Sample records for pulsed parallel current

  1. Parallel transmission RF pulse design for eddy current correction at ultra high field.

    PubMed

    Zheng, Hai; Zhao, Tiejun; Qian, Yongxian; Ibrahim, Tamer; Boada, Fernando

    2012-08-01

    Multidimensional spatially selective RF pulses have been used in MRI applications such as B₁ and B₀ inhomogeneities mitigation. However, the long pulse duration has limited their practical applications. Recently, theoretical and experimental studies have shown that parallel transmission can effectively shorten pulse duration without sacrificing the quality of the excitation pattern. Nonetheless, parallel transmission with accelerated pulses can be severely impeded by hardware and/or system imperfections. One of such imperfections is the effect of the eddy current field. In this paper, we first show the effects of the eddy current field on the excitation pattern and then report an RF pulse the design method to correct eddy current fields caused by the RF coil and the gradient system. Experimental results on a 7 T human eight-channel parallel transmit system show substantial improvements on excitation patterns with the use of eddy current correction. Moreover, the proposed model-based correction method not only demonstrates comparable excitation patterns as the trajectory measurement method, but also significantly improves time efficiency. Copyright © 2012. Published by Elsevier Inc.

  2. An explanation for parallel electric field pulses observed over thunderstorms

    NASA Astrophysics Data System (ADS)

    Kelley, M. C.; Barnum, B. H.

    2009-10-01

    Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.

  3. Minimum envelope roughness pulse design for reduced amplifier distortion in parallel excitation.

    PubMed

    Grissom, William A; Kerr, Adam B; Stang, Pascal; Scott, Greig C; Pauly, John M

    2010-11-01

    Parallel excitation uses multiple transmit channels and coils, each driven by independent waveforms, to afford the pulse designer an additional spatial encoding mechanism that complements gradient encoding. In contrast to parallel reception, parallel excitation requires individual power amplifiers for each transmit channel, which can be cost prohibitive. Several groups have explored the use of low-cost power amplifiers for parallel excitation; however, such amplifiers commonly exhibit nonlinear memory effects that distort radio frequency pulses. This is especially true for pulses with rapidly varying envelopes, which are common in parallel excitation. To overcome this problem, we introduce a technique for parallel excitation pulse design that yields pulses with smoother envelopes. We demonstrate experimentally that pulses designed with the new technique suffer less amplifier distortion than unregularized pulses and pulses designed with conventional regularization.

  4. Current distribution within parallel-connected battery cells

    NASA Astrophysics Data System (ADS)

    Brand, Martin J.; Hofmann, Markus H.; Steinhardt, Marco; Schuster, Simon F.; Jossen, Andreas

    2016-12-01

    Parallel connections can be found in many battery applications. Therefore, it is of high interest to understand how the current distributes within parallel battery cells. However, the number of publications on this topic is comparably low. Furthermore, the measurement set-ups are often not clearly defined in existing publications and it is likely that additional impedances distorted the measured current distributions. In this work, the principles of current distributions within parallel-connected battery cells are investigated theoretically, with an equivalent electric circuit model, and by measurements. A measurement set-up is developed that does not significantly influence the measurements, as proven by impedance spectroscopy. On this basis, two parameter scenarios are analyzed: the ΔR scenario stands for battery cells with differing impedances but similar capacities and the ΔC scenario for differing capacities and similar impedances. Out of 172 brand-new lithium-ion battery cells, pairs are built to practically represent the ΔR and ΔC scenarios. If a charging pulse is applied to the ΔR scenario, currents initially divide according to the current divider but equalize in constant current phases. The current divider has no effect on ΔC pairs but, as a rule of thumb for long-term loads, currents divide according to the battery cell capacities.

  5. Global synchronization of parallel processors using clock pulse width modulation

    DOEpatents

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  6. Electromagnetic pulse-induced current measurement device

    NASA Astrophysics Data System (ADS)

    Gandhi, Om P.; Chen, Jin Y.

    1991-08-01

    To develop safety guidelines for exposure to high fields associated with an electromagnetic pulse (EMP), it is necessary to devise techniques that would measure the peak current induced in the human body. The main focus of this project was to design, fabricate, and test a portable, self-contained stand-on device that would measure and hold the peak current and the integrated change Q. The design specifications of the EMP-Induced Current Measurement Device are as follows: rise time of the current pulse, 5 ns; peak current, 20-600 A; charge Q, 0-20 microcoulombs. The device uses a stand-on parallel-plate bilayer sensor and fast high-frequency circuit that are well-shielded against spurious responses to high incident fields. Since the polarity of the incident peak electric field of the EMP may be either positive or negative, the induced peak current can also be positive or negative. Therefore, the device is designed to respond to either of these polarities and measure and hold both the peak current and the integrated charge which are simultaneously displayed on two separate 3-1/2 digit displays. The prototype device has been preliminarily tested with the EMP's generated at the Air Force Weapons Laboratory (ALECS facility) at Kirtland AFB, New Mexico.

  7. Parallel transmission RF pulse design with strict temperature constraints.

    PubMed

    Deniz, Cem M; Carluccio, Giuseppe; Collins, Christopher

    2017-05-01

    RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different. Copyright © 2017 John Wiley & Sons, Ltd.

  8. The Implementation Of Solid State Switches In A Parallel Configuration To Gain Output Current Capacity In A High Current Capacitive Discharge Unit (CDU).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaves, Mario Paul

    2017-07-01

    For my project I have selected to research and design a high current pulse system, which will be externally triggered from a 5V pulse. The research will be conducted in the region of paralleling the solid state switches for a higher current output, as well as to see if there will be any other advantages in doing so. The end use of the paralleled solid state switches will be used on a Capacitive Discharge Unit (CDU). For the first part of my project, I have set my focus on the design of the circuit, selection of components, and simulation ofmore » the circuit.« less

  9. Pulse-Shape Discrimination of Alpha Particles of Different Specific Energy-Loss With Parallel-Plate Avalanche Counters

    NASA Astrophysics Data System (ADS)

    Nakhostin, M.; Baba, M.

    2014-06-01

    Parallel-plate avalanche counters have long been recognized as timing detectors for heavily ionizing particles. However, these detectors suffer from a poor pulse-height resolution which limits their capability to discriminate between different ionizing particles. In this paper, a new approach for discriminating between charged particles of different specific energy-loss with avalanche counters is demonstrated. We show that the effect of the self-induced space-charge in parallel-plate avalanche counters leads to a strong correlation between the shape of output current pulses and the amount of primary ionization created by the incident charged particles. The correlation is then exploited for the discrimination of charged particles with different energy-losses in the detector. The experimental results obtained with α-particles from an 241Am α-source demonstrate a discrimination capability far beyond that achievable with the standard pulse-height discrimination method.

  10. All-Optical Two-Dimensional Serial-to-Parallel Pulse Converter Using an Organic Film with Femtosecond Optical Response

    NASA Astrophysics Data System (ADS)

    Tatsuura, Satoshi; Wada, Osamu; Furuki, Makoto; Tian, Minquan; Sato, Yasuhiro; Iwasa, Izumi; Pu, Lyong Sun

    2001-04-01

    In this study, we introduce a new concept of all-optical two-dimensional serial-to-parallel pulse converters. Femtosecond optical pulses can be understood as thin plates of light traveling in space. When a femtosecond signal-pulse train and a single gate pulse were fed onto a material with a finite incident angle, each signal-pulse plate met the gate-pulse plate at different locations in the material due to the time-of-flight effect. Meeting points can be made two-dimensional by adding a partial time delay to the gate pulse. By placing a nonlinear optical material at an appropriate position, two-dimensional serial-to-parallel conversion of a signal-pulse train can be achieved with a single gate pulse. We demonstrated the detection of parallel outputs from a 1-Tb/s optical-pulse train through the use of a BaB2O4 crystal. We also succeeded in demonstrating 1-Tb/s serial-to-parallel operation through the use of a novel organic nonlinear optical material, squarylium-dye J-aggregate film, which exhibits ultrafast recovery of bleached absorption.

  11. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOEpatents

    Engh, G.J. van den; Stokdijk, W.

    1992-09-22

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate. 17 figs.

  12. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOEpatents

    van den Engh, Gerrit J.; Stokdijk, Willem

    1992-01-01

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate.

  13. Comparison between Trichel pulse in negative corona and self-pulsing in other configurations

    NASA Astrophysics Data System (ADS)

    Xia, Qing; Zhang, Yu; He, Feng; Qin, Yu; Jiang, Zhaorui; Ouyang, Jiting

    2018-02-01

    We present here a comparison study on self-pulsing phenomena in negative corona, hollow cathode discharges (HCD) and parallel-plate discharge in air. The voltage-current (V-I) curve, the waveforms of self-pulsed currents, and the time-resolved images of the pulsed discharge are measured under various operating conditions. It is experimentally evidenced that the Trichel pulse in a negative corona and the self-pulsing in HCD and/or parallel-plate discharge have similar features as well as spatial-temporal developing process. It is suggested that they should have a similar mechanism that the pulsing reflects the mode transition of discharge between the low-current Townsend and the high-current normal glow. The pulse rising corresponds to the breakdown and formation of temporal glow discharge in a background of low-current Townsend discharge, while the decay edge relates to the transition back to Townsend discharge. The pulse interval is the re-building process of the space charge layer of high density to ensure the glow breakdown.

  14. A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse

    NASA Astrophysics Data System (ADS)

    Gotz, M.; Karsch, L.; Pawelke, J.

    2017-11-01

    In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 μs at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.

  15. A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse.

    PubMed

    Gotz, M; Karsch, L; Pawelke, J

    2017-11-01

    In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 [Formula: see text] at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.

  16. Very Fast Current Diagnostic for Linear Pulsed Beams

    NASA Astrophysics Data System (ADS)

    Nassisi, Vincenzo; Delle Side, Domenico; Turco, Vito

    2018-01-01

    Fast current pulses manage lasers and particle accelerators and require sophisticate systems to be detected. At today Rogowski coils are well known. They are designed and built with a toroidal structure. In recently application, flat transmission lines are imploded and for this reason we develop a linear Rogowski coil to detect current pulses inside flat conductors. To get deep information from the system, it was approached by means of the theory of the transmission lines. The coil we build presents a resistance but it doesn't influence the rise time of the response, instead the integrating time. We also studied the influence of the magnetic properties of coil support. The new device was able to record pulses of more hundred nanoseconds depending on the inductance, load impedance and resistance of the coil. Furthermore, its response was characterized by a sub-nanosecond rise time ( 100 ps), The attenuation coefficient depends mainly on the turn number of the coil, while the quality of the response depends both on the manufacture quality of the coil and on the magnetic core characteristics. In biophysical applications often, a double line is employed in order to have a sample as control and a sample stressed by a light source. So, in this case we build two equal plane lines by 100 Ω characteristic resistance connected in parallel. We diagnosed the current present in a line. The attenuation factor resulted to be 11,5 A/V.

  17. Current Pulses Momentarily Enhance Thermoelectric Cooling

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui

    2004-01-01

    The rates of cooling afforded by thermoelectric (Peltier) devices can be increased for short times by applying pulses of electric current greater than the currents that yield maximum steady-state cooling. It has been proposed to utilize such momentary enhancements of cooling in applications in which diode lasers and other semiconductor devices are required to operate for times of the order of milliseconds at temperatures too low to be easily obtainable in the steady state. In a typical contemplated application, a semiconductor device would be in contact with the final (coldest) somewhat taller stage of a multistage thermoelectric cooler. Steady current would be applied to the stages to produce steady cooling. Pulsed current would then be applied, enhancing the cooling of the top stage momentarily. The principles of operation are straightforward: In a thermoelectric device, the cooling occurs only at a junction at one end of the thermoelectric legs, at a rate proportional to the applied current. However, Joule heating occurs throughout the device at a rate proportional to the current squared. Hence, in the steady state, the steady temperature difference that the device can sustain increases with current only to the point beyond which the Joule heating dominates. If a pulse of current greater than the optimum current (the current for maximum steady cooling) is applied, then the junction becomes momentarily cooled below its lowest steady temperature until thermal conduction brings the resulting pulse of Joule heat to the junction and thereby heats the junction above its lowest steady temperature. A theoretical and experimental study of such transient thermoelectric cooling followed by transient Joule heating in response to current pulses has been performed. The figure presents results from one of the experiments. The study established the essential parameters that characterize the pulse cooling effect, including the minimum temperature achieved, the maximum

  18. Local SAR in Parallel Transmission Pulse Design

    PubMed Central

    Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L.; Adalsteinsson, Elfar

    2011-01-01

    The management of local and global power deposition in human subjects (Specific Absorption Rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx RF pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo MRI scan. Additionally, the algorithm yields a Protocol-specific Ultimate Peak in Local SAR (PUPiL SAR), which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7T eight-channel transmit array. The method reduced peak local 10g SAR by 14–66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. PMID:22083594

  19. Local SAR in parallel transmission pulse design.

    PubMed

    Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L; Adalsteinsson, Elfar

    2012-06-01

    The management of local and global power deposition in human subjects (specific absorption rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx radio frequency pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo magnetic resonance imaging scan. Additionally, the algorithm yields a protocol-specific ultimate peak in local SAR, which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7 Tesla eight-channel transmit array. The method reduced peak local 10 g SAR by 14-66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. Copyright © 2011 Wiley Periodicals, Inc.

  20. Correcting for strong eddy current induced B0 modulation enables two-spoke RF pulse design with parallel transmission: demonstration at 9.4T in the human brain.

    PubMed

    Wu, Xiaoping; Adriany, Gregor; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2013-01-01

    Successful implementation of homogeneous slice-selective RF excitation in the human brain at 9.4T using 16-channel parallel transmission (pTX) is demonstrated. A novel three-step pulse design method incorporating fast real-time measurement of eddy current induced B0 variations as well as correction of resulting phase errors during excitation is described. To demonstrate the utility of the proposed method, phantom and in-vivo experiments targeting a uniform excitation in an axial slice were conducted using two-spoke pTX pulses. Even with the pre-emphasis activated, eddy current induced B0 variations with peak-to-peak values greater than 4 kHz were observed on our system during the rapid switches of slice selective gradients. This large B0 variation, when not corrected, resulted in drastically degraded excitation fidelity with the coefficient of variation (CV) of the flip angle calculated for the region of interest being large (~ 12% in the phantom and ~ 35% in the brain). By comparison, excitation fidelity was effectively restored, and satisfactory flip angle uniformity was achieved when using the proposed method, with the CV value reduced to ~ 3% in the phantom and ~ 8% in the brain. Additionally, experimental results were in good agreement with the numerical predictions obtained from Bloch simulations. Slice-selective flip angle homogenization in the human brain at 9.4T using 16-channel 3D spoke pTX pulses is achievable despite of large eddy current induced excitation phase errors; correcting for the latter was critical in this success.

  1. Correcting for Strong Eddy Current Induced B0 Modulation Enables Two-Spoke RF Pulse Design with Parallel Transmission: Demonstration at 9.4T in the Human Brain

    PubMed Central

    Wu, Xiaoping; Adriany, Gregor; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2013-01-01

    Successful implementation of homogeneous slice-selective RF excitation in the human brain at 9.4T using 16-channel parallel transmission (pTX) is demonstrated. A novel three-step pulse design method incorporating fast real-time measurement of eddy current induced B0 variations as well as correction of resulting phase errors during excitation is described. To demonstrate the utility of the proposed method, phantom and in-vivo experiments targeting a uniform excitation in an axial slice were conducted using two-spoke pTX pulses. Even with the pre-emphasis activated, eddy current induced B0 variations with peak-to-peak values greater than 4 kHz were observed on our system during the rapid switches of slice selective gradients. This large B0 variation, when not corrected, resulted in drastically degraded excitation fidelity with the coefficient of variation (CV) of the flip angle calculated for the region of interest being large (∼12% in the phantom and ∼35% in the brain). By comparison, excitation fidelity was effectively restored, and satisfactory flip angle uniformity was achieved when using the proposed method, with the CV value reduced to ∼3% in the phantom and ∼8% in the brain. Additionally, experimental results were in good agreement with the numerical predictions obtained from Bloch simulations. Slice-selective flip angle homogenization in the human brain at 9.4T using 16-channel 3D spoke pTX pulses is achievable despite of large eddy current induced excitation phase errors; correcting for the latter was critical in this success. PMID:24205098

  2. High speed, high current pulsed driver circuit

    DOEpatents

    Carlen, Christopher R.

    2017-03-21

    Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.

  3. Design Method of Digital Optimal Control Scheme and Multiple Paralleled Bridge Type Current Amplifier for Generating Gradient Magnetic Fields in MRI Systems

    NASA Astrophysics Data System (ADS)

    Watanabe, Shuji; Takano, Hiroshi; Fukuda, Hiroya; Hiraki, Eiji; Nakaoka, Mutsuo

    This paper deals with a digital control scheme of multiple paralleled high frequency switching current amplifier with four-quadrant chopper for generating gradient magnetic fields in MRI (Magnetic Resonance Imaging) systems. In order to track high precise current pattern in Gradient Coils (GC), the proposal current amplifier cancels the switching current ripples in GC with each other and designed optimum switching gate pulse patterns without influences of the large filter current ripple amplitude. The optimal control implementation and the linear control theory in GC current amplifiers have affinity to each other with excellent characteristics. The digital control system can be realized easily through the digital control implementation, DSPs or microprocessors. Multiple-parallel operational microprocessors realize two or higher paralleled GC current pattern tracking amplifier with optimal control design and excellent results are given for improving the image quality of MRI systems.

  4. Radiofrequency pulse design in parallel transmission under strict temperature constraints.

    PubMed

    Boulant, Nicolas; Massire, Aurélien; Amadon, Alexis; Vignaud, Alexandre

    2014-09-01

    To gain radiofrequency (RF) pulse performance by directly addressing the temperature constraints, as opposed to the specific absorption rate (SAR) constraints, in parallel transmission at ultra-high field. The magnitude least-squares RF pulse design problem under hard SAR constraints was solved repeatedly by using the virtual observation points and an active-set algorithm. The SAR constraints were updated at each iteration based on the result of a thermal simulation. The numerical study was performed for an SAR-demanding and simplified time of flight sequence using B1 and ΔB0 maps obtained in vivo on a human brain at 7T. The proposed adjustment of the SAR constraints combined with an active-set algorithm provided higher flexibility in RF pulse design within a reasonable time. The modifications of those constraints acted directly upon the thermal response as desired. Although further confidence in the thermal models is needed, this study shows that RF pulse design under strict temperature constraints is within reach, allowing better RF pulse performance and faster acquisitions at ultra-high fields at the cost of higher sequence complexity. Copyright © 2013 Wiley Periodicals, Inc.

  5. A fast pulse design for parallel excitation with gridding conjugate gradient.

    PubMed

    Feng, Shuo; Ji, Jim

    2013-01-01

    Parallel excitation (pTx) is recognized as a crucial technique in high field MRI to address the transmit field inhomogeneity problem. However, it can be time consuming to design pTx pulses which is not desirable. In this work, we propose a pulse design with gridding conjugate gradient (CG) based on the small-tip-angle approximation. The two major time consuming matrix-vector multiplications are substituted by two operators which involves with FFT and gridding only. Simulation results have shown that the proposed method is 3 times faster than conventional method and the memory cost is reduced by 1000 times.

  6. Oscillatory dependence of current driven domain wall motion on current pulse length

    NASA Astrophysics Data System (ADS)

    Thomas, Luc

    2007-03-01

    The motion of domain walls (DW) in magnetic nanowires driven by spin torque from spin-polarized current is of considerable interest. Most previous work has considered the effect of dc or ˜microsecond long current pulses. Here, we show that the dynamics of DWs driven by nanosecond-long current pulses is unexpectedly complex. In particular, we show that the current driven motion of a DW, confined to a pinning site in a permalloy nanowire, exhibits an oscillatory dependence on the current pulse length with a period of just a few nanoseconds [1]. This behavior can be understood within a surprisingly straightforward one dimensional analytical model of the DW's motion. When a current pulse is applied, the DW's position oscillates within the pinning potential out of phase with the DW's out-of-plane magnetization, where the latter acts like the DW's momentum. Thus, the current driven motion of the DW is akin to a harmonic oscillator, whose frequency is determined by the ``mass'' of the DW and where the restoring force is related to the slope of the pinning potential. Remarkably, when the current pulse is turned off during phases of the DW motion when it has enough momentum, the amplitude of the oscillations can be amplified such that the DW exits the pinning potential well after the pulse is turned off. This oscillatory depinning occurs for currents smaller than the dc threshold current, and, moreover, the DW moves against the electron flow, opposite to the propagation direction above the dc threshold. These effects can be further amplified by using trains of current pulses whose lengths and separations are matched to the DW's oscillation period. In this way, we have demonstrated a five fold reduction in the threshold current required to move a DW out of a pinning site, making this effect potentially important for technological applications. [1] L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner and S.S.P. Parkin, Nature 443, 197 (2006).

  7. Signal-domain optimization metrics for MPRAGE RF pulse design in parallel transmission at 7 tesla.

    PubMed

    Gras, V; Vignaud, A; Mauconduit, F; Luong, M; Amadon, A; Le Bihan, D; Boulant, N

    2016-11-01

    Standard radiofrequency pulse design strategies focus on minimizing the deviation of the flip angle from a target value, which is sufficient but not necessary for signal homogeneity. An alternative approach, based directly on the signal, here is proposed for the MPRAGE sequence, and is developed in the parallel transmission framework with the use of the k T -points parametrization. The flip angle-homogenizing and the proposed methods were investigated numerically under explicit power and specific absorption rate constraints and tested experimentally in vivo on a 7 T parallel transmission system enabling real time local specific absorption rate monitoring. Radiofrequency pulse performance was assessed by a careful analysis of the signal and contrast between white and gray matter. Despite a slight reduction of the flip angle uniformity, an improved signal and contrast homogeneity with a significant reduction of the specific absorption rate was achieved with the proposed metric in comparison with standard pulse designs. The proposed joint optimization of the inversion and excitation pulses enables significant reduction of the specific absorption rate in the MPRAGE sequence while preserving image quality. The work reported thus unveils a possible direction to increase the potential of ultra-high field MRI and parallel transmission. Magn Reson Med 76:1431-1442, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  8. Transformer miniaturization for transcutaneous current/voltage pulse applications.

    PubMed

    Kolen, P T

    1999-05-01

    A general procedure for the design of a miniaturized step up transformer to be used in the context of surface electrode based current/voltage pulse generation is presented. It has been shown that the optimum secondary current pulse width is 4.5 tau, where tau is the time constant associated with the pulse forming network associated with the transformer/electrode interaction. This criteria has been shown to produce the highest peak to average current ratio for the secondary current pulse. The design procedure allows for the calculation of the optimum turns ratio, primary turns, and secondary turns for a given electrode load/tissue and magnetic core parameters. Two design examples for transformer optimization are presented.

  9. Effect of an Additional, Parallel Capacitor on Pulsed Inductive Plasma Accelerator Performance

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    A model of pulsed inductive plasma thrusters consisting of a set of coupled circuit equations and a one-dimensional momentum equation has been used to study the effects of adding a second, parallel capacitor into the system. The equations were nondimensionalized, permitting the recovery of several already-known scaling parameters and leading to the identification of a parameter that is unique to the particular topology studied. The current rise rate through the inductive acceleration coil was used as a proxy measurement of the effectiveness of inductive propellant ionization since higher rise rates produce stronger, potentially better ionizing electric fields at the coil face. Contour plots representing thruster performance (exhaust velocity and efficiency) and current rise rate in the coil were generated numerically as a function of the scaling parameters. The analysis reveals that when the value of the second capacitor is much less than the first capacitor, the performance of the two-capacitor system approaches that of the single-capacitor system. In addition, as the second capacitor is decreased in value the current rise rate can grow to be twice as great as the rise rate attained in the single capacitor case.

  10. Design of parallel transmission radiofrequency pulses robust against respiration in cardiac MRI at 7 Tesla.

    PubMed

    Schmitter, Sebastian; Wu, Xiaoping; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2015-11-01

    Two-spoke parallel transmission (pTX) radiofrequency (RF) pulses have been demonstrated in cardiac MRI at 7T. However, current pulse designs rely on a single set of B1(+)/B0 maps that may not be valid for subsequent scans acquired at another phase of the respiration cycle because of organ displacement. Such mismatches may yield severe excitation profile degradation. B1(+)/B0 maps were obtained, using 16 transmit channels at 7T, at three breath-hold positions: exhale, half-inhale, and inhale. Standard and robust RF pulses were designed using maps obtained at exhale only, and at multiple respiratory positions, respectively. Excitation patterns were analyzed for all positions using Bloch simulations. Flip-angle homogeneity was compared in vivo in cardiac CINE acquisitions. Standard one- and two-spoke pTX RF pulses are sensitive to breath-hold position, primarily due to B1(+) alterations, with high dependency on excitation trajectory for two spokes. In vivo excitation inhomogeneity varied from nRMSE = 8.2% (exhale) up to 32.5% (inhale) with the standard design; much more stable results were obtained with the robust design with nRMSE = 9.1% (exhale) and 10.6% (inhale). A new pTX RF pulse design robust against respiration induced variations of B1(+)/B0 maps is demonstrated and is expected to have a positive impact on cardiac MRI in breath-hold, free-breathing, and real-time acquisitions. © 2014 Wiley Periodicals, Inc.

  11. Current sheet characteristics of a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode

    NASA Astrophysics Data System (ADS)

    Liu, Shuai; Huang, Yizhi; Guo, Haishan; Lin, Tianyu; Huang, Dong; Yang, Lanjun

    2018-05-01

    The axial characteristics of a current sheet in a parallel-plate electromagnetic plasma accelerator operated in gas-prefilled mode are reported. The accelerator is powered by a fourteen stage pulse forming network. The capacitor and inductor in each stage are 1.5 μF and 300 nH, respectively, and yield a damped oscillation square wave of current with a pulse width of 20.6 μs. Magnetic probes and photodiodes are placed at various axial positions to measure the behavior of the current sheet. Both magnetic probe and photodiode signals reveal a secondary breakdown when the current reverses the direction. An increase in the discharge current amplitude and a decrease in pressure lead to a decrease in the current shedding factor. The current sheet velocity and thickness are nearly constant during the run-down phase under the first half-period of the current. The current sheet thicknesses are typically in the range of 25 mm to 40 mm. The current sheet velocities are in the range of 10 km/s to 45 km/s when the discharge current is between 10 kA and 55 kA and the gas prefill pressure is between 30 Pa and 800 Pa. The experimental velocities are about 75% to 90% of the theoretical velocities calculated with the current shedding factor. One reason for this could be that the idealized snowplow analysis model ignores the surface drag force.

  12. Adjustable direct current and pulsed circuit fault current limiter

    DOEpatents

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  13. Efficient method to design RF pulses for parallel excitation MRI using gridding and conjugate gradient.

    PubMed

    Feng, Shuo; Ji, Jim

    2014-04-01

    Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns.

  14. Linear induction accelerators made from pulse-line cavities with external pulse injection.

    PubMed

    Smith, I

    1979-06-01

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator.

  15. Gas metal arc welding fume generation using pulsed current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castner, H.R.

    1994-12-31

    This paper describes a study of the effects of pulsed welding current on the amount of welding fume and ozone produced during gas metal arc welding (GMAW) using a range of welding procedures and pulse parameters. The results reported in this paper show that pulsed current can reduce GMAW fumes compared to steady current. This research also shows that welding parameters need to be properly controlled if pulsed current is to be used to reduce welding fumes. Fume and ozone generation rates were measured during this study for GMAW of mild steel using copper-coated ER70S-3 electrode wire and 95%Ar-5%CO{sub 2}more » and 85%Ar-15%CO{sub 2} shielding gases. Welds were made with both steady current and pulsed current over a wide range of welding parameters. Fume generation rates for steady current were found to be typically between 0.2 g/min and 0.8 g/min which agrees with other researchers. No significant difference was found in the chemical composition of welding fumes from pulsed current compared to the composition of fumes generated by steady current. New technology that can reduce arc welding fumes is of significant interest to a wide range of companies that use arc welding processes and this research should assist these users in evaluating the potential for the application of this technology to their own operations.« less

  16. Contribution For Arc Temperature Affected By Current Increment Ratio At Peak Current In Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Kano, Ryota; Mitubori, Hironori; Iwao, Toru

    2015-11-01

    Tungsten Inert Gas (TIG) Welding is one of the high quality welding. However, parameters of the pulsed arc welding are many and complicated. if the welding parameters are not appropriate, the welding pool shape becomes wide and shallow.the convection of driving force contributes to the welding pool shape. However, in the case of changing current waveform as the pulse high frequency TIG welding, the arc temperature does not follow the change of the current. Other result of the calculation, in particular, the arc temperature at the reaching time of peak current is based on these considerations. Thus, the accurate measurement of the temperature at the time is required. Therefore, the objective of this research is the elucidation of contribution for arc temperature affected by current increment ratio at peak current in pulsed arc. It should obtain a detail knowledge of the welding model in pulsed arc. The temperature in the case of increment of the peak current from the base current is measured by using spectroscopy. As a result, when the arc current increases from 100 A to 150 A at 120 ms, the transient response of the temperature didn't occur during increasing current. Thus, during the current rise, it has been verified by measuring. Therefore, the contribution for arc temperature affected by current increment ratio at peak current in pulsed arc was elucidated in order to obtain more knowledge of welding model of pulsed arc.

  17. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    DOEpatents

    Brown, Roger A.

    1994-01-01

    Circuitry for testing the ability of an intermediate range nuclear instrut to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on.

  18. Efficient method to design RF pulses for parallel excitation MRI using gridding and conjugate gradient

    PubMed Central

    Feng, Shuo

    2014-01-01

    Parallel excitation (pTx) techniques with multiple transmit channels have been widely used in high field MRI imaging to shorten the RF pulse duration and/or reduce the specific absorption rate (SAR). However, the efficiency of pulse design still needs substantial improvement for practical real-time applications. In this paper, we present a detailed description of a fast pulse design method with Fourier domain gridding and a conjugate gradient method. Simulation results of the proposed method show that the proposed method can design pTx pulses at an efficiency 10 times higher than that of the conventional conjugate-gradient based method, without reducing the accuracy of the desirable excitation patterns. PMID:24834420

  19. Electronic constant current and current pulse signal generator for nuclear instrumentation testing

    DOEpatents

    Brown, R.A.

    1994-04-19

    Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures.

  20. Electromagnetic pulse coupling through an aperture into a two-parallel-plate region

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.

    1978-01-01

    Analysis of electromagnetic-pulse (EMP) penetration via apertures into cavities is an important study in designing hardened systems. In this paper, an integral equation procedure is developed for determining the frequency and consequently the time behavior of the field inside a two-parallel-plate region excited through an aperture by an EMP. Some discussion of the numerical results is also included in the paper for completeness.

  1. Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 tesla using parallel RF excitation with a 16-element coil.

    PubMed

    Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar

    2008-12-01

    Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.

  2. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    NASA Astrophysics Data System (ADS)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  3. Current density imaging sequence for monitoring current distribution during delivery of electric pulses in irreversible electroporation.

    PubMed

    Serša, Igor; Kranjc, Matej; Miklavčič, Damijan

    2015-01-01

    Electroporation is gaining its importance in everyday clinical practice of cancer treatment. For its success it is extremely important that coverage of the target tissue, i.e. treated tumor, with electric field is within the specified range. Therefore, an efficient tool for the electric field monitoring in the tumor during delivery of electroporation pulses is needed. The electric field can be reconstructed by the magnetic resonance electric impedance tomography method from current density distribution data. In this study, the use of current density imaging with MRI for monitoring current density distribution during delivery of irreversible electroporation pulses was demonstrated. Using a modified single-shot RARE sequence, where four 3000 V and 100 μs long pulses were included at the start, current distribution between a pair of electrodes inserted in a liver tissue sample was imaged. Two repetitions of the sequence with phases of refocusing radiofrequency pulses 90° apart were needed to acquire one current density image. For each sample in total 45 current density images were acquired to follow a standard protocol for irreversible electroporation where 90 electric pulses are delivered at 1 Hz. Acquired current density images showed that the current density in the middle of the sample increased from first to last electric pulses by 60%, i.e. from 8 kA/m2 to 13 kA/m2 and that direction of the current path did not change with repeated electric pulses significantly. The presented single-shot RARE-based current density imaging sequence was used successfully to image current distribution during delivery of short high-voltage electric pulses. The method has a potential to enable monitoring of tumor coverage by electric field during irreversible electroporation tissue ablation.

  4. Terahertz spin current pulses controlled by magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; Wolf, M.; Radu, I.; Oppeneer, P. M.; Münzenberg, M.

    2013-04-01

    In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.

  5. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints.

    PubMed

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-09-15

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.

  6. Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints

    PubMed Central

    Zhang, Xinge; Li, Liqun; Chen, Yanbin; Yang, Zhaojun; Chen, Yanli; Guo, Xinjian

    2017-01-01

    In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding. PMID:28914825

  7. Parallel line raster eliminates ambiguities in reading timing of pulses less than 500 microseconds apart

    NASA Technical Reports Server (NTRS)

    Horne, A. P.

    1966-01-01

    Parallel horizontal line raster is used for precision timing of events occurring less than 500 microseconds apart for observation of hypervelocity phenomena. The raster uses a staircase vertical deflection and eliminates ambiguities in reading timing of pulses close to the end of each line.

  8. Ballistic Deficits for Ionization Chamber Pulses in Pulse Shaping Amplifiers

    NASA Astrophysics Data System (ADS)

    Kumar, G. Anil; Sharma, S. L.; Choudhury, R. K.

    2007-04-01

    In order to understand the dependence of the ballistic deficit on the shape of rising portion of the voltage pulse at the input of a pulse shaping amplifier, we have estimated the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber. These estimations have been made using numerical integration method when the pulses are processed through the CR-RCn (n=1-6) shaping network as well as when the pulses are processed through the complex shaping network of the ORTEC Model 472 spectroscopic amplifier. Further, we have made simulations to see the effect of ballistic deficit on the pulse-height spectra under different conditions. We have also carried out measurements of the ballistic deficits for the pulses from a two-electrode parallel plate ionization chamber as well as for the pulses from a gridded parallel plate ionization chamber when these pulses are processed through the ORTEC 572 linear amplifier having a simple CR-RC shaping network. The reasonable matching of the simulated ballistic deficits with the experimental ballistic deficits for the CR-RC shaping network clearly establishes the validity of the simulation technique

  9. A compact high current pulsed electron gun with subnanosecond electron pulse widths

    NASA Technical Reports Server (NTRS)

    Khakoo, M. A.; Srivastava, S. K.

    1984-01-01

    A magnetically-collimated, double-pulsed electron gun capable of generating electron pulses with a peak instantaneous current of approximately 70 microamps and a temporal width of 0.35 ns (FWHM) has been developed. Calibration is accomplished by measuring the lifetime of the well known 2(1P)-to-1(1S) transition in helium (58.4nm) at a near-threshold electron-impact energy by use of the delayed-coincidence technique.

  10. Effect of a superconducting coil as a fault current limiter on current density distribution in BSCCO tape after an over-current pulse

    NASA Astrophysics Data System (ADS)

    Tallouli, M.; Shyshkin, O.; Yamaguchi, S.

    2017-07-01

    The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of

  11. Saturation of subjective reward magnitude as a function of current and pulse frequency.

    PubMed

    Simmons, J M; Gallistel, C R

    1994-02-01

    In rats with electrodes in the medial forebrain bundle, the upper portion of the function relating the experienced magnitude of the reward to pulse frequency was determined at currents ranging from 100 to 1,000 microA. The pulse frequency required to produce an asymptotic level of reward was inversely proportional to current except at the lowest currents and highest pulse frequencies. At a given current, the subjective reward magnitude functions decelerated to an asymptote over an interval in which the pulse frequency doubled or tripled. The asymptotic level of reward was approximately constant for currents between 200 and 1,000 microA but declined substantially at currents at or below 100 microA and pulse frequencies at or above 250 to 400 pulses per second. The results are consistent with the hypothesis that the magnitude of the experienced reward depends only on the number of action potentials generated by the train of pulses in the bundle of reward-relevant axons.

  12. Electromagnetic pulse-driven spin-dependent currents in semiconductor quantum rings.

    PubMed

    Zhu, Zhen-Gang; Berakdar, Jamal

    2009-04-08

    We investigate the non-equilibrium charge and spin-dependent currents in a quantum ring with a Rashba spin-orbit interaction (SOI) driven by two asymmetric picosecond electromagnetic pulses. The equilibrium persistent charge and persistent spin-dependent currents are investigated as well. It is shown that the dynamical charge and the dynamical spin-dependent currents vary smoothly with a static external magnetic flux and the SOI provides a SU(2) effective flux that changes the phases of the dynamic charge and the dynamic spin-dependent currents. The period of the oscillation of the total charge current with the delay time between the pulses is larger in a quantum ring with a larger radius. The parameters of the pulse fields control to a certain extent the total charge and the total spin-dependent currents. The calculations are applicable to nanometre rings fabricated in heterojunctions of III-V and II-VI semiconductors containing several hundreds of electrons.

  13. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.

    PubMed

    Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A

    2016-03-01

    To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.

  14. A PIPO Boost Converter with Low Ripple and Medium Current Application

    NASA Astrophysics Data System (ADS)

    Bandri, S.; Sofian, A.; Ismail, F.

    2018-04-01

    This paper presents a Parallel Input Parallel Output (PIPO) boost converter is proposed to gain power ability of converter, and reduce current inductors. The proposed technique will distribute current for n-parallel inductor and switching component. Four parallel boost converters implement on input voltage 20.5Vdc to generate output voltage 28.8Vdc. The PIPO boost converter applied phase shift pulse width modulation which will compare with conventional PIPO boost converters by using a similar pulse for every switching component. The current ripple reduction shows an advantage PIPO boost converter then conventional boost converter. Varies loads and duty cycle will be simulated and analyzed to verify the performance of PIPO boost converter. Finally, the unbalance of current inductor is able to be verified on four area of duty cycle in less than 0.6.

  15. Alternating current circuit theory and pulsed NMR (Nuclear Magnetic Resonance)

    NASA Astrophysics Data System (ADS)

    Gerstein, B. C.

    1987-06-01

    Pulsed NMR, by definition, deals with time varying excitations. These excitations, supplied by resonant circuits which provide a pulse of radiofrequency (frequencies in the megahertz region) power to a resonant circuit containing, among other things, a coil of wire, or inductor, in which a sample under investigation is placed for purposes of the nuclear magnetic resonance experiment. There are therefore two features of the pulse NMR experiment. First is the fact that we have available a source of continuous wave (CW) alternating current at some angular frequency, omega, measured in radians per second. This source is generally supplied by an ultrastable device called a frequency synthesizer. The second feature of the pulsed NMR experiment is that the sample is not continuously irradiated, but a pulse of radiofrequency oscillation is applied to the sample. This report discusses alternating current theory, resonant circuits and the equipment used in this experiment.

  16. Interface demarcation in GaAs by current pulsing

    NASA Technical Reports Server (NTRS)

    Matthiesen, D. H.; Kafalas, J. A.; Duchene, G. A.; Bellows, A. H.

    1990-01-01

    GTE Laboratories is currently conducting a program to investigate the effect of convection in the melt on the properties of bulk grown gallium arsenide (GaAs). In addition to extensive ground based experimentation, a Get Away Special growth system has been developed to grow two GaAs crystals aboard the Space Shuttle, each with a one inch diameter. In order to perform a complete segregation analysis of the crystals grown in space, it is necessary to measure the interface shape and growth rate as well as the spatial distribution of the selenium dopant. The techniques for interface demarcation in selenium doped GaAs by current pulsing have been developed at GTE Laboratories and successful interface demarcation has been achieved for current pulses ranging from 20 to 90 amps, in both single crystal and polycrystalline regions.

  17. Fast and efficient STT switching in MTJ using additional transient pulse current

    NASA Astrophysics Data System (ADS)

    Pathak, Sachin; Cha, Jongin; Jo, Kangwook; Yoon, Hongil; Hong, Jongill

    2017-06-01

    We propose a profile of write pulse current-density to switch magnetization in a perpendicular magnetic tunnel junction to reduce switching time and write energy as well. Our simulated results show that an overshoot transient pulse current-density (current spike) imposed to conventional rectangular-shaped pulse current-density (main pulse) significantly improves switching speed that yields the reduction in write energy accordingly. For example, we could dramatically reduce the switching time by 80% and thereby reduce the write energy over 9% in comparison to the switching without current spike. The current spike affects the spin dynamics of the free layer and reduces the switching time mainly due to spin torque induced. On the other hand, the large Oersted field induced causes changes in spin texture. We believe our proposed write scheme can make a breakthrough in magnetic random access memory technology seeking both high speed operation and low energy consumption.

  18. X-ray computed tomography comparison of individual and parallel assembled commercial lithium iron phosphate batteries at end of life after high rate cycling

    NASA Astrophysics Data System (ADS)

    Carter, Rachel; Huhman, Brett; Love, Corey T.; Zenyuk, Iryna V.

    2018-03-01

    X-ray computed tomography (X-ray CT) across multiple length scales is utilized for the first time to investigate the physical abuse of high C-rate pulsed discharge on cells wired individually and in parallel.. Manufactured lithium iron phosphate cells boasting high rate capability were pulse power tested in both wiring conditions with high discharge currents of 10C for a high number of cycles (up to 1200) until end of life (<80% of initial discharge capacity retained). The parallel assembly reached end of life more rapidly for reasons unknown prior to CT investigations. The investigation revealed evidence of overdischarge in the most degraded cell from the parallel assembly, compared to more traditional failure in the individual cell. The parallel-wired cell exhibited dissolution of copper from the anode current collector and subsequent deposition throughout the separator near the cathode of the cell. This overdischarge-induced copper deposition, notably impossible to confirm with other state of health (SOH) monitoring methods, is diagnosed using CT by rendering the interior current collector without harm or alteration to the active materials. Correlation of CT observations to the electrochemical pulse data from the parallel-wired cells reveals the risk of parallel wiring during high C-rate pulse discharge.

  19. Performance Effects of Adding a Parallel Capacitor to a Pulse Inductive Plasma Accelerator Powertrain

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Sivak, Amy D.; Balla, Joseph V.

    2011-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and then discharged through a coil as a high-current pulse that inductively couples energy into the propellant. The field produced by this pulse ionizes the propellant, producing a plasma near the face of the coil. Once a plasma is formed if can be accelerated and expelled at a high exhaust velocity by the Lorentz force arising from the interaction of an induced plasma current and the magnetic field. While there are many coil geometries that can be employed to inductively accelerate a plasma, in this paper the discussion is limit to planar geometries where the coil take the shape of a flat spiral. A recent review of the developmental history of planar-geometry pulsed inductive thrusters can be found in Ref. [1]. Two concepts that have employed this geometry are the Pulsed Inductive Thruster (PIT) and the Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).

  20. Detailed characteristics of intermittent current pulses due to positive corona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yang, E-mail: liuyangwuh520@sina.com; Cui, Xiang; Lu, Tiebing

    In order to get detailed characteristics of intermittent current pulses due to positive corona such as the repetition rate of burst-pulse trains, the peak value ratio of the primary pulse to the secondary pulse, the number of pulses per burst, and the interval of the secondary pulses, a systematic study was carried out in a coaxial conductor-cylinder electrode system with the conductor electrode being set with a discharge point. Empirical formulae for the number of pulses per burst and the interval of the secondary pulses are first presented. A theoretical model based on the motion of the space-charge clouds ismore » proposed. Analysis with the model gives explanations to the experimental results and reveals some new insights into the physical mechanism of positive intermittent corona.« less

  1. Contribution for Iron Vapor and Radiation Distribution Affected by Current Frequency of Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Shimokura, Takuya; Mori, Yusuke; Iwao, Toru; Yumoto, Motoshige

    Pulsed GTA welding has been used for improvement of stability, weld speed, and heat input control. However, the temperature and radiation power of the pulsed arc have not been elucidated. Furthermore, arc contamination by metal vapor changes the arc characteristics, e.g. by increasing radiation power. In this case, the metal vapor in pulsed GTA welding changes the distribution of temperature and radiation power as a function of time. This paper presents the relation between metal vapor and radiation power at different pulse frequencies. We calculate the Fe vapor distribution of the pulsed current. Results show that the Fe vapor is transported at fast arc velocity during the peak current period. During the base current period, the Fe vapor concentration is low and distribution is diffuse. The transition of Fe vapor distribution does not follow the pulsed current; the radiation power density distribution differs for high frequencies and low frequencies. In addition, the Fe vapor and radiation distribution are affected by the pulsed arc current frequency.

  2. Apparatus for producing voltage and current pulses

    DOEpatents

    Kirbie, Hugh; Dale, Gregory E.

    2010-12-21

    An apparatus having one or more modular stages for producing voltage and current pulses. Each module includes a diode charging means to charge a capacitive means that stores energy. One or more charging impedance means are connected to the diode charging means to provide a return current pathway. A solid-state switch discharge means, with current interruption capability, is connected to the capacitive means to discharge stored energy. Finally, a control means is provided to command the switching action of the solid-state switch discharge means.

  3. Electron Cooling and Isotropization during Magnetotail Current Sheet Thinning: Implications for Parallel Electric Fields

    NASA Astrophysics Data System (ADS)

    Lu, San; Artemyev, A. V.; Angelopoulos, V.

    2017-11-01

    Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.

  4. Featuring of transient tunneling current by voltage pulse and application to an electrochemical biosensor

    NASA Astrophysics Data System (ADS)

    Yun, Jun Yeon; Lee, Won Cheol; Choi, Seong Wook; Park, Young June

    2018-03-01

    We suggest a voltage pulse method for detecting the transient tunneling current component (faradaic current component) in a metal/redox-active monolayer/electrolyte system. After applying the pulse to the metal electrode, the capacitive current prevails; therefore, it is difficult to extract the tunneling current, which carries information on the biochemical reactions occurring between the biomarkers in the electrolyte and the self-assembled monolayer (SAM) as the probe peptide system. Instead of waiting until the capacitive current diminishes, and thereby, the tunneling current also decreases, we try to extract the tunneling current in an early stage of the pulse. The method is based on the observation that the capacitive current becomes symmetrized in the positive and negative pulses after introducing the SAM on the metal electrode. When the energy level of the redox molecule is higher than the Fermi level of the metal under zero-bias condition, the tunneling current in the negative pulse can be extracted by subtracting the capacitive current obtained from the positive pulse, where the tunneling current is neglected. The experiment conducted for detecting trypsin as a biomarker shows that the method enhances the sensitivity and the specific-to-nonspecific ratio of the sensor device in the case of the nonspecific protein-abundant electrolyte solution, as evinced by cyclic voltammetry measurements in comparison.

  5. Self-pulsing in a low-current hollow cathode discharge: From Townsend to glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Yu; School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081; Xie, Kan, E-mail: xiekan@bit.edu.cn

    We investigate the self-pulsing phenomenon of a low current cavity discharge in a cylindrical hollow cathode in pure argon. The waveforms of pulsed current and voltage are measured, and the time-averaged and time-resolved images of hollow cathode discharge are recorded by using high-speed intensified charge coupled device camera. The results show that the self-pulsing is a mode transition between low-current stage of Townsend discharge and high-current stage of glow discharge. During the self-pulsing, the current rising time relates to the dissipation of space charges, and the decay time relates to the reconstruction of the virtual anode by the accumulation ofmore » positive ions. Whether or not space charges can form and keep the virtual anode is responsible for the discharge mode and hence plays an important role in the self-pulsing phenomenon in low current hollow cathode discharge.« less

  6. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    PubMed Central

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  7. Pulse generator using transistors and silicon controlled rectifiers produces high current pulses with fast rise and fall times

    NASA Technical Reports Server (NTRS)

    Woolfson, M. G.

    1966-01-01

    Electrical pulse generator uses power transistors and silicon controlled rectifiers for producing a high current pulse having fast rise and fall times. At quiescent conditions, the standby power consumption of the circuit is equal to zero.

  8. Conversion of continuous-direct-current TIG welder to pulse-arc operation

    NASA Technical Reports Server (NTRS)

    Lien, D. R.

    1969-01-01

    Electronics package converts a continuous-dc tungsten-inert gas welder for pulse-arc operation. Package allows presetting of the pulse rate, duty cycle, and current value, and enables welding of various alloys and thicknesses of materials.

  9. Ultrafast spintronics roadmap: from femtosecond spin current pulses to terahertz non-uniform spin dynamics via nano-confined spin transfer torques (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Melnikov, Alexey; Razdolski, Ilya; Alekhin, Alexandr; Ilin, Nikita; Meyburg, Jan; Diesing, Detlef; Roddatis, Vladimir; Rungger, Ivan; Stamenova, Maria; Sanvito, Stefano; Bovensiepen, Uwe

    2016-10-01

    Further development of spintronics requires miniaturization and reduction of characteristic timescales of spin dynamics combining the nanometer spatial and femtosecond temporal ranges. These demands shift the focus of interest towards the fundamental open question of the interaction of femtosecond spin current (SC) pulses with a ferromagnet (FM). The spatio-temporal properties of the spin transfer torque (STT) exerted by ultrashort SC pulses on the FM open the time domain for studying STT fingerprint on spatially non-uniform magnetization dynamics. Using the sensitivity of magneto-induced second harmonic generation to SC, we develop technique for SC monitoring. With 20 fs resolution, we demonstrate the generation of 250 fs-long SC pulses in Fe/Au/Fe/MgO(001) structures. Their temporal profile indicates (i) nearly-ballistic hot electron transport in Au and (ii) that the pulse duration is primarily determined by the thermalization time of laser-excited hot carriers in Fe. Together with strongly spin-dependent Fe/Au interface transmission calculated for these carriers, this suggests the non-thermal spin-dependent Seebeck effect dominating the generation of ultrashort SC pulses. The analysis of SC transmission/reflection at the Au/Fe interface shows that hot electron spins orthogonal to the Fe magnetization rotate gaining huge parallel (anti-parallel) projection in transmitted (reflected) SC. This is accompanied by a STT-induced perturbation of the magnetization localized at the interface, which excites the inhomogeneous high-frequency spin dynamics in the FM. Time-resolved magneto-optical studies reveal the excitation of several standing spin wave modes in the Fe film with their spectrum extending up to 0.6 THz and indicating the STT spatial confinement to 2 nm.

  10. High voltage pulse generator

    DOEpatents

    Fasching, George E.

    1977-03-08

    An improved high-voltage pulse generator has been provided which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of a first one of the rectifiers connected between the first and second of the plurality of charging capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. Alternate circuits are provided for controlling the application of the charging voltage from a charging circuit to be applied to the parallel capacitors which provides a selection of at least two different intervals in which the charging voltage is turned "off" to allow the SCR's connecting the capacitors in series to turn "off" before recharging begins. The high-voltage pulse-generating circuit including the N capacitors and corresponding SCR's which connect the capacitors in series when triggered "on" further includes diodes and series-connected inductors between the parallel-connected charging capacitors which allow sufficiently fast charging of the capacitors for a high pulse repetition rate and yet allow considerable control of the decay time of the high-voltage pulses from the pulse-generating circuit.

  11. A compact submicrosecond, high current generator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

  12. Integrated Joule switches for the control of current dynamics in parallel superconducting strips

    NASA Astrophysics Data System (ADS)

    Casaburi, A.; Heath, R. M.; Cristiano, R.; Ejrnaes, M.; Zen, N.; Ohkubo, M.; Hadfield, R. H.

    2018-06-01

    Understanding and harnessing the physics of the dynamic current distribution in parallel superconducting strips holds the key to creating next generation sensors for single molecule and single photon detection. Non-uniformity in the current distribution in parallel superconducting strips leads to low detection efficiency and unstable operation, preventing the scale up to large area sensors. Recent studies indicate that non-uniform current distributions occurring in parallel strips can be understood and modeled in the framework of the generalized London model. Here we build on this important physical insight, investigating an innovative design with integrated superconducting-to-resistive Joule switches to break the superconducting loops between the strips and thus control the current dynamics. Employing precision low temperature nano-optical techniques, we map the uniformity of the current distribution before- and after the resistive strip switching event, confirming the effectiveness of our design. These results provide important insights for the development of next generation large area superconducting strip-based sensors.

  13. Theory of step on leading edge of negative corona current pulse

    NASA Astrophysics Data System (ADS)

    Gupta, Deepak K.; Mahajan, Sangeeta; John, P. I.

    2000-03-01

    Theoretical models taking into account different feedback source terms (e.g., ion-impact electron emission, photo-electron emission, field emission, etc) have been proposed for the existence and explanation of the shape of negative corona current pulse, including the step on the leading edge. In the present work, a negative corona current pulse with the step on the leading edge is obtained in the presence of ion-impact electron emission feedback source only. The step on the leading edge is explained in terms of the plasma formation process and enhancement of the feedback source. Ionization wave-like movement toward the cathode is observed after the step. The conditions for the existence of current pulse, with and without the step on the leading edge, are also described. A qualitative comparison with earlier theoretical and experimental work is also included.

  14. Isolated terawatt attosecond hard X-ray pulse generated from single current spike.

    PubMed

    Shim, Chi Hyun; Parc, Yong Woon; Kumar, Sandeep; Ko, In Soo; Kim, Dong Eon

    2018-05-10

    Isolated terawatt (TW) attosecond (as) hard X-ray pulse is greatly desired for four-dimensional investigations of natural phenomena with picometer spatial and attosecond temporal resolutions. Since the demand for such sources is continuously increasing, the possibility of generating such pulse by a single current spike without the use of optical or electron delay units in an undulator line is addressed. The conditions of a current spike (width and height) and a modulation laser pulse (wavelength and power) is also discussed. We demonstrate that an isolated TW-level as a hard X-ray can be produced by a properly chosen single current spike in an electron bunch with simulation results. By using realistic specifications of an electron bunch of the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL), we show that an isolated, >1.0 TW and ~36 as X-ray pulse at 12.4 keV can be generated in an optimized-tapered undulator line. This result opens a new vista for current XFEL operation: the attosecond XFEL.

  15. Parallel transmission pulse design with explicit control for the specific absorption rate in the presence of radiofrequency errors.

    PubMed

    Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan; Herraiz, Joaquin L; Gagoski, Borjan; Adalsteinsson, Elfar; Wald, Lawrence L; Guerin, Bastien

    2016-06-01

    A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors ("worst-case SAR") is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled "worst-case SAR" in the presence of errors of this magnitude at minor cost of the excitation profile quality. Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. Magn Reson Med 75:2493-2504, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. The target material influence on the current pulse during high power pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Moens, Filip; Konstantinidis, Stéphanos; Depla, Diederik

    2017-10-01

    The current-time characteristic during high power pulsed magnetron sputtering is measured under identical conditions for seventeen different target materials. Based on physical processes such as gas rarefaction, ion-induced electron emission, and electron impact ionization, two test parameters were derived that significantly correlate with specific features of the current-time characteristic: i) the peak current is correlated to the momentum transfer between the sputtered material and the argon gas, ii) while the observed current plateau after the peak is connected to the metal ionization rate.

  17. The detailed characteristics of positive corona current pulses in the line-to-plane electrodes

    NASA Astrophysics Data System (ADS)

    Xuebao, LI; Dayong, LI; Qian, ZHANG; Yinfei, LI; Xiang, CUI; Tiebing, LU

    2018-05-01

    The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.

  18. [Rehabilitative treatment of patients with ureterolithiasis using pulsed vacuum depression, pulsed low-frequency electric current, and radon therapy].

    PubMed

    Li, A A; Karpukhin, I V; Korchazhkina, N B; Gusarov, I I; Kotenko, K V; Slepushkina, T G; Dubovskiĭ, A V

    2009-01-01

    The authors report results of the treatment of 60 patients with ureterolithiasis using a combination of pulsed vacuum depression (local vibrotherapy), low-frequency pulsed (alternating sinusoidal) current, radon water and radon baths. Clinical efficiency of combined therapy is estimated at 93.3%.

  19. Adapted RF pulse design for SAR reduction in parallel excitation with experimental verification at 9.4 T.

    PubMed

    Wu, Xiaoping; Akgün, Can; Vaughan, J Thomas; Andersen, Peter; Strupp, John; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2010-07-01

    Parallel excitation holds strong promises to mitigate the impact of large transmit B1 (B+1) distortion at very high magnetic field. Accelerated RF pulses, however, inherently tend to require larger values in RF peak power which may result in substantial increase in Specific Absorption Rate (SAR) in tissues, which is a constant concern for patient safety at very high field. In this study, we demonstrate adapted rate RF pulse design allowing for SAR reduction while preserving excitation target accuracy. Compared with other proposed implementations of adapted rate RF pulses, our approach is compatible with any k-space trajectories, does not require an analytical expression of the gradient waveform and can be used for large flip angle excitation. We demonstrate our method with numerical simulations based on electromagnetic modeling and we include an experimental verification of transmit pattern accuracy on an 8 transmit channel 9.4 T system.

  20. Pulsed, high-current, in-line reversal electron attachment detector

    NASA Technical Reports Server (NTRS)

    Bernius, Mark T.; Chutjian, Ara

    1989-01-01

    A new, pulsed, high-current, in-line reversal electron attachment ionizer/detector is described. The ionizer is capable of delivering a beam of electrons into an electrostatic mirror field to form a planar wall of electrons having zero kinetic energy. Electron attachment to a molecular target at the reversal point produces either parent or fragment negative ions through a zero-energy (s-wave) state. The atomic or molecular ion is pulsed out of the attachment region approximately 2 microsec after the electrons are pulsed off, and focused onto the entrance plane of a quadrupole mass analyzer. The sensitivity of the apparatus is preliminarily assessed, and its higher-energy behavior with regard to molecular attachment and ionization is described.

  1. Effects of imbalanced currents on large-format LiFePO4/graphite batteries systems connected in parallel

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Hu, Xiaosong; Jin, Chao; Jiang, Jiuchun; Zhang, Yanru; Yip, Tony

    2016-05-01

    With the development and popularization of electric vehicles, it is urgent and necessary to develop effective management and diagnosis technology for battery systems. In this work, we design a parallel battery model, according to equivalent circuits of parallel voltage and branch current, to study effects of imbalanced currents on parallel large-format LiFePO4/graphite battery systems. Taking a 60 Ah LiFePO4/graphite battery system manufactured by ATL (Amperex Technology Limited, China) as an example, causes of imbalanced currents in the parallel connection are analyzed using our model, and the associated effect mechanisms on long-term stability of each single battery are examined. Theoretical and experimental results show that continuously increasing imbalanced currents during cycling are mainly responsible for the capacity fade of LiFePO4/graphite parallel batteries. It is thus a good way to avoid fast performance fade of parallel battery systems by suppressing variations of branch currents.

  2. Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate.

    PubMed

    Guérin, Bastien; Setsompop, Kawin; Ye, Huihui; Poser, Benedikt A; Stenger, Andrew V; Wald, Lawrence L

    2015-05-01

    To design parallel transmit (pTx) simultaneous multislice (SMS) spokes pulses with explicit control for peak power and local and global specific absorption rate (SAR). We design SMS pTx least-squares and magnitude least squares spokes pulses while constraining local SAR using the virtual observation points (VOPs) compression of SAR matrices. We evaluate our approach in simulations of a head (7T) and a body (3T) coil with eight channels arranged in two z-rows. For many of our simulations, control of average power by Tikhonov regularization of the SMS pTx spokes pulse design yielded pulses that violated hardware and SAR safety limits. On the other hand, control of peak power alone yielded pulses that violated local SAR limits. Pulses optimized with control of both local SAR and peak power satisfied all constraints and therefore had the best excitation performance under limited power and SAR constraints. These results extend our previous results for single slice pTx excitations but are more pronounced because of the large power demands and SAR of SMS pulses. Explicit control of local SAR and peak power is required to generate optimal SMS pTx excitations satisfying both the system's hardware limits and regulatory safety limits. © 2014 Wiley Periodicals, Inc.

  3. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  4. Muscle oxygenation of vastus lateralis and medialis muscles during alternating and pulsed current electrical stimulation.

    PubMed

    Aldayel, Abdulaziz; Muthalib, Makii; Jubeau, Marc; McGuigan, Michael; Nosaka, Kazunori

    2011-05-01

    This study compared between alternating and pulsed current electrical muscle stimulation (EMS) for muscle oxygenation and blood volume during isometric contractions. Nine healthy men (23-48 years) received alternating current EMS (2500 Hz) modulated at 75 Hz on the knee extensors of one leg, and pulsed current EMS (75 Hz) for the other leg separated by 2 weeks in a randomised, counter-balanced order. Pulse duration (400 μs), on-off ratio (5-15 s) and other stimulation parameters were matched between conditions and 30 isometric contractions were induced at the knee joint angle of 100° (0° full extension). Changes in tissue oxygenation index (∆TOI) and total hemoglobin volume (∆tHb) of vastus lateralis and medialis muscles over 30 contractions were assessed by a near-infrared spectroscopy, and were compared between conditions by a two-way repeated measures ANOVA. Peak torque produced during EMS increased over 30 contractions in response to the increase in the stimulation intensity for pulsed current, but not for the alternating current EMS. The torque during each isometric contraction was less stable in alternating than pulsed current EMS. The changes in ∆TOI amplitude during relaxation phases and ∆tHb amplitude were not significantly different between conditions. However, the decreases in ∆TOI amplitude during contraction phases from baseline were significantly (P < 0.05) greater for the pulsed current than alternating current from the 18th contraction (-15.6 ± 2.3 vs. -8.9 ± 1.8%) to 30th contraction (-10.7 ± 1.8 vs. -4.8 ± 1.5%). These results suggest that the muscles were less activated in the alternating current EMS when compared with the pulsed current EMS.

  5. Parallel equilibrium current effect on existence of reversed shear Alfvén eigenmodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Hua-sheng, E-mail: huashengxie@gmail.com; Xiao, Yong, E-mail: yxiao@zju.edu.cn

    2015-02-15

    A new fast global eigenvalue code, where the terms are segregated according to their physics contents, is developed to study Alfvén modes in tokamak plasmas, particularly, the reversed shear Alfvén eigenmode (RSAE). Numerical calculations show that the parallel equilibrium current corresponding to the kink term is strongly unfavorable for the existence of the RSAE. An improved criterion for the RSAE existence is given for with and without the parallel equilibrium current. In the limits of ideal magnetohydrodynamics (MHD) and zero-pressure, the toroidicity effect is the main possible favorable factor for the existence of the RSAE, which is however usually small.more » This suggests that it is necessary to include additional physics such as kinetic term in the MHD model to overcome the strong unfavorable effect of the parallel current in order to enable the existence of RSAE.« less

  6. Modelling the transient behaviour of pulsed current tungsten-inert-gas weldpools

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Zheng, W.; Wu, L.

    1999-01-01

    A three-dimensional model is established to simulate the pulsed current tungsten-inert-gas (TIG) welding process. The goal is to analyse the cyclic variation of fluid flow and heat transfer in weldpools under periodic arc heat input. To this end, an algorithm, which is capable of handling the transience, nonlinearity, multiphase and strong coupling encountered in this work, is developed. The numerical simulations demonstrate the transient behaviour of weldpools under pulsed current. Experimental data are compared with numerical results to show the effectiveness of the developed model.

  7. Validation of neoclassical bootstrap current models in the edge of an H-mode plasma.

    PubMed

    Wade, M R; Murakami, M; Politzer, P A

    2004-06-11

    Analysis of the parallel electric field E(parallel) evolution following an L-H transition in the DIII-D tokamak indicates the generation of a large negative pulse near the edge which propagates inward, indicative of the generation of a noninductive edge current. Modeling indicates that the observed E(parallel) evolution is consistent with a narrow current density peak generated in the plasma edge. Very good quantitative agreement is found between the measured E(parallel) evolution and that expected from neoclassical theory predictions of the bootstrap current.

  8. Nonlinear MHD simulation of current drive by multi-pulsed coaxial helicity injection in spherical torus

    NASA Astrophysics Data System (ADS)

    Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro

    2011-10-01

    The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.

  9. Preparation of scanning tunneling microscopy tips using pulsed alternating current etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valencia, Victor A.; Thaker, Avesh A.; Derouin, Jonathan

    An electrochemical method using pulsed alternating current etching (PACE) to produce atomically sharp scanning tunneling microscopy (STM) tips is presented. An Arduino Uno microcontroller was used to control the number and duration of the alternating current (AC) pulses, allowing for ready optimization of the procedures for both Pt:Ir and W tips using a single apparatus. W tips prepared using constant and pulsed AC power were compared. Tips fashioned using PACE were sharper than those etched with continuous AC power alone. Pt:Ir tips were prepared with an initial coarse etching stage using continuous AC power followed by fine etching using PACE.more » The number and potential of the finishing AC pulses was varied and scanning electron microscope imaging was used to compare the results. Finally, tip quality using the optimized procedures was verified by UHV-STM imaging. With PACE, at least 70% of the W tips and 80% of the Pt:Ir tips were of sufficiently high quality to obtain atomically resolved images of HOPG or Ni(111)« less

  10. Pulsed metallic-plasma generators.

    NASA Technical Reports Server (NTRS)

    Gilmour, A. S., Jr.; Lockwood, D. L.

    1972-01-01

    A pulsed metallic-plasma generator is described which utilizes a vacuum arc as the plasma source. The arc is initiated on the surface of a consumable cathode which can be any electrically conductive material. Ignition is accomplished by using a current pulse to vaporize a portion of a conductive film on the surface of an insulator separating the cathode from the ignition electrode. The film is regenerated during the ensuing arc. Over 100 million ignition cycles have been accomplished by using four 0.125-in. diameter zinc cathodes operating in parallel and high-density aluminum-oxide insulators. Among the applications being investigated for the generator are metal deposition, vacuum pumping, electric propulsion, and high-power dc arc interruption.

  11. Effect of pulsed current charging on the performance of nickel-cadium cells

    NASA Technical Reports Server (NTRS)

    Bedrossian, A. A.; Cheh, H. Y.

    1977-01-01

    The effect of pulsed current charging on the charge acceptance of NiCd cells in terms of mass transfer, kinetic, and structural considerations was investigated. A systemic investigation on the performance of Ni-Cd cells by pulsed current charging was conducted under a variety of well-defined charge-discharge conditions. Experiments were carried out with half cells and film electrodes. The system behavior was studied by charge acceptance, mechanistic, and structural measurements.

  12. Influence of waveform and current direction on short-interval intracortical facilitation: a paired-pulse TMS study.

    PubMed

    Delvendahl, Igor; Lindemann, Hannes; Jung, Nikolai H; Pechmann, Astrid; Siebner, Hartwig R; Mall, Volker

    2014-01-01

    Transcranial magnetic stimulation (TMS) of the human primary motor hand area (M1-HAND) can produce multiple descending volleys in fast-conducting corticospinal neurons, especially so-called indirect waves (I-waves) resulting from trans-synaptic excitation. Facilitatory interaction between these I-waves can be studied non-invasively using a paired-pulse paradigm referred to as short-interval intracortical facilitation (SICF). We examined whether SICF depends on waveform and current direction of the TMS pulses. In young healthy volunteers, we applied single- and paired-pulse TMS to M1-HAND. We probed SICF by pairs of monophasic or half-sine pulses at suprathreshold stimulation intensity and inter-stimulus intervals (ISIs) between 1.0 and 5.0 ms. For monophasic paired-pulse stimulation, both pulses had either a posterior-anterior (PA) or anterior-posterior (AP) current direction (AP-AP or PA-PA), whereas current direction was reversed between first and second pulse for half-sine paired-pulse stimulation (PA-AP and AP-PA). Monophasic AP-AP stimulation resulted in stronger early SICF at 1.4 ms relative to late SICF at 2.8 and 4.4 ms, whereas monophasic PA-PA stimulation produced SICF of comparable size at all three peaks. With half-sine stimulation the third SICF peak was reduced for PA-AP current orientation compared with AP-PA. SICF elicited using monophasic as well as half-sine pulses is affected by current direction at clearly suprathreshold intensities. The impact of current orientation is stronger for monophasic compared with half-sine pulses. The direction-specific effect of paired-pulse TMS on the strength of early versus late SICF shows that different cortical circuits mediate early and late SICF. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Low profile, highly configurable, current sharing paralleled wide band gap power device power module

    DOEpatents

    McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M

    2016-08-23

    A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.

  14. Transient thermoelectric supercooling: Isosceles current pulses from a response surface perspective and the performance effects of pulse cooling a heat generating mass

    NASA Astrophysics Data System (ADS)

    Piggott, Alfred J., III

    With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials

  15. A 1 MA, variable risetime pulse generator for high energy density plasma research

    NASA Astrophysics Data System (ADS)

    Greenly, J. B.; Douglas, J. D.; Hammer, D. A.; Kusse, B. R.; Glidden, S. C.; Sanders, H. D.

    2008-07-01

    COBRA is a 0.5Ω pulse generator driving loads of order 10nH inductance to >1MA current. The design is based on independently timed, laser-triggered switching of four water pulse-forming lines whose outputs are added in parallel to drive the load current pulse. The detailed design and operation of the switching to give a wide variety of current pulse shapes and rise times from 95to230ns is described. The design and operation of a simple inductive load voltage monitor are described which allows good accounting of load impedance and energy dissipation. A method of eliminating gas bubbles on the underside of nearly horizontal insulator surfaces in water was required for reliable operation of COBRA; a novel and effective solution to this problem is described.

  16. Investigation on Microstructure and Mechanical Properties of Continuous and Pulsed Current Gas Tungsten Arc Welded alloy 600

    NASA Astrophysics Data System (ADS)

    Srikanth, A.; Manikandan, M.

    2018-02-01

    The present study investigates the microstructure and mechanical properties of joints fabricated by Continuous and pulsed current gas tungsten arc welded alloy 600. Welding was done by autogenous mode. The macro examination was carried out to evaluate the welding defects in the weld joints. Optical and Scanning Electron Microscope (SEM) were performed to assess the microstructural changes in the fusion zone. Energy Dispersive Spectroscopy (EDS) analysis was carried to evaluate the microsegregation of alloying elements in the fusion zone. The tensile test was conducted to assess the strength of the weld joints. The results show that no welding defects were observed in the fusion zones of Continuous and Pulsed current Gas Tungsten Arc Welding. The refined microstructure was found in the pulsed current compared to continuous current mode. Microsegregation was not noticed in the weld grain boundary of continuous and pulsed current mode. The pulsed current shows improved mechanical properties compared to the continuous current mode.

  17. Versatile Stimulation Back-End With Programmable Exponential Current Pulse Shapes for a Retinal Visual Prosthesis.

    PubMed

    Maghami, Mohammad Hossein; Sodagar, Amir M; Sawan, Mohamad

    2016-11-01

    This paper reports on the design, implementation, and test of a stimulation back-end, for an implantable retinal prosthesis. In addition to traditional rectangular pulse shapes, the circuit features biphasic stimulation pulses with both rising and falling exponential shapes, whose time constants are digitally programmable. A class-B second generation current conveyor is used as a wide-swing, high-output-resistance stimulation current driver, delivering stimulation current pulses of up to ±96 μA to the target tissue. Duration of the generated current pulses is programmable within the range of 100 μs to 3 ms. Current-mode digital-to-analog converters (DACs) are used to program the amplitudes of the stimulation pulses. Fabricated using the IBM 130 nm process, the circuit consumes 1.5×1.5 mm 2 of silicon area. According to the measurements, the DACs exhibit DNL and INL of 0.23 LSB and 0.364 LSB, respectively. Experimental results indicate that the stimuli generator meets expected requirements when connected to electrode-tissue impedance of as high as 25 k Ω. Maximum power consumption of the proposed design is 3.4 mW when delivering biphasic rectangular pulses to the target load. A charge pump block is in charge of the upconversion of the standard 1.2-V supply voltage to ±3.3V.

  18. Electron cyclotron resonance plasma production by using pulse mode microwaves and dependences of ion beam current and plasma parameters on the pulse condition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiriyama, Ryutaro; Takenaka, Tomoya; Kurisu, Yousuke

    2012-02-15

    We measure the ion beam current and the plasma parameters by using the pulse mode microwave operation in the first stage of a tandem type ECRIS. The time averaged extracted ion beam current in the pulse mode operation is larger than that of the cw mode operation with the same averaged microwave power. The electron density n{sub e} in the pulse mode is higher and the electron temperature T{sub e} is lower than those of the cw mode operation. These plasma parameters are considered to cause in the increase of the ion beam current and are suitable to produce molecularmore » or cluster ions.« less

  19. Study to evaluate the effect of low-intensity pulsed electrical currents on levels of oedema in chronic non-healing wounds.

    PubMed

    Young, S; Hampton, S; Tadej, M

    2011-08-01

    To evaluate the efficacy of a medical device, Accel-Heal, which generates a low-intensity pulsed direct current, on the management of oedema in chronic leg ulcers, using high-frequency diagnostic ultrasound. High-frequency diagnostic ultrasound (20MHz) with an axial resolution of 60um was used to assess the effect of an electrical stimulation device delivering a low-intensity pulsed current on levels of oedema in chronic non-healing venous and mixed aetiology leg ulcers for a period of 10 days. Thirty patients' wounds were monitored over a 3-month period, during which time changes in levels of oedema in the wound bed and surrounding tissues were imaged and measured. A significant fall in the, previously high level, of periwound oedema was noted in the patient population after 10 days of device application. By 20 days after the first application of the device the level of periwound oedema had decreased by approximately 60% of the original level, which was maintained up to the 90-day follow-up. Occurring in parallel with this, scans of the wound bed showed a rapid decrease in the levels of oedema as the new wound matrix was laid down. The electrical stimulation device appeared to be effective in reducing oedema levels in a range of chronic wounds and their surrounding tissues. The study was funded by a grant from Synapse micro-current Ltd.

  20. Full circuit calculation for electromagnetic pulse transmission in a high current facility

    NASA Astrophysics Data System (ADS)

    Zou, Wenkang; Guo, Fan; Chen, Lin; Song, Shengyi; Wang, Meng; Xie, Weiping; Deng, Jianjun

    2014-11-01

    We describe herein for the first time a full circuit model for electromagnetic pulse transmission in the Primary Test Stand (PTS)—the first TW class pulsed power driver in China. The PTS is designed to generate 8-10 MA current into a z -pinch load in nearly 90 ns rise time for inertial confinement fusion and other high energy density physics research. The PTS facility has four conical magnetic insulation transmission lines, in which electron current loss exists during the establishment of magnetic insulation. At the same time, equivalent resistance of switches and equivalent inductance of pinch changes with time. However, none of these models are included in a commercially developed circuit code so far. Therefore, in order to characterize the electromagnetic transmission process in the PTS, a full circuit model, in which switch resistance, magnetic insulation transmission line current loss and a time-dependent load can be taken into account, was developed. Circuit topology and an equivalent circuit model of the facility were introduced. Pulse transmission calculation of shot 0057 was demonstrated with the corresponding code FAST (full-circuit analysis and simulation tool) by setting controllable parameters the same as in the experiment. Preliminary full circuit simulation results for electromagnetic pulse transmission to the load are presented. Although divergences exist between calculated and experimentally obtained waveforms before the vacuum section, consistency with load current is satisfactory, especially at the rising edge.

  1. Observation of dark pulses in 10 nm thick YBCO nanostrips presenting hysteretic current voltage characteristics

    NASA Astrophysics Data System (ADS)

    Ejrnaes, M.; Parlato, L.; Arpaia, R.; Bauch, T.; Lombardi, F.; Cristiano, R.; Tafuri, F.; Pepe, G. P.

    2017-12-01

    We have fabricated several 10 nm thick and 65 nm wide YBa2Cu3O7-δ (YBCO) nanostrips. The nanostrips with the highest critical current densities are characterized by hysteretic current voltage characteristics (IVCs) with a direct bistable switch from the zero-voltage to the finite voltage state. The presence of hysteretic IVCs allowed the observation of dark pulses due to fluctuations phenomena. The key role of the bistable behavior is its ability to transform a small disturbance (e.g. an intrinsic fluctuation) into a measurable transient signal, i.e. a dark pulse. On the contrary, in devices characterized by lower critical current density values, the IVCs are non-hysteretic and dark pulses have not been observed. To investigate the physical origin of the dark pulses, we have measured the bias current dependence of the dark pulse rate: the observed exponential increase with the bias current is compatible with mechanisms based on thermal activation of magnetic vortices in the nanostrip. We believe that the successful amplification of small fluctuation events into measurable signals in nanostrips of ultrathin YBCO is a milestone for further investigation of YBCO nanostrips for superconducting nanostrip single photon detectors and other quantum detectors for operation at higher temperatures.

  2. Saturation current and collection efficiency for ionization chambers in pulsed beams.

    PubMed

    DeBlois, F; Zankowski, C; Podgorsak, E B

    2000-05-01

    Saturation currents and collection efficiencies in ionization chambers exposed to pulsed megavoltage photon and electron beams are determined assuming a linear relationship between 1/I and 1/V in the extreme near-saturation region, with I and V the chamber current and polarizing voltage, respectively. Careful measurements of chamber current against polarizing voltage in the extreme near-saturation region reveal a current rising faster than that predicted by the linear relationship. This excess current combined with conventional "two-voltage" technique for determination of collection efficiency may result in an up to 0.7% overestimate of the saturation current for standard radiation field sizes of 10X10 cm2. The measured excess current is attributed to charge multiplication in the chamber air volume and to radiation-induced conductivity in the stem of the chamber (stem effect). These effects may be accounted for by an exponential term used in conjunction with Boag's equation for collection efficiency in pulsed beams. The semiempirical model follows the experimental data well and accounts for both the charge recombination as well as for the charge multiplication effects and the chamber stem effect.

  3. Amplification of perpendicular and parallel magnetic fields by cosmic ray currents

    NASA Astrophysics Data System (ADS)

    Matthews, J. H.; Bell, A. R.; Blundell, K. M.; Araudo, A. T.

    2017-08-01

    Cosmic ray (CR) currents through magnetized plasma drive strong instabilities producing amplification of the magnetic field. This amplification helps explain the CR energy spectrum as well as observations of supernova remnants and radio galaxy hotspots. Using magnetohydrodynamic simulations, we study the behaviour of the non-resonant hybrid (NRH) instability (also known as the Bell instability) in the case of CR currents perpendicular and parallel to the initial magnetic field. We demonstrate that extending simulations of the perpendicular case to 3D reveals a different character to the turbulence from that observed in 2D. Despite these differences, in 3D the perpendicular NRH instability still grows exponentially far into the non-linear regime with a similar growth rate to both the 2D perpendicular and 3D parallel situations. We introduce some simple analytical models to elucidate the physical behaviour, using them to demonstrate that the transition to the non-linear regime is governed by the growth of thermal pressure inside dense filaments at the edges of the expanding loops. We discuss our results in the context of supernova remnants and jets in radio galaxies. Our work shows that the NRH instability can amplify magnetic fields to many times their initial value in parallel and perpendicular shocks.

  4. Interaction between pulsed discharge and radio frequency discharge burst at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; College of Science, Donghua University, Shanghai 201620; Guo, Ying

    The atmospheric pressure glow discharges (APGD) with dual excitations in terms of pulsed voltage and pulse-modulation radio frequency (rf) power are studied experimentally between two parallel plates electrodes. Pulse-modulation applied in rf APGD temporally separates the discharge into repetitive discharge bursts, between which the high voltage pulses are introduced to ignite sub-microsecond pulsed discharge. The discharge characteristics and spatio-temporal evolution are investigated by means of current voltage characteristics and time resolved imaging, which suggests that the introduced pulsed discharge assists the ignition of rf discharge burst and reduces the maintain voltage of rf discharge burst. Furtherly, the time instant ofmore » pulsed discharge between rf discharge bursts is manipulated to study the ignition dynamics of rf discharge burst.« less

  5. Design of non-selective refocusing pulses with phase-free rotation axis by gradient ascent pulse engineering algorithm in parallel transmission at 7T.

    PubMed

    Massire, Aurélien; Cloos, Martijn A; Vignaud, Alexandre; Le Bihan, Denis; Amadon, Alexis; Boulant, Nicolas

    2013-05-01

    At ultra-high magnetic field (≥ 7T), B1 and ΔB0 non-uniformities cause undesired inhomogeneities in image signal and contrast. Tailored radiofrequency pulses exploiting parallel transmission have been shown to mitigate these phenomena. However, the design of large flip angle excitations, a prerequisite for many clinical applications, remains challenging due the non-linearity of the Bloch equation. In this work, we explore the potential of gradient ascent pulse engineering to design non-selective spin-echo refocusing pulses that simultaneously mitigate severe B1 and ΔB0 non-uniformities. The originality of the method lays in the optimization of the rotation matrices themselves as opposed to magnetization states. Consequently, the commonly used linear class of large tip angle approximation can be eliminated from the optimization procedure. This approach, combined with optimal control, provides additional degrees of freedom by relaxing the phase constraint on the rotation axis, and allows the derivative of the performance criterion to be found analytically. The method was experimentally validated on an 8-channel transmit array at 7T, using a water phantom with B1 and ΔB0 inhomogeneities similar to those encountered in the human brain. For the first time in MRI, the rotation matrix itself on every voxel was measured by using Quantum Process Tomography. The results are complemented with a series of spin-echo measurements comparing the proposed method against commonly used alternatives. Both experiments confirm very good performance, while simultaneously maintaining a low energy deposition and pulse duration compared to well-known adiabatic solutions. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. High power parallel ultrashort pulse laser processing

    NASA Astrophysics Data System (ADS)

    Gillner, Arnold; Gretzki, Patrick; Büsing, Lasse

    2016-03-01

    The class of ultra-short-pulse (USP) laser sources are used, whenever high precession and high quality material processing is demanded. These laser sources deliver pulse duration in the range of ps to fs and are characterized with high peak intensities leading to a direct vaporization of the material with a minimum thermal damage. With the availability of industrial laser source with an average power of up to 1000W, the main challenge consist of the effective energy distribution and disposition. Using lasers with high repetition rates in the MHz region can cause thermal issues like overheating, melt production and low ablation quality. In this paper, we will discuss different approaches for multibeam processing for utilization of high pulse energies. The combination of diffractive optics and conventional galvometer scanner can be used for high throughput laser ablation, but are limited in the optical qualities. We will show which applications can benefit from this hybrid optic and which improvements in productivity are expected. In addition, the optical limitations of the system will be compiled, in order to evaluate the suitability of this approach for any given application.

  7. Electric breakdown during the pulsed current spreading in the sand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru; Vetchinin, S. P.; Panov, V. A.

    2016-03-15

    Processes of spreading of the pulsed current from spherical electrodes and an electric breakdown in the quartz sand are studied experimentally. When the current density on the electrode exceeds the critical value, a nonlinear reduction occurs in the grounding resistance as a result of sparking in the soil. The critical electric field strengths for ionization and breakdown are determined. The ionization-overheating instability is shown to develop on the electrode, which leads to the current contraction and formation of plasma channels.

  8. Control of the electrode metal transfer by means of the welding current pulse generator

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Knyaz'kov, S.; Tyasto, A.

    2016-04-01

    The paper presents a generator of welding current pulses to transfer an electrode metal into the molten pool. A homogeneous artificial line is used to produce near rectangular pulses. The homogeneous artificial line provides the minimum heat input with in the pulse to transfer the electrode metal, and it significantly decreases the impact of disturbances affecting this transfer. The pulse frequency does not exceed 300 Hz, and the duration is 0.6 ÷ 0.9 ms.

  9. Experimental investigation of powerful pulse current generators based on capacitive storage and explosive magnetic generators

    NASA Astrophysics Data System (ADS)

    Shurupov, A. V.; Zavalova, V. E.; Kozlov, A. V.; Shurupov, M. A.; Povareshkin, M. N.; Kozlov, A. A.; Shurupova, N. P.

    2018-01-01

    Experimental models of microsecond duration powerful generators of current pulses on the basis of explosive magnetic generators and voltage impulse generator have been developed for the electromagnetic pulse effects on energy facilities to verify their stability. Exacerbation of voltage pulse carried out through the use of electro explosive current interrupter made of copper wires with diameters of 80 and 120 μm. Experimental results of these models investigation are represented. Voltage fronts about 100 ns and the electric field strength of 800 kV/m are registered.

  10. Cardiac imaging at 7 Tesla: Single- and two-spoke radiofrequency pulse design with 16-channel parallel excitation.

    PubMed

    Schmitter, Sebastian; DelaBarre, Lance; Wu, Xiaoping; Greiser, Andreas; Wang, Dingxin; Auerbach, Edward J; Vaughan, J Thomas; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2013-11-01

    Higher signal to noise ratio (SNR) and improved contrast have been demonstrated at ultra-high magnetic fields (≥7 Tesla [T]) in multiple targets, often with multi-channel transmit methods to address the deleterious impact on tissue contrast due to spatial variations in B1 (+) profiles. When imaging the heart at 7T, however, respiratory and cardiac motion, as well as B0 inhomogeneity, greatly increase the methodological challenge. In this study we compare two-spoke parallel transmit (pTX) RF pulses with static B1 (+) shimming in cardiac imaging at 7T. Using a 16-channel pTX system, slice-selective two-spoke pTX pulses and static B1 (+) shimming were applied in cardiac CINE imaging. B1 (+) and B0 mapping required modified cardiac triggered sequences. Excitation homogeneity and RF energy were compared in different imaging orientations. Two-spoke pulses provide higher excitation homogeneity than B1 (+) shimming, especially in the more challenging posterior region of the heart. The peak value of channel-wise RF energy was reduced, allowing for a higher flip angle, hence increased tissue contrast. Image quality with two-spoke excitation proved to be stable throughout the entire cardiac cycle. Two-spoke pTX excitation has been successfully demonstrated in the human heart at 7T, with improved image quality and reduced RF pulse energy when compared with B1 (+) shimming. Copyright © 2013 Wiley Periodicals, Inc.

  11. Uncertainties in cylindrical anode current inferences on pulsed power drivers

    NASA Astrophysics Data System (ADS)

    Porwitzky, Andrew; Brown, Justin

    2018-06-01

    For over a decade, velocimetry based techniques have been used to infer the electrical current delivered to dynamic materials properties experiments on pulsed power drivers such as the Z Machine. Though originally developed for planar load geometries, in recent years, inferring the current delivered to cylindrical coaxial loads has become a valuable diagnostic tool for numerous platforms. Presented is a summary of uncertainties that can propagate through the current inference technique when applied to expanding cylindrical anodes. An equation representing quantitative uncertainty is developed which shows the unfold method to be accurate to a few percent above 10 MA of load current.

  12. Spectroscopic investigation of the high-current phase of a pulsed GMAW process

    NASA Astrophysics Data System (ADS)

    Rouffet, M. E.; Wendt, M.; Goett, G.; Kozakov, R.; Schoepp, H.; Weltmann, K. D.; Uhrlandt, D.

    2010-11-01

    While metal vapours have an important impact on the efficiency of the pulsed gas metal arc welding process, only a few papers are focused on this effect. In this paper, methods based on emission spectroscopy are performed to improve the understanding of the physical phenomena occurring during the high-current pulse. Boltzmann plots applied to iron lines, the Stark broadening of the 696.5 nm argon line and composition calculations assuming local thermodynamic equilibrium are used to determine characteristic parameters of the plasma. It is observed that the central part of the arc is composed mainly of iron. The percentage of iron increases quickly at the beginning of the high-current pulse, and slowly decreases when the central part broadens. During the high-current phase the temperature profile has a minimum value of around 8000 K at the axis of the arc while the argon envelope of the central part reaches temperatures of approximately 13.000 K. The high percentage of iron and the high radiation of the plasma at the centre can explain the measured shape of the temperature profile.

  13. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    NASA Astrophysics Data System (ADS)

    Grishkov, V. E.; Uryupin, S. A.

    2017-03-01

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron-ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  14. Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru

    Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.

  15. Measurement of positive direct current corona pulse in coaxial wire-cylinder gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Han, E-mail: hanyin1986@gmail.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn

    In this paper, a system is designed and developed to measure the positive corona current in coaxial wire-cylinder gaps. The characteristic parameters of corona current pulses, such as the amplitude, rise time, half-wave time, and repetition frequency, are statistically analyzed and a new set of empirical formulas are derived by numerical fitting. The influence of space charges on corona currents is tested by using three corona cages with different radii. A numerical method is used to solve a simplified ion-flow model to explain the influence of space charges. Based on the statistical results, a stochastic model is developed to simulatemore » the corona pulse trains. And this model is verified by comparing the simulated frequency-domain responses with the measured ones.« less

  16. Effect of pulsed current GTA welding parameters on the fusion zone microstructure of AA 6061 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kumar, T. Senthil; Balasubramanian, V.; Babu, S.; Sanavullah, M. Y.

    2007-08-01

    AA6061 aluminium alloy (Al-Mg-Si alloy) has gathered wide acceptance in the fabrication of food processing equipment, chemical containers, passenger cars, road tankers, and railway transport systems. The preferred process for welding these aluminium alloys is frequently Gas Tungsten Arc (GTA) welding due to its comparatively easy applicability and lower cost. In the case of single pass GTA welding of thinner sections of this alloy, the pulsed current has been found beneficial due to its advantages over the conventional continuous current processes. The use of pulsed current parameters has been found to improve the mechanical properties of the welds compared to those of continuous current welds of this alloy due to grain refinement occurring in the fusion zone. In this investigation, an attempt has been made to develop a mathematical model to predict the fusion zone grain diameter incorporating pulsed current welding parameters. Statistical tools such as design of experiments, analysis of variance, and regression analysis are used to develop the mathematical model. The developed model can be effectively used to predict the fusion grain diameter at a 95% confidence level for the given pulsed current parameters. The effect of pulsed current GTA welding parameters on the fusion zone grain diameter of AA 6061 aluminium alloy welds is reported in this paper.

  17. Training Effects of Alternated and Pulsed Currents on the Quadriceps Muscles of Athletes.

    PubMed

    Oliveira, Pedro; Modesto, Karenina Arrais Guida; Bottaro, Martim; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2018-05-22

    The aim of the study was to evaluate the effects of 6 weeks training with different neuromuscular electrical stimulation (NMES) currents (medium alternated and low-frequency pulsed current) on muscle architecture and neuromuscular performance of competitive athletes. A double-blind controlled and randomized experimental study was carried out with 33 athletes (22.2±2.6 yrs, 74.7±9.8 kg, 176.8±6.0 cm), divided into 3 groups: mid-frequency current (MF, n=12), pulsed current (PC, n=11) and the control group (CG, n=10). Quadriceps maximal voluntary peak torque (PT) and corresponding vastus lateralis electromyographic activity, evoked torque (PT-NMES), vastus lateralis muscle thickness, fascicle length, pennation angle, and level of discomfort were assessed before and after the interventions. NMES training was performed 3 times per week and consisted of 18 sessions, 15 min/session, 6 s duration in each contraction interspersed with 18 s rest. After the training period, muscle thickness increased in the MF and PC groups (p<0.05). PT-NMES increased only in the PC group (p<0.05). All currents produced similar levels of discomfort (p>0.05). Quadriceps NMES training applied through alternated or pulsed currents produced similar effects in architecture and neuromuscular performance in competitive athletes. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Rodriguez, Miguel; Sinha, Mohit

    We present a decentralized control strategy that yields switch interleaving among parallel-connected dc-dc buck converters. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform and no communication between different controllers is needed. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work presents themore » first fully decentralized strategy for switch interleaving in paralleled dc-dc buck converters.« less

  19. Decentralized Interleaving of Paralleled Dc-Dc Buck Converters: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Brian B; Rodriguez, Miguel; Sinha, Mohit

    We present a decentralized control strategy that yields switch interleaving among parallel connected dc-dc buck converters without communication. The proposed method is based on the digital implementation of the dynamics of a nonlinear oscillator circuit as the controller. Each controller is fully decentralized, i.e., it only requires the locally measured output current to synthesize the pulse width modulation (PWM) carrier waveform. By virtue of the intrinsic electrical coupling between converters, the nonlinear oscillator-based controllers converge to an interleaved state with uniform phase-spacing across PWM carriers. To the knowledge of the authors, this work represents the first fully decentralized strategy formore » switch interleaving of paralleled dc-dc buck converters.« less

  20. Pulsed Eddy Current Probe Design Based on Transient Circuit Analysis

    NASA Astrophysics Data System (ADS)

    Cadeau, Trevor J.; Krause, Thomas W.

    2009-03-01

    Probe design parameters affecting depth of penetration of pulsed eddy currents in multi-layer aluminum 2024-T3 were examined. Several probe designs were evaluated for their ability to detect a discontinuity at the bottom of a stack of aluminum plates. The reflection type probes, consisting of pick-up coil and encircling drive coil, were characterized based on their transient response to a square pulse excitation. Probes with longer fundamental time constants, equivalent to a lower driving frequency, generated greater depth of penetration. However, additional factors such as inductive and resistive load, and excessive coil heating were also factors that limited signal-to-noise response with increasing layer thickness.

  1. Currents Induced by Injected Charge in Junction Detectors

    PubMed Central

    Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas

    2013-01-01

    The problem of drifting charge-induced currents is considered in order to predict the pulsed operational characteristics in photo- and particle-detectors with a junction controlled active area. The direct analysis of the field changes induced by drifting charge in the abrupt junction devices with a plane-parallel geometry of finite area electrodes is presented. The problem is solved using the one-dimensional approach. The models of the formation of the induced pulsed currents have been analyzed for the regimes of partial and full depletion. The obtained solutions for the current density contain expressions of a velocity field dependence on the applied voltage, location of the injected surface charge domain and carrier capture parameters. The drift component of this current coincides with Ramo's expression. It has been illustrated, that the synchronous action of carrier drift, trapping, generation and diffusion can lead to a vast variety of possible current pulse waveforms. Experimental illustrations of the current pulse variations determined by either the rather small or large carrier density within the photo-injected charge domain are presented, based on a study of Si detectors. PMID:24036586

  2. Deuteron flux production in a small high-voltage high-current diode with pulsed magnetic insulation

    NASA Astrophysics Data System (ADS)

    Shikanov, A. E.; Vovchenko, E. D.; Isaev, A. A.; Kozlovskii, K. I.; Shatokhin, V. L.

    2017-06-01

    The results of new studies on the production of accelerated deuteron fluxes in a small ion diode with pulsed magnetic insulation of electrons have been presented. A plasma anode of the diode has been formed under the action of a 1.06 μm laser radiation with a pulse duration of 10 ns, a pulse energy of up to 1 J, and a power density on the target of 5 × 1015 W m-2. An accelerating voltage of up to 300 kV has been created using an Arkad'ev-Marx pulsed voltage generator with a stored energy of 50 J and a repetition rate of 1 Hz. A magnetic field of higher than 0.6 T for insulating electrons has been formed by a current pulse of the first cascade of the generator in a spiral line before a conical cascade. Stable deuteron acceleration to 300 keV with a current of up to 1.5 kA and a pulse duration of 0.3 μs has been achieved.

  3. Preconditioned wire array Z-pinches driven by a double pulse current generator

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Lu, Yihan; Sun, Fengju; Li, Xingwen; Jiang, Xiaofeng; Wang, Zhiguo; Zhang, Daoyuan; Qiu, Aici; Lebedev, Sergey

    2018-07-01

    Suppression of the core-corona structure and wire ablation in wire array Z-pinches is investigated using a novel double pulse current generator ‘Qin-1’ facility. The ‘Qin-1’ facility allows coupling a ∼10 kA 20 ns prepulse generator with a ∼0.8 MA 160 ns main current generator. The tailored prepulse current preheats wires to a gaseous state and the time interval between the prepulse and the main current pulse allows formation of a more uniform mass distribution for the implosion. The implosion of a gasified two aluminum-wire array showed no ablation phase and allowed all array mass to participate in the implosion. The initial perturbations formed from the inhomogeneous ablation were suppressed, however, the magneto Rayleigh–Taylor (MRT) instability during the implosion was still significant and further researches on the generation and development of the MRT instabilities of this gasified wire array are needed.

  4. Taguchi Optimization of Pulsed Current GTA Welding Parameters for Improved Corrosion Resistance of 5083 Aluminum Welds

    NASA Astrophysics Data System (ADS)

    Rastkerdar, E.; Shamanian, M.; Saatchi, A.

    2013-04-01

    In this study, the Taguchi method was used as a design of experiment (DOE) technique to optimize the pulsed current gas tungsten arc welding (GTAW) parameters for improved pitting corrosion resistance of AA5083-H18 aluminum alloy welds. A L9 (34) orthogonal array of the Taguchi design was used, which involves nine experiments for four parameters: peak current ( P), base current ( B), percent pulse-on time ( T), and pulse frequency ( F) with three levels was used. Pitting corrosion resistance in 3.5 wt.% NaCl solution was evaluated by anodic polarization tests at room temperature and calculating the width of the passive region (∆ E pit). Analysis of variance (ANOVA) was performed on the measured data and S/ N (signal to noise) ratios. The "bigger is better" was selected as the quality characteristic (QC). The optimum conditions were found as 170 A, 85 A, 40%, and 6 Hz for P, B, T, and F factors, respectively. The study showed that the percent pulse-on time has the highest influence on the pitting corrosion resistance (50.48%) followed by pulse frequency (28.62%), peak current (11.05%) and base current (9.86%). The range of optimum ∆ E pit at optimum conditions with a confidence level of 90% was predicted to be between 174.81 and 177.74 mVSCE. Under optimum conditions, the confirmation test was carried out, and the experimental value of ∆ E pit of 176 mVSCE was in agreement with the predicted value from the Taguchi model. In this regard, the model can be effectively used to predict the ∆ E pit of pulsed current gas tungsten arc welded joints.

  5. Modified Johnson-Cook model incorporated with electroplasticity for uniaxial tension under a pulsed electric current

    NASA Astrophysics Data System (ADS)

    Kim, Moon-Jo; Jeong, Hye-Jin; Park, Ju-Won; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    An empirical expression describing the electroplastic deformation behavior is suggested based on the Johnson-Cook (JC) model by adding several functions to consider both thermal and athermal electric current effects. Tensile deformation behaviors are carried out for an AZ31 magnesium alloy and an Al-Mg-Si alloy under pulsed electric current at various current densities with a fixed duration of electric current. To describe the flow curves under electric current, a modified JC model is proposed to take the electric current effect into account. Phenomenological descriptions of the adopted parameters in the equation are made. The modified JC model suggested in the present study is capable of describing the tensile deformation behaviors under pulsed electric current reasonably well.

  6. An innovative high-power constant-current pulsed-arc power-supply for a high-density pulsed-arc-plasma ion-source using a LaB6-filament.

    PubMed

    Ueno, A; Oguri, H; Ikegami, K; Namekawa, Y; Ohkoshi, K; Tokuchi, A

    2010-02-01

    An innovative high-power constant-current (CC) pulsed-arc (PA) power-supply (PS) indispensable for a high-density PA plasma ion-source using a lanthanum hexaboride (LaB(6)) filament was devised by combining a constant-voltage (CV) PA-PS, which is composed of an insulated gate bipolar transistor (IGBT) switch, a CV direct-current (dc) PS and a 270 mF capacitor with a CC-PA-PS, which is composed of an IGBT-switch, a CC-dc-PS and a 400 microH inductor, through the inductor. The hybrid-CC-PA-PS succeeded in producing a flat arc-pulse with a peak power of 56 kW (400 A x 140 V) and a duty factor of more than 1.5% (600 micros x 25 Hz) for Japan Proton Accelerator Research Complex (J-PARC) H(-) ion-source stably. It also succeeded in shortening the 99% rising-time of the arc-pulse-current to about 20 micros and tilting up or down the arc-pulse-current arbitrarily and almost linearly by changing the setting voltage of its CV-dc-PS.

  7. Pulsed-Current Electrochemical Codeposition and Heat Treatment of Ti-Dispersed Ni-Matrix Layers

    NASA Astrophysics Data System (ADS)

    Janetaisong, Pathompong; Boonyongmaneerat, Yuttanant; Techapiesancharoenkij, Ratchatee

    2016-08-01

    An electrochemical deposition is a fast and cost-efficient process to produce film or coating. In this research, Ni-Ti electrodeposition is developed by codepositing a Ti-dispersed Ni-matrix layer from a Ni-plating solution suspended with Ti particles. To enhance the coating uniformity and control the atomic composition, the pulsed current was applied to codeposit Ni-Ti layers with varying pulse duty cycles (10 to 100 pct) and frequencies (10 to 100 Hz). The microstructures and compositions of the codeposited layers were analyzed by scanning electron microscopy, X-ray diffraction, and X-ray fluorescent techniques. The pulsed current significantly improved the quality of the Ni-Ti layer as compared to a direct current. The Ni-Ti layers could be electroplated with a controlled composition within 48 to 51 at. pct of Ti. The optimal pulse duty cycle and frequency are 50 pct and 10 Hz, respectively. The standalone Ni-49Ti layers were removed from copper substrates by selective etching method and subsequently heat-treated under Ar-fed atmosphere at 1423 K (1150 °C) for 5 hours. The phase and microstructures of the post-annealed samples exhibit different Ni-Ti intermetallic compounds, including NiTi, Ni3Ti, and NiTi2. Yet, the contamination of TiN and TiO2 was also present in the post-annealed samples.

  8. Pulse measurement of the hot spot current in a NbTiN superconducting filament

    NASA Astrophysics Data System (ADS)

    Harrabi, K.; Mekki, A.; Kunwar, S.; Maneval, J. P.

    2018-02-01

    We have studied the voltage response of superconducting NbTiN filaments to a step-pulse of over-critical current I > Ic. The current induces the destruction of the Cooper pairs and initiates different mechanisms of dissipation depending on the bath temperature T. For the sample investigated, and for T above a certain T*, not far from Tc, the resistance manifests itself in the form of a phase-slip center, which turns into a normal hot spot (HS) as the step-pulse is given larger amplitudes. However, at all temperatures below T*, the destruction of superconductivity still occurs at Ic(T), but leads directly to an ever-growing HS. By lowering the current amplitude during the pulse, one can produce a steady HS and thus define a threshold HS current Ih(T). That is achieved by combining two levels of current, the first and larger one to initiate an HS, the second one to search for constant voltage response. The double diagram of the functions Ic(T) and Ih(T) was plotted in the T-range Tc/2 < T < Tc, and their crossing found at T* = (8.07 ± 0.07) K.

  9. Capacitively-coupled inductive sensors for measurements of pulsed currents and pulsed magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, C.A.

    In experiments involving pulsed high magnetic fields the appearance of the full induced voltage at the output terminals of large-area inductive sensors such as diamagnetic loops and Rogowski belts imposes severe requirements on the insulation near the output. Capacitive detection of the inductive-sensor output voltage provides an ideal geometry for high-voltage insulation, and also accomplishes the necessary voltage division. An inductive-shunt current monitor was designed to utilize the capacitive-detection principle. The contruction of this device and its performance are described in this paper.

  10. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  11. Pulse width modulated push-pull driven parallel resonant converter with active free-wheel

    DOEpatents

    Reass, William A.; Schrank, Louis

    2004-06-22

    An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.

  12. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pervikov, A. V.

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 10{sup 7} A/cm{sup 2} results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtainedmore » allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.« less

  13. Controlling nonsequential double ionization of Ne with parallel-polarized two-color laser pulses.

    PubMed

    Luo, Siqiang; Ma, Xiaomeng; Xie, Hui; Li, Min; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2018-05-14

    We measure the recoil-ion momentum distributions from nonsequential double ionization of Ne by two-color laser pulses consisting of a strong 800-nm field and a weak 400-nm field with parallel polarizations. The ion momentum spectra show pronounced asymmetries in the emission direction, which depend sensitively on the relative phase of the two-color components. Moreover, the peak of the doubly charged ion momentum distribution shifts gradually with the relative phase. The shifted range is much larger than the maximal vector potential of the 400-nm laser field. Those features are well recaptured by a semiclassical model. Through analyzing the correlated electron dynamics, we found that the energy sharing between the two electrons is extremely unequal at the instant of recollison. We further show that the shift of the ion momentum corresponds to the change of the recollision time in the two-color laser field. By tuning the relative phase of the two-color components, the recollision time is controlled with attosecond precision.

  14. Theoretical and Experimental Study of the Primary Current Distribution in Parallel-Plate Electrochemical Reactors

    ERIC Educational Resources Information Center

    Vazquez Aranda, Armando I.; Henquin, Eduardo R.; Torres, Israel Rodriguez; Bisang, Jose M.

    2012-01-01

    A laboratory experiment is described to determine the primary current distribution in parallel-plate electrochemical reactors. The electrolyte is simulated by conductive paper and the electrodes are segmented to measure the current distribution. Experiments are reported with the electrolyte confined to the interelectrode gap, where the current…

  15. Plasma heating and current drive using intense, pulsed microwaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.

    1988-01-01

    The use of powerful new microwave sources, e.g., free-electron lasers and relativistic gyrotrons, provide unique opportunities for novel heating and current-drive schemes in the electron-cyclotron and lower-hybrid ranges of frequencies. These high-power, pulsed sources have a number of technical advantages over conventional, low-intensity sources; and their use can lead to improved current-drive efficiencies and better penetration into a reactor-grade plasma in specific cases. The Microwave Tokamak Experiment at Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. This paper reports theoretical progress both in modeling absorption and current drive for intense pulsesmore » and in analyzing some of the possible complications that may arise, e.g., parametric instabilities and nonlinear self-focusing. 22 refs., 9 figs., 1 tab.« less

  16. Effect of a Second, Parallel Capacitor on the Performance of a Pulse Inductive Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Balla, Joseph V.

    2010-01-01

    Pulsed inductive plasma accelerators are electrodeless space propulsion devices where a capacitor is charged to an initial voltage and is then discharged through an inductive coil that couples energy into the propellant, ionizing and accelerating it to produce thrust. A model that employs a set of circuit equations (as illustrated in Fig. 1a) coupled to a one-dimensional momentum equation has been previously used by Lovberg and Dailey [1] and Polzin et al. [2-4] to model the plasma acceleration process in pulsed inductive thrusters. In this paper an extra capacitor, inductor, and resistor are added to the system in the manner illustrated in the schematic shown in Fig. 1b. If the second capacitor has a smaller value than the initially charged capacitor, it can serve to increase the current rise rate through the inductive coil. Increasing the current rise rate should serve to better ionize the propellant. The equation of motion is solved to find the effect of an increased current rise rate on the acceleration process. We examine the tradeoffs between enhancing the breakdown process (increasing current rise rate) and altering the plasma acceleration process. These results provide insight into the performance of modified circuits in an inductive thruster, revealing how this design permutation can affect an inductive thruster's performance.

  17. Effects of Pulse Current on Endurance Exercise and Its Anti-Fatigue Properties in the Hepatic Tissue of Trained Rats

    PubMed Central

    Ju, Xiaowei; Zhu, Lvgang; Huang, Changlin; Huang, Tao; Zuo, Xincheng; Gao, Chunfang

    2013-01-01

    Fatigue is synonymous with a wide spectrum of familiar physiological conditions, from pathology and general health, to sport and physical exercise. Strenuous, prolonged exercise training causes fatigue. Although several studies have investigated the effects of electrical stimulation frequency on muscle fatigue, the effects of percutaneous pulse current stimulation on fatigue in the hepatic tissue of trained rats is still unclear. In order to find an effective strategy to prevent fatigue or enhance recovery, the effects of pulse current on endurance exercise and its anti-fatigue properties in exercised rats were studied. Rats were subjected to one, three or five weeks of swimming exercise training. After exercise training, rats in the treated group received daily applications of pulse current. All rats were sacrificed after one, three or five weeks of swimming exercise, and the major biochemical indexes were measured in serum and liver. The results demonstrate that pulse current could prolong the exhaustion swimming time, as well as decrease serum ALT, AST and LD levels and liver MDA content. It also elevated serum LDH activity, liver SOD activity and glycogen content. Furthermore, pulse current increased the expression of Bcl-2 and decreased the expression of Bax. Taken together, these results show that pulse current can elevate endurance capacity and facilitate recovery from fatigue. PMID:24116026

  18. Hierarchical Fuzzy Control Applied to Parallel Connected UPS Inverters Using Average Current Sharing Scheme

    NASA Astrophysics Data System (ADS)

    Singh, Santosh Kumar; Ghatak Choudhuri, Sumit

    2018-05-01

    Parallel connection of UPS inverters to enhance power rating is a widely accepted practice. Inter-modular circulating currents appear when multiple inverter modules are connected in parallel to supply variable critical load. Interfacing of modules henceforth requires an intensive design, using proper control strategy. The potentiality of human intuitive Fuzzy Logic (FL) control with imprecise system model is well known and thus can be utilised in parallel-connected UPS systems. Conventional FL controller is computational intensive, especially with higher number of input variables. This paper proposes application of Hierarchical-Fuzzy Logic control for parallel connected Multi-modular inverters system for reduced computational burden on the processor for a given switching frequency. Simulated results in MATLAB environment and experimental verification using Texas TMS320F2812 DSP are included to demonstrate feasibility of the proposed control scheme.

  19. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    NASA Astrophysics Data System (ADS)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  20. 20 kA PFN capacitor bank with solid-state switching. [pulse forming network for plasma studies

    NASA Technical Reports Server (NTRS)

    Posta, S. J.; Michels, C. J.

    1973-01-01

    A compact high-current pulse-forming network capacitor bank using paralleled silicon controlled rectifiers as switches is described. The maximum charging voltage of the bank is 1kV and maximum load current is 20 kA. The necessary switch equalization criteria and performance with dummy load and an arc plasma generator are described.

  1. Design of universal parallel-transmit refocusing kT -point pulses and application to 3D T2 -weighted imaging at 7T.

    PubMed

    Gras, Vincent; Mauconduit, Franck; Vignaud, Alexandre; Amadon, Alexis; Le Bihan, Denis; Stöcker, Tony; Boulant, Nicolas

    2018-07-01

    T 2 -weighted sequences are particularly sensitive to the radiofrequency (RF) field inhomogeneity problem at ultra-high-field because of the errors accumulated by the imperfections of the train of refocusing pulses. As parallel transmission (pTx) has proved particularly useful to counteract RF heterogeneities, universal pulses were recently demonstrated to save precious time and computational efforts by skipping B 1 calibration and online RF pulse tailoring. Here, we report a universal RF pulse design for non-selective refocusing pulses to mitigate the RF inhomogeneity problem at 7T in turbo spin-echo sequences with variable flip angles. Average Hamiltonian theory was used to synthetize a single non-selective refocusing pulse with pTx while optimizing its scaling properties in the presence of static field offsets. The design was performed under explicit power and specific absorption rate constraints on a database of 10 subjects using a 8Tx-32Rx commercial coil at 7T. To validate the proposed design, the RF pulses were tested in simulation and applied in vivo on 5 additional test subjects. The root-mean-square rotation angle error (RA-NRMSE) evaluation and experimental data demonstrated great improvement with the proposed universal pulses (RA-NRMSE ∼8%) compared to the standard circularly polarized mode of excitation (RA-NRMSE ∼26%). This work further completes the spectrum of 3D universal pulses to mitigate RF field inhomogeneity throughout all 3D MRI sequences without any pTx calibration. The approach returns a single pulse that can be scaled to match the desired flip angle train, thereby increasing the modularity of the proposed plug and play approach. Magn Reson Med 80:53-65, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Variable-pulse-shape pulsed-power accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoltzfus, Brian S.; Austin, Kevin; Hutsel, Brian Thomas

    A variable-pulse-shape pulsed-power accelerator is driven by a large number of independent LC drive circuits. Each LC circuit drives one or more coaxial transmission lines that deliver the circuit's output power to several water-insulated radial transmission lines that are connected in parallel at small radius by a water-insulated post-hole convolute. The accelerator can be impedance matched throughout. The coaxial transmission lines are sufficiently long to transit-time isolate the LC drive circuits from the water-insulated transmission lines, which allows each LC drive circuit to be operated without being affected by the other circuits. This enables the creation of any power pulsemore » that can be mathematically described as a time-shifted linear combination of the pulses of the individual LC drive circuits. Therefore, the output power of the convolute can provide a variable pulse shape to a load that can be used for magnetically driven, quasi-isentropic compression experiments and other applications.« less

  3. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.

  4. DC currents collected by a RF biased electrode quasi-parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Devaux, S.; Moritz, J.; Bobkov, V.; Heuraux, S.

    2017-10-01

    Local plasma biasings due to RF sheaths close to ICRF antennas result mainly in a negative DC current collection on the antenna structure. In some specific cases, we may observe positive currents when the ion mobility (seen from the collecting surface) overcomes the electron one or/and when the collecting surface on the antenna side becomes larger than the other end of the flux tube connected to the wall. The typical configuration is when the antenna surface is almost parallel to the magnetic field lines and the other side perpendicular. To test the optimal case where the magnetic field is quasi-parallel to the electrode surface, one needs a linear magnetic configuration as our magnetized RF discharge experiment called Aline. The magnetic field angle is in our case lower than 1 relative to the RF biased surface. The DC current flowing through the discharge has been measured as a function of the magnetic field strength, neutral gas (He) pressure and RF power. The main result is the reversal of the DC current depending on the magnetic field, collision frequency and RF power level.

  5. Pulse generator with intermediate inductive storage as a lightning simulator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zherlytsyn, A. A.; Kumpyak, E. V.; Tsoy, N. V.

    2016-06-01

    Compact transportable generators are required for simulating a lightning current pulse for electrical apparatus testing. A bi-exponential current pulse has to be formed by such a generator (with a current rise time of about two orders of magnitude faster than the damping time). The objective of this study was to develop and investigate a compact pulse generator with intermediate inductive storage and a fuse opening switch as a simulator of lightning discharge. A Marx generator (six stages) with a capacitance of 1 μF and an output voltage of 240 kV was employed as primary storage. In each of the stages, two IK-50/3 (50 kV, 3 μF) capacitors are connected in parallel. The generator inductance is 2 μH. A test bed for the investigations was assembled with this generator. The generator operates without SF6 and without oil in atmospheric air, which is very important in practice. Straight copper wires with adjustable lengths and diameters were used for the electro-explosive opening switch. Tests were made with active-inductive loads (up to 0.1 Ω and up to 6.3 μH). The current rise time is lower than 1200 ns, and the damping time can be varied from 35 to 125 μs, following the definition of standard lightning current pulse in the IEC standard. Moreover, 1D MHD calculations of the fuse explosion were carried out self-consistently with the electric circuit equations, in order to calculate more accurately the load pulse parameters. The calculations agree fairly well with the tests. On the basis of the obtained results, the design of a transportable generator was developed for a lightning simulator with current of 50 kA and a pulse shape corresponding to the IEEE standard.

  6. Spheromak Formation and Current Sustainment Using a Repetitively Pulsed Source

    NASA Astrophysics Data System (ADS)

    Woodruff, S.; Macnab, A. I. D.; Ziemba, T. M.; Miller, K. E.

    2009-06-01

    By repeated injection of magnetic helicity ( K = 2φψ) on time-scales short compared with the dissipation time (τinj << τ K ), it is possible to produce toroidal currents relevant to POP-level experiments. Here we discuss an effective injection rate, due to the expansion of a series of current sheets and their subsequent reconnection to form spheromaks and compression into a copper flux-conserving chamber. The benefits of repeated injection are that the usual limits to current amplification can be exceeded, and an efficient quasi-steady sustainment scenario is possible (within minimum impact on confinement). A new experiment designed to address the physics of pulsed formation and sustainment is described.

  7. High voltage pulse generator. [Patent application

    DOEpatents

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  8. Parallel-Connected Photovoltaic Inverters: Zero Frequency Sequence Harmonic Analysis and Solution

    NASA Astrophysics Data System (ADS)

    Carmeli, Maria Stefania; Mauri, Marco; Frosio, Luisa; Bezzolato, Alberto; Marchegiani, Gabriele

    2013-05-01

    High-power photovoltaic (PV) plants are usually constituted of the connection of different PV subfields, each of them with its interface transformer. Different solutions have been studied to improve the efficiency of the whole generation system. In particular, transformerless configurations are the more attractive one from efficiency and costs point of view. This paper focuses on transformerless PV configurations characterised by the parallel connection of interface inverters. The problem of zero sequence current due to both the parallel connection and the presence of undesirable parasitic earth capacitances is considered and a solution, which consists of the synchronisation of pulse-width modulation triangular carrier, is proposed and theoretically analysed. The theoretical analysis has been validated through simulation and experimental results.

  9. Comparison of converter topologies for charging capacitors used in pulsed load applications

    NASA Technical Reports Server (NTRS)

    Nelms, R. M.; Schatz, J. E.; Pollard, Barry

    1991-01-01

    The authors present a qualitative comparison of different power converter topologies which may be utilized for charging capacitors in pulsed power applications requiring voltages greater than 1 kV. The operation of the converters in capacitor charging applications is described, and relevant advantages are presented. All of the converters except one may be classified in the high-frequency switching category. One of the benefits from high-frequency operation is a reduction in size and weight. The other converter discussed is a member of the command resonant changing category. The authors first describe a boost circuit which functions as a command resonant charging circuit and utilizes a single pulse of current to charge the capacitor. The discussion of high-frequency converters begins with the flyback and Ward converters. Then, the series, parallel, and series/parallel resonant converters are examined.

  10. Optimization of a Two Stage Pulse Tube Refrigerator for the Integrated Current Lead System

    NASA Astrophysics Data System (ADS)

    Maekawa, R.; Matsubara, Y.; Okada, A.; Takami, S.; Konno, M.; Tomioka, A.; Imayoshi, T.; Hayashi, H.; Mito, T.

    2008-03-01

    Implementation of a conventional current lead with a pulse tube refrigerator has been validated to be working as an Integrated Current Lead (ICL) system for the Superconducting Magnetic Energy Storage (SMES). Realization of the system is primarily accounted for the flexibility of a pulse tube refrigerator, which does not posses any mechanical piston and/or displacer. As for an ultimate version of the ICL system, a High Temperature Superconducting (HTS) lead links a superconducting coil with a conventional copper lead. To ensure the minimization of heat loads to the superconducting coil, a pulse tube refrigerator has been upgraded to have a second cooling stage. This arrangement reduces not only the heat loads to the superconducting coil but also the operating cost for a SMES system. A prototype two-stage pulse tube refrigerator, series connected arrangement, was designed and fabricated to satisfy the requirements for the ICL system. Operation of the first stage refrigerator is a four-valve mode, while the second stage utilizes a double inlet configuration to ensure its confined geometry. The paper discusses the optimization of second stage cooling to validate the conceptual design

  11. Domain wall dynamics along curved strips under current pulses: The influence of Joule heating

    NASA Astrophysics Data System (ADS)

    Raposo, Victor; Moretti, Simone; Hernandez, Maria Auxiliadora; Martinez, Eduardo

    2016-01-01

    The current-induced domain wall dynamics along curved ferromagnetic strips is studied by coupling the magnetization dynamics to the heat transport. Permalloy strips with uniform and non-uniform cross section are evaluated, taking into account the influence of the electrical contacts used to inject the current pulses and the substrate on top of which the ferromagnetic strip is sited. Micromagnetic simulations indicate that the geometry and the non-ferromagnetic materials in the system play a significant role in the current-induced domain wall dynamics. Due to the natural pinning, domain walls are hardly affected by the spin-transfer torques when placed in uniform cross section strips under current pulses with reduced magnitude. On the contrary, the current-induced domain wall displacement is significantly different in strips with non-uniform cross section, where thermal gradients emerge as due to the Joule heating. It is found that these thermal gradients can assist or act against the pure spin-transfer torques, in agreement with the recent experimental observations.

  12. Excitation of low-frequency residual currents at combination frequencies of an ionising two-colour laser pulse

    NASA Astrophysics Data System (ADS)

    Vvedenskii, N. V.; Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.

    2016-05-01

    We have studied the processes of excitation of low-frequency residual currents in a plasma produced through ionisation of gases by two-colour laser pulses in laser-plasma schemes for THz generation. We have developed an analytical approach that allows one to find residual currents in the case when one of the components of a two-colour pulse is weak enough. The derived analytical expressions show that the effective generation of the residual current (and hence the effective THz generation) is possible if the ratio of the frequencies in the two-colour laser pulse is close to a rational fraction with a not very big odd sum of the numerator and denominator. The results of numerical calculations (including those based on the solution of the three-dimensional time-dependent Schrödinger equation) agree well with the analytical results.

  13. Study of Ni-Mo electrodeposition in direct and pulse-reverse current

    NASA Astrophysics Data System (ADS)

    Stryuchkova, Yu M.; Rybin, N. B.; Suvorov, D. V.; Gololobov, G. P.; Tolstoguzov, A. B.; Tarabrin, D. Yu; Serpova, M. A.; Korotchenko, V. A.; Slivkin, E. V.

    2017-05-01

    Process of electrochemical deposition of the coating based on a binary nickel-molybdenum alloy onto a nickel substrate under pulse mode with current reverse within the range of current density change from 2 to 9 A/dm2 has been researched. Coating structure and its surface morphology have been studied. Method of X-ray energy dispersive spectroscopy has determined a percentage ratio of alloy components in the coating. Mode to obtain the densest and smoothest deposits has been identified under considered terms.

  14. High-voltage isolation transformer for sub-nanosecond rise time pulses constructed with annular parallel-strip transmission lines.

    PubMed

    Homma, Akira

    2011-07-01

    A novel annular parallel-strip transmission line was devised to construct high-voltage high-speed pulse isolation transformers. The transmission lines can easily realize stable high-voltage operation and good impedance matching between primary and secondary circuits. The time constant for the step response of the transformer was calculated by introducing a simple low-frequency equivalent circuit model. Results show that the relation between the time constant and low-cut-off frequency of the transformer conforms to the theory of the general first-order linear time-invariant system. Results also show that the test transformer composed of the new transmission lines can transmit about 600 ps rise time pulses across the dc potential difference of more than 150 kV with insertion loss of -2.5 dB. The measured effective time constant of 12 ns agreed exactly with the theoretically predicted value. For practical applications involving the delivery of synchronized trigger signals to a dc high-voltage electron gun station, the transformer described in this paper exhibited advantages over methods using fiber optic cables for the signal transfer system. This transformer has no jitter or breakdown problems that invariably occur in active circuit components.

  15. Design of co-existence parallel periodic surface structure induced by picosecond laser pulses on the Al/Ti multilayers

    NASA Astrophysics Data System (ADS)

    Petrović, Suzana; Peruško, D.; Kovač, J.; Panjan, P.; Mitrić, M.; Pjević, D.; Kovačević, A.; Jelenković, B.

    2017-09-01

    Formation of periodic nanostructures on the Ti/5x(Al/Ti)/Si multilayers induced by picosecond laser pulses is studied in order to better understand the formation of a laser-induced periodic surface structure (LIPSS). At fluence slightly below the ablation threshold, the formation of low spatial frequency-LIPSS (LSFL) oriented perpendicular to the direction of the laser polarization is observed on the irradiated area. Prolonged irradiation while scanning results in the formation of a high spatial frequency-LIPSS (HSFL), on top of the LSFLs, creating a co-existence parallel periodic structure. HSFL was oriented parallel to the incident laser polarization. Intermixing between the Al and Ti layers with the formation of Al-Ti intermetallic compounds was achieved during the irradiation. The intermetallic region was formed mostly within the heat affected zone of the sample. Surface segregation of aluminium with partial ablation of the top layer of titanium was followed by the formation of an ultra-thin Al2O3 film on the surface of the multi-layered structure.

  16. Characteristics of H+ current transients induced by adverse H+ gradient pulses in toad bladder.

    PubMed

    Nero, A C; Schwartz, J H; Furtado, M R

    1987-10-01

    Acidification in the toad bladder occurs as a result of electrogenic H+ secretion (JH). When a pH gradient is applied in a stepwise fashion in the absence of exogenous CO2, JH decreases linearly with the mucosal (M) solution pH and is null when pHm is approximately 4.5. When pHm is returned to initial values (7.4) in a stepwise fashion, JH increases linearly with pHm. However, on this return, higher values of JH are initially obtained. To investigate this hysteresis, hemibladders mounted in chambers were used to measure the change in the H+ current before and after acid pulses were applied to the mucosal solution. In the absence of exogenous CO2, the application of graded acid pulses to mucosa for 1, 2, 4, and 8 min resulted in a graded decrease in JH. The restoration of pHm to 7.4 was followed by an immediate transient overshoot of reversed short-circuit current (Irsc), which was related to the time of exposure and the magnitude of the acid pulse. The longer the acid pulse or the larger the pulse, the greater the Irsc overshoot. The addition of protonophores, dinitrophenol, or salicylate, into the mucosal solution enhanced this overshoot. Similar Irsc overshoots could be obtained with the application of pulses of adverse electrical gradients. Introduction of exogenous CO2 into the system (3%) completely inhibited the overshoot in JH after an acid pulse. In conclusion, when pHm is decreased JH is reduced and the cell pH presumably decreases because of continued exit of alkali at the serosal side of the cell and entry of H+ from the mucosal solution. The decrease in cell pH then triggers the pump to produce a sharp overshoot in JH when pHm returns to 7.4.

  17. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  18. Detection of cracks beneath rivet heads via pulsed eddy current technique

    NASA Astrophysics Data System (ADS)

    Giguère, J. S. R.; Lepine, B. A.; Dubois, J. M. S.

    2002-05-01

    Improving the detectability of fatigue cracks under installed fasteners is one of the many goals of the aging aircraft nondestructive evaluation (NDE) community. The pulsed eddy current offers new capabilities to address this requirement. The aim of the paper is to evaluate the potential of this technique for detecting and quantifying notches under installed fasteners.

  19. Laminar iridium coating produced by pulse current electrodeposition from chloride molten salt

    NASA Astrophysics Data System (ADS)

    Zhu, Li'an; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2013-10-01

    Due to the unique physical and chemical properties, Iridium (Ir) is one of the most promising oxidation-resistant coatings for refractory materials above 1800 °C in aerospace field. However, the Ir coatings prepared by traditional methods are composed of columnar grains throughout the coating thickness. The columnar structure of the coating is considered to do harm to its oxidation resistance. The laminar Ir coating is expected to have a better high-temperature oxidation resistance than the columnar Ir coating does. The pulse current electrodeposition, with three independent parameters: average current density (Jm), duty cycle (R) and pulse frequency (f), is considered to be a promising method to fabricate layered Ir coating. In this study, laminar Ir coatings were prepared by pulse current electrodeposition in chloride molten salt. The morphology, roughness and texture of the coatings were determined by scanning electron microscope (SEM), profilometer and X-ray diffraction (XRD), respectively. The results showed that the laminar Ir coatings were composed of a nucleation layer with columnar structure and a growth layer with laminar structure. The top surfaces of the laminar Ir coatings consisted of cauliflower-like aggregates containing many fine grains, which were separated by deep grooves. The laminar Ir coating produced at the deposition condition of 20 mA/cm2 (Jm), 10% (R) and 6 Hz (f) was quite smooth (Ra 1.01 ± 0.09 μm) with extremely high degree of preferred orientation of <1 1 1>, and its laminar structure was well developed with clear boundaries and uniform thickness of sub-layers.

  20. Electrical and hydrodynamic characterization of a high current pulsed arc

    NASA Astrophysics Data System (ADS)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine-Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  1. Genomics and molecular breeding in lesser explored pulse crops: current trends and future opportunities.

    PubMed

    Bohra, Abhishek; Jha, Uday Chand; Kishor, P B Kavi; Pandey, Shailesh; Singh, Narendra P

    2014-12-01

    Pulses are multipurpose crops for providing income, employment and food security in the underprivileged regions, notably the FAO-defined low-income food-deficit countries. Owing to their intrinsic ability to endure environmental adversities and the least input/management requirements, these crops remain central to subsistence farming. Given their pivotal role in rain-fed agriculture, substantial research has been invested to boost the productivity of these pulse crops. To this end, genomic tools and technologies have appeared as the compelling supplement to the conventional breeding. However, the progress in minor pulse crops including dry beans (Vigna spp.), lupins, lablab, lathyrus and vetches has remained unsatisfactory, hence these crops are often labeled as low profile or lesser researched. Nevertheless, recent scientific and technological breakthroughs particularly the next generation sequencing (NGS) are radically transforming the scenario of genomics and molecular breeding in these minor crops. NGS techniques have allowed de novo assembly of whole genomes in these orphan crops. Moreover, the availability of a reference genome sequence would promote re-sequencing of diverse genotypes to unlock allelic diversity at a genome-wide scale. In parallel, NGS has offered high-resolution genetic maps or more precisely, a robust genetic framework to implement whole-genome strategies for crop improvement. As has already been demonstrated in lupin, sequencing-based genotyping of the representative sample provided access to a number of functionally-relevant markers that could be deployed straight away in crop breeding programs. This article attempts to outline the recent progress made in genomics of these lesser explored pulse crops, and examines the prospects of genomics assisted integrated breeding to enhance and stabilize crop yields. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Oriented graphite layer formation in Ti/C and TiC/C multilayers deposited by high current pulsed cathodic arc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persson, P. O. A.; Ryves, L.; Tucker, M. D.

    2008-10-01

    Ti/C and TiC/C multilayers with periods ranging from 2 to 18 nm were grown by filtered high current pulsed cathodic arc. The growth was monitored in situ by ellipsometry and cantilever stress measurements. The ellipsometry results reveal that the optical properties of the carbon vary as a function of thickness. Correspondingly, the stress in each carbon layer as measured in situ exhibits two well defined values: initially the stress is low and then takes on a higher value for the remainder of the layer. Transmission electron microscopy shows that the initial growth of carbon on Ti or TiC layer ismore » oriented with graphitic basal planes aligned parallel to the interface. After 2-4 nm of growth, the graphitic structure transforms to amorphous carbon. Electron energy loss spectroscopy shows that the carbon layer simultaneously undergoes a transition from sp{sup 2} rich to sp{sup 3} rich material.« less

  3. Surface modification of steels and magnesium alloy by high current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Gao, Bo; Wu, Aimin; Zou, Jianxin; Qin, Ying; Dong, Chuang; An, Jian; Guan, Qingfeng

    2005-11-01

    High current pulsed electron beam (HCPEB) is now developing as a useful tool for surface modification of materials. When concentrated electron flux transferring its energy into a very thin surface layer within a short pulse time, superfast processes such as heating, melting, evaporation and consequent solidification, as well as dynamic stress induced may impart the surface layer with improved physico-chemical and mechanical properties. This paper presents our research work on surface modification of steels and magnesium alloy with HCPEB of working parameters as electron energy 27 keV, pulse duration ∼1 μs and energy density ∼2.2 J/cm2 per pulse. Investigations performed on carbon steel T8, mold steel D2 and magnesium alloy AZ91HP have shown that the most pronounced changes of phase-structure state and properties occurring in the near-surface layers, while the thickness of the modified layer with improved microhardness (several hundreds of micrometers) is significantly greater than that of the heat-affected zone. The formation mechanisms of surface cratering and non-stationary hardening effect in depth are discussed based on the elucidation of non-equilibrium temperature filed and different kinds of stresses formed during pulsed electron beam melting treatment. After the pulsed electron beam treatments, samples show significant improvements in measurements of wear and corrosion resistance.

  4. Current distribution on a cylindrical antenna with parallel orientation in a lossy magnetoplasma

    NASA Technical Reports Server (NTRS)

    Klein, C. A.; Klock, P. W.; Deschamps, G. A.

    1972-01-01

    The current distribution and impedance of a thin cylindrical antenna with parallel orientation to the static magnetic field of a lossy magnetoplasma is calculated with the method of moments. The electric field produced by an infinitesimal current source is first derived. Results are presented for a wide range of plasma parameters. Reasonable answers are obtained for all cases except for the overdense hyperbolic case. A discussion of the numerical stability is included which not only applies to this problem but other applications of the method of moments.

  5. Pulsed eddy current differential probe to detect the defects in a stainless steel pipe

    NASA Astrophysics Data System (ADS)

    Angani, C. S.; Park, D. G.; Kim, C. G.; Leela, P.; Kishore, M.; Cheong, Y. M.

    2011-04-01

    Pulsed eddy current (PEC) is an electromagnetic nondestructive technique widely used to detect and quantify the flaws in conducting materials. In the present study a differential Hall-sensor probe which is used in the PEC system has been fabricated for the detection of defects in stainless steel pipelines. The differential probe has an exciting coil with two Hall-sensors. A stainless steel test sample with electrical discharge machining (EDM) notches under different depths of 1-5 mm was made and the sample was laminated by plastic insulation having uniform thickness to simulate the pipelines in nuclear power plants (NPPs). The driving coil in the probe is excited by a rectangular current pulse and the resultant response, which is the difference of the two Hall-sensors, has been detected as the PEC probe signal. The discriminating time domain features of the detected pulse such as peak value and time to zero are used to interpret the experimental results with the defects in the test sample. A feature extraction technique such as spectral power density has been devised to infer the PEC response.

  6. Modeling and Dynamic Analysis of Paralleled dc/dc Converters With Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  7. The current-density distribution in a pulsed dc magnetron deposition discharge

    NASA Astrophysics Data System (ADS)

    Vetushka, Alena; Bradley, James W.

    2007-04-01

    Using a carefully constructed magnetic probe (a B-dot probe) the spatial and temporal evolution of the perturbation in the magnetic field ΔB in an unbalanced pulsed dc magnetron has been determined. The plasma was run in argon at a pressure of 0.74 Pa and the plasma ions sputtered a pure graphite target. The pulse frequency and duty were set at 100 kHz and 55%, respectively. From the ΔB measurements (measured with magnitudes up to about 0.01 mT) the axial, azimuthal and radial components of the total current density j in the plasma bulk were determined. In the plasma 'on' phase, the axial current density jz has a maximum value of approximately 200 A m-2 above the racetrack region, while high values in the azimuthal current density jΦ are distributed in a region from 1 to 3 cm into the bulk plasma with jΦ exceeding 350 A m-2. In the 'off' phase of the plasma, jz decays almost instantaneously (at least within the 100 ns time-resolution of the ΔB measurements) as the electric field collapses; however, jΦ decays with a characteristic time constant of about 1 µs. This slow decay can be attributed to the presence of decaying Grad-B and curvature drifts, with their rates controlled by the decay in the plasma density. A comparison between axial and azimuthal current densities in the plasma 'on' time, when the plasma is being driven, strongly indicates that classical transport does not operate in the magnetron discharge.

  8. A new digital pulse power supply in heavy ion research facility in Lanzhou

    NASA Astrophysics Data System (ADS)

    Wang, Rongkun; Chen, Youxin; Huang, Yuzhen; Gao, Daqing; Zhou, Zhongzu; Yan, Huaihai; Zhao, Jiang; Shi, Chunfeng; Wu, Fengjun; Yan, Hongbin; Xia, Jiawen; Yuan, Youjin

    2013-11-01

    To meet the increasing requirements of the Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring (HIRFL-CSR), a new digital pulse power supply, which employs multi-level converter, was designed. This power supply was applied with a multi H-bridge converters series-parallel connection topology. A new control model named digital power supply regulator system (DPSRS) was proposed, and a pulse power supply prototype based on DPSRS has been built and tested. The experimental results indicate that tracking error and ripple current meet the requirements of this design. The achievement of prototype provides a perfect model for HIRFL-CSR power supply system.

  9. Evidence of Spin-Injection-Induced Cooper Pair Breaking in Perovskite Ferromagnet-Insulator-Superconductor Heterostructures via Pulsed Current Measurements

    NASA Technical Reports Server (NTRS)

    Yeh, N. C.; Samoilov, A. V.; Veasquez, R. P.; Li, Y.

    1998-01-01

    The effect of spin-polarized currents on the critical current densities of cuprate superconductors is investigated in perovskite ferromagnet-insulator-superconductor heterostructures with a pulsed current technique.

  10. Pulsed Direct Current Electrospray: Enabling Systematic Analysis of Small Volume Sample by Boosting Sample Economy.

    PubMed

    Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong

    2015-11-17

    We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.

  11. Pulsed ultrasonic stir welding method

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    A method of performing ultrasonic stir welding uses a welding head assembly to include a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. In the method, the rod is rotated about its longitudinal axis during a welding operation. During the welding operation, a series of on-off ultrasonic pulses are applied to the rod such that they propagate parallel to the rod's longitudinal axis. At least a pulse rate associated with the on-off ultrasonic pulses is controlled.

  12. Electromagnetically induced disintegration and polarization plane rotation of laser pulses

    NASA Astrophysics Data System (ADS)

    Parshkov, Oleg M.; Budyak, Victoria V.; Kochetkova, Anastasia E.

    2017-04-01

    The numerical simulation results of disintegration effect of linear polarized shot probe pulses of electromagnetically induced transparency in the counterintuitive superposed linear polarized control field are presented. It is shown, that this disintegration occurs, if linear polarizations of interacting pulses are not parallel or mutually perpendicular. In case of weak input probe field the polarization of one probe pulse in the medium is parallel, whereas the polarization of another probe pulse is perpendicular to polarization direction of input control radiation. The concerned effect is analogous to the effect, which must to take place when short laser pulse propagates along main axes of biaxial crystal because of group velocity of normal mod difference. The essential difference of probe pulse disintegration and linear process in biaxial crystal is that probe pulse preserves linear polarization in all stages of propagation. The numerical simulation is performed for scheme of degenerated quantum transitions between 3P0 , 3P01 and 3P2 energy levels of 208Pb isotope.

  13. Transient Response of Arc Temperature and Iron Vapor Concentration Affected by Current Frequency with Iron Vapor in Pulsed Arc

    NASA Astrophysics Data System (ADS)

    Tanaka, Tatsuro; Maeda, Yoshifumi; Yamamoto, Shinji; Iwao, Toru

    2016-10-01

    TIG arc welding is chemically a joining technology with melting the metallic material and it can be high quality. However, this welding should not be used in high current to prevent cathode melting. Thus, the heat transfer is poor. Therefore, the deep penetration cannot be obtained and the weld defect sometimes occurs. The pulsed arc welding has been used for the improvement of this defect. The pulsed arc welding can control the heat flux to anode. The convention and driving force in the weld pool are caused by the arc. Therefore, it is important to grasp the distribution of arc temperature. The metal vapor generate from the anode in welding. In addition, the pulsed current increased or decreased periodically. Therefore, the arc is affected by such as a current value and current frequency, the current rate of increment and the metal vapor. In this paper, the transient response of arc temperature and the iron vapor concentration affected by the current frequency with iron vapor in pulsed arc was elucidated by the EMTF (ElectroMagnetic Thermal Fluid) simulation. As a result, the arc temperature and the iron vapor were transient response as the current frequency increase. Thus, the temperature and the electrical conductivity decreased. Therefore, the electrical field increased in order to maintain the current continuity. The current density and electromagnetic force increased at the axial center. In addition, the electronic flow component of the heat flux increased at the axial center because the current density increased. However, the heat conduction component of the heat flux decreased.

  14. Characterization of carbon fiber polymer matrix composites subjected to simultaneous application of electric current pulse and low velocity impact

    NASA Astrophysics Data System (ADS)

    Hart, Robert James

    2011-12-01

    The use of composite materials in aerospace, electronics, and wind industries has become increasingly common, and these composite components are required to carry mechanical, electrical, and thermal loads simultaneously. A unique property of carbon fiber composites is that when an electric current is applied to the specimen, the mechanical strength of the specimen increases. Previous studies have shown that the higher the electric current, the greater the increase in impact strength. However, as current passes through the composite, heat is generated through Joule heating. This Joule heating can cause degradation of the composite and thus a loss in strength. In order to minimize the negative effects of heating, it is desired to apply a very high current for a very short duration of time. This thesis investigated the material responses of carbon fiber composite plates subjected to electrical current pulse loads of up to 1700 Amps. For 32 ply unidirectional IM7/977-3 specimens, the peak impact load and absorbed energy increased slightly with the addition of a current pulse at the time of an impact event. In 16 ply cross-ply IM7/977-2 specimens, the addition of the current pulse caused detrimental effects due to electrical arcing at the interface between the composite and electrodes. Further refinement of the experimental setup should minimize the risk of electrical arcing and should better elucidate the effects of a current pulse on the impact strength of the specimens.

  15. Characteristics of colloidal aluminum nanoparticles prepared by nanosecond pulsed laser ablation in deionized water in presence of parallel external electric field

    NASA Astrophysics Data System (ADS)

    Mahdieh, Mohammad Hossein; Mozaffari, Hossein

    2017-10-01

    In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).

  16. Pulsed ultrasonic stir welding system

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor)

    2013-01-01

    An ultrasonic stir welding system includes a welding head assembly having a plate and a rod passing through the plate. The rod is rotatable about a longitudinal axis thereof. During a welding operation, ultrasonic pulses are applied to the rod as it rotates about its longitudinal axis. The ultrasonic pulses are applied in such a way that they propagate parallel to the longitudinal axis of the rod.

  17. Magnitude of parallel pseudo potential in a magnetosonic shock wave

    NASA Astrophysics Data System (ADS)

    Ohsawa, Yukiharu

    2018-05-01

    The parallel pseudo potential F, which is the integral of the parallel electric field along the magnetic field, in a large-amplitude magnetosonic pulse (shock wave) is theoretically studied. Particle simulations revealed in the late 1990's that the product of the elementary charge and F can be much larger than the electron temperature in shock waves, i.e., the parallel electric field can be quite strong. However, no theory was presented for this unexpected result. This paper first revisits the small-amplitude theory for F and then investigates the parallel pseudo potential F in large-amplitude pulses based on the two-fluid model with finite thermal pressures. It is found that the magnitude of F in a shock wave is determined by the wave amplitude, the electron temperature, and the kinetic energy of an ion moving with the Alfvén speed. This theoretically obtained expression for F is nearly identical to the empirical relation for F discovered in the previous simulation work.

  18. Pulsed plasma thruster by applied a high current hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; N. Nogera Team; T. Kamada Team

    2013-09-01

    The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.

  19. FPGA implementation of current-sharing strategy for parallel-connected SEPICs

    NASA Astrophysics Data System (ADS)

    Ezhilarasi, A.; Ramaswamy, M.

    2016-01-01

    The attempt echoes to evolve an equal current-sharing algorithm over a number of single-ended primary inductance converters connected in parallel. The methodology involves the development of state-space model to predict the condition for the existence of a stable equilibrium portrait. It acquires the role of a variable structure controller to guide the trajectory, with a view to circumvent the circuit non-linearities and arrive at a stable performance through a preferred operating range. The design elicits an acceptable servo and regulatory characteristics, the desired time response and ensures regulation of the load voltage. The simulation results validated through a field programmable gate array-based prototype serves to illustrate its suitability for present-day applications.

  20. Cycle life improvement of alkaline batteries via optimization of pulse current deposition of manganese dioxide under low bath temperatures

    NASA Astrophysics Data System (ADS)

    Adelkhani, H.; Ghaemi, M.; Jafari, S. M.

    Pulse current electrodeposition (PCD) method has been applied to the preparation of novel electrolytic manganese dioxide (EMD) in order to enhance the cycle life of rechargeable alkaline MnO 2-Zn batteries (RAM). The investigation was carried out under atmospheric pressure through a systematic variation of pulse current parameters using additive free sulfuric acid-MnSO 4 electrolyte solutions. On time (t on) was varied from 0.1 to 98.5 ms, off time (t off) from 0.25 to 19.5 ms, pulse frequencies (f) from 10 to 1000 Hz and duty cycles (θ) from 0.02 to 0.985. A constant pulse current density (I p) of 0.8 A dm -2 and average current densities (I a) in the range of 0.08-0.8 A dm -2 were applied in all experiments. Resultant materials were characterized by analyzing their chemical compositions, X-ray diffractions (XRD) and scanning electron microscopy (SEM). Electrochemical characterizations carried out by charge/discharge cycling of samples in laboratory designed RAM batteries and cyclic voltammetric experiments (CV). It has been proved that specific selection of duty cycle, in the order of 0.25, and a pulse frequency of 500 Hz, results in the production of pulse deposited samples (pcMDs) with more uniform distribution of particles and more compact structure than those obtained by direct current techniques (dcMDs). Results of the test batteries demonstrated that, in spite of reduction of bath temperature in the order of 40 °C, the cycle life of batteries made of pcMDs (bath temperature: 60 °C) was rather higher than those made of conventional dcMDs (boiling electrolyte solution). Under the same conditions of EMD synthesis temperature of 80 °C and battery testing, the maximum obtainable cycle life of optimized pcMD was nearly 230 cycles with approximately 30 mAh g -1 MnO 2, compared to that of dcMD, which did not exceed 20 cycles. In accordance to these results, CV has confirmed that the pulse duty cycle is the most influential parameter on the cycle life than the

  1. Paralleling power MOSFETs in their active region: Extended range of passively forced current sharing

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1989-01-01

    A simple passive circuit that improves current balance in parallelled power MOSFETs that are not precisely matched and that are operated in their active region from a common gate drive are exhibited. A nonlinear circuit consisting of diodes and resistors generates the differential gate potential required to correct for unbalance while maintaining low losses over a range of current. Also application of a thin tape wound magnetic core to effect dynamic current balance is reviewed, and a simple theory is presented showing that for operation in the active region the branch currents tend to revert to their normal unbalanced values even if the core is not driven into saturation. Results of several comparative experiments are given.

  2. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-03-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  3. Modeling and Dynamic Analysis of Paralleled of dc/dc Converters with Master-Slave Current Sharing Control

    NASA Technical Reports Server (NTRS)

    Rajagopalan, J.; Xing, K.; Guo, Y.; Lee, F. C.; Manners, Bruce

    1996-01-01

    A simple, application-oriented, transfer function model of paralleled converters employing Master-Slave Current-sharing (MSC) control is developed. Dynamically, the Master converter retains its original design characteristics; all the Slave converters are forced to depart significantly from their original design characteristics into current-controlled current sources. Five distinct loop gains to assess system stability and performance are identified and their physical significance is described. A design methodology for the current share compensator is presented. The effect of this current sharing scheme on 'system output impedance' is analyzed.

  4. The effect of pulsed current electrodeposition parameters of calcium phosphates coating on Ti6Al4V ELI

    NASA Astrophysics Data System (ADS)

    Sierra-Herrera, D. K.; Sandoval-Amador, A.; Montañez-Supelano, N. D.; Y Peña-Ballesteros, D.

    2017-12-01

    Pulse current electrodeposition is a technique of special interest, due to the advantages it has, like easy operation, high control in the amount, homogeneity and purity of the deposited material, and low cost. This work studies the influence of the pulsed electrodeposition parameters variation on the characteristics of calcium phosphates coatings, including the composition, crystallinity and morphology. The influence of the current density and pulse on and off time on the physicochemical properties of the obtained coatings were evaluated. The coatings were electrodeposited on Ti6Al4V using Ca(NO3)2·H2O and NH4H2PO4 with a Ca/P molar ratio of 1.67. The coatings were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The analysis of DRX confirmed the formation of HAP. The results revealed that the variation of the current density modified the morphology of the coating. Also, the amount of material deposited increases as the off-time pulse increases, allowing the diffusion of the ions in the solution towards the working electrode.

  5. Cardiac transient outward potassium current: a pulse chemistry model of frequency-dependent properties.

    PubMed

    Liu, L; Krinsky, V I; Grant, A O; Starmer, C F

    1996-01-01

    Recent voltage-clamp studies of isolated myocytes have demonstrated widespread occurrence of a transient outward current (I(to)) carried by potassium ions. In the canine ventricle, this current is well developed in epicardial cells but not in endocardial cells. The resultant spatial dispersion of refractoriness is potentially proarrhythmic and may be amplified by channel blockade. The inactivation and recovery time constants of this channel are in excess of several hundred milliseconds, and consequently channel availability is frequency dependent at physiological stimulation rates. When the time constants associated with transitions between different channel conformations are rapid relative to drug binding kinetics, the interactions between drugs and an ion channel can be approximated by a sequence of first-order reactions, in which binding occurs in pulses in response to pulse train stimulation (pulse chemistry). When channel conformation transition time constants do not meet this constraint, analytical characterizations of the drug-channel interaction must then be modified to reflect the channel time-dependent properties. Here we report that the rate and steady-state amount of frequency-dependent inactivation of I(to) are consistent with a generalization of the channel blockade model: channel availability is reduced in a pulsatile exponential pattern as the stimulation frequency is increased, and the rate of reduction is a linear function of the pulse train depolarizing and recovery intervals. I(to) was reduced in the presence of quinidine. After accounting for the use-dependent availability of I(to) channels, we found little evidence of an additional use-dependent component of block after exposure to quinidine, suggesting that quinidine reacts with both open and closed I(to) channels as though the binding site is continuously accessible. The model provides a useful tool for assessing drug-channel interactions when the reaction cannot be continuously monitored.

  6. Some Experimental and Monte Carlo Investigations of the Plastic Scintillators for the Current Mode Measurements at Pulsed Neutron Sources

    NASA Astrophysics Data System (ADS)

    Rogov, A.; Pepyolyshev, Yu.; Carta, M.; d'Angelo, A.

    Scintillation detector (SD) is widely used in neutron and gamma-spectrometry in a count mode. The organic scintillators for the count mode of the detector operation are investigated rather well. Usually, they are applied for measurement of amplitude and time distributions of pulses caused by single interaction events of neutrons or gamma's with scintillator material. But in a large area of scientific research scintillation detectors can alternatively be used on a current mode by recording the average current from the detector. For example,the measurements of the neutron pulse shape at the pulsed reactors or another pulsed neutron sources. So as to get a rather large volume of experimental data at pulsed neutron sources, it is necessary to use the current mode detector for registration of fast neutrons. Many parameters of the SD are changed with a transition from an accounting mode to current one. For example, the detector efficiency is different in counting and current modes. Many effects connected with time accuracy become substantial. Besides, for the registration of solely fast neutrons, as must be in many measurements, in the mixed radiation field of the pulsed neutron sources, SD efficiency has to be determined with a gamma-radiation shield present. Here is no calculations or experimental data on SD current mode operation up to now. The response functions of the detectors can be either measured in high-precision reference fields or calculated by a computer simulation. We have used the MCNP code [1] and carried out some experiments for investigation of the plastic performances in a current mode. There are numerous programs performing simulating similar to the MCNP code. For example, for neutrons there are [2-4], for photons - [5-8]. However, all known codes to use (SCINFUL, NRESP4, SANDYL, EGS49) have more stringent restrictions on the source, geometry and detector characteristics. In MCNP code a lot of these restrictions are absent and you need only to write

  7. The electrical MHD and Hall current impact on micropolar nanofluid flow between rotating parallel plates

    NASA Astrophysics Data System (ADS)

    Shah, Zahir; Islam, Saeed; Gul, Taza; Bonyah, Ebenezer; Altaf Khan, Muhammad

    2018-06-01

    The current research aims to examine the combined effect of magnetic and electric field on micropolar nanofluid between two parallel plates in a rotating system. The nanofluid flow between two parallel plates is taken under the influence of Hall current. The flow of micropolar nanofluid has been assumed in steady state. The rudimentary governing equations have been changed to a set of differential nonlinear and coupled equations using suitable similarity variables. An optimal approach has been used to acquire the solution of the modelled problems. The convergence of the method has been shown numerically. The impact of the Skin friction on velocity profile, Nusslet number on temperature profile and Sherwood number on concentration profile have been studied. The influences of the Hall currents, rotation, Brownian motion and thermophoresis analysis of micropolar nanofluid have been mainly focused in this work. Moreover, for comprehension the physical presentation of the embedded parameters that is, coupling parameter N1 , viscosity parameter Re , spin gradient viscosity parameter N2 , rotating parameter Kr , Micropolar fluid constant N3 , magnetic parameter M , Prandtl number Pr , Thermophoretic parameter Nt , Brownian motion parameter Nb , and Schmidt number Sc have been plotted and deliberated graphically.

  8. Pulse charging of lead-acid traction cells

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J.

    1980-01-01

    Pulse charging, as a method of rapidly and efficiently charging 300 amp-hour lead-acid traction cells for an electric vehicle application was investigated. A wide range of charge pulse current square waveforms were investigated and the results were compared to constant current charging at the time averaged pulse current values. Representative pulse current waveforms were: (1) positive waveform-peak charge pulse current of 300 amperes (amps), discharge pulse-current of zero amps, and a duty cycle of about 50%; (2) Romanov waveform-peak charge pulse current of 300 amps, peak discharge pulse current of 15 amps, and a duty of 50%; and (3) McCulloch waveform peak charge pulse current of 193 amps, peak discharge pulse current of about 575 amps, and a duty cycle of 94%. Experimental results indicate that on the basis of amp-hour efficiency, pulse charging offered no significant advantage as a method of rapidly charging 300 amp-hour lead-acid traction cells when compared to constant current charging at the time average pulse current value. There were, however, some disadvantages of pulse charging in particular a decrease in charge amp-hour and energy efficiencies and an increase in cell electrolyte temperature. The constant current charge method resulted in the best energy efficiency with no significant sacrifice of charge time or amp-hour output. Whether or not pulse charging offers an advantage over constant current charging with regard to the cell charge/discharge cycle life is unknown at this time.

  9. Determination of diffusion coefficients in polypyrrole thin films using a current pulse relaxation method

    NASA Technical Reports Server (NTRS)

    Penner, Reginald M.; Vandyke, Leon S.; Martin, Charles R.

    1987-01-01

    The current pulse E sub oc relaxation method and its application to the determination of diffusion coefficients in electrochemically synthesized polypyrrole thin films is described. Diffusion coefficients for such films in Et4NBF4 and MeCN are determined for a series of submicron film thicknesses. Measurement of the double-layer capacitance, C sub dl, and the resistance, R sub u, of polypyrrole thin films as a function of potential obtained with the galvanostatic pulse method is reported. Measurements of the electrolyte concentration in reduced polypyrrole films are also presented to aid in the interpretation of the data.

  10. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  11. Characteristics of Extra Narrow Gap Weld of HSLA Steel Welded by Single-Seam per Layer Pulse Current GMA Weld Deposition

    NASA Astrophysics Data System (ADS)

    Agrawal, B. P.; Ghosh, P. K.

    2017-03-01

    Butt weld joints are produced using pulse current gas metal arc welding process by employing the technique of centrally laid multi-pass single-seam per layer weld deposition in extra narrow groove of thick HSLA steel plates. The weld joints are prepared by using different combination of pulse parameters. The selection of parameter of pulse current gas metal arc welding is done considering a summarized influence of simultaneously interacting pulse parameters defined by a dimensionless hypothetical factor ϕ. The effect of diverse pulse parameters on the characteristics of weld has been studied. Weld joint is also prepared by using commonly used multi-pass multi-seam per layer weld deposition in conventional groove. The extra narrow gap weld joints have been found much superior to the weld joint prepared by multi-pass multi-seam per layer deposition in conventional groove with respect to its metallurgical characteristics and mechanical properties.

  12. Computer-Aided Parallelizer and Optimizer

    NASA Technical Reports Server (NTRS)

    Jin, Haoqiang

    2011-01-01

    The Computer-Aided Parallelizer and Optimizer (CAPO) automates the insertion of compiler directives (see figure) to facilitate parallel processing on Shared Memory Parallel (SMP) machines. While CAPO currently is integrated seamlessly into CAPTools (developed at the University of Greenwich, now marketed as ParaWise), CAPO was independently developed at Ames Research Center as one of the components for the Legacy Code Modernization (LCM) project. The current version takes serial FORTRAN programs, performs interprocedural data dependence analysis, and generates OpenMP directives. Due to the widely supported OpenMP standard, the generated OpenMP codes have the potential to run on a wide range of SMP machines. CAPO relies on accurate interprocedural data dependence information currently provided by CAPTools. Compiler directives are generated through identification of parallel loops in the outermost level, construction of parallel regions around parallel loops and optimization of parallel regions, and insertion of directives with automatic identification of private, reduction, induction, and shared variables. Attempts also have been made to identify potential pipeline parallelism (implemented with point-to-point synchronization). Although directives are generated automatically, user interaction with the tool is still important for producing good parallel codes. A comprehensive graphical user interface is included for users to interact with the parallelization process.

  13. Dosimetric response for crystalline and nanostructured aluminium oxide to a high-current pulse electron beam.

    PubMed

    Nikiforov, S V; Kortov, V S

    2014-11-01

    The main thermoluminescent (TL) and dosimetric properties of the detectors based on anion-defective crystalline and nanostructured aluminium oxide after exposure to a high-current pulse electron beam are studied. TL peaks associated with deep-trapping centres are registered. It is shown that the use of deep-trap TL at 200-600°С allows registering absorbed doses up to 750 kGy for single-crystalline detectors and those up to 6 kGy for nanostructured ones. A wide range of the doses registered, high reproducibility of the TL signal and low fading contribute to a possibility of using single-crystalline and nanostructured aluminium oxide for the dosimetry of high-current pulse electron beams. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Optimization of Experimental Conditions of the Pulsed Current GTAW Parameters for Mechanical Properties of SDSS UNS S32760 Welds Based on the Taguchi Design Method

    NASA Astrophysics Data System (ADS)

    Yousefieh, M.; Shamanian, M.; Saatchi, A.

    2012-09-01

    Taguchi design method with L9 orthogonal array was implemented to optimize the pulsed current gas tungsten arc welding parameters for the hardness and the toughness of super duplex stainless steel (SDSS, UNS S32760) welds. In this regard, the hardness and the toughness were considered as performance characteristics. Pulse current, background current, % on time, and pulse frequency were chosen as main parameters. Each parameter was varied at three different levels. As a result of pooled analysis of variance, the pulse current is found to be the most significant factor for both the hardness and the toughness of SDSS welds by percentage contribution of 71.81 for hardness and 78.18 for toughness. The % on time (21.99%) and the background current (17.81%) had also the next most significant effect on the hardness and the toughness, respectively. The optimum conditions within the selected parameter values for hardness were found as the first level of pulse current (100 A), third level of background current (70 A), first level of % on time (40%), and first level of pulse frequency (1 Hz), while they were found as the second level of pulse current (120 A), second level of background current (60 A), second level of % on time (60%), and third level of pulse frequency (5 Hz) for toughness. The Taguchi method was found to be a promising tool to obtain the optimum conditions for such studies. Finally, in order to verify experimental results, confirmation tests were carried out at optimum working conditions. Under these conditions, there were good agreements between the predicted and the experimental results for the both hardness and toughness.

  15. Energy-Saving Sintering of Electrically Conductive Powders by Modified Pulsed Electric Current Heating Using an Electrically Nonconductive Die

    NASA Astrophysics Data System (ADS)

    Ito, Mikio; Kawahara, Kenta; Araki, Keita

    2014-04-01

    Sintering of Cu and thermoelectric Ca3Co4O9 was tried using a modified pulsed electric current sintering (PECS) process, where an electrically nonconductive die was used instead of a conventional graphite die. The pulsed electric current flowed through graphite punches and sample powder, which caused the Joule heating of the powder compact itself, resulting in sintering under smaller power consumption. Especially for the Ca3Co4O9 powder, densification during sintering was also accelerated by this modified PECS process.

  16. The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam

    NASA Astrophysics Data System (ADS)

    Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina

    2016-01-01

    The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.

  17. Measuring Differential Delays With Sine-Squared Pulses

    NASA Technical Reports Server (NTRS)

    Hurst, Robert N.

    1994-01-01

    Technique for measuring differential delays among red, green, and blue components of video signal transmitted on different parallel channels exploits sine-squared pulses that are parts of standard test signals transmitted during vertical blanking interval of frame period. Technique does not entail expense of test-signal generator. Also applicable to nonvideo signals including sine-squared pulses.

  18. Half radiofrequency pulse excitation with a dedicated prescan to correct eddy current effect and gradient delay.

    PubMed

    Abe, Takayuki

    2013-03-01

    To improve the slice profile of the half radiofrequency (RF) pulse excitation and image quality of ultrashort echo time (UTE) imaging by compensating for an eddy current effect. The dedicated prescan has been developed to measure the phase accumulation due to eddy currents induced by the slice-selective gradient. The prescan measures two one-dimensional excitation k-space profiles, which can be acquired with a readout gradient in the slice-selection direction by changing the polarity of the slice-selective gradient. The time shifts due to the phase accumulation in the excitation k-space were calculated. The time shift compensated for the start time of the slice-selective gradient. The total prescan time was 6-15 s. The slice profile and the UTE image with the half RF pulse excitation were acquired to evaluate the slice selectivity and the image quality. Improved slice selectivity was obtained. The simple method proposed in this paper can eliminate eddy current effect. Good UTE images were obtained. The slice profile of the half RF pulse excitation and the image quality of UTE images have been improved by using a dedicated prescan. This method has a possibility that can improve the image quality of a clinical UTE imaging.

  19. Conductivity tomography based on pulsed eddy current with SQUID magnetometer

    NASA Astrophysics Data System (ADS)

    Panaitov, G. I.; Krause, H.-J.; Zhang, Y.

    2002-05-01

    Pulsed eddy current (EC) techniques have the advantage of potentially covering a broader depth range than standard single frequency EC testing. We developed a novel pulsed EC technique using a liquid-nitrogen cooled SQUID magnetometer. For two reasons, SQUID magnetometers are particularly well suited as sensors: first they constitute an extremely sensitive magnetic field sensor, second they measure the field directly which decays more slowly than its time derivative picked up by induction coils. A square waveform transmitter signal was used, with alternating slopes in order to eliminate drift effect, and stacking synchronous to the power line frequency in order to improve signal-to-noise. The early time (high frequency) data of the recorded transient correspond to the upper layers of the conducting medium, while late time data or low frequencies deliver information on deep layers. Measurements of cracks at different depths in a stacked aluminum sample are presented. From the measured data, the apparent conductivity of the sample was calculated for each position and depth by applying a technique known from geophysical data interpretation. Thus, the position and depth of the crack was determined from the tomographic conductivity image of the sample.

  20. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments

    NASA Astrophysics Data System (ADS)

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10-2 Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak

  1. A high current pulsed power generator CQ-3-MMAF with co-axial cable transmitting energy for material dynamics experiments.

    PubMed

    Wang, Guiji; Chen, Xuemiao; Cai, Jintao; Zhang, Xuping; Chong, Tao; Luo, Binqiang; Zhao, Jianheng; Sun, Chengwei; Tan, Fuli; Liu, Cangli; Wu, Gang

    2016-06-01

    A high current pulsed power generator CQ-3-MMAF (Multi-Modules Assembly Facility, MMAF) was developed for material dynamics experiments under ramp wave and shock loadings at the Institute of Fluid Physics (IFP), which can deliver 3 MA peak current to a strip-line load. The rise time of the current is 470 ns (10%-90%). Different from the previous CQ-4 at IFP, the CQ-3-MMAF energy is transmitted by hundreds of co-axial high voltage cables with a low impedance of 18.6 mΩ and low loss, and then hundreds of cables are reduced and converted to tens of cables into a vacuum chamber by a cable connector, and connected with a pair of parallel metallic plates insulated by Kapton films. It is composed of 32 capacitor and switch modules in parallel. The electrical parameters in short circuit are with a capacitance of 19.2 μF, an inductance of 11.7 nH, a resistance of 4.3 mΩ, and working charging voltage of 60 kV-90 kV. It can be run safely and stable when charged from 60 kV to 90 kV. The vacuum of loading chamber can be up to 10(-2) Pa, and the current waveforms can be shaped by discharging in time sequences of four groups of capacitor and switch modules. CQ-3-MMAF is an adaptive machine with lower maintenance because of its modularization design. The COMSOL Multi-physics® code is used to optimize the structure of some key components and calculate their structural inductance for designs, such as gas switches and cable connectors. Some ramp wave loading experiments were conducted to check and examine the performances of CQ-3-MMAF. Two copper flyer plates were accelerated to about 3.5 km/s in one shot when the working voltage was charged to 70 kV. The velocity histories agree very well. The dynamic experiments of some polymer bonded explosives and phase transition of tin under ramp wave loadings were also conducted. The experimental data show that CQ-3-MMAF can be used to do material dynamics experiments in high rate and low cost shots. Based on this design concept, the peak

  2. Parallel Computational Fluid Dynamics: Current Status and Future Requirements

    NASA Technical Reports Server (NTRS)

    Simon, Horst D.; VanDalsem, William R.; Dagum, Leonardo; Kutler, Paul (Technical Monitor)

    1994-01-01

    One or the key objectives of the Applied Research Branch in the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Allies Research Center is the accelerated introduction of highly parallel machines into a full operational environment. In this report we discuss the performance results obtained from the implementation of some computational fluid dynamics (CFD) applications on the Connection Machine CM-2 and the Intel iPSC/860. We summarize some of the experiences made so far with the parallel testbed machines at the NAS Applied Research Branch. Then we discuss the long term computational requirements for accomplishing some of the grand challenge problems in computational aerosciences. We argue that only massively parallel machines will be able to meet these grand challenge requirements, and we outline the computer science and algorithm research challenges ahead.

  3. Temporally Shaped Current Pulses on a Two-Cavity Linear Transformer Driver System

    DTIC Science & Technology

    2011-06-01

    essentially at a fraction of the total switch voltage. Non-uniform corona current characteristics of the different corona needles could cause imperfect...withstand twice the capacitor voltage. A pulse applied to the switch trigger electrodes initiate closure of each switch. We have arranged triggering in...internal cavity potential to ground, allows the trigger electrode of the spark gaps to be at ground potential during charging, and eliminates a

  4. The efficacy of pulsed ultrahigh current for the stunning of cattle prior to slaughter.

    PubMed

    Robins, A; Pleiter, H; Latter, M; Phillips, C J C

    2014-03-01

    We present results from the development of a new system of reversible electrical stunning of cattle. A single-pulse ultra-high current (SPUC) was generated from a capacitance discharge current spike of at least 5000 V at 70 A, for approximately 50 ms. Ninety-seven cattle were stunned in three experimental protocols. With improvements made to the design of the stun box and charge delivered, 38 cattle were either stunned and immediately jugulated or monitored for signs of reappearance of brain stem reflexes at which point a concussion stun was administered. This use of the SPUC charge, provided as a biphasic-pulse waveform, resulted in a high level of stunning efficacy, with unconsciousness lasting for up to 4 min. These results were supported by EEG data taken from a subsequent cohort of stunned cattle. The SPUC stun also apparently eliminated post-stun grand mal seizures that can occur following short-acting conventional electrical stun, with its associated negative consequences on operator safety and meat quality. © 2013.

  5. Investigation of a pulsed current annealing method in reusing MOSFET dosimeters for in vivo IMRT dosimetry.

    PubMed

    Luo, Guang-Wen; Qi, Zhen-Yu; Deng, Xiao-Wu; Rosenfeld, Anatoly

    2014-05-01

    To explore the feasibility of pulsed current annealing in reusing metal oxide semiconductor field-effect transistor (MOSFET) dosimeters for in vivo intensity modulated radiation therapy (IMRT) dosimetry. Several MOSFETs were irradiated at d(max) using a 6 MV x-ray beam with 5 V on the gate and annealed with zero bias at room temperature. The percentage recovery of threshold voltage shift during multiple irradiation-annealing cycles was evaluated. Key dosimetry characteristics of the annealed MOSFET such as the dosimeter's sensitivity, reproducibility, dose linearity, and linearity of response within the dynamic range were investigated. The initial results of using the annealed MOSFETs for IMRT dosimetry practice were also presented. More than 95% of threshold voltage shift can be recovered after 24-pulse current continuous annealing in 16 min. The mean sensitivity degradation was found to be 1.28%, ranging from 1.17% to 1.52%, during multiple annealing procedures. Other important characteristics of the annealed MOSFET remained nearly consistent before and after annealing. Our results showed there was no statistically significant difference between the annealed MOSFETs and their control samples in absolute dose measurements for IMRT QA (p = 0.99). The MOSFET measurements agreed with the ion chamber results on an average of 0.16% ± 0.64%. Pulsed current annealing provides a practical option for reusing MOSFETs to extend their operational lifetime. The current annealing circuit can be integrated into the reader, making the annealing procedure fully automatic.

  6. Peak holding circuit for extremely narrow pulses

    NASA Technical Reports Server (NTRS)

    Oneill, R. W. (Inventor)

    1975-01-01

    An improved pulse stretching circuit comprising: a high speed wide-band amplifier connected in a fast charge integrator configuration; a holding circuit including a capacitor connected in parallel with a discharging network which employs a resistor and an FET; and an output buffer amplifier. Input pulses of very short duration are applied to the integrator charging the capacitor to a value proportional to the input pulse amplitude. After a predetermined period of time, conventional circuitry generates a dump pulse which is applied to the gate of the FET making a low resistance path to ground which discharges the capacitor. When the dump pulse terminates, the circuit is ready to accept another pulse to be stretched. The very short input pulses are thus stretched in width so that they may be analyzed by conventional pulse height analyzers.

  7. Microcrack healing in non-ferrous metal tubes through eddy current pulse treatment.

    PubMed

    Xu, Wenchen; Yang, Chuan; Yu, Haiping; Jin, Xueze; Guo, Bin; Shan, Debin

    2018-04-16

    This study proposed a novel method to heal microcrack within Mg alloy tubes using high density eddy current pulse treatment (ECPT). Through electromagnetic induction inside a copper coil connected with a high density pulse power source supply, the high density (greater than 5 × 10 9  A/m 2 ) and short duration eddy current was generated in tube specimens of Mg alloy. The results show that the microcracks in tube specimens was healed evidently and the mechanical properties of the tubes subjected to ECPT were improved simultaneously. The crack healing during ECPT was ascribed to not only the thermal stress around the microcrack tips and the softening or melting of metals in the vicinity of microcrack tips, but also the squeezing action acted by the Lorentz force. In the inward-discharging scheme, both the compressive radial stress and tangential stress induced by the Lorentz force contributed to more sufficient crack healing and thus better mechanical properties of tube specimens after the ECPT experiment, compared to the outward-discharging scheme. The ECPT can heal microcracks automatically without directly contacting tubular specimens and is not limited by the length of tubular workpieces, exhibiting great potential for crack healing in non-ferrous alloy tubes.

  8. Miniaturized pulsed CO2 laser with sealed electron source

    NASA Astrophysics Data System (ADS)

    Bychkov, Y. I.; Orlovskiy, V. M.; Osipov, V. V.; Poteryayev, A. G.

    1984-04-01

    A new miniature electron beam-controlled CO2 laser (the MIG-3) contains an electron accelerator, gas cell and DC supply in one large unit (0.22 x 0,16 x 0.7 m) and the accelerator power supply and laser control panel in a second smaller unit. The overall weight of the instrument in 30 kg. The electron beam is controlled by four vacuum diodes in parallel; a 180 KV pulse is fed to the vacuum diode inputs from a "NORA" series-produced X-ray source (the MIRA-3D) also is used). The total electron beam current from all diodes was 600 A following the foil with a half-height width of 10 ns. The lasing medium is CO2:N2 - 1:1 at 4.5 atm. The maximum stimulated emission pulse energy was 1 J with an efficiency of 8% when the pressure was 4 atm. With a pulse repetition rate of 4 Hz, the average power consumption of the unit was 100 W.

  9. Ionization and current growth in N/sub 2/ at very high electric field to gas density ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gylys, V.T.; Jelenkovic, B.M.; Phelps, A.V.

    1989-05-01

    Measurements and analyses have been made of electron impact ionization and of current growth in pulsed, low-current, prebreakdown discharges in parallel-plane geometry in N/sub 2/ at very high electric field to gas density ratios E/n and low products of the gas density n and electrode separation d. The E/n range and nd ranges were 1

  10. Advanced electrical current measurements of microdischarges: evidence of sub-critical pulses and ion currents in barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Synek, Petr; Zemánek, Miroslav; Kudrle, Vít; Hoder, Tomáš

    2018-04-01

    Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of micro-amperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.

  11. High-temperature performance of MoS2 thin-film transistors: Direct current and pulse current-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.

    2015-02-01

    We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.

  12. Avoiding the side effects of electric current pulse application to electroporated cells in disposable small volume cuvettes assures good cell survival.

    PubMed

    Grys, Maciej; Madeja, Zbigniew; Korohoda, Włodzimierz

    2017-01-01

    The harmful side effects of electroporation to cells due to local changes in pH, the appearance of toxic electrode products, temperature increase, and the heterogeneity of the electric field acting on cells in the cuvettes used for electroporation were observed and discussed in several laboratories. If cells are subjected to weak electric fields for prolonged periods, for example in experiments on cell electrophoresis or galvanotaxis the same effects are seen. In these experiments investigators managed to reduce or eliminate the harmful side effects of electric current application. For the experiments, disposable 20 μl cuvettes with two walls made of dialysis membranes were constructed and placed in a locally focused electric field at a considerable distance from the electrodes. Cuvettes were mounted into an apparatus for horizontal electrophoresis and the cells were subjected to direct current electric field (dcEF) pulses from a commercial pulse generator of exponentially declining pulses and from a custom-made generator of double and single rectangular pulses. More than 80% of the electroporated cells survived the dcEF pulses in both systems. Side effects related to electrodes were eliminated in both the flow through the dcEF and in the disposable cuvettes placed in the focused dcEFs. With a disposable cuvette system, we also confirmed the sensitization of cells to a dcEF using procaine by observing the loading of AT2 cells with calceine and using a square pulse generator, applying 50 ms single rectangular pulses. We suggest that the same methods of avoiding the side effects of electric current pulse application as in cell electrophoresis and galvanotaxis should also be used for electroporation. This conclusion was confirmed in our electroporation experiments performed in conditions assuring survival of over 80% of the electroporated cells. If the amplitude, duration, and shape of the dcEF pulse are known, then electroporation does not depend on the type of

  13. Parallel processing of embossing dies with ultrafast lasers

    NASA Astrophysics Data System (ADS)

    Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan; Du, Keming; Jenke, Gerald

    2018-02-01

    Functionalization of surfaces equips products and components with new features like hydrophilic behavior, adjustable gloss level, light management properties, etc. Small feature sizes demand diffraction-limited spots and adapted fluence for different materials. Through the availability of high power fast repeating ultrashort pulsed lasers and efficient optical processing heads delivering diffraction-limited small spot size of around 10μm it is feasible to achieve fluences higher than an adequate patterning requires. Hence, parallel processing is becoming of interest to increase the throughput and allow mass production of micro machined surfaces. The first step on the roadmap of parallel processing for cylinder embossing dies was realized with an eight- spot processing head based on ns-fiber laser with passive optical beam splitting, individual spot switching by acousto optical modulation and an advanced imaging. Patterning of cylindrical embossing dies shows a high efficiency of nearby 80%, diffraction-limited and equally spaced spots with pitches down to 25μm achieved by a compression using cascaded prism arrays. Due to the nanoseconds laser pulses the ablation shows the typical surrounding material deposition of a hot process. In the next step the processing head was adapted to a picosecond-laser source and the 500W fiber laser was replaced by an ultrashort pulsed laser with 300W, 12ps and a repetition frequency of up to 6MHz. This paper presents details about the processing head design and the analysis of ablation rates and patterns on steel, copper and brass dies. Furthermore, it gives an outlook on scaling the parallel processing head from eight to 16 individually switched beamlets to increase processing throughput and optimized utilization of the available ultrashort pulsed laser energy.

  14. Evaluation of pulsing magnetic field effects on paresthesia in multiple sclerosis patients, a randomized, double-blind, parallel-group clinical trial.

    PubMed

    Afshari, Daryoush; Moradian, Nasrin; Khalili, Majid; Razazian, Nazanin; Bostani, Arash; Hoseini, Jamal; Moradian, Mohamad; Ghiasian, Masoud

    2016-10-01

    Evidence is mounting that magnet therapy could alleviate the symptoms of multiple sclerosis (MS). This study was performed to test the effects of the pulsing magnetic fields on the paresthesia in MS patients. This study has been conducted as a randomized, double-blind, parallel-group clinical trial during the April 2012 to October 2013. The subjects were selected among patients referred to MS clinic of Imam Reza Hospital; affiliated to Kermanshah University of Medical Sciences, Iran. Sixty three patients with MS were included in the study and randomly were divided into two groups, 35 patients were exposed to a magnetic pulsing field of 4mT intensity and 15-Hz frequency sinusoidal wave for 20min per session 2 times per week over a period of 2 months involving 16 sessions and 28 patients was exposed to a magnetically inactive field (placebo) for 20min per session 2 times per week over a period of 2 months involving 16 sessions. The severity of paresthesia was measured by the numerical rating scale (NRS) at 30, 60days. The study primary end point was NRS change between baseline and 60days. The secondary outcome was NRS change between baseline and 30days. Patients exposing to magnetic field showed significant paresthesia improvement compared with the group of patients exposing to placebo. According to our results pulsed magnetic therapy could alleviate paresthesia in MS patients .But trials with more patients and longer duration are mandatory to describe long-term effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Can the use of pulsed direct current induce oscillation in the applied pressure during spark plasma sintering?

    PubMed Central

    Salamon, David; Eriksson, Mirva; Nygren, Mats; Shen, Zhijian

    2012-01-01

    The spark plasma sintering (SPS) process is known for its rapid densification of metals and ceramics. The mechanism behind this rapid densification has been discussed during the last few decades and is yet uncertain. During our SPS experiments we noticed oscillations in the applied pressure, related to a change in electric current. In this study, we investigated the effect of pulsed electrical current on the applied mechanical pressure and related changes in temperature. We eliminated the effect of sample shrinkage in the SPS setup and used a transparent quartz die allowing direct observation of the sample. We found that the use of pulsed direct electric current in our apparatus induces pressure oscillations with the amplitude depending on the current density. While sintering Ti samples we observed temperature oscillations resulting from pressure oscillations, which we attribute to magnetic forces generated within the SPS apparatus. The described current–pressure–temperature relations might increase understanding of the SPS process. PMID:27877472

  16. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE PAGES

    del-Castillo-Negrete, Diego; Blazevski, Daniel

    2016-04-01

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter ismore » $$\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$$ that determines the length scale, $$1/\\gamma$$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $$\\omega \\gg 1$$, or small parallel thermal conductivities, $$\\chi_\\parallel \\ll 1$$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $$\\gamma$$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay

  17. Parallel rendering

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1995-01-01

    This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel rendering algorithms and systems. We examine the different types of parallelism and how they can be applied in rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer graphics, such as coherence and projection, which have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural platform, communication and memory requirements, and the problem of image assembly and display. We illustrate the discussion with numerous examples from the parallel rendering literature, representing most of the principal rendering methods currently used in computer graphics.

  18. Seven-tesla time-of-flight angiography using a 16-channel parallel transmit system with power-constrained 3-dimensional spoke radiofrequency pulse design.

    PubMed

    Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Uğurbil, Kâmil; van de Moortele, Pierre-François

    2014-05-01

    Ultrahigh magnetic fields of 7 T or higher have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast-enhanced magnetic resonance angiography techniques. Compared with lower field strength, however, the required radiofrequency (RF) power is increased at 7 T and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous.In this work, we addressed the contrast heterogeneity in multislab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3-dimensional tailored RF pulses ("spokes") with a 16-channel parallel transmission system and a 16-channel transceiver head coil. We investigated in simulations and in vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2-, and 3-spoke parallel transmit RF pulses and compared the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices, and the RF pulse for each slab was designed on the basis of 3 calibration slices located at the bottom/middle/top of each slab, respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects, we quantified the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigated the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared with the 2-spoke excitation. The

  19. Seven-tesla time-of-flight angiography using a 16-channel parallel transmit system with power-constrained 3-dimensional spoke radiofrequency pulse design

    PubMed Central

    Schmitter, Sebastian; Wu, Xiaoping; Auerbach, Edward J.; Adriany, Gregor; Pfeuffer, Josef; Hamm, Michael; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2015-01-01

    Objectives Ultra high magnetic fields of ≥7 Tesla have proven to significantly enhance the contrast in time-of-flight (TOF) imaging, one of the most commonly used non-contrast enhanced MR angiography techniques. Compared to lower field strength, however, the required RF power is increased at 7 Tesla and the contrast obtained with a conventional head transmit RF coil is typically spatially heterogeneous. In this work we address the contrast heterogeneity in multi-slab TOF acquisitions by optimizing the excitation flip angle homogeneity while constraining the RF power using 3D tailored RF pulses (“spokes”) with a 16 channel parallel transmission system and a 16 channel transceiver head coil. Material and Methods We investigate in simulations and in-vivo experiments flip angle homogeneity and angiogram quality with a same 3-slab TOF protocol for different excitations including 1-, 2- and 3-spoke parallel transmit RF pulses and compare the results with a circularly polarized (CP) phase setting similar to a birdcage excitation. B1 and B0 calibration maps were obtained in multiple slices and the RF pulse for each slab was designed based on 3 calibration slices located at the bottom/middle/top of each slab respectively. By design, all excitations were computed to generate the same total RF power for the same flip angle. In 8 subjects we quantify the excitation homogeneity and the distribution of the RF power to individual channels. In addition, we investigate the consequences of local flip angle variations at the junction between adjacent slabs as well as the impact of ΔB0 on image quality. Results The flip angle heterogeneity, expressed as the coefficient of variation, averaged over all volunteers and all slabs could be reduced from 29.4% for CP mode excitation to 14.1% for a 1-spoke excitation and to 7.3% for a 2-spoke excitations. A separate detailed analysis shows only a marginal improvement for 3-spoke compared to the 2-spoke excitation. The strong improvement

  20. Distributed-current-feed and distributed-energy-store railguns

    NASA Astrophysics Data System (ADS)

    Holland, L. D.

    1984-03-01

    In connection with advances in railgun technology evolution toward the development of systems for specific applications, investigations are being conducted regarding a wide variety of power supply and railgun systems. The present study is concerned with the development of the distributed railguns and the introduction of a new type of railgun system specifically designed for applications requiring long accelerators. It is found that the distributed railguns offer a solution to the limits on performance of the breech-fed railguns as the length of the rails becomes large. Attention is given to the pulse-forming network and breech-fed railgun, the breech-fed railgun with parallel pulse-forming network, a distributed-energy-store railgun, a distributed-current-feed (DCF) railgun, and a DCF railgun launcher.

  1. A METHOD FOR IN-SITU CHARACTERIZATION OF RF HEATING IN PARALLEL TRANSMIT MRI

    PubMed Central

    Alon, Leeor; Deniz, Cem Murat; Brown, Ryan; Sodickson, Daniel K.; Zhu, Yudong

    2012-01-01

    In ultra high field magnetic resonance imaging, parallel radio-frequency (RF) transmission presents both opportunities and challenges for specific absorption rate (SAR) management. On one hand, parallel transmission provides flexibility in tailoring electric fields in the body while facilitating magnetization profile control. On the other hand, it increases the complexity of energy deposition as well as possibly exacerbating local SAR by improper design or delivery of RF pulses. This study shows that the information needed to characterize RF heating in parallel transmission is contained within a local power correlation matrix. Building upon a calibration scheme involving a finite number of magnetic resonance thermometry measurements, the present work establishes a way of estimating the local power correlation matrix. Determination of this matrix allows prediction of temperature change for an arbitrary parallel transmit RF pulse. In the case of a three transmit coil MR experiment in a phantom, determination and validation of the power correlation matrix was conducted in less than 200 minutes with induced temperature changes of <4 degrees C. Further optimization and adaptation are possible, and simulations evaluating potential feasibility for in vivo use are presented. The method allows general characteristics indicative of RF coil/pulse safety determined in situ. PMID:22714806

  2. Design of a New Acceleration System for High-Current Pulsed Proton Beams from an ECR Source

    NASA Astrophysics Data System (ADS)

    Cooper, Andrew L.; Pogrebnyak, Ivan; Surbrook, Jason T.; Kelly, Keegan J.; Carlin, Bret P.; Champagne, Arthur E.; Clegg, Thomas B.

    2014-03-01

    A primary objective for accelerators at TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA) is to maximize target beam intensity to ensure a high rate of nuclear events during each experiment. Average proton target currents of several mA are needed from LENA's electron cyclotron resonance (ECR) ion source because nuclear cross sections decrease substantially at energies of interest <200 keV. We seek to suppress undesired continuous environmental background by pulsing the beam and detecting events only during beam pulses. To improve beam intensity and transport, we installed a more powerful, stable microwave system for the ECR plasma, and will install a new acceleration system. This system will: reduce defocusing effects of the beam's internal space charge; provide better vacuum with a high gas conductance accelerating column; suppress bremsstrahlung X-rays produced when backstreaming electrons strike internal acceleration tube structures; and provide better heat dissipation by using deionized water to provide the current drain needed to establish the accelerating tube's voltage gradient. Details of beam optical modeling calculations, proposed accelerating tube design, and initial beam pulsing tests will be described. Work supported in part by USDOE Office of HE and Nuclear Physics.

  3. A compact high-voltage pulse generator based on pulse transformer with closed magnetic core.

    PubMed

    Zhang, Yu; Liu, Jinliang; Cheng, Xinbing; Bai, Guoqiang; Zhang, Hongbo; Feng, Jiahuai; Liang, Bo

    2010-03-01

    A compact high-voltage nanosecond pulse generator, based on a pulse transformer with a closed magnetic core, is presented in this paper. The pulse generator consists of a miniaturized pulse transformer, a curled parallel strip pulse forming line (PFL), a spark gap, and a matched load. The innovative design is characterized by the compact structure of the transformer and the curled strip PFL. A new structure of transformer windings was designed to keep good insulation and decrease distributed capacitance between turns of windings. A three-copper-strip structure was adopted to avoid asymmetric coupling of the curled strip PFL. When the 31 microF primary capacitor is charged to 2 kV, the pulse transformer can charge the PFL to 165 kV, and the 3.5 ohm matched load can deliver a high-voltage pulse with a duration of 9 ns, amplitude of 84 kV, and rise time of 5.1 ns. When the load is changed to 50 ohms, the output peak voltage of the generator can be 165 kV, the full width at half maximum is 68 ns, and the rise time is 6.5 ns.

  4. Current Trends in Intense Pulsed Light

    PubMed Central

    2012-01-01

    Intense pulsed light technologies have evolved significantly since their introduction to the medical community 20 years ago. Now such devices can be used safely and effectively for the cosmetic treatment of many vascular lesions, unwanted hair, and pigmented lesions. Newer technologies often give results equal to those of laser treatments. PMID:22768357

  5. Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-06-01

    We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.

  6. Exponential current pulse generation for efficient very high-impedance multisite stimulation.

    PubMed

    Ethier, S; Sawan, M

    2011-02-01

    We describe in this paper an intracortical current-pulse generator for high-impedance microstimulation. This dual-chip system features a stimuli generator and a high-voltage electrode driver. The stimuli generator produces flexible rising exponential pulses in addition to standard rectangular stimuli. This novel stimulation waveform is expected to provide superior energy efficiency for action potential triggering while releasing less toxic reduced ions in the cortical tissues. The proposed fully integrated electrode driver is used as the output stage where high-voltage supplies are generated on-chip to significantly increase the voltage compliance for stimulation through high-impedance electrode-tissue interfaces. The stimuli generator has been implemented in 0.18-μm CMOS technology while a 0.8-μm CMOS/DMOS process has been used to integrate the high-voltage output stage. Experimental results show that the rectangular pulses cover a range of 1.6 to 167.2 μA with a DNL and an INL of 0.098 and 0.163 least-significant bit, respectively. The maximal dynamic range of the generated exponential reaches 34.36 dB at full scale within an error of ± 0.5 dB while all of its parameters (amplitude, duration, and time constant) are independently programmable over wide ranges. This chip consumes a maximum of 88.3 μ W in the exponential mode. High-voltage supplies of 8.95 and -8.46 V are generated by the output stage, boosting the voltage swing up to 13.6 V for a load as high as 100 kΩ.

  7. Constant potential pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.

  8. Ozone and dinitrogen monoxide production in atmospheric pressure air dielectric barrier discharge plasma effluent generated by nanosecond pulse superimposed alternating current voltage

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2017-06-01

    The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.

  9. Dual amplitude pulse generator for radiation detectors

    DOEpatents

    Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.

    2001-01-01

    A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.

  10. An Optimization System with Parallel Processing for Reducing Common-Mode Current on Electronic Control Unit

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuji; Uno, Takanori; Asai, Hideki

    In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.

  11. A survey of pulse shape options for a revised plastic ablator ignition design

    NASA Astrophysics Data System (ADS)

    Clark, Daniel; Eder, David; Haan, Steven; Hinkel, Denise; Jones, Ogden; Marinak, Michael; Milovich, Jose; Peterson, Jayson; Robey, Harold; Salmonson, Jay; Smalyuk, Vladimir; Weber, Christopher

    2014-10-01

    Recent experimental results using the ``high foot'' pulse shape on the National Ignition Facility (NIF) have shown encouraging progress compared to earlier ``low foot'' experiments. These results strongly suggest that controlling ablation front instability growth can dramatically improve implosion performance, even in the presence of persistent, large, low-mode distortions. In parallel, Hydro. Growth Radiography experiments have so far validated the techniques used for modeling ablation front growth in NIF experiments. It is timely then to combine these two results and ask how current ignition pulse shapes could be modified so as to improve implosion performance, namely fuel compressibility, while maintaining the stability properties demonstrated with the high foot. This talk presents a survey of pulse shapes intermediate between the low and high foot extremes in search of a more optimal design. From the database of pulse shapes surveyed, a higher picket version of the original low foot pulse shape shows the most promise for improved compression without loss of stability. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  12. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  13. Coiled transmission line pulse generators

    DOEpatents

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  14. Scalable parallel communications

    NASA Technical Reports Server (NTRS)

    Maly, K.; Khanna, S.; Overstreet, C. M.; Mukkamala, R.; Zubair, M.; Sekhar, Y. S.; Foudriat, E. C.

    1992-01-01

    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth

  15. Blocking and guiding adult sea lamprey with pulsed direct current from vertical electrodes

    USGS Publications Warehouse

    Johnson, Nicholas S.; Thompson, Henry T.; Holbrook, Christopher M.; Tix, John A.

    2014-01-01

    Controlling the invasion front of aquatic nuisance species is of high importance to resource managers. We tested the hypothesis that adult sea lamprey (Petromyzon marinus), a destructive invasive species in the Laurentian Great Lakes, would exhibit behavioral avoidance to dual-frequency pulsed direct current generated by vertical electrodes and that the electric field would not injure or kill sea lamprey or non-target fish. Laboratory and in-stream experiments demonstrated that the electric field blocked sea lamprey migration and directed sea lamprey into traps. Rainbow trout (Oncorhynchus mykiss) and white sucker (Catostomus commersoni), species that migrate sympatrically with sea lamprey, avoided the electric field and had minimal injuries when subjected to it. Vertical electrodes are advantageous for fish guidance because (1) the electric field produced varies minimally with depth, (2) the electric field is not grounded, reducing power consumption to where portable and remote deployments powered by solar, wind, hydro, or a small generator are feasible, and (3) vertical electrodes can be quickly deployed without significant stream modification allowing rapid responses to new invasions. Similar dual-frequency pulsed direct current fields produced from vertical electrodes may be advantageous for blocking or trapping other invasive fish or for guiding valued fish around dams.

  16. Analytical description of generation of the residual current density in the plasma produced by a few-cycle laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silaev, A. A., E-mail: silaev@appl.sci-nnov.ru; Vvedenskii, N. V., E-mail: vved@appl.sci-nnov.ru; University of Nizhny Novgorod, Nizhny Novgorod 603950

    2015-05-15

    When a gas is ionized by a few-cycle laser pulse, some residual current density (RCD) of free electrons remains in the produced plasma after the passage of the laser pulse. This quasi-dc RCD is an initial impetus to plasma polarization and excitation of the plasma oscillations which can radiate terahertz (THz) waves. In this work, the analytical model for calculation of RCD excited by a few-cycle laser pulse is developed for the first time. The dependences of the RCD on the carrier-envelope phase (CEP), wavelength, duration, and intensity of the laser pulse are derived. It is shown that maximum RCDmore » corresponding to optimal CEP increases with the laser pulse wavelength, which indicates the prospects of using mid-infrared few-cycle laser pulses in the schemes of generation of high-power THz pulses. Analytical formulas for optimal pulse intensity and maximum efficiency of excitation of the RCD are obtained. Basing on numerical solution of the 3D time-dependent Schrödinger equation for hydrogen atoms, RCD dependence on CEP is calculated in a wide range of wavelengths. High accuracy of analytical formulas is demonstrated at the laser pulse parameters which correspond to the tunneling regime of ionization.« less

  17. Current pulse amplifier transmits detector signals with minimum distortion and attenuation

    NASA Technical Reports Server (NTRS)

    Bush, N. E.

    1967-01-01

    Amplifier translates the square pulses generated by a boron-trifluoride neutron sensitive detector located adjacent to a nuclear reactor to slower, long exponential decay pulses. These pulses are transmitted over long coaxial cables with minimum distortion and loss of frequency.

  18. Predictive design and interpretation of colliding pulse injected laser wakefield experiments

    NASA Astrophysics Data System (ADS)

    Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.

    2010-11-01

    The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.

  19. Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications.

    PubMed

    Mendis, Rajind; Mittleman, Daniel M

    2009-08-17

    We present a comprehensive experimental study comparing the propagation characteristics of the virtually unknown TE(1) mode to the well-known TEM mode of the parallel-plate waveguide (PPWG), for THz pulse applications. We demonstrate that it is possible to overcome the undesirable effects caused by the TE(1) mode's inherent low-frequency cutoff, making it a viable THz wave-guiding option, and that for certain applications, the TE(1) mode may even be more desirable than the TEM mode. This study presents a whole new dimension to the THz technological capabilities offered by the PPWG, via the possible use of the TE(1) mode. (c) 2009 Optical Society of America

  20. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  1. An experimental platform for pulsed-power driven magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Hare, J. D.; Suttle, L. G.; Lebedev, S. V.; Loureiro, N. F.; Ciardi, A.; Chittenden, J. P.; Clayson, T.; Eardley, S. J.; Garcia, C.; Halliday, J. W. D.; Robinson, T.; Smith, R. A.; Stuart, N.; Suzuki-Vidal, F.; Tubman, E. R.

    2018-05-01

    We describe a versatile pulsed-power driven platform for magnetic reconnection experiments, based on the exploding wire arrays driven in parallel [Suttle et al., Phys. Rev. Lett. 116, 225001 (2016)]. This platform produces inherently magnetised plasma flows for the duration of the generator current pulse (250 ns), resulting in a long-lasting reconnection layer. The layer exists for long enough to allow the evolution of complex processes such as plasmoid formation and movement to be diagnosed by a suite of high spatial and temporal resolution laser-based diagnostics. We can access a wide range of magnetic reconnection regimes by changing the wire material or moving the electrodes inside the wire arrays. We present results with aluminium and carbon wires, in which the parameters of the inflows and the layer that forms are significantly different. By moving the electrodes inside the wire arrays, we change how strongly the inflows are driven. This enables us to study both symmetric reconnection in a range of different regimes and asymmetric reconnection.

  2. Guiding out-migrating juvenile sea lamprey (Petromyzon marinus) with pulsed direct current

    USGS Publications Warehouse

    Johnson, Nicholas S.; Miehls, Scott M.

    2014-01-01

    Non-physical stimuli can deter or guide fish without affecting water flow or navigation and therefore have been investigated to improve fish passage at anthropogenic barriers and to control movement of invasive fish. Upstream fish migration can be blocked or guided without physical structure by electrifying the water, but directional downstream fish guidance with electricity has received little attention. We tested two non-uniform pulsed direct current electric systems, each having different electrode orientations (vertical versus horizontal), to determine their ability to guide out-migrating juvenile sea lamprey (Petromyzon marinus) and rainbow trout (Oncorhynchus mykiss). Both systems guided significantly more juvenile sea lamprey to a specific location in our experimental raceway when activated than when deactivated, but guidance efficiency decreased at the highest water velocities tested. At the electric field setting that effectively guided sea lamprey, rainbow trout were guided by the vertical electrode system, but most were blocked by the horizontal electrode system. Additional research should characterize the response of other species to non-uniform fields of pulsed DC and develop electrode configurations that guide fish over a range of water velocity.

  3. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    PubMed

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  4. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses

    PubMed Central

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols. PMID:28253331

  5. Nonlinear currents generated in plasma by a radiation pulse with a frequency exceeding the electron plasma frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru

    2016-09-15

    It is shown that the nonlinear currents generated in plasma by a radiation pulse with a frequency exceeding the electron plasma frequency change substantially due to a reduction in the effective electron–ion collision frequency.

  6. Glow-to-arc transition events in H2-Ar direct current pulsed plasma: automated measurement of current and voltage.

    PubMed

    Mendes, Luciano A; Mafra, Márcio; Rodrigues, Jhonatam C

    2012-01-01

    The glow-to-arc transition phenomena (arcing) observed in plasma reactors used in materials processing was studied through the arcs characteristic current and voltage waveforms. In order to capture these arcs signals, a LABVIEW™ based automated instrumentation system (ARCVIEW) was developed, including the integration of an oscilloscope equipped with proper current and voltage probes. The system also allows capturing the process parameters at the arc occurrence moments, which were used to map the arcs events conditions. Experiments in H(2)-Ar DC pulsed plasma returned signals data from 215 arcs events, which were analyzed through software routines. According to the results, an anti-arcing system should react in the time order of few microseconds to prevent most of the damage caused by the undesired arcing phenomena.

  7. A Mechanism for Graded, Dynamically Routable Current Propagation in Pulse-Gated Synfire Chains and Implications for Information Coding

    PubMed Central

    Sornborger, Andrew T.; Wang, Zhuo; Tao, Louis

    2015-01-01

    Neural oscillations can enhance feature recognition [1], modulate interactions between neurons [2], and improve learning and memory [3]. Numerical studies have shown that coherent spiking can give rise to windows in time during which information transfer can be enhanced in neuronal networks [4–6]. Unanswered questions are: 1) What is the transfer mechanism? And 2) how well can a transfer be executed? Here, we present a pulse-based mechanism by which a graded current amplitude may be exactly propagated from one neuronal population to another. The mechanism relies on the downstream gating of mean synaptic current amplitude from one population of neurons to another via a pulse. Because transfer is pulse-based, information may be dynamically routed through a neural circuit with fixed connectivity. We demonstrate the transfer mechanism in a realistic network of spiking neurons and show that it is robust to noise in the form of pulse timing inaccuracies, random synaptic strengths and finite size effects. We also show that the mechanism is structurally robust in that it may be implemented using biologically realistic pulses. The transfer mechanism may be used as a building block for fast, complex information processing in neural circuits. We show that the mechanism naturally leads to a framework wherein neural information coding and processing can be considered as a product of linear maps under the active control of a pulse generator. Distinct control and processing components combine to form the basis for the binding, propagation, and processing of dynamically routed information within neural pathways. Using our framework, we construct example neural circuits to 1) maintain a short-term memory, 2) compute time-windowed Fourier transforms, and 3) perform spatial rotations. We postulate that such circuits, with automatic and stereotyped control and processing of information, are the neural correlates of Crick and Koch’s zombie modes. PMID:26227067

  8. Pulse Voltammetry

    NASA Astrophysics Data System (ADS)

    Stojek, Zbigniew

    The idea of imposing potential pulses and measuring the currents at the end of each pulse was proposed by Barker in a little-known journal as early as in 1958 [1]. However, the first reliable trouble-free and affordable polarographs offering voltammetric pulse techniques appeared on the market only in the 1970s. This delay was due to some limitations on the electronic side. In the 1990s, again substantial progress in electrochemical pulse instrumentation took place. This was related to the introduction of microprocessors, computers, and advanced software.

  9. Numerical study of the existence criterion for the reversed shear Alfven eigenmode in the presence of a parallel equilibrium current

    NASA Astrophysics Data System (ADS)

    Shahzad, M.; Rizvi, H.; Panwar, A.; Ryu, C. M.

    2017-06-01

    We have re-visited the existence criterion of the reverse shear Alfven eigenmodes (RSAEs) in the presence of the parallel equilibrium current by numerically solving the eigenvalue equation using a fast eigenvalue solver code KAES. The parallel equilibrium current can bring in the kink effect and is known to be strongly unfavorable for the RSAE. We have numerically estimated the critical value of the toroidicity factor Qtor in a circular tokamak plasma, above which RSAEs can exist, and compared it to the analytical one. The difference between the numerical and analytical critical values is small for low frequency RSAEs, but it increases as the frequency of the mode increases, becoming greater for higher poloidal harmonic modes.

  10. Investigation of electrodes under flow of a submicrosecond current pulse with linear density up to 3 MA/cm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branitskii, A. V.; Grabovskii, E. V.; Dzhangobegov, V. V.

    The states of current-carrying elements at the transmission of megaampere current into load are studied. It is determined that the expansion velocity of plasma generated at the outer surface of cylindrical tubes produced of stainless steel, at flowing through them of submicrosecond current pulses with linear density of 3 MA/cm is 5.5 km/s. The evolution of various modes of instability is analyzed.

  11. Relationship between field-aligned currents and inverted-V parallel potential drops observed at midaltitudes

    NASA Astrophysics Data System (ADS)

    Sakanoi, T.; Fukunishi, H.; Mukai, T.

    1995-10-01

    The inverted-V field-aligned acceleration region existing in the altitude range of several thousand kilometers plays an essential role for the magnetosphere-ionosphere coupling system. The adiabatic plasma theory predicts a linear relationship between field-aligned current density (J∥) and parallel potential drop (Φ∥), that is, J∥=KΦ∥, where K is the field-aligned conductance. We examined this relationship using the charged particle and magnetic field data obtained from the Akebono (Exos D) satellite. The potential drop above the satellite was derived from the peak energy of downward electrons, while the potential drop below the satellite was derived from two different methods: the peak energy of upward ions and the energy-dependent widening of electron loss cone. On the other hand, field-aligned current densities in the inverted-V region were estimated from the Akebono magnetometer data. Using these potential drops and field-aligned current densities, we estimated the linear field-aligned conductance KJΦ. Further, we obtained the corrected field-aligned conductance KCJΦ by applying the full Knight's formula to the current-voltage relationship. We also independently estimated the field-aligned conductance KTN from the number density and the thermal temperature of magnetospheric source electrons which were obtained by fitting accelerated Maxwellian functions for precipitating electrons. The results are summarized as follows: (1) The latitudinal dependence of parallel potential drops is characterized by a narrow V-shaped structure with a width of 0.4°-1.0°. (2) Although the inverted-V potential region exactly corresponds to the upward field aligned current region, the latitudinal dependence of upward current intensity is an inverted-U shape rather than an inverted-V shape. Thus it is suggested that the field-aligned conductance KCJΦ changes with a V-shaped latitudinal dependence. In many cases, KCJΦ values at the edge of the inverted-V region are

  12. Spike train generation and current-to-frequency conversion in silicon diodes

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A device physics model is developed to analyze spontaneous neuron-like spike train generation in current driven silicon p(+)-n-n(+) devices in cryogenic environments. The model is shown to explain the very high dynamic range (0 to the 7th) current-to-frequency conversion and experimental features of the spike train frequency as a function of input current. The devices are interesting components for implementation of parallel asynchronous processing adjacent to cryogenically cooled focal planes because of their extremely low current and power requirements, their electronic simplicity, and their pulse coding capability, and could be used to form the hardware basis for neural networks which employ biologically plausible means of information coding.

  13. Analysis of Current Pulses in HeLa-Cell Permeabilization Due to High Voltage DC Corona Discharge.

    PubMed

    Chetty, Nevendra K; Chonco, Louis; Ijumba, Nelson M; Chetty, Leon; Govender, Thavendran; Parboosing, Raveen; Davidson, Innocent E

    2016-09-01

    Corona discharges are commonly utilized for numerous practical applications, including bio-technological ones. The corona induced transfer of normally impermeant molecules into the interior of biological cells has recently been successfully demonstrated. The exact nature of the interaction of the corona discharge with a cell membrane is still unknown, however, previous studies have suggested that it is either the electric fields produced by ions or the chemical interaction of the reactive species that result in the disruption of the cell membrane. This disruption of the cell membrane allows molecules to permeate into the cell. Corona discharge current constitutes a series of pulses, and it is during these pulses that the ions and reactive species are produced. It stands to reason, therefore, that the nature of these corona pulses would have an influence on the level of cell permeabilization and cell destruction. In this investigation, an analysis of the width, rise-time, characteristic frequencies, magnitude, and repetition rate of the nanosecond pulses was carried out in order to establish the relationship between these factors and the levels of cell membrane permeabilization and cell destruction. Results obtained are presented and discussed.

  14. PULSE GENERATOR

    DOEpatents

    Roeschke, C.W.

    1957-09-24

    An improvement in pulse generators is described by which there are produced pulses of a duration from about 1 to 10 microseconds with a truly flat top and extremely rapid rise and fall. The pulses are produced by triggering from a separate input or by modifying the current to operate as a free-running pulse generator. In its broad aspect, the disclosed pulse generator comprises a first tube with an anode capacitor and grid circuit which controls the firing; a second tube series connected in the cathode circuit of the first tube such that discharge of the first tube places a voltage across it as the leading edge of the desired pulse; and an integrator circuit from the plate across the grid of the second tube to control the discharge time of the second tube, determining the pulse length.

  15. The Galley Parallel File System

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    Most current multiprocessor file systems are designed to use multiple disks in parallel, using the high aggregate bandwidth to meet the growing I/0 requirements of parallel scientific applications. Many multiprocessor file systems provide applications with a conventional Unix-like interface, allowing the application to access multiple disks transparently. This interface conceals the parallelism within the file system, increasing the ease of programmability, but making it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. In addition to providing an insufficient interface, most current multiprocessor file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic scientific multiprocessor workloads. We discuss Galley's file structure and application interface, as well as the performance advantages offered by that interface.

  16. Pre-earthquake Magnetic Pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Heraud, J. A.; Freund, F. T.

    2015-12-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earth quakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  17. Pre-earthquake magnetic pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Heraud, J.; Freund, F.

    2015-08-01

    A semiconductor model of rocks is shown to describe unipolar magnetic pulses, a phenomenon that has been observed prior to earthquakes. These pulses are suspected to be generated deep in the Earth's crust, in and around the hypocentral volume, days or even weeks before earthquakes. Their extremely long wavelength allows them to pass through kilometers of rock. Interestingly, when the sources of these pulses are triangulated, the locations coincide with the epicenters of future earthquakes. We couple a drift-diffusion semiconductor model to a magnetic field in order to describe the electromagnetic effects associated with electrical currents flowing within rocks. The resulting system of equations is solved numerically and it is seen that a volume of rock may act as a diode that produces transient currents when it switches bias. These unidirectional currents are expected to produce transient unipolar magnetic pulses similar in form, amplitude, and duration to those observed before earthquakes, and this suggests that the pulses could be the result of geophysical semiconductor processes.

  18. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    NASA Astrophysics Data System (ADS)

    Baranov, M. I.; Rudakov, S. V.

    2018-03-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  19. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    NASA Astrophysics Data System (ADS)

    Baranov, M. I.; Rudakov, S. V.

    2018-05-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  20. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    PubMed Central

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  1. Electrical characteristics of thin Ta2O5 films deposited by reactive pulsed direct-current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kim, J.-Y.; Nielsen, M. C.; Rymaszewski, E. J.; Lu, T.-M.

    2000-02-01

    Room temperature deposition of tantalum oxide films on metallized silicon substrates was investigated by reactive pulsed magnetron sputtering of Ta in an Ar/O2 ambient. The dielectric constant of the tantalum oxide ranged from 19 to 31 depending on the oxygen percentage [P(%)=PO2/(PO2+PAr)] used during sputtering. The leakage current density was less than 10 nA/cm2 at 0.5 MV/cm electric field and the dielectric breakdown field was greater than 3.8 MV/cm for P=60%. A charge storage as high as 3.3 μF/cm2 was achieved for 70-Å-thick film. Pulse frequency variation (from 20 to 200 kHz) did not give a significant effect in the electrical properties (dielectric constant or leakage current density) of the Ta2O5 films.

  2. Synchronizing compute node time bases in a parallel computer

    DOEpatents

    Chen, Dong; Faraj, Daniel A; Gooding, Thomas M; Heidelberger, Philip

    2015-01-27

    Synchronizing time bases in a parallel computer that includes compute nodes organized for data communications in a tree network, where one compute node is designated as a root, and, for each compute node: calculating data transmission latency from the root to the compute node; configuring a thread as a pulse waiter; initializing a wakeup unit; and performing a local barrier operation; upon each node completing the local barrier operation, entering, by all compute nodes, a global barrier operation; upon all nodes entering the global barrier operation, sending, to all the compute nodes, a pulse signal; and for each compute node upon receiving the pulse signal: waking, by the wakeup unit, the pulse waiter; setting a time base for the compute node equal to the data transmission latency between the root node and the compute node; and exiting the global barrier operation.

  3. Synchronizing compute node time bases in a parallel computer

    DOEpatents

    Chen, Dong; Faraj, Daniel A; Gooding, Thomas M; Heidelberger, Philip

    2014-12-30

    Synchronizing time bases in a parallel computer that includes compute nodes organized for data communications in a tree network, where one compute node is designated as a root, and, for each compute node: calculating data transmission latency from the root to the compute node; configuring a thread as a pulse waiter; initializing a wakeup unit; and performing a local barrier operation; upon each node completing the local barrier operation, entering, by all compute nodes, a global barrier operation; upon all nodes entering the global barrier operation, sending, to all the compute nodes, a pulse signal; and for each compute node upon receiving the pulse signal: waking, by the wakeup unit, the pulse waiter; setting a time base for the compute node equal to the data transmission latency between the root node and the compute node; and exiting the global barrier operation.

  4. A coaxial-output capacitor-loaded annular pulse forming line.

    PubMed

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  5. A coaxial-output capacitor-loaded annular pulse forming line

    NASA Astrophysics Data System (ADS)

    Li, Rui; Li, Yongdong; Su, Jiancang; Yu, Binxiong; Xu, Xiudong; Zhao, Liang; Cheng, Jie; Zeng, Bo

    2018-04-01

    A coaxial-output capacitor-loaded annular pulse forming line (PFL) is developed in order to reduce the flat top fluctuation amplitude of the forming quasi-square pulse and improve the quality of the pulse waveform produced by a Tesla-pulse forming network (PFN) type pulse generator. A single module composed of three involute dual-plate PFNs is designed, with a characteristic impedance of 2.44 Ω, an electrical length of 15 ns, and a sustaining voltage of 60 kV. The three involute dual-plate PFNs connected in parallel have the same impedance and electrical length. Due to the existed small inductance and capacitance per unit length in each involute dual-plate PFN, the upper cut-off frequency of the PFN is increased. As a result, the entire annular PFL has better high-frequency response capability. Meanwhile, the three dual-plate PFNs discharge in parallel, which is much closer to the coaxial output. The series connecting inductance between adjacent two modules is significantly reduced when the annular PFL modules are connected in series. The pulse waveform distortion is reduced when the pulse transfers along the modules. Finally, the shielding electrode structure is applied on both sides of the module. The electromagnetic field is restricted in the module when a single module discharges, and the electromagnetic coupling between the multi-stage annular PFLs is eliminated. Based on the principle of impedance matching between the multi-stage annular PFL and the coaxial PFL, the structural optimization design of a mixed PFL in a Tesla type pulse generator is completed with the transient field-circuit co-simulation method. The multi-stage annular PFL consists of 18 stage annular PFL modules in series, with the characteristic impedance of 44 Ω, the electrical length of 15 ns, and the sustaining voltage of 1 MV. The mixed PFL can generate quasi-square electrical pulses with a pulse width of 43 ns, and the fluctuation ratio of the pulse flat top is less than 8% when the

  6. Investigations of current limiting properties of the MgB2 wires subjected to pulse overcurrents in the benchtop tester

    NASA Astrophysics Data System (ADS)

    Ye, Lin; Majoros, M.; Campbell, A. M.; Coombs, T.; Harrison, S.; Sargent, P.; Haslett, M.; Husband, M.

    2007-04-01

    A laboratory scale desktop test system including a cryogenic system, an AC pulse generation system and a real time data acquisition program in LabView/DAQmx, has been developed to evaluate the quench properties of MgB2 wires as an element in a superconducting fault current limiter under pulse overcurrents at 25 K in self-field conditions. The MgB2 samples started from a superconducting state and demonstrated good current limiting properties characterized by a fast transition to the normal state during the first half of the cycle and a continuously limiting effect in the subsequent cycles without burnouts. The experimental and numerical simulation results on the quench behaviour indicate the feasibility of using MgB2 for future superconducting fault current limiter (SFCL) applications. This work is supported by Rolls-Royce Plc and the UK Department of Trade & Industry (DTI).

  7. Effects of pulsed electrical field processing on microbial survival, quality change and nutritional characteristics of blueberries

    USDA-ARS?s Scientific Manuscript database

    Whole fresh blueberries were treated using a parallel pulsed electric field (PEF) treatment chamber and a sanitizer solution (60 ppm peracetic acid [PAA]) as PEF treatment medium with square wave bipolar pulses at 2 kV/cm electric field strength, 1us pulse width, and 100 pulses per second for 2, 4, ...

  8. Characterization of reticulated vitreous carbon foam using a frisch-grid parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.

  9. High Current Systems for HyperV and PLX Plasma Railguns

    NASA Astrophysics Data System (ADS)

    Brockington, S.; Case, A.; Messer, S.; Elton, R.; Witherspoon, F. D.

    2011-10-01

    HyperV is developing gas fed, pulsed, plasma railgun accelerators for PLX and other high momentum plasma applications. The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas (argon), preionizes it electrothermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). Recent experiments have successfully formed and accelerated plasma armatures of ~4 mg at 40 km/s, with PFN currents of ~400 kA. In order to further increase railgun performance to the PLX design goal of 8 mg at 50 km/s, the PFN was upgraded to support currents of up to ~750 kA. A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems as well as pressure, magnetic field, and optical diagnostics. High current performance of railgun bore materials for electrodes and insulators will also be discussed as well as plans for upcoming experimentation with advanced materials. Supported by the U.S. DOE Joint Program in HEDLP.

  10. Ultra-short pulse laser micro patterning with highest throughput by utilization of a novel multi-beam processing head

    NASA Astrophysics Data System (ADS)

    Homburg, Oliver; Jarczynski, Manfred; Mitra, Thomas; Brüning, Stephan

    2017-02-01

    In the last decade much improvement has been achieved for ultra-short pulse lasers with high repetition rates. This laser technology has vastly matured so that it entered a manifold of industrial applications recently compared to mainly scientific use in the past. Compared to ns-pulse ablation ultra-short pulses in the ps- or even fs regime lead to still colder ablation and further reduced heat-affected zones. This is crucial for micro patterning when structure sizes are getting smaller and requirements are getting stronger at the same time. An additional advantage of ultra-fast processing is its applicability to a large variety of materials, e.g. metals and several high bandgap materials like glass and ceramics. One challenge for ultra-fast micro machining is throughput. The operational capacity of these processes can be maximized by increasing the scan rate or the number of beams - parallel processing. This contribution focuses on process parallelism of ultra-short pulsed lasers with high repetition rate and individually addressable acousto-optical beam modulation. The core of the multi-beam generation is a smooth diffractive beam splitter component with high uniform spots and negligible loss, and a prismatic array compressor to match beam size and pitch. The optical design and the practical realization of an 8 beam processing head in combination with a high average power single mode ultra-short pulsed laser source are presented as well as the currently on-going and promising laboratory research and micro machining results. Finally, an outlook of scaling the processing head to several tens of beams is given.

  11. Hardness of pulsed electric current sintered and hot isostatically pressed Mo(Si,Al)2

    NASA Astrophysics Data System (ADS)

    Tanabe, Jun

    2005-05-01

    We improved the reactivity and mechanical characteristics of Mo(Si,Al)2 by pulsed electric current sintering (PECS) and hot isostatic pressing (HIP), and evaluated its reaction state and mechanical characteristics using energy dispersive spectroscopy (EDS), X-ray diffraction, and a hardness test. Mo(Si,Al)2 was generated by pretreatment using a furnace, and the application of the PECS and HIP treatments further densified the sintered body, resulting in an increase in the hardness.

  12. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    NASA Astrophysics Data System (ADS)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  13. Self-balanced modulation and magnetic rebalancing method for parallel multilevel inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Shi, Yanjun

    A self-balanced modulation method and a closed-loop magnetic flux rebalancing control method for parallel multilevel inverters. The combination of the two methods provides for balancing of the magnetic flux of the inter-cell transformers (ICTs) of the parallel multilevel inverters without deteriorating the quality of the output voltage. In various embodiments a parallel multi-level inverter modulator is provide including a multi-channel comparator to generate a multiplexed digitized ideal waveform for a parallel multi-level inverter and a finite state machine (FSM) module coupled to the parallel multi-channel comparator, the FSM module to receive the multiplexed digitized ideal waveform and to generate amore » pulse width modulated gate-drive signal for each switching device of the parallel multi-level inverter. The system and method provides for optimization of the output voltage spectrum without influence the magnetic balancing.« less

  14. Advances in long pulse operation at high radio frequency power in Tore Supra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goniche, M.; Dumont, R.; Bourdelle, C.

    2014-06-15

    The lower hybrid current drive (LHCD) system of Tore Supra has been upgraded for long pulse operation at higher power (7–8 MW). The two launchers have coupled on plasma 3.8 MW and 2.7 MW separately. This new power capability allows extending the operational domain of Tore Supra for long pulses at higher current and density. 38 long (20 s –155 s) discharges with very low loop voltage (V{sub L} = 30-60 mV) were performed with combined LHCD (5-5.7 MW) and ICRH (1–3 MW) powers, with up to 1 GJ of injected energy. Higher LHCD efficiency, with respect to the previous long discharges, is reported. MHD stability of these discharges ismore » very sensitive to the LHCD power and parallel wave index, in particular in the preforming phase. For theses evanescent loop voltage plasmas, the ICRH power, in excess of 1 MW, is found to have a beneficial effect on the MHD stability.« less

  15. Efficient Charging of Li‐Ion Batteries with Pulsed Output Current of Triboelectric Nanogenerators

    PubMed Central

    Pu, Xiong; Liu, Mengmeng; Li, Linxuan; Zhang, Chi; Pang, Yaokun; Jiang, Chunyan; Shao, Lihua

    2016-01-01

    The triboelectric nanogenerator (TENG) is a promising mechanical energy harvesting technology, but its pulsed output and the instability of input energy sources make associated energy‐storage devices necessary for real applications. In this work, feasible and efficient charging of Li‐ion batteries by a rotating TENG with pulsed output current is demonstrated. In‐depth discussions are made on how to maximize the power‐storage efficiency by achieving an impedance match between the TENG and a battery with appropriate design of transformers. With a transformer coil ratio of 36.7, ≈72.4% of the power generated by the TENG at 250 rpm can be stored in an LiFePO4–Li4Ti5O12 battery. Moreover, a 1 h charging of an LiCoO2–C battery by the TENG at 600 rpm delivers a discharge capacity of 130 mAh, capable of powering many smart electronics. Considering the readily scale‐up capability of the TENG, promising applications in personal electronics can be anticipated in the near future. PMID:27774382

  16. Development of bipolar-pulse accelerator for intense pulsed ion beam acceleration

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Shimizu, Yuichro; Fujioka, Yuhki; Kitamura, Iwao; Tanoue, Hisao; Arai, Kazuo

    2004-12-01

    To improve the purity of intense pulsed ion beams, a new type of pulsed ion beam accelerator named "bipolar pulse accelerator" was proposed. To confirm the principle of the accelerator a prototype of the experimental system was developed. The system utilizes By type magnetically insulated acceleration gap and operated with single polar negative pulse. A coaxial gas puff plasma gun was used as an ion source, which was placed inside the grounded anode. Source plasma (nitrogen) of current density ≈25 A/cm2, duration ≈1.5 μs was injected into the acceleration gap by the plasma gun. The ions were successfully accelerated from the grounded anode to the drift tube by applying negative pulse of voltage 240 kV, duration 100 ns to the drift tube. Pulsed ion beam of current density ≈40 A/cm2, duration ≈50 ns was obtained at 41 mm downstream from the anode surface. To evaluate the irradiation effect of the ion beam to solid material, an amorphous silicon thin film of thickness ≈500 nm was used as the target, which was deposited on the glass substrate. The film was found to be poly-crystallized after 4-shots of the pulsed nitrogen ion beam irradiation.

  17. Pulsed Artificial Electrojet Generation

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.

    2008-12-01

    Traditional techniques for generating low frequency signals in the ULF/ELF range (.1-100 Hz) and rely on ground based Horizontal Electric Dipole (HED) antennas. It is, furthermore, well known that a Vertical Electric Dipole (VED) is by more than 50 dB more efficient than a HED with the same dipole current moment. However, the prohibitively long length of VED antennas in the ELF/ULF range coupled with voltage limitations due to corona discharge in the atmosphere make them totally impracticable. In this paper we discuss a novel concept, inspired by the physics of the equatorial electrojet, that allows for the conversion of a ground based HED to a VED in the E-region of the equatorial ionosphere with current moment comparable to the driving HED. The paper focuses in locations near the dip-equator, where the earth's magnetic is in predominantly in the horizontal direction. The horizontal electric field associated with a pulsed HED drives a large Hall current in the ionospheric E-region, resulting in a vertical current. It is shown that the pulsed vertical current in the altitude range 80-130 km, driven by a horizontal electric field of, approximately, .1 mV/m at 100 km altitude, is of the order of kA. This results in a pulsed VED larger than 106 A-m. Such a pulsed VED will drive ELF/ULF pulses with amplitude in excess of .1 nT at a lateral range larger than few hundred kilometers. This is by three orders of magnitude larger than the one expected by a HED with comparable current moment. The paper will conclude with the description of a sneak-through technique that allows for creating pulsed electric fields in the ionosphere much larger than expected from steady state oscillatory HED antennas.

  18. Green electrochemical modification of RVC foam electrode and improved H2O2 electrogeneration by applying pulsed current for pollutant removal.

    PubMed

    Zhou, Wei; Ding, Yani; Gao, Jihui; Kou, Kaikai; Wang, Yan; Meng, Xiaoxiao; Wu, Shaohua; Qin, Yukun

    2018-02-01

    The performance of cathode on H 2 O 2 electrogeneration is a critical factor that limits the practical application of electro-Fenton (EF) process. Herein, we report a simple but effective electrochemical modification of reticulated vitreous carbon foam (RVC foam) electrode for enhanced H 2 O 2 electrogeneration. Cyclic voltammetry, chronoamperometry, and X-ray photoelectron spectrum were used to characterize the modified electrode. Oxygen-containing groups (72.5-184.0 μmol/g) were introduced to RVC foam surface, thus resulting in a 59.8-258.2% higher H 2 O 2 yield. The modified electrodes showed much higher electrocatalytic activity toward O 2 reduction and good stability. Moreover, aimed at weakening the extent of electroreduction of H 2 O 2 in porous RVC foam, the strategy of pulsed current was proposed. H 2 O 2 concentration was 582.3 and 114.0% higher than the unmodified and modified electrodes, respectively. To test the feasibility of modification, as well as pulsed current, EF process was operated for removal of Reactive Blue 19 (RB19). The fluorescence intensity of hydroxybenzoic acid in EF with modified electrode is 3.2 times higher than EF with unmodified electrode, illustrating more hydroxyl radicals were generated. The removal efficiency of RB 19 in EF with unmodified electrode, modified electrode, and unmodified electrode assisted by pulsed current was 53.9, 68.9, and 81.1%, respectively, demonstrating that the green modification approach, as well as pulsed current, is applicable in EF system for pollutant removal. Graphical abstract ᅟ.

  19. Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.

    PubMed

    Shi, Zhanqun; Xu, Xiaoyu; Ma, Jiaojiao; Zhen, Dong; Zhang, Hao

    2018-04-02

    Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most current methods focus on qualitative crack identification and image processing. In this study, eddy current pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.

  20. The Galley Parallel File System

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    As the I/O needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. The interface conceals the parallelism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. We discuss Galley's file structure and application interface, as well as an application that has been implemented using that interface.

  1. The interaction of pulsed eddy current with metal surface crack for various coils

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Chi; Tai, Cheng-Chi

    2002-05-01

    We study the interaction of pulsed eddy current (PEC) with metal surface cracks using various coils that have different geometric sizes. In the previous work, we have showed that the PEC technique can be used to inspect electrical-discharge-machined (EDM) notches with depth from 0.5 mm to 9 mm. The results showed that the relationship between PEC signals and crack depth is obvious. In this work, we further try a series of coils with different radii, heights, turns and shapes. We will discuss the effects of these coil parameters on the PEC signal. Some other critical problems of PEC measurements such as signal drift that caused by heating effect of coil currents will be studied. We also show more experiments on fatigue cracks to demonstrate the capability of PEC technique for cracks inspection.

  2. Integrating solids and gases for attosecond pulse generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei

    Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less

  3. Integrating solids and gases for attosecond pulse generation

    DOE PAGES

    Hammond, T. J.; Monchoce, Sylvain; Zhang, Chunmei; ...

    2017-08-21

    Here, control of the field of few-cycle optical pulses has had an enormous impact on attosecond science. Subcycle pulses open the potential for non-adiabatic phase matching while concentrating the electric field so it can be used most efficiently. However, subcycle field transients have been difficult to generate. We exploit the perturbative response of a sub-100 µm thick monocrystalline quartz plate irradiated by an intense few-cycle 1.8 µm pulse, which creates a phase-controlled supercontinuum spectrum. Within the quartz, the pulse becomes space–time coupled as it generates a parallel second harmonic. Vacuum propagation naturally leads to a subcycle electric-field transient whose envelopemore » is sculpted by the carrier envelope phase of the incident radiation. We show that a second medium (either gas or solid) can generate isolated attosecond pulses in the extreme ultraviolet region. With no optical elements between the components, the process is scalable to very high energy pulses and allows the use of diverse media.« less

  4. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin-orbit coupling.

    PubMed

    Sun, Dali; van Schooten, Kipp J; Kavand, Marzieh; Malissa, Hans; Zhang, Chuang; Groesbeck, Matthew; Boehme, Christoph; Valy Vardeny, Z

    2016-08-01

    Exploration of spin currents in organic semiconductors (OSECs) induced by resonant microwave absorption in ferromagnetic substrates is appealing for potential spintronics applications. Owing to the inherently weak spin-orbit coupling (SOC) of OSECs, their inverse spin Hall effect (ISHE) response is very subtle; limited by the microwave power applicable under continuous-wave (cw) excitation. Here we introduce a novel approach for generating significant ISHE signals in OSECs using pulsed ferromagnetic resonance, where the ISHE is two to three orders of magnitude larger compared to cw excitation. This strong ISHE enables us to investigate a variety of OSECs ranging from π-conjugated polymers with strong SOC that contain intrachain platinum atoms, to weak SOC polymers, to C60 films, where the SOC is predominantly caused by the curvature of the molecule's surface. The pulsed-ISHE technique offers a robust route for efficient injection and detection schemes of spin currents at room temperature, and paves the way for spin orbitronics in plastic materials.

  5. Sublattice parallel replica dynamics.

    PubMed

    Martínez, Enrique; Uberuaga, Blas P; Voter, Arthur F

    2014-06-01

    Exascale computing presents a challenge for the scientific community as new algorithms must be developed to take full advantage of the new computing paradigm. Atomistic simulation methods that offer full fidelity to the underlying potential, i.e., molecular dynamics (MD) and parallel replica dynamics, fail to use the whole machine speedup, leaving a region in time and sample size space that is unattainable with current algorithms. In this paper, we present an extension of the parallel replica dynamics algorithm [A. F. Voter, Phys. Rev. B 57, R13985 (1998)] by combining it with the synchronous sublattice approach of Shim and Amar [ and , Phys. Rev. B 71, 125432 (2005)], thereby exploiting event locality to improve the algorithm scalability. This algorithm is based on a domain decomposition in which events happen independently in different regions in the sample. We develop an analytical expression for the speedup given by this sublattice parallel replica dynamics algorithm and compare it with parallel MD and traditional parallel replica dynamics. We demonstrate how this algorithm, which introduces a slight additional approximation of event locality, enables the study of physical systems unreachable with traditional methodologies and promises to better utilize the resources of current high performance and future exascale computers.

  6. Research on Parallel Three Phase PWM Converters base on RTDS

    NASA Astrophysics Data System (ADS)

    Xia, Yan; Zou, Jianxiao; Li, Kai; Liu, Jingbo; Tian, Jun

    2018-01-01

    Converters parallel operation can increase capacity of the system, but it may lead to potential zero-sequence circulating current, so the control of circulating current was an important goal in the design of parallel inverters. In this paper, the Real Time Digital Simulator (RTDS) is used to model the converters parallel system in real time and study the circulating current restraining. The equivalent model of two parallel converters and zero-sequence circulating current(ZSCC) were established and analyzed, then a strategy using variable zero vector control was proposed to suppress the circulating current. For two parallel modular converters, hardware-in-the-loop(HIL) study based on RTDS and practical experiment were implemented, results prove that the proposed control strategy is feasible and effective.

  7. Photoconductive circuit element pulse generator

    DOEpatents

    Rauscher, Christen

    1989-01-01

    A pulse generator for characterizing semiconductor devices at millimeter wavelength frequencies where a photoconductive circuit element (PCE) is biased by a direct current voltage source and produces short electrical pulses when excited into conductance by short laser light pulses. The electrical pulses are electronically conditioned to improve the frequency related amplitude characteristics of the pulses which thereafter propagate along a transmission line to a device under test.

  8. Sputter crater formation in the case of microsecond pulsed glow discharge in a Grimm-type source. Comparison of direct current and radio frequency modes

    NASA Astrophysics Data System (ADS)

    Efimova, Varvara; Hoffmann, Volker; Eckert, Jürgen

    2012-10-01

    Depth profiling with pulsed glow discharge is a promising technique. The application of pulsed voltage for sputtering reduces the sputtering rate and thermal stress and hereby improves the analysis of thin layered and thermally fragile samples. However pulsed glow discharge is not well studied and this limits its practical use. The current work deals with the questions which usually arise when the pulsed mode is applied: Which duty cycle, frequency and pulse length must be chosen to get the optimal sputtering rate and crater shape? Are the well-known sputtering effects of the continuous mode valid also for the pulsed regime? Is there any difference between dc and rf pulsing in terms of sputtering? It is found that the pulse length is a crucial parameter for the crater shape and thermal effects. Sputtering with pulsed dc and rf modes is found to be similar. The observed sputtering effects at various pulsing parameters helped to interpret and optimize the depth resolution of GD OES depth profiles.

  9. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer.

    PubMed

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  10. A hybrid pulse combining topology utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer

    NASA Astrophysics Data System (ADS)

    Li, Jiangtao; Zhao, Zheng; Sun, Yi; Liu, Yuhao; Ren, Ziyuan; He, Jiaxin; Cao, Hui; Zheng, Minjun

    2017-03-01

    Numerous applications driven by pulsed voltage require pulses to be with high amplitude, high repetitive frequency, and narrow width, which could be satisfied by utilizing avalanche transistors. The output improvement is severely limited by power capacities of transistors. Pulse combining is an effective approach to increase the output amplitude while still adopting conventional pulse generating modules. However, there are drawbacks in traditional topologies including the saturation tendency of combining efficiency and waveform oscillation. In this paper, a hybrid pulse combining topology was adopted utilizing the combination of modularized avalanche transistor Marx circuits, direct pulse adding, and transmission line transformer. The factors affecting the combining efficiency were determined including the output time synchronization of Marx circuits, and the quantity and position of magnetic cores. The numbers of the parallel modules and the stages were determined by the output characteristics of each combining method. Experimental results illustrated the ability of generating pulses with 2-14 kV amplitude, 7-11 ns width, and a maximum 10 kHz repetitive rate on a matched 50-300 Ω resistive load. The hybrid topology would be a convinced pulse combining method for similar nanosecond pulse generators based on the solid-state switches.

  11. WC/Co composite surface structure and nano graphite precipitate induced by high current pulsed electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Hao, S. Z.; Zhang, Y.; Xu, Y.; Gey, N.; Grosdidier, T.; Dong, C.

    2013-11-01

    High current pulsed electron beam (HCPEB) irradiation was conducted on a WC-6% Co hard alloy with accelerating voltage of 27 kV and pulse duration of 2.5 μs. The surface phase structure was examined by using glancing-angle X-ray diffraction (GAXRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM) methods. The surface tribological properties were measured. It was found that after 20 pulses of HCPEB irradiation, the surface structure of WC/Co hard alloy was modified dramatically and composed of a mixture of nano-grained WC1-x, Co3W9C4, Co3W3C phases and graphite precipitate domains ˜50 nm. The friction coefficient of modified surface decreased to ˜0.38 from 0.6 of the initial state, and the wear rate reduced from 8.4 × 10-5 mm3/min to 6.3 × 10-6 mm3/min, showing a significant self-lubricating effect.

  12. Analysis of folded pulse forming line operation.

    PubMed

    Domonkos, M T; Watrous, J; Parker, J V; Cavazos, T; Slenes, K; Heidger, S; Brown, D; Wilson, D

    2014-09-01

    A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.

  13. Analysis of folded pulse forming line operation

    NASA Astrophysics Data System (ADS)

    Domonkos, M. T.; Watrous, J.; Parker, J. V.; Cavazos, T.; Slenes, K.; Heidger, S.; Brown, D.; Wilson, D.

    2014-09-01

    A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.

  14. Investigation on microstructure and mechanical properties on pulsed current gas tungsten arc welded super alloy 617

    NASA Astrophysics Data System (ADS)

    Mageshkumar, K.; Kuppan, P.; Arivazhagan, N.

    2017-11-01

    The present research work investigates the metallurgical and mechanical properties of weld joint fabricated by alloy 617 by pulsed current gas tungsten arc welding (PCGTAW) technique. Welding was done by ERNiCrCoMo-1 filler wire. Optical and Scanning Electron Microscope (SEM) revealed the fine equiaxed dendritic in the fusion zone. Electron Dispersive Spectroscopy (EDS) demonstrates the presence of Mo-rich secondary phases in the grain boundary regions. Tensile test shows improved mechanical properties compared to the continuous current mode. Bend test didn’t indicate the presence of defects in the weldments.

  15. Parallel pumping for magnon spintronics: Amplification and manipulation of magnon spin currents on the micron-scale

    NASA Astrophysics Data System (ADS)

    Brächer, T.; Pirro, P.; Hillebrands, B.

    2017-06-01

    Magnonics and magnon spintronics aim at the utilization of spin waves and magnons, their quanta, for the construction of wave-based logic networks via the generation of pure all-magnon spin currents and their interfacing with electric charge transport. The promise of efficient parallel data processing and low power consumption renders this field one of the most promising research areas in spintronics. In this context, the process of parallel parametric amplification, i.e., the conversion of microwave photons into magnons at one half of the microwave frequency, has proven to be a versatile tool to excite and to manipulate spin waves. Its beneficial and unique properties such as frequency and mode-selectivity, the possibility to excite spin waves in a wide wavevector range and the creation of phase-correlated wave pairs, have enabled the achievement of important milestones like the magnon Bose-Einstein condensation and the cloning and trapping of spin-wave packets. Parallel parametric amplification, which allows for the selective amplification of magnons while conserving their phase is, thus, one of the key methods of spin-wave generation and amplification. The application of parallel parametric amplification to CMOS-compatible micro- and nano-structures is an important step towards the realization of magnonic networks. This is motivated not only by the fact that amplifiers are an important tool for the construction of any extended logic network but also by the unique properties of parallel parametric amplification. In particular, the creation of phase-correlated wave pairs allows for rewarding alternative logic operations such as a phase-dependent amplification of the incident waves. Recently, the successful application of parallel parametric amplification to metallic microstructures has been reported which constitutes an important milestone for the application of magnonics in practical devices. It has been demonstrated that parametric amplification provides an

  16. Design of neurophysiologically motivated structures of time-pulse coded neurons

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolsky, Alexander I.; Lazarev, Alexander A.; Lobodzinska, Raisa F.

    2009-04-01

    The common methodology of biologically motivated concept of building of processing sensors systems with parallel input and picture operands processing and time-pulse coding are described in paper. Advantages of such coding for creation of parallel programmed 2D-array structures for the next generation digital computers which require untraditional numerical systems for processing of analog, digital, hybrid and neuro-fuzzy operands are shown. The optoelectronic time-pulse coded intelligent neural elements (OETPCINE) simulation results and implementation results of a wide set of neuro-fuzzy logic operations are considered. The simulation results confirm engineering advantages, intellectuality, circuit flexibility of OETPCINE for creation of advanced 2D-structures. The developed equivalentor-nonequivalentor neural element has power consumption of 10mW and processing time about 10...100us.

  17. Influence of internal current and pacing current on pacemaker longevity.

    PubMed

    Schuchert, A; Kuck, K H

    1994-01-01

    The effects of lower pulse amplitude on battery current and pacemaker longevity were studied comparing the new, small-sized VVI pacemaker, Minix 8341, with the former model, Pasys 8329. Battery current was telemetrically measured at 0.8, 1.6, 2.5, and 5.0 V pulse amplitude and 0.05, 0.25, 0.5, and 1.0 msec pulse duration. Internal current was assumed to be equal to the battery current at 0.8 V and 0.05 msec. Pacing current was calculated subtracting internal current from battery current. The Minix pacemaker had a significantly lower battery current because of a lower internal current (Minix: 4.1 +/- 0.1 microA; Pasys: 16.1 +/- 0.1 microA); pacing current of both units was similar. At 0.5 msec pulse duration, the programming from 5.0-2.5 V pulse amplitude resulted in a greater relative reduction of battery current in the newer pacemaker (51% vs 25%). Projected longevity of each pacemaker was 7.9 years at 5.0 V and 0.5 msec. The programming from 5.0-2.5 V extended the projected longevity by 2.3 years (Pasys) and by 7.1 years (Minix). The longevity was negligibly longer after programming to 1.6 V. extension of pacemaker longevity can be achieved with the programming to 2.5 V or less if the connected pacemakers need a low internal current for their circuitry.

  18. Pulsed welding plasma source

    NASA Astrophysics Data System (ADS)

    Knyaz'kov, A.; Pustovykh, O.; Verevkin, A.; Terekhin, V.; Shachek, A.; Tyasto, A.

    2016-04-01

    It is shown that in order to form the current pulse of a near rectangular shape, which provides conversion of the welding arc into a dynamic mode, it is rational to connect a forming element made on the basis of an artificial forming line in series to the welding DC circuit. The paper presents a diagram of a pulsed device for welding with a non-consumable electrode in argon which was developed using the forming element. The conversion of the arc into the dynamic mode is illustrated by the current and voltage oscillograms of the arc gap and the dynamic characteristic of the arc within the interval of one pulse generation time in the arc gap. The background current travels in the interpulse interval.

  19. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, A.; Hanada, M.; Yoshida, M.

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because themore » PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.« less

  20. 180 MW/180 KW pulse modulator for S-band klystron of LUE-200 linac of IREN installation of JINR

    NASA Astrophysics Data System (ADS)

    Su, Kim Dong; Sumbaev, A. P.; Shvetsov, V. N.

    2014-09-01

    The offer on working out of the pulse modulator with 180 MW pulse power and 180 kW average power for pulse S-band klystrons of LUE-200 linac of IREN installation at the Laboratory of neutron physics (FLNP) at JINR is formulated. Main requirements, key parameters and element base of the modulator are presented. The variant of the basic scheme on the basis of 14 (or 11) stage 2 parallel PFN with the thyratron switchboard (TGI2-10K/50) and six parallel high voltage power supplies (CCPS Power Supply) is considered.

  1. A Tesla-pulse forming line-plasma opening switch pulsed power generator.

    PubMed

    Novac, B M; Kumar, R; Smith, I R

    2010-10-01

    A pulsed power generator based on a high-voltage Tesla transformer which charges a 3.85 Ω/55 ns water-filled pulse forming line to 300 kV has been developed at Loughborough University as a training tool for pulsed power students. The generator uses all forms of insulation specific to pulsed power technology, liquid (oil and water), gas (SF(6)), and magnetic insulation in vacuum, and a number of fast voltage and current sensors are implemented for diagnostic purposes. A miniature (centimeter-size) plasma opening switch has recently been coupled to the output of the pulse forming line, with the overall system comprising the first phase of a program aimed at the development of a novel repetitive, table-top generator capable of producing 15 GW pulses for high power microwave loads. Technical details of all the generator components and the main experimental results obtained during the program and demonstrations of their performance are presented in the paper, together with a description of the various diagnostic tools involved. In particular, it is shown that the miniature plasma opening switch is capable of reducing the rise time of the input current while significantly increasing the load power. Future plans are outlined in the conclusions.

  2. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Generation of currents and propagation of plasma fronts in the case of two-pulse interaction with a target in air

    NASA Astrophysics Data System (ADS)

    Barkhudarov, É. M.; Gelashvili, G. V.; Gumberidze, G. G.; Taktakishvili, M. I.

    1990-06-01

    An investigation was made of the enhancement in the efficiency of generation of currents when a target in air was subjected to two consecutive CO2 laser radiation pulses. Preliminary interaction with a low-energy (1.5-5 J) pulse increased by more than one order of magnitude the currents generated by the second pulse and this was true in a wide range of energies of the latter pulse. The energy conversion efficiency was practically unaffected. The results were in qualitative agreement with the proposed pattern of plasma formation and propagation of shock waves near a target.

  3. Uncooled pulsed zinc oxide semiconductor laser

    NASA Astrophysics Data System (ADS)

    Bogdankevich, O. V.; Darznek, S. A.; Zverev, M. M.; Kostin, N. N.; Krasavina, E. M.

    1985-02-01

    An optimized ZnO laser which operates at ambient temperature without cooling is reported, along with extension of the design to form a multielement high-power laser. ZnO single crystal plane-parallel wafers 0.22 mm thick, covered with total and semi-transparent coatings, were exposed to a 200 keV electron beam with a 10 nsec pulse and a current density up to 1 kA/sq cm. No damage was observed in the crystals at saturation. A 7 percent maximum efficiency at a reflection coefficient (RC) of 0.4 was associated with a maximum output of 25 kW and a light power density of 3 MW/sq cm. Cementing a ZnO wafer to a sapphire substrate, applying the same type of coatings and working with a RC of 0.6 yielded a maximum power of 300 kW/sq cm.

  4. Precision digital pulse phase generator

    DOEpatents

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  5. Precision digital pulse phase generator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  6. Mechanism of formation of subnanosecond current front in high-voltage pulse open discharge

    NASA Astrophysics Data System (ADS)

    Schweigert, I. V.; Alexandrov, A. L.; Zakrevsky, Dm. E.; Bokhan, P. A.

    2014-11-01

    The mechanism of subnanosecond current front rise observed previously in the experiment in high-voltage pulse open discharge in helium is studied in kinetic particle-in-cell simulations. The Boltzmann equations for electrons, ions, and fast atoms are solved self-consistently with the Poisson equations for the electrical potential. The partial contributions to the secondary electron emission from the ions, fast atoms, photons, and electrons, bombarding the electrode, are calculated. In simulations, as in the experiment, the discharge glows between two symmetrical cathodes and the anode grid in the midplane at P =6 Torr and the applied voltage of 20 kV. The electron avalanche development is considered for two experimental situations during the last stage of breakdown: (i) with constant voltage and (ii) with decreasing voltage. For case (i), the subnanosecond current front rise is set by photons from the collisional excitation transfer reactions. For the case (ii), the energetic electrons swamp the cathode during voltage drop and provide the secondary electron emission for the subnanosecond current rise, observed in the experiment.

  7. Discharge reliability in ablative pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwen; Sun, Guorui; Yuan, Shiyue; Huang, Tiankun; Liu, Xiangyang; Xie, Kan; Wang, Ningfei

    2017-08-01

    Discharge reliability is typically neglected in low-ignition-cycle ablative pulsed plasma thrusters (APPTs). In this study, the discharge reliability of an APPT is assessed analytically and experimentally. The goals of this study are to better understand the ignition characteristics and to assess the accuracy of the analytical method. For each of six sets of operating conditions, 500 tests of a parallel-plate APPT with a coaxial semiconductor spark plug are conducted. The discharge voltage and current are measured with a high-voltage probe and a Rogowski coil, respectively, to determine whether the discharge is successful. Generally, the discharge success rate increases as the discharge voltage increases, and it decreases as the electrode gap and the number of ignitions increases. The theoretical analysis and the experimental results are reasonably consistent. This approach provides a reference for designing APPTs and improving their stability.

  8. Development and application of network virtual instrument for emission spectrum of pulsed high-voltage direct current discharge

    NASA Astrophysics Data System (ADS)

    Gong, X.; Wu, Q.

    2017-12-01

    Network virtual instrument (VI) is a new development direction in current automated test. Based on LabVIEW, the software and hardware system of VI used for emission spectrum of pulsed high-voltage direct current (DC) discharge is developed and applied to investigate pulsed high-voltage DC discharge of nitrogen. By doing so, various functions are realized including real time collection of emission spectrum of nitrogen, monitoring operation state of instruments and real time analysis and processing of data. By using shared variables and DataSocket technology in LabVIEW, the network VI system based on field VI is established. The system can acquire the emission spectrum of nitrogen in the test site, monitor operation states of field instruments, realize real time face-to-face interchange of two sites, and analyze data in the far-end from the network terminal. By employing the network VI system, the staff in the two sites acquired the same emission spectrum of nitrogen and conducted the real time communication. By comparing with the previous results, it can be seen that the experimental data obtained by using the system are highly precise. This implies that the system shows reliable network stability and safety and satisfies the requirements for studying the emission spectrum of pulsed high-voltage discharge in high-precision fields or network terminals. The proposed architecture system is described and the target group gets the useful enlightenment in many fields including engineering remote users, specifically in control- and automation-related tasks.

  9. Petawatt pulsed-power accelerator

    DOEpatents

    Stygar, William A.; Cuneo, Michael E.; Headley, Daniel I.; Ives, Harry C.; Ives, legal representative; Berry Cottrell; Leeper, Ramon J.; Mazarakis, Michael G.; Olson, Craig L.; Porter, John L.; Wagoner; Tim C.

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  10. Effect of magnetic pulses on Caribbean spiny lobsters: implications for magnetoreception.

    PubMed

    Ernst, David A; Lohmann, Kenneth J

    2016-06-15

    The Caribbean spiny lobster, Panulirus argus, is a migratory crustacean that uses Earth's magnetic field as a navigational cue, but how these lobsters detect magnetic fields is not known. Magnetic material thought to be magnetite has previously been detected in spiny lobsters, but its role in magnetoreception, if any, remains unclear. As a first step toward investigating whether lobsters might have magnetite-based magnetoreceptors, we subjected lobsters to strong, pulsed magnetic fields capable of reversing the magnetic dipole moment of biogenic magnetite crystals. Lobsters were subjected to a single pulse directed from posterior to anterior and either: (1) parallel to the horizontal component of the geomagnetic field (i.e. toward magnetic north); or (2) antiparallel to the horizontal field (i.e. toward magnetic south). An additional control group was handled but not subjected to a magnetic pulse. After treatment, each lobster was tethered in a water-filled arena located within 200 m of the capture location and allowed to walk in any direction. Control lobsters walked in seemingly random directions and were not significantly oriented as a group. In contrast, the two groups exposed to pulsed fields were significantly oriented in approximately opposite directions. Lobsters subjected to a magnetic pulse applied parallel to the geomagnetic horizontal component walked westward; those subjected to a pulse directed antiparallel to the geomagnetic horizontal component oriented approximately northeast. The finding that a magnetic pulse alters subsequent orientation behavior is consistent with the hypothesis that magnetoreception in spiny lobsters is based at least partly on magnetite-based magnetoreceptors. © 2016. Published by The Company of Biologists Ltd.

  11. Special purpose parallel computer architecture for real-time control and simulation in robotic applications

    NASA Technical Reports Server (NTRS)

    Fijany, Amir (Inventor); Bejczy, Antal K. (Inventor)

    1993-01-01

    This is a real-time robotic controller and simulator which is a MIMD-SIMD parallel architecture for interfacing with an external host computer and providing a high degree of parallelism in computations for robotic control and simulation. It includes a host processor for receiving instructions from the external host computer and for transmitting answers to the external host computer. There are a plurality of SIMD microprocessors, each SIMD processor being a SIMD parallel processor capable of exploiting fine grain parallelism and further being able to operate asynchronously to form a MIMD architecture. Each SIMD processor comprises a SIMD architecture capable of performing two matrix-vector operations in parallel while fully exploiting parallelism in each operation. There is a system bus connecting the host processor to the plurality of SIMD microprocessors and a common clock providing a continuous sequence of clock pulses. There is also a ring structure interconnecting the plurality of SIMD microprocessors and connected to the clock for providing the clock pulses to the SIMD microprocessors and for providing a path for the flow of data and instructions between the SIMD microprocessors. The host processor includes logic for controlling the RRCS by interpreting instructions sent by the external host computer, decomposing the instructions into a series of computations to be performed by the SIMD microprocessors, using the system bus to distribute associated data among the SIMD microprocessors, and initiating activity of the SIMD microprocessors to perform the computations on the data by procedure call.

  12. Highly Efficient Vector-Inversion Pulse Generators

    NASA Technical Reports Server (NTRS)

    Rose, Franklin

    2004-01-01

    Improved transmission-line pulse generators of the vector-inversion type are being developed as lightweight sources of pulsed high voltage for diverse applications, including spacecraft thrusters, portable x-ray imaging systems, impulse radar systems, and corona-discharge systems for sterilizing gases. In this development, more than the customary attention is paid to principles of operation and details of construction so as to the maximize the efficiency of the pulse-generation process while minimizing the sizes of components. An important element of this approach is segmenting a pulse generator in such a manner that the electric field in each segment is always below the threshold for electrical breakdown. One design of particular interest, a complete description of which was not available at the time of writing this article, involves two parallel-plate transmission lines that are wound on a mandrel, share a common conductor, and are switched in such a manner that the pulse generator is divided into a "fast" and a "slow" section. A major innovation in this design is the addition of ferrite to the "slow" section to reduce the size of the mandrel needed for a given efficiency.

  13. Using a small hybrid pulse power transformer unit as component of a high-current opening switch for a railgun

    NASA Astrophysics Data System (ADS)

    Leung, E. M. W.; Bailey, R. E.; Michels, P. H.

    1989-03-01

    The hybrid pulse power transformer (HPPT) is a unique concept utilizing the ultrafast superconducting-to-normal transition process of a superconductor. When used in the form of a hybrid transformer current-zero switch (HTCS), this creates an approach in which the large, high-power, high-current opening switch in a conventional railgun system can be eliminated. This represents an innovative application of superconductivity to pulsed power conditioning required for the Strategic Defense Initiative (SDI). The authors explain the working principles of a 100-KJ unit capable of switching up to 500 kA at a frequency of 0.5 Hz and with a system efficiency of greater than 90 percent. Circuit analysis using a computer code called SPICE PLUS was used to verify the HTCS concept. This concept can be scaled up to applications in the several mega-ampere levels.

  14. Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment

    PubMed Central

    2017-01-01

    Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor’s behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application. PMID:28954392

  15. Pulsed Eddy Current Sensing for Critical Pipe Condition Assessment.

    PubMed

    Ulapane, Nalika; Alempijevic, Alen; Vidal Calleja, Teresa; Valls Miro, Jaime

    2017-09-26

    Pulsed Eddy Current (PEC) sensing is used for Non-Destructive Evaluation (NDE) of the structural integrity of metallic structures in the aircraft, railway, oil and gas sectors. Urban water utilities also have extensive large ferromagnetic structures in the form of critical pressure pipe systems made of grey cast iron, ductile cast iron and mild steel. The associated material properties render NDE of these pipes by means of electromagnetic sensing a necessity. In recent years PEC sensing has established itself as a state-of-the-art NDE technique in the critical water pipe sector. This paper presents advancements to PEC inspection in view of the specific information demanded from water utilities along with the challenges encountered in this sector. Operating principles of the sensor architecture suitable for application on critical pipes are presented with the associated sensor design and calibration strategy. A Gaussian process-based approach is applied to model a functional relationship between a PEC signal feature and critical pipe wall thickness. A case study demonstrates the sensor's behaviour on a grey cast iron pipe and discusses the implications of the observed results and challenges relating to this application.

  16. Solid state pulsed power generator

    DOEpatents

    Tao, Fengfeng; Saddoughi, Seyed Gholamali; Herbon, John Thomas

    2014-02-11

    A power generator includes one or more full bridge inverter modules coupled to a semiconductor opening switch (SOS) through an inductive resonant branch. Each module includes a plurality of switches that are switched in a fashion causing the one or more full bridge inverter modules to drive the semiconductor opening switch SOS through the resonant circuit to generate pulses to a load connected in parallel with the SOS.

  17. Propagation of coherent light pulses with PHASE

    NASA Astrophysics Data System (ADS)

    Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.

    2014-09-01

    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.

  18. Parallel phase-sensitive three-dimensional imaging camera

    DOEpatents

    Smithpeter, Colin L.; Hoover, Eddie R.; Pain, Bedabrata; Hancock, Bruce R.; Nellums, Robert O.

    2007-09-25

    An apparatus is disclosed for generating a three-dimensional (3-D) image of a scene illuminated by a pulsed light source (e.g. a laser or light-emitting diode). The apparatus, referred to as a phase-sensitive 3-D imaging camera utilizes a two-dimensional (2-D) array of photodetectors to receive light that is reflected or scattered from the scene and processes an electrical output signal from each photodetector in the 2-D array in parallel using multiple modulators, each having inputs of the photodetector output signal and a reference signal, with the reference signal provided to each modulator having a different phase delay. The output from each modulator is provided to a computational unit which can be used to generate intensity and range information for use in generating a 3-D image of the scene. The 3-D camera is capable of generating a 3-D image using a single pulse of light, or alternately can be used to generate subsequent 3-D images with each additional pulse of light.

  19. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Krása, J.; De Marco, M.; Cikhardt, J.; Pfeifer, M.; Velyhan, A.; Klír, D.; Řezáč, K.; Limpouch, J.; Krouský, E.; Dostál, J.; Ullschmied, J.; Dudžák, R.

    2017-06-01

    The current balancing the target charging and the emission of transient electromagnetic pulses (EMP) driven by the interaction of a focused 1.315 μm iodine 300 ps PALS laser with metallic and plastic targets were measured with the use of inductive probes. It is experimentally proven that the duration of return target currents and EMPs is much longer than the duration of laser-target interaction. The laser-produced plasma is active after the laser-target interaction. During this phase, the target acts as a virtual cathode and the plasma-target interface expands. A double exponential function is used in order to obtain the temporal characteristics of EMP. The rise time of EMPs fluctuates in the range up to a few tens of nanoseconds. Frequency spectra of EMP and target currents are modified by resonant frequencies of the interaction chamber.

  20. Research on defects inspection of solder balls based on eddy current pulsed thermography.

    PubMed

    Zhou, Xiuyun; Zhou, Jinlong; Tian, Guiyun; Wang, Yizhe

    2015-10-13

    In order to solve tiny defect detection for solder balls in high-density flip-chip, this paper proposed feasibility study on the effect of detectability as well as classification based on eddy current pulsed thermography (ECPT). Specifically, numerical analysis of 3D finite element inductive heat model is generated to investigate disturbance on the temperature field for different kind of defects such as cracks, voids, etc. The temperature variation between defective and non-defective solder balls is monitored for defects identification and classification. Finally, experimental study is carried on the diameter 1mm tiny solder balls by using ECPT and verify the efficacy of the technique.

  1. Ultrashort pulse chirp measurement via transverse second-harmonic generation in strontium barium niobate crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trull, J.; Wang, B.; Parra, A.

    2015-06-01

    Pulse compression in dispersive strontium barium niobate crystal with a random size and distribution of the anti-parallel orientated nonlinear domains is observed via transverse second harmonic generation. The dependence of the transverse width of the second harmonic trace along the propagation direction allows for the determination of the initial chirp and duration of pulses in the femtosecond regime. This technique permits a real-time analysis of the pulse evolution and facilitates fast in-situ correction of pulse chirp acquired in the propagation through an optical system.

  2. Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.

    PubMed

    Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M

    2011-04-15

    We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.

  3. Pulsed Laser Illumination of Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland; Jenkins, Philip; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. The induction FEL and the radio-frequency (RF) FEL both produce pulsed rather than continuous output. In this work, we investigate cell response to pulsed laser light which simulates the RF FEL format, producing 50 ps pulses at a frequency of 78 MHz. A variety of Si, GaAs, CaSb and CdInSe2 (CIS) solar cells are tested at average incident powers between 4 mW/sq cm and 425 mW/sq cm. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced by using a pulsed laser source compared to constant illumination at the same wavelength. Because the pulse separation is less than or approximately equal to the minority carrier lifetime, the illumination conditions are effectively those of a continuous wave laser. The time dependence of the voltage and current response of the cells are also measured using a sampling oscilloscope equipped with a high frequency voltage probe and current transformer. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments shows that the RF FEL pulse format yields much more efficient photovoltaic conversion of light than does an induction FEL pulse format.

  4. Improving Current Balance In Parallel MOSFET's

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1992-01-01

    Simple circuit makes currents more nearly equal. Addition of diodes and adjustable-tap resistor increases operating range over which drain currents in two unmatched power MOSFET's brought more nearly into balance.

  5. Closed-loop pulsed helium ionization detector

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  6. Microturbulence studies of pulsed poloidal current drive discharges in the reversed field pinch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmody, D., E-mail: dcarmody@wisc.edu; Pueschel, M. J.; Anderson, J. K.

    2015-01-15

    Experimental discharges with pulsed poloidal current drive (PPCD) in the Madison Symmetric Torus reversed field pinch are investigated using a semi-analytic equilibrium model in the gyrokinetic turbulence code GENE. PPCD cases, with plasma currents of 500 kA and 200 kA, exhibit a density-gradient-driven trapped electron mode (TEM) and an ion temperature gradient mode, respectively. Relative to expectations of tokamak core plasmas, the critical gradients for the onset of these instabilities are found to be greater by roughly a factor of the aspect ratio. A significant upshift in the nonlinear TEM transport threshold, previously found for tokamaks, is confirmed in nonlinear reversed fieldmore » pinch simulations and is roughly three times the threshold for linear instability. The simulated heat fluxes can be brought in agreement with measured diffusivities by introducing a small, resonant magnetic perturbation, thus modeling the residual fluctuations from tearing modes. These fluctuations significantly enhance transport.« less

  7. Energy loss due to eddy current in linear transformer driver cores

    NASA Astrophysics Data System (ADS)

    Kim, A. A.; Mazarakis, M. G.; Manylov, V. I.; Vizir, V. A.; Stygar, W. A.

    2010-07-01

    In linear transformer drivers [Phys. Rev. ST Accel. Beams 12, 050402 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050402; Phys. Rev. ST Accel. Beams 12, 050401 (2009)PRABFM1098-440210.1103/PhysRevSTAB.12.050401] as well as any other linear induction accelerator cavities, ferromagnetic cores are used to prevent the current from flowing along the induction cavity walls which are in parallel with the load. But if the core is made of conductive material, the applied voltage pulse generates the eddy current in the core itself which heats the core and therefore also reduces the overall linear transformer driver (LTD) efficiency. The energy loss due to generation of the eddy current in the cores depends on the specific resistivity of the core material, the design of the core, as well as on the distribution of the eddy current in the core tape during the remagnetizing process. In this paper we investigate how the eddy current is distributed in a core tape with an arbitrary shape hysteresis loop. Our model is based on the textbook knowledge related to the eddy current generation in ferromagnetics with rectangular hysteresis loop, and in usual conductors. For the reader’s convenience, we reproduce some most important details of this knowledge in our paper. The model predicts that the same core would behave differently depending on how fast the applied voltage pulse is: in the high frequency limit, the equivalent resistance of the core reduces during the pulse whereas in the low frequency limit it is constant. An important inference is that the energy loss due to the eddy current generation can be reduced by increasing the cross section of the core over the minimum value which is required to avoid its saturation. The conclusions of the model are confirmed with experimental observations presented at the end of the paper.

  8. Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry.

    PubMed

    Guerreiro, Gabriela V; Zaitouna, Anita J; Lai, Rebecca Y

    2014-01-31

    Here we report the characterization of an electrochemical mercury (Hg(2+)) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a "signal-off" sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a "signal-off" or "signal-on" sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed "signal-on" behavior at low frequencies and "signal-off" behavior at high frequencies. In DPV, the sensor showed "signal-off" behavior at short pulse widths and "signal-on" behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10nM, with a linear dynamic range between 10nM and 500nM. In addition, the sensor responded to Hg(2+) rather rapidly; majority of the signal change occurred in <20min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg(2+), which has not been previously reported. More importantly, the observed "switching" behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Turbomachinery CFD on parallel computers

    NASA Technical Reports Server (NTRS)

    Blech, Richard A.; Milner, Edward J.; Quealy, Angela; Townsend, Scott E.

    1992-01-01

    The role of multistage turbomachinery simulation in the development of propulsion system models is discussed. Particularly, the need for simulations with higher fidelity and faster turnaround time is highlighted. It is shown how such fast simulations can be used in engineering-oriented environments. The use of parallel processing to achieve the required turnaround times is discussed. Current work by several researchers in this area is summarized. Parallel turbomachinery CFD research at the NASA Lewis Research Center is then highlighted. These efforts are focused on implementing the average-passage turbomachinery model on MIMD, distributed memory parallel computers. Performance results are given for inviscid, single blade row and viscous, multistage applications on several parallel computers, including networked workstations.

  10. Eddy Current Pulsed Thermography with Different Excitation Configurations for Metallic Material and Defect Characterization.

    PubMed

    Tian, Gui Yun; Gao, Yunlai; Li, Kongjing; Wang, Yizhe; Gao, Bin; He, Yunze

    2016-06-08

    This paper reviews recent developments of eddy current pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks.

  11. National Combustion Code: Parallel Implementation and Performance

    NASA Technical Reports Server (NTRS)

    Quealy, A.; Ryder, R.; Norris, A.; Liu, N.-S.

    2000-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. CORSAIR-CCD is the current baseline reacting flow solver for NCC. This is a parallel, unstructured grid code which uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC flow solver to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This paper describes the parallel implementation of the NCC flow solver and summarizes its current parallel performance on an SGI Origin 2000. Earlier parallel performance results on an IBM SP-2 are also included. The performance improvements which have enabled a turnaround of less than 15 hours for a 1.3 million element fully reacting combustion simulation are described.

  12. Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping

    NASA Astrophysics Data System (ADS)

    d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A. S.

    2013-09-01

    SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic

  13. Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Almeida, T.; Lassalle, F.; Morell, A.

    SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper,more » we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or

  14. Depinning of the transverse domain wall trapped at magnetic impurities patterned in planar nanowires: Control of the wall motion using low-intensity and short-duration current pulses

    NASA Astrophysics Data System (ADS)

    Paixão, E. L. M.; Toscano, D.; Gomes, J. C. S.; Monteiro, M. G.; Sato, F.; Leonel, S. A.; Coura, P. Z.

    2018-04-01

    Understanding and controlling of domain wall motion in magnetic nanowires is extremely important for the development and production of many spintronic devices. It is well known that notches are able to pin domain walls, but their pinning potential strength are too strong and it demands high-intensity current pulses to achieve wall depinning in magnetic nanowires. However, traps of pinning can be also originated from magnetic impurities, consisting of located variations of the nanowire's magnetic properties, such as exchange stiffness constant, saturation magnetization, anisotropy constant, damping parameter, and so on. In this work, we have performed micromagnetic simulations to investigate the depinning mechanism of a transverse domain wall (TDW) trapped at an artificial magnetic defect using spin-polarized current pulses. In order to create pinning traps, a simplified magnetic impurity model, only based on a local reduction of the exchange stiffness constant, have been considered. In order to provide a background for experimental studies, we have varied the parameter related to the pinning potential strength of the magnetic impurity. By adjusting the pinning potential of magnetic impurities and choosing simultaneously a suitable current pulse, we have found that it is possible to obtain domain wall depinning by applying low-intensity and short-duration current pulses. Furthermore, it was considered a planar magnetic nanowire containing a linear distribution of equally-spaced magnetic impurities and we have demonstrated the position control of a single TDW by applying sequential current pulses; that means the wall movement from an impurity to another.

  15. Laser-excited pulse propagation in a crystallized complex plasma

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Nunomura, S.; Goree, J.

    2000-10-01

    A complex plasma, so-called in analogy with complex fluids, is an ionized gas containing small solid particles. This medium is also called a dusty plasma. The particles acquire a large negative electric charge. In an experiment, polymer microspheres were shaken into a parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, and were arranged in a hexagonal lattice. They were imaged using a video camera to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. By modulating an argon laser beam directed tangentially at the lattice, we launched a pulsed wave in the lattice. We evaluated the pulse shape and propagation speed, while varying the pulse power and duration. This allowed a test for dispersion and nonlinearity, as well as a test of whether the pulse has the properties of a shock.

  16. Time-dependent current into and through multilevel parallel quantum dots in a photon cavity

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2017-05-01

    We analyze theoretically the charging current into, and the transport current through, a nanoscale two-dimensional electron system with two parallel quantum dots embedded in a short wire placed in a photon cavity. A plunger gate is used to place specific many-body states of the interacting system in the bias window defined by the external leads. We show how the transport phenomena active in the many-level complex central system strongly depend on the gate voltage. We identify a resonant transport through the central system as the two spin components of the one-electron ground state are in the bias window. This resonant transport through the lowest energy electron states seems to a large extent independent of the detuned photon field when judged from the transport current. This could be expected in the small bias regime, but an observation of the occupancy of the states of the system reveals that this picture is not entirely true. The current does not reflect slower photon-active internal transitions bringing the system into the steady state. The number of initially present photons determines when the system reaches the real steady state. With two-electron states in the bias window we observe a more complex situation with intermediate radiative and nonradiative relaxation channels leading to a steady state with a weak nonresonant current caused by inelastic tunneling through the two-electron ground state of the system. The presence of the radiative channels makes this phenomena dependent on the number of photons initially in the cavity.

  17. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1987-02-10

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime. 10 figs.

  18. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, Emanuel M.

    1987-01-01

    A high-power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  19. Reversing-counterpulse repetitive-pulse inductive storage circuit

    DOEpatents

    Honig, E.M.

    1984-06-05

    A high power reversing-counterpulse repetitive-pulse inductive storage and transfer circuit includes an opening switch, a main energy storage coil, a counterpulse capacitor and a small inductor. After counterpulsing the opening switch off, the counterpulse capacitor is recharged by the main energy storage coil before the load pulse is initiated. This gives the counterpulse capacitor sufficient energy for the next counterpulse operation, although the polarity of the capacitor's voltage must be reversed before that can occur. By using a current-zero switch as the counterpulse start switch, the capacitor is disconnected from the circuit (with a full charge) when the load pulse is initiated, preventing the capacitor from depleting its energy store by discharging through the load. After the load pulse is terminated by reclosing the main opening switch, the polarity of the counterpulse capacitor voltage is reversed by discharging the capacitor through a small inductor and interrupting the discharge current oscillation at zero current and peak reversed voltage. The circuit enables high-power, high-repetition-rate operation with reusable switches and features total control (pulse-to-pulse) over output pulse initiation, duration, repetition rate, and, to some extent, risetime.

  20. Fabrication of Thermoelectric Mg2Si by Mechanofusion and Pulsed Electric Current Sintering

    NASA Astrophysics Data System (ADS)

    Nanko, M.; Abe, H.; Takeda, M.; Homma, T.; Abe, H.; Kondo, A.; Naito, M.

    2011-03-01

    Mg2Si is a promising thermoelectric material because it is composed of non-toxic and "ubiquitous" elements, and development of an efficient production process for bulk Mg2Si is important for the fabrication of thermoelectric devices. The mechanofusion (MF) process, which is an attrition type milling process, is attractive in terms of ease of use and collection of powder materials, in addition to a reduced risk of contamination since it requires no milling medium. In the present study, the MF process was applied to produce Mg2Si powder, and pulsed electric current sintering (PECS) was then used to densify the powder. The density, microstructure and thermoelectric properties of the final bulk product were evaluated.

  1. Measuring Plasma Formation Field Strength and Current Loss in Pulsed Power Diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Mark D.; Patel, Sonal G.; Falcon, Ross Edward

    This LDRD investigated plasma formation, field strength, and current loss in pulsed power diodes. In particular the Self-Magnetic Pinch (SMP) e-beam diode was studied on the RITS-6 accelerator. Magnetic fields of a few Tesla and electric fields of several MV/cm were measured using visible spectroscopy techniques. The magnetic field measurements were then used to determine the current distribution in the diode. This distribution showed that significant beam current extends radially beyond the few millimeter x-ray focal spot diameter. Additionally, shielding of the magnetic field due to dense electrode surface plasmas was observed, quantified, and found to be consistent with themore » calculated Spitzer resistivity. In addition to the work on RITS, measurements were also made on the Z-machine looking to quantify plasmas within the power flow regions. Measurements were taken in the post-hole convolute and final feed gap regions on Z. Dopants were applied to power flow surfaces and measured spectroscopically. These measurements gave species and density/temperature estimates. Preliminary B-field measurements in the load region were attempted as well. Finally, simulation work using the EMPHASIS, electromagnetic particle in cell code, was conducted using the Z MITL conditions. The purpose of these simulations was to investigate several surface plasma generations models under Z conditions for comparison with experimental data.« less

  2. Design of a bounded wave EMP (Electromagnetic Pulse) simulator

    NASA Astrophysics Data System (ADS)

    Sevat, P. A. A.

    1989-06-01

    Electromagnetic Pulse (EMP) simulators are used to simulate the EMP generated by a nuclear weapon and to harden equipment against the effects of EMP. At present, DREO has a 1 m EMP simulator for testing computer terminal size equipment. To develop the R and D capability for testing larger objects, such as a helicopter, a much bigger threat level facility is required. This report concerns the design of a bounded wave EMP simulator suitable for testing large size equipment. Different types of simulators are described and their pros and cons are discussed. A bounded wave parallel plate type simulator is chosen for it's efficiency and the least environmental impact. Detailed designs are given for 6 m and 10 m parallel plate type wire grid simulators. Electromagnetic fields inside and outside the simulators are computed. Preliminary specifications for a pulse generator required for the simulator are also given. Finally, the electromagnetic fields radiated from the simulator are computed and discussed.

  3. GPU simulation of nonlinear propagation of dual band ultrasound pulse complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kvam, Johannes, E-mail: johannes.kvam@ntnu.no; Angelsen, Bjørn A. J., E-mail: bjorn.angelsen@ntnu.no; Elster, Anne C., E-mail: elster@ntnu.no

    In a new method of ultrasound imaging, called SURF imaging, dual band pulse complexes composed of overlapping low frequency (LF) and high frequency (HF) pulses are transmitted, where the frequency ratio LF:HF ∼ 1 : 20, and the relative bandwidth of both pulses are ∼ 50 − 70%. The LF pulse length is hence ∼ 20 times the HF pulse length. The LF pulse is used to nonlinearly manipulate the material elasticity observed by the co-propagating HF pulse. This produces nonlinear interaction effects that give more information on the propagation of the pulse complex. Due to the large difference inmore » frequency and pulse length between the LF and the HF pulses, we have developed a dual level simulation where the LF pulse propagation is first simulated independent of the HF pulse, using a temporal sampling frequency matched to the LF pulse. A separate equation for the HF pulse is developed, where the the presimulated LF pulse modifies the propagation velocity. The equations are adapted to parallel processing in a GPU, where nonlinear simulations of a typical HF beam of 10 MHz down to 40 mm is done in ∼ 2 secs in a standard GPU. This simulation is hence very useful for studying the manipulation effect of the LF pulse on the HF pulse.« less

  4. Microresonator-based solitons for massively parallel coherent optical communications

    NASA Astrophysics Data System (ADS)

    Marin-Palomo, Pablo; Kemal, Juned N.; Karpov, Maxim; Kordts, Arne; Pfeifle, Joerg; Pfeiffer, Martin H. P.; Trocha, Philipp; Wolf, Stefan; Brasch, Victor; Anderson, Miles H.; Rosenberger, Ralf; Vijayan, Kovendhan; Freude, Wolfgang; Kippenberg, Tobias J.; Koos, Christian

    2017-06-01

    Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs—one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers

  5. Pulse-dose radiofrequency treatment in pain management-initial experience.

    PubMed

    Ojango, Christine; Raguso, Mario; Fiori, Roberto; Masala, Salvatore

    2018-05-01

    Radiofrequency procedures have been used for treating various chronic pain conditions for decades. These minimally invasive percutaneous treatments employ an alternating electrical current with oscillating radiofrequency wavelengths to eliminate or alter pain signals from the targeted site. The aim of the continuous radiofrequency procedure is to increase the temperature sufficiently to create an irreversible thermal lesion on nerve fibres and thus permanently interrupt pain signals. The pulsed radiofrequency procedure utilises short pulses of radiofrequency current with intervals of longer pauses to avert a temperature increase to the level of permanent tissue damage. The goal of these pulses is to alter the processing of pain signals, but to avoid relevant structural damage to nerve fibres, as seen in the continuous radiofrequency procedure. The pulse-dose radiofrequency procedure is a technical improvement of the pulsed radiofrequency technique in which the delivery mode of the current is adapted. During the pulse-dose radiofrequency procedure thermal damage is avoided. In addition, the amplitude and width of the consecutive pulses are kept the same. The method ensures that each delivered pulse keeps the same characteristics and therefore the dose is similar between patients. The current review outlines the pulse-dose radiofrequency procedure and presents our institution's chronic pain management studies.

  6. Influence of current pulse shape on directly modulated system performance in metro area optical networks

    NASA Astrophysics Data System (ADS)

    Campos, Carmina del Rio; Horche, Paloma R.; Martin-Minguez, Alfredo

    2011-03-01

    Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML-fiber couple.

  7. Direct and pulsed current annealing of p-MOSFET based dosimeter: the "MOSkin".

    PubMed

    Alshaikh, Sami; Carolan, Martin; Petasecca, Marco; Lerch, Michael; Metcalfe, Peter; Rosenfeld, Anatoly

    2014-06-01

    Contemporary radiation therapy (RT) is complicated and requires sophisticated real-time quality assurance (QA). While 3D real-time dosimetry is most preferable in RT, it is currently not fully realised. A small, easy to use and inexpensive point dosimeter with real-time and in vivo capabilities is an option for routine QA. Such a dosimeter is essential for skin, in vivo or interface dosimetry in phantoms for treatment plan verification. The metal-oxide-semiconductor-field-effect-transistor (MOSFET) detector is one of the best choices for these purposes, however, the MOSFETs sensitivity and its signal stability degrade after essential irradiation which limits its lifespan. The accumulation of positive charge on the gate oxide and the creation of interface traps near the silicon-silicon dioxide layer is the primary physical phenomena responsible for this degradation. The aim of this study is to investigate MOSFET dosimeter recovery using two proposed annealing techniques: direct current (DC) and pulsed current (PC), both based on hot charged carrier injection into the gate oxide of the p-MOSFET dosimeter. The investigated MOSFETs were reused multiple times using an irradiation-annealing cycle. The effect of the current-annealing parameters was investigated for the dosimetric characteristics of the recovered MOSFET dosimeters such as linearity, sensitivity and initial threshold voltage. Both annealing techniques demonstrated excellent results in terms of maintaining a stable response, linearity and sensitivity of the MOSFET dosimeter. However, PC annealing is more preferable than DC annealing as it offers better dose response linearity of the reused MOSFET and has a very short annealing time.

  8. Switching power pulse system

    DOEpatents

    Aaland, K.

    1983-08-09

    A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.

  9. A new high current laboratory and pulsed homopolar generator power supply at the University of Texas

    NASA Astrophysics Data System (ADS)

    Floyd, J. E.; Aanstoos, T. A.

    1984-03-01

    The University of Texas at Austin is constructing a facility for research in pulse power technology for the Center for Electromechanics at the Balcones Research Center. The facility, designed to support high-current experiments, will be powered by six homopolar generators, each rated at 10 MJ and arranged to allow matching the requirements of resistive and inductive loads at various voltage and current combinations. Topics covered include the high bay, the power supply configuration and parameters, the speed and field control, and the magnetic circuit. Also considered are the removable air-cooled brushes, the water-cooled field coils, the hydraulic motor sizing and direct coupling, the low-impedance removable field coils, and the hydrostatic bearing design.

  10. Pulse-Width-Modulating Driver for Brushless dc Motor

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.

    1991-01-01

    High-current pulse-width-modulating driver for brushless dc motor features optical coupling of timing signals from low-current control circuitry to high-current motor-driving circuitry. Provides high electrical isolation of motor-power supply, helping to prevent fast, high-current motor-driving pulses from being coupled through power supplies into control circuitry, where they interfere with low-current control signals.

  11. Strong electromagnetic pulses generated in high-intensity short-pulse laser interactions with thin foil targets

    NASA Astrophysics Data System (ADS)

    Rączka, P.; Dubois, J.-L.; Hulin, S.; Tikhonchuk, V.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.

    2017-12-01

    Measurements are reported of the target neutralization current, the target charge, and the tangential component of the magnetic field generated as a result of laser-target interaction by pulses with the energy in the range of 45 mJ to 92 mJ on target and the pulse duration from 39 fs to 1000 fs. The experiment was performed at the Eclipse facility in CELIA, Bordeaux. The aim of the experiment was to extend investigations performed for the thick (mm scale) targets to the case of thin (micrometer thickness) targets in a way that would allow for a straightforward comparison of the results. We found that thin foil targets tend to generate 20 to 50 percent higher neutralization current and the target charge than the thick targets. The measurement of the tangential component of the magnetic field had shown that the initial spike is dominated by the 1 ns pulse consistent with the 1 ns pulse of the neutralization current, but there are some differences between targets of different type on sub-ns scale, which is an effect going beyond a simple picture of the target acting as an antenna. The sub-ns structure appears to be reproducible to surprising degree. We found that there is in general a linear correlation between the maximum value of the magnetic field and the maximum neutralization current, which supports the target-antenna picture, except for pulses hundreds of fs long.

  12. Pulsed characterization of a UV LED for pulsed power applications on a silicon carbide photoconductive semiconductor switch

    NASA Astrophysics Data System (ADS)

    Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas

    2017-08-01

    The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (˜3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.

  13. Pulsed characterization of a UV LED for pulsed power applications on a silicon carbide photoconductive semiconductor switch.

    PubMed

    Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas

    2017-08-01

    The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (∼3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.

  14. Current indications and new applications of intense pulsed light.

    PubMed

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  15. Thermal Cycling Behavior of Thermal Barrier Coatings with MCrAlY Bond Coat Irradiated by High-Current Pulsed Electron Beam.

    PubMed

    Cai, Jie; Lv, Peng; Guan, Qingfeng; Xu, Xiaojing; Lu, Jinzhong; Wang, Zhiping; Han, Zhiyong

    2016-11-30

    Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al 2 O 3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.

  16. Analytical modeling of eddy-current losses caused by pulse-width-modulation switching in permanent-magnet brushless direct-current motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, F.; Nehl, T.W.

    1998-09-01

    Because of their high efficiency and power density the PM brushless dc motor is a strong candidate for electric and hybrid vehicle propulsion systems. An analytical approach is developed to predict the inverter high frequency pulse width modulation (PWM) switching caused eddy-current losses in a permanent magnet brushless dc motor. The model uses polar coordinates to take curvature effects into account, and is also capable of including the space harmonic effect of the stator magnetic field and the stator lamination effect on the losses. The model was applied to an existing motor design and was verified with the finite elementmore » method. Good agreement was achieved between the two approaches. Hence, the model is expected to be very helpful in predicting PWM switching losses in permanent magnet machine design.« less

  17. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo-Negrete, Diego del; Blazevski, Daniel

    2016-04-15

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands andmore » remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.« less

  18. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, R.S.; Todd, R.A.

    1985-04-09

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  19. Pulsed helium ionization detection system

    DOEpatents

    Ramsey, Roswitha S.; Todd, Richard A.

    1987-01-01

    A helium ionization detection system is provided which produces stable operation of a conventional helium ionization detector while providing improved sensitivity and linearity. Stability is improved by applying pulsed dc supply voltage across the ionization detector, thereby modifying the sampling of the detectors output current. A unique pulse generator is used to supply pulsed dc to the detector which has variable width and interval adjust features that allows up to 500 V to be applied in pulse widths ranging from about 150 nsec to about dc conditions.

  20. Ir-based refractory superalloys by pulse electric current sintering (PECS) process (II prealloyed powder)

    NASA Astrophysics Data System (ADS)

    Huang, C.; Yamabe-Mitarai, Y.; Harada, H.

    2002-02-01

    Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.

  1. PULSED EDDY CURRENT THICKNESS MEASUREMENT OF SELECTIVE PHASE CORROSION ON NICKEL ALUMINUM BRONZE VALVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, T. W.; Harlley, D.; Babbar, V. K.

    Nickel Aluminum Bronze (NAB) is a material with marine environment applications that under certain conditions can undergo selective phase corrosion (SPC). SPC involves the removal of minority elements while leaving behind a copper matrix. Pulsed eddy current (PEC) was evaluated for determination of SPC thickness on a NAB valve section with access from the surface corroded side. A primarily linear response of PEC amplitude, up to the maximum available SPC thickness of 4 mm was observed. The combination of reduced conductivity and permeability in the SPC phase relative to the base NAB was used to explain the observed sensitivity ofmore » PEC to SPC thickness variations.« less

  2. Programming parallel architectures: The BLAZE family of languages

    NASA Technical Reports Server (NTRS)

    Mehrotra, Piyush

    1988-01-01

    Programming multiprocessor architectures is a critical research issue. An overview is given of the various approaches to programming these architectures that are currently being explored. It is argued that two of these approaches, interactive programming environments and functional parallel languages, are particularly attractive since they remove much of the burden of exploiting parallel architectures from the user. Also described is recent work by the author in the design of parallel languages. Research on languages for both shared and nonshared memory multiprocessors is described, as well as the relations of this work to other current language research projects.

  3. Spatial-time-state fusion algorithm for defect detection through eddy current pulsed thermography

    NASA Astrophysics Data System (ADS)

    Xiao, Xiang; Gao, Bin; Woo, Wai Lok; Tian, Gui Yun; Xiao, Xiao Ting

    2018-05-01

    Eddy Current Pulsed Thermography (ECPT) has received extensive attention due to its high sensitive of detectability on surface and subsurface cracks. However, it remains as a difficult challenge in unsupervised detection as to identify defects without knowing any prior knowledge. This paper presents a spatial-time-state features fusion algorithm to obtain fully profile of the defects by directional scanning. The proposed method is intended to conduct features extraction by using independent component analysis (ICA) and automatic features selection embedding genetic algorithm. Finally, the optimal feature of each step is fused to obtain defects reconstruction by applying common orthogonal basis extraction (COBE) method. Experiments have been conducted to validate the study and verify the efficacy of the proposed method on blind defect detection.

  4. Parallel fabrication of macroporous scaffolds.

    PubMed

    Dobos, Andrew; Grandhi, Taraka Sai Pavan; Godeshala, Sudhakar; Meldrum, Deirdre R; Rege, Kaushal

    2018-07-01

    Scaffolds generated from naturally occurring and synthetic polymers have been investigated in several applications because of their biocompatibility and tunable chemo-mechanical properties. Existing methods for generation of 3D polymeric scaffolds typically cannot be parallelized, suffer from low throughputs, and do not allow for quick and easy removal of the fragile structures that are formed. Current molds used in hydrogel and scaffold fabrication using solvent casting and porogen leaching are often single-use and do not facilitate 3D scaffold formation in parallel. Here, we describe a simple device and related approaches for the parallel fabrication of macroporous scaffolds. This approach was employed for the generation of macroporous and non-macroporous materials in parallel, in higher throughput and allowed for easy retrieval of these 3D scaffolds once formed. In addition, macroporous scaffolds with interconnected as well as non-interconnected pores were generated, and the versatility of this approach was employed for the generation of 3D scaffolds from diverse materials including an aminoglycoside-derived cationic hydrogel ("Amikagel"), poly(lactic-co-glycolic acid) or PLGA, and collagen. Macroporous scaffolds generated using the device were investigated for plasmid DNA binding and cell loading, indicating the use of this approach for developing materials for different applications in biotechnology. Our results demonstrate that the device-based approach is a simple technology for generating scaffolds in parallel, which can enhance the toolbox of current fabrication techniques. © 2018 Wiley Periodicals, Inc.

  5. Parallel Processing of Broad-Band PPM Signals

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Kang, Edward; Lay, Norman; Vilnrotter, Victor; Srinivasan, Meera; Lee, Clement

    2010-01-01

    A parallel-processing algorithm and a hardware architecture to implement the algorithm have been devised for timeslot synchronization in the reception of pulse-position-modulated (PPM) optical or radio signals. As in the cases of some prior algorithms and architectures for parallel, discrete-time, digital processing of signals other than PPM, an incoming broadband signal is divided into multiple parallel narrower-band signals by means of sub-sampling and filtering. The number of parallel streams is chosen so that the frequency content of the narrower-band signals is low enough to enable processing by relatively-low speed complementary metal oxide semiconductor (CMOS) electronic circuitry. The algorithm and architecture are intended to satisfy requirements for time-varying time-slot synchronization and post-detection filtering, with correction of timing errors independent of estimation of timing errors. They are also intended to afford flexibility for dynamic reconfiguration and upgrading. The architecture is implemented in a reconfigurable CMOS processor in the form of a field-programmable gate array. The algorithm and its hardware implementation incorporate three separate time-varying filter banks for three distinct functions: correction of sub-sample timing errors, post-detection filtering, and post-detection estimation of timing errors. The design of the filter bank for correction of timing errors, the method of estimating timing errors, and the design of a feedback-loop filter are governed by a host of parameters, the most critical one, with regard to processing very broadband signals with CMOS hardware, being the number of parallel streams (equivalently, the rate-reduction parameter).

  6. Intense Pulsed Heavy Ion Beam Technology

    NASA Astrophysics Data System (ADS)

    Masugata, Katsumi; Ito, Hiroaki

    Development of intense pulsed heavy ion beam accelerator technology is described for the application of materials processing. Gas puff plasma gun and vacuum arc discharge plasma gun were developed as an active ion source for magnetically insulated pulsed ion diode. Source plasma of nitrogen and aluminum were successfully produced with the gas puff plasma gun and the vacuum arc plasma gun, respectively. The ion diode was successfully operated with gas puff plasma gun at diode voltage 190 kV, diode current 2.2 kA and nitrogen ion beam of ion current density 27 A/cm2 was obtained. The ion composition was evaluated by a Thomson parabola spectrometer and the purity of the nitrogen ion beam was estimated to be 86%. The diode also operated with aluminum ion source of vacuum arc plasma gun. The ion diode was operated at 200 kV, 12 kA, and aluminum ion beam of current density 230 A/cm2 was obtained. The beam consists of aluminum ions (Al(1-3)+) of energy 60-400 keV, and protons (90-130 keV), and the purity was estimated to be 89 %. The development of the bipolar pulse accelerator (BPA) was reported. A double coaxial type bipolar pulse generator was developed as the power supply of the BPA. The generator was tested with dummy load of 7.5 ohm, bipolar pulses of -138 kV, 72 ns (1st pulse) and +130 kV, 70 ns (2nd pulse) were succesively generated. By applying the bipolar pulse to the drift tube of the BPA, nitrogen ion beam of 2 A/cm2 was observed in the cathode, which suggests the bipolar pulse acceleration.

  7. Pre-Earthquake Unipolar Electromagnetic Pulses

    NASA Astrophysics Data System (ADS)

    Scoville, J.; Freund, F.

    2013-12-01

    Transient ultralow frequency (ULF) electromagnetic (EM) emissions have been reported to occur before earthquakes [1,2]. They suggest powerful transient electric currents flowing deep in the crust [3,4]. Prior to the M=5.4 Alum Rock earthquake of Oct. 21, 2007 in California a QuakeFinder triaxial search-coil magnetometer located about 2 km from the epicenter recorded unusual unipolar pulses with the approximate shape of a half-cycle of a sine wave, reaching amplitudes up to 30 nT. The number of these unipolar pulses increased as the day of the earthquake approached. These pulses clearly originated around the hypocenter. The same pulses have since been recorded prior to several medium to moderate earthquakes in Peru, where they have been used to triangulate the location of the impending earthquakes [5]. To understand the mechanism of the unipolar pulses, we first have to address the question how single current pulses can be generated deep in the Earth's crust. Key to this question appears to be the break-up of peroxy defects in the rocks in the hypocenter as a result of the increase in tectonic stresses prior to an earthquake. We investigate the mechanism of the unipolar pulses by coupling the drift-diffusion model of semiconductor theory to Maxwell's equations, thereby producing a model describing the rock volume that generates the pulses in terms of electromagnetism and semiconductor physics. The system of equations is then solved numerically to explore the electromagnetic radiation associated with drift-diffusion currents of electron-hole pairs. [1] Sharma, A. K., P. A. V., and R. N. Haridas (2011), Investigation of ULF magnetic anomaly before moderate earthquakes, Exploration Geophysics 43, 36-46. [2] Hayakawa, M., Y. Hobara, K. Ohta, and K. Hattori (2011), The ultra-low-frequency magnetic disturbances associated with earthquakes, Earthquake Science, 24, 523-534. [3] Bortnik, J., T. E. Bleier, C. Dunson, and F. Freund (2010), Estimating the seismotelluric current

  8. Parallel-Processing CMOS Circuitry for M-QAM and 8PSK TCM

    NASA Technical Reports Server (NTRS)

    Gray, Andrew; Lee, Dennis; Hoy, Scott; Fisher, Dave; Fong, Wai; Ghuman, Parminder

    2009-01-01

    There has been some additional development of parts reported in "Multi-Modulator for Bandwidth-Efficient Communication" (NPO-40807), NASA Tech Briefs, Vol. 32, No. 6 (June 2009), page 34. The focus was on 1) The generation of M-order quadrature amplitude modulation (M-QAM) and octonary-phase-shift-keying, trellis-coded modulation (8PSK TCM), 2) The use of square-root raised-cosine pulse-shaping filters, 3) A parallel-processing architecture that enables low-speed [complementary metal oxide/semiconductor (CMOS)] circuitry to perform the coding, modulation, and pulse-shaping computations at a high rate; and 4) Implementation of the architecture in a CMOS field-programmable gate array.

  9. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current.

    PubMed

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  10. Novel design of high voltage pulse source for efficient dielectric barrier discharge generation by using silicon diodes for alternating current

    NASA Astrophysics Data System (ADS)

    Truong, Hoa Thi; Hayashi, Misaki; Uesugi, Yoshihiko; Tanaka, Yasunori; Ishijima, Tatsuo

    2017-06-01

    This work focuses on design, construction, and optimization of configuration of a novel high voltage pulse power source for large-scale dielectric barrier discharge (DBD) generation. The pulses were generated by using the high-speed switching characteristic of an inexpensive device called silicon diodes for alternating current and the self-terminated characteristic of DBD. The operation started to be powered by a primary DC low voltage power supply flexibly equipped with a commercial DC power supply, or a battery, or DC output of an independent photovoltaic system without transformer employment. This flexible connection to different types of primary power supply could provide a promising solution for the application of DBD, especially in the area without power grid connection. The simple modular structure, non-control requirement, transformer elimination, and a minimum number of levels in voltage conversion could lead to a reduction in size, weight, simple maintenance, low cost of installation, and high scalability of a DBD generator. The performance of this pulse source has been validated by a load of resistor. A good agreement between theoretically estimated and experimentally measured responses has been achieved. The pulse source has also been successfully applied for an efficient DBD plasma generation.

  11. Post-tensioning tendon force loss detection using low power pulsed eddy current measurement

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Min; Lee, Jun; Sohn, Hoon

    2018-04-01

    In the field of bridge engineering, pre-fabrication of a bridge member and its construction in site have been issued and studied, which achieves improved quality and rapid construction. For integration of those pre-fabricated segments into a structural member (i.e., a concrete slab, girder and pier), post-tensioning (PT) technique is adopted utilizing a high-strength steel tendon, and an effective investigation of the remaining PT tendon force is essential to assure an overall structural integrity. This study proposes a pulsed eddy current based tendon force loss detection system. A compact eddy current sensor is designed to be installed on the surface of an anchor holding a steel PT tendon. The intensity of the induced eddy current varies with PT tendon force alteration due to the magnetostriction effect of a ferromagnetic material. The advantages of the proposed system are as follows: (1) low power consumption, (2) rapid inspection, and (3) simple installation. Its performance was validated experimentally in a full-scale lab test of a 3.3-m long, 15.2-mm diameter mono-tendon that was tensioned using a universal testing machine. Tendon force was controlled from 20 to 180 kN with 20 kN interval, and eddy current responses were measured and analyzed at each force condition. The proposed damage index and the amount of force loss of PT tendon were monotonically related, and an excessive loss as much as 30 % of an initially-introduced tendon force was successfully predicted.

  12. Parallel and Portable Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    Lee, S. R.; Cummings, J. C.; Nolen, S. D.; Keen, N. D.

    1997-08-01

    We have developed a multi-group, Monte Carlo neutron transport code in C++ using object-oriented methods and the Parallel Object-Oriented Methods and Applications (POOMA) class library. This transport code, called MC++, currently computes k and α eigenvalues of the neutron transport equation on a rectilinear computational mesh. It is portable to and runs in parallel on a wide variety of platforms, including MPPs, clustered SMPs, and individual workstations. It contains appropriate classes and abstractions for particle transport and, through the use of POOMA, for portable parallelism. Current capabilities are discussed, along with physics and performance results for several test problems on a variety of hardware, including all three Accelerated Strategic Computing Initiative (ASCI) platforms. Current parallel performance indicates the ability to compute α-eigenvalues in seconds or minutes rather than days or weeks. Current and future work on the implementation of a general transport physics framework (TPF) is also described. This TPF employs modern C++ programming techniques to provide simplified user interfaces, generic STL-style programming, and compile-time performance optimization. Physics capabilities of the TPF will be extended to include continuous energy treatments, implicit Monte Carlo algorithms, and a variety of convergence acceleration techniques such as importance combing.

  13. Parallel transmit beamforming using orthogonal frequency division multiplexing applied to harmonic imaging--a feasibility study.

    PubMed

    Demi, Libertario; Verweij, Martin D; Van Dongen, Koen W A

    2012-11-01

    Real-time 2-D or 3-D ultrasound imaging systems are currently used for medical diagnosis. To achieve the required data acquisition rate, these systems rely on parallel beamforming, i.e., a single wide-angled beam is used for transmission and several narrow parallel beams are used for reception. When applied to harmonic imaging, the demand for high-amplitude pressure wave fields, necessary to generate the harmonic components, conflicts with the use of a wide-angled beam in transmission because this results in a large spatial decay of the acoustic pressure. To enhance the amplitude of the harmonics, it is preferable to do the reverse: transmit several narrow parallel beams and use a wide-angled beam in reception. Here, this concept is investigated to determine whether it can be used for harmonic imaging. The method proposed in this paper relies on orthogonal frequency division multiplexing (OFDM), which is used to create distinctive parallel beams in transmission. To test the proposed method, a numerical study has been performed, in which the transmit, receive, and combined beam profiles generated by a linear array have been simulated for the second-harmonic component. Compared with standard parallel beamforming, application of the proposed technique results in a gain of 12 dB for the main beam and in a reduction of the side lobes. Experimental verification in water has also been performed. Measurements obtained with a single-element emitting transducer and a hydrophone receiver confirm the possibility of exciting a practical ultrasound transducer with multiple Gaussian modulated pulses, each having a different center frequency, and the capability to generate distinguishable second-harmonic components.

  14. Monolithic Parallel Tandem Organic Photovoltaic Cell with Transparent Carbon Nanotube Interlayer

    NASA Technical Reports Server (NTRS)

    Tanaka, S.; Mielczarek, K.; Ovalle-Robles, R.; Wang, B.; Hsu, D.; Zakhidov, A. A.

    2009-01-01

    We demonstrate an organic photovoltaic cell with a monolithic tandem structure in parallel connection. Transparent multiwalled carbon nanotube sheets are used as an interlayer anode electrode for this parallel tandem. The characteristics of front and back cells are measured independently. The short circuit current density of the parallel tandem cell is larger than the currents of each individual cell. The wavelength dependence of photocurrent for the parallel tandem cell shows the superposition spectrum of the two spectral sensitivities of the front and back cells. The monolithic three-electrode photovoltaic cell indeed operates as a parallel tandem with improved efficiency.

  15. Evidence for Field-parallel Electron Acceleration in Solar Flares

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haerendel, G.

    It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of the order of 10{sup 4} A m{sup −2}. A consequence of this is the concentration of the currents in sheets with widths of the order of 1 m. The high current density suggests that the field-parallel potential drops are maintained by current-driven anomalous resistivity. The origin of these currents remains a strong challenge for theorists.

  16. Theoretical and Experimental Investigations of Coincidences in Poisson Distributed Pulse Trains and Spectral Distortion Caused by Pulse Pileup.

    NASA Astrophysics Data System (ADS)

    Bristow, Quentin

    1990-01-01

    Part one of this two-part study is concerned with the multiple coincidences in pulse trains from X-ray and gamma radiation detectors which are the cause of pulse pileup. A sequence of pulses with inter-arrival times less than tau, the resolving time of the pulse-height analysis system used to acquire spectra, is called a multiple pulse string. Such strings can be classified on the basis of the number of pulses they contain, or the number of resolving times they cover. The occurrence rates of such strings are derived from theoretical considerations. Logic circuits were devised to make experimental measurements of multiple pulse string occurrence rates in the output from a NaI(Tl) scintillation detector over a wide range of count rates. Markov process theory was used to predict state transition rates in the logic circuits, enabling the experimental data to be checked rigorously for conformity with those predicted for a Poisson distribution. No fundamental discrepancies were observed. Part two of the study is concerned with a theoretical analysis of pulse pileup and the development of a discrete correction algorithm, based on the use of a function to simulate the coincidence spectrum produced by partial sums of pulses. Monte Carlo simulations, incorporating criteria for pulse pileup inherent in the operation of modern ADC's, were used to generate pileup spectra due to coincidences between two pulses, (1st order pileup) and three pulses (2nd order pileup), for different semi-Gaussian pulse shapes. Coincidences between pulses in a single channel produced a basic probability density function spectrum which can be regarded as an impulse response for a particular pulse shape. The use of a flat spectrum (identical count rates in all channels) in the simulations, and in a parallel theoretical analysis, showed the 1st order pileup distorted the spectrum to a linear ramp with a pileup tail. The correction algorithm was successfully applied to correct entire spectra for 1st and

  17. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO3 films grown by pulsed direct current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Punitha, K.; Sivakumar, R.; Sanjeeviraja, C.

    2014-03-01

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO3) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO2:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO3 films deposited on SnO2:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO3 film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsing frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10-3. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (Ed) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (Eo) of WO3 films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The Eo is change between 6.30 and 3.88 eV, while the Ed varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm-1 attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  18. Compact submicrosecond, high current generator for wire explosion experiments

    NASA Astrophysics Data System (ADS)

    Aranchuk, L. E.; Chuvatin, A. S.; Larour, J.

    2004-01-01

    The PIAF generator was designed for low total energy and high energy density experiments with liners, X-pinch or fiber Z-pinch loads. These studies are of interest for such applications as surface and material science, microscopy of biological specimens, lithography of x-ray sensitive resists, and x-ray backlighting of pulsed-power plasmas. The generator is based on an RLC circuit that includes six NWL 180 nF-50 kV capacitors that store up to 1.3 kJ. The capacitors are connected in parallel to a single multispark switch designed to operate at atmospheric pressure. The switch allows reaching a time delay between the trigger pulse and the current pulse of less than 80 ns and has jitter of 6 ns. The total inductance without a load compartment was optimized to be as low as 16 nH, which leads to extremely low impedance of ˜0.12 Ω. A 40 kV initial voltage provides 250 kA maximum current in a 6 nH inductive load with a 180 ns current rise time. PIAF has dimensions of 660×660×490 mm and weight of less than 100 kg, thus manifesting itself as robust, simple to operate, and cost effective. A description of the PIAF generator and the initial experimental results on PIAF with an X-pinch type load are reported. The generator was demonstrated to operate successfully with an X-pinch type load. The experiments first started with investigation of the previously unexplored X-pinch conduction time range, 100 ns-1 μs. A single short radiation pulse was obtained that came from a small, point-like plasma. The following x-ray source characteristics were achieved: typical hot spot size of 50-100 μm, radiation pulse duration of 1.5-2 ns, and radiation yield of about 250-500 mJ in the softer spectral range (hν⩾700 eV) and 50-100 mJ in the harder one (hν⩾1 keV). These results provide the potential for further application of this source, such as use as a backlight diagnostic tool.

  19. Parallel computing for probabilistic fatigue analysis

    NASA Technical Reports Server (NTRS)

    Sues, Robert H.; Lua, Yuan J.; Smith, Mark D.

    1993-01-01

    This paper presents the results of Phase I research to investigate the most effective parallel processing software strategies and hardware configurations for probabilistic structural analysis. We investigate the efficiency of both shared and distributed-memory architectures via a probabilistic fatigue life analysis problem. We also present a parallel programming approach, the virtual shared-memory paradigm, that is applicable across both types of hardware. Using this approach, problems can be solved on a variety of parallel configurations, including networks of single or multiprocessor workstations. We conclude that it is possible to effectively parallelize probabilistic fatigue analysis codes; however, special strategies will be needed to achieve large-scale parallelism to keep large number of processors busy and to treat problems with the large memory requirements encountered in practice. We also conclude that distributed-memory architecture is preferable to shared-memory for achieving large scale parallelism; however, in the future, the currently emerging hybrid-memory architectures will likely be optimal.

  20. Raytheon Stirling/pulse Tube Cryocooler Development

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Hon, R. C.; Kesler, C. H.; Roberts, T.

    2008-03-01

    The first generation flight-design Stirling/pulse tube "hybrid" two-stage cryocooler has entered initial performance and environmental testing. The status and early results of the testing are presented. Numerous improvements have been implemented as compared to the preceding brassboard versions to improve performance, extend life, and enhance launch survivability. This has largely been accomplished by incorporating successful flight-design features from the Raytheon Stirling one-stage cryocooler product line. These design improvements are described. In parallel with these mechanical cryocooler development efforts, a third generation electronics module is being developed that will support hybrid Stirling/pulse tube and Stirling cryocoolers. Improvements relative to the second generation design relate to improved radiation hardness, reduced parts count, and improved vibration cancellation capability. Progress on the electronics is also presented.

  1. Active lamp pulse driver circuit. [optical pumping of laser media

    NASA Technical Reports Server (NTRS)

    Logan, K. E. (Inventor)

    1983-01-01

    A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.

  2. Parallel pivoting combined with parallel reduction

    NASA Technical Reports Server (NTRS)

    Alaghband, Gita

    1987-01-01

    Parallel algorithms for triangularization of large, sparse, and unsymmetric matrices are presented. The method combines the parallel reduction with a new parallel pivoting technique, control over generations of fill-ins and a check for numerical stability, all done in parallel with the work being distributed over the active processes. The parallel technique uses the compatibility relation between pivots to identify parallel pivot candidates and uses the Markowitz number of pivots to minimize fill-in. This technique is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds.

  3. High-spatial-frequency periodic surface structures on steel substrate induced by subnanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hikage, Haruki; Nosaka, Nami; Matsuo, Shigeki

    2017-11-01

    By irradiation with 0.5 ns laser pulses at a wavelength λ = 1.064 µm, laser-induced periodic surface structures (LIPSS) were fabricated on a steel substrate. In addition to low-spatial-frequency LIPSS (LSFL), a high-spatial-frequency LIPSS (HSFL) of period Λ ∼ 0.4λ with two-dimensional expansion was formed, although it is generally recognized that HSFL are formed only by ultrafast laser pulses. The wavevector of the observed HSFL was perpendicular to the electric field of the irradiated laser pulse (each ridge/groove of the HSFL was parallel to the electric field). We discuss the relationship between the formation of HSFL and the pulse duration.

  4. Formation of laser-induced periodic surface structures on fused silica upon two-color double-pulse irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höhm, S.; Herzlieb, M.; Rosenfeld, A.

    2013-12-16

    The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of laser pulse pairs (50 fs single-pulse duration) of two different wavelengths (400 and 800 nm) is studied experimentally. Parallel polarized double-pulse sequences with a variable delay Δt between −10 and +10 ps and between the individual fs-laser pulses were used to investigate the LIPSS periods versus Δt. These two-color experiments reveal the importance of the ultrafast energy deposition to the silica surface by the first laser pulse for LIPSS formation. The second laser pulse subsequently reinforces the previously seeded spatial LIPSSmore » frequencies.« less

  5. Pulsed Corona Discharge Generated By Marx Generator

    NASA Astrophysics Data System (ADS)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  6. Pulse shape optimization for electron-positron production in rotating fields

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; Hebenstreit, Florian; Gagnon, Denis; MacLean, Steve

    2017-07-01

    We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B -spline polynomial basis, which results in a relatively low-dimensional parameter space while still allowing for a large number of electric field modes. The optimization is performed by using a parallel implementation of the differential evolution, one of the most efficient metaheuristic algorithms. The computational performance of the numerical method and the results on pair production are compared with a local multistart optimization algorithm. These techniques allow us to determine the pulse shape and field polarization that maximize the number of produced pairs in computationally accessible regimes.

  7. Characterization of Pulse Reverses Electroforming on Hard Gold Coating.

    PubMed

    Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon

    2018-03-01

    Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.

  8. Time-spatial drift of decelerating electromagnetic pulses.

    PubMed

    Nerukh, Alexander G; Nerukh, Dmitry A

    2013-07-15

    A time dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time-spatial coordinates on the surface of a parabolic cylinder for the Airy pulse and a hyperbolic cylinder for the Gaussian. These pulses propagate in time with deceleration along the dominant propagation direction and drift uniformly in the lateral direction. The Airy pulse stops at infinity while the asymptotic velocity of the Gaussian is nonzero.

  9. Heat pulse excitability of vestibular hair cells and afferent neurons

    PubMed Central

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in <3 ms and decaying with a time constant of ∼24 ms. The inhibitory component dominated whole cell currents in 50% of hair cells at −68 mV and in 67% of hair cells at −60 mV. Responses were quantified and described on the basis of first principles of thermodynamics. Results identify key molecular targets underlying heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  10. Capacitor charging FET switcher with controller to adjust pulse width

    DOEpatents

    Mihalka, Alex M.

    1986-01-01

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  11. Experimental Characterisation of a Pulse Tube Cryocooler for Ground Applications

    NASA Astrophysics Data System (ADS)

    Charles, I.; Duband, L.; Martin, J.-Y.; Mullié, J. C.; Bruins, P. C.

    2004-06-01

    Developments on high frequency high heat lift pulse tubes are carried out at CEA/SBT. Based on a previous study on an in line configuration, two new pulse tube cold fingers have been manufactured: a coaxial configuration and a U-shape configuration. Measurements performed with the coaxial configuration have demonstrated cooling power in excess of 6 W at 80 K with 140 W of mechanical input power. The results obtained with these two configurations are presented. The impact of the rejection temperature has also been studied and is discussed. In parallel, a new compressor with pistons supported by flexure bearings has been designed and manufactured. This compressor has been coupled with the pulse tube. Tests performed with the new developed flexure-bearing compressors and a conventional compressor are presented and compared. The pulse tube cold finger associated with the new compressor leads to a reliable and low vibration cooler.

  12. Status of Pulsed Inductive Thruster Research

    NASA Technical Reports Server (NTRS)

    Hrbud, Ivana; LaPointe, Michael; Vondra, Robert; Lovberg, Ralph; Dailey, C. Lee; Schafer, Charles (Technical Monitor)

    2002-01-01

    The TRW Pulsed Inductive Thruster (PIT) is an electromagnetic propulsion system that can provide high thrust efficiency over a wide range of specific impulse values. In its basic form, the PIT consists of a flat spiral coil covered by a thin dielectric plate. A pulsed gas injection nozzle distributes a thin layer of gas propellant across the plate surface at the same time that a pulsed high current discharge is sent through the coil. The rising current creates a time varying magnetic field, which in turn induces a strong azimuthal electric field above the coil. The electric field ionizes the gas propellant and generates an azimuthal current flow in the resulting plasma. The current in the plasma and the current in the coil flow in opposite directions, providing a mutual repulsion that rapidly blows the ionized propellant away from the plate to provide thrust. The thrust and specific impulse can be tailored by adjusting the discharge power, pulse repetition rate, and propellant mass flow, and there is minimal if any erosion due to the electrodeless nature of the discharge. Prior single-shot experiment,; performed with a Diameter diameter version of the PIT at TRW demonstrated specific impulse values between 2,000 seconds and 8,000 seconds, with thruster efficiencies of about 52% for ammonia. This paper outlines current and planned activities to transition the single shot device into a multiple repetition rate thruster capable of supporting NASA strategic enterprise missions.

  13. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    PubMed

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  14. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbelaez, D.; Madur, A.; Lipton, T.M.

    2011-04-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 {micro}m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beammore » has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.« less

  15. Preliminary investigation on the use of low current pulsed power Z-pinch plasma devices for the study of early stage plasma instabilities

    NASA Astrophysics Data System (ADS)

    Kaselouris, E.; Dimitriou, V.; Fitilis, I.; Skoulakis, A.; Koundourakis, G.; Clark, E. L.; Chatzakis, J.; Bakarezos, Μ; Nikolos, I. K.; Papadogiannis, N. A.; Tatarakis, M.

    2018-01-01

    This article addresses key features for the implementation of low current pulsed power plasma devices for the study of matter dynamics from the solid to the plasma phase. The renewed interest in such low current plasma devices lies in the need to investigate methods for the mitigation of prompt seeding mechanisms for the generation of plasma instabilities. The low current when driven into thick wires (skin effect mode) allows for the simultaneous existence of all phases of matter from solid to plasma. Such studies are important for the concept of inertial confinement fusion where the mitigation of the instability seeding mechanisms arising from the very early moments within the target’s heating is of crucial importance. Similarly, in the magnetized liner inertial fusion concept it is an open question as to how much surface non-uniformity correlates with the magneto-Rayleigh-Taylor instability, which develops during the implosion. This study presents experimental and simulation results, which demonstrate that the use of low current pulsed power devices in conjunction with appropriate diagnostics can be important for studying seeding mechanisms for the imminent generation of plasma instabilities in future research.

  16. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission

    NASA Astrophysics Data System (ADS)

    Garwood, Michael; Uğurbil, Kamil

    2018-06-01

    The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.

  17. Perspectives of shaped pulses for EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spindler, Philipp E.; Schöps, Philipp; Kallies, Wolfgang; Glaser, Steffen J.; Prisner, Thomas F.

    2017-07-01

    This article describes current uses of shaped pulses, generated by an arbitrary waveform generator, in the field of EPR spectroscopy. We show applications of sech/tanh and WURST pulses to dipolar spectroscopy, including new pulse schemes and procedures, and discuss the more general concept of optimum-control-based pulses for applications in EPR spectroscopy. The article also describes a procedure to correct for experimental imperfections, mostly introduced by the microwave resonator, and discusses further potential applications and limitations of such pulses.

  18. Matching pursuit parallel decomposition of seismic data

    NASA Astrophysics Data System (ADS)

    Li, Chuanhui; Zhang, Fanchang

    2017-07-01

    In order to improve the computation speed of matching pursuit decomposition of seismic data, a matching pursuit parallel algorithm is designed in this paper. We pick a fixed number of envelope peaks from the current signal in every iteration according to the number of compute nodes and assign them to the compute nodes on average to search the optimal Morlet wavelets in parallel. With the help of parallel computer systems and Message Passing Interface, the parallel algorithm gives full play to the advantages of parallel computing to significantly improve the computation speed of the matching pursuit decomposition and also has good expandability. Besides, searching only one optimal Morlet wavelet by every compute node in every iteration is the most efficient implementation.

  19. Parallel changes in mate-attracting calls and female preferences in autotriploid tree frogs

    PubMed Central

    Tucker, Mitch A.; Gerhardt, H. C.

    2012-01-01

    For polyploid species to persist, they must be reproductively isolated from their diploid parental species, which coexist at the same time and place at least initially. In a complex of biparentally reproducing tetraploid and diploid tree frogs in North America, selective phonotaxis—mediated by differences in the pulse-repetition (pulse rate) of their mate-attracting vocalizations—ensures assortative mating. We show that artificially produced autotriploid females of the diploid species (Hyla chrysoscelis) show a shift in pulse-rate preference in the direction of the pulse rate produced by males of the tetraploid species (Hyla versicolor). The estimated preference function is centred near the mean pulse rate of the calls of artificially produced male autotriploids. Such a parallel shift, which is caused by polyploidy per se and whose magnitude is expected to be greater in autotetraploids, may have facilitated sympatric speciation by promoting reproductive isolation of the initially formed polyploids from their diploid parental forms. This process also helps to explain why tetraploid lineages with different origins have similar advertisement calls and freely interbreed. PMID:22113033

  20. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  1. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  2. Microstructures of Ni-AlN composite coatings prepared by pulse electrodeposition technology

    NASA Astrophysics Data System (ADS)

    Xia, Fafeng; Xu, Huibin; Liu, Chao; Wang, Jinwu; Ding, Junjie; Ma, Chunhua

    2013-04-01

    Ni-AlN composite coating was fabricated onto the surface of steel substrates by using pulse electrodeposition (PED) technique in this work. The effect of pulse current on the nucleation and growth of grains was investigated using transmission electronic microscopy (TEM), X-ray diffraction (XRD), scanning electronic microscopy (SEM) and atomic force microscopy (AFM), respectively. The results show that the contents of AlN nanoparticles increase with density of pulse current and on-duty ratio of pulse current increasing. Whereas the size of nickel grains decreases with density of pulse current increasing and on-duty ratio of pulse current decreasing. Ni-AlN composite coating consists of crystalline nickel (˜68 nm) and AlN particles (˜38 nm). SEM and AFM observations show that the composite coatings obtained by PED showed more compact surfaces and less grain sizes, whereas those obtained by direct current electrodepositing have rougher surfaces and bigger grain sizes.

  3. Performance of the Galley Parallel File System

    NASA Technical Reports Server (NTRS)

    Nieuwejaar, Nils; Kotz, David

    1996-01-01

    As the input/output (I/O) needs of parallel scientific applications increase, file systems for multiprocessors are being designed to provide applications with parallel access to multiple disks. Many parallel file systems present applications with a conventional Unix-like interface that allows the application to access multiple disks transparently. This interface conceals the parallism within the file system, which increases the ease of programmability, but makes it difficult or impossible for sophisticated programmers and libraries to use knowledge about their I/O needs to exploit that parallelism. Furthermore, most current parallel file systems are optimized for a different workload than they are being asked to support. We introduce Galley, a new parallel file system that is intended to efficiently support realistic parallel workloads. Initial experiments, reported in this paper, indicate that Galley is capable of providing high-performance 1/O to applications the applications that rely on them. In Section 3 we describe that access data in patterns that have been observed to be common.

  4. Speeding up parallel processing

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    In 1967 Amdahl expressed doubts about the ultimate utility of multiprocessors. The formulation, now called Amdahl's law, became part of the computing folklore and has inspired much skepticism about the ability of the current generation of massively parallel processors to efficiently deliver all their computing power to programs. The widely publicized recent results of a group at Sandia National Laboratory, which showed speedup on a 1024 node hypercube of over 500 for three fixed size problems and over 1000 for three scalable problems, have convincingly challenged this bit of folklore and have given new impetus to parallel scientific computing.

  5. Effect of Pulse Rate on Loudness Discrimination in Cochlear Implant Users.

    PubMed

    Azadpour, Mahan; McKay, Colette M; Svirsky, Mario A

    2018-03-12

    Stimulation pulse rate affects current amplitude discrimination by cochlear implant (CI) users, indicated by the evidence that the JND (just noticeable difference) in current amplitude delivered by a CI electrode becomes larger at higher pulse rates. However, it is not clearly understood whether pulse rate would affect discrimination of speech intensities presented acoustically to CI processors, or what the size of this effect might be. Intensity discrimination depends on two factors: the growth of loudness with increasing sound intensity and the loudness JND (or the just noticeable loudness increment). This study evaluated the hypothesis that stimulation pulse rate affects loudness JND. This was done by measuring current amplitude JNDs in an experiment design based on signal detection theory according to which loudness discrimination is related to internal noise (which is manifested by variability in loudness percept in response to repetitions of the same physical stimulus). Current amplitude JNDs were measured for equally loud pulse trains of 500 and 3000 pps (pulses per second) by increasing the current amplitude of the target pulse train until it was perceived just louder than a same-rate or different-rate reference pulse train. The JND measures were obtained at two presentation levels. At the louder level, the current amplitude JNDs were affected by the rate of the reference pulse train in a way that was consistent with greater noise or variability in loudness perception for the higher pulse rate. The results suggest that increasing pulse rate from 500 to 3000 pps can increase loudness JND by 60 % at the upper portion of the dynamic range. This is equivalent to a 38 % reduction in the number of discriminable steps for acoustic and speech intensities.

  6. Surface alloying of aluminum with molybdenum by high-current pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Xia, Han; Zhang, Conglin; Lv, Peng; Cai, Jie; Jin, Yunxue; Guan, Qingfeng

    2018-02-01

    The surface alloying of pre-coated molybdenum (Mo) film on aluminum (Al) substrate by high-current pulsed electron beam (HCPEB) was investigated. The microstructure and phase analysis were conducted by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that Mo particles were dissolved into Al matrix to form alloying layer, which was composed of Mo, Al and acicular or equiaxed Al5Mo phases after surface alloying. Meanwhile, various structure defects such as dislocation loops, high-density dislocations and dislocation walls were observed in the alloying surface. The corrosion resistance was tested by using potentiodynamic polarization curves and electrochemical impedance spectra (EIS). Electrochemical results indicate that all the alloying samples had better corrosion resistance in 3.5 wt% NaCl solution compared to initial sample. The excellent corrosion resistance is mainly attributed to the combined effect of the structure defects and the addition of Mo element to form a more stable passive film.

  7. Parallel Electric Field on Auroral Magnetic Field Lines.

    NASA Astrophysics Data System (ADS)

    Yeh, Huey-Ching Betty

    1982-03-01

    The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field

  8. Integration experiences and performance studies of A COTS parallel archive systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsing-bung; Scott, Cody; Grider, Bary

    2010-01-01

    Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf(COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching and lessmore » robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, ls, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petaflop/s computing system, LANL's Roadrunner, and demonstrated its capability to address requirements of future

  9. Integration experiments and performance studies of a COTS parallel archive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsing-bung; Scott, Cody; Grider, Gary

    2010-06-16

    Current and future Archive Storage Systems have been asked to (a) scale to very high bandwidths, (b) scale in metadata performance, (c) support policy-based hierarchical storage management capability, (d) scale in supporting changing needs of very large data sets, (e) support standard interface, and (f) utilize commercial-off-the-shelf (COTS) hardware. Parallel file systems have been asked to do the same thing but at one or more orders of magnitude faster in performance. Archive systems continue to move closer to file systems in their design due to the need for speed and bandwidth, especially metadata searching speeds such as more caching andmore » less robust semantics. Currently the number of extreme highly scalable parallel archive solutions is very small especially those that will move a single large striped parallel disk file onto many tapes in parallel. We believe that a hybrid storage approach of using COTS components and innovative software technology can bring new capabilities into a production environment for the HPC community much faster than the approach of creating and maintaining a complete end-to-end unique parallel archive software solution. In this paper, we relay our experience of integrating a global parallel file system and a standard backup/archive product with a very small amount of additional code to provide a scalable, parallel archive. Our solution has a high degree of overlap with current parallel archive products including (a) doing parallel movement to/from tape for a single large parallel file, (b) hierarchical storage management, (c) ILM features, (d) high volume (non-single parallel file) archives for backup/archive/content management, and (e) leveraging all free file movement tools in Linux such as copy, move, Is, tar, etc. We have successfully applied our working COTS Parallel Archive System to the current world's first petafiop/s computing system, LANL's Roadrunner machine, and demonstrated its capability to address requirements

  10. Progress of long pulse operation with high performance plasma in KSTAR

    NASA Astrophysics Data System (ADS)

    Bae, Young; Kstar Team

    2015-11-01

    Recent KSTAR experiments showed the sustained H-mode operation up to the pulse duration of 46 s at the plasma current of 600 kA. The long-pulse H-mode operation has been supported by long-pulse capable neutral beam injection (NBI) system with high NB current drive efficiency attributed by highly tangential injections of three beam sources. In next phase, aiming to demonstrate the long pulse stationary high performance plasma operation, we are attempting the long pulse inductive operation at the higher performance (MA plasma current, high normalized beta, and low q95) for the final goal of demonstration of ITER-like baseline scenario in KSTAR with progressive improvement of the plasma shape control and higher neutral beam injection power. This paper presents the progress of long pulse operation and the analysis of energy confinement time and non-inductive current drive in KSTAR.

  11. Fivefold confinement time increase in the Madison Symmetric Torus using inductive poloidal current drive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoneking, M.R.; Lanier, N.E.; Prager, S.C.

    1996-12-01

    Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% andmore » the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.« less

  12. Single- and multi-pulse formation of surface structures under static femtosecond irradiation

    NASA Astrophysics Data System (ADS)

    Guillermin, M.; Garrelie, F.; Sanner, N.; Audouard, E.; Soder, H.

    2007-07-01

    Femtosecond surface structure modifications are investigated under irradiation with laser pulses of 150 fs at 800 nm, on copper and silicon. We report sub-wavelength periodic structures formation (ripples) with a periodicity of 500 nm for both materials. These ripples are perpendicular to the laser polarization and can be obtained with only one pulse. The formation of these ripples corresponds to a fluence threshold of 1 J/cm 2 for copper and 0.15 J/cm 2 for silicon. We find several morphologies when more pulses are applied: larger ripples parallel to the polarization are formed with a periodicity of 1 μm and degenerate into a worm-like morphology with a higher number of pulses. In addition, walls of deep holes also show sub-wavelength and large ripples.

  13. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gotz, M; Karsch, L; Pawelke, J

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fitmore » of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for

  14. Variable Swing Optimal Parallel Links - Minimal Power, Maximal Density for Parallel Links

    DTIC Science & Technology

    2009-01-01

    implemented; it allows controlling the transmitter current by a simple design of a differential pair with a 100 ohms termination resistor. Figure 3.4...optimization. Zuber, P., et al. 2005. 0-7695-2288-2. 21. A 36Gb/s ACCI Multi-Channel Bus using a Fully Differential Pulse Receiver. Wilson, Lei Luo

  15. Demonstrating Forces between Parallel Wires.

    ERIC Educational Resources Information Center

    Baker, Blane

    2000-01-01

    Describes a physics demonstration that dramatically illustrates the mutual repulsion (attraction) between parallel conductors using insulated copper wire, wooden dowels, a high direct current power supply, electrical tape, and an overhead projector. (WRM)

  16. Current profile modification experiments in EXTRAP T2R

    NASA Astrophysics Data System (ADS)

    Cecconello, M.; Malmberg, J.-A.; Spizzo, G.; Chapman, B. E.; Gravestjin, R. M.; Franz, P.; Piovesan, P.; Martin, P.; Drake, J. R.

    2004-01-01

    Pulsed poloidal current drive (PPCD) experiments have been conducted in the resistive shell EXTRAP T2R reversed-field pinch experiment. During the current profile modification phase, the fluctuation level of the m = 1 internally resonant tearing modes decreases, and the velocity of these modes increases. The m = 0 modes are not affected during PPCD, although termination occurs with a burst in the m = 0 amplitude. The PPCD phase is characterized by an increase in the central electron temperature (up to 380 eV) and in the soft x-ray signal. Spectroscopic observations confirm an increase in the central electron temperature. During PPCD, the plasma poloidal beta increases to 14%, and the estimated energy confinement time doubles, reaching 380 µs. The reduction in the fluctuation level and the corresponding increase in the energy confinement time are qualitatively consistent with a reduction in parallel transport along stochastic magnetic field lines.

  17. Nine-channel mid-power bipolar pulse generator based on a field programmable gate array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haylock, Ben, E-mail: benjamin.haylock2@griffithuni.edu.au; Lenzini, Francesco; Kasture, Sachin

    Many channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.6 ns across nine independent outputs. Each channel can provide 1.5 W of RF power and can be synchronised with the operation of other components in an optical network such as light sourcesmore » and detectors through an external clock with adjustable delay.« less

  18. Atomization and merging of two Al and W wires driven by a 1 kA, 10 ns current pulse

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Xingwen; Lu, Yihan; Lebedev, S. V.; Yang, Zefeng; Jia, Shenli; Qiu, Aici

    2016-11-01

    Possibility of preconditioning of wires in wire array Z-pinch loads by an auxiliary low-level current pulse was investigated in experiments with two aluminum or two polyimide-coated tungsten wires. It was found that the application of a 1 kA, 10 ns current pulse could convert all the length of the Al wires (1 cm long, 15 μm diameter) and ˜70% of length of the W wires (1 cm long, 15 μm diameter, 2 μm polyimide coating) into a gaseous state via ohmic heating. The expansion and merging of the wires, positioned at separations of 1-3 mm, were investigated with two-wavelength (532 nm and 1064 nm) laser interferometry. The gasified wire expanded freely in a vacuum and its density distribution at different times could be well described using an analytic model for the expansion of the gas into vacuum. Under an energy deposition around its atomization enthalpy of the wire material, the aluminum vapor column had an expansion velocity of 5-7 km/s, larger than the value of ˜4 km/s from tungsten wires. The dynamic atomic polarizabilities of tungsten for 532 nm and 1064 nm were also estimated.

  19. Towards massively parallelized all-optical magnetic recording

    NASA Astrophysics Data System (ADS)

    Davies, C. S.; Janušonis, J.; Kimel, A. V.; Kirilyuk, A.; Tsukamoto, A.; Rasing, Th.; Tobey, R. I.

    2018-06-01

    We demonstrate an approach to parallel all-optical writing of magnetic domains using spatial and temporal interference of two ultrashort light pulses. We explore how the fluence and grating periodicity of the optical transient grating influence the size and uniformity of the written bits. Using a total incident optical energy of 3.5 μJ, we demonstrate the capability of simultaneously writing 102 spatially separated bits, each featuring a relevant lateral width of ˜1 μm. We discuss viable routes to extend this technique to write individually addressable, sub-diffraction-limited magnetic domains in a wide range of materials.

  20. Laser-induced periodic surface structures on 6H-SiC single crystals using temporally delayed femtosecond laser double-pulse trains

    NASA Astrophysics Data System (ADS)

    Song, Juan; Tao, Wenjun; Song, Hui; Gong, Min; Ma, Guohong; Dai, Ye; Zhao, Quanzhong; Qiu, Jianrong

    2016-04-01

    In this paper, a time-delay-adjustable double-pulse train with 800-nm wavelength, 200-fs pulse duration and a repetition rate of 1 kHz, produced by a collinear two-beam optical system like a Mach-Zehnder interferometer, was employed for irradiation of 6H-SiC crystal. The dependence of the induced structures on time delay of double-pulse train for parallel-polarization configuration was studied. The results show that as the time delay of collinear parallel-polarization dual-pulse train increased, the induced near-subwavelength ripples (NSWRs) turn from irregular rippled pattern to regularly periodic pattern and have their grooves much deepened. The characteristics timescale for this transition is about 6.24 ps. Besides, the areas of NSWR were found to decay exponentially for time delay from 0 to 1.24 ps and then slowly increase for time delay from 1.24 to 14.24 ps. Analysis shows that multiphoton ionization effect, grating-assisted surface plasmon coupling effect, and timely intervene of second pulse in a certain physical stage experienced by 6H-SiC excited upon first pulse irradiation may contribute to the transition of morphology details.

  1. Numerical investigation on the dynamics and evolution mechanisms of multiple-current-pulse behavior in homogeneous helium dielectric-barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhui; Ning, Wenjun; Dai, Dong

    2018-03-01

    A systematic investigation on the dynamics and evolution mechanisms of multiple-current-pulse (MCP) behavior in homogeneous dielectric barrier discharge (HDBD) is carried out via fluid modelling. Inspecting the simulation results, two typical discharge regimes, namely the MCP-Townsend regime and MCP-glow regime, are found prevailing in MCP discharges, each with distinctive electrical and dynamic properties. Moreover, the evolution of MCP behavior with external parameters altering are illustrated and explicitly discussed. It is revealed that the discharge undergoes some different stages as external parameters vary, and the discharge in each stage follows a series of distinctive pattern in morphological characteristics and evolution trends. Among those stages, the pulse number per half cycle is perceived to observe non-monotonic variations with applied voltage amplitude (Vam) and gap width (dg) increasing, and a merging effect among pulses, mainly induced by the enhanced contribution of sinusoidal component to the total current, is considered responsible for such phenomenon. The variation of incipient discharge peak phase (Φpm) is dominated by the value of Vam as well as the proportion of total applied voltage that drops across the gas gap. Moreover, an abnormal, dramatic elevation in Jpm with dg increasing is observed, which could be evinced by the strengthened glow discharge structure and therefore enhanced space charge effect.

  2. Novel ultrasensitive plasmonic detector of terahertz pulses enhanced by femtosecond optical pulses

    NASA Astrophysics Data System (ADS)

    Shur, M.; Rudin, S.; Rupper, G.; Muraviev, A.

    2016-09-01

    Plasmonic Field Effect Transistor detectors (first proposed in 1996) have emerged as superior room temperature terahertz (THz) detectors. Recent theoretical and experimental results showed that such detectors are capable of subpicosecond resolution. Their sensitivity can be greatly enhanced by applying the DC drain-to-source current that increases the responsivity due to the enhanced non-linearity of the device but also adds 1/f noise. We now propose, and demonstrate a dramatic responsivity enhancement of these plasmonic THz pulse detectors by applying a femtosecond optical laser pulse superimposed on the THz pulse. The proposed physical mechanism links the enhanced detection to the superposition of the THz pulse field and the rectified optical field. A femtosecond pulse generates a large concentration of the electron-hole pairs shorting the drain and source contacts and, therefore, determining the moment of time when the THz induced charge starts discharging into the transmission line connecting the FET to an oscilloscope. This allows for scanning the THz pulse with the strongly enhanced sensitivity and/or for scanning the response waveform after the THz pulse is over. The experimental results obtained using AlGaAs/InGaAs deep submicron HEMTs are in good agreement with this mechanism. This new technique could find numerous imaging, sensing, and quality control applications.

  3. Heat driven pulse pump

    NASA Technical Reports Server (NTRS)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  4. The quasiperpendicular environment of large magnetic pulses in Earth's quasiparallel foreshock - ISEE 1 and 2 observations

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Moses, S. L.; Coroniti, F. V.; Farris, M. H.; Russell, C. T.

    1993-01-01

    ULF waves in Earth's foreshock cause the instantaneous angle theta-B(n) between the upstream magnetic field and the shock normal to deviate from its average value. Close to the quasi-parallel (Q-parallel) shock, the transverse components of the waves become so large that the orientation of the field to the normal becomes quasi-perpendicular (Q-perpendicular) during applicable phases of each wave cycle. Large upstream pulses of B were observed completely enclosed in excursions of Theta-B(n) into the Q-perpendicular range. A recent numerical simulation included Theta-B(n) among the parameters examined in Q-parallel runs, and described a similar coincidence as intrinsic to a stage in development of the reformation process of such shocks. Thus, the natural environment of the Q-perpendicular section of Earth's bow shock seems to include an identifiable class of enlarged magnetic pulses for which local Q-perpendicular geometry is a necessary association.

  5. Laser-excited pulses in a crystallized dusty plasma

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Nunomura, S.; Goree, J.

    2000-10-01

    A dusty plasma is an ionized gas containing small particles of solid matter. These particles acquire a large negative electric charge. Polymer microspheres were shaken into a capacitively-coupled parallel-plate rf plasma. The particles were levitated by the electric field in the sheath above the lower electrode. The particles settled in a single horizontal layer, arranged in a hexagonal lattice. They were imaged using a video camera, to record the particle motion. Like any crystal, this so-called ``plasma crystal'' sustains compressional sound waves, which can be launched as a pulse. There are several ways these waves can be excited, including applying a force from the radiation pressure of a laser beam. By chopping an argon laser beam that is directed at the lattice, it is possible to launch a pulsed wave in the lattice. We evaluate the pulse's shape and propagation speed, and test whether it has the properties of a shock.

  6. Switching power pulse system

    DOEpatents

    Aaland, Kristian

    1983-01-01

    A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.

  7. Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters

    NASA Technical Reports Server (NTRS)

    Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.

    2015-01-01

    It is advantageous for gas-fed pulsed electric thrusters to employ pulsed valves so propellant is only flowing to the device during operation. The propellant utilization of the thruster will be maximized when all the gas injected into the thruster is acted upon by the fields produced by the electrical pulse. Gas that is injected too early will diffuse away from the thruster before the electrical pulse can act to accelerate the propellant. Gas that is injected too late will miss being accelerated by the already-completed electrical pulse. As a consequence, the valve must open quickly and close equally quickly, only remaining open for a short duration. In addition, the valve must have only a small amount of volume between the sealing body and the thruster so the front and back ends of the pulse are as coincident as possible with the valve cycling, with very little latent propellant remaining in the feed lines after the valve is closed. For a real mission of interest, a pulsed thruster can be expected to pulse at least 10(exp 10) - 10(exp 11) times, setting the range for the number of times a valve must open and close. The valves described in this paper have been fabricated and tested for operation in an inductive pulsed plasma thruster (IPPT) for in-space propulsion. In general, an IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged, producing a high-current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed, it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. The valve characteristics needed for the IPPT application require a fast-acting valve capable of a minimum of 10(exp 10) valve actuation cycles. Since

  8. Optimization of spin-torque switching using AC and DC pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Tom; Kamenev, Alex; Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455

    2014-06-21

    We explore spin-torque induced magnetic reversal in magnetic tunnel junctions using combined AC and DC spin-current pulses. We calculate the optimal pulse times and current strengths for both AC and DC pulses as well as the optimal AC signal frequency, needed to minimize the Joule heat lost during the switching process. The results of this optimization are compared against numeric simulations. Finally, we show how this optimization leads to different dynamic regimes, where switching is optimized by either a purely AC or DC spin-current, or a combination AC/DC spin-current, depending on the anisotropy energies and the spin-current polarization.

  9. Analysis of DC control in double-inlet GM type pulse tube refrigerators for detectors

    NASA Astrophysics Data System (ADS)

    Du, B. Y.

    2016-10-01

    Pulse tube refrigerators have demonstrated many advantages with respect to temperature stability, vibration, reliability and lifetime among cryo-coolers for detectors. Double-inlet type pulse tube refrigerators are popular in GM type pulse tube refrigerators. The single double-inlet valve may introduce DC flow in refrigerator, which deteriorates the performance of pulse tube refrigerator. One new type of DC control mode is introduced in this paper. Two parallel-placed needle valves with opposite direction named double-valve configuration, instead of single double-inlet valve, are used in our experiment to reduce the DC flow. With two double-inlet operating, the lowest cold end temperature of 18.1K and a coolant of 1.2W@20K have been obtained. It has proved that this method is useful for controlling DC flow of the pulse tube refrigerators, which is very important to understand the characters of pulse tube refrigerators for detectors.

  10. Arbitrarily accurate twin composite π -pulse sequences

    NASA Astrophysics Data System (ADS)

    Torosov, Boyan T.; Vitanov, Nikolay V.

    2018-04-01

    We present three classes of symmetric broadband composite pulse sequences. The composite phases are given by analytic formulas (rational fractions of π ) valid for any number of constituent pulses. The transition probability is expressed by simple analytic formulas and the order of pulse area error compensation grows linearly with the number of pulses. Therefore, any desired compensation order can be produced by an appropriate composite sequence; in this sense, they are arbitrarily accurate. These composite pulses perform equally well as or better than previously published ones. Moreover, the current sequences are more flexible as they allow total pulse areas of arbitrary integer multiples of π .

  11. Parallel closure theory for toroidally confined plasmas

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.

    2017-10-01

    We solve a system of general moment equations to obtain parallel closures for electrons and ions in an axisymmetric toroidal magnetic field. Magnetic field gradient terms are kept and treated using the Fourier series method. Assuming lowest order density (pressure) and temperature to be flux labels, the parallel heat flow, friction, and viscosity are expressed in terms of radial gradients of the lowest-order temperature and pressure, parallel gradients of temperature and parallel flow, and the relative electron-ion parallel flow velocity. Convergence of closure quantities is demonstrated as the number of moments and Fourier modes are increased. Properties of the moment equations in the collisionless limit are also discussed. Combining closures with fluid equations parallel mass flow and electric current are also obtained. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.

  12. Integrated parallel reception, excitation, and shimming (iPRES).

    PubMed

    Han, Hui; Song, Allen W; Truong, Trong-Kha

    2013-07-01

    To develop a new concept for a hardware platform that enables integrated parallel reception, excitation, and shimming. This concept uses a single coil array rather than separate arrays for parallel excitation/reception and B0 shimming. It relies on a novel design that allows a radiofrequency current (for excitation/reception) and a direct current (for B0 shimming) to coexist independently in the same coil. Proof-of-concept B0 shimming experiments were performed with a two-coil array in a phantom, whereas B0 shimming simulations were performed with a 48-coil array in the human brain. Our experiments show that individually optimized direct currents applied in each coil can reduce the B0 root-mean-square error by 62-81% and minimize distortions in echo-planar images. The simulations show that dynamic shimming with the 48-coil integrated parallel reception, excitation, and shimming array can reduce the B0 root-mean-square error in the prefrontal and temporal regions by 66-79% as compared with static second-order spherical harmonic shimming and by 12-23% as compared with dynamic shimming with a 48-coil conventional shim array. Our results demonstrate the feasibility of the integrated parallel reception, excitation, and shimming concept to perform parallel excitation/reception and B0 shimming with a unified coil system as well as its promise for in vivo applications. Copyright © 2013 Wiley Periodicals, Inc.

  13. Label-free resistive-pulse cytometry.

    PubMed

    Chapman, M R; Sohn, L L

    2011-01-01

    Numerous methods have recently been developed to characterize cells for size, shape, and specific cell-surface markers. Most of these methods rely upon exogenous labeling of the cells and are better suited for large cell populations (>10,000). Here, we review a label-free method of characterizing and screening cells based on the Coulter-counter technique of particle sizing: an individual cell transiting a microchannel (or "pore") causes a downward pulse in the measured DC current across that "pore". Pulse magnitude corresponds to the cell size, pulse width to the transit time needed for the cell to pass through the pore, and pulse shape to how the cell traverses across the pore (i.e., rolling or tumbling). When the pore is functionalized with an antibody that is specific to a surface-epitope of interest, label-free screening of a specific marker is possible, as transient binding between the two results in longer time duration than when the pore is unfunctionalized or functionalized with a nonspecific antibody. While this method cannot currently compete with traditional technology in terms of throughput, there are a number of applications for which this technology is better suited than current commercial cytometry systems. Applications include the rapid and nondestructive analysis of small cell populations (<100), which is not possible with current technology, and a platform for providing true point-of-care clinical diagnostics, due to the simplicity of the device, low manufacturing costs, and ease of use. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Pulsed laser illumination of photovoltaic cells

    NASA Technical Reports Server (NTRS)

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1994-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic array receivers to provide remote power. Both the radio-frequency (RF) and induction FEL provide FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL pulse format.

  15. The light ion pulsed power induction accelerator for ETF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.

    1994-12-31

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The {approximately} 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current permore » module is relatively modest ({approximately}300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source.« less

  16. PARAVT: Parallel Voronoi tessellation code

    NASA Astrophysics Data System (ADS)

    González, R. E.

    2016-10-01

    In this study, we present a new open source code for massive parallel computation of Voronoi tessellations (VT hereafter) in large data sets. The code is focused for astrophysical purposes where VT densities and neighbors are widely used. There are several serial Voronoi tessellation codes, however no open source and parallel implementations are available to handle the large number of particles/galaxies in current N-body simulations and sky surveys. Parallelization is implemented under MPI and VT using Qhull library. Domain decomposition takes into account consistent boundary computation between tasks, and includes periodic conditions. In addition, the code computes neighbors list, Voronoi density, Voronoi cell volume, density gradient for each particle, and densities on a regular grid. Code implementation and user guide are publicly available at https://github.com/regonzar/paravt.

  17. Investigations Of A Pulsed Cathodic Vacuum Arc

    NASA Astrophysics Data System (ADS)

    Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.

    2003-06-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.

  18. Evidence of negative leaders which precede fast rise ICC pulses of upward

    NASA Astrophysics Data System (ADS)

    Yoshida, S.; Akita, M.; Morimoto, T.; Ushio, T.; Kawasaki, Z.; Wang, D.; Takagi, N.

    2008-12-01

    During winter thunderstorm season in Japan, a lightning observation campaign was conducted with using a VHF broadband digital interferometer (DITF), a capacitive antenna, and Rogowski coils to study the charge transfer mechanism associated with ICC pulses of upward lightning. All the detection systems recorded one upward negative lightning stroke hitting a lightning protection tower. The upward lightning consists of only the Initial Stage (IS) with one upward positive leader and six ICC pulses. The six ICC pulses are sub-classified clearly into two types according to current pulse shapes. The type 1 ICC pulses have a higher geometric mean (GM) current peak of 17 kA and a shorter GM 10-90% risetime of 8.9 μs, while the type 2 ICC pulses have a lower GM current peak of 0.34 kA and longer GM 10-90% risetime of 55 μs. The type 1 ICC pulses have the preceding negative leaders connecting to the channel of the continuing current, while the type 2 ICC pulses have no clear preceding negative leader. These negative leaders prior to the type 1 ICC pulses probably caused the current increases of the ICC pulses, which means that the negative leaders created the channels for the ICC pulses. The height of the space charge transferred by one of the type 1 ICC pulses was estimated about 700 m above sea level at most. This observation result is the first evidence to show explicitly the existence of the negative leaders prior to the fast rise ICC pulse. Furthermore, the result shows that space charge could exist at a low attitude such as 700 m above sea level. This fact is one of the reasons why upward lightning occurs even from rather low structures during winter thunderstorm season in Japan.

  19. Fracture toughness of ultrashort pulse-bonded fused silica

    NASA Astrophysics Data System (ADS)

    Richter, S.; Naumann, F.; Zimmermann, F.; Tünnermann, A.; Nolte, S.

    2016-02-01

    We determined the bond interface strength of ultrashort pulse laser-welded fused silica for different processing parameters. To this end, we used a high repetition rate ultrashort pulse laser system to inscribe parallel welding lines with a specific V-shaped design into optically contacted fused silica samples. Afterward, we applied a micro-chevron test to measure the fracture toughness and surface energy of the laser-inscribed welding seams. We analyzed the influence of different processing parameters such as laser repetition rate and line separation on the fracture toughness and fracture surface energy. Welding the entire surface a fracture toughness of 0.71 {MPa} {m}^{1/2}, about 90 % of the pristine bulk material ({≈ } 0.8 {MPa} {m}^{1/2}), is obtained.

  20. Massively parallel multicanonical simulations

    NASA Astrophysics Data System (ADS)

    Gross, Jonathan; Zierenberg, Johannes; Weigel, Martin; Janke, Wolfhard

    2018-03-01

    Generalized-ensemble Monte Carlo simulations such as the multicanonical method and similar techniques are among the most efficient approaches for simulations of systems undergoing discontinuous phase transitions or with rugged free-energy landscapes. As Markov chain methods, they are inherently serial computationally. It was demonstrated recently, however, that a combination of independent simulations that communicate weight updates at variable intervals allows for the efficient utilization of parallel computational resources for multicanonical simulations. Implementing this approach for the many-thread architecture provided by current generations of graphics processing units (GPUs), we show how it can be efficiently employed with of the order of 104 parallel walkers and beyond, thus constituting a versatile tool for Monte Carlo simulations in the era of massively parallel computing. We provide the fully documented source code for the approach applied to the paradigmatic example of the two-dimensional Ising model as starting point and reference for practitioners in the field.

  1. Transmitter Pulse Estimation and Measurements for Airborne TDEM Systems

    NASA Astrophysics Data System (ADS)

    Vetrov, A.; Mejzr, I.

    2013-12-01

    The processing and interpretation of Airborne Time Domain EM data requires precise description of the transmitter parameters, including shape, amplitude and length of the transmitted pulse. There are several ways to measure pulse shape of the transmitter loop. Transmitted pulse can be recorded by a current monitor installed on the loop. The current monitor readings do not give exact image due to own time-domain physical characteristics of the current monitor. Another way is to restore the primary pulse shape from the receiver data recorded on-time, if such is possible. The receiver gives exact image of the primary field projection combined with the ground response, which can be minimized at high altitude pass, usually with a transmitter elevation higher than 1500 ft from the ground. The readings on the receiver are depending on receiver position and orientation. Modeling of airborne TDEM transmitter pulse allows us to compare estimated and measured shape of the pulse and apply required corrections. Airborne TDEM system transmitter pulse shape has been studied by authors while developing P-THEM system. The data has been gathered during in-doors and out-doors ground tests in Canada, as well as during flight tests in Canada and in India. The P-THEM system has three-axes receiver that is suspended on a tow-cable in the midpoint between the transmitter and the helicopter. The P-THEM receiver geometry does not require backing coils to dump the primary field. The system records full-wave data from the receiver and current monitor installed on the transmitter loop, including on-time and off-time data. The modeling of the transmitter pulse allowed us to define the difference between estimated and measured values. The higher accuracy pulse shape can be used for better data processing and interpretation. A developed model can be applied to similar systems and configurations.

  2. Development of a Specific Impulse Balance for a Pulsed Capillary Discharge (Preprint)

    DTIC Science & Technology

    2008-06-13

    thrust stand [rad/s] I. Introduction A capillary discharge based coaxial , electrothermal pulsed plasma thruster (PPT) is currently under...20-23 July 2008. 14. ABSTRACT A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research...Edwards AFB, CA 93524 A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research Laboratory. A

  3. An object-oriented approach to nested data parallelism

    NASA Technical Reports Server (NTRS)

    Sheffler, Thomas J.; Chatterjee, Siddhartha

    1994-01-01

    This paper describes an implementation technique for integrating nested data parallelism into an object-oriented language. Data-parallel programming employs sets of data called 'collections' and expresses parallelism as operations performed over the elements of a collection. When the elements of a collection are also collections, then there is the possibility for 'nested data parallelism.' Few current programming languages support nested data parallelism however. In an object-oriented framework, a collection is a single object. Its type defines the parallel operations that may be applied to it. Our goal is to design and build an object-oriented data-parallel programming environment supporting nested data parallelism. Our initial approach is built upon three fundamental additions to C++. We add new parallel base types by implementing them as classes, and add a new parallel collection type called a 'vector' that is implemented as a template. Only one new language feature is introduced: the 'foreach' construct, which is the basis for exploiting elementwise parallelism over collections. The strength of the method lies in the compilation strategy, which translates nested data-parallel C++ into ordinary C++. Extracting the potential parallelism in nested 'foreach' constructs is called 'flattening' nested parallelism. We show how to flatten 'foreach' constructs using a simple program transformation. Our prototype system produces vector code which has been successfully run on workstations, a CM-2, and a CM-5.

  4. An ablative pulsed plasma thruster with a segmented anode

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Ren, Junxue; Tang, Haibin; Ling, William Yeong Liang; York, Thomas M.

    2018-01-01

    An ablative pulsed plasma thruster (APPT) design with a ‘segmented anode’ is proposed in this paper. We aim to examine the effect that this asymmetric electrode configuration (a normal cathode and a segmented anode) has on the performance of an APPT. The magnetic field of the discharge arc, plasma density in the exit plume, impulse bit, and thrust efficiency were studied using a magnetic probe, Langmuir probe, thrust stand, and mass bit measurements, respectively. When compared with conventional symmetric parallel electrodes, the segmented anode APPT shows an improvement in the impulse bit of up to 28%. The thrust efficiency is also improved by 49% (from 5.3% to 7.9% for conventional and segmented designs, respectively). Long-exposure broadband emission images of the discharge morphology show that compared with a normal anode, a segmented anode results in clear differences in the luminous discharge morphology and better collimation of the plasma. The magnetic probe data indicate that the segmented anode APPT exhibits a higher current density in the discharge arc. Furthermore, Langmuir probe data collected from the central exit plane show that the peak electron density is 75% higher than with conventional parallel electrodes. These results are believed to be fundamental to the physical mechanisms behind the increased impulse bit of an APPT with a segmented electrode.

  5. Shaped saturation with inherent radiofrequency-power-efficient trajectory design in parallel transmission.

    PubMed

    Schneider, Rainer; Haueisen, Jens; Pfeuffer, Josef

    2014-10-01

    A target-pattern-driven (TD) trajectory design is introduced in combination with parallel transmit (pTX) radiofrequency (RF) pulses to provide localized suppression of unwanted signals. The design incorporates target-pattern and B1+ information to adjust denser sampling and coverage in k-space regions where the main pattern information lies. Based on this approach, two-dimensional RF spiral saturation pulses sensitive to RF power limits were applied in vivo for the first time. The TD method was compared with two state-of-the-art spiral design methods. Simulations at different spatial fidelities, acceleration factors and anatomical regions were carried out for an eight-channel pTX 3 Tesla (T) coil. Human in vivo experiments were performed on a two-channel pTX 3T scanner saturating shaped patterns in the brain, heart, and thoracic spine. Using the TD trajectory, RF pulse power can be substantially reduced by up to 34% compared with other trajectory designs with the same spatial accuracy. Local and global specific absorption rates are decreased in most cases. The TD trajectory design uses available a priori information to enhance RF power efficiency and spatial response of the RF pulses. Shaped saturation pulses show improved spatial accuracy and saturation performance. Thus, RF pulses can be designed more efficiently and can be further accelerated. Copyright © 2013 Wiley Periodicals, Inc.

  6. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study.

    PubMed

    Datta, Abhishek; Dmochowski, Jacek P; Guleyupoglu, Berkan; Bikson, Marom; Fregni, Felipe

    2013-01-15

    The field of non-invasive brain stimulation has developed significantly over the last two decades. Though two techniques of noninvasive brain stimulation--transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS)--are becoming established tools for research in neuroscience and for some clinical applications, related techniques that also show some promising clinical results have not been developed at the same pace. One of these related techniques is cranial electrotherapy stimulation (CES), a class of transcranial pulsed current stimulation (tPCS). In order to understand further the mechanisms of CES, we aimed to model CES using a magnetic resonance imaging (MRI)-derived finite element head model including cortical and also subcortical structures. Cortical electric field (current density) peak intensities and distributions were analyzed. We evaluated different electrode configurations of CES including in-ear and over-ear montages. Our results confirm that significant amounts of current pass the skull and reach cortical and subcortical structures. In addition, depending on the montage, induced currents at subcortical areas, such as midbrain, pons, thalamus and hypothalamus are of similar magnitude than that of cortical areas. Incremental variations of electrode position on the head surface also influence which cortical regions are modulated. The high-resolution modeling predictions suggest that details of electrode montage influence current flow through superficial and deep structures. Finally we present laptop based methods for tPCS dose design using dominant frequency and spherical models. These modeling predictions and tools are the first step to advance rational and optimized use of tPCS and CES. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    PubMed

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  8. Femtosecond laser-induced periodic surface structures on silicon upon polarization controlled two-color double-pulse irradiation.

    PubMed

    Höhm, Sandra; Herzlieb, Marcel; Rosenfeld, Arkadi; Krüger, Jörg; Bonse, Jörn

    2015-01-12

    Two-color double-fs-pulse experiments were performed on silicon wafers to study the temporally distributed energy deposition in the formation of laser-induced periodic surface structures (LIPSS). A Mach-Zehnder interferometer generated parallel or cross-polarized double-pulse sequences at 400 and 800 nm wavelength, with inter-pulse delays up to a few picoseconds between the sub-ablation 50-fs-pulses. Multiple two-color double-pulse sequences were collinearly focused by a spherical mirror to the sample. The resulting LIPSS characteristics (periods, areas) were analyzed by scanning electron microscopy. A wavelength-dependent plasmonic mechanism is proposed to explain the delay-dependence of the LIPSS. These two-color experiments extend previous single-color studies and prove the importance of the ultrafast energy deposition for LIPSS formation.

  9. Pulsed eddy current inspection of broach support plates in steam generators

    NASA Astrophysics Data System (ADS)

    Mokros, Sarah Gwendolyn

    Steam Generators (SGs) are a critical component of nuclear reactors, employing thousands of SG tubes to convert heat generated in the reactor core into useable energy. SG tubes are supported at numerous locations by Broach Support Plates (BSPs) that have trefoil shaped holes, which prevent excessive tube vibrations, while allowing water to easily flow through the support structures. A number of degradation modes occur in SGs, such as SG tube fretting, cracking or denting, requiring periodic inspection. Currently, conventional Eddy Current Testing (ECT) is used to non-destructively assess the condition of SG tubes and components. However, as reactors age, new modes of degradation will likely appear that may be difficult to detect and characterize using conventional ECT, such as wall loss in BSPs and build-up of corrosion products, which typically form as a hard sludge called magnetite. Pulsed Eddy Current (PEC) technologies are an emerging technique that is presented in this work as a method to further advance inspection techniques used in CANDURTM nuclear reactors. A PEC probe was designed to inspect the unique shape of the trefoil shaped hole to detect and characterize wall loss and the presence of magnetite in A516 carbon steel BSPs with trefoil shaped holes from within 15.9 mm (5/8") Alloy-800 SG tubes. PEC was also used to observe how measurements of wall loss were affected by the presence of magnetite. This work presents Finite Element Method (FEM) simulations and experimental results collected to observe these degradation modes. The probe was demonstrated to be capable of detecting far side wall loss as low as 20%, locating and characterizing the relative permeability of magnetite, and of detecting wall loss when magnetite was present. FEM simulations and experimental results were found to be in good agreement, suggesting that additional investigations of the effects of BSP degradation on PEC signal response may also be performed using FEM models.

  10. A survey of parallel programming tools

    NASA Technical Reports Server (NTRS)

    Cheng, Doreen Y.

    1991-01-01

    This survey examines 39 parallel programming tools. Focus is placed on those tool capabilites needed for parallel scientific programming rather than for general computer science. The tools are classified with current and future needs of Numerical Aerodynamic Simulator (NAS) in mind: existing and anticipated NAS supercomputers and workstations; operating systems; programming languages; and applications. They are divided into four categories: suggested acquisitions, tools already brought in; tools worth tracking; and tools eliminated from further consideration at this time.

  11. Propagation of current pulses with an amplitude of up to 85 kA in soil over distances of several tens of meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, V. P.; Fortov, V. E.; Bykov, Yu. A.

    Conditions for the propagation in soil of current pulses with an amplitude of up to 85 kA and temporal characteristics typical of a lightning stroke are studied with the help of a specially designed mobile test complex on the basis of a 4-MJ capacitive energy storage with an output voltage of up to 2 MV. In contrast to the conventional opinion that the ionization processes in highly conductive soils are weakly pronounced, a dramatic reduction in the grounding resistance at a resistivity of about 100 Ω m and currents above 10 kA was observed. A time interval in which themore » grounding resistance is determined by the skin effect in soil is revealed. It is shown that the grounding resistance continues to decrease behind the front of the current pulse due to the continuous growth of spark channels in soil. Time variations in the grounding resistance cannot be related to the formation of a continuous ionization zone near the grounding electrodes and are explained only by the simultaneous growth of several long spark channels extending from the grounding device.« less

  12. Observing with HST V: Improvements to the Scheduling of HST Parallel Observations

    NASA Astrophysics Data System (ADS)

    Taylor, D. K.; Vanorsow, D.; Lucks, M.; Henry, R.; Ratnatunga, K.; Patterson, A.

    1994-12-01

    Recent improvements to the Hubble Space Telescope (HST) ground system have significantly increased the frequency of pure parallel observations, i.e. the simultaneous use of multiple HST instruments by different observers. Opportunities for parallel observations are limited by a variety of timing, hardware, and scientific constraints. Formerly, such opportunities were heuristically predicted prior to the construction of the primary schedule (or calendar), and lack of complete information resulted in high rates of scheduling failures and missed opportunities. In the current process the search for parallel opportunities is delayed until the primary schedule is complete, at which point new software tools are employed to identify places where parallel observations are supported. The result has been a considerable increase in parallel throughput. A new technique, known as ``parallel crafting,'' is currently under development to streamline further the parallel scheduling process. This radically new method will replace the standard exposure logsheet with a set of abstract rules from which observation parameters will be constructed ``on the fly'' to best match the constraints of the parallel opportunity. Currently, parallel observers must specify a huge (and highly redundant) set of exposure types in order to cover all possible types of parallel opportunities. Crafting rules permit the observer to express timing, filter, and splitting preferences in a far more succinct manner. The issue of coordinated parallel observations (same PI using different instruments simultaneously), long a troublesome aspect of the ground system, is also being addressed. For Cycle 5, the Phase II Proposal Instructions now have an exposure-level PAR WITH special requirement. While only the primary's alignment will be scheduled on the calendar, new commanding will provide for parallel exposures with both instruments.

  13. Implementation of Multivariable Logic Functions in Parallel by Electrically Addressing a Molecule of Three Dopants in Silicon.

    PubMed

    Fresch, Barbara; Bocquel, Juanita; Hiluf, Dawit; Rogge, Sven; Levine, Raphael D; Remacle, Françoise

    2017-07-05

    To realize low-power, compact logic circuits, one can explore parallel operation on single nanoscale devices. An added incentive is to use multivalued (as distinct from Boolean) logic. Here, we theoretically demonstrate that the computation of all the possible outputs of a multivariate, multivalued logic function can be implemented in parallel by electrical addressing of a molecule made up of three interacting dopant atoms embedded in Si. The electronic states of the dopant molecule are addressed by pulsing a gate voltage. By simulating the time evolution of the non stationary electronic density built by the gate voltage, we show that one can implement a molecular decision tree that provides in parallel all the outputs for all the inputs of the multivariate, multivalued logic function. The outputs are encoded in the populations and in the bond orders of the dopant molecule, which can be measured using an STM tip. We show that the implementation of the molecular logic tree is equivalent to a spectral function decomposition. The function that is evaluated can be field-programmed by changing the time profile of the pulsed gate voltage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Novel Transcranial Magnetic Stimulator Inducing Near Rectangular Pulses with Controllable Pulse Width (cTMS)

    PubMed Central

    Jalinous, Reza; Lisanby, Sarah H.

    2013-01-01

    A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369

  15. Late Holocene distal mud deposits off the Nakdong delta, SE Korea: evidence for shore-parallel sediment transport in a current-dominated setting

    NASA Astrophysics Data System (ADS)

    Chun, Jong-Hwa; Kim, Yuri; Bahk, Jang-Jun; Kim, Young Jun; Kang, Dong-Hyo; Kim, Yong Hoon; Kim, Gil Young; Ryu, Byong-Jae

    2015-12-01

    The distal mud deposits (DMDs) off the Nakdong delta represent a subaqueous delta on the inner continental shelf aligned parallel to the southeast coast of Korea and displaying a clinoform geometry. Hydrographically, the coast is characterized by a micro-tidal regime, the strong Korean Coastal Current (KCC) and the East Korean Warm Current (EKWC). Age models and sedimentary facies related to the clinoform geometries are based on high-resolution chirp subbottom profile data and have provided information on shore-parallel sediment transport and accumulation during the late Holocene sea-level highstand. The highest sedimentation rates (6.19-9.17 cm/year) produced steep foresets in the central DMDs at water depths of 35-50 m. Here, vertical burrows are repeatedly truncated by laminated mud packages displaying erosional surfaces. This region represents the main depocenter of the Nakdong subaqueous delta. The topset sediments of the southern DMD at ~40 m water depth closer to the river mouth show relatively low sedimentation rates (0.01-0.12 cm/year). Here, the muds have a predominantly mottled character. Similarly, the foreset sediments of the northern DMD at ~71-80 m water depth with sedimentation rates of 0.10-2.03 cm/year are also predominantly characterized by mottled muds. The spatial dispersal pattern of the DMDs is consistent with the coast-parallel front between the KCC and EKWC along the southeast Korean coast. In addition, the depocenter of the Nakdong subaqueous delta clinoform is affected by the near-bed turbulence generated by episodic storm events.

  16. Module Six: Parallel Circuits; Basic Electricity and Electronics Individualized Learning System.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    In this module the student will learn the rules that govern the characteristics of parallel circuits; the relationships between voltage, current, resistance and power; and the results of common troubles in parallel circuits. The module is divided into four lessons: rules of voltage and current, rules for resistance and power, variational analysis,…

  17. Coherent combining pulse bursts in time domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvanauskas, Almantas

    A beam combining and pulse stacking technique is provided that enhances laser pulse energy by coherent stacking pulse bursts (i.e. non-periodic pulsed signals) in time domain. This energy enhancement is achieved by using various configurations of Fabry-Perot, Gires-Tournois and other types of resonant cavities, so that a multiple-pulse burst incident at either a single input or multiple inputs of the system produces an output with a solitary pulse, which contains the summed energy of the incident multiple pulses from all beams. This disclosure provides a substantial improvement over conventional coherent-combining methods in that it achieves very high pulse energies usingmore » a relatively small number of combined laser systems, thus providing with orders of magnitude reduction in system size, complexity, and cost compared to current combining approaches.« less

  18. Pulsed thermionic converter study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A nuclear electric propulsion concept using a thermionic reactor inductively coupled to a magnetoplasmadynamic accelerator (MPD arc jet) is described, and the results of preliminary analyses are presented. In this system, the MPD thruster operates intermittently at higher voltages and power levels than the thermionic generating unit. A typical thrust pulse from the MPD arc jet is characterized by power levels of 1 to 4 MWe, a duration of 1 msec, and a duty cycle of approximately 20%. The thermionic generating unit operates continuously but with a lower power level of approximately 0.4 MWe. Energy storage between thrust pulses is provided by building up a large current in an inductor using the output of the thermionic converter array. Periodically, the charging current is interrupted, and the energy stored in the magnetic field of the inductor is utilized for a short duration thrust pulse. The results of the preliminary analysis show that a coupling effectiveness of approximately 85 to 90% is feasible for a nominal 400 KWe system with an inductive unit suitable for a flight vehicle.

  19. Field-parallel Acceleration: Comment on the Paper “Electric Currents on the Flare Ribbons: Observations and Standard Model” by Janvier et al. (2014, ApJ, 788, 60)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haerendel, G.

    It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of order 10{sup 4} A m{sup −2}. A few consequences are discussed here.

  20. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  1. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  2. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    PubMed

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  3. Parallel multigrid smoothing: polynomial versus Gauss-Seidel

    NASA Astrophysics Data System (ADS)

    Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray

    2003-07-01

    Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.

  4. Cryosurgery with pulsed electric fields.

    PubMed

    Daniels, Charlotte S; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  5. Cryosurgery with Pulsed Electric Fields

    PubMed Central

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  6. An optimized design to reduce eddy current sensitivity in velocity-selective arterial spin labeling using symmetric BIR-8 pulses.

    PubMed

    Guo, Jia; Meakin, James A; Jezzard, Peter; Wong, Eric C

    2015-03-01

    Velocity-selective arterial spin labeling (VSASL) tags arterial blood on a velocity-selective (VS) basis and eliminates the tagging/imaging gap and associated transit delay sensitivity observed in other ASL tagging methods. However, the flow-weighting gradient pulses in VS tag preparation can generate eddy currents (ECs), which may erroneously tag the static tissue and create artificial perfusion signal, compromising the accuracy of perfusion quantification. A novel VS preparation design is presented using an eight-segment B1 insensitive rotation with symmetric radio frequency and gradient layouts (sym-BIR-8), combined with delays after gradient pulses to optimally reduce ECs of a wide range of time constants while maintaining B0 and B1 insensitivity. Bloch simulation, phantom, and in vivo experiments were carried out to determine robustness of the new and existing pulse designs to ECs, B0 , and B1 inhomogeneity. VSASL with reduced EC sensitivity across a wide range of EC time constants was achieved with the proposed sym-BIR-8 design, and the accuracy of cerebral blood flow measurement was improved. The sym-BIR-8 design performed the most robustly among the existing VS tagging designs, and should benefit studies using VS preparation with improved accuracy and reliability. © 2014 Wiley Periodicals, Inc.

  7. Parallel stochastic simulation of macroscopic calcium currents.

    PubMed

    González-Vélez, Virginia; González-Vélez, Horacio

    2007-06-01

    This work introduces MACACO, a macroscopic calcium currents simulator. It provides a parameter-sweep framework which computes macroscopic Ca(2+) currents from the individual aggregation of unitary currents, using a stochastic model for L-type Ca(2+) channels. MACACO uses a simplified 3-state Markov model to simulate the response of each Ca(2+) channel to different voltage inputs to the cell. In order to provide an accurate systematic view for the stochastic nature of the calcium channels, MACACO is composed of an experiment generator, a central simulation engine and a post-processing script component. Due to the computational complexity of the problem and the dimensions of the parameter space, the MACACO simulation engine employs a grid-enabled task farm. Having been designed as a computational biology tool, MACACO heavily borrows from the way cell physiologists conduct and report their experimental work.

  8. Acceleration Modes and Transitions in Pulsed Plasma Accelerators

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Greve, Christine M.

    2018-01-01

    Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma

  9. Reduction of pressure ulcer size with high-voltage pulsed current and high-frequency ultrasound: a randomised trial.

    PubMed

    Polak, A; Taradaj, J; Nawrat-Szoltysik, A; Stania, M; Dolibog, P; Blaszczak, E; Zarzeczny, R; Juras, G; Franek, A; Kucio, C

    2016-12-02

    International guidelines recommend the use of ultrasound (US) and electrical stimulation (ES) for treating chronic and recurrent pressure ulcers (PUs). The methodology of these procedures, however, still needs elaboration and confirmation by clinical studies. This parallel-group, randomised, single-blind, prospective, controlled clinical trial was conducted to determine whether by using high-frequency ultrasound (HFUS) and high-voltage monophasic pulsed current (HVMPC), the rate of change in the area of older patients' PUs can be accelerated. Patients were randomly assigned to receive either: standard wound care (SWC) involving supportive care and topical treatments; SWC+US (1MHz; 0.5 W/cm 2 ; 20%; 1-3 minutes/cm2); or SWC+ES (HVMPC, 154 µs, 100 pps, 100 V, 250 µC/sec, 50 minutes/day). US and ES were administered once a day, 5 days a week. The primary outcome was change in PU surface area measured against baseline after 6 weeks of treatment with SWC, SWC+US, and SWC+ES. We recruited 77 patients, aged 60-95 years (80% aged over 70 years of age), with 88 Category II, III and IV PUs were enrolled in the study. The percentage reduction in the surface area of PUs at the end of treatment was significantly greater in the SWC+US group (mean ± standard deviation, 77.48±11.59 %; p=0.024) and the SWC+ES group (76.19±32.83%; p=0.030) versus the control group (48.97±53.42%). The SWC+ES group also had a significantly greater proportion of PUs that decreased in area by at least 50% or closed than the control group (p=0.05 and 0.031, respectively). The SWC+US and SWC+ES groups were not statistically significant different regarding treatment results. Clinical side effects were not recorded. The results show that HFUS and HVMPC are comparable regarding their effectiveness in reducing the size of PUs in older people. The authors have nothing to disclose. All research activities were funded by the Academy of Physical Education, Katowice, Poland.

  10. Base drive for paralleled inverter systems

    NASA Technical Reports Server (NTRS)

    Nagano, S. (Inventor)

    1980-01-01

    In a paralleled inverter system, a positive feedback current derived from the total current from all of the modules of the inverter system is applied to the base drive of each of the power transistors of all modules, thereby to provide all modules protection against open or short circuit faults occurring in any of the modules, and force equal current sharing among the modules during turn on of the power transistors.

  11. Fabrication of a porous material with a porosity gradient by a pulsed electric current sintering process

    NASA Astrophysics Data System (ADS)

    Suk, Myung-Jin; Choi, Sung-II; Kim, Ji-Soon; Kim, Young Do; Kwon, Young-Soon

    2003-12-01

    A porous structure with a porosity gradient can be applied to the preparation of continuous FGM, where liquid or chemical vapor of the second phase is infiltrated into the graded pores. It also has applications in skeletal implant materials and ultrafiltration media. An attempt was made to fabricate a porous material with a porosity gradient by means of a pulsed electric current sintering (PECS) process. The present work describes not only the measured value of the temperature difference between the upper and lower part of the specimen, which brings about a gradual change in pore distribution, but also the sintering characteristics of the porous structure obtained by the pressureless PECS process.

  12. Analysis of series resonant converter with series-parallel connection

    NASA Astrophysics Data System (ADS)

    Lin, Bor-Ren; Huang, Chien-Lan

    2011-02-01

    In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.

  13. Numerical calculation and experimental research on crack arrest by detour effect and joule heating of high pulsed current in remanufacturing

    NASA Astrophysics Data System (ADS)

    Yu, Jing; Zhang, Hongchao; Deng, Dewei; Hao, Shengzhi; Iqbal, Asif

    2014-07-01

    The remanufacturing blanks with cracks were considered as irreparable. With utilization of detour effect and Joule heating of pulsed current, a technique to arrest the crack in martensitic stainless steel FV520B is developed. According to finite element theory, the finite element(FE) model of the cracked rectangular specimen is established firstly. Then, based on electro-thermo-structure coupled theory, the distributions of current density, temperature field, and stress field are calculated for the instant of energizing. Furthermore, the simulation results are verified by some corresponding experiments performed on high pulsed current discharge device of type HCPD-I. Morphology and microstructure around the crack tip before and after electro pulsing treatment are observed by optical microscope(OM) and scanning electron microscope(SEM), and then the diameters of fusion zone and heat affected zone(HAZ) are measured in order to contrast with numerical calculation results. Element distribution, nano-indentation hardness and residual stress in the vicinity of the crack tip are surveyed by energy dispersive spectrometer(EDS), scanning probe microscopy(SPM) and X-ray stress gauge, respectively. The results show that the obvious partition and refined grain around the crack tip can be observed due to the violent temperature change. The contents of carbon and oxygen in fusion zone and HAZ are higher than those in matrix, and however the hardness around the crack tip decreases. Large residual compressive stress is induced in the vicinity of the crack tip and it has the same order of magnitude for measured results and numerical calculation results that is 100 MPa. The relational curves between discharge energies and diameters of the fusion zone and HAZ are obtained by experiments. The difference of diameter of fusion zone between measured and calculated results is less than 18.3%. Numerical calculation is very useful to define the experimental parameters. An effective method

  14. Real-time processing of radar return on a parallel computer

    NASA Technical Reports Server (NTRS)

    Aalfs, David D.

    1992-01-01

    NASA is working with the FAA to demonstrate the feasibility of pulse Doppler radar as a candidate airborne sensor to detect low altitude windshears. The need to provide the pilot with timely information about possible hazards has motivated a demand for real-time processing of a radar return. Investigated here is parallel processing as a means of accommodating the high data rates required. A PC based parallel computer, called the transputer, is used to investigate issues in real time concurrent processing of radar signals. A transputer network is made up of an array of single instruction stream processors that can be networked in a variety of ways. They are easily reconfigured and software development is largely independent of the particular network topology. The performance of the transputer is evaluated in light of the computational requirements. A number of algorithms have been implemented on the transputers in OCCAM, a language specially designed for parallel processing. These include signal processing algorithms such as the Fast Fourier Transform (FFT), pulse-pair, and autoregressive modelling, as well as routing software to support concurrency. The most computationally intensive task is estimating the spectrum. Two approaches have been taken on this problem, the first and most conventional of which is to use the FFT. By using table look-ups for the basis function and other optimizing techniques, an algorithm has been developed that is sufficient for real time. The other approach is to model the signal as an autoregressive process and estimate the spectrum based on the model coefficients. This technique is attractive because it does not suffer from the spectral leakage problem inherent in the FFT. Benchmark tests indicate that autoregressive modeling is feasible in real time.

  15. A Study of Applying Pulsed Remote Field Eddy Current in Ferromagnetic Pipes Testing

    PubMed Central

    Luo, Qingwang; Shi, Yibing; Wang, Zhigang; Zhang, Wei; Li, Yanjun

    2017-01-01

    Pulsed Remote Field Eddy Current Testing (PRFECT) attracts the attention in the testing of ferromagnetic pipes because of its continuous spectrum. This paper simulated the practical PRFECT of pipes by using ANSYS software and employed Least Squares Support Vector Regression (LSSVR) to extract the zero-crossing time to analyze the pipe thickness. As a result, a secondary peak is found in zero-crossing time when transmitter passed by a defect. The secondary peak will lead to wrong quantification and the localization of defects, especially when defects are found only at the transmitter location. Aiming to eliminate the secondary peaks, double sensing coils are set in the transition zone and Wiener deconvolution filter is applied. In the proposed method, position dependent response of the differential signals from the double sensing coils is calibrated by employing zero-mean normalization. The methods proposed in this paper are validated by analyzing the simulation signals and can improve the practicality of PRFECT of ferromagnetic pipes. PMID:28475141

  16. Pulsed counter-current ultrasound-assisted extraction and characterization of polysaccharides from Boletus edulis.

    PubMed

    You, Qinghong; Yin, Xiulian; Ji, Chaowen

    2014-01-30

    Four methods for extracting polysaccharides from Boletus edulis, namely, hot-water extraction, ultrasonic clearer extraction, static probe ultrasonic extraction, and pulsed counter-current probe ultrasonic extraction (CCPUE), were studied. Results showed that CCPUE has the highest extraction efficiency among the methods studied. Under optimal CCPUE conditions, a B. edulis polysaccharide (BEP) yield of 8.21% was obtained. Three purified fractions, BEP-I, BEP-II, and BEP-III, were obtained through sequential purification by DEAE-52 and Sephadex G-75 chromatography. The average molecular weights of BEP-I, BEP-II, and BEP-III were 10,278, 23,761, and 42,736 Da, respectively. The polysaccharides were mainly composed of xylose, mannose, galactose, and glucose; of these, mannose contents were the highest. The antioxidant activities of the BEPs were further investigated by measurement of their ability to scavenge DPPH and hydroxyl radicals as well as their reducing power. The results indicated that the BEPs have good antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. A Study of Applying Pulsed Remote Field Eddy Current in Ferromagnetic Pipes Testing.

    PubMed

    Luo, Qingwang; Shi, Yibing; Wang, Zhigang; Zhang, Wei; Li, Yanjun

    2017-05-05

    Pulsed Remote Field Eddy Current Testing (PRFECT) attracts the attention in the testing of ferromagnetic pipes because of its continuous spectrum. This paper simulated the practical PRFECT of pipes by using ANSYS software and employed Least Squares Support Vector Regression (LSSVR) to extract the zero-crossing time to analyze the pipe thickness. As a result, a secondary peak is found in zero-crossing time when transmitter passed by a defect. The secondary peak will lead to wrong quantification and the localization of defects, especially when defects are found only at the transmitter location. Aiming to eliminate the secondary peaks, double sensing coils are set in the transition zone and Wiener deconvolution filter is applied. In the proposed method, position dependent response of the differential signals from the double sensing coils is calibrated by employing zero-mean normalization. The methods proposed in this paper are validated by analyzing the simulation signals and can improve the practicality of PRFECT of ferromagnetic pipes.

  18. Control and protection system for paralleled modular static inverter-converter systems

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.; Gourash, F.

    1973-01-01

    A control and protection system was developed for use with a paralleled 2.5-kWe-per-module static inverter-converter system. The control and protection system senses internal and external fault parameters such as voltage, frequency, current, and paralleling current unbalance. A logic system controls contactors to isolate defective power conditioners or loads. The system sequences contactor operation to automatically control parallel operation, startup, and fault isolation. Transient overload protection and fault checking sequences are included. The operation and performance of a control and protection system, with detailed circuit descriptions, are presented.

  19. Optical surgical navigation system causes pulse oximeter malfunction.

    PubMed

    Satoh, Masaaki; Hara, Tetsuhito; Tamai, Kenji; Shiba, Juntaro; Hotta, Kunihisa; Takeuchi, Mamoru; Watanabe, Eiju

    2015-01-01

    An optical surgical navigation system is used as a navigator to facilitate surgical approaches, and pulse oximeters provide valuable information for anesthetic management. However, saw-tooth waves on the monitor of a pulse oximeter and the inability of the pulse oximeter to accurately record the saturation of a percutaneous artery were observed when a surgeon started an optical navigation system. The current case is thought to be the first report of this navigation system interfering with pulse oximetry. The causes of pulse jamming and how to manage an optical navigation system are discussed.

  20. Stringlike Pulse Quantification Study by Pulse Wave in 3D Pulse Mapping

    PubMed Central

    Chung, Yu-Feng; Yeh, Cheng-Chang; Si, Xiao-Chen; Chang, Chien-Chen; Hu, Chung-Shing; Chu, Yu-Wen

    2012-01-01

    Abstract Background A stringlike pulse is highly related to hypertension, and many classification approaches have been proposed in which the differentiation pulse wave (dPW) can effectively classify the stringlike pulse indicating hypertension. Unfortunately, the dPW method cannot distinguish the spring stringlike pulse from the stringlike pulse so labeled by physicians in clinics. Design By using a Bi-Sensing Pulse Diagnosis Instrument (BSPDI), this study proposed a novel Plain Pulse Wave (PPW) to classify a stringlike pulse based on an array of pulse signals, mimicking a Traditional Chinese Medicine physician's finger-reading skill. Results In comparison to PPWs at different pulse taking positions, phase delay Δθand correlation coefficient r can be elucidated as the quantification parameters of stringlike pulse. As a result, the recognition rates of a hypertensive stringlike pulse, spring stringlike pulse, and non–stringlike pulse are 100%, 100%, 77% for PPW and 70%, 0%, 59% for dPW, respectively. Conclusions Integrating dPW and PPW can unify the classification of stringlike pulse including hypertensive stringlike pulse and spring stringlike pulse. Hence, the proposed novel method, PPW, enhances quantification of stringlike pulse. PMID:23057481

  1. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B; Kapetanakos, C A

    2004-06-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, < 10(-8). Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated.

  2. A contraction-related component of slow inward current in dog ventricular muscle and its relation to Na(+)-Ca2+ exchange.

    PubMed Central

    Simurda, J; Simurdová, M; Bravený, P; Sumbera, J

    1992-01-01

    1. The slow inward current component related to contraction (Isic) was studied in voltage clamp experiments on canine ventricular trabeculae at 30 degrees C with the aims of (a) estimating its relation to electrogenic Na(+)-Ca2+ exchange and (b) comparing it with similar currents as reported in cardiac myocytes. 2. Isic may be recorded under conditions of augmented contractility in response to depolarizing pulses below the threshold of the classic slow inward current (presumably mediated by L-type Ca2+ channels). In responses to identical depolarizing clamp pulses the peak value of Isic is directly related to the amplitude of contraction (Fmax). Isic peaks about 60 ms after the onset of depolarization and declines with a half-time of about 110 ms. 3. The voltage threshold of Isic activation is the same as the threshold of contraction. The positive inotropic clamp preconditions shift both thresholds to more negative values of membrane voltage, i.e. below the threshold of the classic slow inward current. 4. Isic may also be recorded as a slowly decaying inwardly directed current 'tail' after depolarizing pulses. In this representation the peak value of Isic changes with duration of the depolarizing pulses, again in parallel with Fmax. In response to pulses shorter than 100 ms both variables increase with depolarization time. If initial conditions remain constant, further prolongation of the pulse does not significantly influence either one (tail currents follow a common envelope). 5. Isic differs from classic slow inward current by: (a) its direct relation to contraction, (b) the slower decay of the current tail on repolarization, (c) slower restitution corresponding to the mechanical restitution, (d) its relative insensitivity to Ca(2+)-blocking agents (the decrease of Isic is secondary to the negative inotropic of Ca(2+)-blocking agents (the decrease of Isic is secondary to the negative inotropic effect) and (e) its disappearance after Sr2+ substitution for Ca2+. 6

  3. Forward voltage short-pulse technique for measuring high power laser array junction temperature

    NASA Technical Reports Server (NTRS)

    Meadows, Byron L. (Inventor); Amzajerdian, Frazin (Inventor); Barnes, Bruce W. (Inventor); Baker, Nathaniel R. (Inventor)

    2012-01-01

    The present invention relates to a method of measuring the temperature of the P-N junction within the light-emitting region of a quasi-continuous-wave or pulsed semiconductor laser diode device. A series of relatively short and low current monitor pulses are applied to the laser diode in the period between the main drive current pulses necessary to cause the semiconductor to lase. At the sufficiently low current level of the monitor pulses, the laser diode device does not lase and behaves similar to an electronic diode. The voltage across the laser diode resulting from each of these low current monitor pulses is measured with a high degree of precision. The junction temperature is then determined from the measured junction voltage using their known linear relationship.

  4. Ultra-short ion and neutron pulse production

    DOEpatents

    Leung, Ka-Ngo; Barletta, William A.; Kwan, Joe W.

    2006-01-10

    An ion source has an extraction system configured to produce ultra-short ion pulses, i.e. pulses with pulse width of about 1 .mu.s or less, and a neutron source based on the ion source produces correspondingly ultra-short neutron pulses. To form a neutron source, a neutron generating target is positioned to receive an accelerated extracted ion beam from the ion source. To produce the ultra-short ion or neutron pulses, the apertures in the extraction system of the ion source are suitably sized to prevent ion leakage, the electrodes are suitably spaced, and the extraction voltage is controlled. The ion beam current leaving the source is regulated by applying ultra-short voltage pulses of a suitable voltage on the extraction electrode.

  5. Alignment and pulse-duration effects in two-photon double ionization of H2 by femtosecond XUV laser pulses

    NASA Astrophysics Data System (ADS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I.; Koesterke, Lars

    2014-10-01

    We present calculations for the dependence of the two-photon double ionization (DI) of H2 on the relative orientation of the linear laser polarization to the internuclear axis and the length of the pulse. We use the fixed-nuclei approximation at the equilibrium distance of 1.4 a0, where a0=0.529 ×10-10m is the Bohr radius. Central photon energies cover the entire direct DI domain from 26.5 to 34.0 eV. In contrast to the parallel geometry studied earlier [X. Guan, K. Bartschat, B. I. Schneider, and L. Koesterke, Phys. Rev. A 83, 043403 (2011), 10.1103/PhysRevA.83.043403], the effect of the pulse duration is almost negligible for the case when the two axes are perpendicular to each other. This is a consequence of the symmetry rules for dipole excitation in the two cases. In the parallel geometry, doubly excited states of 1Σu+ symmetry affect the cross section, while in the perpendicular geometry only much longer-lived 1Πu states are present. This accounts for the different convergence patterns observed in the calculated cross sections as a function of the pulse length. When the photon energy approaches the threshold of sequential DI, a sharp increase of the generalized total cross section (GTCS) with increasing pulse duration is also observed in the perpendicular geometry, very similar to the case of the molecular axis being oriented along the laser polarization direction. Our results differ from those of Colgan et al. [J. Colgan, M. S. Pindzola, and F. Robicheaux, J. Phys. B 41, 121002 (2008), 10.1088/0953-4075/41/12/121002] and Morales et al. [F. Morales, F. Martín, D. A. Horner, T. N. Rescigno, and C. W. McCurdy, J. Phys. B 42, 134013 (2009), 10.1088/0953-4075/42/13/134013], but are in excellent agreement with the GTCSs of Simonsen et al. [A. S. Simonsen, S. A. Sørngård, R. Nepstad, and M. Førre, Phys. Rev. A 85, 063404 (2012), 10.1103/PhysRevA.85.063404] over the entire domain of direct DI.

  6. Aeroelasticity of wing and wing-body configurations on parallel computers

    NASA Technical Reports Server (NTRS)

    Byun, Chansup

    1995-01-01

    The objective of this research is to develop computationally efficient methods for solving aeroelasticity problems on parallel computers. Both uncoupled and coupled methods are studied in this research. For the uncoupled approach, the conventional U-g method is used to determine the flutter boundary. The generalized aerodynamic forces required are obtained by the pulse transfer-function analysis method. For the coupled approach, the fluid-structure interaction is obtained by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.

  7. Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center.

    PubMed

    Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz

    2013-12-01

    Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.

  8. Pulsing frequency induced change in optical constants and dispersion energy parameters of WO{sub 3} films grown by pulsed direct current magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punitha, K.; Sivakumar, R., E-mail: krsivakumar1979@yahoo.com; Sanjeeviraja, C.

    2014-03-21

    In this work, we present the pulsing frequency induced change in the structural, optical, vibrational, and luminescence properties of tungsten oxide (WO{sub 3}) thin films deposited on microscopic glass and fluorine doped tin oxide (SnO{sub 2}:F) coated glass substrates by pulsed dc magnetron sputtering technique. The WO{sub 3} films deposited on SnO{sub 2}:F substrate belongs to monoclinic phase. The pulsing frequency has a significant influence on the preferred orientation and crystallinity of WO{sub 3} film. The maximum optical transmittance of 85% was observed for the film and the slight shift in transmission threshold towards higher wavelength region with increasing pulsingmore » frequency revealed the systematic reduction in optical energy band gap (3.78 to 3.13 eV) of the films. The refractive index (n) of films are found to decrease (1.832 to 1.333 at 550 nm) with increasing pulsing frequency and the average value of extinction coefficient (k) is in the order of 10{sup −3}. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion energy (E{sub d}) parameters, dielectric constants, plasma frequency, oscillator strength, and oscillator energy (E{sub o}) of WO{sub 3} films were calculated and reported for the first time due to variation in pulsing frequency during deposition by pulsed dc magnetron sputtering. The E{sub o} is change between 6.30 and 3.88 eV, while the E{sub d} varies from 25.81 to 7.88 eV, with pulsing frequency. The Raman peak observed at 1095 cm{sup −1} attributes the presence of W-O symmetric stretching vibration. The slight shift in photoluminescence band is attributed to the difference in excitons transition. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.« less

  9. Low Voltage Electrolytic Capacitor Pulse Forming Inductive Network for Electric Weapons

    DTIC Science & Technology

    2006-06-01

    reliable high- current, high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor ...high-energy pulses of many megawatts. Pulsed alternators potentially have the same maintenance issues as other motor -generator sets, so a solid...Rotating Flywheel) Pulse Forming Network Compensated Pulsed Alternators, or Compulsators as they are called, are essentially large motor -generator

  10. Dose rate effect on micronuclei induction in human blood lymphocytes exposed to single pulse and multiple pulses of electrons.

    PubMed

    Acharya, Santhosh; Bhat, N N; Joseph, Praveen; Sanjeev, Ganesh; Sreedevi, B; Narayana, Y

    2011-05-01

    The effects of single pulses and multiple pulses of 7 MV electrons on micronuclei (MN) induction in cytokinesis-blocked human peripheral blood lymphocytes (PBLs) were investigated over a wide range of dose rates per pulse (instantaneous dose rate). PBLs were exposed to graded doses of 2, 3, 4, 6, and 8 Gy of single electron pulses of varying pulse widths at different dose rates per pulse, ranging from 1 × 10(6) Gy s(-1) to 3.2 × 10(8) Gy s(-1). Different dose rates per pulse were achieved by changing the dose per electron pulse by adjusting the beam current and pulse width. MN yields per unit absorbed dose after irradiation with single electron pulses were compared with those of multiple pulses of electrons. A significant decrease in the MN yield with increasing dose rates per pulse was observed, when dose was delivered by a single electron pulse. However, no reduction in the MN yield was observed when dose was delivered by multiple pulses of electrons. The decrease in the yield at high dose rates per pulse suggests possible radical recombination, which leads to decreased biological damage. Cellular response to the presence of very large numbers of chromosomal breaks may also alter the damage.

  11. Pulsed direct and constant direct currents in the pilocarpine iontophoresis sweat chloride test.

    PubMed

    Gomez, Carla Cristina Souza; Servidoni, Maria de Fatima; Marson, Fernando Augusto de Lima; Canavezi, Paulo Jose Coelho; Vinagre, Adriana Mendes; Costa, Eduardo Tavares; Ribeiro, Antonio Fernando; Ribeiro, Maria Angela Gonçalves de Oliveira; Toro, Adyleia Aparecida Dalbo Contrera; Pavan, Celia Regina; Rondon, Michelle Vivine Sá Dos Santos; Lorena, Sonia Leticia Silva; Vieria, Francisco Ubaldi; Ribeiro, Jose Dirceu

    2014-12-13

    The classic sweat test (CST) is the golden standard for cystic fibrosis (CF) diagnosis. Then, our aim was compare the production and volume of sweat, and side effects caused by pulsed direct current (PDC) and constant direct current (CDC). To determine the optimal stimulation time (ST) for the sweat collection. To verify the PDC as CF diagnosis option. Prospective study with cross-sectional experimental intervention. Experiment 1 (right arm): PDC and CDC. ST at 10 min and sweat collected at 30 min. Currents of 0.5; 0.75; 1.0 and 1.5 mA and frequencies of 0, 200, 1,000 and 5,000 Hz applied. Experiment 2 (left arm): current of 1.0 mA, ST at 5 and 10 min and sweat collected at 15 and 30 min with frequencies of 0; 200; 1,000 and 5,000 Hz applied Experiments 1 and 2 were performed with current density (CD) from 0.07 to 0.21 mA/cm2. Experiment 3: PDC was used in typical CF patients with two CFTR mutations screened and or with CF diagnosis by rectal biopsy and patients with atypical CF. 48 subjects (79.16% female) with average of 29.54 ± 8.87 years old were enrolled. There was no statistical difference between the interaction of frequency and current in the sweat weight (p = 0.7488). Individually, positive association was achieved between weight sweat and stimulation frequency (p = 0.0088); and current (p = 0.0025). The sweat production was higher for 10 min of stimulation (p = 0.0023). The sweat collection was better for 30 min (p = 0.0019). The skin impedance was not influenced by ST and sweat collection (p > 0.05). The current frequency was inversely associated with the skin impedance (p < 0.0001). The skin temperature measured before stimulation was higher than after (p < 0.0001). In Experiment 3 (29 subjects) the PDC showed better kappa index compared to CDC (0.9218 versus 0.5205, respectively). The performance of the CST with CDC and PDC with CD of 0.14 to 0.21 mA/cm2 showed efficacy in steps of stimulation and collection of sweat, without side effects. The optimal

  12. Transient Heat Transfer Properties in a Pulse Detonation Combustor

    DTIC Science & Technology

    2011-03-01

    strategies for future systems. 15. NUMBER OF PAGES 89 14. SUBJECT TERMS Pulse Detonation Engines, PDE , Heat Transfer 16. PRICE CODE 17. SECURITY...GUI Graphical User Interface NPS Naval Postgraduate School PDC Pulse Detonation Combustion PDE Pulse Detonation Engine RPL Rocket...a tactical missile with a Pulse Detonation Engine ( PDE ) and provide greater range for the same amount of fuel as compared to other current

  13. PUMPS FOR LIQUID CURRENT-CONDUCTING MATERIAL

    DOEpatents

    Watt, D.A.

    1958-12-23

    An induction-type liquid conductor pump is described wherein the induced current flow is substantially tnansverse to the flow of the liquid in the duct, thus eliminating parallel current flow that tends to cause unwanted pressures resulting in turbulence, eddy-flow, heating losses, and reduced pumping efficiency. This improvement is achieved by offering the parallel current a path of lower impedance along the duct than that offered by the liquid so that the induced currents remaining in the liquid flow in a substantially transverse directlon. Thick copper bars are brazed to the liquid duct parallel to the flow, and additional induced currents are created in the copper bars of appropriate magnitude to balance the ohmic drop ln the current paths outside of the liquid metal.

  14. Parallelized direct execution simulation of message-passing parallel programs

    NASA Technical Reports Server (NTRS)

    Dickens, Phillip M.; Heidelberger, Philip; Nicol, David M.

    1994-01-01

    As massively parallel computers proliferate, there is growing interest in findings ways by which performance of massively parallel codes can be efficiently predicted. This problem arises in diverse contexts such as parallelizing computers, parallel performance monitoring, and parallel algorithm development. In this paper we describe one solution where one directly executes the application code, but uses a discrete-event simulator to model details of the presumed parallel machine such as operating system and communication network behavior. Because this approach is computationally expensive, we are interested in its own parallelization specifically the parallelization of the discrete-event simulator. We describe methods suitable for parallelized direct execution simulation of message-passing parallel programs, and report on the performance of such a system, Large Application Parallel Simulation Environment (LAPSE), we have built on the Intel Paragon. On all codes measured to date, LAPSE predicts performance well typically within 10 percent relative error. Depending on the nature of the application code, we have observed low slowdowns (relative to natively executing code) and high relative speedups using up to 64 processors.

  15. A 16 MJ compact pulsed power system for electromagnetic launch

    NASA Astrophysics Data System (ADS)

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  16. A 16 MJ compact pulsed power system for electromagnetic launch.

    PubMed

    Dai, Ling; Zhang, Qin; Zhong, Heqing; Lin, Fuchang; Li, Hua; Wang, Yan; Su, Cheng; Huang, Qinghua; Chen, Xu

    2015-07-01

    This paper has established a compact pulsed power system (PPS) of 16 MJ for electromagnetic rail gun. The PPS consists of pulsed forming network (PFN), chargers, monitoring system, and current junction. The PFN is composed of 156 pulse forming units (PFUs). Every PFU can be triggered simultaneously or sequentially in order to obtain different total current waveforms. The whole device except general control table is divided into two frameworks with size of 7.5 m × 2.2 m × 2.3 m. It is important to estimate the discharge current of PFU accurately for the design of the whole electromagnetic launch system. In this paper, the on-state characteristics of pulse thyristor have been researched to improve the estimation accuracy. The on-state characteristics of pulse thyristor are expressed as a logarithmic function based on experimental data. The circuit current waveform of the single PFU agrees with the simulating one. On the other hand, the coaxial discharge cable is a quick wear part in PFU because the discharge current will be up to dozens of kA even hundreds of kA. In this article, the electromagnetic field existing in the coaxial cable is calculated by finite element method. On basis of the calculation results, the structure of cable is optimized in order to improve the limit current value of the cable. At the end of the paper, the experiment current wave of the PPS with the load of rail gun is provided.

  17. Experimental and numerical analysis on aluminum/steel pipe using magnetic pulse welding

    NASA Astrophysics Data System (ADS)

    Shim, J. Y.; Kim, I. S.; Lee, K. J.; Kang, B. Y.

    2011-12-01

    Recently, there has been a trend in the automotive industry to focus on the improvement of lightweight materials, such as aluminum and magnesium because the welding of dissimilar metals causes many welding defects. Magnetic pulse welding (MPW), one of the solid state welding technologies, uses electromagnetic force from current discharged through a working coil which develops a repulsive force between the induced currents flowing parallel and in the opposite direction in the tube to be welded. The objective of this paper is to develop a numerical model for analysis of the interaction between the outer pipe and the working coil using a finite element method (FEM) in the MPW process. Four Maxwell equations are solved using a general electromagnetic mechanics computer program, ANSYS/EMAG code. Experiments were also carried out with a W-MPW60 machine manufactured by WELMATE CO., LTD. with the Al1070 and SM45C for Al pipe and steel bar respectively. The calculated and measured results were compared to verify the proposed model.

  18. Effect of current on the maximum possible reward.

    PubMed

    Gallistel, C R; Leon, M; Waraczynski, M; Hanau, M S

    1991-12-01

    Using a 2-lever choice paradigm with concurrent variable interval schedules of reward, it was found that when pulse frequency is increased, the preference-determining rewarding effect of 0.5-s trains of brief cathodal pulses delivered to the medial forebrain bundle of the rat saturates (stops increasing) at values ranging from 200 to 631 pulses/s (pps). Raising the current lowered the saturation frequency, which confirms earlier, more extensive findings showing that the rewarding effect of short trains saturates at pulse frequencies that vary from less than 100 pps to more than 800 pps, depending on the current. It was also found that the maximum possible reward--the magnitude of the reward at or beyond the saturation pulse frequency--increases with increasing current. Thus, increasing the current reduces the saturation frequency but increases the subjective magnitude of the maximum possible reward.

  19. Effect of pulsed discharge on the ignition of pulse modulated radio frequency glow discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Qiu, Shenjie; Guo, Ying; Han, Qianhan; Bao, Yun; Zhang, Jing; Shi, J. J.

    2018-01-01

    A pulsed discharge is introduced between two sequential pulse-modulated radio frequency glow discharges in atmospheric helium. The dependence of radio frequency discharge ignition on pulsed discharge intensity is investigated experimentally with the pulse voltage amplitudes of 650, 850, and 1250 V. The discharge characteristics and dynamics are studied in terms of voltage and current waveforms, and spatial-temporal evolution of optical emission. With the elevated pulsed discharge intensity of two orders of magnitude, the ignition of radio frequency discharge is enhanced by reducing the ignition time and achieving the stable operation with a double-hump spatial profile. The ignition time of radio frequency discharge is estimated to be 2.0 μs, 1.5 μs, and 1.0 μs with the pulse voltage amplitudes of 650, 850, and 1250 V, respectively, which is also demonstrated by the spatial-temporal evolution of optical emission at 706 and 777 nm.

  20. Long Pulse Homopolar Generator

    DTIC Science & Technology

    1988-08-01

    AD-A205 452 AFWAL-TR-88-2045 LONG PULSE HOMOPOLAR GENERATOR Edward A. Knoth David P. Bauer lAP Research, Inc. 2763 Culver Avenue Dayton OH 45429-3723...TASK WORK UNIT ELEMENT NO. NO. NO ACCESSION NO. 61101F ILIR P3 01 11. TITLE (include Security Classiflcation) Long Pulse Homopolar Generator 12. PERSONAL...FIELD GROUP SUB-GROUP C6 6; y .- o- , -, ’, - 20 07 homopolar , high current, high power, high speed, generator, 19. ABIT!CT (Contkwe on rer if =ray and