarized photons with a first harmonic endpoint energy of 8 MeV when traversed by a 46.6 GeV electron beam. The polarized photons were converted to polarized positrons in a 0.2-radiation-length tungsten target. The polarization of these positrons was measured using a Compton transmission polarimeter to have peak value in excess of 80%.

  15. Positron Physics

    NASA Technical Reports Server (NTRS)

    Drachman, Richard J.

    2003-01-01

    I will give a review of the history of low-energy positron physics, experimental and theoretical, concentrating on the type of work pioneered by John Humberston and the positronics group at University College. This subject became a legitimate subfield of atomic physics under the enthusiastic direction of the late Sir Harrie Massey, and it attracted a diverse following throughout the world. At first purely theoretical, the subject has now expanded to include high brightness beams of low-energy positrons, positronium beams, and, lately, experiments involving anti-hydrogen atoms. The theory requires a certain type of persistence in its practitioners, as well as an eagerness to try new mathematical and numerical techniques. I will conclude with a short summary of some of the most interesting recent advances.

  16. The Buffer-Gas Positron Accumulator and Resonances in Positron-Molecule Interactions

    NASA Technical Reports Server (NTRS)

    Surko, C.M.

    2007-01-01

    This is a personal account of the development of our buffer-gas positron trap and the new generation of cold beams that these traps enabled. Dick Drachman provided much appreciated advice to us from the time we started the project. The physics underlying trap operation is related to resonances (or apparent resonances) in positron-molecule interactions. Amusingly, experiments enabled by the trap allowed us to understand these processes. The positron-resonance "box score" to date is one resounding "yes," namely vibrational Feshbach resonances in positron annihilation on hydrocarbons; a "probably" for positron-impact electronic excitation of CO and NZ;an d a "maybe" for vibrational excitation of selected molecules. Two of these processes enabled the efficient operation of the trap, and one almost killed it in infancy. We conclude with a brief overview of further applications of the trapping technology discussed here, such as "massive" positron storage and beams with meV energy resolution.

  17. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  18. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE PAGESBeta

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; et al

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  19. Update on the Argonne positron accumulator ring

    SciTech Connect

    Borland, M.

    1993-07-01

    The injector for the Advanced Photon Source incorporates a 450-MeV positron accumulator ring (PAR) to decrease the filling time with the 2-Hz synchrotron. In addition to accumulating positrons from the linac, the PAR damps the beam and reduces the bunch length. The PAR lattice has been redesigned to use zero-gradient dipoles, while retaining essentially the same damping partition. Extensive simulations have been performed to set tolerances that will give high capture efficiency, in spite of the large momentum spread of the incoming positron beam.

  20. Conceptual design of an intense positron source based on an LIA

    NASA Astrophysics Data System (ADS)

    Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui

    2012-04-01

    Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.

  1. KEK-IMSS Slow Positron Facility

    NASA Astrophysics Data System (ADS)

    Hyodo, T.; Wada, K.; Yagishita, A.; Kosuge, T.; Saito, Y.; Kurihara, T.; Kikuchi, T.; Shirakawa, A.; Sanami, T.; Ikeda, M.; Ohsawa, S.; Kakihara, K.; Shidara, T.

    2011-12-01

    The Slow Positron Facility at the Institute of Material Structure Science (IMSS) of High Energy Accelerator Research Organization (KEK) is a user dedicated facility with an energy tunable (0.1 - 35 keV) slow positron beam produced by a dedicated 55MeV linac. The present beam line branches have been used for the positronium time-of-flight (Ps-TOF) measurements, the transmission positron microscope (TPM) and the photo-detachment of Ps negative ions (Ps-). During the year 2010, a reflection high-energy positron diffraction (RHEPD) measurement station is going to be installed. The slow positron generator (converter/ moderator) system will be modified to get a higher slow positron intensity, and a new user-friendly beam line power-supply control and vacuum monitoring system is being developed. Another plan for this year is the transfer of a 22Na-based slow positron beam from RIKEN. This machine will be used for the continuous slow positron beam applications and for the orientation training of those who are interested in beginning researches with a slow positron beam.

  2. Pulse

    MedlinePlus

    ... resting for at least 10 minutes. Take the exercise heart rate while you are exercising. ... pulse rate can help determine if the patient's heart is pumping. ... rate gives information about your fitness level and health.

  3. Undulator-Based Production of Polarized Positrons, A Proposal for the 50-GeV Beam in the FFTB

    SciTech Connect

    G. Alexander; P. Anthony; V. Bharadwaj; Yu.K. Batygin; T. Behnke; S. Berridge; G.R. Bower; W. Bugg; R. Carr; E. Chudakov; J.E. Clendenin; F.J. Decker; Yu. Efremenko; T. Fieguth; K. Flottmann; M. Fukuda; V. Gharibyan; T. Handler; T. Hirose; R.H. Iverson; Yu. Kamyshkov; H. Kolanoski; T. Lohse; Chang-guo Lu; K.T. McDonald; N. Meyners; R. Michaels; A.A. Mikhailichenko; K. Monig; G. Moortgat-Pick; M. Olson; T. Omori; D. Onoprienko; N. Pavel; R. Pitthan; M. Purohit; L. Rinolfi; K.P. Schuler; J.C. Sheppard; S. Spanier; A. Stahl; Z.M. Szalata; J. Turner; D. Walz; A. Weidemann; J. Weisend

    2003-06-01

    The full exploitation of the physics potential of future linear colliders such as the JLC, NLC, and TESLA will require the development of polarized positron beams. In the proposed scheme of Balakin and Mikhailichenko [1] a helical undulator is employed to generate photons of several MeV with circular polarization which are then converted in a relatively thin target to generate longitudinally polarized positrons. This experiment, E-166, proposes to test this scheme to determine whether such a technique can produce polarized positron beams of sufficient quality for use in future linear colliders. The experiment will install a meter-long, short-period, pulsed helical undulator in the Final Focus Test Beam (FFTB) at SLAC. A low-emittance 50-GeV electron beam passing through this undulator will generate circularly polarized photons with energies up to 10 MeV. These polarized photons are then converted to polarized positrons via pair production in thin targets. Titanium and tungsten targets, which are both candidates for use in linear colliders, will be tested. The experiment will measure the flux and polarization of the undulator photons, and the spectrum and polarization of the positrons produced in the conversion target, and compare the measurement results to simulations. Thus the proposed experiment directly tests for the first time the validity of the simulation programs used for the physics of polarized pair production in finite matter, in particular the effects of multiple scattering on polarization. Successful comparison of the experimental results to the simulations will lead to greater confidence in the proposed designs of polarized positrons sources for the next generation of linear colliders. This experiment requests six-weeks of time in the FFTB beam line: three weeks for installation and setup and three weeks of beam for data taking. A 50-GeV beam with about twice the SLC emittance at a repetition rate of 30 Hz is required.

  4. A search for solar flare positrons

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.; Stone, E. C.; Vogt, R. E.

    1975-01-01

    The detection of solar gamma-ray line emission and observations of the isotopes H2, H-3, and He-3 in solar cosmic rays provide direct evidence for the occurrence of high energy nuclear reactions in solar flare events. Appreciable numbers of other reaction products, including positrons with energies near about 1 MeV, should also be produced in such events. We have searched for positrons in the 0.16-1.6 MeV energy interval during 5 H-3 rich solar particle events. Based on calculations of positron and He-3 production at the sun, and using a simplified model of interplanetary propagation, we might expect comparable fluences of positrons and He-3 to be observed. Summing over these 5 events, we find the 0.16 to 1.6 MeV positron fluence to be a maximum of about 10% of the He-3 fluence with more tnan 1 MeV/nuc. This suggests that other processes, such as preferential trapping by the solar magnetic field, may be important.

  5. Trap-Based Beam Formation Mechanisms and the Development of an Ultra-High-Energy-Resolution Cryogenic Positron Beam

    NASA Astrophysics Data System (ADS)

    Natisin, Michael Ryan

    The focus of this dissertation is the development of a positron beam with significantly improved energy resolution over any beam resolution previously available. While positron interactions with matter are important in a variety of contexts, the range of experimental data available regarding fundamental positron-matter interactions is severely limited as compared to analogous electron-matter processes. This difference is due largely to the difficulties encountered in creating positron beams with narrow energy spreads. Described here is a detailed investigation into the physical processes operative during positron cooling and beam formation in state-of-the-art, trap-based beam systems. These beams rely on buffer gas traps (BGTs), in which positrons are trapped and cooled to the ambient temperature (300 K) through interactions with a molecular gas, and subsequently ejected as a high resolution pulsed beam. Experimental measurements, analytic models, and simulation results are used to understand the creation and characterization of these beams, with a focus on the mechanisms responsible for setting beam energy resolution. The information gained from these experimental and theoretical studies was then used to design, construct, and operate a next-generation high-energy-resolution beam system. In this new system, the pulsed beam from the BGT is magnetically guided into a new apparatus which re-traps the positrons, cools them to 50 K, and re-emits them as a pulsed beam with superior beam characteristics. Using these techniques, positron beams with total energy spreads as low as 6.9 meV FWHM are produced. This represents a factor of ˜ 5 improvement over the previous state-of-the-art, making it the largest increase in positron beam energy resolution since the development of advanced moderator techniques in the early 1980's. These beams also have temporal spreads of 0.9 mus FWHM and radial spreads of 1 mm FWHM. This represents improvements by factors of ˜2 and 10

  6. Emittance of positron beams produced in intense laser plasma interaction

    SciTech Connect

    Chen Hui; Hazi, A.; Link, A.; Anderson, S.; Gronberg, J.; Izumi, N.; Tommasini, R.; Wilks, S.; Sheppard, J. C.; Meyerhofer, D. D.; Baldis, H. A.; Marley, E.; Park, J.; Williams, G. J.; Fedosejev, R.; Kerr, S.

    2013-01-15

    The first measurement of the emittance of intense laser-produced positron beams has been made. The emittance values were derived through measurements of positron beam divergence and source size for different peak positron energies under various laser conditions. For one of these laser conditions, we used a one dimensional pepper-pot technique to refine the emittance value. The laser-produced positrons have a geometric emittance between 100 and 500 mm{center_dot}mrad, comparable to the positron sources used at existing accelerators. With 10{sup 10}-10{sup 12} positrons per bunch, this low emittance beam, which is quasi-monoenergetic in the energy range of 5-20 MeV, may be useful as an alternative positron source for future accelerators.

  7. Positron annihilation radiation from solar flares

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Chupp, E. L.; Forrest, D. J.; Rieger, E.

    1983-01-01

    Positron-annihilation radiation has been observed from the June 21, 1980 and June 3, 1982 flares by the gamma-ray spectrometer on the Solar Maximum Mission satellite. The observed 0.511-MeV line fluences from the flares were 14.6 + or - 3.3 gamma/sq cm and 103 + or - 8 gamma/sq cm, respectively. Measurement of the line width establishes an upper limit to the temperature in the annihilation region of 3 x 10 to the 6th K. The time dependence of the 0.511-MeV line during the 1980 flare is consistent with the calculations of Ramaty et al. (1983) for positrons created in the decay of radioactive nuclei. The time dependence of the 0.511-MeV line for the 1982 flare is more complex and requires more detailed study.

  8. Backward-propagating MeV electrons in ultra-intense laser interactions: Standing wave acceleration and coupling to the reflected laser pulse

    SciTech Connect

    Orban, Chris Feister, Scott; Morrison, John T.; Chowdhury, Enam A.; Nees, John A.; Frische, Kyle; Roquemore, W. M.

    2015-02-15

    Laser-accelerated electron beams have been created at a kHz repetition rate from the reflection of intense (∼10{sup 18 }W/cm{sup 2}), ∼40 fs laser pulses focused on a continuous water-jet in an experiment at the Air Force Research Laboratory. This paper investigates Particle-in-Cell simulations of the laser-target interaction to identify the physical mechanisms of electron acceleration in this experiment. We find that the standing-wave pattern created by the overlap of the incident and reflected laser is particularly important because this standing wave can “inject” electrons into the reflected laser pulse where the electrons are further accelerated. We identify two regimes of standing wave acceleration: a highly relativistic case (a{sub 0} ≥ 1), and a moderately relativistic case (a{sub 0} ∼ 0.5) which operates over a larger fraction of the laser period. In previous studies, other groups have investigated the highly relativistic case for its usefulness in launching electrons in the forward direction. We extend this by investigating electron acceleration in the specular (back reflection) direction and over a wide range of intensities (10{sup 17}–10{sup 19 }W cm{sup −2})

  9. Time-dependent 2.2 MeV and 0.5 MeV lines from solar flares

    NASA Technical Reports Server (NTRS)

    Wang, H. T.; Ramaty, R.

    1975-01-01

    The time dependences of the 2.2 MeV and 0.51 MeV gamma ray lines from solar flares are calculated and the results are compared with observations of the 1972, August 4 and 7 flares. Time lag between the nuclear reactions and the formation of these two lines are caused, respectively, by capture of the neutrons, and by deceleration of the positrons and decay of the radioactive nuclei. Results show that the calculation is consistent with the observed rise of the 2.2 MeV line on August 4, and it does not require different time dependences for the accelerated protons and electrons in the flare region. The above lags can explain the delayed gamma ray emission observed on August 7. Positrons of energies greater than about 10 MeV could be detected in interplanetary space following large solar flares.

  10. Positron acceleration in plasma bubble wakefield driven by an ultraintense laser

    NASA Astrophysics Data System (ADS)

    Hou, Ya-Juan; Wan, Feng; Sang, Hai-Bo; Xie, Bai-Song

    2016-01-01

    The dynamics of positrons accelerating in electron-positron-ion plasma bubble fields driven by an ultraintense laser is investigated. The bubble wakefield is obtained theoretically when laser pulses are propagating in the electron-positron-ion plasma. To restrict the positrons transversely, an electron beam is injected. Acceleration regions and non-acceleration ones of positrons are obtained by the numerical simulation. It is found that the ponderomotive force causes the fluctuation of the positrons momenta, which results in the trapping of them at a lower ion density. The energy gaining of the accelerated positrons is demonstrated, which is helpful for practical applications.

  11. Positron Production at JLab Simulated Using Geant4

    SciTech Connect

    Kossler, W. J.; Long, S. S.

    2009-09-02

    The results of a Geant4 Monte-Carlo study of the production of slow positrons using a 140 MeV electron beam which might be available at Jefferson Lab are presented. Positrons are produced by pair production for the gamma-rays produced by bremsstrahlung on the target which is also the stopping medium for the positrons. Positrons which diffuse to the surface of the stopping medium are assumed to be ejected due to a negative work function. Here the target and moderator are combined into one piece. For an osmium target/moderator 3 cm long with transverse dimensions of 1 cm by 1 mm, we obtain a slow positron yield of about 8.5centre dot10{sup 10}/(scentre dotmA) If these positrons were remoderated and re-emitted with a 23% probability we would obtain 2centre dot10{sup 10}/(scentre dotmA) in a micro-beam.

  12. Bremsstrahlung pair-production of positrons with low neutron background.

    SciTech Connect

    Lessner, E.

    1998-09-16

    Minimization of component activation is highly desirable at accelerator-based positron sources. Electrons in the 8- to 14-MeV energy range impinging on a target produce photons energetic enough to create electron-positron pairs; however, few of the photons are energetic enough to produce photoneutrons. Slow positron production by low-energy electrons impinging on a multilayer tungsten target with and without electromagnetic extraction between the layers was studied by simulation. The neutron background from 14-MeV electrons is expected to be significantly lower than that encountered with higher-energy electron beams. Numerical results are presented and some ideas for a low-activation slow-positron source are discussed.

  13. An Undulator Based Polarized Positron Source for CLIC

    SciTech Connect

    Liu, Wanming; Gai, Wei; Rinolfi, Louis; Sheppard, John; /SLAC

    2012-07-02

    A viable positron source scheme is proposed that uses circularly polarized gamma rays generated from the main 250 GeV electron beam. The beam passes through a helical superconducting undulator with a magnetic field of {approx} 1 Tesla and a period of 1.15 cm. The gamma-rays produced in the undulator in the energy range between {approx} 3 MeV - 100 MeV will be directed to a titanium target and produce polarized positrons. The positrons are then captured, accelerated and transported to a Pre-Damping Ring (PDR). Detailed parameter studies of this scheme including positron yield, and undulator parameter dependence are presented. Effects on the 250 GeV CLIC main beam, including emittance growth and energy loss from the beam passing through the undulator are also discussed.

  14. Resonances in low-energy positron-alkali scattering

    NASA Technical Reports Server (NTRS)

    Horbatsch, M.; Ward, S. J.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    Close-coupling calculations were performed with up to five target states at energies in the excitation threshold region for positron scattering from Li, Na and K. Resonances were discovered in the L = 0, 1 and 2 channels in the vicinity of the atomic excitation thresholds. The widths of these resonances vary between 0.2 and 130 MeV. Evidence was found for the existence of positron-alkali bound states in all cases.

  15. Pulsed power supply for three APS septum magnets

    SciTech Connect

    McGhee, D.G.

    1991-03-24

    Three septum magnets will be operated at a repetition-rate of 2 Hz. Two of the septum magnets are identical and operate at the same values; these are the synchrotron extraction and the storage ring injection magnets. They are transformer septum magnets, with a primary inductance of 23 {mu}H and resistance of 6.3 m{Omega}, and must be pulsed at a 2 Hz rate to extract beam from the synchrotron and inject beam into the storage ring at 7.7 GeV. The third septum magnet is used to inject electrons into the synchrotron at 650 MeV or positrons at 450 MeV. It is also a transformer septum magnet, with a primary inductance of 21 {mu}H and resistance of 6.7 m{Omega}, and must be pulsed at a 2 Hz rate. A design study was performed of the power supply proposed in the APS Title I design. This supply produces a pulse that is approximately a half-sine-wave with a base width of approximately 1/3 ms; its peakcurrent is adjustable from 470 A to 4.7 kA and is repeatable within {plus_minus}0.05%. The septum steel is reset by a half-sine pulse of reverse polarity a few milliseconds after the forward current pulse. No beam is present during reset. The use of the transformer design minimizes the cost of the capacitors used for energy storage.

  16. Trapped positrons observed by PAMELA experiment

    NASA Astrophysics Data System (ADS)

    Mikhailov, V. V.; Adriani, O.; Barbarino, G.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F. S.; Campana, D.; Carbone, R.; Carlson, P.; Casolino, M.; Castellini, G.; Consiglio, L.; De Santis, C.; De Simone, N.; Di Felice, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobsky, S.; Krutkov, S. Yu; Kvashnin, A. N.; Leonov, A. A.; Malakhov, V. V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Merge, M.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Papini, P.; Palma, F.; Panico, B.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Yu I.; Vacchi, A.; Vannuccini, E.; Vasiliev, G. I.; Voronov, S. A.; Yurkin, Yu T.; Zampa, G.; Zampa, N.

    2016-02-01

    Measurements of electron and positron spatial distributions in energy range from 80 MeV to several GeV below the geomagnetic cutoff rigidity were carried out using the PAMELA magnetic spectrometer. The instrument is installed on board the Resurs-DK satellite which was launched June 15th 2006 on an elliptical orbit with the inclination 70 degrees and the altitude 350-600 km. The procedure of trajectories calculations in the geomagnetic filed gives a way to separate stably trapped and short lived albedo components produced in interactions of cosmic ray protons with the residual atmosphere. The work presents spatial distributions of trapped, quasitrapped and short-lived albedo electrons and positrons in the near Earth space. Electron to positron ratio points out on different production mechanism of trapped and quasitrapped particles.

  17. Time-dependent 2.2-MeV and 0.5-MeV lines from solar flares

    NASA Technical Reports Server (NTRS)

    Wang, H. T.; Ramaty, R.

    1975-01-01

    The time dependences of the 2.2- and 0.51-MeV gamma-ray lines from solar flares are calculated, and the results are compared with observations of the 1972 August 4 and 7 flares. The time lag between the nuclear reactions and the formation of these two lines is caused by capture of the neutrons and subsequent deceleration of the positrons and decay of the radioactive nuclei. Our main results are that the calculation is consistent with the observed rise of the 2.2-MeV line on August 4, and it does not require different time dependences for the accelerated protons and high-energy electrons in the flare region. The above lags can explain the delayed gamma-ray emission observed on August 7. Positrons of energies greater than about 10 MeV could be detected in interplanetary space following large solar flares.

  18. Position-resolved Positron Annihilation Lifetime Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Butterling, M.; Fiedler, F.; Fritz, F.; Kempe, M.; Cowan, T. E.

    2013-06-01

    A new method which allows for position-resolved positron lifetime spectroscopy studies in extended volume samples is presented. In addition to the existing technique of in-situ production of positrons inside large (cm3) bulk samples using high-energy photons up to 16 MeV from bremsstrahlung production, granular position-sensitive photon detectors have been employed. A beam of intense bremsstrahlung is provided by the superconducting electron linear accelerator ELBE (Electron Linear Accelerator with high Brilliance and low Emittance) which delivers electron bunches of less than 10 ps temporal width and an adjustable bunch separation of multiples of 38 ns, average beam currents of 1 mA, and energies up to 40 MeV. Since the generation of bremsstrahlung and the transport to the sample preserves the sharp timing of the electron beam, positrons generated inside the entire sample volume by pair production feature a sharp start time stamp for positron annihilation lifetime studies with high timing resolutions and high signal to background ratios due to the coincident detection of two annihilation photons. Two commercially available detectors from a high-resolution medial positron-emission tomography system are being employed with 169 individual Lu2SiO5:Ce scintillation crystals, each. In first experiments, a positron-lifetime gated image of a planar Si/SiO2 (pieces of 12.5 mm × 25 mm size) sample and a 3-D structured metal in Teflon target could be obtained proving the feasibility of a three dimensional lifetime-gated tomographic system.

  19. High intensity positron beam and angular correlation experiments at Livermore

    SciTech Connect

    Howell, R.H.; Rosenberg, I.J.; Meyer, P.; Fluss, M.J.

    1985-03-01

    A positron beam apparatus that produces a variable energy positron beam with sufficient intensity to perform new positron experiments in an ultrahigh vacuum environment has been installed at the Lawrence Livermore 100 MeV electron linac. We have installed two large area position sensitive gamma-ray detectors to measure angular correlations in two dimensions and a separate highly collimated detector to measure positronium energy distributions by time-of-flight velocity determination. Data from measurements on single crystals of Cu will be described.

  20. On the nature of the cosmic ray positron spectrum

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.

    1981-01-01

    A calculation was made of the flux of secondary positrons above 100 MeV expected for various propagation models. The models investigated were the leaky box or homogeneous model, a disk halo diffusion model, a dynamical halo model, and the closed galaxy model. In each case the parameters of these models were adjusted for agreement with the observed secondary or primary ratios and Be 10 abundance. The positron flux predicted for these models was compared with the available data. The possibility of a primary positron component was considered.

  1. Positron bunching and electrostatic transport system for the production and emission of dense positronium clouds into vacuum

    NASA Astrophysics Data System (ADS)

    Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Belov, A. S.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Fesel, J.; Fontana, A.; Forslund, O. K.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jernelv, I. L.; Jordan, E.; Kaltenbacher, T.; Kellerbauer, A.; Kimura, M.; Koetting, T.; Krasnicky, D.; Lagomarsino, V.; Lebrun, P.; Lansonneur, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Rienäcker, B.; Røhne, O. M.; Rosenberger, S.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zavatarelli, S.; Zmeskal, J.

    2015-11-01

    We describe a system designed to re-bunch positron pulses delivered by an accumulator supplied by a positron source and a Surko-trap. Positron pulses from the accumulator are magnetically guided in a 0.085 T field and are injected into a region free of magnetic fields through a μ -metal field terminator. Here positrons are temporally compressed, electrostatically guided and accelerated towards a porous silicon target for the production and emission of positronium into vacuum. Positrons are focused in a spot of less than 4 mm FWTM in bunches of ∼8 ns FWHM. Emission of positronium into the vacuum is shown by single shot positron annihilation lifetime spectroscopy.

  2. Positron annihilation Doppler broadening measurement for bulk amorphous alloy by using high energy positron generated from LCS gamma-ray at NEW SUBARU

    NASA Astrophysics Data System (ADS)

    Hori, F.; Ueno, Y.; Ishii, K.; Ishiyama, T.; Iwase, A.; Miyamoto, S.; Terasawa, T.

    2016-01-01

    A simple positron annihilation measurement apparatus via pair creation has been developed using high energetic gamma beam generated by laser Compton scattering (LCS) of 1 GeV electrons circulated in a storage ring and laser light with the power more than 1 W at the New SUBARU synchrotron radiation facility, University of Hyogo. This MeV ordered energy changeable positron apparatus is useful to study defects in bulk materials. In this study, the average energy of 8MeV positron was selected by the wavelength of laser light and circulated electron energy in photon factory. As a demonstrate of non-destruction positron measurement by this apparatus, positron annihilation Doppler broadening measurement has performed for bulk size of amorphous and crystal structured Zr based alloys. The larger Doppler broadening S parameter for amorphous alloy than that for crystallized one has been successfully measured.

  3. Formation of a high intensity low energy positron string

    NASA Astrophysics Data System (ADS)

    Donets, E. D.; Donets, E. E.; Syresin, E. M.; Itahashi, T.; Dubinov, A. E.

    2004-05-01

    The possibility of a high intensity low energy positron beam production is discussed. The proposed Positron String Trap (PST) is based on the principles and technology of the Electron String Ion Source (ESIS) developed in JINR during the last decade. A linear version of ESIS has been used successfully for the production of intense highly charged ion beams of various elements. Now the Tubular Electron String Ion Source (TESIS) concept is under study and this opens really new promising possibilities in physics and technology. In this report, we discuss the application of the tubular-type trap for the storage of positrons cooled to the cryogenic temperatures of 0.05 meV. It is intended that the positron flux at the energy of 1-5 eV, produced by the external source, is injected into the Tubular Positron Trap which has a similar construction as the TESIS. Then the low energy positrons are captured in the PST Penning trap and are cooled down because of their synchrotron radiation in the strong (5-10 T) applied magnetic field. It is expected that the proposed PST should permit storing and cooling to cryogenic temperature of up to 5×109 positrons. The accumulated cooled positrons can be used further for various physics applications, for example, antihydrogen production.

  4. Positron emission tomography.

    PubMed

    Hoffman, E J; Phelps, M E

    1979-01-01

    Conventional nuclear imaging techniques utilizing lead collimation rely on radioactive tracers with little role in human physiology. The principles of imaging based on coincidence detection of the annihilation radiation produced in positron decay indicate that this mode of detection is uniquely suited for use in emission computed tomography. The only gamma-ray-emitting isotopes of carbon, nitrogen, and oxygen are positron emitters, which yield energies too high for conventional imaging techniques. Thus development of positron emitters in nuclear medicine imaging would make possible the use of a new class of physiologically active, positron-emitting radiopharmaceuticals. The application of these principles is described in the use of a physiologically active compound labeled with a positron emitter and positron-emission computed tomography to measure the local cerebral metabolic rate in humans. PMID:440173

  5. Positron-rubidium scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.

    1990-01-01

    A 5-state close-coupling calculation (5s-5p-4d-6s-6p) was carried out for positron-Rb scattering in the energy range 3.7 to 28.0 eV. In contrast to the results of similar close-coupling calculations for positron-Na and positron-K scattering the (effective) total integrated cross section has an energy dependence which is contrary to recent experimental measurements.

  6. Possible detection of flare-generated positrons by Helios 1 on 3 Jun 1982

    NASA Technical Reports Server (NTRS)

    Kirsch, E.; Keppler, E.; Richter, K.

    1985-01-01

    The production of neutrons and gamma-ray lines by solar particles in the photosphere has been studied. The principal positron emiters which lead to the 0.51 MeV gamma-line are C-11 0-14, 0-15, N-13, Ne-19. The energies of the positrons form radioactive nuclei are of the order of few hundred keV. Positrons resulting from the pi(+) decay have energies of approx 10-100 MeV and cannot be measured by the MPAe-detector. Most of the positrons annihilate in the photosphere. A fraction however should be able to escape into the interplanetary space. Proton, electron and , for the first time, positron measurements (E = 152-546 keV) obtained by the MPAe-particle detector on board of Helios 1 are presented.

  7. Comparison of the quantum and classical calculations of flux density of (220) channeled positrons in Si crystal

    NASA Astrophysics Data System (ADS)

    Korotchenko, K. B.; Tukhfatullin, TA; Pivovarov, Yu L.; Eikhorn, Yu L.

    2016-07-01

    Simulation of flux-peaking effect of the 255 MeV positrons channeled in (220) Si crystals is performed in the frame of classical and quantum mechanics. Comparison of the results obtained using both approaches shows relatively good agreement.

  8. Positrons for linear colliders

    SciTech Connect

    Ecklund, S.

    1987-11-01

    The requirements of a positron source for a linear collider are briefly reviewed, followed by methods of positron production and production of photons by electromagnetic cascade showers. Cross sections for the electromagnetic cascade shower processes of positron-electron pair production and Compton scattering are compared. A program used for Monte Carlo analysis of electromagnetic cascades is briefly discussed, and positron distributions obtained from several runs of the program are discussed. Photons from synchrotron radiation and from channeling are also mentioned briefly, as well as positron collection, transverse focusing techniques, and longitudinal capture. Computer ray tracing is then briefly discussed, followed by space-charge effects and thermal heating and stress due to showers. (LEW)

  9. The Calibration of the PEPPo Polarimeter for Electrons and Positrons

    SciTech Connect

    Adeyemi, Adeleke Hakeem; Voutier, Eric J-.M.

    2013-06-01

    The PEPPo (Polarized Electrons for Polarized Positrons) experiment at Jefferson Laboratory investigated the polarization transfer from longitudinally polarized electrons to longitudinally polarized positrons, with the aim of developing this technology for a low energy (~MeV) polarized positron source. Polarization of the positrons was measured by means of a Compton transmission polarimeter where incoming positrons transfer their polarization into circularly polarized photons that were subsequently analyzed by a thick polarized iron target. The measurement of the transmitted photon flux with respect to the orientation of the target polarization (+-) or the helicity (+-) of the incoming leptons provided the measurement of their polarization. Similar measurements with a known electron beam were also performed for calibration purposes. This presentation will describe the apparatus and calibrations performed at the injector at the Jefferson Laboratory to measure positron polarization in the momentum range 3.2-6.2 MeV/c, specifically to quantify the positron analyzing power from electron experimental data measured over a comparable momentum range.

  10. Positron production during relativistic runaway processes associated with thunderstorms

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Smith, D. M.; Rassoul, H.; Cramer, E. S.; Schaal, M.; Saleh, Z. H.; Grefenstette, B.; Hazelton, B. J.; Splitt, M. E.; Lazarus, S. M.; Fishman, G. J.; Briggs, M. S.; Connaughton, V.

    2009-12-01

    Recent spacecraft observations of terrestrial gamma-ray flashes (TGFs) by Fermi/GBM and aircraft observations of the gamma-ray emissions from thunderclouds by ADELE have shown prominent 511 keV positron annihilation lines, demonstrating large enhancements in the positron populations. These observations show that significant pair-production must be taking place, most likely in association with the production of relativistic runaway electron avalanches. Using detailed Monte Carlo simulations, we investigate the production and subsequent transport of positrons by strong electric fields associated with thunderstorms. It will be shown that intense high-energy beams of positrons can be produced with energies reaching 100 MeV, well exceeding the average energy of the runaway electron population. These positrons, which may travel many kilometers before annihilating, generate a substantial amount of bremsstrahlung x-rays and annihilation gamma-rays. In this presentation, we shall discuss the theory of positron production by runaway electron avalanches and the feedback effects produced by these positrons. In addition, we shall use the Monte Carlo simulations to model the recent Fermi/GBM TGF and ADELE gamma-ray data.

  11. Nonlinear Laser Driven Donut Wakefields for Positron and Electron Acceleration

    NASA Astrophysics Data System (ADS)

    Vieira, J.; Mendonça, J. T.

    2014-05-01

    We show analytically and through three-dimensional particle-in-cell simulations that nonlinear wakefields driven by Laguerre-Gaussian laser pulses can lead to hollow electron self-injection and positron acceleration. We find that higher order lasers can drive donut shaped blowout wakefields with strong positron accelerating gradients comparable to those of a spherical bubble. Corresponding positron focusing forces can be more than an order of magnitude stronger than electron focusing forces in a spherical bubble. Required laser intensities and energies to reach the nonlinear donut shaped blowout are within state-of-the-art experimental conditions.

  12. Characterization of 2 MeV, 4 MeV, 6 MeV and 18 MeV buildup caps for use with a 0.6 cubic centimeter thimble ionization chamber

    SciTech Connect

    Salyer, R.L.; VanDenburg, J.W.; Prinja, A.K.; Kirby, T.; Busch, R.; Hong-Nian Jow

    1996-07-01

    The purpose of this research is to characterize existing 2 MeV, 4 MeV and 6 MeV buildup caps, and to determine if a buildup cap can be made for the 0.6 cm{sup 3} thimble ionization chamber that will accurately measure exposures in a high-energy photon radiation field. Two different radiation transport codes were used to computationally characterize existing 2 MeV, 4 MeV, and 6 MeV buildup caps for a 0.6 cm{sup 3} active volume thimble ionization chamber: ITS, The Integrated TIGER Series of Coupled Electron-Photon Monte Carlo Transport Codes; and CEPXS/ONEDANT, A One-Dimensional Coupled Electron-Photon Discrete Ordinates Code Package. These codes were also used to determine the design characteristics of a buildup cap for use in the 18 MeV photon beam produced by the 14 TW pulsed power HERMES-III electron accelerator. The maximum range of the secondary electron, the depth at which maximum dose occurs, and the point where dose and collision kerma are equal have been determined to establish the validity of electronic equilibrium. The ionization chamber with the appropriate buildup cap was then subjected to a 4 MeV and a 6 MeV bremmstrahlung radiation spectrum to determine the detector response.

  13. Positron production at extreme light infrastructure – nuclear physics (ELI-NP)

    SciTech Connect

    Oprisa, A. Balascuta, S. Ur, C. A.

    2015-02-24

    Applied and material physics studies with positron beams of Fermi–surfaces, defects, interfaces etc. offer excellent diagnostics tools. At ELI-NP, an intense γ beam of about 10{sup 11} photons/s with energies up to 3.5 MeV will be used to generate a positron beam via pair production in a tungsten converter target. To obtain a high intensity beam of moderated positrons the design of the positron source is of high importance. The design of a dedicated positron source at ELI–NP is being investigated based on extensive GEANT4 simulations. The goal of the simulations is to optimize the geometry of the target and the gamma beam collimation. We present here the characteristics of the positron beam obtained for different geometries of the converter target.

  14. Observation of Polarized Positrons from an Undulator-Based Source

    SciTech Connect

    Alexander, G; Barley, J.; Batygin, Y.; Berridge, S.; Bharadwaj, V.; Bower, G.; Bugg, W.; Decker, F.-J.; Dollan, R.; Efremenko, Y.; Gharibyan, V.; Hast, C.; Iverson, R.; Kolanoski, H.; Kovermann, J.; Laihem, K.; Lohse, T.; McDonald, K.T.; Mikhailichenko, A.A.; Moortgat-Pick, G.A.; Pahl, P.; /Tel Aviv U. /Cornell U., Phys. Dept. /SLAC /Tennessee U. /Humboldt U., Berlin /DESY /Yerevan Phys. Inst. /Aachen, Tech. Hochsch. /DESY, Zeuthen /Princeton U. /Durham U. /Daresbury

    2008-03-06

    An experiment (E166) at the Stanford Linear Accelerator Center (SLAC) has demonstrated a scheme in which a multi-GeV electron beam passed through a helical undulator to generate multi-MeV, circularly polarized photons which were then converted in a thin target to produce positrons (and electrons) with longitudinal polarization above 80% at 6 MeV. The results are in agreement with Geant4 simulations that include the dominant polarization-dependent interactions of electrons, positrons and photons in matter.

  15. Advanced positron sources

    NASA Astrophysics Data System (ADS)

    Variola, A.

    2014-03-01

    Positron sources are a critical system for the future lepton colliders projects. Due to the large beam emittance at the production and the limitation given by the target heating and mechanical stress, the main collider parameters fixing the luminosity are constrained by the e+ sources. In this context also the damping ring design boundary conditions and the final performance are given by the injected positron beam. At present different schemes are being taken into account in order to increase the production and the capture yield of the positron sources, to reduce the impact of the deposited energy in the converter target and to increase the injection efficiency in the damping ring. The final results have a strong impact not only on the collider performance but also on its cost optimization. After a short introduction illustrating their fundamental role, the basic positron source scheme and the performance of the existing sources will be illustrated. The main innovative designs for the future colliders advanced sources will be reviewed and the different developed technologies presented. Finally the positrons-plasma R&D experiments and the futuristic proposals for positron sources will reviewed.

  16. Positrons from supernovae

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing; Lingenfelter, Richard E.

    1993-01-01

    Positrons are produced in the ejecta of supernovae by the decay of nucleosynthetic Co-56, Ti-44, and Al-26. We calculate the probability that these positrons can survive without annihilating in the supernova ejecta, and we show that enough of these positrons should escape into the interstellar medium to account for the observed diffuse Galactic annihilation radiation. The surviving positrons are carried by the expanding ejecta into the interstellar medium where their annihilation lifetime of 10 exp 5 - 10 exp 6 yr is much longer than the average supernovae occurrence time of about 100 yr. Thus, annihilating positrons from thousands of supernovae throughout the Galaxy produce a steady diffuse flux of annihilation radiation. We further show that combining the calculated positron survival fractions and nucleosynthetic yields for current supernova models with the estimated supernova rates and the observed flux of diffuse Galactic annihilation radiation suggests that the present Galactic rate of Fe-56 nucleosynthesis is about 0.8 +/- 0.6 solar mass per 100 yr.

  17. FLUKA and PENELOPE simulations of 10 keV to 10 MeV photons in LYSO and soft tissue

    NASA Astrophysics Data System (ADS)

    Chin, M. P. W.; Böhlen, T. T.; Fassò, A.; Ferrari, A.; Ortega, P. G.; Sala, P. R.

    2014-02-01

    Monte Carlo simulations of electromagnetic particle interactions and transport by FLUKA and PENELOPE were compared. 10 keV to 10 MeV incident photon beams impinged a LYSO crystal and a soft-tissue phantom. Central-axis as well as off-axis depth doses agreed within 1 s.d.; no systematic under- or over-estimate of the pulse height spectra was observed from 100 keV to 10 MeV for both materials, agreement was within 5%. Simulation of photon and electron transport and interactions at this level of precision and reliability is of significant impact, for instance, on treatment monitoring of hadrontherapy where a code like FLUKA is needed to simulate the full suite of particles and interactions (not just electromagnetic). At the interaction-by-interaction level, apart from known differences in condensed history techniques, two-quanta positron annihilation at rest was found to differ between the two codes. PENELOPE produced a 511 keV sharp line, whereas FLUKA produced visible acolinearity, a feature recently implemented to account for the momentum of shell electrons.

  18. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    SciTech Connect

    Adeyemi, Adeleke H.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  19. Hybrid scheme of positron source at SPARC_LAB LNF facility

    NASA Astrophysics Data System (ADS)

    Abdrashitov, S. V.; Bogdanov, O. V.; Dabagov, S. B.; Pivovarov, Yu. L.; Tukhfatullin, T. A.

    2015-07-01

    The hybrid scheme of the positron source for SPARC_LAB LNF facility (Frascati, Italy) is proposed. The comparison of the positron yield in a thin amorphous W converter of 0.1 mm thickness produced by bremsstrahlung, by axial <1 0 0> and planar (1 1 0) channeling radiations in a W crystal is performed for the positron energy range of 1 ÷ 3 MeV. It is shown that the radiation from 200 MeV electrons (parameters of SPARC_LAB LNF Frascati) in a 10 μm W crystal can produce positrons in the radiator of 0.1 mm thickness with the rate of 10-102 s-1 at planar channeling, of 102-103 s-1 at bremsstrahlung and of 103-104 s-1 at axial channeling.

  20. Positron Production by X Rays Emitted By Betatron Motion in a Plasma Wiggler

    SciTech Connect

    Johnson, D.K.; Auerbach, D.; Blumenfeld, I.; Barnes, C.D.; Clayton, C.E.; Decker, F.J.; Deng, S.; Emma, P.; Hogan, M.J.; Huang, C.; Ischebeck, R.; Iverson, R.; Joshi, C.; Katsouleas, T.C.; Kirby, N.; Krejcik, P.; Lu, W.; Marsh, K.A.; Mori, W.B.; Muggli, P.; O'Connell, C.L.; /UCLA /SLAC /Southern California U.

    2007-01-25

    Positrons in the energy range of 3-30 MeV, produced by x rays emitted by betatron motion in a plasma wiggler of 28.5 GeV electrons from the SLAC accelerator, have been measured. The extremely high-strength plasma wiggler is an ion column induced by the electron beam as it propagates through and ionizes dense lithium vapor. X rays in the range of 1-50 MeV in a forward cone angle of 0.1 mrad collide with a 1.7 mm thick tungsten target to produce electron-positron pairs. The positron spectra are found to be strongly influenced by the plasma density and length as well as the electron bunch length. By characterizing the beam propagation in the ion column these influences are quantified and result in excellent agreement between the measured and calculated positron spectra.

  1. Laser Ponderomotive Electron-Positron Collider

    SciTech Connect

    Nakajima, Kazuhisa

    2004-12-07

    Relativistic ultrahigh laser fields can produce plasmas through quantum mechanical tunneling ionization mechanism, and accelerate produced electrons and ions to generate a relativistic electron beam and energetic ions in plasmas. This process will be followed by creation of electron-positron pairs through interaction of relativistic electrons with a Coulomb field of a nucleus in plasma ions or a strong laser field. In a relativistic strong laser field, the longitudinal accelerating force exerted on an electron is proportional to the square of the electric field, whereas the transverse quivering force is just linearly proportional to it. This is essence of the relativistic ponderomotive acceleration that dominantly produces energetic particles in interaction of ultraintese laser fields with particle beams and plasma. Therefore a tightly focused laser field can accelerate an electron-positron bunch longitudinally up to a remarkable energy and at the same time confines it transversely in the superposed ponderomotive potential of an intense ultrashort laser pulse. Here we propose acceleration and focusing of the electron-positron pair beam by the ponderomotive acceleration scheme to compose a high energy electron-positron collider with very high luminosity.

  2. Elastic positron-cadmium scattering at low energies

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2010-05-15

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e{sup +}-Cd system. The s-wave binding energy is estimated to be 126{+-}42 meV, with a scattering length of A{sub scat}=(14.2{+-}2.1)a{sub 0}, while the threshold annihilation parameter, Z{sub eff}, was 93.9{+-}26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z{sub eff} of 91{+-}17 at a collision energy of about 490{+-}50 meV.

  3. Construction and commissioning of the positron accumulator ring for the APS

    SciTech Connect

    Borland, M.

    1994-12-31

    The injector for the Advanced Photon Source (APS) incorporates a 450-MeV positron accumulator ring (PAR) to accumulate and damp positrons from the 60Hz linac during each cycle of the 2-Hz synchrotron. An overview of PAR hardware is presented. Commissioning of the PAR is well underway using electrons. Studies have produced a modified lattice model using three free parameters that agrees well with measurements. Principle problems are high leakage fields from the septum and ion trapping.

  4. Angular momenta creation in relativistic electron-positron plasma.

    PubMed

    Tatsuno, T; Berezhiani, V I; Pekker, M; Mahajan, S M

    2003-07-01

    Creation of angular momentum in a relativistic electron-positron plasma is explored. It is shown that a chain of angular momentum carrying vortices is a robust asymptotic state sustained by the generalized nonlinear Schrödinger equation characteristic to the system. The results may suggest a possible electromagnetic origin of angular momenta when it is applied to the MeV epoch of the early Universe. PMID:12935260

  5. Magnetoacoustic solitons in dense astrophysical electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Mahmood, S.; Mushtaq, A.

    2013-08-01

    Nonlinear magnetoacoustic waves in dense electron-positron-ion plasmas are investigated by using three fluid quantum magnetohydrodynamic model. The quantum mechanical effects of electrons and positrons are taken into account due to their Fermionic nature (to obey Fermi statistics) and quantum diffraction effects (Bohm diffusion term) in the model. The reductive perturbation method is employed to derive the Korteweg-de Vries (KdV) equation for low amplitude magnetoacoustic soliton in dense electron-positron-ion plasmas. It is found that positron concentration has significant impact on the phase velocity of magnetoacoustic wave and on the formation of single pulse nonlinear structure. The numerical results are also illustrated by taking into account the plasma parameters of the outside layers of white dwarfs and neutron stars/pulsars.

  6. Dispersive effects from a comparison of electron and positron scattering from

    SciTech Connect

    Paul Gueye; M. Bernheim; J. F. Danel; Jean-Eric Ducret; L. Lakehal-Ayat; J. M. Le Goff; A. Magnon; C. March; J. Morgenstern; Jacques Marroncle; Pascal Vernin; A. Zghiche-Lakehal-Ayat; Vincent Breton; Salvatore Frullani; Franco Garibaldi; F. Ghio; Mauro Iodice; D. B. Isabelle; Zein-Eddine Meziani; E. Offermann; M. Traini

    1998-05-01

    Dispersive effects have been investigated by comparing elastic scattering of electrons and positrons from {sup 12}C at the Saclay Linear Accelerator. The results demonstrate that dispersive effects at energies of 262 MeV and 450 MeV are less than 2% below the first diffraction minimum [0.95 < q{sub eff} (fm{sup -1}) < 1.66] in agreement with the prediction of Friar and Rosen. At the position of this minimum (q{sub eff} = 1.84 fm{sup -1}), the deviation between the positron scattering cross section and the cross section derived from the electron results is -44% {+-} 30%.

  7. Positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y. Lucas; Thompson, Christopher J.; Diksic, Mirko; Meyer, Ernest; Feindel, William H.

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. This review analyzes the most recent trends in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography.

  8. Alternative positron-target design for electron-positron colliders

    SciTech Connect

    Donahue, R.J. ); Nelson, W.R. )

    1991-04-01

    Current electron-positron linear colliders are limited in luminosity by the number of positrons which can be generated from targets presently used. This paper examines the possibility of using an alternate wire-target geometry for the production of positrons via an electron-induced electromagnetic cascade shower. 39 refs., 38 figs., 5 tabs.

  9. Studies of iron exposed to heavy ion implantation using positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Horodek, P.; Dryzek, J.; Skuratov, V. A.

    2016-05-01

    Variable energy positron beam and positron lifetime spectroscopy were used to study pure iron exposed to irradiation with 167 MeV Xe26+ heavy ions with different doses of 1012, 1013, 5×1013, 1014 ions/cm2. The positron lifetime spectroscopy revealed the presence of large cluster of about 15-27 vacancies and dislocations. The dislocations are distributed at the depth of about 18 μm i.e. almost twice deeper than the ion implantation range from the surface exposed to the heavy ions implantation. Possible explanation is the long-range effect attributed to the ion implantation into materials.

  10. Positron lifetimes in TTF-TCNQ and κ-(BEDT-TTF) 2Cu(NCS) 2 single crystals

    NASA Astrophysics Data System (ADS)

    Ishibashi, Shoji; Tokumoto, Madoka; Kinoshita, Nobumori; Terada, Norio; Ihara, Hideo; Suzuki, Ryoichi; Ohdaira, Toshiyuki; Mikado, Tomohisa; Anzai, Hiroyuki

    1997-05-01

    Positron lifetimes in TTF-TCNQ (tetrathiafulvalene-tetracyanoquinodimethane) and κ-(BEDT-TTF) 2Cu(SCN) 2 (BEDT-TTF: bis(ethylenedithio)tetrathiafulvalene) single crystals have been measured utilizing a pulsed variable-energy positron beam. The bulk positron lifetimes are 338 and 357 ps, respectively. The incident positron energy dependence of the lifetime is rather weak for both materials. Theoretical simulations have been also performed with several descriptions of the electronic wave functions and the electron-positron correlation. Results are compared with each other and the experiments.

  11. History of the ZGS 500 MeV booster.

    SciTech Connect

    Simpson, J.; Martin; R.; Kustom, R.

    2006-05-09

    The history of the design and construction of the Argonne 500 MeV booster proton synchrotron from 1969 to 1982 is described. This accelerator has since been in steady use for the past 25 years to power the Argonne Intense Pulsed Neutron Source (IPNS).

  12. Computer simulation of electron-positron pair production by channeling radiation in amorphous converter

    NASA Astrophysics Data System (ADS)

    Abdrashitov, S. V.; Bogdanov, O. V.; Dabagov, S. B.; Pivovarov, Yu L.; Tukhfatullin, T. A.

    2016-07-01

    We consider the radiator-converter approach at 200 MeV channeled electrons (the SPARC_LAB LNF facility energies) for the case of using W crystalline radiator and W amorphous converter. A comparison of the positron production by the axial channeling radiation and the bremsstrahlung is performed. The positron stopping in the convertor is studied by means of computer simulations. It is shown that for the maximum yield of positrons the thickness of the W amorphous converter should be taken 0.35 cm in the case of using the axial channeling radiation resulting to total yield of positrons 5 10-3 e+/e- and 0.71 cm in the case of using the bremsstrahlung resulting to total yield of positrons 3.3 10-3 e+/e-.

  13. Positron clouds within thunderstorms

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.; Smith, David M.; Hazelton, Bryna J.; Grefenstette, Brian W.; Kelley, Nicole A.; Lowell, Alexander W.; Schaal, Meagan M.; Rassoul, Hamid K.

    2015-08-01

    We report the observation of two isolated clouds of positrons inside an active thunderstorm. These observations were made by the Airborne Detector for Energetic Lightning Emissions (ADELE), an array of six gamma-ray detectors, which flew on a Gulfstream V jet aircraft through the top of an active thunderstorm in August 2009. ADELE recorded two 511 keV gamma-ray count rate enhancements, 35 s apart, each lasting approximately 0.2 s. The enhancements, which were approximately a factor of 12 above background, were both accompanied by electrical activity as measured by a flat-plate antenna on the underside of the aircraft. The energy spectra were consistent with a source mostly composed of positron annihilation gamma rays, with a prominent 511 keV line clearly visible in the data. Model fits to the data suggest that the aircraft was briefly immersed in clouds of positrons, more than a kilometre across. It is not clear how the positron clouds were created within the thunderstorm, but it is possible they were caused by the presence of the aircraft in the electrified environment.

  14. Positron excitation of neon

    NASA Technical Reports Server (NTRS)

    Parcell, L. A.; Mceachran, R. P.; Stauffer, A. D.

    1990-01-01

    The differential and total cross section for the excitation of the 3s1P10 and 3p1P1 states of neon by positron impact were calculated using a distorted-wave approximation. The results agree well with experimental conclusions.

  15. Positron implantation in solids

    SciTech Connect

    Ghosh, V.J.; Lynn, K.G.; Welch, D.O.

    1993-12-31

    The Monte Carlo technique for modeling positron prior to annihilation and electron implantation in semi-infinite metals is described. Particle implantation is modelled as a multistep process, a series of collisions with the atoms of the host material. In elastic collisions with neutral atoms there is no transfer of energy. The particle loses energy by several different channels, excitation of the electron gas, ionization of the ion cores, or, at low energies, by phonon excitation. These competing scattering mechanisms have been incorporated into the Monte Carlo framework and several different models are being used. Brief descriptions of these Monte Carlo schemes, as well as an analytic model for positron implantation are included. Results of the Monte Carlo simulations are presented and compared with expermental data. Problems associated with modeling positron implantation are discuss and the need for more expermental data on energy-loss in different materials is stressed. Positron implantation in multilayers of different metals is briefly described and extensions of this work to include a study of multilayers and heterostructures is suggested.

  16. Energy spectrum and flux of 3- to 20-Mev neutrons and 1- to 10-Mev gamma rays in the atmosphere

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.; Lockwood, J. A.; Saint Onge, R. N.; Friling, L. A.

    1973-01-01

    An experiment is described which was designed to measure the neutron and gamma ray energy spectrums and fluxes in the energy intervals 3 to 20 MeV and 1 to 10 MeV, respectively. In addition, from the 3 to 20-MeV proton recoil spectrums it is possible to infer the shape of the neutron energy spectrum from 20 to 50 MeV. The detecting system utilized a separate charged particle rejection scheme and a two-parameter display system for the output from the pulse shape discrimination which separated gamma rays from neutrons (n). Two long-duration flights were made with this detector in 1970 at Palestine, Tex. (P sub c = 4.6 Gv) and at Ft. Churchill, Canada (P sub c = 0.3 Gv).

  17. Experiments Enabled by a New High-Resolution Positron Beam

    NASA Astrophysics Data System (ADS)

    Natisin, Mike; Danielson, James; Surko, Cliff

    2016-05-01

    The ability to make state-resolved measurements of positron interactions with atoms and molecules is limited by difficulties encountered in creating beams with narrow energy spreads. Recent experiments and simulations of buffer gas positron cooling and trap-based beam formation have enabled the design and construction of a cryogenic buffer-gas trap with total beam energy spreads as low as 7 meV FWHM and temporal spreads of sub-microsecond duration. The potential effect of this narrow energy spread on the ability to probe new physics in positron scattering and annihilation experiments will be discussed. For example, beams with such energy spreads are expected to enable the first measurements of state-resolved excitation of molecular rotations by positron impact (i.e., H2). Further, these narrow spreads and resulting enhanced resolving power are expected to permit the study of new features in annihilation energy spectra, such as possible overtone, combination, and IR-inactive vibrational modes in Feshbach-resonant positron annihilation. Work supported by NSF Grant PHY-1401794.

  18. Development of mini linac-based positron source and an efficient positronium convertor for positively charged antihydrogen production

    NASA Astrophysics Data System (ADS)

    Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.

    2010-04-01

    We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.

  19. Positron Scanner for Locating Brain Tumors

    DOE R&D Accomplishments Database

    Rankowitz, S.; Robertson, J. S.; Higinbotham, W. A.; Rosenblum, M. J.

    1962-03-01

    A system is described that makes use of positron emitting isotopes for locating brain tumors. This system inherently provides more information about the distribution of radioactivity in the head in less time than existing scanners which use one or two detectors. A stationary circular array of 32 scintillation detectors scans a horizontal layer of the head from many directions simultaneously. The data, consisting of the number of counts in all possible coincidence pairs, are coded and stored in the memory of a Two-Dimensional Pulse-Height Analyzer. A unique method of displaying and interpreting the data is described that enables rapid approximate analysis of complex source distribution patterns. (auth)

  20. Development and Testing of the Positron Identification By Coincident Annihilation Photons (PICAP) System

    NASA Astrophysics Data System (ADS)

    Tran, D.; Connell, J. J.; Lopate, C.; Bickford, B.

    2014-12-01

    Moderate energy positrons (~few to 10 MeV) have seldom been observed in the Heliosphere, due primarily to there not having been dedicated instruments for such measurements. Their detection would have implications in the study of Solar energetic particle events and the transport and modulation of the Solar wind and Galactic cosmic rays. The Positron Identification by Coincident Annihilation Photons (PICAP) system is designed specifically to measure these moderate energy positrons by simultaneously detecting the two 511-keV γ-ray photons that result from a positron stopping in the instrument and the subsequent electron-positron annihilation. This method is also expected to effectively discriminate positrons from protons by measuring the amount of energy deposited in the detectors (dE/dx versus residual energy). PICAP offers a low-mass, low-power option for measuring positrons, electrons, and ions in space. Following Monte Carlo modeling, a PICAP laboratory prototype, adaptable to a space-flight design, was designed, built, and tested. This instrument is comprised of (Si) solid-state detectors, plastic scintillation detectors, and high-Z BGO crystal scintillator suitable for detecting the 511-keV γ rays. The prototype underwent preliminary laboratory testing and calibration using radioactive sources for the purpose of establishing functionality. It has since been exposed to beams of energetic protons (up to ~200 MeV) at Massachusetts General Hospital's Francis H. Burr Proton Beam Therapy Center and positrons and electrons (up to ~10 MeV) at Idaho State University's Idaho Accelerator Center. The goal is to validate modeling and determine the performance of the instrument concept. We will present a summary of modeling calculations and analysis of data taken at the accelerator tests. This work is 95% supported by NASA Grant NNX10AC10G.

  1. Crab Nebula observations - 0.2-10 MeV

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.

    1975-01-01

    Observations of the total emission from the Crab Nebula and also of the pulsed component were made over the 0.2 to 10-MeV range during three balloon flights in 1971 with an actively-collimated NaI scintillator. The total emission flux was positively observed over the entire interval. The observed spectrum to 1 MeV agrees with an extrapolation of the E to the -2.2 power law, which fits lower-energy data. The observations above 1 MeV are factors of 3 and 20 above this law and are better fit with a spectral index of 0.8. Confidence levels are 3 sigma or better for each half-decade band. The three observations are consistent with a constant flux level. The NP 0532 flux, detected during one flight only (August 8) between 0.2 and 0.38 MeV, agrees with the exponential power law spectrum already determined from other observations. The possibility of a rapidly rising pulsed emission fraction over the 0.1- to 1-MeV interval is excluded by this observation.

  2. Positron acceleration in doughnut wakefields in the blowout regime

    NASA Astrophysics Data System (ADS)

    Vieira, Jorge; Mendonca, Jose; Fonseca, Ricardo; Silva, Luis

    2014-10-01

    Most important plasma acceleration results were reached in the so called bubble or blowout regime. Although ideally suited for electron acceleration, it has been recognized that non-linear regimes are not adequate to accelerate positrons. New configurations enabling positron acceleration in non-linear regimes would therefore open new research paths for future plasma based collider configurations. In this work, we explore, analytically and through 3D OSIRIS simulations, a novel configuration for positron acceleration in strongly non-linear laser wakefield excitation regimes using Laguerre-Gaussian laser drivers to drive doughnut shaped wakefields with positron focusing and accelerating fields. We demonstrate that positron focusing-fields can be up to an order of magnitude larger than electron focusing in the spherical blowout regime. The amplitude of the accelerating fields is similar to the spherical blowout. Simulations demonstrate laser self-guiding and stable positron acceleration until the laser energy has been exhausted to the plasma. Other realisations of the scheme, using two Gaussian laser pulses, will also be explored. FCT Grant No EXPL/FIS-PLA/0834/2012 and European Research Council ERC-2010-AdG Grant No. 267841.

  3. Low-energy positron interactions with krypton

    SciTech Connect

    Makochekanwa, C.; Machacek, J. R.; Jones, A. C. L.; Caradonna, P.; Slaughter, D. S.; McEachran, R. P.; Sullivan, J. P.; Buckman, S. J.; Bellm, S.; Lohmann, B.; Fursa, D. V.; Bray, I.; Mueller, D.W.; Stauffer, A. D.; Hoshino, M.

    2011-03-15

    Cross sections for positron scattering from krypton have been measured with an energy resolution of {approx}60 meV over the energy range 0.5-60 eV. Absolute values of the grand total ({sigma}{sub GT}), positronium formation ({sigma}{sub Ps}), and grand total minus positronium formation ({sigma}{sub GT}-{sigma}{sub Ps},) cross sections are presented. Theoretical estimations of {sigma}{sub GT} and {sigma}{sub GT}-{sigma}{sub Ps} are also performed for this target using the convergent close-coupling method and the relativistic optical potential approach. We also provide experimental and theoretical results for elastic differential cross sections, for selected energies both below and above the Ps threshold. Where available, the present results are compared to both experimental and theoretical values from the literature.

  4. Cardiac positron emission tomography

    SciTech Connect

    Geltman, E.M.

    1985-12-01

    Positron emission tomography (PET) is a new technique for noninvasively assessing myocardial metabolism and perfusion. It has provided new insight into the dynamics of myocardial fatty acid and glucose metabolism in normal subjects, patients with ischemic heart disease and those with cardiomyopathies, documenting regionally depressed fatty acid metabolism during myocardial ischemia and infarction and spatial heterogeneity of fatty acid metabolism in patients with cardiomyopathy. Regional myocardial perfusion has been studied with PET using water, ammonia and rubidium labeled with positron emitters, permitting the noninvasive detection of hypoperfused zones at rest and during vasodilator stress. With these techniques the relationship between perfusion and the metabolism of a variety of substrates has been studied. The great strides that have been made in developing faster high-resolution instruments and producing new labeled intermediates indicate the promise of this technique for facilitating an increase in the understanding of regional metabolism and blood flow under normal and pathophysiologic conditions. 16 references, 9 figures, 2 tables.

  5. Positrons at Jefferson Laboratory

    SciTech Connect

    Thomas, A W

    2009-09-01

    We review the compelling case for establishing a capability to accelerate positrons at Jefferson Lab. The potential appplications range from the study of two-photon exchange and deeply-virtual Compton scattering to exploiting the charge current weak interaction to probe the flavor structure of hadrons and nuclei. There are also fascinating ideas for using such a capability to discover new physics beyond the Standard Model of nuclear and particle physics.

  6. Positron fraction, electron and positron spectra measured by AMS-02

    NASA Astrophysics Data System (ADS)

    Pizzolotto, Cecilia

    2016-07-01

    A precise measurement by AMS-02 of the electron spectrum up to 700 GeV and of the positron spectrum and positron fraction in primary cosmic rays up 500 GeV are presented. The combined measurement of the cosmic-ray electron and positron energy spectra and fraction provide a unique tool to improve our understanding of the production, acceleration and propagation mechanism of cosmic rays.

  7. Positron lifetime spectrometer using a DC positron beam

    DOEpatents

    Xu, Jun; Moxom, Jeremy

    2003-10-21

    An entrance grid is positioned in the incident beam path of a DC beam positron lifetime spectrometer. The electrical potential difference between the sample and the entrance grid provides simultaneous acceleration of both the primary positrons and the secondary electrons. The result is a reduction in the time spread induced by the energy distribution of the secondary electrons. In addition, the sample, sample holder, entrance grid, and entrance face of the multichannel plate electron detector assembly are made parallel to each other, and are arranged at a tilt angle to the axis of the positron beam to effectively separate the path of the secondary electrons from the path of the incident positrons.

  8. Low-energy positron interactions with xenon

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Makochekanwa, C.; Jones, A. C. L.; Caradonna, P.; Slaughter, D. S.; McEachran, R. P.; Sullivan, J. P.; Buckman, S. J.; Bellm, S.; Lohmann, B.; Fursa, D. V.; Bray, I.; Mueller, D. W.; Stauffer, A. D.

    2011-12-01

    Low-energy interactions of positrons with xenon have been studied both experimentally and theoretically. The experimental measurements were carried out using a trap-based positron beam with an energy resolution of ˜80 meV, while the theoretical calculations were carried out using the convergent close-coupling method and the relativistic optical potential approach. Absolute values of the grand total, positronium formation and grand total minus positronium formation cross sections are presented over the energy range of 1-60 eV. Elastic differential cross sections (DCS), for selected energies, are also presented both below and above the positronium formation threshold. Fine energy-step measurements of the positronium formation cross section over the energy range of 4.4-8.4 eV, and measurements of the elastic DCS at the energies of 5.33 and 6.64 eV, have been carried out to investigate the ionization threshold regions corresponding to the 2P3/2 and 2P1/2 states of the Xe+ ion. The present results are compared with both experimental and theoretical values from the literature where available.

  9. Nonlinear positron acoustic solitary waves

    SciTech Connect

    Tribeche, Mouloud; Aoutou, Kamel; Younsi, Smain; Amour, Rabia

    2009-07-15

    The problem of nonlinear positron acoustic solitary waves involving the dynamics of mobile cold positrons is addressed. A theoretical work is presented to show their existence and possible realization in a simple four-component plasma model. The results should be useful for the understanding of the localized structures that may occur in space and laboratory plasmas as new sources of cold positrons are now well developed.

  10. Positron Implantation Profile in Kapton

    NASA Astrophysics Data System (ADS)

    Dryzek, J.; Dryzek, E.

    2006-11-01

    The discussion presented in the paper focuses on processes accompanying positron implantation in condensed matter. They finally constitute the positron implantation profile which generally does not exhibit the exponential behavior as it is concluded from the Monte Carlo simulation made using the EGSnrc 4.0 code. The simulation was performed for the kapton and two commonly used positron sources 22Na and 68Ge\\68Ga. New formula for the implantation profile was proposed.

  11. The ATLAS Positron Experiment -- APEX

    SciTech Connect

    Ahmad, I.; Back, B.B.; Betts, R.R.; Dunford, R.; Kutschera, W.; Rhein, M.D.; Schiffer, J.P.; Wilt, P.; Wuosmaa, A.; Austin, S.M.; Kashy, E.; Winfield, J.S.; Yurkon, J.E.; Bazin, D.; Calaprice, F.P.; Young, A.; Chan, K.C.; Chisti, A.; Chowhury, P.; Greenberg, J.S.; Kaloskamis, N.; Lister, C.J.; Fox, J.D.; Roa, E.; Freedman, S.; Maier, M.R.; Freer, M.; Gazes, S.; Hallin, A.L.; Liu, M.; Happ, T.; Perera, A.; Wolfs, F.L.H.; Trainor, T.; Wolanski, M. |

    1994-03-01

    APEX -- the ATLAS Positron Experiment -- is designed to measure electrons and positrons emitted in heavy-ion collisions. Its scientific goal is to gain insight into the puzzling positron-line phenomena observed at the GSI Darmstadt. It is in operation at the ATLAS accelerator at Argonne National Lab. The assembly of the apparatus is finished and beginning 1993 the first positrons produced in heavy-ion collisions were observed. The first full scale experiment was carried out in December 1993, and the data are currently being analyzed. In this paper, the principles of operation are explained and a status report on the experiment is given.

  12. Positron-Annihilation Lifetime Spectroscopy using Electron Bremsstrahlung

    NASA Astrophysics Data System (ADS)

    Wagner, A.; Anwand, W.; Butterling, M.; Cowan, T. E.; Fiedler, F.; Fritz, F.; Kempe, M.; Krause-Rehberg, R.

    2015-06-01

    A new type of an intense source of positrons for materials research has been set up at the superconducting electron linear. The source employs hard X-rays from electron- bremsstrahlung production generating energetic electron-positron pairs inside the sample under investigation. CW-operation allows performing experiments with significantly reduced pile-up artefacts in the detectors compared to pulsed mode operation in conventional accelerators. The high-resolution timing of the accelerator with bunch lengths below 10 ps full width at half maximum (FWHM) allows positron annihilation lifetime spectroscopy (PALS) measurements with high time resolution. A single-component annihilation lifetime of Kaptonhas been measured as (381.3 ± 0.3) ps. Employing segmented detectors for the detection of both annihilation photons allows for the first time to perform a 4D tomographic reconstruction of the annihilation sites including the annihilation lifetime.

  13. Coincidence Doppler Broadening of Positron Annihilation Radiation in Fe

    NASA Astrophysics Data System (ADS)

    do Nascimento, E.; Vanin, V. R.; Maidana, N. L.; Helene, O.

    2013-06-01

    We measured the Doppler broadening annihilation radiation spectrum in Fe, using 22NaCl as a positron source, and two Ge detectors in coincidence arrangement. The two-dimensional coincidence energy spectrum was fitted using a model function that included positron annihilation with the conduction band and 3d electrons, 3s and 3p electrons, and in-flight positron annihilation. Detectors response functions included backscattering and a combination of Compton and pulse pileup, ballistic deficit and shaping effects. The core electrons annihilation intensity was measured as 16.4(3) %, with almost all the remainder assigned to the less bound electrons. The obtained results are in agreement with published theoretical values.

  14. Recent progress in tailoring trap-based positron beams

    SciTech Connect

    Natisin, M. R.; Hurst, N. C.; Danielson, J. R.; Surko, C. M.

    2013-03-19

    Recent progress is described to implement two approaches to specially tailor trap-based positron beams. Experiments and simulations are presented to understand the limits on the energy spread and pulse duration of positron beams extracted from a Penning-Malmberg (PM) trap after the particles have been buffer-gas cooled (or heated) in the range of temperatures 1000 {>=} T {>=} 300 K. These simulations are also used to predict beam performance for cryogenically cooled positrons. Experiments and simulations are also presented to understand the properties of beams formed when plasmas are tailored in a PM trap in a 5 tesla magnetic field, then non-adiabatically extracted from the field using a specially designed high-permeability grid to create a new class of electrostatically guided beams.

  15. Gamma ray lines from solar flares. [with 2.2 MeV line being strongest

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1974-01-01

    The strongest line, both predicted theoretically and detected observationally at 2.2 MeV, is due to neutron capture by protons in the photosphere. The neutrons are produced in nuclear reactions of flare accelerated particles which also positrons and prompt nuclear gamma rays. From the comparison of the observed and calculated intensities of the lines at 4.4 or 6.1 MeV to that of the 2.2 MeV line, it is possible to deduce the spectrum of accelerated nuclei in the flare region; and from the absolute intensities of these lines, it is possible to obtain the total number of accelerated nuclei at the sun. The study of the 2.2 MeV line also gives information on the amount of He-3 in the photosphere. The study of the line at 0.51 MeV resulting from positron annihilation complements the data obtained from the other lines; in addition it gives information on the temperature and density in the annihilation region.

  16. 10MeV 25KW industrial electron LINAC

    NASA Astrophysics Data System (ADS)

    Kamino, Y.

    1998-06-01

    A 10MeV 25KW plus class electron LINAC was developed for sterilisation of medical devices. The LINAC composed of a standing wave type single cavity prebuncher and a 2m electro-plated travelling wave guide uses a 5MW 2856MHz pulse klystron as an RF source and provides 25KW beam power at the Ti alloy beam window stably after the energy analysing magnet with 10MeV plus-minus 1 MeV energy slit. The practical maximum beam power reached 29 KW and this demonstrated the LINAC as one of the most powerful S-band electron LINACs in the world. The control of the LINAC is fully automated and the "One-Button Operation" is realised, which is valuable for easy operation as a plant system. 2 systems have been delivered and are being operated stably.

  17. Positron Emission Tomography (PET)

    SciTech Connect

    Welch, M.J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET. 22 figs.

  18. Positron Emission Tomography (PET)

    DOE R&D Accomplishments Database

    Welch, M. J.

    1990-01-01

    Positron emission tomography (PET) assesses biochemical processes in the living subject, producing images of function rather than form. Using PET, physicians are able to obtain not the anatomical information provided by other medical imaging techniques, but pictures of physiological activity. In metaphoric terms, traditional imaging methods supply a map of the body's roadways, its, anatomy; PET shows the traffic along those paths, its biochemistry. This document discusses the principles of PET, the radiopharmaceuticals in PET, PET research, clinical applications of PET, the cost of PET, training of individuals for PET, the role of the United States Department of Energy in PET, and the futures of PET.

  19. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  20. Quantum rainbow channeling of positrons in very short carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Petrović, S.; Ćosić, M.; Nešković, N.

    2013-07-01

    This is a theoretical study of transmission of positrons of kinetic energies of 1 and 10 MeV through very short (11,9) single-wall carbon nanotubes of lengths of 200 and 560 nm, respectively. The needed continuum interaction potential of the positron and nanotube is obtained starting from the Molière's approximation of the Thomas-Fermi interaction potential of a positron and a nanotube atom. We calculate the classical and quantum angular distributions of transmitted positrons. In the classical calculations, the approach is via the equations of motion, and in the quantum calculations, the time-dependent Schrödinger equation is solved. The solutions of these equations are obtained numerically. In the quantum calculations, the initial beam is taken to be an ensemble of noninteracting Gaussian wave packets. The angular distributions are generated using the computer simulation method. Our analysis is concentrated on the rainbow effect, which is clearly seen in the angular distributions. The obtained classical and quantum rainbows are analyzed in detail and compared with each other.

  1. Review of pulsed rf power generation

    SciTech Connect

    Lavine, T.L.

    1992-04-01

    I am going to talk about pulsed high-power rf generation for normal-conducting electron and positron linacs suitable for applications to high-energy physics in the Next Linear Collider, or NLC. The talk will cover some basic rf system design issues, klystrons and other microwave power sources, rf pulse-compression devices, and test facilities for system-integration studies.

  2. Positron production within our atmosphere

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph

    2016-04-01

    Positrons are commonly produced within our atmosphere by cosmic rays and the decay radioactive isotopes. Energetic positrons are also produced by pair production from the gamma rays generated by relativistic runaway electrons. Indeed, such positrons have been detected in Terrestrial Electron Beams (TEBs) in the inner magnetosphere by Fermi/GBM. In addition, positrons play an important role in relativistic feedback discharges (also known as dark lightning). Relativistic feedback models suggest that these discharges may be responsible for Terrestrial Gamma-ray Flashes (TGFs) and some gamma-ray glows. When producing TGFs, relativistic feedback discharges may generate large, lightning-like currents with current moments reaching hundreds of kA-km. In addition, relativistic feedback discharges also may limit the electric field that is possible in our atmosphere, affecting other mechanisms for generating runaway electrons. It is interesting that positrons, often thought of as exotic particles, may play an important role in thunderstorm processes. In this presentation, the role of positrons in high-energy atmospheric physics will be discussed. The unusual observation of positron clouds inside a thunderstorm by the ADELE instrument on an NCAR/NSF Gulfstream V aircraft will also be described. These observations illustrate that we still have much to learn about positron production within our atmosphere.

  3. Portable Positron Measurement System (PPMS)

    SciTech Connect

    2011-01-01

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  4. Cyclotrons and positron emitting radiopharmaceuticals

    SciTech Connect

    Wolf, A.P.; Fowler, J.S.

    1984-01-01

    The state of the art of Positron Emission Tomography (PET) technology as related to cyclotron use and radiopharmaceutical production is reviewed. The paper discusses available small cyclotrons, the positron emitters which can be produced and the yields possible, target design, and radiopharmaceutical development and application. 97 refs., 12 tabs. (ACR)

  5. Portable Positron Measurement System (PPMS)

    ScienceCinema

    None

    2013-05-28

    Portable Positron Measurement System (PPMS) is an automated, non-destructive inspection system based on positron annihilation, which characterizes a material's in situatomic-level properties during the manufacturing processes of formation, solidification, and heat treatment. Simultaneous manufacturing and quality monitoring now are possible. Learn more about the lab's project on our facebook site http://www.facebook.com/idahonationallaboratory.

  6. Plasma Wakefield Acceleration of Positrons

    NASA Astrophysics Data System (ADS)

    Gessner, Spencer

    2016-03-01

    Recent particle beam and laser-driven plasma wakefield experiments have produced high-quality electron beams accelerated by a GeV or more in less than a meter. Efforts are underway to put these beams to work as sources for free-electron lasers. By contrast, little work has been done to demonstrate the tractability of plasma wakefield acceleration (PWFA) of positrons beams. The reasons for this are threefold: 1) positron beams are only useful for high-energy physics experiments, whereas electron beams are also useful as light sources, 2) there is a dearth of positron sources for PWFA experiments, and 3) the dynamics of accelerating positron beams in plasma is fundamentally different than that of electron beams. This talk will focus on the physics of accelerating positrons in plasma and contrast the dynamics of electron and positron beam-driven nonlinear plasma wakes. We describe recent experiments at the FACET test facility at SLAC National Accelerator Laboratory that for the first time demonstrate high-gradient acceleration of a positron beams in plasma. We also discuss an alternative acceleration technique called hollow channel acceleration that aims to symmetrize the dynamics of electron and positron beam-driven wakes.

  7. Dechanneling of Positrons in Disordered Lattices Effect of Anharmonic Potential

    NASA Astrophysics Data System (ADS)

    Abu-Assy, M. K.; El-Ashry, M. Y.; Mohamed, A. A.

    2005-01-01

    Dechanneling of positrons due to lattice disorder has been investigated for two stable configurations of the disordered face-centered cubic(fcc) lattices, Dumb-bell configuration (DBC) and Body-centered interstitial (BCI) for channeled positrons with incident energy (10 200) MeV in Cu single crystal in the planar direction (100). The effects of anharmonic terms in the channeling potential have been considered in the calculations. The calculations covered the transition-channeling probability, dechanneling probability, transmission and dechanneling coefficients. It has been found that the transition-channeling probability from the normal into the disordered region occurs only for the transitions n (normal) → n (disordered). Also the dependence of the transmission and dechanneling coefficients on the incident beam position has been studied by using a planar potential function based on shell structure model and compared with the results of a planar potential based on Lindhard's model.

  8. Secondary positrons and electrons in the cosmic radiation

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Stephens, S. A.

    1978-01-01

    An improved calculation of the secondary production and equilibrium spectrum of positrons and electrons in the Galaxy in the energy range from 1 MeV to 100 GeV has been performed. This has been done by obtaining an analytic representation of the accelerator data which describes accurately the invariant cross-section of pions, kaons, and their antiparticles from threshold energy to about 1500 GeV. This calculation takes into account the correct angular distribution of electrons in the decay of muons and the effect of nuclei-nuclei collisions. The contributions of beta-decay positrons and knock-on electrons have been included. A comparison of the present calculations with earlier calculations and experiment is presented.

  9. Positron Emission Tomography.

    PubMed

    Lameka, Katherine; Farwell, Michael D; Ichise, Masanori

    2016-01-01

    Positron emission tomography (PET) is a minimally invasive imaging procedure with a wide range of clinical and research applications. PET allows for the three-dimensional mapping of administered positron-emitting radiopharmaceuticals such as (18)F-fluorodeoxyglucose (for imaging glucose metabolism). PET enables the study of biologic function in both health and disease, in contrast to magnetic resonance imaging (MRI) and computed tomography (CT), that are more suited to study a body's morphologic changes, although functional MRI can also be used to study certain brain functions by measuring blood flow changes during task performance. This chapter first provides an overview of the basic physics principles and instrumentation behind PET methodology, with an introduction to the merits of merging functional PET imaging with anatomic CT or MRI imaging. We then focus on clinical neurologic disorders, and reference research on relevant PET radiopharmaceuticals when applicable. We then provide an overview of PET scan interpretation and findings in several specific neurologic disorders such as dementias, epilepsy, movement disorders, infection, cerebrovascular disorders, and brain tumors. PMID:27432667

  10. Positron driven plasma wakefields

    NASA Astrophysics Data System (ADS)

    Pinkerton, S.; Shi, Y.; Huang, C.; An, W.; Mori, W. B.; Muggli, P.

    2010-11-01

    The LHC is producing high-energy, high-charge proton bunches (1e11 protons at 1-7 TeV each) that could be used to accelerate ``witness'' electron bunches to TeV range eneregies via a plasma wakefield accelerator (PWFA). Simulations [1] suggest that a proton ``drive'' bunch is able to excite large wakefields if the bunch size is on the order of 100 μm; however, the LHC paramters are currently on the 1 cm scale. SLAC'S FACET is able to supply positorn bunchs with the ideal parameters for driving a PWFA. Although at lower energy (2e10 positrons at 23 GeV each), initial simiulations in QuickPIC show that the physics of a positron drive bunch is very similar to that of a proton drive bunch. Differences in the physics arise from the mass difference: slower dephasing but faster transverse bunch evolution. Other considerations include driver head erosion and purity of the wakefield ion column. The physics of positive drivers for PWFA and the viability of this scheme for future high-energy colliders will be investigated at SLAC's FACET.[4pt] [1] Caldwell, et al. Nature Physics 5, 363 (2009).[0pt] [2] C.H. Huang, et al., J. Comp. Phys., 217(2), 658, (2006).

  11. RADIOACTIVE POSITRON EMITTER PRODUCTION BY ENERGETIC ALPHA PARTICLES IN SOLAR FLARES

    SciTech Connect

    Murphy, R. J.; Kozlovsky, B.; Share, G. H. E-mail: benz@wise.tau.ac.il

    2015-01-01

    Measurements of the 0.511 MeV positron-annihilation line from solar flares are used to explore the flare process in general and ion acceleration in particular. In flares, positrons are produced primarily by the decay of radioactive positron-emitting isotopes resulting from nuclear interactions of flare-accelerated ions with ambient solar material. Kozlovsky et al. provided ion-energy-dependent production cross sections for 67 positron emitters evaluated from their threshold energies (some <1 MeV nucleon{sup –1}) to a GeV nucleon{sup –1}, incorporating them into a computer code for calculating positron-emitter production. Adequate cross-section measurements were available for proton reactions, but not for α-particle reactions where only crude estimates were possible. Here we re-evaluate the α-particle cross sections using new measurements and nuclear reaction codes. In typical large gamma-ray line flares, proton reactions dominate positron production, but α-particle reactions will dominate for steeper accelerated-ion spectra because of their relatively low threshold energies. With the accelerated-{sup 3}He reactions added previously, the code is now reliable for calculating positron production from any distribution of accelerated-ion energies, not just those of typical flares. We have made the code available in the online version of the Journal. We investigate which reactions, projectiles, and ion energies contribute to positron production. We calculate ratios of the annihilation-line fluence to fluences of other gamma-ray lines. Such ratios can be used in interpreting flare data and in determining which nuclear radiation is most sensitive for revealing acceleration of low-energy ions at the Sun.

  12. Monte Carlo modelling of the propagation and annihilation of nucleosynthesis positrons in the Galaxy

    NASA Astrophysics Data System (ADS)

    Alexis, A.; Jean, P.; Martin, P.; Ferrière, K.

    2014-04-01

    Aims: We want to estimate whether the positrons produced by the β+-decay of 26Al, 44Ti, and 56Ni synthesised in massive stars and supernovae are sufficient to explain the 511 keV annihilation emission observed in our Galaxy. Such a possibility has often been put forward in the past. In a previous study, we showed that nucleosynthesis positrons cannot explain the full annihilation emission. Here, we extend this work using an improved propagation model. Methods: We developed a Monte Carlo Galactic propagation code for ~MeV positrons in which the Galactic interstellar medium, the Galactic magnetic field, and the propagation are finely described. This code allows us to simulate the spatial distribution of the 511 keV annihilation emission. We tested several Galactic magnetic fields models and several positron escape fractions from type-Ia supernova for 56Ni positrons to account for the large uncertainties in these two parameters. We considered the collisional/ballistic transport mode and then compared the simulated 511 keV intensity spatial distributions to the INTEGRAL/SPI data. Results: Regardless of the Galactic magnetic field configuration and the escape fraction chosen for 56Ni positrons, the 511 keV intensity distributions are very similar. The main reason is that ~MeV positrons do not propagate very far away from their birth sites in our model. The direct comparison to the data does not allow us to constrain the Galactic magnetic field configuration and the escape fraction for 56Ni positrons. In any case, nucleosynthesis positrons produced in steady state cannot explain the full annihilation emission. The comparison to the data shows that (a) the annihilation emission from the Galactic disk can be accounted for; (b) the strongly peaked annihilation emission from the inner Galactic bulge can be explained by positrons annihilating in the central molecular zone, but this seems to require more positron sources than the population of massive stars and type Ia

  13. Positron-acoustic solitary waves in a magnetized electron-positron-ion plasma with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Alam, M. S.; Mamun, A. A.

    2015-05-01

    Obliquely propagating positron-acoustic solitary waves (PASWs) in a magnetized electron-positron-ion plasma (containing nonthermal hot positrons and electrons, inertial cold positrons, and immobile positive ions) are precisely investigated by deriving the Zakharov-Kuznetsov equation. It is found that the characteristics of the PASWs are significantly modified by the effects of external magnetic field, obliqueness, nonthermality of hot positrons and electrons, temperature ratio of hot positrons and electrons, and respective number densities of hot positrons and electrons. The findings of our results can be employed in understanding the localized electrostatic structures and the characteristics of PASWs in various space and laboratory plasmas.

  14. Positron emission mammography imaging

    SciTech Connect

    Moses, William W.

    2003-10-02

    This paper examines current trends in Positron Emission Mammography (PEM) instrumentation and the performance tradeoffs inherent in them. The most common geometry is a pair of parallel planes of detector modules. They subtend a larger solid angle around the breast than conventional PET cameras, and so have both higher efficiency and lower cost. Extensions to this geometry include encircling the breast, measuring the depth of interaction (DOI), and dual-modality imaging (PEM and x-ray mammography, as well as PEM and x-ray guided biopsy). The ultimate utility of PEM may not be decided by instrument performance, but by biological and medical factors, such as the patient to patient variation in radiotracer uptake or the as yet undetermined role of PEM in breast cancer diagnosis and treatment.

  15. [Fundamentals of positron emission tomography].

    PubMed

    Ostertag, H

    1989-07-01

    Positron emission tomography is a modern radionuclide method of measuring physiological quantities or metabolic parameters in vivo. The method is based on: (1) radioactive labelling with positron emitters; (2) the coincidence technique for the measurement of the annihilation radiation following positron decay; (3) analysis of the data measured using biological models. The basic aspects and problems of the method are discussed. The main fields of future research are the synthesis of new labelled compounds and the development of mathematical models of the biological processes to be investigated. PMID:2667029

  16. Cosmic Ray Positrons from Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2010-01-01

    Pulsars are potential Galactic sources of positrons through pair cascades in their magnetospheres. There are, however, many uncertainties in establishing their contribution to the local primary positron flux. Among these are the local density of pulsars, the cascade pair multiplicities that determine the injection rate of positrons from the pulsar, the acceleration of the injected particles by the pulsar wind termination shock, their rate of escape from the pulsar wind nebula, and their propagation through the interstellar medium. I will discuss these issues in the context of what we are learning from the new Fermi pulsar detections and discoveries.

  17. Proton-Proton Scattering at 105 Mev and 75 Mev

    DOE R&D Accomplishments Database

    Birge, R. W.; Kruse, U. E.; Ramsey, N. F.

    1951-01-31

    The scattering of protons by protons provides an important method for studying the nature of nuclear forces. Recent proton-proton scattering experiments at energies as high as thirty Mev{sup 1} have failed to show any appreciable contribution to the cross section from higher angular momentum states, but it is necessary to bring in tensor forces to explain the magnitude of the observed cross section.

  18. Nonlinear propagation of broadband intense electromagnetic waves in an electron-positron plasma

    SciTech Connect

    Marklund, M.; Eliasson, B.; Shukla, P. K.

    2006-08-15

    A kinetic equation describing the nonlinear evolution of intense electromagnetic pulses in electron-positron (e-p) plasmas is presented. The modulational instability is analyzed for a relativistically intense partially coherent pulse, and it is found that the modulational instability is inhibited by the spectral pulse broadening. A numerical study for the one-dimensional kinetic photon equation is presented. Computer simulations reveal a Fermi-Pasta-Ulam-type recurrence phenomenon for localized broadband pulses. The results should be of importance in understanding the nonlinear propagation of broadband intense electromagnetic pulses in e-p plasmas in laser-plasma systems as well as in astrophysical plasma settings.

  19. Positron annihilation lifetime characterization of oxygen ion irradiated rutile TiO2

    NASA Astrophysics Data System (ADS)

    Luitel, Homnath; Sarkar, A.; Chakrabarti, Mahuya; Chattopadhyay, S.; Asokan, K.; Sanyal, D.

    2016-07-01

    Ferromagnetic ordering at room temperature has been induced in rutile phase of TiO2 polycrystalline sample by O ion irradiation. 96 MeV O ion induced defects in rutile TiO2 sample has been characterized by positron annihilation spectroscopic techniques. Positron annihilation results indicate the formation of cation vacancy (VTi, Ti vacancy) in these irradiated TiO2 samples. Ab initio density functional theoretical calculations indicate that in TiO2 magnetic moment can be induced either by creating Ti or O vacancies.

  20. Positron annihilation spectroscopy with magnetically analyzed beams

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. H.; Mock, W., Jr.

    1982-01-01

    Lifetime measurements with magnetically analyzed positron beams were made in condensed media with uniform and non-uniform properties. As expected, the lifetime values with magnetically analyzed positron beams in uniform targets are similar to those obtained with conventional positron sources. The lifetime values with magnetically analyzed beams in targets which have non-uniform properties vary with positron energy and are different from the conventional positron source derived lifetime values in these targets.

  1. Resolvability of positron decay channels

    SciTech Connect

    Fluss, M.J.; Howell, R.H.; Rosenberg, I.J.; Meyer, P.

    1985-03-07

    Many data analysis treatments of positron experiments attempt to resolve two or more positron decay or exist channels which may be open simultaneously. Examples of the need to employ such treatments of the experimental results can be found in the resolution of the constituents of a defect ensemble, or in the analysis of the complex spectra which arise from the interaction of slow positrons at or near the surfaces of solids. Experimental one- and two-dimensional angular correlation of annihilation radiation experiments in Al single crystals have shown that two defect species (mono- and divacancies) can be resolved under suitable conditions. Recent experiments at LLNL indicate that there are a variety of complex exit channels open to positrons interacting at surfaces, and ultimely these decay channels must also be suitably resolved from one another. 6 refs., 4 figs.

  2. High Power Polarized Positron Source

    NASA Astrophysics Data System (ADS)

    Mikhailichenko, Alexander

    2009-09-01

    We discuss the basics of polarized positron production by low energy polarized electrons. Efficiency of conversion ˜0.1-1% might be interesting for the Continuous Electron Beam Accelerator Facility (CEBAF) and the International Linear Collider (ILC).

  3. Modelling Positron Interactions with Matter

    NASA Astrophysics Data System (ADS)

    Garcia, G.; Petrovic, Z.; White, R.; Buckman, S.

    2011-05-01

    In this work we link fundamental measurements of positron interactions with biomolecules, with the development of computer codes for positron transport and track structure calculations. We model positron transport in a medium from a knowledge of the fundamental scattering cross section for the atoms and molecules comprising the medium, combined with a transport analysis based on statistical mechanics and Monte-Carlo techniques. The accurate knowledge of the scattering is most important at low energies, a few tens of electron volts or less. The ultimate goal of this work is to do this in soft condensed matter, with a view to ultimately developing a dosimetry model for Positron Emission Tomography (PET). The high-energy positrons first emitted by a radionuclide in PET may well be described by standard formulas for energy loss of charged particles in matter, but it is incorrect to extrapolate these formulas to low energies. Likewise, using electron cross-sections to model positron transport at these low energies has been shown to be in serious error due to the effects of positronium formation. Work was supported by the Australian Research Council, the Serbian Government, and the Ministerio de Ciencia e Innovación, Spain.

  4. Method for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2006-06-06

    A non-destructive testing method comprises providing a specimen having at least one positron emitter therein; determining a threshold energy for activating the positron emitter; and determining whether a half-life of the positron emitter is less than a selected half-life. If the half-life of the positron emitter is greater than or equal to the selected half-life, then activating the positron emitter by bombarding the specimen with photons having energies greater than the threshold energy and detecting gamma rays produced by annihilation of positrons in the specimen. If the half-life of the positron emitter is less then the selected half-life, then alternately activating the positron emitter by bombarding the specimen with photons having energies greater then the threshold energy and detecting gamma rays produced by positron annihilation within the specimen.

  5. Gamma-ray lines from novae. [relationship to radioactive decay and positron annihilation

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Hoyle, F.

    1974-01-01

    An appropriate gamma-ray telescope could detect the gamma-rays associated with radioactive decays. The observable lines would be the annihilation radiation following the positron emission of N-13, O-14, O-15, and Na-22 and the 2.312-MeV line emitted following the O-14 decay and the 1.274-MeV line emitted following the Na-22 decay. The experimental possibility should be borne in mind for the occurrence of novae within a few kiloparsecs.

  6. Detector blur associated with MeV radiographic imaging systems

    NASA Astrophysics Data System (ADS)

    Baker, Stuart A.; Lutz, Stephen S.; Smalley, Duane D.; Brown, Kristina K.; Danielson, Jeremy; Haines, Todd J.; Howe, Russell A.; Mitchell, Stephen E.; Morgan, Dane; Schultz, Larry J.

    2015-08-01

    We are investigating scintillator performance in radiographic imaging systems at x-ray endpoint energies of 0.4 and 2.3 MeV in single-pulse x-ray machines. The effect of scene magnification and geometric setup will be examined along with differences between the detector response of radiation and optical scatter. Previous discussion has reviewed energy absorption and efficiency of various imaging scintillators with a 2.3 MeV x-ray source. The focal point of our study is to characterize scintillator blur to refine system models. Typical detector geometries utilize thin tiled LYSO:Ce (cerium-doped lutetium yttrium orthosilicate) assembled in a composite mosaic. Properties of individual tiles are being studied to understand system resolution effects present in the experimental setup. Comparison of two different experiments with different geometric configurations is examined. Results are then compared to different scene magnifications generated in a Monte-Carlo simulation.

  7. The annihilation of positrons in the cold phase of the interstellar medium revisited

    NASA Astrophysics Data System (ADS)

    Wallyn, P.; Durouchoux, Ph.; Chapuis, C.; Leventhal, M.

    1994-02-01

    The positron cross sections in H and H2 media are reevaluated, taking into account new experimental results. Using a Monte Carlo simulation, we find a positronium fraction before thermalization of 0.90 for H2, in good agreement with the previous experimental result given by Brown et al. (1986). For H we obtain an upper limit of 0.98. We study the behavior of the charge exchange annihilation in a cold phase (molecular cloud). We calculate a formula for the slowing-down time t, before annihilation lasting Delta t, via charge exchange, of a positron beam with a given energy for different medium densities and initial energies. An upper limit of 0.7 MeV for the initial energy of the positrons, annihilating in the molecular cloud G0.86 - 0.08 near the gamma ray source positronium and gives new time constraints on their possible observation.

  8. The annihilation of positrons in the cold phase of the interstellar medium revisited

    NASA Technical Reports Server (NTRS)

    Wallyn, P.; Durouchoux, PH.; Chapuis, C.; Leventhal, M.

    1994-01-01

    The positron cross sections in H and H2 media are reevaluated, taking into account new experimental results. Using a Monte Carlo simulation, we find a positronium fraction before thermalization of 0.90 for H2, in good agreement with the previous experimental result given by Brown et al. (1986). For H we obtain an upper limit of 0.98. We study the behavior of the charge exchange annihilation in a cold phase (molecular cloud). We calculate a formula for the slowing-down time t, before annihilation lasting Delta t, via charge exchange, of a positron beam with a given energy for different medium densities and initial energies. An upper limit of 0.7 MeV for the initial energy of the positrons, annihilating in the molecular cloud G0.86 - 0.08 near the gamma ray source positronium and gives new time constraints on their possible observation.

  9. Positron-electron autocorrelation function study of E-center in silicon

    NASA Astrophysics Data System (ADS)

    Ho, K. F.; Ching, H. M.; Beling, C. D.; Fung, S.; Ng, K. P.; Biasini, M.; Ferro, G.; Gong, M.

    2003-11-01

    Two-dimensional angular correlation of annihilation radiation (2D-ACAR) spectra have been taken for 1019cm-3 phosphorus-doped Si in the as-grown state after having been subjected to 1.8 MeV electron fluences of 1×1018 and 2×1018 cm-2. Positron annihilation lifetime spectroscopy confirms, in accordance with previous works, that positrons are saturation trapping into (VSi:P) pair defect (E-center) monovacancy sites in the electron irradiated samples. In the as-grown case, the positron-electron autocorrelation functions along the [111] and [1-10] directions, obtained through Fourier transformation of the 2D-ACAR data, reveal zero-crossings that deviate only slightly from the lattice points, in a manner consistent with positron-electron correlation effects. Conversely, in the spectra of the irradiated samples, the zero-crossing points are observed to move outward further by between 0.15 and 0.50 Å. This displacement is associated with positron annihilation with electrons in localized orbitals at the defect site. An attempt is made to extract just the component of the defect's positron-electron autocorrelation function that relates to the localized defect orbitals. In doing this features are found that correspond to the expected atomic positions at the vacancy defect site suggesting that this real-space function may provide a convenient means for obtaining a mapping of localized orbitals. The observed approximate separability of positron and electron wave-function autocorrelates leads to an estimate of 0.22 eV for the positron binding energy to the E-center.

  10. Gamma-rays of 3 to 25 MeV from the galactic anti-center and pulsar NP 0532

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Moon, S. H.; Ryan, J. M.; Zych, A. D.; White, R. S.; Dayton, B.

    1978-01-01

    Gamma-rays of 3 to 25 MeV are reported from the galactic anticenter region and the Crab Pulsar, NP 0532. The observations were carried out from Palestine, Texas, on May 13, 1975. Gamma-rays from the galactic anticenter were observed as the Crab Nebula passed overhead within 10 deg of the zenith. Pulsed gamma-rays from NP 0532 were observed at a 4.4-sigma significance level. The total flux from 3-25 MeV is 0.0049 + or - 0.002 photon/sq cm-sec. The pulsed flux from NP 0532 from 3 to 25 MeV is 0.00043 + or - 0.00026 photon/sq cm-sec. The ratio of the total to the pulsed flux from 3 to 25 MeV is 11 + or - 8.

  11. Energy matching of 1. 2 GeV positron beam to the SLC (Stanford Linear Collider) damping ring

    SciTech Connect

    Clendenin, J.E.; Helm, R.H.; Jobe, R.K.; Kulikov, A.; Sheppard, J.C.

    1989-08-01

    Positrons collected at the SLC positron source are transported over a 2-km path at 220 MeV to be reinjected into the linac for acceleration to 1.2 GeV, the energy of the emittance damping ring. Since the positron bunch length is a significant fraction of a cycle of the linac-accelerating RF, the energy spread at 1.2 GeV is considerably larger than the acceptance of the linac-to-ring (LTR) transport system. Making use of the large pathlength difference at the beginning of the LTR due to this energy spread, a standard SLAC 3-m accelerating section has been installed in the LTR to match the longitudinal phase space of the positron beam to the acceptance of the damping ring. The design of the matching system is described, and a comparison of operating results within simulations is presented. 5 refs., 4 figs., 1 tab.

  12. Fluence to local skin absorbed dose and dose equivalent conversion coefficients for monoenergetic positrons using Monte-Carlo code MCNP6.

    PubMed

    Bourgois, L; Antoni, R

    2016-01-01

    Conversion coefficients fluence to local skin equivalent dose, as introduced in ICRP Publication 116, 2010, are calculated for positrons of energies ranging from 10 keV to 10 MeV using the code MCNP6. Fluence to dose equivalent conversion coefficients H'(0.07,0°)/Φ are calculated for positrons of energy ranging between 20 keV and 10 MeV. A comparison between operational dose quantity H'(0.07,0°) and the Local-Skin equivalent Dose shows an overall good agreement between these two quantities, except between 60 keV and 100 keV. PMID:26623930

  13. Level Density of COBALT-57 in the Energy Region 1 Mev to 14 Mev

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek

    The level density of ^{57 }Co is studied in the energy region of 1-14 MeV using three experimental techniques. Levels are counted in the resolved region, evaporation spectra are measured in the resolved to continuum region, and the coherence width is measured in the region of level overlap. Use of Hauser-Feshbach fits to the evaporation cross sections requires level densities of the residual nucleus. A two -parameter based Fermi gas form is used for the calculation of level density as a function of the nuclear excitation energy. This procedure enables level density calculation beyond the energy region in which the two fixed parameters provide the best fits to the data. A comparison is made between the level density obtained from the above described methods and the predictions of the microscopic model in an energy range of 1-20 MeV. This model utilizes a BCS pairing Hamiltonian and specific sets of single particle states and calculates numerical values of the level density. Comparisons are also made with level density of ^{57 }Co obtained in various other studies. Both the resolved level studies and the fits to the evaporation spectra were conducted using the ^{56}Fe(d,n)^{57 }Co and ^{57}Fe(p,n) ^{57}Co reactions. Standard neutron time-of-flight techniques including pulse shape discrimination for elimination of gamma -rays were employed. An energy resolution as good as 6 keV at 1-1.5 MeV neutron energy was obtained for high resolution measurements. For Ericson fluctuation measurements, the excitation functions corresponding to the ground state and the first two excited states of the residual nucleus in the ^{56}Fe(p,n) ^{56}Co reaction were obtained for lab angles between 0^circ and 150^circ. The ^{56}Fe(d,n) ^{57}Co reaction proves to be very selective in populating resolved states and includes substantial contributions from mechanisms other than the compound nuclear. The ^{57 }Fe(p,n)^{57}Co reaction populated 14 previously unknown levels. The fits to the

  14. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  15. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  16. Positron-alkali atom scattering

    NASA Technical Reports Server (NTRS)

    Mceachran, R. P.; Horbatsch, M.; Stauffer, A. D.; Ward, S. J.

    1990-01-01

    Positron-alkali atom scattering was recently investigated both theoretically and experimentally in the energy range from a few eV up to 100 eV. On the theoretical side calculations of the integrated elastic and excitation cross sections as well as total cross sections for Li, Na and K were based upon either the close-coupling method or the modified Glauber approximation. These theoretical results are in good agreement with experimental measurements of the total cross section for both Na and K. Resonance structures were also found in the L = 0, 1 and 2 partial waves for positron scattering from the alkalis. The structure of these resonances appears to be quite complex and, as expected, they occur in conjunction with the atomic excitation thresholds. Currently both theoretical and experimental work is in progress on positron-Rb scattering in the same energy range.

  17. Instrumentation in positron emission tomography

    SciTech Connect

    Not Available

    1988-03-11

    Positron emission tomography (PET) is a three-dimensional medical imaging technique that noninvasively measures the concentration of radiopharmaceuticals in the body that are labeled with positron emitters. With the proper compounds, PET can be used to measure metabolism, blood flow, or other physiological values in vivo. The technique is based on the physics of positron annihilation and detection and the mathematical formulations developed for x-ray computed tomography. Modern PET systems can provide three-dimensional images of the brain, the heart, and other internal organs with resolutions on the order of 4 to 6 mm. With the selectivity provided by a choice of injected compounds, PET has the power to provide unique diagnostic information that is not available with any other imaging modality. This is the first five reports on the nature and uses of PET that have been prepared for the American Medical Association's Council on Scientific Affairs by an authoritative panel.

  18. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  19. Instrumentation for positron emission tomography.

    PubMed

    Budinger, T F; Derenzo, S E; Huesman, R H

    1984-01-01

    Positron emission tomography with a spatial resolution of 2 mm full width at half maximum for quantitation in regions of interest 4 mm in diameter will become possible with the development of detectors that achieve ultrahigh resolution. Improved resolution will be possible using solid-state photodetectors for crystal identification or photomultiplier tubes with many small electron multipliers . Temporal resolution of 2 seconds and gating of cyclic events can be accomplished if statistical requirements are met. The major physical considerations in achieving high-resolution positron emission tomography are the degradation in resolution resulting from positron range, emission angle, parallax error, detector sampling density, the sensitivity of various detector materials and packing schemes, and the trade off between temporal resolution and statistical accuracy. The accuracy of data required for physiological models depends primarily on the fidelity of spatial sampling independent of statistical constraints. PMID:6611124

  20. Positron spectroscopy for materials characterization

    SciTech Connect

    Schultz, P.J.; Snead, C.L. Jr.

    1988-01-01

    One of the more active areas of research on materials involves the observation and characterization of defects. The discovery of positron localization in vacancy-type defects in solids in the 1960's initiated a vast number of experimental and theoretical investigations which continue to this day. Traditional positron annihilation spectroscopic techniques, including lifetime studies, angular correlation, and Doppler broadening of annihilation radiation, are still being applied to new problems in the bulk properties of simple metals and their alloys. In addition new techniques based on tunable sources of monoenergetic positron beams have, in the last 5 years, expanded the horizons to studies of surfaces, thin films, and interfaces. In the present paper we briefly review these experimental techniques, illustrating with some of the important accomplishments of the field. 40 refs., 19 figs.

  1. Particle physics. Positrons ride the wave

    SciTech Connect

    Piot, Philippe

    2015-08-26

    Here, experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

  2. Particle physics. Positrons ride the wave

    SciTech Connect

    Piot, Philippe

    2015-08-26

    Experiments reveal that positrons — the antimatter equivalents of electrons — can be rapidly accelerated using a plasma wave. The findings pave the way to high-energy electron–positron particle colliders.

  3. Single-shot positron annihilation lifetime spectroscopy with LYSO scintillators

    NASA Astrophysics Data System (ADS)

    Alonso, A. M.; Cooper, B. S.; Deller, A.; Cassidy, D. B.

    2016-08-01

    We have evaluated the application of a lutetium yttrium oxyorthosilicate (LYSO) based detector to single-shot positron annihilation lifetime spectroscopy. We compare this detector directly with a similarly configured PbWO4 scintillator, which is the usual choice for such measurements. We find that the signal to noise ratio obtained using LYSO is around three times higher than that obtained using PbWO4 for measurements of Ps excited to longer-lived (Rydberg) levels, or when they are ionized soon after production. This is due to the much higher light output for LYSO (75% and 1% of NaI for LYSO and PbWO4 respectively). We conclude that LYSO is an ideal scintillator for single-shot measurements of positronium production and excitation performed using a low-intensity pulsed positron beam.

  4. Status and prospects of VEPP-2000 electron-positron collider

    NASA Astrophysics Data System (ADS)

    Rogovsky, Yu. A.; Berkaev, D. E.; Zemlyansky, I. M.; Zharinov, Yu. M.; Kasaev, A. S.; Koop, I. A.; Kyrpotin, A. N.; Lysenko, A. P.; Perevedentsev, E. A.; Prosvetov, V. P.; Romanov, A. L.; Senchenko, A. I.; Skrinsky, A. N.; Shatunov, P. Yu.; Shatunov, Yu. M.; Shwartz, D. B.

    2014-09-01

    High energy physics experiments were started at VEPP-2000 at the end of 2010; the third experimental run was finished in July 2013. The last run was devoted to the energy range 160-510 MeV in a beam. Compton backscattering energy measurements were used for the regular energy calibration of the VEPP-2000, together with resonance depolarization and NMR methods. The conception of the round colliding beam lattice along with precise orbit and lattice correction yielded a record high peak luminosity of 1.2 × 1031 cm-2 s-1 at 510 MeV and an average luminosity of 0.9 × 1031 cm-2 s-1 per run. A total betatron tune shift of 0.174 was achieved at 392.5 MeV. This corresponds to the beam-beam parameter ξ = 0.125 in terms of the collision point. The injection system is currently modernized to allow injection of particles at the VEPP-2000 energy maximum and the elimination of the existing lack of positrons.

  5. Electrostatic Nonplanar Positron-Acoustic Shock Waves in Superthermal Electron-Positron-Ion Plasmas

    NASA Astrophysics Data System (ADS)

    M. J., Uddin; M. S., Alam; A. A., Mamun

    2015-06-01

    The basic properties of the nonlinear propagation of the nonplanar (cylindrical and spherical) positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion (e-p-i) plasma containing immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated both analytically and numerically. The modified Burgers equation (mBE) is derived by using the reductive perturbation method. The basic features of PA SHWs are significantly modified by the cold positron kinematic viscosity (η), superthermal parameter of electrons (κe), superthermal parameter of hot positrons (κp), the ratio of the electron temperature to hot positron temperature (σ), the ratio of the electron number density to cold positron number density and the ratio of the hot positron number density to cold positron number density (μph). This study could be useful to identify the basic properties of nonlinear electrostatic disturbances in dissipative space and laboratory plasmas.

  6. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A positron camera is a device intended to image...

  7. Source of slow polarized positrons using the brilliant gamma beam at ELI-NP. Converter design and simulations

    NASA Astrophysics Data System (ADS)

    Djourelov, Nikolay; Oprisa, Andreea; Leca, Victor

    2016-01-01

    Simulations of slow positron (es+) source based on interaction of a circularly polarized gamma beam with a W converter were performed. The aim of the study was to propose a converter geometry and to determine the expected slow positron beam intensity and its spot size, and the degree of positron spin polarization, as well. The Monte Carlo simulations by means of GEANT4 were used to estimate the fast positron production and the moderation efficiency of the converter working as a self-moderator, as well. Finite element analysis by means of COMSOL Multiphysics was applied to calculate the fraction of extracted moderated positrons from the converter cells and the quality of the beam formation by focusing. Using the low energy (<3.5 MeV) gamma beam at ELI-NP with intensity of 2.4×1010γ/s the production of a slow positron beam with intensity of 1-2×106 es+/s is predicted. For the optimized converter geometry and in case of 100% circular polarization of the gammas the degree of spin polarization of the slow positron beam is expected to be 33%.

  8. Pulsed neutron detector

    DOEpatents

    Robertson, deceased, J. Craig; Rowland, Mark S.

    1989-03-21

    A pulsed neutron detector and system for detecting low intensity fast neutron pulses has a body of beryllium adjacent a body of hydrogenous material the latter of which acts as a beta particle detector, scintillator, and moderator. The fast neutrons (defined as having En>1.5 MeV) react in the beryllium and the hydrogenous material to produce larger numbers of slow neutrons than would be generated in the beryllium itself and which in the beryllium generate hellium-6 which decays and yields beta particles. The beta particles reach the hydrogenous material which scintillates to yield light of intensity related to the number of fast neutrons. A photomultiplier adjacent the hydrogenous material (scintillator) senses the light emission from the scintillator. Utilization means, such as a summing device, sums the pulses from the photo-multiplier for monitoring or other purposes.

  9. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-06-15

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  10. Positron-acoustic shock waves associated with cold viscous positron fluid in superthermal electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Uddin, M. J.; Alam, M. S.; Mamun, A. A.

    2015-06-01

    A theoretical investigation is made on the positron-acoustic (PA) shock waves (SHWs) in an unmagnetized electron-positron-ion plasma containing immobile positive ions, cold mobile positrons, and hot positrons and electrons following the kappa (κ) distribution. The cold positron kinematic viscosity is taken into account, and the reductive perturbation method is used to derive the Burgers equation. It is found that the viscous force acting on cold mobile positron fluid is a source of dissipation and is responsible for the formation of the PA SHWs. It is also observed that the fundamental properties of the PA SHWs are significantly modified by the effects of different parameters associated with superthermal (κ distributed) hot positrons and electrons.

  11. The 50 MeV Beam Test Facility at LBL

    SciTech Connect

    Leemans, W.; Behrsing, G.; Kim, K.J.; Krupnick, J.; Matuk, C.; Selph, F.; Chattopadhyay, S.

    1993-05-01

    A new beam line, expected to be built by September 1993, will transport the 50 MeV electron beam from the ALS LINAC into an experimental area to support various R&D activities in the Center for Beam Physics at LBL. A variety of experiments are planned involving the interaction of such a relativistic electron beam with plasmas (plasma focusing), laser beams (generation of femtosecond X-ray pulses) and electromagnetic cavities (Crab cavities etc....). The beam line is designed using the measured emittance and Twiss parameters of the ALS linac. It accommodates the different requirements of the various experiments on the electron beam properties (charge, energy, pulse length) and on the handling of the beam before and after the interaction point. Special attention has also been given to incorporate diagnostics for measuring the beam properties (such as the electron energy, bunch length and charge) needed in the interpretation of the experiments.

  12. Initial results from the Donner 600 crystal positron tomograph

    SciTech Connect

    Derenzo, S.E.; Huesman, R.H.; Cahoon, J.L.; Geyer, A.; Uber, D.; Vuletich, T.; Budinger, T.F.

    1987-02-01

    The authors describe a positron tomography using a single ring of 600 close-packed 3 mm wide bismuth germanate (BGO) crystals coupled to 14 mm phototubes. The phototube preamplifier circuit derives a timing pulse from the first photoelectron, and sends it to address and coincidence circuits only if the integrated pulse height is within a pre-set window. The timing delays and pulse height windows for all 600 detectors and the coincidence timing windows are computer adjustable. An orbiting positron source is used for transmission measurements and look-up table is used to reject scattered and random coincidences that do not pass through the source. Data can be acquired using a stationary mode for 1.57 mm lateral sampling or the two-position clam sampling mode for 0.79 mm lateral sampling. High maximum data rates are provided by 45 parallel coincidence circuits and 4 parallel histogram memory units. With two-position sampling and 1.57 mm bins, the reconstructed point spread function (PSF) of a 0.35 mm diam /sup 22/Na wire source at the center of the tomograph is circular with 2.9 mm full-width at half-maximum (fwhm) and the PSF at a distance of 8 cm from the center is elliptical with a radial fwhm of 4.0 mm and tangential fwhm of 3.0 mm.

  13. Initial results from the Donner 600 crystal positron tomograph

    SciTech Connect

    Derenzo, S.E.; Huesman, R.H.; Cahoon, J.L.; Geyer, A.; Uber, D.; Vuletich, T.; Budinger, T.F.

    1986-10-01

    We describe a positron tomograph using a single ring of 600 close-packed 3 mm wide bismuth germanate (BGO) crystals coupled to 14 mm phototubes. The phototube preamplifier circuit derives a timing pulse from the first photoelectron, and sends it to address and coincidence circuits only if the integrated pulse height is within a pre-set window. The timing delays and pulse height windows for all 600 detectors and the coincidence timing windows are computer adjustable. An orbiting positron source is used for transmission measurements and a look-up table is used to reject scattered and random coincidences that do not pass through the source. Data can be acquired using a stationary mode for 1.57 mm lateral sampling or the two-position clam sampling mode for 0.79 mm lateral sampling. High maximum data rates are provided by 45 parallel coincidence circuits and 4 parallel histogram memory units. With two-position sampling and 1.57 mm bins, the reconstructed point spread function (PSF) of a 0.35 mm diam /sup 22/Na wire source at the center of the tomograph is circular with 2.9 mm full-width at half-maximum (fwhm) and the PSF at a distance of 8 cm from the center is elliptical with a radial fwhm of 4.0 mm and tangential fwhm of 3.0 mm. 12 refs., 6 figs., 3 tabs.

  14. Texas Intense Positron Source (TIPS)

    NASA Astrophysics Data System (ADS)

    O'Kelly, D.

    2003-03-01

    The Texas Intense Positron Source (TIPS) is a state of the art variable energy positron beam under construction at the Nuclear Engineering Teaching Laboratory (NETL). Projected intensities on the order of the order of 10^7 e+/second using ^64Cu as the positron source are expected. Owing to is short half-life (t1/2 12.8 hrs), plans are to produce the ^64Cu isotope on-site using beam port 1 of NETL TRIGA Mark II reactor. Following tungsten moderation, the positrons will be electrostatically focused and accelerated from few 10's of eV up to 30 keV. This intensity and energy range should allow routine performance of several analytical techniques of interest to surface scientists (PALS, PADB and perhaps PAES and LEPD.) The TIPS project is being developed in parallel phases. Phase I of the project entails construction of the vacuum system, source chamber, main beam line, electrostatic/magnetic focusing and transport system as well as moderator design. Initial construction, testing and characterization of moderator and beam transport elements are underway and will use a commercially available 10 mCi ^22Na radioisotope as a source of positrons. Phase II of the project is concerned primarily with the Cu source geometry and thermal properties as well as production and physical handling of the radioisotope. Additional instrument optimizing based upon experience gained during Phase I will be incorporated in the final design. Current progress of both phases will be presented along with motivations and future directions.

  15. Development of a Source of Quasi-Monochromatic MeV Energy Photons

    SciTech Connect

    Umstadter, Donald; Banerjee, Sudeep; Ramanathan, Vidya; Powers, Nathan; Cunningham, Nathaniel; Chandler-Smith, Nate

    2009-03-10

    We report current progress on a project to develop an all-optically-driven x-ray photon source. A laser pulse with 40-50 TW of peak power is focused on a supersonic helium nozzle to drive a relativistic plasma wave. Electron beams with energies of 320 MeV (+/-28 MeV) are accelerated by means of laser wakefield acceleration. Remarkably, the acceleration region is only 3 mm in length. This accelerator is currently being employed to demonstrate the generation of MeV-energy x-ray by means of all-optical Thomson scattering. By this mechanism, a lower power, laser pulse (from the same laser system) is focused onto the above laser-driven electron beam, 1-eV energy photons are Doppler-shifted in energy to >1 MeV.

  16. Positron microanalysis with high intensity beams

    SciTech Connect

    Hulett, L.D. Jr.; Donohue, D.L.

    1990-01-01

    One of the more common applications for a high intensity slow positron facility will be microanalysis of solid materials. In the first section of this paper some examples are given of procedures that can be developed. Since most of the attendees of this workshop are experts in positron spectroscopy, comprehensive descriptions will be omitted. With the exception of positron emission microscopy, most of the procedures will be based on those already in common use with broad beams. The utility of the methods have all been demonstrated, but material scientists use very few of them because positron microbeams are not generally available. A high intensity positron facility will make microbeams easier to obtain and partially alleviate this situation. All microanalysis techniques listed below will have a common requirement, which is the ability to locate the microscopic detail or area of interest and to focus the positron beam exclusively on it. The last section of this paper is a suggestion of how a high intensity positron facility might be designed so as to have this capability built in. The method will involve locating the specimen by scanning it with the microbeam of positrons and inducing a secondary electron image that will immediately reveal whether or not the positron beam is striking the proper portion of the specimen. This scanning positron microscope' will be a somewhat prosaic analog of the conventional SEM. It will, however, be an indispensable utility that will enhance the practicality of positron microanalysis techniques. 6 refs., 1 fig.

  17. Femtosecond time-resolved MeV electron diffraction

    SciTech Connect

    Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; Wu, L.; Cao, J.; Berger, H.; Geck, J.; Kraus, R.; Pjerov, S.; Shen, Y.; Tobey, R. I.; Hill, J. P.; Wang, X. J.

    2015-06-02

    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 fC (~3 × 104 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated by observing the evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.

  18. Femtosecond time-resolved MeV electron diffraction

    DOE PAGESBeta

    Zhu, Pengfei; Zhu, Y.; Hidaka, Y.; Wu, L.; Cao, J.; Berger, H.; Geck, J.; Kraus, R.; Pjerov, S.; Shen, Y.; et al

    2015-06-02

    We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained utilizing a 5 fC (~3 × 104 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirms that electron beam has a normalized emittance of ~50 nm rad. The transverse and longitudinal coherence length is ~11 and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~100 fs (rms). The temporal resolution is demonstrated by observing themore » evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Lastly, our results demonstrate the advantages of MeV electrons, including large elastic differential scattering cross-section and access to high-order reflections, and the feasibility of ultimately realizing below 10 fs time-resolved electron diffraction.« less

  19. Design of the NLC positron source

    SciTech Connect

    Tang, H.; Emma, P.; Gross, G.; Kulikov, A.; Li, Z.; Miller, R.; Rinolfi, L.; Turner, J.; Yeremian, D.

    1996-08-01

    The design of the positron source for the Next Linear Collider (NLC) is presented. The key features of this design include accelerating positrons at an L-band frequency (1428 MHz) and using a rotating positron target with multi-stage differential pumping. Positron yield simulations show that the L-band design yields at the source 2.5 times the beam intensity required at the interaction point and is easily upgrade to higher intensities required for the 1 TeV NLC upgrade. Multi-bunch beam loading compensation schemes in the positron capture and booster accelerators and the optics design of the positron booster accelerator are described. For improved source efficiency, the design boasts two parallel positron vaults adequately shielded from each other such that one serves as an on-line spare.

  20. Upgraded cavities for the positron accumulator ring of the APS

    SciTech Connect

    Kang, Y.W.; Jiang, X.; Mangra, D.

    1997-08-01

    Upgraded versions of cavities for the APS positron accumulator ring (PAR) have been built and are being tested. Two cavities are in the PAR: a fundamental 9.8-MHz cavity and a twelfth harmonic 117.3-MHz cavity. Both cavities have been manufactured for higher voltage operation with improved Q-factors, reliability, and tuning capability. Both cavities employ current-controlled ferrite tuners for control of the resonant frequency. The harmonic cavity can be operated in either a pulsed mode or a CW mode. The rf properties of the cavities are presented.

  1. The scaling of electron and positron generation in intense laser-solid interactions

    SciTech Connect

    Chen, Hui; Link, A.; Fiuza, F.; Hazi, A.; Heeter, R. F.; Kemp, A. J.; Kemp, G. E.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.; Sentoku, Y.; Audebert, P.; Hill, M.; Hobbs, L.; Kerr, S.; Meyerhofer, D. D.; Myatt, J.

    2015-05-15

    This paper presents experimental scalings of the electrons and positrons produced by intense laser-target interactions at relativistic laser intensities (10{sup 18}–10{sup 20} W cm{sup −2}). The data were acquired from three short-pulse laser facilities with laser energies ranging from 80 to 1500 J. We found a non-linear (≈E{sub L}{sup 2}) scaling of positron yield [Chen et al., Phys. Rev. Lett. 114, 215001 (2015)] and a linear scaling of electron yield with the laser energy. These scalings are explained by theoretical and numerical analyses. Positron acceleration by the target sheath field is confirmed by the positron energy spectrum, which has a pronounced peak at energies near the sheath potential, as determined by the observed maximum energies of accelerated protons. The parameters of laser-produced electron-positron jets are summarized together with the theoretical energy scaling. The measured energy-squared scaling of relativistic electron-positron jets indicates the possibility to create an astrophysically relevant experimental platform with such jets using multi-kilojoule high intensity lasers currently under construction.

  2. Little Boy neutron spectrum below 1 MeV

    SciTech Connect

    Evans, A.E.

    1984-01-01

    A high-resolution /sup 3/He ionization chamber of the type development by Cuttler and Shalev was used to study the neutron spectrum from the Little Boy mockup. Measurements were made at distances of 0.75 and 2.0 m and at angles of 0/sup 0/, 45/sup 0/, and 90/sup 0/ with respect to the axis of the assembly, which was operated at power levels from 8.6 to 450 mW. Detector efficiency as a function of energy as well as parameters for correction of pulse-height distributions for proton-recoil and wall effects were determined from a set of response functions for monoenergetic neutrons measured at the Los Alamos 3.75-MeV Van de Graaff Accelerator Facility. Pulse-shape discrimination was used to separate /sup 3/He-recoil pulses from the pulse-height distribution. The spectrum was found to be highly structured, with peaks corresponding to minima in the total neutron cross section of iron. In particular, 15% of the neutrons above the epithermal peak in energy were found to be in the 24-keV iron window. Lesser peaks out to 700 keV are also attributable to filtering action of the weapon's heavy iron casing. Data taken using experimental proton-recoil proportional counters are compared with the high-resolution spectra.

  3. Transverse Beam Emittance Measurements of a 16 MeV Linac at the Idaho Accelerator Center

    SciTech Connect

    S. Setiniyaz, T.A. Forest, K. Chouffani, Y. Kim, A. Freyberger

    2012-07-01

    A beam emittance measurement of the 16 MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1 kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the measured transverse emittances for an arbitrary beam energy of 15 MeV.

  4. Positron annihilation in transparent ceramics

    NASA Astrophysics Data System (ADS)

    Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.

    2016-01-01

    Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.

  5. Positron scattering from vinyl acetate

    NASA Astrophysics Data System (ADS)

    Chiari, L.; Zecca, A.; Blanco, F.; García, G.; Brunger, M. J.

    2014-09-01

    Using a Beer-Lambert attenuation approach, we report measured total cross sections (TCSs) for positron scattering from vinyl acetate (C4H6O2) in the incident positron energy range 0.15-50 eV. In addition, we also report an independent atom model with screening corrected additivity rule computation results for the TCSs, differential and integral elastic cross sections, the positronium formation cross section and inelastic integral cross sections. The energy range of these calculations is 1-1000 eV. While there is a reasonable qualitative correspondence between measurement and calculation for the TCSs, in terms of the energy dependence of those cross sections, the theory was found to be a factor of ˜2 larger in magnitude at the lower energies, even after the measured data were corrected for the forward angle scattering effect.

  6. Three-dimensional electron-positron momentum distribution of O3+-irradiated 6H SiC using two positron spectroscopy techniques simultaneously

    NASA Astrophysics Data System (ADS)

    Williams, Christopher; Burggraf, Larry; Adamson, Paul; Petrosky, James

    2011-01-01

    A three-dimensional (3D) positron annihilation spectroscopy system (3DPASS) capable of determining 3D electron-positron (e--e+) momentum densities from measurements of deviations from co-linearity and energies of photons from e--e+ annihilation events was employed to examine the effects of O-atom defects in 6H SiC. Three-dimensional momentum datasets were determined for 6H SiC irradiated with 24 MeV O3+ ions. Angular correlation of annihilation radiation (ACAR) and coincidence Doppler-broadening of annihilation radiation (CDBAR) analyses are presented. In addition, a novel technique is illustrated for analyzing 3D momentum datasets in which the parallel momentum component, p|| (obtained from the CDBAR measurement) is selected for annihilation events that possess a particular perpendicular momentum component, p- observed in the 2D ACAR spectrum.

  7. Construction and commissioning of the positron accumulator ring for the APS

    SciTech Connect

    Borland, M.

    1994-12-31

    The injector for the Advanced Photon Source (APS) consists of a 200-MeV electron linac, a 450-MeV position linac, a positron accumulator ring (PAR). and a 7-GeV synchrotron. The purpose of the PAR is to accumulate, and damp positrons from the 60Hz linac during each cycle of the 2Hz synchrotron, thus increasing the fill rate for the main ring. Construction of the PAR was recently completed, and commissioning is well underway. The PAR contains eight conventional 1.5T, flat field, 45{degrees} dipole magnets with an {approximately} 1m bending radius and no gradient: adjustment of the damping partition was achieved with 25.5{degrees} edge angles. Four families of quadrupole magnets provide focusing, with each dipole closely bracketed by two quadrupoles. Ten sextupole magnets provide both steering and chromatic correction. Extensive magnetic measurements have characterized saturation-dependent effective length in the dipoles and interaction among the closely-spaced, large-aperture dipoles, quadrupoles and sextupoles. For injection and extraction, PAR employs three delay-line kickers with {approximately} 120ns rise and fall times, and a single transformer septum magnet with a 2mm septum wall. A first-harmonic rf system is used to capture positrons and a twelfth-harmonic system provides an additional three-fold bunch compression. Diagnostics include 16 stripline beam position monitors, six fluorescent screens, dual fast/integrating current transformers, a tune measurement system, and two synchrotron light ports. Commissioning of the PAR with electrons has proceeded rapidly, starting at 150MeV and progressing to 450MeV as higher energy electrons became available. Alignment and dipole uniformity are sufficiently good that beam can be stored without the use of steering magnets. Experiments to date show excellent agreement with the machine model. Accumulation at 6Hz and extraction at 2Hz has been performed with essentially 100% efficiency.

  8. Observations of gamma radiation between 0.4 MeV and 7 MeV at balloon altitudes using a Compton telescope

    NASA Astrophysics Data System (ADS)

    Lockwood, J. A.; Webber, W. R.; Friling, L. A.; Macri, J.; Hsieh, L.

    1981-09-01

    Balloon-borne measurements of the atmospheric and diffuse gamma-ray flux in the energy range 0.4-7.0 MeV with a Compton telescope, which included pulse-shape discrimination of the first scattering detector and a time-of-flight system between the first and second detector elements, are reported. Comparison of the diffuse cosmic gamma-ray flux to the atmospheric gamma rays indicates that 0.2-5.0 MeV is the optimum energy range for measurements made at the top of the earth's atmosphere. The measured total atmospheric gamma-ray flux between zero and 40 deg has an energy spectrum that agrees with the calculations of Ling (1975). Observations indicate that the ratio of the diffuse to atmospheric gamma ray fluxes at 3.5 g/sq cm is a maximum, about 1.0, between 0.7 and 3.0 MeV.

  9. Data acquisition with a positron emission tomograph

    SciTech Connect

    Freifelder, R.; Karp, J.S.

    1997-12-31

    Positron Emission Tomography (PET) is a clinical imaging modality used in Nuclear Medicine. PET measures functionality rather than anatomical features and is therefore invaluable in the treatment of diseases which are characterized by functional changes in organs rather than anatomical changes. Typical diseases for which PET is used are cancer, epilepsy, and heart disease. While the scanners are not very complex, the performance demands on the devices are high. Excellent spatial resolution, 4-5 mm, and high sensitivity are key to maintaining high image quality. Compensation or suppression of scattered radiation is also necessary for good image quality. The ability to acquire data under high counting rates is also necessary in order to minimize the injected dose to the patient, minimize the patient`s time in the scanner, and finally to minimize blurring due to patient motion. We have adapted various techniques in our data acquisition system which will be reported on in this talk. These include pulse clipping using lumped delay lines, flash ADCs with short sampling time, the use of a local positioning algorithm to limit the number of data words being used in subsequent second level software triggers and calculations, and finally the use of high speed dedicated calculator boards for on-line rebinning and reduction of the data. Modifications to the system to allow for transmission scanning will also be discussed.

  10. Resonance method to produce a polarisation asymmetry in electron-positron storage rings

    SciTech Connect

    Toner, W.T.

    1988-01-01

    Pulsed solenoids of a few tens of ampere turns, operated in synchronism with the ..gamma..(g-2/2) 'th harmonic of the orbit period, can be used to prevent a stored electron beam from becoming polarised through the emission of synchrotron radiation. With such low fields it is easy to arrange that only some of the stored bunches are affected. This makes it possible to produce collisions between counter-rotating electrons and positrons stored in a single ring in which the electron and positron polarisations are not equal and opposite. 8 refs.

  11. Nonplanar positron-acoustic Gardner solitary waves in electron-positron-ion plasmas with superthermal electrons and positrons

    SciTech Connect

    Uddin, M. J. Alam, M. S.; Mamun, A. A.

    2015-02-15

    Nonplanar (cylindrical and spherical) positron-acoustic (PA) Gardner solitary waves (SWs) in an unmagnetized plasma system consisting of immobile positive ions, mobile cold positrons, and superthermal (kappa distributed) hot positrons and electrons are investigated. The modified Gardner equation is derived by using the reductive perturbation technique. The effects of cylindrical and spherical geometries, superthermal parameter of hot positrons and electrons, relative temperature ratios, and relative number density ratios on the PA Gardner SWs are studied by using the numerical simulations. The implications of our results in various space and laboratory plasma environments are briefly discussed.

  12. Positron annihilation in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Guessoum, Nidhal; Ramaty, Reuven; Lingenfelter, Richard E.

    1991-01-01

    Positronium formation and annihilation are studied in a model for the interstellar medium consisting of cold cloud cores, warm partially ionized cloud envelopes, and hot intercloud gas. The gamma-ray spectra resulting from positron annihilation in these components of the interstellar medium are calculated. The spectra from the individual components are then combined, using two limiting assumptions for the propagation of the positrons, namely, that the positrons propagate freely throughout the interstellar medium, and that the positrons are excluded from the cold cloud cores. In the first case, the bulk of the positrons annihilate in the cloud cores and the annihilation line exhibits broad wings resulting from the annihilation of positronium formed by charge exchange in flight. In the second case, the positrons annihilate mainly in the warm envelopes, and the line wings are suppressed.

  13. Development of a transmission positron microscope

    NASA Astrophysics Data System (ADS)

    Matsuya, M.; Jinno, S.; Ootsuka, T.; Inoue, M.; Kurihara, T.; Doyama, M.; Inoue, M.; Fujinami, M.

    2011-07-01

    A practical transmission positron microscope (TPM) JEM-1011B has been developed to survey differences in the interaction of positron and electron beams with materials, and is installed in the Slow Positron Facility of High Energy Accelerator Research Organization (KEK). The TPM can share positron and electron beams, and can also be used as a transmission electron microscope (TEM). Positron transmission images up to magnification 10,000× (resolution: 50 nm) and positron diffraction patterns up to 044 family were successfully obtained by the TPM comparing them with those of electrons. The differences in material transmittances for both beams have been measured, and can be explained by the calculated results of the Monte Carlo simulation code PENELOPE-2008.

  14. Positron annihilation induced Auger electron spectroscopy

    NASA Technical Reports Server (NTRS)

    Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.

    1990-01-01

    Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.

  15. On-ground detection of an electron-positron annihilation line from thunderclouds.

    PubMed

    Umemoto, D; Tsuchiya, H; Enoto, T; Yamada, S; Yuasa, T; Kawaharada, M; Kitaguchi, T; Nakazawa, K; Kokubun, M; Kato, H; Okano, M; Tamagawa, T; Makishima, K

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ∼60 s. The spectrum of this prolonged emission reached ∼10 MeV, and contained a distinct line emission at 508±3(stat.)±5(sys.) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (∼80keV), and contained 520±50 photons which amounted to ∼10% of the total signal photons of 5340±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons. PMID:26986281

  16. On-ground detection of an electron-positron annihilation line from thunderclouds

    NASA Astrophysics Data System (ADS)

    Umemoto, D.; Tsuchiya, H.; Enoto, T.; Yamada, S.; Yuasa, T.; Kawaharada, M.; Kitaguchi, T.; Nakazawa, K.; Kokubun, M.; Kato, H.; Okano, M.; Tamagawa, T.; Makishima, K.

    2016-02-01

    Thunderclouds can produce bremsstrahlung gamma-ray emission, and sometimes even positrons. At 00:27:00 (UT) on 13 January 2012, an intense burst of gamma rays from a thundercloud was detected by the GROWTH experiment, located in Japan, facing the Sea of Japan. The event started with a sharp gamma-ray flash with a duration of <300 ms coincident with an intracloud discharge, followed by a decaying longer gamma-ray emission lasting for ˜60 s. The spectrum of this prolonged emission reached ˜10 MeV, and contained a distinct line emission at 508 ±3 (stat .)±5 (sys .) keV, to be identified with an electron-positron annihilation line. The line was narrow within the instrumental energy resolution (˜80 keV) , and contained 520 ±50 photons which amounted to ˜10 % of the total signal photons of 5340 ±190 detected over 0.1-10 MeV. As a result, the line equivalent width reached 280 ±40 keV, which implies a nontrivial result. The result suggests that a downward positron beam produced both the continuum and the line photons.

  17. Development of mass spectrometry by high energy focused heavy ion beam: MeV SIMS with 8 MeV Cl7+ beam

    NASA Astrophysics Data System (ADS)

    Jeromel, Luka; Siketić, Zdravko; Ogrinc Potočnik, Nina; Vavpetič, Primož; Rupnik, Zdravko; Bučar, Klemen; Pelicon, Primož

    2014-08-01

    Particle induced X-ray emission (PIXE) at microprobe of Jožef Stefan Institute is used to measure two-dimensional quantitative elemental maps of biological tissue. To improve chemical and biological understanding of the processes in vivo, supplementary information about chemical bonding and/or molecular distributions could be obtained by heavy-ion induced molecular desorption and a corresponding mass spectroscopy with Time-Of-Flight (TOF) mass spectrometer. As the method combines the use of heavy focused ions in MeV energy range and TOF Secondary Ion Mass Spectrometry, it is denoted as MeV SIMS. At Jožef Stefan Institute, we constructed a linear TOF spectrometer and mount it to our multipurpose nuclear microprobe. A beam of 8 MeV 35Cl7+ could be focused to a diameter of better than 3 μm × 3 μm and pulsed by electrostatic deflection at the high-energy side of accelerator. TOF mass spectrometer incorporates an 1 m long drift tube and a double stack microchannel plate (MCP) as a stop detector positioned at the end of the drift path. Secondary ions are focused at MCP using electrostatic cylindrical einzel lens. Time of flight spectra are currently acquired with a single-hit time-to-digital converter. Pulsed ion beam produces a shower of secondary ions that are ejected from positively biased target and accelerated towards MCP. We start our time measurement simultaneously with the start of the beam pulse. Signal of the first ion hitting MCP is used to stop the time measurement. Standard pulses proportional to the time of flight are produced with time to analog converter (TAC) and fed into analog-to-digital converter to obtain a time histogram. To enable efficient detection of desorbed fragments with higher molecular masses, which are of particular interest, we recently implemented a state-of art Field Programmable Gate Array (FPGA)-based multi-hit TOF acquisition. To test the system we used focused 8 MeV 35Cl7+ ion beam with pulse length of 180 ns. Mass resolution

  18. MeV negative ion generation from ultra-intense laser interaction with a water spray

    SciTech Connect

    Ter-Avetisyan, S.; Ramakrishna, B.; Borghesi, M.; Doria, D.; Zepf, M.; Sarri, G.; Ehrentraut, L.; Steinke, S.; Sandner, W.; Schnuerer, M.; Andreev, A.; Nickles, P. V.; Tikhonchuk, V.

    2011-08-01

    MeV negative oxygen ions are obtained from a water spray target irradiated by high intensity (5 x 10{sup 19} W/cm{sup 2}) and ultrashort (50 fs) laser pulses. Generation of negative ions is ascribed to electron-capture processes that the laser-accelerated high-energy positive ion experiences when it interacts with atoms in the spray. This mechanism implies the existence of a large number of MeV neutral oxygen atoms, which is consistent with indirect experimental evidence.

  19. Neutron-induced charged-particle emission studies below 100 MeV at WNR

    SciTech Connect

    Haight, R.C.; Lee, T.M.; Sterbenz, S.M.

    1994-07-01

    Charged-particles produced by neutron bombardment of selected targets with Z=5 through 53 have been studied for neutron energies from 1 MeV to about 100 MeV using the spallation neutron source at WNR/LAMPF. Particle detection with energy measurement and particle identification is accomplished by two-element {Delta}E-E counters, three-element {Delta}E{sub l}-{Delta}E{sub 2}-E counters or with pulse-shape discrimination using scintillators directly in the neutron beam. The experimental techniques for these measurements are described and comparisons made among the different approaches. This presentation introduces five papers contributed to this conference.

  20. Status and Perspectives for a Slow Positron Beam Facility at the HH--NIPNE Bucharest

    SciTech Connect

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-10

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi {sup 22}NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed--is tungsten as a foil of about 3 {mu}m prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube ({lambda}{sub K{alpha}} = 1.7903 A) - the angular regions studied were around 34 deg. (1 0 0) and 69 deg. (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made {sup 22}NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home-made biparametric system for CDBS measurements will be reported, also.

  1. Status and Perspectives for a Slow Positron Beam Facility at the HH-NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Straticiuc, Mihai; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed-is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)-the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  2. Status and Perspectives for a Slow Positron Beam Facility at the HH—NIPNE Bucharest

    NASA Astrophysics Data System (ADS)

    Constantin, Florin; Craciun, Liviu Stefan; Constantinescu, Olimpiu; Ghita, Ionica Alina; Ionescu, Cristina; Racolta, Petru Mihai; Straticiuc, Mihai; Vasilescu, Angela; Braic, Viorel; Zoita, Catalin; Kiss, Adrian; Bojin, Dionezie

    2009-03-01

    The development of a positron annihilation spectroscopy laboratory at the HH-NIPNE Bucharest-to be used for material studies and applications was started in the last 10 years. In the framework of a national research project extended over the last 3 years, was designed a low energy positron accelerator, as a high-vacuum dedicated beam line with two options: a 25 mCi 22NaCl source and in line with the NIPNE-cyclotron or a new intense compact cyclotron. The construction of the beam line was planned as a sequence of modules: source- moderator system; magnetical filter for fast positrons in order to select the positrons energies in the range 0.8-1 keV; a modular system for focusing, transport and acceleration of monoenergetic positrons in the energy range 0.8-50 keV and a CDBS analysis chamber. The moderator proposed—is tungsten as a foil of about 3 μm prepared at the Optoelectronics Institute were put into a thermal treatment vacuum chamber and bombarded with electrons from a 100 W electron gun After the treatment, they were tested for changes of elemental composition of the surface and structure at the Polytechnic University. The structure tests were performed on a DRON 3 M diffractometer, with a Co tube (λKα = 1.7903 A)—the angular regions studied were around 34° (1 0 0) and 69° (2 0 0). In the present time, the trajectories of the positron are going to be simulated with dedicated software (an ion and electron optics simulator). For the coincidence measurements (CDBS) set-up we used a home-made 22NaCl source, by separation without carrier from a metallic Mg target irradiated with 12 MeV protons and separated by columnar cation exchange. A home- made biparametric system for CDBS measurements will be reported, also.

  3. Quantum primary rainbows in transmission of positrons through very short carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ćosić, M.; Petrović, S.; Nešković, N.

    2016-04-01

    This paper is devoted to a quantum mechanical consideration of the transmission of positrons of a kinetic energy of 1 MeV through very short (11, 9) single-wall chiral carbon nanotubes. The nanotube lengths are between 50 and 320 nm. The transmission process is determined by the rainbow effects. The interaction potential of a positron and the nanotube is deduced from the Molire's interaction potential of the positron and a nanotube atom using the continuum approximation. We solve numerically the time-dependent Schrödinger equation, and calculate the spatial and angular distributions of transmitted positrons. The initial positron beam is assumed to be an ensemble of non-interacting Gaussian wave packets. We generate the spatial and angular distributions using the computer simulation method. The examination is focused on the spatial and angular primary rainbows. It begins with an analysis of the corresponding classical rainbows, and continues with a detailed investigation of the amplitudes and phases of the wave functions of transmitted positrons. These analyses enable one to identify the principal and supernumerary primary rainbows appearing in the spatial and angular distributions. They also result in a detailed explanation of the way of their generation, which includes the effects of wrinkling of each wave packet during its deflection from the nanotube wall, and of its concentration just before a virtual barrier lying close to the corresponding classical rainbow. The wrinkling of the wave packets occurs due to their internal focusing. In addition, the wave packets wrinkle in a mutually coordinated way. This explanation may induce new theoretical and experimental investigations of quantum rainbows occurring in various atomic collision processes.

  4. Development of high-voltage pulse-slicer unit with variable pulse duration for pulse radiolysis system

    NASA Astrophysics Data System (ADS)

    Upadhyay, J.; Sharma, M. L.; Navathe, C. P.; Toley, M. A.; Shinde, S. J.; Nadkarni, S. A.; Sarkar, S. K.

    2012-02-01

    A high-voltage pulse-slicer unit with variable pulse duration has been developed and integrated with a 7 MeV linear electron accelerator (LINAC) for pulse radiolysis investigation. The pulse-slicer unit provides switching voltage from 1 kV to 10 kV with rise time better than 5 ns. Two MOSFET based 10 kV switches were configured in differential mode to get variable duration pulses. The high-voltage pulse has been applied to the deflecting plates of the LINAC for slicing of electron beam of 2 μs duration. The duration of the electron beam has been varied from 30 ns to 2 μs with the optimized pulse amplitude of 7 kV to get corresponding radiation doses from 6 Gy to 167 Gy.

  5. High-energy electron, positron, ion and nuclear spectroscopy in ultra-intense laser-solid experiments on the petawatt

    SciTech Connect

    Brown, C; Christl, M; Cowan, T E; Fakahashi, Y; Fountain, W; Hatchett, S; Henry, E A; Hunt, A W; Johnson, J; Key, M; Kuehl, T; Moody, J; Moran, M; Patterson, W S; Pennington, D M; Perry, M D; Phillips, T C; Roth, M; Sefcik, J; Singh, M; Snavely, R; Syoyer, M; Wilks, S C; Young, P

    1999-09-16

    The LLNL Petawatt Laser has achieved focused intensities up to 6 x 20 W/cm{sup 2}, which has opened a new, higher energy regime of relativistic laser-plasma interactions in which the quiver energies of the target electrons exceed the energy thresholds for many nuclear phenomena. We will describe recent experiments in which we have observed electrons accelerated to 100 MeV, photo-nuclear fission, and positron-electron pair creation.

  6. Positron emission tomography and autoradiography

    SciTech Connect

    Mazziotta, J.; Schelbert, H.R.

    1985-01-01

    This a text on cerebral and myocardial imaging using positron emission tomography and autoradiography. Authorities in nuclear medicine and biophysics define the central principles of these complex and rapidly evolving imagine technologies-their theoretical foundations, the nature of the biochemical events being measured, the basis for constructing tracer kinetic models, the criteria governing radiopharmaceutical design, and the rationale for PET in the clinical setting. After reviewing the characteristics of cerebral and myocardial hemodynamics, transport, and metabolism, the contributors detail the theory of PET and autoradiography, the instrumentation required, and the procedures involved.

  7. Positron scattering and annihilation in hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Green, D. G.; Gribakin, G. F.

    2013-09-01

    Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation γ spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46ℓ)/Zi, where Zi is the net charge of the ion and ℓ is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.

  8. Low energy positron interactions with biological molecules

    NASA Astrophysics Data System (ADS)

    Wanniarachchi, Indika L.

    Calculations of the positron density distribution which can be used for positrons bound to midsize and larger molecules have been tested for smaller molecules and subsequently applied to investigate the most likely e +e-- annihilation sites for positrons interacting with biological molecules containing C, H, O, and N. In order to allow consideration of positrons bound to extended molecules with regions of different character and no particular symmetry, atom-centered positron basis sets of Gaussian-type functions were developed for positrons bound to molecules containing O, N, C, H, Li, Na, and Be. Testing shows that there is no need to scale the positron basis functions to take into account different effective charges on the atoms in different molecules. Even at the HF level of theory the calculated positron and the contact density of e+LiH system is in qualitative agreement with the most accurate calculation was done in ECG method. Also it has been found that for larger biological molecules such as derivation of formaldehyde can leave out positron basis sets centered on H atoms and still get qualitatively acceptable contact density distribution. According to our results, the electronic and positronic wavefunctions have the most overlap in the regions of most negative electrostatic potential in the parent molecule, and we can expect that a positron bound to the molecule will be more likely to annihilate with one of the electrons in these regions. Also we find that the highest energy occupied electronic orbital often does not make the largest contribution to e+e -- annihilation, and that the energy liberated by subsequent electronic relaxation is sufficient to break the backbone in several places in di-peptides and other organic molecules.

  9. Pulsed high-power beams

    SciTech Connect

    Reginato, L.L.; Birx, D.L.

    1988-06-01

    The marriage of induction linac technology with nonlinear magnetic modulators has produced some unique capabilities. It is now possible to produce short-pulse electron beams with average currents measured in amperes, at gradients approaching 1-MeV/m, and with power efficiencies exceeding 50%. A 70-Mev, 3-kA induction accelerator (ETA II) constructed at the Lawrence Livermore National Laboratory incorporates the pulse technology concepts that have evolved over the past several years. The ETA II is a linear induction accelerator and provides a test facility for demonstration of the high-average-power components and high-brightness sources used in such accelerators. The pulse drive for the accelerator is based on state-of-the-art magnetic pulse compressors with very high peak-power capability, repetition rates exceeding 1 kHz, and excellent reliability. 6 figs.

  10. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  11. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Sbarbati, Andrea; Boschi, Federico

    2010-01-01

    In this paper, we showed that Cerenkov radiation (CR) escaping from the surface of small living animals injected with 18F-FDG can be detected with optical imaging techniques. 18F decays by emitting positrons with a maximum energy of 0.635 MeV; such positrons, when travelling into tissues faster than the speed of light in the same medium, are responsible of CR emission. A detailed model of the CR spectrum considering the positron energy spectrum was developed in order to quantify the amount of light emission. The results presented in this work were obtained using a commercial optical imager equipped with charged coupled detectors (CCD). Our data open the door to optical imaging (OI) in vivo of the glucose metabolism, at least in pre-clinical research. We found that the heart and bladder can be clearly identified in the animal body reflecting the accumulation of the 18F-FDG. Moreover, we describe two different methods based on the spectral analysis of the CR that can be used to estimate the depth of the source inside the animal. We conclude that 18F-FDG can be employed as it is as a bimodal tracer for positron emission tomography (PET) and OI techniques. Our results are encouraging, suggesting that it could be possible to apply the proposed approach not only to β+ but also to pure β- emitters.

  12. Energy distribution of fast electrons accelerated by high intensity laser pulse depending on laser pulse duration

    NASA Astrophysics Data System (ADS)

    Kojima, Sadaoki; Arikawa, Yasunobu; Morace, Alessio; Hata, Masayasu; Nagatomo, Hideo; Ozaki, Tetsuo; Sakata, Shohei; Lee, Seung Ho; Matsuo, Kazuki; Farley Law, King Fai; Tosaki, Shota; Yogo, Akifumi; Johzaki, Tomoyuki; Sunahara, Atsushi; Sakagami, Hitoshi; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi

    2016-05-01

    The dependence of high-energy electron generation on the pulse duration of a high intensity LFEX laser was experimentally investigated. The LFEX laser (λ = 1.054 and intensity = 2.5 – 3 x 1018 W/cm2) pulses were focused on a 1 mm3 gold cubic block after reducing the intensities of the foot pulse and pedestal by using a plasma mirror. The full width at half maximum (FWHM) duration of the intense laser pulse could be set to either 1.2 ps or 4 ps by temporally stacking four beams of the LFEX laser, for which the slope temperature of the high-energy electron distribution was 0.7 MeV and 1.4 MeV, respectively. The slope temperature increment cannot be explained without considering pulse duration effects on fast electron generation.

  13. Nondestructive examination using neutron activated positron annihilation

    DOEpatents

    Akers, Douglas W.; Denison, Arthur B.

    2001-01-01

    A method is provided for performing nondestructive examination of a metal specimen using neutron activated positron annihilation wherein the positron emitter source is formed within the metal specimen. The method permits in situ nondestructive examination and has the advantage of being capable of performing bulk analysis to determine embrittlement, fatigue and dislocation within a metal specimen.

  14. Ionisation of atomic hydrogen by positron impact

    NASA Technical Reports Server (NTRS)

    Spicher, Gottfried; Olsson, Bjorn; Raith, Wilhelm; Sinapius, Guenther; Sperber, Wolfgang

    1990-01-01

    With the crossed beam apparatus the relative impact-ionization cross section of atomic hydrogen by positron impact was measured. A layout of the scattering region is given. The first measurements on the ionization of atomic hydrogen by positron impact are also given.

  15. Positron collisions with alkali-metal atoms

    NASA Technical Reports Server (NTRS)

    Gien, T. T.

    1990-01-01

    The total cross sections for positron and electron collisions with potassium, sodium, lithium and rubidium are calculated, employing the modified Glauber approximation. The Modified Glauber cross sections for positron collision with potassium and sodium at low intermediate energies are found to agree reasonably well with existing experimental data.

  16. Gas Permeations Studied by Positron Annihilation

    NASA Astrophysics Data System (ADS)

    Yuan, Jen-Pwu; Cao, Huimin; Jean, X.; Yang, Y. C.

    1997-03-01

    The hole volumes and fractions of PC and PET polymers are measured by positron annihilation lifetime spectroscopy. Direct correlations between the measured hole properties and gas permeabilities are observed. Applications of positron annihilation spectroscopy to study gas transport and separation of polymeric materials will be discussed.

  17. Positron Emission Mammotomography with Dual Planar Detectors

    SciTech Connect

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  18. On the method of positron lifetime measurement

    NASA Technical Reports Server (NTRS)

    Nishiyama, F.; Shizuma, K.; Nasai, H.; Nishi, M.

    1983-01-01

    A fast-slow coincidence system was constructed for the measurement of positron lifetimes in material. The time resolution of this system was 270 ps for the (60)Co gamma rays. Positron lifetime spectra for 14 kinds of alkali halides were measured with this system. Two lifetime components and their intensities were derived from analyses of the lifetime spectra.

  19. Electron and Positron Stopping Powers of Materials

    National Institute of Standards and Technology Data Gateway

    SRD 7 NIST Electron and Positron Stopping Powers of Materials (PC database for purchase)   The EPSTAR database provides rapid calculations of stopping powers (collisional, radiative, and total), CSDA ranges, radiation yields and density effect corrections for incident electrons or positrons with kinetic energies from 1 keV to 10 GeV, and for any chemically defined target material.

  20. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  1. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  2. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  3. 21 CFR 892.1110 - Positron camera.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Positron camera. 892.1110 Section 892.1110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1110 Positron camera. (a) Identification. A...

  4. Transient ions in electron and positron scattering

    NASA Astrophysics Data System (ADS)

    d'A Sanchez, Sergio; de Oliveira, Eliane M.; dos Santos, Josué S.; da Costa, Romarly F.; Bettega, Márcio H. F.; Lima, Marco A. P.; Varella, Márcio T. do N.

    2009-11-01

    We report on recent advances in studies of transient ions formed in electron and positron scattering by molecules. We briefly discuss elastic electron collisions against pyrrole and glycine, as well as electron affinities of glycine-water clusters. Positron scattering and annihilation on small molecules is also discussed.

  5. Applications of slow positrons to cancer research: Search for selectivity of positron annihilation to skin cancer

    NASA Astrophysics Data System (ADS)

    Jean, Y. C.; Li, Ying; Liu, Gaung; Chen, Hongmin; Zhang, Junjie; Gadzia, Joseph E.

    2006-02-01

    Slow positrons and positron annihilation spectroscopy (PAS) have been applied to medical research in searching for positron annihilation selectivity to cancer cells. We report the results of positron lifetime and Doppler broadening energy spectroscopies in human skin samples with and without cancer as a function of positron incident energy (up to 8 μm depth) and found that the positronium annihilates at a significantly lower rate and forms at a lower probability in the samples having either basal cell carcinoma (BCC) or squamous cell carcinoma (SCC) than in the normal skin. The significant selectivity of positron annihilation to skin cancer may open a new research area of developing positron annihilation spectroscopy as a novel medical tool to detect cancer formation externally and non-invasively at the early stages.

  6. Gaseous Positronics - Positron interactions with atoms and molecules and their applications

    NASA Astrophysics Data System (ADS)

    Buckman, Stephen

    2011-05-01

    The advent of new technologies for accumulating, trapping and cooling positrons has led to a range of new experimental measurements of low energy positron interactions, and also prompted new, state-of-the-art theoretical advances in describing such interactions. This talk will present some of the recent experimental highlights of our program including the observation of threshold Wigner cusps, a search for quasi-bound positronic complexes or ``resonances,'' and measurements of positron interactions with biologically relevant molecules. The latter are an important precursor to the development of models of positron transport in soft matter and, ultimately, a positron dosimetry for techniques such as Positron Emission Tomography. Supported by the Australian Research Council's Centre of Excellence Program.

  7. Positron acoustic shock waves in four-component plasmas with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Mamun, A. A.; Alam, M. S.

    2014-06-01

    Positron acoustic shock waves (PASWs) in an unmagnetized four-component plasma system consisting of a cold mobile viscous positron fluid, hot positrons and electrons following the nonthermal distributions of Cairns et al. [Geophys. Res. Lett. 22, 2709 (1995)], and immobile positive ions are studied both analytically and numerically. The well-known reductive perturbation method is used to derive the Burgers equation. The basic features of the PASWs are significantly modified by the effects of the kinematic viscosity, the nonthermal electrons and hot positrons, the ratio of the electron temperature to the hot positron temperature σ, and the ratio of the hot positron (electron) number density to the cold positron number density μ 1 ( μ 2). The importance of our results to various astrophysical and laboratory plasmas are concisely discussed.

  8. Beam dynamic simulation and optimization of the CLIC positron source and the capture linac

    NASA Astrophysics Data System (ADS)

    Bayar, C.; Doebert, S.; Ciftci, A. K.

    2016-03-01

    The CLIC Positron Source is based on the hybrid target composed of a crystal and an amorphous target. Simulations have been performed from the exit of the amorphous target to the end of pre-injector linac which captures and accelerates the positrons to an energy of 200 MeV. Simulations are performed by the particle tracking code PARMELA. The magnetic field of the AMD is represented in PARMELA by simple coils. Two modes are applied in this study. The first one is accelerating mode based on acceleration after the AMD. The second one is decelerating mode based on deceleration in the first accelerating structure. It is shown that the decelerating mode gives a higher yield for the e+ beam in the end of the Pre-Injector Linac.

  9. Positron annihilation study of Fe-ion irradiated reactor pressure vessel model alloys

    NASA Astrophysics Data System (ADS)

    Chen, L.; Li, Z. C.; Schut, H.; Sekimura, N.

    2016-01-01

    The degradation of reactor pressure vessel steels under irradiation, which results from the hardening and embrittlement caused by a high number density of nanometer scale damage, is of increasingly crucial concern for safe nuclear power plant operation and possible reactor lifetime prolongation. In this paper, the radiation damage in model alloys with increasing chemical complexity (Fe, Fe-Cu, Fe-Cu-Si, Fe-Cu-Ni and Fe-Cu-Ni-Mn) has been studied by Positron Annihilation Doppler Broadening spectroscopy after 1.5 MeV Fe-ion implantation at room temperature or high temperature (290 oC). It is found that the room temperature irradiation generally leads to the formation of vacancy-type defects in the Fe matrix. The high temperature irradiation exhibits an additional annealing effect for the radiation damage. Besides the Cu-rich clusters observed by the positron probe, the results show formation of vacancy-Mn complexes for implantation at low temperatures.

  10. Positronic complexes with unnatural parity

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.; Varga, K.

    2007-06-15

    The structure of the unnatural parity states of PsH, LiPs, NaPs, and KPs are investigated with the configuration interaction and stochastic variational methods. The binding energies (in hartree) are found to be 8.17x10{sup -4}, 4.42x10{sup -4}, 15.14x10{sup -4}, and 21.80x10{sup -4}, respectively. These states are constructed by first coupling the two electrons into a configuration which is predominantly {sup 3}P{sup e}, and then adding a p-wave positron. All the active particles are in states in which the relative angular momentum between any pair of particles is at least L=1. The LiPs state is Borromean since there are no three-body bound subsystems (of the correct symmetry) of the (Li{sup +}, e{sup -}, e{sup -}, e{sup +}) particles that make up the system. The dominant decay mode of these states will be radiative decay into a configuration that autoionizes or undergoes positron annihilation.

  11. Detectors for energies less than 10 MeV

    NASA Technical Reports Server (NTRS)

    1981-01-01

    In the energy domain 100 keV to 10 MeV, both crystal scintillations and semiconductors are widely used for gamma ray detectors in spectrometer systems. These detectors' operation depend on the fact that gamma rays lose energy by ionization in these materials and electrons and holes are produced. In the case of semiconductors, these electrons and holes are collected by an electric field, and they provide an electric signal that is a direct measure of the energy lost by the gamma ray in the material. Scintillation detectors depend on a further conversion of the energy lost in electron hole pair production to the production of photons. A photomultiplier tube measures the intensity of the photon flux, and an electrical pulse proportional to the photon intensity is produced at the photomultiplier output.

  12. Pressure anisotropy effects on nonlinear electrostatic excitations in magnetized electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Adnan, Muhammad; Williams, Gina; Qamar, Anisa; Mahmood, Shahzad; Kourakis, Ioannis

    2014-09-01

    The propagation of linear and nonlinear electrostatic waves is investigated in a magnetized anisotropic electron-positron-ion (e-p-i) plasma with superthermal electrons and positrons. A two-dimensional plasma geometry is assumed. The ions are assumed to be warm and anisotropic due to an external magnetic field. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low (CGL) theory. In the linear regime, two normal modes are predicted, whose characteristics are investigated parametrically, focusing on the effect of superthermality of electrons and positrons, ion pressure anisotropy, positron concentration and magnetic field strength. A Zakharov-Kuznetsov (ZK) type equation is derived for the electrostatic potential (disturbance) via a reductive perturbation method. The parametric role of superthermality, positron content, ion pressure anisotropy and magnetic field strength on the characteristics of solitary wave structures is investigated. Following Allen and Rowlands [J. Plasma Phys. 53, 63 (1995)], we have shown that the pulse soliton solution of the ZK equation is unstable to oblique perturbations, and have analytically traced the dependence of the instability growth rate on superthermality and ion pressure anisotropy.

  13. X-ray FEL with a meV bandwidth

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Shvyd'ko, Yu. V.; Yurkov, M. V.

    2001-12-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL was proposed by Feldhaus et al. (Opt. Commun. 140 (1997) 341) and named "two-stage SASE FEL". The scheme consists of two undulators and an X-ray monochromator located between them. For the Angström wavelength range the monochromator can be realized using Bragg reflections from crystals. We propose a scheme of monochromator with a bandwidth of 20 meV for the 14.4 keV X-ray SASE FEL being developed in the framework of the TESLA linear collider project. The spectral bandwidth of the radiation from the two-stage SASE FEL (20 meV) is determined by the finite duration of the electron pulse. The shot-to-shot fluctuations of energy spectral density are dramatically reduced in comparison with the 100% fluctuations in a SASE FEL. The peak and average brilliance are three orders of magnitude higher than the values which could be reached by a conventional X-ray SASE FEL.

  14. Upgrading the Linac 400 MeV Switchyard

    SciTech Connect

    Charles M Ankenbrandt et al.

    2004-06-09

    This note describes changes in the 400 MeV beam transfer system from the Linac to improve the quality of the beam delivered to the Booster and to add the capability to direct beam to the MuCool Test Area (MTA). The new configuration has two pairs of pulsed dipole magnets on each side of the 400 MeV electrostatic Chopper. The smaller pair deflects vertically to replace the kick of the Chopper to send the beam to the Booster while the larger pair deflects horizontally to transfer the beam to the MTA. In this new scheme, the Chopper is uncharged while the beam is injected into the Booster such that the injection position does not rely on Chopper power supply regulation as it does now. A feature of the proposed upgrade is that no changes in the lattice functions are required in the lines to the Booster or to the Dump; once the four new magnets are installed, the switch between the old and new operating modes can be done from upstairs. The transfer to the MTA is already described in a previous note.

  15. Pohang Neutron Facility Based on 100 Mev Electron Linac

    NASA Astrophysics Data System (ADS)

    Kim, G. N.; Ahmed, H.; Machrafi, R.; Son, D.; Lee, Y. S.; Skoy, V.; Kang, H. S.; Cho, M. H.; Ko, I. S.; Namkung, W.

    2003-06-01

    Pohang Neutron Facility (PNF) is a pulsed neutron facility based on the 100-MeV electron linear accelerator. It was constructed for nuclear data production in Korea, and it consists of an electron linear accelerator, a water-cooled Ta target with a water moderator and a time-of-flight path with an 11 m length. The 100-MeV electron linac uses a thermionic RF-gun, an alpha magnet, four quadrupole magnets, two SLAC-type accelerating sections, a quadrupole triplet, and a beam-analyzing magnet. It has been equipped with a new four-position sample changer controlled remotely by a CAMAC data acquisition system, which allows the simultaneous accumulation of the neutron time-of-flight spectra from 4 different samples. The neutron total cross sections of natural In and Cu have been measured in the neutron energy range from 0.1 eV to 100 eV by the neutron time-of-flight method.

  16. Experimental demonstration of high quality MeV ultrafast electron diffraction.

    PubMed

    Li, Renkai; Tang, Chuanxiang; Du, Yingchao; Huang, Wenhui; Du, Qiang; Shi, Jiaru; Yan, Lixin; Wang, Xijie

    2009-08-01

    The simulation optimization and an experimental demonstration of improved performances of mega-electron-volt ultrafast electron diffraction (MeV UED) are reported in this paper. Using ultrashort high quality electron pulses from an S-band photocathode rf gun and a polycrystalline aluminum foil as the sample, we experimentally demonstrated an improved spatial resolution of MeV UED, in which the Debye-Scherrer rings of the (111) and (200) planes were clearly resolved. This result showed that MeV UED is capable to achieve an atomic level spatial resolution and a approximately 100 fs temporal resolution simultaneously, and will be a unique tool for ultrafast structural dynamics studies. PMID:19725647

  17. Gamma-induced positron annihilation spectroscopy and application to radiation-damaged alloys

    NASA Astrophysics Data System (ADS)

    Wells, D. P.; Hunt, A. W.; Tchelidze, L.; Kumar, J.; Smith, K.; Thompson, S.; Selim, F.; Williams, J.; Harmon, J. F.; Maloy, S.; Roy, A.

    2006-06-01

    .P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262]. These gamma-ray photons are then either measured with a high-resolution germanium detector (PAES) or fast scintillators (PALS) and subsequently analyzed using standard positron data analysis methods. The high penetrability of few MeV photons allows one to study defects and characterize materials in thick samples up to hundreds of g/cm2 (approximately a meter in steel), a thickness that is completely inaccessible by any other non-destructive technique. We have demonstrated the proof-of-principle of these techniques to probe tensile strain in thick steel alloys and other metals, to measure positron lifetimes in bulk samples of lead, copper and aluminium with positron lifetime spectra that are free of the surface and source background lifetimes that complicate conventional positron lifetime measurements, and demonstrated the activation technique for damage studies of copper and single-crystal iron [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 192 (2002) 197, F.A. Selim, D.P. Wells, et al., Nucl. Instru. Meth. A 495 (2002) 154, F.A. Selim, et al., J. Rad. Phys. Chem. 68 (2004) 427]. We have also demonstrated the potential application of these techniques to 3-D imaging of defect density in thick structural materials [F.A. Selim, D.P. Wells, et al., Nucl. Instr. and Meth. B 241 (2005) 253, A.W. Hunt, D.P. Wells, et al., Nucl. Instr. and Meth. B. 241 (2005) 262].

  18. Pulse Oximetry

    MedlinePlus

    ... www.thoracic.org amount of gases (oxygen and carbon dioxide) that are in your blood. To get an ... Also, a pulse oximeter does not measure your carbon dioxide level. How accurate is the pulse oximeter? The ...

  19. Feasibility and conceptual design of a C.W. positron source at CEBAF

    SciTech Connect

    Golge, Serkan

    2010-08-01

    A feasibility study of a CW positron source for the 12 GeV upgrade at Jefferson Lab (JLAB) is provided. The proposed ≥ 100 nA Continuous Wave (CW) positron source at JLAB has several unique and challenging characteristics: high current incident electron beam at 126 MeV with a high beam power (up to a MW); CW e- beam and CW e+ production. The multiple scattering is a dominant process when creating e+ in a target, which results a large phase space area of the emitted positrons. An admittance study was done at CEBAF to find the maximum phase space area, which is tolerated in the machine. The measured geometrical transverse admittance (A) were Ax =10 and Ay = 5 mm∙mrad at the injector. Energy spread measurement was also done at the ARC1. The fractional spread limit in the ARC1 was measured as δ = 3×10-3 at 653 MeV. By using the optimized results and the CEBAF parameters, three positron injector configurations are proposed; Combined Function Magnet, Two-Dipole and Microtron Dipole configurations. With the assumptions made, by using 126 MeV Ⓧ10 mA e- beam impinging on a 2 mm W target with a 100 μm spot size, we can get up to 3 μA useful e+ current at the North Linac connection. One of the biggest challenges is the target design, which the deposited power is about 60 kW. ILC designs project power deposition up to 13 kW, which would allow the creation of a e+ beam of up to 650 nA otherwise. The results of analytic and monte carlo simulations of the positron production, capture and acceleration are presented. For the target design, a review is presented of solutions for the high power production target. Portions of this dissertation work have been published in two conference proceedings.

  20. Observation of double electron-positron pair production by {gamma} rays reexamined

    SciTech Connect

    Maidana, N. L.; Oliveira, J. R. B.; Rizzutto, M. A.; Added, N.; Vanin, V. R.; Brualla, L.; Fernandez-Varea, J. M.

    2009-04-15

    An experiment was conducted to observe triple- and quadruple-escape peaks, at a photon energy equal to 6.128 MeV, in the spectra recorded with a high-purity Ge detector working in coincidence with six bismuth germanate detectors. The peak intensities may be explained having recourse to only the bremsstrahlung cascade process of consecutive electron-positron pair creation; i.e., the contribution of simultaneous double pair formation (and other cascade effects) is much smaller. The experimental peak areas are in reasonably good agreement with those predicted by Monte Carlo simulations done with the general-purpose radiation-transport code PENELOPE.

  1. Positron deposition in plasmas by positronium beam ionization and transport of positrons in tokamak plasmas

    SciTech Connect

    Murphy, T.J.

    1986-11-01

    In a recently proposed positron transport experiment, positrons would be deposited in a fusion plasma by forming a positronium (Ps) beam and passing it through the plasma. Positrons would be deposited as the beam is ionized by plasma ions and electrons. Radial transport of the positrons to the limiter could then be measured by detecting the gamma radiation produced by annihilation of positrons with electrons in the limiter. This would allow measurements of the transport of electron-mass particles and might shed some light on the mechanisms of electron transport in fusion plasmas. In this paper, the deposition and transport of positrons in a tokamak are simulated and the annihilation signal determined for several transport models. Calculations of the expected signals are necessary for the optimal design of a positron transport experiment. There are several mechanisms for the loss of positrons besides transport to the limiter. Annihilation with plasma electrons and reformation of positronium in positron-hydrogen collisions are two such processes. These processes can alter the signal and place restrictions ons on the plasma conditions in which positron transport experiments can be effectively performed.

  2. Dynamic Positron Emission Tomography [PET] in Man Using Small Bismuth Germanate Crystals

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.; Huesman, R. H.; Cahoon, J. L.

    1982-04-01

    Primary considerations for the design of positron emission tomographs for medical studies in humans are the need for high imaging sensitivity, whole organ coverage, good spatial resolution, high maximum data rates, adequate spatial sampling with minimum mechanical motion, shielding against out of plane activity, pulse height discrimination against scattered photons, and timing discrimination against accidental coincidences. We discuss the choice of detectors, sampling motion, shielding, and electronics to meet these objectives.

  3. Progress Towards a Laser Produced Relativistic Electron-Positron Pair Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Bonlie, J.; Cauble, R.; Fiuza, F.; Goldstein, W.; Hazi, A.; Keane, C.; Link, A.; Marley, E.; Nagel, S. R.; Park, J.; Shepherd, R.; Williams, G. J.; Meyerhofer, D. D.; Fiksel, G.; Barnak, D.; Chang, P. Y.; Nakai, M.; Arikawa, Y.; Azechi, H.; Fujioka, S.; Kojima, S.; Miyanaga, N.; Morita, T.; Nagai, T.; Nishimura, H.; Ozaki, T.; Sakawa, Y.; Takabe, H.; Zhang, Z.; Kerr, S.; Fedosejevs, R.; Sentoku, Y.; Hill, M. P.; Hoarty, D. J.; Hobbs, L. M. R.; James, S. F.

    2016-03-01

    A set of experiments has been performed exploring unique characteristics of pair jets and plasmas at several energetic short-pulse laser facilities including Titan at Livermore and OMEGA EP in Rochester, as well as the Osaka LFEX and AWE Orion lasers. New results are summarized, including positron beam emittance, scaling of pair production vs. laser energy, and initial results on the pair jet collimation using electromagnetic fields.

  4. {open_quotes}Heavy light bullets{close_quotes} in electron-positron plasma

    SciTech Connect

    Berezhiani, V.I.; Mahajan, S.M.

    1995-03-01

    The nonlinear propagation of circularly polarized electromagnetic waves with relativistically strong amplitudes in an unmagnetized hot electron-positron plasma with a small fraction of ions is investigated. The possibility of finding localized solutions in such a plasma is explored. It is shown that these plasmas support the propagation of {open_quotes}heavy light bullets{close_quotes}; nondiffracting and nondispersive electromagnetic (EM) pulses with large density bunching.

  5. Positron emission tomography: An overview

    PubMed Central

    Shukla, A. K.; Kumar, Utham

    2006-01-01

    The rate of glucose utilization in tumor cells is significantly enhanced as compared to normal cells and this biochemical characteristic is utilized in PET imaging using FDG as a major workhorse. The PET systems as well as cyclotrons producing positron emitting radiopharmaceuticals have undergone continuous technological refinements. While PET (CT) systems enable fusion images as well as precise attenuation correction, the self-shielded cyclotrons developed provide dedicated systems for in-house production of a large number of PET radiopharmaceuticals. The application of PET images in oncology includes those of pulmonary, colorectal, breast, lymphoma, head & neck, bone, ovarian and GI cancers. The PET has been recognized as promising diagnostic tool to predict biological and physiological changes at the molecular level and hence offer a potential area for future applications including Stem Cell research. PMID:21206635

  6. Positron emission tomography wrist detector

    DOEpatents

    Schlyer, David J.; O'Connor, Paul; Woody, Craig; Junnarkar, Sachin Shrirang; Radeka, Veljko; Vaska, Paul; Pratte, Jean-Francois

    2006-08-15

    A method of serially transferring annihilation information in a compact positron emission tomography (PET) scanner includes generating a time signal representing a time-of-occurrence of an annihilation event, generating an address signal representing a channel detecting the annihilation event, and generating a channel signal including the time and address signals. The method also includes generating a composite signal including the channel signal and another similarly generated channel signal concerning another annihilation event. An apparatus that serially transfers annihilation information includes a time signal generator, address signal generator, channel signal generator, and composite signal generator. The time signal is asynchronous and the address signal is synchronous to a clock signal. A PET scanner includes a scintillation array, detection array, front-end array, and a serial encoder. The serial encoders include the time signal generator, address signal generator, channel signal generator, and composite signal generator.

  7. Design study of a 9 MeV compact cyclotron system for PET

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-No; Shin, Seung-Wook; Song, Hoseung; Kim, Hyun-Wook; Chai, Jong-Seo

    2013-06-01

    A cyclotron is an accelerator which can be applied to both cancer diagnosis and treatment. Among commercially sold cyclotrons, the major energy is used for positron emission tomography (PET) ranges from 10 to 20 MeV. In this research, 9 MeV compact cyclotron for PET was designed. The research was conducted on the response cross section and the yield for the energy distribution to decide the design features. Also, it was determined the specifications on the basis of the fluoro-deoxy-glucose (FDG) maximum dose. The machine, which has a 20 uA beam current, is designed to be installed in small-to-medium-sized hospitals in local cities because of its relatively light weight (6 tons). This compact cyclotron, which provides 9-MeV proton beams, is composed of a azimuthally varying field (AVF) electromagnet, 83-MHz RF systems with a 20 kW amplifier, a panning ion gauge (PIG) type ion-source for negative hydrogen, and a double-stage high-vacuum system. The basic model design was done by using 3-D CAD program, CATIA and all the field calculations were performed using commercial electromagnetic field analysis code, OPERA-3D TOSCA. From this research, we expect a time reduction for FDG production, a decrease of radioactive exposure for workers, and an equipment cost reduction.

  8. High energy electrons, positrons and photonuclear reactions in petawatt laser-solid experiments

    SciTech Connect

    Cowan, T E; Hunt, A W; Johnson, J; Perry, M D; Fountain, W; Hatchett, S; Key, M H; Kuehl, T; Parnell, T; Pennington, D M; Phillips, T W; Roth, M; Takahashi, Y; Wilks, S C

    1999-09-09

    The Petawatt laser at LLNL has opened a new regime of high-energy laser-matter interactions in which the quiver motion of plasma electrons is fully relativistic with energies extending well above the threshold for nuclear processes. We have observed that, in addition to the large flux of several MeV electrons ponderomotively expelled from the ultra-intense laser focus, there is a high energy component of electrons extending to -100 MeV, apparently from relativistic self-focusing and plasma acceleration in the underdense pre-formed plasma. The generation of hard bremsstrahlung cascade as these electrons traverse the solid target material, and the resulting photo-nuclear reactions, nuclear fission, and positron-electron pair production are described.

  9. Super-ACO: Results on a positron low emittance ring (invited)

    NASA Astrophysics Data System (ADS)

    Besson, J. C.; Certain, P.; Dael, A.; Damany, A.; Juan, P.; Labeque, A.; Level, M. P.; Marin, P. C.; Michaut, J.; Monet-Descombey, C.; Nghiem, P.; Sommer, M.; Souchet, R.; Zyngier, H.

    1989-07-01

    The dedicated VUV radiation source Super-ACO is part of the Orsay synchrotron radiation complex. The construction of this 800-MeV positron storage ring was started in 1982, and the first beam was stored on March 18, 1987. Super-ACO is expected to accommodate up to six undulators. The first, a 3.2-m-long optical klystron has already been operated between 500 and 800 MeV. A 1.3-m-long undulator has been recently installed. The experience gained during the three periods of operation is presented. From March to October 1987 measurements were taken of the machine properties in the low emittance regime, as well as performances in single and multibunch operation. In March 1988 the optical klystron was tested together with the commissioning of two beamlines out of a bending magnet. Starting from May 1988 two undulators and six beamlines progressively operated.

  10. Scintillators for positron emission tomography

    SciTech Connect

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ``ultimate`` scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length ({le} 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times {le} 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so {le}5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ``fully-3D`` cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm.

  11. The Boeing 120 MeV RF linac for FEL research

    SciTech Connect

    Adamski, J.L.; Gallagher, W.J.; Kennedy, R.C.; Robinson, B.; Shoffstall, D.R.; Tyson, E.L.; Vetter, A.M.; Yeremian, A.D.

    1985-10-01

    A new electron linac for high power, visible wavelength, free electron laser research is under construction at the Boeing Radiation Laboratory in Seattle. The linac is a five section, traveling wave, L band structure with a specialized ''comb'' pulse format of widely separated high charge micropulses. The paper describes the accelerator design and prototyping of key components of the linac. These include a double subharmonic injector and a long pulse phase and amplitude stabilized RF source which have been tested on Boeing's 20 MeV S band linac.

  12. High-resolution positron Q-value measurements and nuclear-structure studies far from the stability line. Progress report

    SciTech Connect

    Avignone, F.T. III.

    1981-02-28

    Extensive data analysis and theoretical analysis has been done to complete the extensive decay scheme investigation of /sup 206/ /sup 208/Fr and the level structures of /sup 206/ /sup 208/Rn. A final version of a journal article is presented in preprint form. Extensive Monte Carlo calculations have been made to correct the end point energies of positron spectra taken with intrinsic Ge detectors for annihilation radiation interferences. These calculations were tested using the decay of /sup 82/Sr which has previously measured positron branches. This technique was applied to the positron spectra collected at the on-line UNISOR isotope separator. The reactions used were /sup 60/Ni(/sup 20/Ne;p2n)/sup 77/Rb and /sup 60/Ni(/sup 20/Ne;pn)/sup 78/Rb. Values for 5, ..gamma..-..beta../sup +/ coincidence positron end point energies are given for the decay of /sup 77/Rb. The implied Q-value is 5.075 +- 0.010 MeV. A complete paper on the calculated corrections is presented. A flow chart of a more complete program which accounts for positrons scattering out of the detector and for bremsstralung radiation is also presented. End-point energies of four ..beta../sup +/ branches in /sup 77/Rb are given as well as a proposed energy level scheme of /sup 75/Kr based on ..gamma..-..gamma.. coincidence data taken at UNISOR.

  13. Maximal charge injection of consecutive electron pulses with uniform temporal pulse separation

    SciTech Connect

    Liu, Y. L.; Zhang, P.; Chen, S. H.; Ang, L. K.

    2015-08-15

    A charge sheet model is proposed for the study of the space-charge limited density of consecutive electron pulses injected to in a diode with uniform temporal pulse separation. Based on the model, an analytical formula is derived for expressing the dependency of the charge density limit on the gap spacing, gap voltage, and pulse separation. The theoretical results are verified by numerical solutions up to electron energy of a few MeV, including relativistic effects. The model can be applied to the design of multiple-pulse electron beams for time resolved electron microscopy and free electron lasers.

  14. PALS and DSC measurements in 8 MeV electron irradiated natural rubber filled with different fillers

    NASA Astrophysics Data System (ADS)

    Mandal, Arunava; Pan, Sandip; Roychowdhury, Anirban; Sengupta, Asmita

    2015-10-01

    The effect of high energy electron irradiation on the microstructure and thermal properties of natural rubber (NR) filled with different fillers at different concentrations are studied. The samples are irradiated with 8 MeV electron beam to a total dose of 100 KGy. The change in free volume size and specific heat due to addition of fillers and irradiation are studied using positron annihilation lifetime spectroscopy (PALS) and differential scanning calorimetry (DSC) respectively. The Positron lifetime spectra are de-convoluted into two components. The longer lived component (τo-Ps) signifies the pick-off annihilation of ortho-positronium (o-Ps) at free volume site which may be related to the radius of the free volume holes. It is observed that the specific heat (Cp) and free volume size are all affected by both irradiation and addition of fillers.

  15. Determination of oxygen in silicon and carbide by activation with 27.2 meV alpha particles

    NASA Technical Reports Server (NTRS)

    Dolgolenko, A. P.; Kornienko, N. D.; Lithovchenko, P. G.

    1978-01-01

    The Si sample was polished on one side, and on the other side Ni was applied chemically and soldered with Pb to a water cooled Cu substrate. Optical quartz standard was fixed from the other side. Si carbide samples were soldered to a substrated with In. The prepared samples were irradiated in a cyclotron with a 27.2 MeV alpha particle beam. The layers were removed from the Si and Si carbide samples by grinding and the positron activity of F-18(t sub 1/2 110 min) was measured by using a gamma, gamma coincidence spectrometer with two NaI(TI) crystals. For analysis of Si carbide, the activity decay curve of the samples was recorded to find the contribution of the positron activity of Cu-65(t sub 1/2 12.9 hr) which formed from Ni impurity on irradiation.

  16. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  17. Slow-Positron Generator For Studying Polymer Films

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; St. Clair, Terry L.; Eftekhari, Abe

    1992-01-01

    Aspects of molecular structures probed by positron-annihilation spectroscopy (PAS). Slow-positron-beam generator suitable for PAS measurements in thin polymer films. Includes Na22 source of positrons and two moderators made of well-annealed tungsten foil. With proper choice of voltage, positrons emitted by inward-facing surfaces of moderators made to stop in polymer films tested.

  18. Time-dependent behavior of positrons in noble gases

    SciTech Connect

    Wadehra, J.M. . Dept. of Physics and Astronomy); Drallos, P.J. )

    1990-01-01

    Both equilibrium and nonequilibrium behaviors of positrons in several noble gases are reviewed. Our novel procedure for obtaining the time-dependent behavior of various swarm parameters -- such as the positron drift velocity, average positron energy, positron annihilation rate (or equivalently Z{sub eff}) etc. -- for positrons in pure ambient gases subjected to external electrostatic fields is described. Summaries of time-dependent as well as electric field-dependent results for positron swarms in various noble gases are presented. New time-dependent results for positron swarms in neon are also described in detail. 36 refs., 4 figs., 3 tabs.

  19. Measurements of NE-213 response functions to neutrons of energies up to several tens of MeV

    NASA Astrophysics Data System (ADS)

    Shin, Kazuo; Ishii, Yoshiaki; Uwamino, Yoshitomo; Sakai, Hideyuki; Numata, Shigco

    1991-10-01

    Measurements of neutron response functions of a 3 in. × 3 in. NE-213 scintillator were made for neutron energies from 10 MeV to 73 MeV using neutrons from a quasi-monoenergetic neutron source of p- 7Li and a white source from thick Be and Cu targets. Neutrons sampled into small energy bins by TOF signals were utilized in the response measurements. Response functions calculated by the Monte Carlo method were compared with the measured data, thus clearing problems in the calculation model. Based on the measured and calculated data, a new response matrix which covered from 0 to 76 MeV was constructed. The matrix was successfully applied to unfold a pulse-height spectrum of up to several tens of MeV neutrons that were transmitted through a 50 cm concrete shield.

  20. Motion and energy dissipation of secondary electrons, positrons and hadrons correlated with terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Koehn, Christoph; Ebert, Ute

    2015-04-01

    Thunderstorms can emit high-energy particles, photons with energies of up to at least 40 MeV, leptons (electrons, positrons) and hadrons (neutrons and protons) with energies of tens of MeV. Some of these events have been correlated with negative lightning leaders propagating upwards in the cloud. For particular lightning events we show that photons, leptons and hadrons can reach ground altitude as well as satellite altitude, and we present the number as well as the spatial and energy distribution of photons, leptons and hadrons. We have reviewed the latest literature on cross sections for collisions of photons, leptons and hadrons with air molecules and have implemented them in our Monte Carlo code. We initialize a photon beam with the characteristic energy distribution of a TGF at thunderstorm altitude and we use the Monte Carlo model to trace these photons; we include the production of secondary electrons through photoionization, Compton scattering and pair production, the production of positrons through pair production as well as the production of neutrons and protons through photonuclear processes. Subsequently we calculate the motion and energy dissipation of these leptons and hadrons with the feedback of electrons and positrons producing new photons through Bremsstrahlung and through positron annihilation at shell electrons. Additionally we provide analytic estimates for the energy losses of photons, leptons and hadrons in the energy range between 0.03 eV and 100 MeV based on the relevant cross sections. We provide the spectral analysis of how many photons, leptons and hadrons will reach ground or satellite altitude and what their energies are, depending on the initial photon energy. This is of particular interest because of campaigns measuring fluxes of all these species at 0 and 500 km altitude without knowing the actual energies of initial electrons converting into photons within a thundercloud.

  1. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    SciTech Connect

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-15

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  2. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    SciTech Connect

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-19

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e{sup +}-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e{sup +}-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  3. The intense slow positron beam facility at the PULSTAR reactor and applications in nano-materials study

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Moxom, Jeremy; Hawari, Ayman I.; Gidley, David W.

    2013-04-01

    An intense slow positron beam has been established at the PULSTAR nuclear research reactor of North Carolina State University. The slow positrons are generated by pair production in a tungsten moderator from gammarays produced in the reactor core and by neutron capture reactions in cadmium. The moderated positrons are electrostatically extracted and magnetically guided out of the region near the core. Subsequently, the positrons are used in two spectrometers that are capable of performing positron annihilation lifetime spectroscopy (PALS) and positron Doppler broadening spectroscopy (DBS) to probe the defect and free volume properties of materials. One of the spectrometers (e+-PALS) utilizes an rf buncher to produce a pulsed beam and has a timing resolution of 277 ps. The second spectrometer (Ps-PALS) uses a secondary electron timing technique and is dedicated to positronium lifetime measurements with an approximately 1 ns timing resolution. PALS measurements have been conducted in the e+-PALS spectrometer on a series of nano-materials including organic photovoltaic thin films, membranes for filtration, and polymeric fibers. These studies have resulted in understanding some critical issues related to the development of the examined nano-materials.

  4. Positron kinetics in an idealized PET environment

    PubMed Central

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-01-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations. PMID:26246002

  5. Addiction Studies with Positron Emission Tomography

    SciTech Connect

    Joanna Fowler

    2008-10-13

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  6. Addiction Studies with Positron Emission Tomography

    ScienceCinema

    Joanna Fowler

    2010-01-08

    Brookhaven scientist Joanna Fowler describes Positron Emission Technology (PET) research at BNL which for the past 30 years has focused in the integration of basic research in radiotracer chemistry with the tools of neuroscience to develop new scientific

  7. Electron and positron induced processes. POSMOL 2013

    NASA Astrophysics Data System (ADS)

    Limão-Vieira, Paulo; Campeanu, Radu; Hoshino, Masamitsu; Ingólfsson, Oddur; Mason, Nigel; Nagashima, Yasuyuki; Tanuma, Hajime

    2014-09-01

    POSMOL 2013, the international meeting on electron and positron induced processes comprising the XVII International Workshop on Low-Energy Positron and Positronium Physics and the XVIII International Symposium on Electron-Molecule Collisions and Swarms, was held at Kanazawa Bunka Hall, Kanazawa, Ishikawa, Japan, from 19-21 July 2013. The XVII Workshop encompassed all aspects of positron, positronium and antiproton interactions with electrons, atoms, molecules and solid surfaces, and topics related to these, whereas the XVIII Symposium encompassed all aspects of electron interactions with molecules in both gaseous and condensed phases. Particular topics include studies of electron interactions with biomolecules, electron induced surface chemistry and the study of plasma processes. Recent research on the study of electron swarms was also highlighted. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  8. Positron kinetics in an idealized PET environment.

    PubMed

    Robson, R E; Brunger, M J; Buckman, S J; Garcia, G; Petrović, Z Lj; White, R D

    2015-01-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the 'gas-phase' assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations. PMID:26246002

  9. Positron kinetics in an idealized PET environment

    NASA Astrophysics Data System (ADS)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  10. Development of the LBNL positron emission mammography camera

    SciTech Connect

    Huber, Jennifer S.; Choong, Woon-Seng; Wang, Jimmy; Maltz, Jonathon S.; Qi, Jinyi; Mandelli, Emanuele; Moses, William W.

    2002-12-19

    We present the construction status of the LBNL Positron Emission Mammography (PEM) camera, which utilizes a PET detector module with depth of interaction measurement consisting of 64 LSO crystals (3x3x30 mm3) coupled on one end to a single photomultiplier tube (PMT) and on the opposite end to a 64 pixel array of silicon photodiodes (PDs). The PMT provides an accurate timing pulse, the PDs identify the crystal of interaction, the sum provides a total energy signal, and the PD/(PD+PMT) ratio determines the depth of interaction. We have completed construction of all 42 PEM detector modules. All data acquisition electronics have been completed, fully tested and loaded onto the gantry. We have demonstrated that all functions of the custom IC work using the production rigid-flex boards and data acquisition system. Preliminary detector module characterization and coincidence data have been taken using the production system, including initial images.

  11. Positron camera using position-sensitive detectors: PENN-PET

    SciTech Connect

    Muehllehner, G.; Karp, J.S.

    1986-01-01

    A single-slice positron camera has been developed with good spatial resolution and high count rate capability. The camera uses a hexagonal arrangement of six position-sensitive NaI(Tl) detectors. The count rate capability of NaI(Tl) was extended to 800k cps through the use of pulse shortening. In order to keep the detectors stationary, an iterative reconstruction algorithm was modified which ignores the missing data in the gaps between the six detectors and gives artifact-free images. The spatial resolution, as determined from the image of point sources in air, is 6.5 mm full width at half maximum. We have also imaged a brain phantom and dog hearts.

  12. Formation of buffer-gas-trap based positron beams

    SciTech Connect

    Natisin, M. R. Danielson, J. R. Surko, C. M.

    2015-03-15

    Presented here are experimental measurements, analytic expressions, and simulation results for pulsed, magnetically guided positron beams formed using a Penning-Malmberg style buffer gas trap. In the relevant limit, particle motion can be separated into motion along the magnetic field and gyro-motion in the plane perpendicular to the field. Analytic expressions are developed which describe the evolution of the beam energy distributions, both parallel and perpendicular to the magnetic field, as the beam propagates through regions of varying magnetic field. Simulations of the beam formation process are presented, with the parameters chosen to accurately replicate experimental conditions. The initial conditions and ejection parameters are varied systematically in both experiment and simulation, allowing the relevant processes involved in beam formation to be explored. These studies provide new insights into the underlying physics, including significant adiabatic cooling, due to the time-dependent beam-formation potential. Methods to improve the beam energy and temporal resolution are discussed.

  13. Ultrarelativistic electromagnetic pulses in plasmas

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; Leboeuf, J. N.; Tajima, T.; Dawson, J. M.; Kennel, C. F.

    1981-01-01

    The physical processes of a linearly polarized electromagnetic pulse of highly relativistic amplitude in an underdense plasma accelerating particles to very high energies are studied through computer simulation. An electron-positron plasma is considered first. The maximum momenta achieved scale as the square of the wave amplitude. This acceleration stops when the bulk of the wave energy is converted to particle energy. The pulse leaves behind as a wake a vacuum region whose length scales as the amplitude of the wave. The results can be explained in terms of a snow plow or piston-like action of the radiation on the plasma. When a mass ratio other than unity is chosen and electrostatic effects begin to play a role, first the ion energy increases faster than the electron energy and then the electron energy catches up later, eventually reaching the same value.

  14. Positron annihilation induced Auger electron emission

    SciTech Connect

    Weiss, A.; Jibaly, M.; Lei, Chun; Mehl, D.; Mayer, R.; Lynn, K.G.

    1988-01-01

    We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.

  15. Pulse stretcher

    DOEpatents

    Horton, J.A.

    1994-05-03

    Apparatus for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse is disclosed. The apparatus uses a White cell having a plurality of optical delay paths of successively increasing number of passes between the field mirror and the objective mirrors. A pulse from a laser travels through a multi-leg reflective path between a beam splitter and a totally reflective mirror to the laser output. The laser pulse is also simultaneously injected through the beam splitter to the input mirrors of the optical delay paths. The pulses from the output mirrors of the optical delay paths go simultaneously to the laser output and to the input mirrors of the longer optical delay paths. The beam splitter is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output. 6 figures.

  16. Pulsed power systems for the DARHT accelerators

    SciTech Connect

    Downing, J.N.; Parsons, W.M.; Earley, L.M.; Melton, J.G.; Moir, D.C.; Carlson, R.L.; Barnes, G.A.; Builta, L.A.; Eversole, S.A.; Keel, G.I.; Rader, D.C.; Romero, J.A.; Shurter, R.P.

    1991-01-01

    The Dual-Axis Radiographic Hydro Test (DARHT) Facility is being designed to produce high-resolution flash radiographs of hydrodynamics experiments. Two 16- to 20-MeV linear induction accelerators (LIA), with an included angle of 90{degree}, are used to produce intense bremsstrahlung x-ray pulses of short duration (60-ns flat-top). Each accelerator has a 4-MeV electron source that injects an electron beam into a series of 250-kV induction cells. The three major pulsed-power systems are the injectors, the induction-cell pulsed-power (ICPP) units, and the ICPP trigger systems, and are discussed in this paper. 11 refs., 5 figs, 3 tabs.

  17. Positron annihilation studies of organic superconductivity

    SciTech Connect

    Yen, H.L.; Lou, Y.; Ali, E.H.

    1994-09-01

    The positron lifetimes of two organic superconductors, {kappa}-(ET){sub 2}Cu(NCS){sub 2} and {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br, are measured as a function of temperature across {Tc}. A drop of positron lifetime below {Tc} is observed. Positron-electron momentum densities are measured by using 2D-ACAR to search for the Fermi surface in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br. Positron density distributions and positron-electron overlaps are calculated by using the orthogonalized linear combination atomic orbital (OLCAO) method to interprete the temperature dependence due to the local charge transfer which is inferred to relate to the superconducting transition. 2D-ACAR results in {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br are compared with theoretical band calculations based on a first-principles local density approximation. Importance of performing accurate band calculations for the interpretation of positron annihilation data is emphasized.

  18. Pulsed power

    NASA Astrophysics Data System (ADS)

    Stone, David H.

    Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.

  19. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  20. Intense low energy positron beams

    SciTech Connect

    Lynn, K.G.; Jacobsen, F.M.

    1993-12-31

    Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

  1. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    SciTech Connect

    H. Bender; D. Schwellenbach; R. Sturges; R. Trainham

    2008-07-01

    This paper describes the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as x-ray and electron beam diagnostic development, and recently, electron diffraction studies of phase transitions in shocked materials.

  2. Variable Energy 2-MeV S-Band Linac for X-ray and Other Applications

    SciTech Connect

    Howard Bender, Dave Schwellenbach, Ron Sturges, Rusty Trainham

    2008-03-01

    We will describe the design and operation of a compact, 2-MeV, S-band linear accelerator (linac) with variable energy tuning and short-pulse operation down to 15 ps with 100-A peak current. The design consists of a buncher cavity for short-pulse operation and two coupled resonator sections for acceleration. Single-pulse operation is accomplished through a fast injector system with a 219-MHz subharmonic buncher. The machine is intended to support a variety of applications, such as X-ray and electron beam diagnostic development and, recently, electron diffraction studies of phase transitions in shocked materials.

  3. Theoretical investigation of the binding of a positron to vibrational excited states of hydrogen cyanide molecule

    NASA Astrophysics Data System (ADS)

    Kita, Yukiumi; Tachikawa, Masanori

    2014-05-01

    We theoretically analyzed positron affinities (PA) of hydrogen cyanide (HCN) molecule at vibrational excited states to elucidate the effect of molecular vibrations on the binding of a positron to the molecule. Using the configuration interaction method in the multi-component molecular orbital theory and anharmonic vibrational state analysis with the variational Monte Carlo technique, we found that the vibrational excitations of the CN and CH stretching modes enhance the PA value compared to that of the vibrational ground state, whereas the excitation of bending mode deenhances it. The largest PA enhancement is found at the excited states of the CH stretching mode; the PA values are 43.02 (1) and 46.34 (2) meV for the fundamental tone and overtone states, respectively. With the linear regression analysis, we confirmed that the PA variation of HCN molecule at each vibrational state arises from the variation of permanent dipole moment and dipole-polarizability due to each vibrational excitation. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

  4. FEASIBILITY OF POSITRON EMISSION TOMOGRAPHY OF DOSE DISTRIBUTION IN PROTON BEAM CANCER THERAPY.

    SciTech Connect

    BEEBE - WANG,J.J.; DILMANIAN,F.A.; PEGGS,S.G.; SCHLYEER,D.J.; VASKA,P.

    2002-06-03

    Proton therapy is a treatment modality of increasing utility in clinical radiation oncology mostly because its dose distribution conforms more tightly to the target volume than x-ray radiation therapy. One important feature of proton therapy is that it produces a small amount of positron-emitting isotopes along the beam-path through the non-elastic nuclear interaction of protons with target nuclei such as {sup 12}C, {sup 14}N, and {sup 16}O. These radioisotopes, mainly {sup 11}C, {sup 13}N and {sup 15}O, allow imaging the therapy dose distribution using positron emission tomography (PET). The resulting PET images provide a powerful tool for quality assurance of the treatment, especially when treating inhomogeneous organs such as the lungs or the head-and-neck, where the calculation of the dose distribution for treatment planning is more difficult. This paper uses Monte Carlo simulations to predict the yield of positron emitters produced by a 250 MeV proton beam, and to simulate the productions of the image in a clinical PET scanner.

  5. Observational Search for >10 MeV Electrons in the Inner Magnetosphere Using the Van Allen Probes Relativistic Proton Spectrometer

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Looper, M. D.; O'Brien, T. P., III; Blake, J. B.

    2015-12-01

    Any detection of ultra-relativistic electrons (>10 MeV) trapped in the inner magnetosphere is potentially a sensitive indicator of a unique particle acceleration process or of a unique particle source. The 24 March 1991 shock injection of >15 MeV electrons is a classic example of the former, while the latter includes measurements in low Earth orbit of >100 MeV electrons and positrons from cosmic ray interactions with the atmosphere. In this paper we use new instrumentation on the Van Allen Probes to survey the inner magnetosphere for signatures of ultra-relativistic electrons. The Relativistic Proton Spectrometer, designed primarily for spectroscopy of 60 to 2000 MeV protons in the inner belt, nonetheless is capable of detecting minimum-ionizing electrons in a silicon detector stack. More critical to this survey is the instrument's Cherenkov radiator subsystem whose response to incident electrons ranges from a threshold near 10 MeV and reaches light saturation above 50 MeV. Together with the silicon detector system we are able to explore an energy range that has not been routinely studied in the context of the Earth's magnetosphere. We will report on quiet-time and storm-time signatures in regions of the inner magnetosphere that heretofore have not been explored with an orbit like that of Van Allen Probes. We will also quantitatively compare our electron energy spectra, or flux limits, with other measurements from Van Allen Probes and prior glimpses of high-energy electrons from low Earth orbit.

  6. Positron production in heavy-ion collisions

    SciTech Connect

    Dunford, R.W.

    1995-08-01

    The ATLAS Positron Experiment APEX was built to study positron emission in collisions between very heavy ions. Narrow peaks were observed in such collisions at GSI, Darmstadt in the spectra of positrons and in the sum-energy spectra of electron-positron coincidences. APEX is a second-generation experiment which was specifically designed to look for the coincidence events and measure the opening angle between electrons and positrons. The first beam-induced positrons were detected using APEX in March 1993, and since then three additional runs were carried out. The first results for the collision system {sup 238}U + {sup 181}Ta show no evidence for sharp peaks in the electron-positron sum-energy spectrum. The current emphasis in this work is to obtain a complete understanding of the APEX apparatus. The atomic group is studying events involving coincidences between heavy ions and electrons. Since APEX measures the laboratory angles and energies of both electrons and heavy ions, it is possible to make an event-by-event Doppler correction of the electron spectra. These Doppler-corrected spectra show a number of lines which are attributed to conversion electrons which are emitted when a nuclear excited state decays by ejecting an inner-shell electron. The study of these spectra provide an important confirmation of the proper functioning of APEX. We are particularly concerned with the atomic physics aspects of this process. In order to understand the electron spectra, it is necessary to account for the change in binding energy of the inner-shell electrons as a function of ionic charge. We are utilizing the GRASP relativistic atomic structure program to calculate the binding energies. This information, together with the measured gamma-ray energies, allows us to calculate the expected energies of the conversion electrons which we can then compare with the observed Doppler-corrected conversion electron energies.

  7. Positron range estimations with PeneloPET

    NASA Astrophysics Data System (ADS)

    Cal-González, J.; Herraiz, J. L.; España, S.; Corzo, P. M. G.; Vaquero, J. J.; Desco, M.; Udias, J. M.

    2013-08-01

    Technical advances towards high resolution PET imaging try to overcome the inherent physical limitations to spatial resolution. Positrons travel in tissue until they annihilate into the two gamma photons detected. This range is the main detector-independent contribution to PET imaging blurring. To a large extent, it can be remedied during image reconstruction if accurate estimates of positron range are available. However, the existing estimates differ, and the comparison with the scarce experimental data available is not conclusive. In this work we present positron annihilation distributions obtained from Monte Carlo simulations with the PeneloPET simulation toolkit, for several common PET isotopes (18F, 11C, 13N, 15O, 68Ga and 82Rb) in different biological media (cortical bone, soft bone, skin, muscle striated, brain, water, adipose tissue and lung). We compare PeneloPET simulations against experimental data and other simulation results available in the literature. To this end the different positron range representations employed in the literature are related to each other by means of a new parameterization for positron range profiles. Our results are generally consistent with experiments and with most simulations previously reported with differences of less than 20% in the mean and maximum range values. From these results, we conclude that better experimental measurements are needed, especially to disentangle the effect of positronium formation in positron range. Finally, with the aid of PeneloPET, we confirm that scaling approaches can be used to obtain universal, material and isotope independent, positron range profiles, which would considerably simplify range correction.

  8. Van de Graaff based positron source production

    NASA Astrophysics Data System (ADS)

    Lund, Kasey Roy

    The anti-matter counterpart to the electron, the positron, can be used for a myriad of different scientific research projects to include materials research, energy storage, and deep space flight propulsion. Currently there is a demand for large numbers of positrons to aid in these mentioned research projects. There are different methods of producing and harvesting positrons but all require radioactive sources or large facilities. Positron beams produced by relatively small accelerators are attractive because they are easily shut down, and small accelerators are readily available. A 4MV Van de Graaff accelerator was used to induce the nuclear reaction 12C(d,n)13N in order to produce an intense beam of positrons. 13N is an isotope of nitrogen that decays with a 10 minute half life into 13C, a positron, and an electron neutrino. This radioactive gas is frozen onto a cryogenic freezer where it is then channeled to form an antimatter beam. The beam is then guided using axial magnetic fields into a superconducting magnet with a field strength up to 7 Tesla where it will be stored in a newly designed Micro-Penning-Malmberg trap. Several source geometries have been experimented on and found that a maximum antimatter beam with a positron flux of greater than 0.55x10 6 e+s-1 was achieved. This beam was produced using a solid rare gas moderator composed of krypton. Due to geometric restrictions on this set up, only 0.1-1.0% of the antimatter was being frozen to the desired locations. Simulations and preliminary experiments suggest that a new geometry, currently under testing, will produce a beam of 107 e+s-1 or more.

  9. Cylindrical and Spherical Positron-Acoustic Shock Waves in Nonthermal Electron-Positron-Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Alam, M. S.; Mamun, A. A.

    2015-06-01

    The nonlinear propagation of cylindrical and spherical positron-acoustic shock waves (PASWs) in an unmagnetized four-component plasma (containing nonthermal distributed hot positrons and electrons, cold mobile viscous positron fluid, and immobile positive ions) is investigated theoretically. The modified Burgers equation is derived by employing the reductive perturbation method. Analytically, the effects of cylindrical and spherical geometries, nonthermality of electrons and hot positrons, relative number density and temperature ratios, and cold mobile positron kinematic viscosity on the basic features (viz. polarity, amplitude, width, phase speed, etc.) of PASWs are briefly addressed. It is examined that the PASWs in nonplanar (cylindrical and spherical) geometry significantly differ from those in planar geometry. The relevance of our results may be useful in understanding the basic characteristics of PASWs in astrophysical and laboratory plasmas.

  10. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  11. PREFACE: 13th International Workshop on Slow Positron Beam Techniques and Applications (SLOPOS13)

    NASA Astrophysics Data System (ADS)

    2014-04-01

    These proceedings originate from the 13th International Workshop on Slow Positron Beam Techniques and Applications SLOPOS13 which was held at the campus of the Technische Universität München in Garching between 15th-20th September, 2013. This event is part of a series of triennial SLOPOS conferences. In total 123 delegates from 21 countries participated in the SLOPOS13. The excellent scientific program comprised 50 talks and 58 posters presented during two poster sessions. It was very impressive to learn about novel technical developments on positron beam facilities and the wide range of their applications all over the world. The workshop reflected the large variety of positron beam experiments covering fundamental studies, e.g., for efficient production of anti-hydrogen as well as applied research on defects in bulk materials, thin films, surfaces, and interfaces. The topics comprised: . Positron transport and beam technology . Pulsed beams and positron traps . Defect profiling in bulk and layered structures . Nanostructures, porous materials, thin films . Surfaces and interfaces . Positronium formation and emission . Positron interactions with atoms and molecules . Many positrons and anti-hydrogen . Novel experimental techniques The international advisory committee of SLOPOS awarded student prizes for the best presented scientific contributions to a team of students from Finland, France, and the NEPOMUC team at TUM. The conference was overshadowed by the sudden death of Professor Klaus Schreckenbach immediately before the workshop. In commemoration of him as a spiritus rectus of the neutron induced positron source a minutes' silence was hold. We are most grateful for the hard work of the Local Organising Committee, the help of the International Advisory Committee, and all the students for their friendly and efficient support during the meeting. The workshop could not have occurred without the generous support of the Heinz Maier-Leibnitz Zentrum (MLZ), Deutsche

  12. Elastic and inelastic scattering of positrons in gases and solids

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. W.

    1972-01-01

    Three apparatuses were designed and built: The first, which is now operative, was designed to study the details of positron thermalization in solids and the subsequent emission of the low energy positrons from moderating foils; The second apparatus now under test is a positron bottle similar in design to an electron trap. It was built to store positrons at a fixed energy and to look at the number of stored positrons (storage time) as a function of a scattering gas in the vacuum chamber. The third apparatus is a crossed beam apparatus where positron-, alkali scattering will be studied. Much of the apparatus is now under test with electrons.

  13. Electron capture from solids by positrons

    SciTech Connect

    Howell, R.

    1987-08-01

    The capture of electrons in solids is modified from that in gasses by several factors. The most important is the collective interaction of the electrons which results in a density of electron states in the solid in wide bands. Also the high density of electrons in many solids gives a high frequency of interaction as compared to gasses, and quickly destroys any electron-positron states in the metal matrix. Consequently, most positrons implanted in a metal will rapidly thermalize, and unless they reach the surface will annihilate with an electron in an uncorrelated state. Positronium formation from positrons scattered at a metal surface is analogous to ion neutralization however, most of the positronium comes from positrons passing through the surface from the bulk. The dominant motivation for studying positronium formation has been the hope that the distribution of the electrons at the surface would be obtained through the annihilation properties of positrons trapped at the surface or through analysis of the energy and angular distributions of the positronium emitted into the vacuum. These distributions have been measured and are included in this paper. 17 refs.

  14. A CF4 based positron trap

    NASA Astrophysics Data System (ADS)

    Marjanovic, Srdjan; Bankovic, Ana; Dujko, Sasa; Deller, Adam; Cooper, Ben; Cassidy, David; Petrovic, Zoran

    2016-05-01

    All positron buffer gas traps in use rely on N2 as the primary trapping gas due to its conveniently placed a1 Π electronic excitation cross section that is large enough to compete with positronium (Ps) formation in the threshold region. Its energy loss of 8.5 eV is sufficient to capture positrons into a potential well upon a single collision. The competing Ps formation, however, limits the efficiency of the two stage trap to 25 %. As positron moderators produce beams with energies of several eV we have proposed to use CF4 in the first stage of the trap, due to its large vibrational excitation cross section, where several vibrational excitations would be sufficient to trap the positrons with small losses. Apart from the simulations we also report the results of attempts to apply this approach to an existing Surko-type positron trap. Operating the unmodified trap as a CF4 based device proved to be unsuccessful, due primarily to excessive scattering due to high CF4 pressure in the first stage. However, the performance was consistent with subsequent simulations using the real system parameters. This agreement indicates that an efficient CF4 based scheme may be realized in an appropriately designed trap. also at Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000 Belgrade, Serbia.

  15. Gamma rays of 0.3 to 30 MeV from PSR 0531+21

    NASA Technical Reports Server (NTRS)

    Zych, A. D.; White, R. S.; Sweeney, W.; Tuemer, T.

    1985-01-01

    Pulsed gamma rays from the Crab Pulsar PSR 0531+21 are reported for energies of 0.3 to 30 MeV. The observations were carried out with the UCR gamma ray double Compton scatter telescope launched on a balloon from Palestine, Texas at 4.5 GV, at 2200 LT, September 29, 1978. Two 8 hr observations of the pulsar were made, the first starting at 0700 UT (0200 LT) September 30 just after reaching float altitude of 4.5 g/sq cm. Analysis of the total gamma ray flux from the Crab Nebula plus pulsar using telescope vertical cell pairs was published previously. The results presented supersede the preliminary ones. The double scatter mode of the UCR telescope measures the energy of each incident gamma ray from 1 to 30 MeV and its incident angle to a ring on the sky. The time of arrival is measured to 0.05 ms. The direction of the source is obtained from overlapping rings on the sky. The count rate of the first scatter above a threshold of 0.3 MeV is recorded every 5.12 ms. The Crab Pulsar parameters were determined from six topocentric arrival times of optical pulses.

  16. Relativistic attosecond electron pulses from cascaded acceleration using ultra-intense radially polarized laser beams

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Fortin, Pierre-Louis; Piché, Michel

    Attosecond electron pulses with peak energy above 200 MeV could be produced with ultrafast 100-TW radially polarized laser beams in a two-stage configuration. Such electron beams would be collimated and potentially quasi-monoenergetic.

  17. Positron astrophysics and areas of relation to low-energy positron physics

    NASA Astrophysics Data System (ADS)

    Guessoum, Nidhal

    2014-05-01

    I briefly review our general knowledge of positron astrophysics, focusing mostly on the theoretical and modelling aspects. The experimental/observational aspects of the topic have recently been reviewed elsewhere [E. Churazov et al., Mon. Nat. R. Astron. Soc. 411, 1727 (2011); N. Prantazos et al., Rev. Mod. Phys. 83, 1001 (2011)]. In particular, I highlight the interactions and cross sections of the reactions that the positrons undergo in various cosmic media. Indeed, these must be of high interest to both the positron astrophysics community and the low-energy positron physics community in trying to find common areas of potential collaboration for the future or areas of research that will help the astrophysics community make further progress on the problem. The processes undergone by positrons from the moments of their birth to their annihilation (in the interstellar medium or other locations) are thus examined. The physics of the positron interactions with gases and solids (dust grains) and the physical conditions and characteristics of the environments where the processes of energy loss, positronium formation, and annihilation take place, are briefly reviewed. An explanation is given about how all the relevant physical information is taken into account in order to calculate annihilation rates and spectra of the 511 keV emission in the ISM; special attention is paid to positron interactions with dust and with polycyclic aromatic hydrocarbons. In particular, an attempt is made to show to what extent the interactions between positrons and interstellar dust grains are similar to laboratory experiments in which beams of low-energy positrons impinge upon solids and surfaces. Sample results are shown for the effect of dust grains on positron annihilation spectra in some phases of the ISM which, together with high resolution spectra measured by satellites, can be used to infer useful knowledge about the environment where the annihilation is predominantly taking place

  18. Development of an encapsulated scintillating fiber detector as a 14-MeV neutron sensor

    NASA Astrophysics Data System (ADS)

    Singkarat, S.; Boonyawan, D.; Hoyes, G. G.; Tippawan, U.; Vilaithong, T.; Garis, N. S.; Kobus, H.

    1997-02-01

    A scintillating fiber detector has been developed and tested for use as a 14-MeV neutron sensor. The detector, designated an "Encapsulated Scintillating Fiber Detector (EFD)", is composed of a parallel array of 0.5 × 0.5 × 15 mm BCF-12 plastic scintillating fibers encapsulated in clear BC-600 optical cement. The 85 fibers from a 12 × 12 mm square array, with a separation gap of 0.8-1 mm, in the center of the 40 mm diameter × 15 mm thick hardened optical cement. It can be directly coupled to an ordinary 2 in. diameter photomultiplier tube and its simple electronics. The response of the detector to gamma-rays from isotopic sources, as well as to 2.6- and 14-MeV monoenergetic neutrons from a neutron generator has been evaluated. The detector shows 3 distinct properties simultaneously, i.e. (1) good gamma-ray pulse height reduction, (2) discrimination against 14-MeV neutrons entering at angles non-parallel to the fiber axis, and (3) production of a full energy peak of 14-MeV recoil protons in the direction of the fiber axes. Investigations by Monte Carlo simulation are also included.

  19. Defects in metals. [Positron annihilation spectroscopy

    SciTech Connect

    Siegel, R.W.

    1982-06-01

    The application of positron annihilation spectroscopy (PAS) to the study of defects in metals has led to increased knowledge on lattice-defect properties during the past decade in two areas: the determination of atomic defect properties, particularly those of monovacancies, and the monitoring and characterization of vacancy-like microstructure development during post-irradiation and post-quench annealing. The study of defects in metals by PAS is reviewed within the context of the other available techniques for defect studies. The strengths and weaknesses of PAS as a method for the characterization of defect microstructures are considered. The additional possibilities for using the positron as a localized probe of the atomic and electronic structures of atomic defects are discussed, based upon theoretical calculations of the annihilation characteristics of defect-trapped positrons and experimental observations. Finally, the present status and future potential of PAS as a tool for the study of defects in metals is considered. 71 references, 9 figures.

  20. Positron beam position measurement for a beam containing both positrons and electrons

    SciTech Connect

    Sereno, N.S.; Fuja, R.

    1996-08-01

    Positron beam position measurement for the Advanced Photon Source (APS) linac beam is affected by the presence of electrons that are also captured and accelerated along with the positrons. This paper presents a method of measuring positron position in a beam consisting of alternating bunches of positrons and electrons. The method is based on Fourier analysis of a stripline signal at the bunching and first harmonic frequencies. In the presence of a mixed species beam, a certain linear combination of bunching and first harmonic signals depends only on the position and charge of one specie of particle. A formula is derived for the stripline signal at all harmonics of the bunching frequency and is used to compute expected signal power at the bunching and first harmonic frequencies for typical electron and positron bunch charges. The stripline is calibrated by measuring the signal power content at the bunching and first harmonic frequencies for a single species beam. A circuit is presented that will be used with an APS positron linac stripline beam position monitor to detect the bunching and first harmonic signals for a beam of positrons and electrons.

  1. Dynamics of defects in x-ray irradiated alkali chloride crystals studied by positron annihilation

    SciTech Connect

    Stern, S.H.

    1982-01-01

    Data on the time dependence of positron-electron annihilation characteristics in single crystals of the homologous series NaCl, KCl, RbCl, and CsCl after large doses of x irradiation are reported. A new instrument, the ..pi..-radian coincidence apparatus (PICA), recorded the coincidence count rate P of the two 0.5-MeV annihilation ..gamma.. rays emerging 180/sup 0/ apart from the crystal during isothermal and isochronal heating conditions. In most crystals an initial rapid increase of P to a maximum followed by a slow decline toward the coincidence count rate corresponding to the pre-irradiation state of the crystal was observed. Positron-annihilation data were completed by independent measurements of the optical absorption in KCl and NaCl crystals after various durations of isothermal heating. Absorption spectrophotometry revealed enhancement of the M band in KCl, of the R and N bands in NaCl, at the expense of the F band during the interpretation that positrons are trapped by radiation-induced color centers in which they annihilate with a higher P than in the bulk of the crystal. The dynamics associated with the incipient rise of P during the initial heating period is attributable to the agglomeration of F centers into aggregate centers. The rise times of P give access to the diffusion rates for agglomeration. At equal temperatures, a strong dependence of the rate of defect diffusion on the size of the cation was observed. The data must be corrected for the effects of decoloration of the crystals by the positrons during the measurements. Activation energies for defect diffusion annealing are extracted.

  2. Pulse Voltammetry.

    ERIC Educational Resources Information Center

    Osteryoung, Janet

    1983-01-01

    Discusses the nature of pulse voltammetry, indicating that its widespread use arises from good sensitivity and detection limits and from ease of application and low cost. Provides analytical and mechanistic applications of the procedure. (JN)

  3. Development of Texas intense positron source

    NASA Astrophysics Data System (ADS)

    Köymen, A. R.; Ünlü, K.; Jacobsen, F. M.; Göktepeli, S.; Wehring, B. W.

    1999-02-01

    The Texas Intense Positron Source (TIPS) is a reactor-based low-energy positron beam facility utilizing some novel techniques in positron beam production. This facility will be located at the University of Texas (UT) at Austin Nuclear Engineering Teaching Laboratory (NETL) and is being developed by UT Austin and UT Arlington researchers. TIPS will use a large area (total area of 900-1800 cm 2) 64Cu source to supply fast β + particles for subsequent moderation to form an intense monoenergetic positron beam in the energy range of 0-50 keV with an expected intensity of 10 8 e +/s. Natural copper will be neutron activated near the core of the NETL 1 MW TRIGA Mark II research reactor to produce the 64Cu isotope. The activated source will be transported to the moderator/remoderator assembly, outside the biological shield of the reactor. This assembly combines the primary moderation and posterior remoderation of the fast β + particles into one stage using solid Kr to produce a low-energy positron source of a few eV with a diameter of 8 mm. The low-energy positron beam is then extracted by an electrostatic modified SOA gun and after further acceleration to 5 keV, the beam is focused onto the object slit of a 90° bending magnet. After further focusing and another 90° bend, the beam enters the main accelerator/decelerator that transports the beam onto the target for experimentation. The components of TIPS have been manufactured and are currently being optimized. In this communication we present some of the details of the TIPS facility and furthermore briefly discuss its intended applications.

  4. Positron Binding Properties of Glycine and Its Aqueous Complexes.

    PubMed

    Nummela, Mikko; Raebiger, Hannes; Yoshida, Daisuke; Tachikawa, Masanori

    2016-06-16

    We investigate positron binding to glycine and its aqueous complexes by first-principles calculation. We show that while glycine in its ground state (Gly) does not bind positrons, several of its strongly polar conformers do, and in particular, its zwitterion form (GlyZI) binds positrons strongly. Aqueous complexes Gly·nH2O and GlyZI·nH2O also bind positrons, if their dipole moment μ > μcr. However, μ is not a sufficient quantity to describe positron binding to these complexes. We show that in addition to μ, positron binding strongly depends on the intramolecular bonding of glycine. In Gly·nH2O, positrons are weakly bound to the nitrogen in Gly, whereas in GlyZI·nH2O, the ionic oxygen in GlyZI is a strong "positron attractor". PMID:27232201

  5. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    PubMed

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  6. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    PubMed Central

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m−1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  7. Apparatus for photon activation positron annihilation analysis

    DOEpatents

    Akers, Douglas W.

    2007-06-12

    Non-destructive testing apparatus according to one embodiment of the invention comprises a photon source. The photon source produces photons having predetermined energies and directs the photons toward a specimen being tested. The photons from the photon source result in the creation of positrons within the specimen being tested. A detector positioned adjacent the specimen being tested detects gamma rays produced by annihilation of positrons with electrons. A data processing system operatively associated with the detector produces output data indicative of a lattice characteristic of the specimen being tested.

  8. Heuristic theory of positron-helium scattering.

    NASA Technical Reports Server (NTRS)

    Drachman, R. J.

    1971-01-01

    An error in a previous modified adiabatic approximation (Drachman, 1966), due to a lack of generality in the form of the short-range correlation part of the wave function for L greater than zero, is corrected heuristically by allowing the monopole suppression parameter to depend on L. An L-dependent local potential is constructed to fit the well-known positron-hydrogen s, p, and d wave phase shifts below the rearrangement threshold. The same form of potential yields a positron-helium cross-section in agreement with a recent experimental measurement near threshold.

  9. Microstructural Characterization of Polymers with Positrons

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1997-01-01

    Positrons provide a versatile probe for monitoring microstructural features of molecular solids. In this paper, we report on positron lifetime measurements in two different types of polymers. The first group comprises polyacrylates processed on earth and in space. The second group includes fully-compatible and totally-incompatible Semi-Interpenetrating polymer networks of thermosetting and thermoplastic polyimides. On the basis of lifetime measurements, it is concluded that free volumes are a direct reflection of physical/electromagnetic properties of the host polymers.

  10. Cold positrons from decaying dark matter

    NASA Astrophysics Data System (ADS)

    Boubekeur, Lotfi; Dodelson, Scott; Vives, Oscar

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often, heavier particles decay into the lightest dark matter particle as the Universe evolves. Here, we explore the possibilities which arise if one of the products in a (heavyparticle)→(darkmatter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models, but might even be consistent with that observed by the INTEGRAL satellite.

  11. A laser-Compton scattering prototype experiment at 100 MeV linac of Shanghai Institute of Applied Physics

    SciTech Connect

    Luo, W.; Fan, G. T.; Fan, G. W.; Li, Y. J.; Xu, Y.; Yang, L. F.; Xu, W.; Pan, Q. Y.; Cai, X. Z.; Chen, J. G.; Chen, Y. Z.; Guo, W.; Liu, W. H.; Lin, G. Q.; Ma, Y. G.; Shen, W. Q.; Xu, B. J.; Xu, J. Q.; Zhang, H. O.; Yan, Z.; and others

    2010-01-15

    As a prototype of the Shanghai Laser Electron Gamma Source in the Shanghai Synchrotron Radiation Facility, an x-ray source based on laser-Compton scattering (LCS) has been installed at the terminal of the 100 MeV linac of the Shanghai Institute of Applied Physics. LCS x-rays are generated by interactions between Q-switched Nd:yttrium aluminum garnet laser pulses [with wavelength of 1064 nm and pulse width of 21 ns (full width at half maximum)] and electron bunches [with energy of 108 MeV and pulse width of 0.95 ns (rms)] at an angle of 42 deg. between laser and electron beam. In order to measure the energy spectrum of LCS x-rays, a Si(Li) detector along the electron beam line axis is positioned at 9.8 m away from a LCS chamber. After background subtraction, the LCS x-ray spectrum with the peak energy of 29.1{+-}4.4|{sub stat}{+-}2.1|{sub syst} keV and the peak width (rms) of 7.8{+-}2.8|{sub stat}{+-}0.4|{sub syst} keV is observed. Normally the 100 MeV linac operates with the electron macropulse charge of 1.0 nC/pulse, and the electron and laser collision repetition rate of 20 Hz. Therefore, the total LCS x-ray flux of (5.2{+-}2.0)x10{sup 2} Hz can be achieved.

  12. A laser-Compton scattering prototype experiment at 100 MeV linac of Shanghai Institute of Applied Physics.

    PubMed

    Luo, W; Xu, W; Pan, Q Y; Cai, X Z; Chen, J G; Chen, Y Z; Fan, G T; Fan, G W; Guo, W; Li, Y J; Liu, W H; Lin, G Q; Ma, Y G; Shen, W Q; Shi, X C; Xu, B J; Xu, J Q; Xu, Y; Zhang, H O; Yan, Z; Yang, L F; Zhao, M H

    2010-01-01

    As a prototype of the Shanghai Laser Electron Gamma Source in the Shanghai Synchrotron Radiation Facility, an x-ray source based on laser-Compton scattering (LCS) has been installed at the terminal of the 100 MeV linac of the Shanghai Institute of Applied Physics. LCS x-rays are generated by interactions between Q-switched Nd:yttrium aluminum garnet laser pulses [with wavelength of 1064 nm and pulse width of 21 ns (full width at half maximum)] and electron bunches [with energy of 108 MeV and pulse width of 0.95 ns (rms)] at an angle of 42 degrees between laser and electron beam. In order to measure the energy spectrum of LCS x-rays, a Si(Li) detector along the electron beam line axis is positioned at 9.8 m away from a LCS chamber. After background subtraction, the LCS x-ray spectrum with the peak energy of 29.1+/-4.4|(stat)+/-2.1|(syst) keV and the peak width (rms) of 7.8+/-2.8|(stat)+/-0.4|(syst) keV is observed. Normally the 100 MeV linac operates with the electron macropulse charge of 1.0 nC/pulse, and the electron and laser collision repetition rate of 20 Hz. Therefore, the total LCS x-ray flux of (5.2+/-2.0) x 10(2) Hz can be achieved. PMID:20113090

  13. Pulse stretcher

    DOEpatents

    Horton, James A.

    1994-01-01

    Apparatus (20) for increasing the length of a laser pulse to reduce its peak power without substantial loss in the average power of the pulse. The apparatus (20) uses a White cell (10) having a plurality of optical delay paths (18a-18d) of successively increasing number of passes between the field mirror (13) and the objective mirrors (11 and 12). A pulse (26) from a laser (27) travels through a multi-leg reflective path (28) between a beam splitter (21) and a totally reflective mirror (24) to the laser output (37). The laser pulse (26) is also simultaneously injected through the beam splitter (21) to the input mirrors (14a-14d) of the optical delay paths (18a-18d). The pulses from the output mirrors (16a-16d) of the optical delay paths (18a-18d) go simultaneously to the laser output (37) and to the input mirrors ( 14b-14d) of the longer optical delay paths. The beam splitter (21) is 50% reflective and 50% transmissive to provide equal attenuation of all of the pulses at the laser output (37).

  14. Laser-driven γ-ray, positron, and neutron source from ultra-intense laser-matter interactions

    SciTech Connect

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2015-08-15

    In ultra-intense laser-matter interactions, γ-rays are effectively generated via the radiation reaction effect. Since a significant fraction of the laser energy is converted into γ-rays, understanding of the energy transport inside of the target is important. We have developed a Particle-in-Cell code which includes generation of the γ-rays, their energy transport, and photo-nuclear reactions. Using the code, we have investigated the characteristics of the quantum beams generated by the transport of the laser-driven γ-rays. It is shown that collimated, mono-energetic positron beams with hundreds of MeV are generated by using thick targets. Neutron beams are also effectively generated by using beryllium targets via photo-nuclear reactions. These lead to the proposal of quantum beam sources of γ-rays, positrons, and neutrons with distinctive characters, which are selectively generated by choosing target conditions.

  15. Electron beam induced microstructural changes and electrical conductivity in Bakelite polymer RPC detector material: A positron lifetime study

    NASA Astrophysics Data System (ADS)

    Aneesh Kumar, K. V.; Ningaraju, S.; Munirathnamma, L. M.; Ravikumar, H. B.; Ranganathaiah, C.

    2015-06-01

    In order to explore the structural modification induced electrical conductivity, samples of Bakelite RPC polymer detector materials were exposed to 8 MeV of electron beam with the irradiation dose from 20 kGy to 100 kGy in steps of 20 kGy. The microstructural changes upon electron beam irradiation have been studied using Positron Annihilation Lifetime Spectroscopy (PALS) and Fourier Transform Infrared (FTIR) Spectroscopy. Positron lifetime parameters viz., o-Ps lifetime and its intensity show chain scission at lower doses (20 kGy, 40 kGy) followed by cross-linking beyond 40 kGydue to the radical reactions. The reduction in electrical conductivity of Bakelite material beyond 60 kGy is correlated to the conducting pathways and cross-links in the polymer matrix. The appropriate doses of electron beam irradiation of Bakelite material may reduce the leakage current and hence improves the performance of the detector.

  16. Characterization of ion-irradiated ODS Fe-Cr alloys by doppler broadening spectroscopy using a positron beam

    NASA Astrophysics Data System (ADS)

    Parente, P.; Leguey, T.; de Castro, V.; Gigl, T.; Reiner, M.; Hugenschmidt, C.; Pareja, R.

    2015-09-01

    The damage profile of oxide dispersion strengthened steels after single-, or simultaneous triple-ion irradiation at different conditions has been characterized using a low energy positron beam in order to provide information on microstructural changes induced by irradiation. Doppler broadening and coincident Doppler broadening measurements of the positron annihilation line have been performed on different Fe-Cr-(W,Ti) alloys reinforced with Y2O3, to identify the nature and stability of irradiation-induced open-volume defects and their possible association with the oxide nanoparticles. It was found that irradiation induced vacancy clusters are associated with Cr atoms. The results are of highest interest for modeling the damage induced by 14 MeV neutrons in reduced activation Fe-Cr alloys relevant for fusion devices.

  17. STATUS OF NEW 2.5 MEV TEST FACILITY AT SNS

    SciTech Connect

    Aleksandrov, Alexander V; Champion, Mark; Crofford, Mark T; Kang, Yoon W; Menshov, Alexander A; Roseberry, Jr., R Tom; Stockli, Martin P; Webster, Anthony W; Welton, Robert F; Zhukov, Alexander P

    2014-01-01

    A new 2.5MeV beam test facility is being built at SNS. It consists of a 65 keV H- ion source, a 2.5MeV RFQ, a beam line with various beam diagnostics and a 6 kW beam dump. The facility is capable of producing one-ms-long pulses at 60Hz repetition rate with up to 50mA peak current. The commissioning with reduced average beam power is planned for fall 2014 to verify operation of all systems. The full power operation is scheduled to begin in 2015. The status of the facility will be presented as well as a discussion of the future R&D program.

  18. X-ray FEL with a meV bandwidth

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Shvyd'ko, Yu. V.; Yurkov, M. V.

    2001-08-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL was proposed in [1] and named two-stage SASE FEL. The scheme consists of two undulators and an X-ray monochromator located between them. For the Angström wavelength range the monochromator could be realized using Bragg reflections from crystals. Proposed scheme of monochromator is illustrated for the 14.4 keV X-ray SASE FEL being developed in the framework of the TESLA linear collider project. The spectral bandwidth of the radiation from the two-stage SASE FEL (20 meV) is defined by the finite duration of the electron pulse. The shot-to-shot fluctuations of energy spectral density are dramatically reduced in comparison with the 100% fluctuations in a SASE FEL. The peak and average brilliance are by three orders of magnitude higher than the values which could be reached by a conventional X-ray SASE FEL.

  19. Multipurpose 5-MeV linear induction accelerator

    SciTech Connect

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L. Smith, M.W.

    1984-06-11

    Although linear induction accelerators (LIAs) are quite reliable by most standards, they are limited in repeating rate, average power, and reliability because the final stage of energy delivery is based on spark gap performance. In addition, they have a low duty factor of operation. To provide a higher burst rate and greater reliability, the researchers used new technology to develop a magnetic pulse compression scheme that eliminates all spark gaps and exceeds requirements. The paper describes the scheme. The magnetic drive system can be tailored to drive induction cells from a few kA to over 10 kA at 500 kV, with average beam power levels in the megawatts. This new 5-MeV, 2.5-kA LIA under construction at the Lawrence Livermore National Laboratory (LLNL) will be used for the development of high brightness sources and will provide a test bed for the new technology, which should lead to LIAs that surpass the radio frequency linacs for efficiency and reliability, as well as fit other industrial applications, such as sewage sterilization.

  20. Multipurpose 5-MeV linear induction accelerator

    NASA Astrophysics Data System (ADS)

    Birx, D. L.; Hawkins, S. A.; Poor, S. E.; Reginato, L. L.; Smith, M. W.

    1984-06-01

    Although linear induction accelerators (LIAs) are quite reliable by most standards, they are limited in repeating rate, average power, and reliability because the final stage of energy delivery is based on spark gap performance. In addition, they have a low duty factor of operation. To provide a higher burst rate and greater reliability, new technology was used to develop a magnetic pulse compression scheme that eliminates all spark gaps and exceeds requirements. The magnetic drive system are tailored to drive induction cells from a few kA to over 10 kA at 500 kV, with average beam power levels in the megawatts. This new 5-MeV, 2.5-kA LIA under construction at the Lawrence Livermore National Laboratory (LLNL) will be used for the development of high brightness sources and will provide a test bed for the new technology, which should lead to LIAs that surpass the radio frequency linacs for efficiency and reliability, as well as fit other industrial applications, such as sewage sterilization.

  1. Scintillator efficiency study with MeV x-rays

    NASA Astrophysics Data System (ADS)

    Baker, Stuart; Brown, Kristina; Curtis, Alden; Lutz, Stephen S.; Howe, Russell; Malone, Robert; Mitchell, Stephen; Danielson, Jeremy; Haines, Todd; Kwiatkowski, Kris

    2014-09-01

    We have investigated scintillator efficiency for MeV radiographic imaging. This paper discusses the modeled detection efficiency and measured brightness of a number of scintillator materials. An optical imaging camera records images of scintillator emission excited by a pulsed x-ray machine. The efficiency of various thicknesses of monolithic LYSO:Ce (cerium-doped lutetium yttrium orthosilicate) are being studied to understand brightness and resolution trade-offs compared with a range of micro-columnar CsI:Tl (thallium-doped cesium iodide) scintillator screens. The micro-columnar scintillator structure apparently provides an optical gain mechanism that results in brighter signals from thinner samples. The trade-offs for brightness versus resolution in monolithic scintillators is straightforward. For higher-energy x-rays, thicker materials generally produce brighter signal due to x-ray absorption and the optical emission properties of the material. However, as scintillator thickness is increased, detector blur begins to dominate imaging system resolution due to the volume image generated in the scintillator thickness and the depth of field of the imaging system. We employ a telecentric optical relay lens to image the scintillator onto a recording CCD camera. The telecentric lens helps provide sharp focus through thicker-volume emitting scintillators. Stray light from scintillator emission can also affect the image scene contrast. We have applied an optical light scatter model to the imaging system to minimize scatter sources and maximize scene contrasts.

  2. Positron emission tomography - a new approach to brain chemistry

    SciTech Connect

    Jacobson, H.G.

    1988-11-11

    Positron emission tomography permits examination of the chemistry of the brain in living beings. Until recently, positron emission tomography had been considered a research tool, but it is rapidly moving into clinical practice. This report describes the uses and applications of positron emission tomography in examinations of patients with strokes, epilepsy, malignancies, dementias, and schizophrenia and in basic studies of synaptic neurotransmission.

  3. Physics perspectives at JLab with a polarized positron beam

    SciTech Connect

    Voutier, Eric J.-M.

    2014-06-01

    Polarized positron beams are in some respect mandatory complements to polarized electron beams. The advent of the PEPPo concept for polarized positron production opens the possibility for the developement at the Jefferson Laboratory of a continuous polarized positron beam. The benefits of such a beam for hadronic structure studies are discussed, together with the technical and technological challenges to face.

  4. A scintillating-fiber 14-MeV neutron detector on TFTR during DT operation

    SciTech Connect

    Wurden, G.A.; Chrien, R.E.; Barnes, C.W.; Sailor, W.C.; Roquemore, A.L.; Lavelle, M.J.; O`Gara, P.M.; Jordan, R.J.

    1994-07-01

    A compact 14-MeV neutron detector using an array of scintillating fibers has been tested on the TFTR tokamak under conditions of a high gamma background. This detector uses a fiber-matrix geometry, a magnetic field-insensitive phototube with an active HV base and pulse-height discrimination to reject low-level pulses from 2.5 MeV neutron and intense gammas. Laboratory calibrations have been performed at EG&G Las Vegas using a pulsed DT neutron generator and a 30 kCi {sup 60}Co source as background, at PPPL using DT neutron sources, and at LANL using an energetic deuterium beam and target at a tandem Van de Graaff accelerator. During the first high power DT shots on TFTR in December 1993, the detector was 15.5 meters from the torus in a large collimator. For a rate of 1 {times} 10{sup 18} n/sec from the tokamak, it operated in an equivalent background of 1 {times} 10{sup 10} gammas/cm{sup 2}/sec ({approximately}4 mA current drain) at a DT count rate of 200 kHz.

  5. Propagation of solitary waves in relativistic electron-positron-ion plasmas with kappa distributed electrons and positrons

    SciTech Connect

    Shah, Asif; Mahmood, S.; Haque, Q.

    2011-11-15

    Electrostatic ion acoustic solitary waves are studied in a plasma system comprising of relativistic ions, kappa distributed electrons, and positrons. The increase in the relativistic streaming factor and positron and electron kappa parameters cause the soliton amplitude to thrive. However, the soliton amplitude diminishes as the positron concentration is increased in the system. Our results are general and may be helpful, in understanding nonlinear phenomena in the presence of kappa distibuted electrons, positrons, and relativistically streaming ions.

  6. ETAII 6 MEV PEPPERPOT EMITTANCE MEASUREMENT

    SciTech Connect

    Paul, A C; Richardson, R; Weir, J

    2004-10-18

    We measured the beam emittance at the ETAII accelerator using a pepper-pot diagnostic at nominal parameters of 6 MeV and 2000 Amperes. During the coarse of these experiments, a ''new tune'' was introduced which significantly improved the beam quality. The source of a background pedestal was investigated and eliminated. The measured ''new tune'' emittance is {var_epsilon}= 8.05 {plus_minus} 0. 53 cm - mr or a normalized emittance of {var_epsilon}{sub n} = 943 {plus_minus} 63 mm - mr In 1990 the ETAII programmatic emphasis was on free electron lasers and the paramount parameter was whole beam brightness. The published brightness for ETAII after its first major rebuild was J = 1 - 3 x 10{sup 8} A/(m - rad){sup 2} at a current and energy of 1000-1400 Amperes and 2.5 MeV. The average normalized emittance derived from table 2 of that report is 864 mm-mr corresponding to a real emittance of 14.8 cm-mr.

  7. Application of mathematical removal of positron range blurring in Positron Emission Tomography

    SciTech Connect

    Haber, S.F.; Derenzo, S.E.; Uber, D.

    1990-04-01

    The range of positrons in tissue is an important limitation to the ultimate spatial resolution achievable in Positron Emission Tomography. In this work we applied a Fourier deconvolution technique to remove range blurring in images taken by the Donner 600-Crystal Positron Tomograph. Using phantom data, we found significant improvement in the image quality and the FWHM for both {sup 68}Ga and {sup 82}Rb. These were successfully corrected so that the images and FWHM almost matched those of {sup 18}F which has negligible positron range. However, statistical noise was increased by the deconvolution process and it was not practical to recover the full spatial resolution of the tomograph. 10 refs., 6 figs., 3 tabs.

  8. Application of mathematical removal of positron range blurring in positron emission tomography

    SciTech Connect

    Haber, S.F.; Derenzo, S.E.; Uber, D. )

    1990-06-01

    The range of positrons in tissue is an important limitation to the ultimate spatial resolution achievable in positron emission tomography. In this work the authors have applied a Fourier deconvolution technique to remove range blurring in images taken by the Donner 600-crystal positron tomograph. Using phantom data, the authors have found significant improvement in the image quality and the FWHM for both {sup 68}Ga and {sup 82}Rb. These were successfully corrected so that the images and FWHM almost matched those of {sup 18}F which has negligible positron range. However, statistical noise was increased by the deconvolution process and it was not practical to recover the full spatial resolution of the tomograph.

  9. Positron Annihilation in the Bipositronium Ps2

    SciTech Connect

    Bailey, David H.; Frolov, Alexei M.

    2005-07-01

    The electron-positron-pair annihilation in the bipositronium PS2 is considered. In particular, the two-, three-, one- and zero-photon annihilation rates are determined to high accuracy. The corresponding analytical expressions are also presented. Also, a large number of bound state properties have been determined for this system.

  10. Advanced Instrumentation for Positron Emission Tomography [PET

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1985-04-01

    This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.

  11. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  12. Excitation of helium ion by positron impact

    SciTech Connect

    Khan, P.; Ghosh, A.S.

    1986-01-01

    Three (1s,2s,2p) and five (1s,2s,2p,3s-bar,3p-bar) -state close-coupling methods have been employed to calculate the n = 2 excitation cross sections of helium ion by positron impact. The effect of pseudostate is found to be very pronounced in the case of 1s-2s excitation.

  13. Positrons observed to originate from thunderstorms

    NASA Astrophysics Data System (ADS)

    Fishman, Gerald J.

    2011-05-01

    Thunderstorms are the result of warm, moist air moving rapidly upward, then cooling and condensing. Electrification occurs within thunderstorms (as noted by Benjamin Franklin), produced primarily by frictional processes among ice particles. This leads to lightning discharges; the types, intensities, and rates of these discharges vary greatly among thunderstorms. Even though scientists have been studying lightning since Franklin's time, new phenomena associated with thunderstorms are still being discovered. In particular, a recent finding by Briggs et al. [2011], based on observations by the Gamma-Ray Burst Monitor (GBM) instrument on NASA's satellite-based Fermi Gamma-ray Space Telescope (Fermi), shows that positrons are also generated by thunderstorms. Positrons are the antimatter form of electrons—they have the same mass and charge as an electron but are of positive rather than negative charge; hence the name positron. Observations of positrons from thunderstorms may lead to a new tool for understanding the electrification and high-energy processes occurring within thunderstorms. New theories, along with new observational techniques, are rapidly evolving in this field.

  14. Positron Interactions with Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand K.

    2012-01-01

    Dirac, in 1928, combining the ideas of quantum mechanics and the ideas of relativity invented the well-known relativistic wave equation. In his formulation, he predicted an antiparticle of the electron of spin n-bar/2. He thought that this particle must be a proton. Dirac published his interpretation in a paper 'A theory of electrons and protons.' It was shown later by the mathematician Hermann Weyl that the Dirac theory was completely symmetric between negative and positive particles and the positive particle must have the same mass as that of the electron. In his J. Robert Oppenheimer Memorial Prize Acceptance Speech, Dirac notes that 'Blackett was really the first person to obtain hard evidence for the existence of a positron but he was afraid to publish it. He wanted confirmation, he was really over cautious.' Positron, produced by the collision of cosmic rays in a cloud chamber, was detected experimentally by Anderson in 1932. His paper was published in Physical Review in 1933. The concept of the positron and its detection were the important discoveries of the 20th century. I have tried to discuss various processes involving interactions of positrons with atoms and ions. This includes scattering, bound states and resonances. It has not been possible to include the enormous work which has been carried out during the last 40 or 50 years in theory and measurements.

  15. First results of a positron microscope

    SciTech Connect

    Van House, J.; Rich, A.

    1988-01-18

    We have constructed a prototype transmission positron microscope (TPM) and taken magnified pictures of various objects with it. Information gained from the prototype TPM has allowed us to predict resolutions achievable in the near future using an upgraded TPM. Applications are discussed.

  16. New source of dense, cryogenic positron plasmas.

    PubMed

    Jørgensen, L V; Amoretti, M; Bonomi, G; Bowe, P D; Canali, C; Carraro, C; Cesar, C L; Charlton, M; Doser, M; Fontana, A; Fujiwara, M C; Funakoshi, R; Genova, P; Hangst, J S; Hayano, R S; Kellerbauer, A; Lagomarsino, V; Landua, R; Lodi Rizzini, E; Macrì, M; Madsen, N; Mitchard, D; Montagna, P; Rotondi, A; Testera, G; Variola, A; Venturelli, L; van der Werf, D P; Yamazaki, Y

    2005-07-01

    We have developed a new method, based on the ballistic transfer of preaccumulated plasmas, to obtain large and dense positron plasmas in a cryogenic environment. The method involves transferring plasmas emanating from a region with a low magnetic field (0.14 T) and relatively high pressure (10(-9) mbar) into a 15 K Penning-Malmberg trap immersed in a 3 T magnetic field with a base pressure better than 10(-13) mbar. The achieved positron accumulation rate in the high field cryogenic trap is more than one and a half orders of magnitude higher than the previous most efficient UHV compatible scheme. Subsequent stacking resulted in a plasma containing more than 1.2 x 10(9) positrons, which is a factor 4 higher than previously reported. Using a rotating wall electric field, plasmas containing about 20 x 10(6) positrons were compressed to a density of 2.6 x 10(10) cm(-3). This is a factor of 6 improvement over earlier measurements. PMID:16090691

  17. Positron source position sensing detector and electronics

    DOEpatents

    Burnham, Charles A.; Bradshaw, Jr., John F.; Kaufman, David E.; Chesler, David A.; Brownell, Gordon L.

    1985-01-01

    A positron source, position sensing device, particularly with medical applications, in which positron induced gamma radiation is detected using a ring of stacked, individual scintillation crystals, a plurality of photodetectors, separated from the scintillation crystals by a light guide, and high resolution position interpolation electronics. Preferably the scintillation crystals are several times more numerous than the photodetectors with each crystal being responsible for a single scintillation event from a received gamma ray. The light guide will disperse the light emitted from gamma ray absorption over several photodetectors. Processing electronics for the output of the photodetectors resolves the location of the scintillation event to a fraction of the dimension of each photodetector. Because each positron absorption results in two 180.degree. oppositely traveling gamma rays, the detection of scintillation in pairs permits location of the positron source in a manner useful for diagnostic purposes. The processing electronics simultaneously responds to the outputs of the photodetectors to locate the scintillations to the source crystal. While it is preferable that the scintillation crystal include a plurality of stacked crystal elements, the resolving power of the processing electronics is also applicable to continuous crystal scintillators.

  18. Measured neutron carbon kerma factors from 14. 1 MeV to 18 MeV

    SciTech Connect

    Deluca, P.M. Jr.; Barschall, H.H.; Haight, R.C.; McDonald, J.C.

    1984-01-01

    For A-150 tissue-equivalent plastic, the total neutron kerma is dominated by the hydrogen kerma. Tissue kerma is inferred with reasonable accuracy by normalization to the kerma factor ratio between tissue and A-150 plastic. Because of the close match in the hydrogen abundance in these materials, the principal uncertainty is due to the kerma factors of carbon and oxygen. We have measured carbon kerma factor values of 0.183 +- 0.015 10/sup -8/ cGy cm/sup 2/ and 0.210 +- 0.16 10/sup -8/ cGy cm/sup 2/ at 14.1-MeV and 15-MeV neutron energy, respectively. A preliminary value of 0.297 +- 0.03 10/sup -8/ cGy cm/sup 2/ has been determined at 17.9 MeV. A recent microscopic cross section measurement of the (n,n'3..cap alpha..) reaction in carbon at 14.1-MeV energy gives a kerma factor of 0.184 +- 0.019 10/sup 8/ cGy cm/sup 2/ in agreement with the present result. 9 refs., 4 figs., 2 tabs.

  19. Positron annihilation studies of moisture in graphite-reinforced composites

    SciTech Connect

    Singh, J.J.; Holt, W.H.; Mock, W., Jr.

    1980-07-01

    The positron lifetime technique of monitoring absorbed moisture is applied to several composites, including graphite/polymides which are candidates for high-temperature (over 260 C) applications. The experimental setup is a conventional fast-slow coincidence system wherein the positron lifetime is measured with respect to a reference time determined by the detection of a nuclear gamma ray emitted simultaneously with the positron. From the experiments, a rate of change of positron mean lifetime per unit mass of water can be determined for each type of specimen. Positron lifetime spectra are presented for a graphite/polyimide composite and for a pure polyimide.

  20. Positron annihilation studies of moisture in graphite-reinforced composites

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. H.; Mock, W., Jr.; Buckingham, R. D.

    1980-01-01

    The positron lifetime technique of monitoring absorbed moisture is applied to several composites, including graphite/polymides which are candidates for high-temperature (over 260 C) applications. The experimental setup is a conventional fast-slow coincidence system wherein the positron lifetime is measured with respect to a reference time determined by the detection of a nuclear gamma ray emitted simultaneously with the positron. From the experiments, a rate of change of positron mean lifetime per unit mass of water can be determined for each type of specimen. Positron lifetime spectra are presented for a graphite/polyimide composite and for a pure polyimide.

  1. Future laser-accelerated proton beams at ELI-Beamlines as potential source of positron emitters for PET

    NASA Astrophysics Data System (ADS)

    Amato, E.; Italiano, A.; Margarone, D.; Pagano, B.; Baldari, S.; Korn, G.

    2016-04-01

    The development of novel compact PET radionuclide production systems is of great interest to promote the diffusion of PET diagnostics, especially in view of the continuous development of novel, fast and efficient, radiopharmaceutical methods of labeling. We studied the feasibility to produce clinically-relevant amounts of PET isotopes by means of laser-accelerated proton sources expected at the ELI-Beamlines facility where a PW, 30 fs, 10 Hz laser system will be available. The production yields of several positron emitters were calculated through the TALYS software, by taking into account three possible scenarios of broad proton spectra expected, with maximum energies ranging from about 8 MeV to 100 MeV. With the hypothesized proton fluencies, clinically-relevant amounts of radionuclides can be obtained, suitable to prepare single doses of radiopharmaceuticals exploiting modern fast and efficient labeling systems.

  2. MeV negative ion source from ultra-intense laser-matter interaction

    SciTech Connect

    Ter-Avetisyan, S.; Ramakrishna, B.; Doria, D.; Prasad, R.; Borghesi, M.; Andreev, A. A.; Steinke, S.; Schnuerer, M.; Nickles, P. V.; Tikhonchuk, V.

    2012-02-15

    Experimental demonstration of negative ion acceleration to MeV energies from sub-micron size droplets of water spray irradiated by ultra-intense laser pulses is presented. Thanks to the specific target configuration and laser parameters, more than 10{sup 9} negative ions per steradian solid angle in 5% energy bandwidth are accelerated in a stable and reliable manner. To our knowledge, by virtue of the ultra-short duration of the emission, this is by far the brightest negative ion source reported. The data also indicate the existence of beams of neutrals with at least similar numbers and energies.

  3. The ^58,60Ni(n,α) Reactions from Threshold to 50 MeV

    NASA Astrophysics Data System (ADS)

    Haight, R. C.; Bateman, F. B.; Sterbenz, S. M.; Chadwick, M. B.; Young, P. G.; Grimes, S. M.; Wasson, O. A.; Vonach, H.; Maier-Komor, P.

    1996-10-01

    Information on nuclear level densities over a wide range of excitation energies can be obtained from data on (n,α) reactions.(M. B. Chadwick et al., this meeting) We have measured α-particle emission cross sections, angular distributions and emission spectra for neutrons up to 50 MeV on targets of ^58Ni and ^60Ni using the pulsed spallation source of fast neutrons at the Los Alamos Neutron Science Center. The results will be compared with our previous measurements on ^59Co.(S. M. Grimes et al., Nuclear Science and Engineering in press) The possibilities of extending this method to much heavier nuclides will be discussed.

  4. A 2 MeV, 100 mA electron accelerator for a small laboratory environment

    NASA Astrophysics Data System (ADS)

    Clayton, C. E.; Marsh, K. A.

    1993-03-01

    A small, high performance electron linear accelerator is described. It is a modified version of a commercially available portable x-ray source. The 9.3 GHz rf linac and beamline deliver a 3 ns train of approximately 15 ps pulses with a peak current, limited by beam loading of the rf structure, of more than 100 mA and a beam energy of around 2 MeV with a 5% full width at half maximum energy spread. The beam emittance is 6π mm mrad and the final spot size is 250 μm diam for f/10 focusing.

  5. Formation of the 0.511.-MeV line in solar flares. [statistical mechanics of line spectra for gamma rays

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Joyce, G.; Ramaty, R.; Werntz, C.

    1976-01-01

    The gamma-ray line produced at 0.51-MeV was studied and is shown to be the result of either of free annihilation of positrons with electrons or of the decay of positronium by 2-photon emission. Positron annihilation from the bound state of positronium may also proceed by 3-photon emission, resulting in a continuum with energies up to 0.51-MeV. Accurate calculations of the rates of free annihilation and positronium formation in a solar-flare plasma are presented. Estimates of the positronium-formulation rates by charge exchange and the rates of dissociation and quenching are also considered. The temperature and density dependence of the ratio of 3-photon to 2-photon emission was obtained. It is shown that when the ratio of free electrons to neutral atoms in the plasma is approximately unity or greater, the Doppler width of the 0.51-MeV line is a function of the temperature of the annihilation region. For the small ion densities characteristics of the photosphere, the width is predominantly a function of the density.

  6. Backward-going MeV electrons and gamma rays from 1018 W/cm2 laser interactions with water

    NASA Astrophysics Data System (ADS)

    Feister, Scott; Morrison, John T.; Frische, Kyle D.; Orban, Chris; Ovchinnikov, Vladimir M.; Nees, John A.; Austin, Drake R.; Chowdhury, Enam A.; Freeman, Richard R.; Roquemore, W. Melvyn

    2015-05-01

    Gamma rays with ~1 MeV energy are measured following the relativistic interaction of a 3 mJ, 1018 W/cm2 short pulse laser with a 30 μm diameter flowing water column. Contrary to expectations, radiation emission is peaked in the direction opposite to the normally-incident laser propagation (specular direction). Experimental measurements and particle-in-cell (PIC) simulations of laser-plasma interaction show a pre-formed-plasma-dependent, backward-going, beam-like primary electron source. The MeV component of the electron and gamma ray spectrum, which is more than five times the ponderomotive energy scale of the laser, is highly sensitive to the presence of a nanosecond-timescale laser pre-pulse. This research was sponsored by the Quantum and Non-Equilibrium Processes Division of the Air Force Office of Scientific Research, under the management of Dr. Enrique Parra, Program Manager.

  7. The sup 252 Cf(sf) neutron spectrum in the 5- to 20-MeV energy range

    SciTech Connect

    Marten, H.; Richter, D.; Seeliger, D. ); Fromm, W.D. ); Bottger, R.; Klein, H. )

    1990-11-01

    This paper reports on the {sup 252}Cf neutron spectrum measured at high energies with a miniature ionization chamber and two different NE-213 neutron detectors. The gamma-ray background and the main cosmic background caused by muons were suppressed by applying efficient pulse-shape discrimination. On the basis of two-dimensional spectroscopy of the neutron time-of-flight and scintillation pulse height, the sliding bias method is used to minimize experimental uncertainties. The experimental data, corrected for several systematic influences, confirm earlier results that show negative deviations from a reference Maxwellian distribution with a 1.42-MeV spectrum temperature for neutron energies above 6 MeV. Experimental results of this work are compared with various statistical model approaches to the {sup 252}Cf(sf) neutron spectrum.

  8. Positron Beam Propagation in a Meter Long Plasma Channel

    SciTech Connect

    Marsh, K.A.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Mori, W.B.; Decker, F.-J.; Hogan, M.J.; Iverson, R.; O'Connell, C.; Raimondi, P.; Siemann, Robert H.; Walz, D.; Katsouleas, T.C.; Muggli, P.; /Southern California U.

    2008-03-17

    Recent experiments and simulations have shown that positron beams propagating in plasmas can be focused and also create wakes with large accelerating gradients. For similar parameters, the wakes driven by positron beams are somewhat smaller compared to the case of an electron beam. Simulations have shown that the wake amplitude can be increased if the positron beam is propagated in a hollow plasma channel (Ref. 1). This paper, compares experimentally, the propagation and beam dynamics of a positron beam in a meter scale homogeneous plasma, to a positron beam hollow channel plasma. The results show that positron beams in hollow channels are less prone to distortions and deflections. Hollow channels were observed to guide the positron beam onto the channel axis. Beam energy loss was also observed implying the formation of a large wake amplitude. The experiments were carried out as part of the E-162 plasma wakefield experiments at SLAC.

  9. PREFACE: The International Workshop on Positron Studies of Defects 2014

    NASA Astrophysics Data System (ADS)

    Sugita, Kazuki; Shirai, Yasuharu

    2016-01-01

    The International Workshop on Positron Studies of Defects 2014 (PSD-14) was held in Kyoto, Japan from 14-19 September, 2014. The PSD Workshop brought together positron scientists interested in studying defects to an international platform for presenting and discussing recent results and achievements, including new experimental and theoretical methods in the field. The workshop topics can be characterized as follows: • Positron studies of defects in semiconductors and oxides • Positron studies of defects in metals • New experimental methods and equipment • Theoretical calculations and simulations of momentum distributions, positron lifetimes and other characteristics for defects • Positron studies of defects in combination with complementary methods • Positron beam studies of defects at surfaces, interfaces, in sub-surface regions and thin films • Nanostructures and amorphous materials

  10. Methods and apparatus for producing and storing positrons and protons

    DOEpatents

    Akers, Douglas W.

    2010-07-06

    Apparatus for producing and storing positrons may include a trap that defines an interior chamber therein and that contains an electric field and a magnetic field. The trap may further include a source material that includes atoms that, when activated by photon bombardment, become positron emitters to produce positrons. The trap may also include a moderator positioned adjacent the source material. A photon source is positioned adjacent the trap so that photons produced by the photon source bombard the source material to produce the positron emitters. Positrons from the positron emitters and moderated positrons from the moderator are confined within the interior chamber of the trap by the electric and magnetic fields. Apparatus for producing and storing protons are also disclosed.

  11. High-yield positron systems for linear colliders

    SciTech Connect

    Clendenin, J.E.

    1989-04-01

    Linear colliders, such as the SLC, are among those accelerators for which a high-yield positron source operating at the repetition rate of the accelerator is desired. The SLC, having electron energies up to 50 GeV, presents the possibility of generating positron bunches with useful charge even exceeding that of the initial electron bunch. The exact positron yield to be obtained depends on the particular capture, transport and damping system employed. Using 31 GeV electrons impinging on a W-type converter phase-space at the target to the acceptance of the capture rf section, the SLC source is capable of producing, for every electron, up to two positrons within the acceptance of the positron damping ring. The design of this source and the performance of the positron system as built are described. Also, future prospects and limitations for high-yield positron systems are discussed. 11 refs., 5 figs., 3 tabs.

  12. Shielding measurements for 230-Mev protons

    SciTech Connect

    Siebers, J.V.; DeLuca, P.M. Jr.; Pearson, D.W. . Dept. of Medical Physics); Coutrakon, G. . Medical Center)

    1993-09-01

    Energetic neutrons, produced as protons interact with matter, dominate the radiation shielding environment for proton accelerators. Because of the scarcity of data describing the shielding required to protect personnel from these neutrons, absorbed dose and dose-equivalent values are measured as a function of depth in a thick concrete shield at neutron emission angles of 0, 22, 45, and 90 deg for 230-MeV protons incident upon stopping-length aluminum, iron, and lead targets. Neutron attenuation lengths vary sharply with angle but are independent of the target material. Comparing results with prior shielding calculations, the High-Energy Transport Code overestimates neutron production and attenuation lengths in the forward direction. Analytical methods compare favorably in the forward direction but overestimate the production and attenuation lengths at large angles. The results presented are useful for determining the shielding requirements for proton radiotherapy facilities and as a benchmark for future calculations.

  13. Diffuse cosmic gamma rays at 1-20 MeV: a trace of the dark matter?

    SciTech Connect

    Lawson, Kyle; Zhitnitsky, Ariel R E-mail: arz@phas.ubc.ca

    2008-01-15

    Several independent observations of the galactic core suggest hitherto unexplained sources of energy. The most well known case is the 511 keV line which has proven very difficult to explain with conventional astrophysical positron sources. A similar, but less well known mystery is the excess of gamma ray photons detected by COMPTEL across a broad energy range {approx}1-20 MeV. Such photons are found to be very difficult to produce via known astrophysical sources. We show in this work that dark matter in the form of dense antimatter droplets provides a natural explanation for the observed flux of gamma rays in the {approx}1-20 MeV range. We argue that such photons must always accompany the 511 keV line as they are produced by the same mechanism within our framework. We calculate the spectrum and intensity of the {approx}1-20 MeV gamma rays, and find it to be consistent with the COMPTEL data.

  14. SMM Observations of Gamma-Ray Transients. I. A Search for Variable Emission at MeV Energies from Five Galactic and Extragalactic Sources

    NASA Astrophysics Data System (ADS)

    Harris, M. J.; Share, G. H.; Leising, M. D.; Grove, J. E.

    1993-10-01

    Transient emission at energies near 1 MeV has been reported by previous experiments on time scales of weeks to months from the Galactic center, the Crab Nebula, and Cyg X-1, and on shorter time-scales from NGC 4151 and Cen A. The spectra of these events fall into two broad classes: a broad line-like feature centered near 1 MeV, and continuum emission (or a very broad feature) extending from ˜600 keV up to several MeV. These features have been interpreted theoretically in terms of emission from hot pair-dominated plasmas, which may be the necessary positron source implied by reports of narrow e- e+ annihilation lines from Cyg X- 1 and the Galactic center. In this paper, data accumulated by the Solar Maximum Mission Gamma Ray Spectrometer (GRS) between 1980 and 1989 have been searched for evidence of these two types of features. We find no compelling evidence for transient 1 MeV broad-line emission on time scales of order 12 d or longer when any of the sources are in the GRS field of view; upper limits on the transient line flux during any 12 d period are typically ˜4.5 × 10-3γ (cm2 s)-1. The same is true of variability of the continuum between 0.6-7 MeV, for which the upper limits are characteristically ˜2 times the nominal flux from the Crab for any 12 d period. Our analysis was not sensitive enough either to confirm or to reject several reports from other experiments of transient emission in the 0.6-7 MeV continuum during 1980-1989. We withdraw the statement in Share et al. (1993) that our upper limit for one such event, a transient from the Crab Nebula in 1980 Spring, is inconsistent with the measurement of Ling & Dermer (1991). We did not detect any transient emission in the 1 MeV feature preceding or coinciding with reported emission of the 0.511 MeV annihilation line from the Galactic center in 1988-1989. We discuss briefly the implications of this result for models of the annihilation of positrons produced in the Galactic center source 1E 1740.7-2942.

  15. 3D numerical thermal stress analysis of the high power target for the SLC Positron Source

    SciTech Connect

    Reuter, E.M.; Hodgson, J.A.

    1991-05-01

    The volumetrically nonuniform power deposition of the incident 33 GeV electron beam in the SLC Positron Source Target is hypothesized to be the most likely cause target failure. The resultant pulsed temperature distributions are known to generate complicated stress fields with no known closed-form analytical solution. 3D finite element analyses of these temperature distributions and associated thermal stress fields in the new High Power Target are described here. Operational guidelines based on the results of these analyses combined with assumptions made about the fatigue characteristics of the exotic target material are proposed. 6 refs., 4 figs.

  16. PULSE COUNTER

    DOEpatents

    Trumbo, D.E.

    1959-02-10

    A transistorized pulse-counting circuit adapted for use with nuclear radiation detecting detecting devices to provide a small, light weight portable counter is reported. The small size and low power requirements of the transistor are of particular value in this instance. The circuit provides an adjustable count scale with a single transistor which is triggered by the accumulated charge on a storage capacitor.

  17. Two-pulse ionization injection into quasilinear laser wakefields.

    PubMed

    Bourgeois, N; Cowley, J; Hooker, S M

    2013-10-11

    We describe a scheme for controlling electron injection into the quasilinear wakefield driven by a guided drive pulse via ionization of a dopant species by a collinear injection laser pulse with a short Rayleigh range. The scheme is analyzed by particle-in-cell simulations which show controlled injection and acceleration of electrons to an energy of 370 MeV, a relative energy spread of 2%, and a normalized transverse emittance of 2.0 μm. PMID:24160608

  18. Compton MeV Gamma-ray Source on Texas Petawatt Laser-Driven GeV Electron Accelerator

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph M.; Tsai, Hai-En; Zgadzaj, Rafal; Wang, Xiaoming; Chang, Vincent; Fazel, Neil; Henderson, Watson; Downer, M. C.; Texas Petawatt Laser Team

    2015-11-01

    Compton Backscatter (CBS) from laser wakefield accelerated (LWFA) electron bunches is a promising compact, femtosecond (fs) source of tunable high-energy photons. CBS x-rays have been produced from LWFAs using two methods: (1) retro-reflection of the LWFA drive pulse via an in-line plasma mirror (PM); (2) scattering of a counter-propagating secondary pulse split from the drive pulse. Previously MeV photons were only demonstrated by the latter method, but the former method is self-aligning. Here, using the Texas Petawatt (TPW) laser and a self-aligned near-retro-reflecting PM, we generate bright CBS γ-rays with central energies higher than 10 MeV. The 100 μm focus of TPW delivers 100 J in 100 fs pulses, with intensity 6x1018 W/cm2 (a0 =1.5), to the entrance of a 6-cm long Helium gas cell. A thin, plastic PM immediately following the gas cell exit retro-reflects the LWFA driving pulse into the oncoming 0.5 - 2 GeV electron beam to produce a directional beam of γ-rays without significant bremsstrahlung background. A Pb-filter pack on a thick, pixelated, CsI(Tl) scintillator is used to estimate the spectrum via differential transmission and to observe the beam profile. Recorded beam profiles indicate a low divergence. Department of Physics, The University of Texas at Austin

  19. Selenium-72 formation via nat Br(p,x) induced by 100 MeV protons: steps towards a novel 72Se/72As generator system.

    PubMed

    Ballard, B; Wycoff, D; Birnbaum, E R; John, K D; Lenz, J W; Jurisson, S S; Cutler, C S; Nortier, F M; Taylor, W A; Fassbender, M E

    2012-04-01

    Selenium-72 production by the proton bombardment of a natural NaBr target has been successfully demonstrated at the Los Alamos National Laboratory Isotope Production Facility (LANL-IPF). Arsenic-72 (half life 26 h) is a medium-lived positron emitting radionuclide with the major advantage of being formed as the daughter of another "generator" radioisotope (Se-72, 8.5 d). A (72)Se/(72)As generator would be the preferred mechanism for clinical utilization of (72)As for positron emission tomography (PET). No portable (72)Se/(72)As generator system has been demonstrated for convenient, repeated (72)As elution ("milking"). In this work, we describe (72)Se production and recovery from irradiated NaBr targets using a 100 MeV proton beam. We also introduce an (72)As generator principle based on (72)Se chelation followed by liquid-liquid extraction, which will be transferred to a solid-phase sorption/elution system. PMID:22326368

  20. Clinical applications with the HIDAC positron camera

    NASA Astrophysics Data System (ADS)

    Frey, P.; Schaller, G.; Christin, A.; Townsend, D.; Tochon-Danguy, H.; Wensveen, M.; Donath, A.

    1988-06-01

    A high density avalanche chamber (HIDAC) positron camera has been used for positron emission tomographic (PET) imaging in three different human studies, including patients presenting with: (I) thyroid diseases (124 cases); (II) clinically suspected malignant tumours of the pharynx or larynx (ENT) region (23 cases); and (III) clinically suspected primary malignant and metastatic tumours of the liver (9 cases, 19 PET scans). The positron emitting radiopharmaceuticals used for the three studies were Na 124I (4.2 d half-life) for the thyroid, 55Co-bleomycin (17.5 h half-life) for the ENT-region and 68Ga-colloid (68 min half-life) for the liver. Tomographic imaging was performed: (I) 24 h after oral Na 124I administration to the thyroid patients, (II) 18 h after intraveneous administration of 55Co-bleomycin to the ENT patients and (III) 20 min following the intraveneous injection of 68Ga-colloid to the liver tumour patients. Three different imaging protocols were used with the HIDAC positron camera to perform appropriate tomographic imaging in each patient study. Promising results were obtained in all three studies, particularly in tomographic thyroid imaging, where a significant clinical contribution is made possible for diagnosis and therapy planning by the PET technique. In the other two PET studies encouraging results were obtained for the detection and precise localisation of malignant tumour disease including an estimate of the functional liver volume based on the reticulo-endothelial-system (RES) of the liver, obtained in vivo, and the three-dimensional display of liver PET data using shaded graphics techniques. The clinical significance of the overall results obtained in both the ENT and the liver PET study, however, is still uncertain and the respective role of PET as a new imaging modality in these applications is not yet clearly established. To appreciate the clinical impact made by PET in liver and ENT malignant tumour staging needs further investigation

  1. INTEGRAL/SPI Observations of Electron-Positron Annihilation Radiation from our Galaxy

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Watanabe, K.; Knoedlseder, J.; Jean, P.; Lonjou, V.; Weidenspointer, G.; Skinner, G.; Vedrenne, G.; Roques, J.-P.; Schanne, S.; Schoenfelder, V.

    2005-01-01

    The spectrometer on INTEGRAL (SPI) is a coded-aperture gamma-ray telescope with moderate angular resolution (3 deg) and superior energy resolution (2 keV at 511 kev). One of it's principal science goals is the detailed study of 511 keV electron-positron annihilation from our Galaxy. The origin of this radiation remains a mystery, however current morphological studies suggest an older stellar population. There has also been recent speculation on the possibility of the existence of light (< 100 MeV) dark matter particles whose annihilation or decay could produce the observed 511 keV emission. In this paper we summarize the current results from SPI, compare them with previous results and discuss their implication on possible models for the production of the annihilation radiation.

  2. Neutron dosimetry at a high-energy electron-positron collider

    NASA Astrophysics Data System (ADS)

    Bedogni, Roberto

    Electron-positron colliders with energy of hundreds of MeV per beam have been employed for studies in the domain of nuclear and sub-nuclear physics. The typical structure of such a collider includes an LINAC, able to produce both types of particles, an accumulator ring and a main ring, whose diameter ranges from several tens to hundred meters and allows circulating particle currents of several amperes per beam. As a consequence of the interaction of the primary particles with targets, shutters, structures and barriers, a complex radiation environment is produced. This paper addresses the neutron dosimetry issues associated with the operation of such accelerators, referring in particular to the DAΦ NE complex, operative since 1997 at INFN-Frascati National Laboratory (Italy). Special attention is given to the active and passive techniques used for the spectrometric and dosimetric characterization of the workplace neutron fields, for radiation protection dosimetry purposes.

  3. The Scaling of Positron Production in Intense Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Link, A.; Fiuza, F.; Hazi, A.; Nagel, S. R.; Park, J.; Tommasini, R.; Williams, G. J.; Sentoku, Y.; Meyerhofer, D. D.; Myatt, J. F.; Audebert, P.; Fedosejevs, R.; Kerr, S.; Hill, M.; Hoarty, D.; Hobbs, L.; James, S.

    2014-10-01

    The dependence of positron yield on laser energy was observed to be nonlinear through experiments using the laser facilities at Jupiter, OMEGA EP, and ORION for laser energies of 100 - 1500 J and intensities of 1018 -1020 Watts/cm2. The measured yield increases as ~E2, faster than that predicted by simple estimates using GEANT4. This scaling results from a combination of higher energy electrons produced at increased laser intensity and the presence of unexpected recirculation of MeV electrons in the mm-thick target. Experimental results together with analytical and Monte-Carlo simulations of the data will be presented. This work was performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344, and funded by LDRD (#12-ERD-062).

  4. Cross Sections and Analyzing Powers of Nitrogen -15(PROTON, NEUTRON)OXYGEN-15 at 200 Mev and 494 Mev.

    NASA Astrophysics Data System (ADS)

    Ciskowski, Douglas Edward

    Differential cross sections and analyzing powers have been measured for the ^{15} N(p,n)^{15}O(g.s.) reaction at bombarding energies of 200 MeV and 494 MeV. The 494 MeV data were obtained at the LAMPF Neutron Time-Of -Flight Facility on an 82 m flight path with a resolution of about 2.7 MeV. The 200 MeV data were obtained at IUCF on a 76 m flight path with a resolution of about 1.1 MeV. At both energies, the measured analyzing power is small, the magnitude is less than.2 for momentum transfers of less than 1 fm^{-1}. In contrast, both Relativistic and standard DWIA calculations predict a maximum of A = -.7 near q = 0.7 fm ^{-1}.

  5. Charge-exchange neutral particle measurement in MeV energy range on JT-60U

    NASA Astrophysics Data System (ADS)

    Kusama, Y.; Nemoto, M.; Satoh, M.; Tsukahara, Y.; Tobita, K.; Takeuchi, H.; Petrov, S.; Afanassiev, V.; Kozlovskij, S.; Kislyakov, A.; Petrov, M.

    1995-01-01

    A charge-exchange neutral particle analyzer for the measurement of the MeV energy range ions produced by nuclear fusion or radio frequency heating has been developed and installed in JT-60U. Neutral particles entering the analyzer are ionized with a carbon foil of thickness 400 Å. The energy and mass of the stripped ions are resolved by magnetic and electrostatic fields (E∥B type). The analyzer has eight CsI(Tl) scintillator detectors. The energy range is 0.5-4 MeV for 4He0, the dynamic range is 4.08 and the energy resolution is 6%-11%. The detection efficiency for 4He0 with energy above 1 MeV is 30%-40%. A pulse height analysis (PHA) with 16 channels was adopted to distinguish particle signals from noise arising from neutrons, γ rays and optical lights emitted by JT-60U plasmas. The validity of the PHA was confirmed in a calibration experiment using a neutron source and in a high power heating experiment in JT-60U.

  6. Application of positron annihilation in materials science

    SciTech Connect

    Siegel, R.W.; Fluss, M.J.; Smedskjaer, L.C.

    1984-05-01

    Owing to the ability of the positron to annihilate from a variety of defect-trapped states, positron annihilation spectroscopy (PAS) has been applied increasingly to the characterization and study of defects in materials in recent years. In metals particularly, it has been demonstrated that PAS can yield defect-specific information which, by itself or in conjunction with more traditional experimental techniques, has already made a significant impact upon the determination of atomic-defect properties and the monitoring and characterization of vacancy-like microstructure development, as occurs during post-irradiation annealing. The applications of PAS are now actively expanding to the study of more complex defect-related phenomena in irradiated or deformed metals and alloys, phase transformations and structural disorder, surfaces and near-surface defect characterization. A number of these applications in materials science are reviewed and discussed with respect to profitable future directions.

  7. Cold Positrons from Decaying Dark Matter

    SciTech Connect

    Boubekeur, Lotfi; Dodelson, Scott; Vives, Oscar

    2012-11-01

    Many models of dark matter contain more than one new particle beyond those in the Standard Model. Often heavier particles decay into the lightest dark matter particle as the Universe evolves. Here we explore the possibilities that arise if one of the products in a (Heavy Particle) $\\rightarrow$ (Dark Matter) decay is a positron, and the lifetime is shorter than the age of the Universe. The positrons cool down by scattering off the cosmic microwave background and eventually annihilate when they fall into Galactic potential wells. The resulting 511 keV flux not only places constraints on this class of models but might even be consistent with that observed by the INTEGRAL satellite.

  8. Do positrons measure atomic and molecular diameters?

    NASA Astrophysics Data System (ADS)

    Franz, Jan; Fedus, Kamil; Karwasz, Grzegorz P.

    2016-07-01

    We report on density functional calculations (DFT) of elastic integral scattering cross-sections for positron collisions with argon, krypton, nitrogen and methane. The long-range asymptotic polarization potential is described using higher-order terms going much beyond an induced dipole potential (- α / r 4) while the short-range interaction is modeled by two different forms of electron - positron correlation potential (Boroński-Nieminen and Quantum Monte Carlo potentials). The results of both approaches agree quite well with the recent theoretical and measured values. Based on the present and previous theoretical and experimental data we discuss some systematics observed in integral scattering cross-sections below the positronium formation threshold. In particular we point out on the correlation between the values of scattering cross-sections and atomic dimensions.

  9. Positronium formation in positron-helium scattering

    SciTech Connect

    Khan, P.; Ghosh, A.S.

    1983-10-01

    The positronium-formation cross sections in positron-helium scattering have been calculated with the use of a distorted-wave polarized-orbital method from the threshold to 100 eV. The results with and without the matrix elements involving the distorted target wave functions are found to differ appreciably. The results of the first Born approximation are not expected to be correct even at the incident-positron energy 100 eV. The measured values at 20 eV are found to be less than (1/2) of the present predicted values. The sharp rise of the formation cross section within the ore-gap region as observed by Charlton et al. has also been noticed by us. The minimum in the differential cross section has been found at all energies as in the case of hydrogen atom.

  10. Positron annihilation gamma rays from novae

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.; Clayton, Donald D.

    1987-01-01

    The potential for observing annihilation gamma rays from novae is investigated. These gamma rays, a unique signature of the thermonuclear runaway models of novae, would result from the annihilation of positrons emitted by beta(+)-unstable nuclei produced near the peak of the runaway and carried by rapid convection to the surface of the nova envelope. Simple models, which are extensions of detailed published models, of the expansion of the nova atmospheres are evolved. These models serve as input into investigations of the fate of nearby Galactic fast novae could yield detectable fluxes of electron-positron annihilation gamma rays produced by the decay of N-13 and F-18. Although nuclear gamma-ray lines are produced by other nuclei, it is unlikely that the fluxes at typical nova distances would be detectable to present and near-future instruments.

  11. Positron scattering and annihilation from hydrogenlike ions

    SciTech Connect

    Novikov, S.A.; Bromley, M.W.J.; Mitroy, J.

    2004-05-01

    The Kohn variational method is used with a configuration-interaction-type wave function to determine the J=0 and J=1 phase shifts and annihilation parameter Z{sub eff} for positron-hydrogenic ion scattering. The phase shifts are within 1-2% of the best previous calculations. The values of Z{sub eff} are small and do not exceed unity for any of the momenta considered. At thermal energies Z{sub eff} is minute with a value of order 10{sup -50} occurring for He{sup +} at k=0.05a{sub 0}{sup -1}. In addition to the variational calculations, analytic expressions for the phase shift and annihilation parameters within the Coulomb wave Born approximation are derived and used to help elucidate the dynamics of positron collisions with positive ions.

  12. Microemulsion systems studied by positron annihilation techniques

    SciTech Connect

    Boussaha, A.; Djermouni, B.; Fucugauchi, L.A.; Ache, H.J.

    1980-07-02

    The formation of thermalized positronium atoms is greatly reduced if increasing amounts of water become solubilized in reversed micelles formed by sodium bis(2-ethylhexyl) sulfosuccinate in apolar solvents. Similar observations have been made if the surfactant is Triton X-100. The application of the positron annihilation technique to the study of microemulsions consisting of potassium oleate-alcohol-oil-water mixtures indicates, consistent with previous results, that microemulsion formation requires a certain water/oil ratio if the oil is a long-chain aliphatic hydrocarbon such as hexadecane. This ratio is 0.4 in the case of a 1-pentanol- and 0.2 for a 1-hexanol-containing mixture. This minimum water content is strongly reduced if the oil is an aromatic hydrocarbon. The positron annihilation data also sensitively reflect structural rearrangements in these solutions occurring upon further addition of water, such as the transition of spherical aggregates to a disk-like lamellae structure.

  13. Positron spectroscopy of 2D materials using an advanced high intensity positron beam

    NASA Astrophysics Data System (ADS)

    McDonald, A.; Chirayath, V.; Lim, Z.; Gladen, R.; Chrysler, M.; Fairchild, A.; Koymen, A.; Weiss, A.

    An advanced high intensity variable energy positron beam(~1eV to 20keV) has been designed, tested and utilized for the first coincidence Doppler broadening (CDB) measurements on 6-8 layers graphene on polycrystalline Cu sample. The system is capable of simultaneous Positron annihilation induced Auger electron Spectroscopy (PAES) and CDB measurements giving it unparalleled sensitivity to chemical structure at external surfaces, interfaces and internal pore surfaces. The system has a 3m flight path up to a micro channel plate (MCP) for the Auger electrons emitted from the sample. This gives a superior energy resolution for PAES. A solid rare gas(Neon) moderator was used for the generation of the monoenergetic positron beam. The positrons were successfully transported to the sample chamber using axial magnetic field generated with a series of Helmholtz coils. We will discuss the PAES and coincidence Doppler broadening measurements on graphene -Cu sample and present an analysis of the gamma spectra which indicates that a fraction of the positrons implanted at energies 7-60eV can become trapped at the graphene/metal interface. This work was supported by NSF Grant No. DMR 1508719 and DMR 1338130.

  14. Positron studies of defected metals, metallic surfaces

    SciTech Connect

    Bansil, A.

    1991-01-01

    Specific problems proposed under this project included the treatment of electronic structure and momentum density in various disordered and defected systems. Since 1987, when the new high-temperature superconductors were discovered, the project focused extensively on questions concerning the electronic structure and Fermiology of high-[Tc] superconductors, in particular, (i) momentum density and positron experiments, (ii) angle-resolved photoemission intensities, (iii) effects of disorder and substitutions in the high-[Tc]'s.

  15. Orbiting transmission source for positron tomography

    SciTech Connect

    Huesman, R.H.; Derenzo, S.E.; Cahoon, J.L.; Geyer, A.B.; Moses, W.W.; Uber, D.C.; Vuletich, T.; Budinger, T.F.

    1988-02-01

    Accidental suppression and effective data rates have been measured for the orbiting transmission source as implemented in the Donner 600-Crystal Positron Tomograph. A mechanical description of the orbiting source and a description of the electronics used to discard scattered and accidental events is included. Since accidental coincidences were the rate-limiting factor in transmission data acquisition, the new method allows us to acquire sufficient transmission data in a shorter time with a more active transmission source.

  16. Cosmic-ray Positrons from Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Venter, C.; Kopp, A.; Harding, A. K.; Gonthier, P. L.; Büsching, I.

    2015-07-01

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipole magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.

  17. Linearity of photoconductive GaAs detectors to pulsed electrons

    SciTech Connect

    Ziegler, L.H.

    1995-12-31

    The response of neutron damaged GaAs photoconductor detectors to intense, fast (50 psec fwhm) pulses of 16 MeV electrons has been measured. Detectors made from neutron damaged GaAs are known to have reduced gain, but significantly improved bandwidth. An empirical relationship between the observed signal and the incident electron fluence has been determined.

  18. Multichannel pulse height analyzer is inexpensive, features low power requirements

    NASA Technical Reports Server (NTRS)

    Ewald, C. J.; Sarkady, A. A.

    1967-01-01

    Consumption multichannel pulse height analyzer performs balloon and rocket investigations of solar neutrons with energies greater than 10 MeV. The lightweight unit can operate in a temperature range of minus 30 degrees to plus 70 degrees C and withstand storage temperatures from minus 50 degrees to plus 90 degrees C.

  19. Positron annihilation in gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    1990-01-01

    Emission features appear at energies of 350 to 450 keV in the spectra of a number of gamma ray burst sources. These features were interpreted as electron-positron annihilation lines, redshifted by the gravitational field near the surface of a neutron star. Evidence that gamma ray bursts originate at neutron stars with magnetic field strengths of approx. 10(exp 12) Gauss came from recent observations of cyclotron scattering harmonics in the spectra of two bursts. Positrons could be produced in gamma ray burst sources either by photon-photon pair production or by one-photon pair production in a strong magnetic field. The annihilation of positrons is affected by the presence of a strong neutron star magnetic field in several ways. The relaxation of transverse momentum conservation causes an intrinsic broadening of the two-photon annihilation line and there is a decrease in the annihilation cross section below the free-space value. An additional channel for one-photon annihilation also becomes possible in high magnetic fields. The physics of pair production and annihilation near strongly magnetized neutron stars will be reviewed. Results from a self-consistent model for non-thermal synchrotron radiation and pair annihilation are beginning to identify the conditions required to produce observable annihilation features from strongly magnetized plasmas.

  20. Valine radiolysis by MeV ions

    NASA Astrophysics Data System (ADS)

    Da Silveira, Enio

    2016-07-01

    Valine, (CH3)2 CHCH (NH2) COOH, is a protein amino acid that has been identified in extraterrestrial environments and in the Murchison meteorite [1]. The knowledge of half-lives of small organic molecules under ionizing radiation is important for the setup of models describing the spread out of prebiotics across the Solar System or the Galaxy. We have investigated typical effects of MeV cosmic ray ions on prebiotic molecules in laboratory by impinging ions produced by the PUC-Rio Van de Graaff accelerator. Pure valine films, deposited by evaporation on KBr substrates, were irradiated by H ^{+}, He ^{+} and N ^{+} ion beams, from 0.5 to 1.5 MeV and up to a fluence of 10 ^{15} projectiles/cm ^{2}. The sample temperature was varied from 10 K to 300 K. The irradiation was interrupted several times for Mid-FTIR analysis of the sample. The main findings are: 1- The column density of the valine decreases exponentially with fluence. 2- In some cases, a second exponential appears in the beginning of irradiation; this feature has been attributed to sample compaction by the ion beam [2]. 3- Destruction cross sections of valine are in the 10 ^{-15} cm ^{2} range, while compaction cross sections are in the 10 ^{-14} cm ^{2} range. 4- Destruction cross section increases with the stopping power of the beam and also with the sample temperature. 5- Surprisingly, during the radiolysis of valine, just CO _{2} is seen by as a daughter molecule formed in the bulk. 6- After long beam fluence, also a CO peak appears in the infrared spectrum; this species is however interpreted as a fragment of the formed CO2 molecules. 7- Considering the flux ratio between laboratory experiments and actual galactic cosmic rays, half-life of valine is predicted for ISM conditions [3]. This work on pure valine is the first measurement of a series. New experiments are planned for determining cross sections of valine dissolved in H _{2}O or CO _{2}, inspired by the study performed for glycine [4]. [1] P

  1. Pulsed hydrojet

    DOEpatents

    Bohachevsky, I.O.; Torrey, M.D.

    1986-06-10

    An underwater pulsed hydrojet propulsion system is provided for accelerating and propelling a projectile or other vessel. A reactant, such as lithium, is fluidized and injected into a water volume. The resulting reaction produces an energy density in a time effective to form a steam pocket. Thrust flaps or baffles direct the pressure from the steam pocket toward an exit nozzle for accelerating a water volume to create thrust. A control system regulates the dispersion of reactant to control thrust characteristics.

  2. Simultaneous in vivo positron emission tomography and magnetic resonance imaging.

    PubMed

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Jacobs, Russell E; Cherry, Simon R

    2008-03-11

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner. PMID:18319342

  3. Simultaneous in vivo positron emission tomography and magnetic resonance imaging

    PubMed Central

    Catana, Ciprian; Procissi, Daniel; Wu, Yibao; Judenhofer, Martin S.; Qi, Jinyi; Pichler, Bernd J.; Jacobs, Russell E.; Cherry, Simon R.

    2008-01-01

    Positron emission tomography (PET) and magnetic resonance imaging (MRI) are widely used in vivo imaging technologies with both clinical and biomedical research applications. The strengths of MRI include high-resolution, high-contrast morphologic imaging of soft tissues; the ability to image physiologic parameters such as diffusion and changes in oxygenation level resulting from neuronal stimulation; and the measurement of metabolites using chemical shift imaging. PET images the distribution of biologically targeted radiotracers with high sensitivity, but images generally lack anatomic context and are of lower spatial resolution. Integration of these technologies permits the acquisition of temporally correlated data showing the distribution of PET radiotracers and MRI contrast agents or MR-detectable metabolites, with registration to the underlying anatomy. An MRI-compatible PET scanner has been built for biomedical research applications that allows data from both modalities to be acquired simultaneously. Experiments demonstrate no effect of the MRI system on the spatial resolution of the PET system and <10% reduction in the fraction of radioactive decay events detected by the PET scanner inside the MRI. The signal-to-noise ratio and uniformity of the MR images, with the exception of one particular pulse sequence, were little affected by the presence of the PET scanner. In vivo simultaneous PET and MRI studies were performed in mice. Proof-of-principle in vivo MR spectroscopy and functional MRI experiments were also demonstrated with the combined scanner. PMID:18319342

  4. Plasma devices to guide and collimate a high density of MeV electrons.

    PubMed

    Kodama, R; Sentoku, Y; Chen, Z L; Kumar, G R; Hatchett, S P; Toyama, Y; Cowan, T E; Freeman, R R; Fuchs, J; Izawa, Y; Key, M H; Kitagawa, Y; Kondo, K; Matsuoka, T; Nakamura, H; Nakatsutsumi, M; Norreys, P A; Norimatsu, T; Snavely, R A; Stephens, R B; Tampo, M; Tanaka, K A; Yabuuchi, T

    2004-12-23

    The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics. PMID:15616556

  5. Diagnostics for a 1.2 kA, 1 MeV, electron induction injector

    NASA Astrophysics Data System (ADS)

    Houck, T. L.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Lidia, S. M.; Vanecek, D. L.; Westenskow, G. A.; Yu, S. S.

    1998-12-01

    We are constructing a 1.2 kA, 1 MeV, electron induction injector as part of the RTA program, a collaborative effort between LLNL and LBNL to develop relativistic klystrons for Two-Beam Accelerator applications. The RTA injector will also be used in the development of a high-gradient, low-emittance, electron source and beam diagnostics for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility. The electron source will be a 3.5″-diameter, thermionic, flat-surface, m-type cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150 ns flat top (1% energy variation), and a normalized edge emittance of less than 200 π-mm-mr. Precise measurement of the beam parameters is required so that performance of the RTA injector can be confidently scaled to the 4 kA, 3 MeV, and 2-microsecond pulse parameters of the DARHT injector. Planned diagnostics include an isolated cathode with resistive divider for direct measurement of current emission, resistive wall and magnetic probe current monitors for measuring beam current and centroid position, capacitive probes for measuring A-K gap voltage, an energy spectrometer, and a pepperpot emittance diagnostic. Details of the injector, beam line, and diagnostics are presented.

  6. Modeling of beam focusing and kink instability for colliding relativistic electron and positron beams

    SciTech Connect

    Fawley, W.M.; Lee, E.P.

    1980-02-08

    A simulation code has been developed and exercised to study the time evolution and resultant liminosity of intersecting pulses of electrons and positrons. Under the extreme conditions of high current and small radius recently proposed for the SLAC facility, the pulses mutually pinch to a smaller mean radius than that achieved by free flight alone. The effective luminosity is enhanced by a factor of approx. 3 in the best case, corresponding to zero initial emittance and pulse length equal 1/4 the mean betatron wavelength. Gaussian profiles in the longitudinal and transverse coordinates are preferred over flat profiles in order to minimize disruptive oscillations in radius which reduce luminosity. A second potential source of disruption is the kink instability. This is always present to some degree during the interaction of opposed pulses. However, the maximum growth rate is only one half the angular betatron frequency and therefore mode growth is limited to a very low level if the pulses are short compared with a betatron wavelength.

  7. Photodisintegration of /sup 3/H and /sup 3/He. [Threshold to 25 MeV

    SciTech Connect

    Faul, D.D.

    1980-09-01

    The photoneutron cross sections for /sup 3/H and /sup 3/He have been measured from threshold to approx. 25 MeV with monoenergetic photons from the annihilation in flight of fast positrons at the LLL Electron-Positron Linear Accelerator facility. These reactions include the two-body breakup of /sup 3/H and the three-body breakup of both /sup 3/H and /sup 3/He; these measurements for /sup 3/H are the first to span the energy region across the peaks of the cross sections. An efficient BF/sub 3/-tube-and-paraffin neutron detector and high-pressure gaseous samples of several moles each (the activity of the /sup 3/H sample was approx. 200,000 Ci) were employed in these measurements. Measurements on /sup 16/O and /sup 2/H also were performed to verify the absolute cross-section scale. The results, when compared with each other and with results for the two-body breakup cross section for /sup 3/He from the literature, show that the two-body breakup cross sections for /sup 3/H and /sup 3/He have nearly the same shape, but the one for /sup 3/He lies lower in magnitude; the three-body breakup cross section for /sup 3/He lies higher in magnitude and is broader in the peak region and also rises less sharply from threshold than that for /sup 3/H; and these measured differences between the cross sections for the breakup modes largely compensate in their sum, so that the total photon absorption cross sections for /sup 3/H and /sup 3/He are nearly the same in both size and shape at energies near and above their peaks. Theoretical results from the literature disagree with the experimental results to a certain extent over the entire photon-energy region for which the photoneutron cross sections were measured. 50 figures, 7 tables.

  8. Experimental validation of gallium production and isotope-dependent positron range correction in PET

    NASA Astrophysics Data System (ADS)

    Fraile, L. M.; Herraiz, J. L.; Udías, J. M.; Cal-González, J.; Corzo, P. M. G.; España, S.; Herranz, E.; Pérez-Liva, M.; Picado, E.; Vicente, E.; Muñoz-Martín, A.; Vaquero, J. J.

    2016-04-01

    Positron range (PR) is one of the important factors that limit the spatial resolution of positron emission tomography (PET) preclinical images. Its blurring effect can be corrected to a large extent if the appropriate method is used during the image reconstruction. Nevertheless, this correction requires an accurate modelling of the PR for the particular radionuclide and materials in the sample under study. In this work we investigate PET imaging with 68Ga and 66Ga radioisotopes, which have a large PR and are being used in many preclinical and clinical PET studies. We produced a 68Ga and 66Ga phantom on a natural zinc target through (p,n) reactions using the 9-MeV proton beam delivered by the 5-MV CMAM tandetron accelerator. The phantom was imaged in an ARGUS small animal PET/CT scanner and reconstructed with a fully 3D iterative algorithm, with and without PR corrections. The reconstructed images at different time frames show significant improvement in spatial resolution when the appropriate PR is applied for each frame, by taking into account the relative amount of each isotope in the sample. With these results we validate our previously proposed PR correction method for isotopes with large PR. Additionally, we explore the feasibility of PET imaging with 68Ga and 66Ga radioisotopes in proton therapy.

  9. Reduction of Positron Range Effects by the Application of a Magnetic Field: for Use with Positron Emission Tomography

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond Robert

    The process of positron emission tomography has become a valuable medical research tool. This procedure involves the administration of a radiopharmaceutical labelled with a positron-emitting isotope to a living organism. Upon the emission and subsequent annihilation of a positron, the gamma rays produced are detected to create an image of metabolic activity within the subject. Many factors such as Compton scattering and photoelectric absorption of the gamma rays tend to limit the quality of these images. Another important limitation is the non-negligible distance the positron travels prior to annihilation. This phenomenon leads to the misplacement of data in the final image. A method for reducing this effect utilizing a magnetic field has been tested and evaluated. The application of a magnetic field constrains the positrons to travel in helical paths instead of their relatively straight courses. Thus, the effective distance the positrons travel from their point of emission is reduced. Results indicate that this technique is successful in reducing the blurring caused in PET images by positron range. The results also indicate that the amount of resolution improvement depends upon the choice of positron emitter and scanner resolution. Reduction of this blurring helps to produce clearer PET images which can allow for more precise localization of tumors, in addition to better measurement of metabolic rate constants. The use of a magnetic field to reduce the range of positrons will lead to more useful images produced by positron emission tomography.

  10. Positron density enhancements recorded within a thunderstorm by ADELE

    NASA Astrophysics Data System (ADS)

    Dwyer, J. R.; Smith, D. M.; Hazelton, B. J.; Grefenstette, B.; Kelley, N. A.; Lowell, A. W.; Schaal, M.; Rassoul, H.

    2015-12-01

    We report the observation of two unusual positron density enhancements made inside an active thunderstorm by the Airborne Detector for Energetic Lightning Emissions (ADELE) onboard a Gulfstream V aircraft in August 2009. ADELE recorded two count rate enhancements of 511 keV annihilation gamma rays, 35 seconds apart, that lasted approximately 0.2 seconds each. The enhancements were about a factor of 12 above background and had energy spectra consistent with clouds of positrons, approximately 1 km across, briefly surrounding the aircraft. A flat-plate antenna on the underside of the aircraft also recorded electrical activity during the positron enhancements. It is not clear how the positron clouds were created within the thunderstorm or whether the presence of the aircraft played a role in their production. In this presentation, we will show the ADELE data along with model fits of the positron spectra. We shall also discuss possible sources of the positron excesses.

  11. [Basic principles of 18F-fluorodeoxyglucose positron emission tomography].

    PubMed

    Standke, R

    2002-01-01

    Positron emission tomography uses photons to receive regional information about dynamic, physiologic, and biochemical processes in the living body. A positron decay is measured indirectly by the simultaneous registration of both gamma rays created by the annihilation. The event is counted, if two directly opposite located detectors register gamma rays in coincidence. Unfortunately the detectors of a positron emission tomography system do not register only true coincident events. There are also scattered and random coincidences. Different types of positron tomographs are presented and scintillation crystals, which are in use for positron emission tomography are discussed. The 2D- and 3D-acquisition methods are described as well as preprocessing methods, such as correction for attenuation, scatter and dead time. For quantification the relative parameter standard uptake value (SUV) is explained. Finally hybrid systems, such as combined positron emission tomography/computed tomography scanners and the use of computed tomography data for attenuation correction are introduced. PMID:12506765

  12. Breakup of 87 MeV [sup 11]B

    SciTech Connect

    Wolfs, F.L.H.; White, C.A.; Bryan, D.C.; Freeman, C.G.; Herrick, D.M.; Kurz, K.L.; Mathews, D.H.; Perera, P.A.A.; Zanni, M.T. )

    1994-05-01

    A segmented focal plane detector has been used to study the breakup of 87 MeV [sup 11]B ions incident on a [sup 12]C target into [sup 4]He and [sup 7]Li fragments at relative energies between 0 and 4 MeV. The relative energy spectra are dominated by sequential breakup of the 9.28 MeV, 10.26+10.33 MeV, and 10.60 MeV excited states in [sup 11]B. The measured breakup yields decrease with increasing center-of-mass scattering angle, consistent with predictions made using single-step inelastic distorted wave Born approximation calculations. Applications of this technique to study the breakup of [sup 16]O at low relative energies will be discussed.

  13. Kinetics of electron cooling of positrons in a storage ring

    SciTech Connect

    Men'shikov, L. I.

    2008-06-15

    Kinetic equations are derived for the positron velocity distribution in storage rings with electron cooling. Both drag force and components of the velocity diffusion tensor are calculated. The mechanism of approach to a steady-state positron velocity distribution via electron cooling is discussed. It is shown that the resulting steady-state positron distribution is very close to the electron distribution when the magnetic field is sufficiently strong.

  14. Theoretical study of a positron-attachment to vibrational excited states for non-polar carbon disulfide molecule

    NASA Astrophysics Data System (ADS)

    Takeda, Yu; Kita, Yukiumi; Tachikawa, Masanori

    2016-06-01

    We theoretically analyzed a positron affinity (PA), which is the binding energy of a positron, of the non-polar carbon disulfide (CS2) molecule at vibrational excited states to elucidate the effect of molecular vibrations on the binding of positron to the molecule. Using the configuration interaction method of the multi-component molecular orbital theory and anharmonic vibrational state analysis with vibrational quantum Monte Carlo technique, the vibrational averaged PA values are calculated as 0.39, 2.03, and 5.02 meV for the ground state, fundamental tone, and overtone states of asymmetric stretching mode, respectively. The PA value of CS2 molecule is found to be enhanced by the vibrational excitation of only asymmetric stretching mode compared to the value at the vibrational ground state. With the linear regression analysis, we have confirmed that such enhancement of vibrational averaged PA values mainly arises from the increment of molecular permanent dipole moment due to the vibrational excitations of the asymmetric stretching mode.

  15. Production of a positron microprobe using a transmission remoderator.

    PubMed

    Fujinami, Masanori; Jinno, Satoshi; Fukuzumi, Masafumi; Kawaguchi, Takumi; Oguma, Koichi; Akahane, Takashi

    2008-01-01

    A production method for a positron microprobe using a beta+-decay radioisotope (22Na) source has been investigated. When a magnetically guided positron beam was extracted from the magnetic field, the combination of an extraction coil and a magnetic lens enabled us to focus the positron beam by a factor of 10 and to achieve a high transport efficiency (71%). A 150-nm-thick Ni(100) thin film was mounted at the focal point of the magnetic lens and was used as a remoderator for brightness enhancement in a transmission geometry. The remoderated positrons were accelerated by an electrostatic lens and focused on the target by an objective magnetic lens. As a result, a 4-mm-diameter positron beam could be transformed into a microprobe of 60 microm or less with 4.2% total efficiency. The S parameter profile obtained by a single-line scan of a test specimen coincided well with the defect distribution. This technique for a positron microprobe is available to an accelerator-based high-intensity positron source and allows 3-dimensional vacancy-type defect analysis and a positron source for a transmission positron microscope. PMID:18187852

  16. What is the fate of runaway positrons in tokamaks?

    DOE PAGESBeta

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; Teng, Qian; Wang, Xiaogang

    2014-06-19

    In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  17. Positron-molecule bound states and positive ion production

    NASA Technical Reports Server (NTRS)

    Leventhal, M.; Passner, A.; Surko, C. M.

    1990-01-01

    The interaction was studied of low energy positrons with large molecules such as alkanes. These data provide evidencce for the existence of long lived resonances and bound states of positrons with neutral molecules. The formation process and the nature of these resonances are discussed. The positive ions produced when a positron annihilates with an electron in one of these resonances were observed and this positive ion formation process is discussed. A review is presented of the current state of the understanding of these positron-molecule resonances and the resulting positive ion formation. A number of outstanding issues in this area is also discussed.

  18. What is the fate of runaway positrons in tokamaks?

    SciTech Connect

    Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; Teng, Qian; Wang, Xiaogang

    2014-06-15

    Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.

  19. Pulsed pyroelectric crystal-powered gamma source

    SciTech Connect

    Chen, A. X.; Antolak, A. J.; Leung, K.-N.; Raber, T. N.; Morse, D. H.

    2013-04-19

    A compact pulsed gamma generator is being developed to replace radiological sources used in commercial, industrial and medical applications. Mono-energetic gammas are produced in the 0.4 - 1.0 MeV energy range using nuclear reactions such as {sup 9}Be(d,n{gamma}){sup 10}B. The gamma generator employs an RF-driven inductively coupled plasma ion source to produce deuterium ion current densities up to 2 mA/mm{sup 2} and ampere-level current pulses can be attained by utilizing an array extraction grid. The extracted deuterium ions are accelerated to approximately 300 keV via a compact stacked pyroelectric crystal system and then bombard the beryllium target to generate gammas. The resulting microsecond pulse of gammas is equivalent to a radiological source with curie-level activity.

  20. PULSE COLUMN

    DOEpatents

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  1. Tracking and imaging gamma-ray experiment (TIGRE) for 300-keV to 100-MeV gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Tumer, Tumay O.; Bhattacharya, Dipen; Blair, Scott C.; Case, Gary; Dixon, David D.; Liu, Chia-Ling; O'Neill, Terrence J.; White, R. Stephen; Zych, Allen D.

    1994-09-01

    The Tracking and Imaging Gamma-Ray Experiment (TIGRE) uses multilayers of silicon strip detectors both as a gamma-ray converter and to track Compton recoil electrons and positron-electron pairs. The silicon strip detectors also measure the energy losses of these particles. For Compton events, the direction and energy of the Compton scattered gamma ray are measured with arrays of small CsI(TI)-photodiode detectors so that an unique direction and energy can be found for each incident gamma ray. The incident photon direction for pair events is found from the initial pair particle directions. TIGRE is the first Compton telescope with a direct imaging capability. With a large (pi) -steradian field-of-view, it is sensitive to gamma rays from 0.3 to 100 MeV with a typical energy resolution of 3% (FWHM) and a 1-(sigma) angular resolution of 40 arc-minutes at 2 MeV. A small balloon prototype instrument is being constructed that has a high absolute detection efficiency of 8% over the full energy range and a sensitivity of 10 milliCrabs for an exposure of 500,000 s. TIGRE's innovative design also uses the polarization dependence of the Klein-Nishina formula for gamma-ray source polarization measurements. The telescope will be described in detail and new results from measurements at 0.5 MeV and Monte Carlo calculations from 1 to 100 MeV will be presented.

  2. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  3. ATA upgrade to 150 MeV

    SciTech Connect

    Birx, D.L.; Hawkins, S.A.; Poor, S.E.; Reginato, L.L.; Smith, M.W.

    1985-04-09

    The increased interests in upgrading the ATA accelerator has warranted a preliminary look at applying the magnetic drivers to achieve both higher energy and higher average power. The goal of this upgrade is to satisfy the FEL requirements and to keep the capability of producing a higher current beam for CPB experiments at reduced energy. ATA Note 247 showed that a possible solution to obtain higher energy was simply to add additional cells, run them at higher voltage and accept a 30 ns pulse width with about 5% energy variation. Considering the recent history of the cells and the doubling of the voltage stress that would be required at the insulator, it seemed prudent to review the overall system reliability and try a different approach.

  4. A study of cosmic-ray positron and electron spectra in interplanetary and interstellar space and the solar modulation of cosmic rays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Cummings, A. C.

    1973-01-01

    The differential energy spectra of cosmic-ray positrons and negatrons with energies between approximately 11 and 1500 MeV was measured during the period 1968-1971 using a balloon-borne magnetic spectrometer. These measurements fill a gap in the previously existing data and permit the determination of the interstellar spectra of cosmic-ray positrons and electrons. Knowledge of these spectra provides a crucial tool for studies of the distribution and density of matter and magnetic fields in the interstellar medium and the origin and dynamics of energetic particles contained in the fields. The differential energy spectrum of interstellar electrons may be represented as a power-law, j alpha T to the -1.8 power for 100 MeV approximately T approximately 2 GeV, but must flatten considerably at lower energies. From the measured electron charge composition, it is concluded that the majority of cosmic-ray electrons with energies above approximately 10 MeV originate in primary sources.

  5. Attosecond and zeptosecond x-ray pulses via nonlinear Thomson backscattering

    SciTech Connect

    Lan Pengfei; Lu Peixiang; Cao Wei; Wang Xinlin

    2005-12-15

    Nonlinear Thomson backscattering of an intense circularly polarized laser by a counterpropagating energetic electron is investigated. The results show that in the scattering of a non-tightly-focused laser pulse with an intensity around 10{sup 19} W/cm{sup 2} and a pulse duration of 100 fs full width at half maximum by a counterpropagating electron with an initial energy of 10 MeV, a crescent-shaped pulse with a pulse duration of 469 as and the photon energy ranging from 230 eV to 2.5 keV is generated in the backward direction. It is shown that the radiated pulse shape and monochromaticity can be modified by changing the laser beam waist, while in the case of a tightly focused laser field, a single peak pulse with a shorter duration and better monochromaticity can be obtained. With increase of the electron initial energy, the peak power of the radiated pulse increases and the pulse duration decreases. An isolated powerful zeptosecond (10{sup -21} s) pulse with a peak power of about 10{sup 10} W/rad{sup 2} and photon energy up to several MeV can be obtained with a 250 MeV electron.

  6. DHCAL with minimal absorber: measurements with positrons

    NASA Astrophysics Data System (ADS)

    Freund, B.; Neubüser, C.; Repond, J.; Schlereth, J.; Xia, L.; Dotti, A.; Grefe, C.; Ivantchenko, V.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H. L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schroeder, S.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; van Doren, B.; Wilson, G. W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Hostachy, J.-Y.; Morin, L.; Besson, D.; Chadeeva, M.; Danilov, M.; Markin, O.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; van der Kolk, N.; Simon, F.; Szalay, M.; Corriveau, F.; Blazey, G. C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-05-01

    In special tests, the active layers of the CALICE Digital Hadron Calorimeter prototype, the DHCAL, were exposed to low energy particle beams, without being interleaved by absorber plates. The thickness of each layer corresponded approximately to 0.29 radiation lengths or 0.034 nuclear interaction lengths, defined mostly by the copper and steel skins of the detector cassettes. This paper reports on measurements performed with this device in the Fermilab test beam with positrons in the energy range of 1 to 10 GeV. The measurements are compared to simulations based on GEANT4 and a standalone program to emulate the detailed response of the active elements.

  7. Positron Emission Tomography: Its 65 years

    NASA Astrophysics Data System (ADS)

    Del Guerra, A.; Belcari, N.; Bisogni, M.

    2016-04-01

    Positron Emission Tomography (PET) is a well-established imaging technique for in vivo molecular imaging. In this review after a brief history of PET there are presented its physical principles and the technology that has been developed for bringing PET from a bench experiment to a clinical indispensable instrument. The limitations and performance of the PET tomographs are discussed, both as for the hardware and software aspects. The status of art of clinical, pre-clinical and hybrid scanners (, PET/CT and PET/MR) is reported. Finally the actual trend and the recent and future technological developments are fully illustrated.

  8. Positron autoradiography for intravascular imaging: feasibility evaluation

    NASA Astrophysics Data System (ADS)

    Shikhaliev, Polad M.; Xu, Tong; Ducote, Justin L.; Easwaramoorthy, Balasubramaniam; Mukherjee, Jogeshwar; Molloi, Sabee

    2006-02-01

    Approximately 70% of acute coronary artery disease is caused by unstable (vulnerable) plaques with an inflammation of the overlying cap and high lipid content. A rupturing of the inflamed cap of the plaque results in propagation of the thrombus into the lumen, blockage of the artery and acute ischaemic syndrome or sudden death. Morphological imaging such as angiography or intravascular ultrasound cannot determine inflammation status of the plaque. A radiotracer such as 18F-FDG is accumulated in vulnerable plaques due to higher metabolic activity of the inflamed cap and could be used to detect a vulnerable plaque. However, positron emission tomography (PET) cannot detect the FDG-labelled plaques because of respiratory and heart motions, small size and low activity of the plaques. Plaques can be detected using a miniature particle (positron) detector inserted into the artery. In this work, a new detector concept is investigated for intravascular imaging of the plaques. The detector consists of a storage phosphor tip bound to the end of an intravascular catheter. It can be inserted into an artery, absorb the 18F-FDG positrons from the plaques, withdrawn from the artery and read out. Length and diameter of the storage phosphor tip can be matched to the length and the diameter of the artery. Monte Carlo simulations and experimental evaluations of coronary plaque imaging with the proposed detector were performed. It was shown that the sensitivity of the storage phosphor detector to the positrons of 18F-FDG is sufficient to detect coronary plaques with 1 mm and 2 mm sizes and 590 Bq and 1180 Bq activities in the arteries with 2 mm and 3 mm diameters, respectively. An experimental study was performed using plastic tubes with 2 mm diameter filled with an FDG solution, which simulates blood. FDG spots simulating plaques were placed over the surface of the tube. A phosphor tip was inserted into the tube and imaged the plaques. Exposure time was 1 min in all simulations and

  9. Positron scattering from neon and argon

    SciTech Connect

    Jones, A. C. L.; Makochekanwa, C.; Caradonna, P.; Slaughter, D. S.; Machacek, J. R.; McEachran, R. P.; Sullivan, J. P.; Buckman, S. J.; Stauffer, A. D.; Bray, I.; Fursa, D. V.

    2011-03-15

    High-resolution measurements of positron interactions with Ne and Ar are presented, as well as theoretical treatments. The data extend over a range of 0.3 to 60 eV and comprise measurements of the grand total, positonium formation, and grand total minus positronium formation cross sections. Theoretical treatments of scattering from Ne and Ar are performed under the relativistic optical potential approach, as well as calculations using the convergent close-coupling method. Comparisons of the present measurements and theories are made with previous theoretical and experimental work.

  10. Neurologic applications of positron emission tomography.

    PubMed

    Lenzi, G L; Pantano, P

    1984-11-01

    The impact of computerized neuroimaging in the neurologic sciences has been so dramatic that it has completely changed our approach to the individual patient. Further changes may be expected from the newborn positron emission tomography (PET) and nuclear magnetic resonance (NMR) in order to help the reader digest a large bulk of data and fully realize the present state of the art of PET, the authors have shaped this review mainly on results rather than on methods and on published reports rather than on future potential. PMID:6335222

  11. Positron impact ionization of atomic hydrogen

    SciTech Connect

    Acacia, P.; Campeanu, R.I.; Horbatsch, M.

    1993-05-01

    We will present integrated cross sections for ionization of atomic hydrogen by positrons. These have been calculated in a distorted-wave approximation using energy-dependent effective charges in the final channel as well as static and polarization potentials in the initial channel. We present two models for calculating the energy-dependent effective charges both of which produce results in good agreement with the recent experimental measurements of Spicher et al. This is in contrast to previous distorted-wave calculations which used fixed effective charges as well as classical trajectory calculations. Both of these latter methods produced results which were substantially below ours and the experimental data.

  12. Positron emission tomography imaging of coronary atherosclerosis.

    PubMed

    Moss, Alastair J; Adamson, Philip D; Newby, David E; Dweck, Marc R

    2016-07-01

    Inflammation has a central role in the progression of coronary atherosclerosis. Recent developments in cardiovascular imaging with the advent of hybrid positron emission tomography have provided a window into the molecular pathophysiology underlying coronary plaque inflammation. Using novel radiotracers targeted at specific cellular pathways, the potential exists to observe inflammation, apoptosis, cellular hypoxia, microcalcification and angiogenesis in vivo. Several clinical studies are now underway assessing the ability of this hybrid imaging modality to inform about atherosclerotic disease activity and the prediction of future cardiovascular risk. A better understanding of the molecular mechanisms governing coronary atherosclerosis may be the first step toward offering patients a more stratified, personalized approach to treatment. PMID:27322032

  13. Pulsed neutron interrogation for detection of concealed special nuclear materials

    NASA Astrophysics Data System (ADS)

    Ruddy, Frank; Seidel, John; Flammang, Robert; Petrović, Bojan; Dulloo, Abdul; Congedo, Thomas

    2006-05-01

    A new neutron interrogation technique for detection of concealed Special Nuclear Material (SNM) is described. This technique is a combination of timing techniques from pulsed prompt gamma neutron activation analysis with silicon carbide (SiC) semiconductor fast neutron detector technology. SiC detectors are a new class of radiation detectors that are ultra-fast and capable of processing high count rates. SiC detectors can operate during and within nanoseconds of the end of an intense neutron pulse, providing the ability to detect the prompt neutron emissions from fission events produced by the neutrons in concealed SNM on a much faster pulsing time scale than has been achieved by other techniques. Neutron-induced fission neutrons in 235U have been observed in the time intervals between pulses of 14-MeV neutrons from a deuterium-tritium electronic neutron generator. Initial measurements have emphasized the detection of SNM using thermal-neutron induced fission. Neutron pulsing and time-sequenced neutron counts were carried out on a hundreds of microseconds time scale, enabling the observation of prompt fission neutrons induced by the die-away of thermal neutrons following the 14-MeV pulse. A discussion of pulsed prompt-neutron measurements and of SiC detectors as well as initial measurement results will be presented.

  14. Initial experience with an 11 MeV self-shielded medical cyclotron on operation and radiation safety

    PubMed Central

    Pant, G. S.; Senthamizhchelvan, S.

    2007-01-01

    A self-shielded medical cyclotron (11 MeV) was commissioned at our center, to produce positron emitters, namely, 18F, 15O, 13N and 11C for positron emission tomography (PET) imaging. Presently the cyclotron has been exclusively used for the production of 18F- for 18F-FDG imaging. The operational parameters which influence the yield of 18F- production were monitored. The radiation levels in the cyclotron and radiochemistry laboratory were also monitored to assess the radiation safety status in the facility. The target material, 18O water, is bombarded with proton beam from the cyclotron to produce 18F- ion that is used for the synthesis of 18F-FDG. The operational parameters which influence the yield of 18F- were observed during 292 production runs out of a total of more than 400 runs. The radiation dose levels were also measured in the facility at various locations during cyclotron production runs and in the radiochemistry laboratory during 18F-FDG syntheses. It was observed that rinsing the target after delivery increased the number of production runs in a given target, as well as resulted in a better correlation between the duration of bombardment and the end of bombardment 18F- activity with absolutely clean target after being rebuilt. The radiation levels in the cyclotron and radiochemistry laboratory were observed to be well within prescribed limits with safe work practice. PMID:21157531

  15. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, Jr., C G; Throop, A; Eder, D; Kimbrough, J

    2007-08-28

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dots and D-dots, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetic codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a corresponding broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  16. Electromagnetic Pulses at Short-Pulse Laser Facilities

    SciTech Connect

    Brown, C G; Throop, A; Eder, D; Kimbrough, J

    2008-02-04

    Electromagnetic Pulse (EMP) is a known issue for short-pulse laser facilities, and will also be an issue for experiments using the advanced radiographic capability (ARC) at the National Ignition Facility (NIF). The ARC diagnostic uses four NIF beams that are compressed to picosecond durations for backlighting ignition capsules and other applications. Consequently, we are working to understand the EMP due to high-energy (MeV) electrons escaping from targets heated by short-pulse lasers. Our approach is to measure EMP in the Titan short-pulse laser at Lawrence Livermore National Laboratory (LLNL) and to employ that data to establish analysis and simulation capabilities. We have installed a wide variety of probes inside and outside the Titan laser chamber. We have high-frequency B-dot and D-dot probes, a photodiode, and fast current-viewing and integrating current transformers. The probe outputs are digitized by 10 and 20 Gsample/s oscilloscopes. The cables and oscilloscopes are well shielded to reduce noise. Our initial measurement campaign has yielded data useful mainly from several hundreds of MHz to several GHz. We currently are supplementing our high-frequency probes with lower-frequency ones to obtain better low-frequency data. In order to establish analysis and simulation capabilities we are modeling the Titan facility using various commercial and LLNL numerical electromagnetics codes. We have simulated EMP generation by having a specified number of electrons leave the target and strike the chamber wall and other components in the chamber. This short impulse of electrons has a correspondingly broad spectrum, exciting high-frequency structure in the resulting EMP. In this paper, we present results of our initial measurement campaign and comparisons between the measurements and simulations.

  17. A laser-Compton scattering prototype experiment at 100 MeV linac of Shanghai Institute of Applied Physics

    NASA Astrophysics Data System (ADS)

    Luo, W.; Xu, W.; Pan, Q. Y.; Cai, X. Z.; Chen, J. G.; Chen, Y. Z.; Fan, G. T.; Fan, G. W.; Guo, W.; Li, Y. J.; Liu, W. H.; Lin, G. Q.; Ma, Y. G.; Shen, W. Q.; Shi, X. C.; Xu, B. J.; Xu, J. Q.; Xu, Y.; Zhang, H. O.; Yan, Z.; Yang, L. F.; Zhao, M. H.

    2010-01-01

    As a prototype of the Shanghai Laser Electron Gamma Source in the Shanghai Synchrotron Radiation Facility, an x-ray source based on laser-Compton scattering (LCS) has been installed at the terminal of the 100 MeV linac of the Shanghai Institute of Applied Physics. LCS x-rays are generated by interactions between Q-switched Nd:yttrium aluminum garnet laser pulses [with wavelength of 1064 nm and pulse width of 21 ns (full width at half maximum)] and electron bunches [with energy of 108 MeV and pulse width of 0.95 ns (rms)] at an angle of 42° between laser and electron beam. In order to measure the energy spectrum of LCS x-rays, a Si(Li) detector along the electron beam line axis is positioned at 9.8 m away from a LCS chamber. After background subtraction, the LCS x-ray spectrum with the peak energy of 29.1±4.4form="infix">∣stat±2.1form="infix">∣syst keV and the peak width (rms) of 7.8±2.8form="infix">∣stat±0.4form="infix">∣syst keV is observed. Normally the 100 MeV linac operates with the electron macropulse charge of 1.0 nC/pulse, and the electron and laser collision repetition rate of 20 Hz. Therefore, the total LCS x-ray flux of (5.2±2.0)×102 Hz can be achieved.

  18. Dynamics of Defects in X-Ray Irradiated Alkali Chloride Crystals Studied by Positron Annihilation.

    NASA Astrophysics Data System (ADS)

    Stern, Stanley Hy.

    This thesis reports first data on the time dependence of positron-electron annihilation characteristics in single crystals of the homologous series NaCl, KCl, RbCl, and CsCl after large doses of x irradiation. A new instrument, the (pi)-radian coincidence apparatus (PICA), recorded the coincidence count rate P of the two 0.5-MeV annihilation (gamma) rays emerging 180(DEGREES) apart from the crystal during isothermal and isochronal heating conditions. In most crystals one observes an initial rapid increase of P to a maximum followed by a slow decline toward the coincidence count rate corresponding to the pre-irradiation state of the crystal. Positron-annihilation data were completed by independent measurements of the optical absorption in KCl and NaCl crystals after various durations of isothermal heating. Absorption spectrophotometry revealed enhancement of the M band in KCl, of the R and N bands in NaCl, at the expense of the F band during the interval of increasing P. The PICA results are consistent with the interpretation that positrons are trapped by radiation-induced color centers in which they annihilate with a higher P than in the bulk of the crystal. The dynamics associated with the incipient rise of P during the initial heating period is attributable to the agglomeration of F centers into aggregate centers. The rise times of P give access to the diffusion rates for agglomeration. At equal temperatures, we observe a strong dependence of the rate of defect diffusion on the size of the cation. For example, it is 100 times faster in CsCl than in NaCl at 120(DEGREES)C. The data must be corrected for the effects of decoloration of the crystals by the positrons during the measurements. Activation energies for defect diffusion annealing are extracted. They test the hypotheses underlying the theories of macroscopic transport properties in these crystals in that they are indicative of the dominant microscopic lattice processes and their dependence on the crystal

  19. A Simple Estimate of the Mass of the Positron.

    ERIC Educational Resources Information Center

    Jones, Goronwy Tudor

    1993-01-01

    Discusses a small part of the final state of a high-energy neutrino interaction: a head-on collision of a positron and a stationary electron. Provides a bubble chamber picture and describes the resulting particle effects. Uses momentum to determine the mass of the positron. (MVL)

  20. Recent Developments in Positron Emission Tomography (PET) Instrumentation

    DOE R&D Accomplishments Database

    Derenzo, S. E.; Budinger, T. F.

    1986-04-01

    This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.

  1. Moisture determination in composite materials using positron lifetime techniques

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Holt, W. R.; Mock, W., Jr.

    1980-01-01

    A technique was developed which has the potential of providing information on the moisture content as well as its depth in the specimen. This technique was based on the dependence of positron lifetime on the moisture content of the composite specimen. The positron lifetime technique of moisture determination and the results of the initial studies are described.

  2. Electrons and positrons from expanding supernova envelopes in dense clouds

    NASA Technical Reports Server (NTRS)

    Stephens, S. A.

    1985-01-01

    If antiprotons in cosmic rays are produced as secondary particles in sources, it is expected that positrons are also created by the same process. The interstellar spectra of positrons and electrons are calculated by taking into account such sources. Spectra are then compared with observations.

  3. Applications of positron annihilation spectroscopy in materials research

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.

    1988-01-01

    Positron Annihilation Spectroscopy (PAS) has emerged as a powerful technique for research in condensed matter. It has been used extensively in the study of metals, ionic crystals, glasses and polymers. The present review concentrates on applications of positron lifetime measurements for elucidation of the physicochemical structure of polymers.

  4. Are positive ion radicals formed in pulse radiolysis of alkylbenzenesulfonates. [7 MeV linear accelerator

    SciTech Connect

    Behar, D. )

    1991-05-30

    Oxidation of alkylbenzenesulfonates by OH radicals proceeds via two routes: 75-85% of the OH radicals react via addition to the benzene ring, while the rest abstract an H atom from the alkyl group. The relative distribution between the two paths of reaction depends on the nature of the alkyl group. No evidence for the formation of cation radicals from OH adducts was found. H radicals add to the benzene ring to form cyclohexadienyl type radicals, but when reacted with isopropylbenzenesulfonate about 15% of the H radicals abstract hydrogen from the alkyl to form the benzyl type radical. The reaction of SO{sub 4}{sup {sm bullet}{minus}} with alkylbenzenesulfonates produces 50-70% OH adducts and the rest are the benzyl type radicals. At high concentrations of solute and persulfate a short-lived precursor to the benzyl radicals has been observed. The precursors observed with p-toluenesulfonate, isopropylbenzenesulfonate, and m-toluenesulfonate decay in a first-order process with the rates 1.4 {times} 10{sup 6}, 9.4 {times} 10{sup 5}, and 2.5 {times} 10{sup 5} s{sup {minus}1}, respectively. The short-lived precursor is identified as an unstable OH adduct to the benzene ring.

  5. Analysis of positron lifetime spectra in polymers

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Sprinkle, Danny R.

    1988-01-01

    A new procedure for analyzing multicomponent positron lifetime spectra in polymers was developed. It requires initial estimates of the lifetimes and the intensities of various components, which are readily obtainable by a standard spectrum stripping process. These initial estimates, after convolution with the timing system resolution function, are then used as the inputs for a nonlinear least squares analysis to compute the estimates that conform to a global error minimization criterion. The convolution integral uses the full experimental resolution function, in contrast to the previous studies where analytical approximations of it were utilized. These concepts were incorporated into a generalized Computer Program for Analyzing Positron Lifetime Spectra (PAPLS) in polymers. Its validity was tested using several artificially generated data sets. These data sets were also analyzed using the widely used POSITRONFIT program. In almost all cases, the PAPLS program gives closer fit to the input values. The new procedure was applied to the analysis of several lifetime spectra measured in metal ion containing Epon-828 samples. The results are described.

  6. Positron Annihilation in Medical Substances of Insulin

    NASA Astrophysics Data System (ADS)

    Pietrzak, R.; Szatanik, R.

    2005-05-01

    Positrons lifetimes were measured in medical substances of insulin (human and animal), differing as far as the degree of purity and time of their activity in the organism are concerned. In all of the cases the spectrum of positron lifetime was distributed into three components, with the long-life component ranging from 1.8 to 2.08 ns and the intensity taking on values from 18 to 24%. Making use of Tao-Eldrup model, the average radius of the free volume, in which o-Ps annihilated, and the degree of filling in the volume were determined. It was found that the value of the long-life component for human insulin is higher than that of animal insulin. Moreover, the value of this component clearly depends on the manner of purification of the insulin. It was also noticed that there occurs a correlation between the value of this component and the time after which it begins to be active in the organism, as well as the total time of its activity.

  7. ELECTRON-POSITRON FLOWS AROUND MAGNETARS

    SciTech Connect

    Beloborodov, Andrei M.

    2013-11-10

    The twisted magnetospheres of magnetars must sustain a persistent flow of electron-positron plasma. The flow dynamics is controlled by the radiation field around the hot neutron star. The problem of plasma motion in the self-consistent radiation field is solved using the method of virtual beams. The plasma and radiation exchange momentum via resonant scattering and self-organize into the 'radiatively locked' outflow with a well-defined, decreasing Lorentz factor. There is an extended zone around the magnetar where the plasma flow is ultra-relativistic; its Lorentz factor is self-regulated so that it can marginally scatter thermal photons. The flow becomes slow and opaque in an outer equatorial zone, where the decelerated plasma accumulates and annihilates; this region serves as a reflector for the thermal photons emitted by the neutron star. The e {sup ±} flow carries electric current, which is sustained by a moderate induced electric field. The electric field maintains a separation between the electron and positron velocities, against the will of the radiation field. The two-stream instability is then inevitable, and the induced turbulence can generate low-frequency emission. In particular, radio emission may escape around the magnetic dipole axis of the star. Most of the flow energy is converted to hard X-ray emission, which is examined in an accompanying paper.

  8. Photoneutron interrogation of low-enriched uranium induced by bremsstrahlung from a 4 MeV linac

    NASA Astrophysics Data System (ADS)

    Lakosi, L.; Tam Nguyen, C.; Bagi, J.

    2008-01-01

    Revealing smuggled nuclear material by passive γ-detection is hindered, because the weak radiation can easily be shielded. Neutrons, as penetrate shielding, represent a detection potential, by inducing fission in the nuclear material. A 4 MeV linear accelerator was used as a pulsed neutron source for active interrogation of U-bearing material. Produced in heavy water by bremsstrahlung, neutrons subsequently induced fissions in UO2 samples. Delayed fission neutrons were detected in a neutron collar built up by 3He counters in a polyamide container. The counters were gated to be detached from high voltage during the electron pulse. Irradiation-measurement cycles were carried out with a 25 Hz pulse repetition rate as optimum setting. The time analyser start-up was externally triggered and synchronised by the electron beam pulse. The response of the system was studied as a function of the intensity of the electron current, the amount of heavy water, U enrichment, and total U content. Sensitivity limit was achieved as 0.5 g 235U and/or 30 g 238U in a 20 s measurement time (500 cycles) with the amount of heavy water of 100 g and a mean electron current of 2 μA. Because of the long decay time of the prompt (interrogating and fission) neutron pulse, about a half of the time interval (40 ms) between pulses is only available for counting delayed neutrons.

  9. Design study for a superconducting proton linac from 20 to 100 MeV

    SciTech Connect

    Wangler, T.P.; Garnett, R.; Krawczyk, F.; Billen, J.; Bultman, N.; Christensen, K.; Fox, W.; Wood, R.

    1993-07-01

    Advances in superconducting radiofrequency technology during the past 15 years have made possible the large-scale application of superconducting niobium accelerators. So far this development has been restricted to rather low-current electron and heavy-ion accelerators. In addition to the power savings, the improved capability of superconducting cavities to provide acceleration of high currents with low beam losses, which follows from the ability to use larger beam apertures without a large economic penalty from increased rf losses, could make superconducting proton linacs very attractive for high-intensity applications, where activation of the accelerator is a major concern. During the past year, at Los Alamos, the authors have been looking at a possible upgrade to the 800-MeV LAMPF proton accelerator, to provide higher intensity injection into a new storage ring for a new high-intensity pulsed neutron source. As part of this upgrade to the LAMPF accelerator, the entire linac below 100 MeV would be rebuilt to provide improved beam quality, improved reliability, and to include funneling at 20 MeV for higher beam currents. Both a room-temperature and a superconducting option are being considered for the section from 20 to 100 MeV. At present, this section is a 201.25 MHz room-temperature copper drift-tube linac (DTL). For this new upgrade scenario the frequency from 20 to 100 MeV was fixed at 805 MHz. The new duty factor is assumed to be 7.2%, and the authors show some results at two currents, 30 mA and 150 mA, that span the range of interest. Their superconducting linac concept consists of individual multicell cavities, each driven by a klystrode. Focusing would be provided by superconducting quadrupole lenses between cavities. In the remainder of the paper they describe their study to evaluate the potential of a superconducting proton linac section for this application, and address some of the many design choices.

  10. Quantum resonances in reflection of relativistic electrons and positrons

    NASA Astrophysics Data System (ADS)

    Eykhorn, Yu. L.; Korotchenko, K. B.; Pivovarov, Yu. L.; Takabayashi, Y.

    2015-07-01

    Calculations based on the use of realistic potential of the system of crystallographic planes confirm earlier results on existence of resonances in reflection of relativistic electrons and positrons by the crystal surface, if the crystallographic planes are parallel to the surface.The physical reason of predicted phenomena, similar to the band structure of transverse energy levels, is connected with the Bloch form of the wave functions of electrons (positrons) near the crystallographic planes, which appears both in the case of planar channeling of relativistic electrons (positrons) and in reflection by a crystal surface. Calculations show that positions of maxima in reflection of relativistic electrons and positrons by crystal surface specifically depend on the angle of incidence with respect to the crystal surface and relativistic factor of electrons/positrons. These maxima form the Darwin tables similar to that in ultra-cold neutron diffraction.

  11. Multi-pair states in electron-positron pair creation

    NASA Astrophysics Data System (ADS)

    Wöllert, Anton; Bauke, Heiko; Keitel, Christoph H.

    2016-09-01

    Ultra strong electromagnetic fields can lead to spontaneous creation of single or multiple electron-positron pairs. A quantum field theoretical treatment of the pair creation process combined with numerical methods provides a description of the fermionic quantum field state, from which all observables of the multiple electron-positron pairs can be inferred. This allows to study the complex multi-particle dynamics of electron-positron pair creation in-depth, including multi-pair statistics as well as momentum distributions and spin. To illustrate the potential benefit of this approach, it is applied to the intermediate regime of pair creation between nonperturbative Schwinger pair creation and perturbative multiphoton pair creation where the creation of multi-pair states becomes nonnegligible but cascades do not yet set in. Furthermore, it is demonstrated how spin and helicity of the created electrons and positrons are affected by the polarization of the counterpropagating laser fields, which induce the creation of electron-positron pairs.

  12. Nonlinear positron-acoustic waves in fully relativistic degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Hossen, M. A.; Mamun, A. A.

    2016-03-01

    The nonlinear positron-acoustic (PA) waves propagating in a fully relativistic electron-positron-ion (EPI) plasma (containing degenerate electrons and positrons, and immobile heavy ions) have been theoretically investigated. A fully relativistic hydrodynamic model, which is consistent with the relativistic principle has been used, and the reductive perturbation method is employed to derive the dynamical Korteweg-de Vries equation. The dynamics of electrons as well as positrons, and the presence of immobile heavy ions are taken into account. It is found that the effects of relativistic degeneracy of electrons and positrons, static heavy ions, plasma particles velocity, enthalpy, etc have significantly modified the basic properties of the PA solitary waves propagating in the fully relativistic EPI plasmas. The application of the results of our present work in astrophysical compact objects such as white dwarfs and neutron stars, etc are briefly discussed.

  13. Distribution and detection of positrons from an orbiting nuclear reactor.

    PubMed

    Hones, E W; Higbie, P R

    1989-04-28

    The Solar Maximum Mission (SMM) Gamma-Ray Spectrometer has on many occasions detected nuclear radiation produced by nuclear reactors carried on Soviet satellites. A unique feature of the observations is the measurement of bursts of 511-kiloelectron volt gamma rays that are thought to signal SMM encounters with positrons emanating from the Soviet satellites. A model of positron generation by an orbiting reactor has been developed that describes the resulting time-dependent distribution of positrons temporarily trapped in the geomagnetic field and estimates the response of the SMM spectrometer to passage through such distributions. The model successfully predicts onset times, durations, and intensities of the 511-kiloelectron volt gamma bursts, as we illustrate in a detailed analysis of one event, and thus confirms that these are due to positrons from the Soviet satellites. Reactor-generated positrons are potentially useful in magnetospheric research. PMID:17807611

  14. Development of a Positron Source for JLab at the IAC

    SciTech Connect

    Forest, Tony

    2013-10-12

    We report on the research performed towards the development of a positron sour for Jefferson Lab's (JLab) Continuous Electron Beam Accelerator Facility (CEBAF) in Newport News, VA. The first year of work was used to benchmark the predictions of our current simulation with positron production efficiency measurements at the IAC. The second year used the benchmarked simulation to design a beam line configuration which optimized positron production efficiency while minimizing radioactive waste as well as design and construct a positron converter target. The final year quantified the performance of the positron source. This joint research and development project brought together the experiences of both electron accelerator facilities. Our intention is to use the project as a spring board towards developing a program of accelerator based research and education which will train students to meet the needs of both facilities as well as provide a pool of trained scientists.

  15. Solitary waves in asymmetric electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2015-10-01

    > By solving the coupled equations of the electromagnetic field and electrostatic potential, we investigate solitary waves in an asymmetric electron-positron plasma and/or electron-positron-ion plasmas with delicate features. It is found that the solutions of the coupled equations can capture multipeak structures of solitary waves in the case of cold plasma, which are left out by using the long-wavelength approximation. By considering the effect of ion motion with respect to non-relativistic and ultra-relativistic temperature plasmas, we find that the ions' mobility can lead to larger-amplitude solitary waves; especially, this becomes more obvious for a high-temperature plasma. The effects of asymmetric temperature between electrons and positrons and the ion fraction on the solitary waves are also studied and presented. It is shown that the amplitudes of solitary waves decrease with positron temperature in asymmetric temperature electron-positron plasmas and decrease also with ion concentration.

  16. PET iterative reconstruction incorporating an efficient positron range correction method.

    PubMed

    Bertolli, Ottavia; Eleftheriou, Afroditi; Cecchetti, Matteo; Camarlinghi, Niccolò; Belcari, Nicola; Tsoumpas, Charalampos

    2016-02-01

    Positron range is one of the main physical effects limiting the spatial resolution of positron emission tomography (PET) images. If positrons travel inside a magnetic field, for instance inside a nuclear magnetic resonance (MR) tomograph, the mean range will be smaller but still significant. In this investigation we examined a method to correct for the positron range effect in iterative image reconstruction by including tissue-specific kernels in the forward projection operation. The correction method was implemented within STIR library (Software for Tomographic Image Reconstruction). In order to obtain the positron annihilation distribution of various radioactive isotopes in water and lung tissue, simulations were performed with the Monte Carlo package GATE [Jan et al. 2004 [1

  17. The Proposed 2 MeV Electron Cooler for COSY

    SciTech Connect

    Dietrich, Juergen; Parkhomchuk, Vasily V.; Reva, Vladimir B.; Vedenev, Maxim A.

    2006-03-20

    The design, construction and installation of a 2 MeV electron cooling system for COSY is proposed to further boost the luminosity even with strong heating effects of high-density internal targets. In addition the design of the 2 MeV electron cooler for COSY is intended to test some new features of the high energy electron cooler for HESR at GSI. The design of the 2 MeV electron cooler will be accomplished in cooperation with the Budker Institute of Nuclear Physics in Novosibirsk, Russia. Starting with the boundary conditions of the existing electron cooler at COSY the requirements and a first general scheme of the 2 MeV electron cooler are described.

  18. Production of 14 MeV neutrons by heavy ions

    DOEpatents

    Brugger, Robert M.; Miller, Lowell G.; Young, Robert C.

    1977-01-01

    This invention relates to a neutron generator and a method for the production of 14 MeV neutrons. Heavy ions are accelerated to impinge upon a target mixture of deuterium and tritium to produce recoil atoms of deuterium and tritium. These recoil atoms have a sufficient energy such that they interact with other atoms of tritium or deuterium in the target mixture to produce approximately 14 MeV neutrons.

  19. COMPTEL neutron response at 17 MeV

    NASA Technical Reports Server (NTRS)

    Oneill, Terrence J.; Ait-Ouamer, Farid; Morris, Joann; Tumer, O. Tumay; White, R. Stephen; Zych, Allen D.

    1992-01-01

    The Compton imaging telescope (COMPTEL) instrument of the Gamma Ray Observatory was exposed to 17 MeV d,t neutrons prior to launch. These data were analyzed and compared with Monte Carlo calculations using the MCNP(LANL) code. Energy and angular resolutions are compared and absolute efficiencies are calculated at 0 and 30 degrees incident angle. The COMPTEL neutron responses at 17 MeV and higher energies are needed to understand solar flare neutron data.

  20. Diagnostics for the 400 MeV FNAL Linac

    SciTech Connect

    McCrory, E.S.; Lee, G.

    1991-02-01

    The last four 201 MHz alvarez tanks of the twenty-year-old, 200 MeV Fermilab Linac are being replaced by seven high-gradient (7 KV/m), high-frequency (805 MHz) side-coupled-cavity structures to produce a 400 MeV beam for injection into the Booster. Good, reliable beam diagnostics are an important factor in the success of this project. This paper discusses the diagnostic systems.