Science.gov

Sample records for pulsed-wave doppler tracing

  1. Left ventricular radial colour and longitudinal pulsed-wave tissue Doppler echocardiography in 39 healthy domestic pet rabbits.

    PubMed

    Casamian-Sorrosal, Domingo; Saunders, Richard; Browne, William; Elliot, Sarah; Fonfara, Sonja

    2014-10-01

    This paper reports radial colour and longitudinal mitral annulus pulsed-wave tissue Doppler findings in a large cohort of healthy, adult pet rabbits. Thirty-nine rabbits (22 Dwarf Lops, 14 French Lops and three Alaskans) underwent conscious echocardiography. The median age of the rabbits was 22 months and the median weight was 2.8 kg (Dwarf Lop 2.4 kg/French Lop 6.0 kg). Adequate radial colour and longitudinal pulsed-wave tissue Doppler traces were obtained in 100% and 85% of cases, respectively. Most systolic tissue Doppler parameters were significantly higher in French Lops than in Dwarf Lops. Separation of mitral inflow diastolic waves was present in 40% of cases using conventional spectral Doppler and in >60% of cases using pulsed-wave tissue Doppler which could be beneficial when evaluating diastolic function in rabbits. This study can be used as a reference for normal echocardiographic tissue Doppler values for adult rabbits undergoing conscious echocardiography in clinical practice. PMID:25089025

  2. Design and Implementation of High Frequency Ultrasound Pulsed-Wave Doppler Using FPGA

    PubMed Central

    Hu, Chang-hong; Zhou, Qifa; Shung, K. Kirk

    2009-01-01

    The development of a field-programmable gate array (FPGA)-based pulsed-wave Doppler processing approach in pure digital domain is reported in this paper. After the ultrasound signals are digitized, directional Doppler frequency shifts are obtained with a digital-down converter followed by a low-pass filter. A Doppler spectrum is then calculated using the complex fast Fourier transform core inside the FPGA. In this approach, a pulsed-wave Doppler implementation core with reconfigurable and real-time processing capability is achieved. PMID:18986909

  3. On-chip laser Doppler vibrometer for arterial pulse wave velocity measurement

    PubMed Central

    Li, Yanlu; Segers, Patrick; Dirckx, Joris; Baets, Roel

    2013-01-01

    Pulse wave velocity (PWV) is an important marker for cardiovascular risk. The Laser Doppler vibrometry has been suggested as a potential technique to measure the local carotid PWV by measuring the transit time of the pulse wave between two locations along the common carotid artery (CCA) from skin surface vibrations. However, the present LDV setups are still bulky and difficult to handle. We present in this paper a more compact LDV system integrated on a CMOS-compatible silicon-on-insulator substrate. In this system, a chip with two homodyne LDVs is utilized to simultaneously measure the pulse wave at two different locations along the CCA. Measurement results show that the dual-LDV chip can successfully conduct the PWV measurement. PMID:23847745

  4. Noninvasive Method for Measuring Local Pulse Wave Velocity by Dual Pulse Wave Doppler: In Vitro and In Vivo Studies

    PubMed Central

    Wang, Zhen; Yang, Yong; Yuan, Li-jun; Liu, Jie; Duan, Yun-you; Cao, Tie-sheng

    2015-01-01

    Objectives To evaluate the validity and reproducibility of a noninvasive dual pulse wave Doppler (DPWD) method, which involves simultaneous recording of flow velocity of two independent sample volumes with a measurable distance, for measuring the local arterial pulse wave velocity (PWV) through in vitro and in vivo studies. Methods The DPWD mode of Hitachi HI Vision Preirus ultrasound system with a 5–13MHz transducer was used. An in vitro model was designed to compare the PWV of a homogeneous rubber tubing with the local PWV of its middle part measured by DPWD method. In the in vivo study, local PWV of 45 hypertensive patients (25 male, 49.8±3.1 years) and 45 matched healthy subjects (25 male, 49.3±3.0 years) were investigated at the left common carotid artery (LCCA) by DPWD method. Results In the in vitro study, the local PWV measured by DPWP method and the PWV of the homogeneous rubber tubing did not show statistical difference (5.16 ± 0.28 m/s vs 5.03 ± 0.15 m/s, p = 0.075). The coefficient of variation (CV) of the intra- and inter- measurements for local PWV were 3.46% and 4.96%, for the PWV of the homogeneous rubber tubing were 0.99% and 1.98%. In the in vivo study, a significantly higher local PWV of LCCA was found in the hypertensive patients as compared to that in healthy subjects (6.29±1.04m/s vs. 5.31±0.72m/s, P = 0.019). The CV of the intra- and inter- measurements in hypertensive patients were 2.22% and 3.94%, in healthy subjects were 2.07% and 4.14%. Conclusions This study demonstrated the feasibility of the noninvasive DPWD method to determine the local PWV, which was accurate and reproducible not only in vitro but also in vivo studies. This noninvasive echocardiographic method may be illuminating to clinical use. PMID:25786124

  5. Repeatability of non-invasive measurement of intracerebral pulse wave velocity using transcranial Doppler.

    PubMed

    Gladdish, Sarah; Manawadu, Dulka; Banya, Winston; Cameron, James; Bulpitt, Christopher J; Rajkumar, Chakravarthi

    2005-05-01

    In the present study, the repeatability of three techniques for measuring peripheral PWV (pulse wave velocity) has been studied. A transcranial Doppler provided a wave reading from the middle cerebral artery. Using the transit time between the R-wave of an ECG and the 'foot' of this wave we were able to calculate a PWV (PWV-brain). An ear clip transducer provided a pressure wave reading (PWV-ear). A third pressure reading came from a Finapres transducer on the left middle finger (PWV-finger). The PWV was calculated as distance between two points/transit time of the pulse wave. Eleven volunteers had three sets of readings averaged for each technique taken in two separate sessions. There was good agreement between observers for the mean PWV values, and good agreement for mean results in different sessions. The RC%s (repeatability coefficient percentages) for between-observer repeatability in each session were good and approximately equivalent for PWV-finger (5-7%) and PWV-brain (5-7%). The repeatability of the PWV-ear measurement was less satisfactory (8-18%). The RC% for the same observer between sessions was less good, being 11% for the PWV-finger, 16-17% for PWV-brain and 11-19% for PWV-ear. The RC%s for the inter-session inter-observer measurements were between 10.7-12.1% for the PWV-finger, 14.7-19.5% for PWV-brain and 8.3-15% for PWV-ear. The transit time RC%s were lower in most measurements. The between-observer repeatability of all measures was satisfactory. Owing to the less good repeatability on different occasions, the use of PWV-brain and PWV-ear will depend on the magnitude of differences to be expected. PMID:15656782

  6. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.

    PubMed

    Huang, Chih-Chung; Lee, Po-Yang; Chen, Pay-Yu; Liu, Ting-Yu

    2012-01-01

    Blood flow measurement using Doppler ultrasound has become a useful tool for diagnosing cardiovascular diseases and as a physiological monitor. Recently, pocket-sized ultrasound scanners have been introduced for portable diagnosis. The present paper reports the implementation of a portable ultrasound pulsed-wave (PW) Doppler flowmeter using a smartphone. A 10-MHz ultrasonic surface transducer was designed for the dynamic monitoring of blood flow velocity. The directional baseband Doppler shift signals were obtained using a portable analog circuit system. After hardware processing, the Doppler signals were fed directly to a smartphone for Doppler spectrogram analysis and display in real time. To the best of our knowledge, this is the first report of the use of this system for medical ultrasound Doppler signal processing. A Couette flow phantom, consisting of two parallel disks with a 2-mm gap, was used to evaluate and calibrate the device. Doppler spectrograms of porcine blood flow were measured using this stand-alone portable device under the pulsatile condition. Subsequently, in vivo portable system verification was performed by measuring the arterial blood flow of a rat and comparing the results with the measurement from a commercial ultrasound duplex scanner. All of the results demonstrated the potential for using a smartphone as a novel embedded system for portable medical ultrasound applications. PMID:22293750

  7. High-frequency dual mode pulsed wave Doppler imaging for monitoring the functional regeneration of adult zebrafish hearts

    PubMed Central

    Kang, Bong Jin; Park, Jinhyoung; Kim, Jieun; Kim, Hyung Ham; Lee, Changyang; Hwang, Jae Youn; Lien, Ching-Ling; Shung, K. Kirk

    2015-01-01

    Adult zebrafish is a well-known small animal model for studying heart regeneration. Although the regeneration of scars made by resecting the ventricular apex has been visualized with histological methods, there is no adequate imaging tool for tracking the functional recovery of the damaged heart. For this reason, high-frequency Doppler echocardiography using dual mode pulsed wave Doppler, which provides both tissue Doppler (TD) and Doppler flow in a same cardiac cycle, is developed with a 30 MHz high-frequency array ultrasound imaging system. Phantom studies show that the Doppler flow mode of the dual mode is capable of measuring the flow velocity from 0.1 to 15 cm s−1 with high accuracy (p-value = 0.974 > 0.05). In the in vivo study of zebrafish, both TD and Doppler flow signals were simultaneously obtained from the zebrafish heart for the first time, and the synchronized valve motions with the blood flow signals were identified. In the longitudinal study on the zebrafish heart regeneration, the parameters for diagnosing the diastolic dysfunction, for example, E/Em < 10, E/A < 0.14 for wild-type zebrafish, were measured, and the type of diastolic dysfunction caused by the amputation was found to be similar to the restrictive filling. The diastolic function was fully recovered within four weeks post-amputation. PMID:25505135

  8. Determination of Testicular Blood Flow in Camelids Using Vascular Casting and Color Pulsed-Wave Doppler Ultrasonography

    PubMed Central

    Kutzler, Michelle; Tyson, Reid; Grimes, Monica; Timm, Karen

    2011-01-01

    We describe the vasculature of the camelid testis using plastic casting. We also use color pulsed-wave Doppler ultrasonography to measure testicular blood flow and compare the differences between testicular blood flow in fertile and infertile camelids. The testicular artery originates from the ventral surface of the aorta, gives rise to an epididymal branch, and becomes very tortuous as it approaches the testis. Within the supratesticular arteries, peak systolic velocity (PSV) was higher in fertile males compared to infertile males (P = 0.0004). In addition, end diastolic velocity (EDV) within the supratesticular arteries was higher for fertile males when compared to infertile males (P = 0.0325). Within the marginal arteries, PSV was also higher in fertile males compared to infertile males (P = 0.0104). However, EDV within the marginal arteries was not significantly different between fertile and infertile males (P = 0.121). In addition, the resistance index was not significantly different between fertile and infertile males within the supratesticular (P = 0.486) and marginal arteries (P = 0.144). The significance of this research is that in addition to information obtained from a complete reproductive evaluation, a male camelid's fertility can be determined using testicular blood flow measured by Doppler ultrasonography. PMID:21941690

  9. The Detection and Exclusion of the Prostate Neuro-Vascular Bundle (NVB) in Automated HIFU Treatment Planning Using a Pulsed-Wave Doppler Ultrasound System

    NASA Astrophysics Data System (ADS)

    Chen, Wohsing; Carlson, Roy F.; Fedewa, Russell; Seip, Ralf; Sanghvi, Narendra T.; Dines, Kris A.; Pfile, Richard; Penna, Michael A.; Gardner, Thomas A.

    2005-03-01

    Men with prostate cancer are likely to develop impotence after prostate cancer therapy if the treatment damages the neuro-vascular bundles (NVB). The NVB are generally located at the periphery of the prostate gland. To preserve the NVB, a Doppler system is used to detect and localize the associated blood vessels. This information is used during the therapy planning procedure to avoid treatment surrounding the blood vessel areas. The Sonablate®500 (Focus Surgery, Inc.) image-guided HIFU device is enhanced with a pulse-wave multi-gate Doppler system that uses the current imaging transducer and mechanical scanner to acquire Doppler data. Doppler detection is executed after the regular B-mode images are acquired from the base to the apex of the prostate using parallel sector scans. The results are stored and rendered in 3-D display, registered with additional models generated for the capsule, urethra, and rectal wall, and the B-mode data and treatment plan itself. The display of the blood flow can be in 2-D color overlaid on the B-mode image or in 3-D color structure. Based on this 3-D model, the HIFU treatment planning can be executed in automated or manual mode by the physician to remove originally defined treatment zones that overlap with the NVB (for preservation of NVB). The results of the NVB detection in animal experiments, and the 3-D modeling and data registration of the prostate will be presented.

  10. Measurement uncertainty in pulmonary vascular input impedance and characteristic impedance estimated from pulsed-wave Doppler ultrasound and pressure: clinical studies on 57 pediatric patients.

    PubMed

    Tian, Lian; Hunter, Kendall S; Kirby, K Scott; Ivy, D Dunbar; Shandas, Robin

    2010-06-01

    Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance. PMID:20410558

  11. The Diagnostic Value of Pulsed Wave Tissue Doppler Imaging in Asymptomatic Beta- Thalassemia Major Children and Young Adults; Relation to Chemical Biomarkers of Left Ventricular Function and Iron Overload

    PubMed Central

    Ragab, Seham M; Fathy, Waleed M; El-Aziz, Walaa FAbd; Helal, Rasha T

    2015-01-01

    Background Cardiac iron toxicity is the leading cause of death among β-halassaemia major (TM) patients. Once heart failure becomes overt, it is difficult to reverse. Objectives To investigate non-overt cardiac dysfunctions in TM patients using pulsed wave Tissue Doppler Imaging (TD I) and its relation to iron overload and brain natriuretic peptide (BNP). Methods Thorough clinical, conventional echo and pulsed wave TDI parameters were compared between asymptomatic 25 β-TM patients and 20 age and gender matched individuals. Serum ferritin and plasma BNP levels were assayed by ELISA. Results TM patients had significant higher mitral inflow early diastolic (E) wave and non significant other conventional echo parameters. In the patient group, pulsed wave TDI revealed systolic dysfunctions, in the form of significant higher isovolumetric contraction time (ICT), and lower ejection time (E T), with diastolic dysfunction in the form of higher isovolumetric relaxation time (IRT), and lower mitral annulus early diastolic velocity E′ (12.07 ±2.06 vs 15.04±2.65, P= 0.003) compared to the controls. Plasma BNP was higher in patients compared to the controls. Plasma BNP and serum ferritin had a significant correlation with each other and with pulsed wave conventional and TDI indices of systolic and diastolic functions. Patients with E/E′ ≥ 8 had significant higher serum ferritin and plasma BNP levels compared to those with ratio < 8 without a difference in Hb levels. Conclusion Pulsed wave TDI is an important diagnostic tool for latent cardiac dysfunction in iron-loaded TM patients and is related to iron overload and BNP. PMID:26401240

  12. [Pilot study of echocardiographic studies using color- and pulsed-wave spectral Doppler methods in blue-crowned amazons (Amazona ventralis) and blue-fronted amazons (Amazona a. aestiva)].

    PubMed

    Pees, M; Straub, J; Schumacher, J; Gompf, R; Krautwald-Junghanns, M E

    2005-02-01

    Colour-flow and pulsed-wave spectral Doppler echocardiography was performed on 6 healthy, adult Hispaniolan amazon parrots (Amazona ventralis) and 6 blue-fronted amazon parrots (Amazona a. aestiva) to establish normal reference values. Birds were anesthetized with isoflurane in oxygen and placed in dorsal recumbency. An electrocardiogram was recorded continuously and birds were imaged with a micro-phased-array scanner with a frequency of 7.0 MHz. After assessment of cardiac function in 2-D-echocardiography, blood flow across the left and the right atrioventricular valve and across the aortic valve was determined using color-flow and pulsed-wave spectral Doppler echocardiography. Diastolic inflow (mean value +/- standard deviation) into the left ventricle was 0.17 +/- 0.02 m/s (Hispaniolan amazons) and 0.18 +/- 0.03 m/s (Blue fronted amazons). Diastolic inflow into the right ventricle was 0.22 +/- 0.05 m/s (Hispaniolan amazons) and 0.22 +/- 0.04 m/s (Blue fronted amazons). Velocity across the aortic valve was 0.84 +/- 0.07 m/s (Hispaniolan amazons) and 0.83 +/- 0.08 m/s (Blue fronted amazons). Systolic pulmonary flow could not be detected in any of the birds in this study. No significant differences were evident between the two species examined. Results of this study indicate that Doppler echocardiography is a promising technique to determine blood flow in the avian heart. Further studies in other avian species are needed to establish reference values for assessment of cardiac function in diseased birds. PMID:15787312

  13. Arterial pulse wave pressure transducer

    NASA Technical Reports Server (NTRS)

    Kim, C.; Gorelick, D.; Chen, W. (Inventor)

    1974-01-01

    An arterial pulse wave pressure transducer is introduced. The transducer is comprised of a fluid filled cavity having a flexible membrane disposed over the cavity and adapted to be placed on the skin over an artery. An arterial pulse wave creates pressure pulses in the fluid which are transduced, by a pressure sensitive transistor in direct contact with the fluid, into an electric signal. The electrical signal is representative of the pulse waves and can be recorded so as to monitor changes in the elasticity of the arterial walls.

  14. Standoff photoacoustic sensing of trace chemicals by laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Fu, Y.; Hu, Q.; Liu, H.

    2016-05-01

    Photoacoustic spectroscopy (PAS) is a useful technique that suitable for trace detection of chemicals and explosives. Normally a high-sensitive microphone or a quartz tuning fork is used to detect the signal in photoacoustic cell. In recent years, laser Doppler vibrometer (LDV) is proposed to remote-sense photoacoustic signal on various substrates. It is a high-sensitivity sensor with a displacement resolution of <10pm. In this research, the photoacoustic effect of various chemicals is excited by a quantum cascade laser (QCL) with a scanning wavelength range of 6.89μm to 8.5 μm. A home-developed LDV at 1550nm wavelength is applied to detect the vibration signal. After normalize the vibration amplitude with QCL power, the photoacoustic spectrum of various chemicals can be obtained. Different factors that affect the detection accuracy and sensitivity have also been discussed. The results show the potential of the proposed technique for standoff detection of trace chemicals and explosives.

  15. Pulmonary Impedance and Pulmonary Doppler Trace in the Perioperative Period.

    PubMed

    Tousignant, Claude; Van Orman, Jordan R

    2015-09-01

    Pulmonary hypertension and associated vascular changes may frequently accompany left-sided heart disease in the adult cardiac surgical population. Perioperative assessment of right ventricular function using echocardiography is well established. In general, understanding the constraints upon which the right ventricle must work is mostly limited to invasive monitoring consisting of pulmonary artery pressures, cardiac output, and pulmonary vascular resistance. The latter 2 measurements assume constant (mean) flows and pressures. The systolic and diastolic pressures offer a limited understanding of the pulsatile constraints, which may become significant in disease. In normal physiology, pressure and flow waves display near-similar contours. When left atrial pressure and pulmonary vascular resistance are increased, changes in pulmonary arterial compliance will result in elevated impedance to right ventricular ejection. Pressure reflections, the result of strong reflectors, return more quickly in a noncompliant system. They augment pulmonary artery pressure causing a premature reduction in flow. As a result, pressure and flow waves will now be dissimilar. The impact of vascular changes on right ventricular ejection can be assessed using pulmonary artery Doppler spectral imaging. The normal flow velocity profile is rounded at its peak. Earlier peaks and premature reductions in flow will make it appear more triangular. In some cases, the flow pattern may appear notched. The measurement of acceleration time, the time from onset to peak flow velocity is an indicator of constraint to ejection; shortened times have been associated with increased pulmonary vascular resistance and pressure. Understanding the changes in the pulmonary arterial system in disease and the physics of the hemodynamic alterations are essential in interpreting pulmonary artery Doppler data. Analyzing pulmonary artery Doppler flow signals may assist in the evaluation of right ventricular function in

  16. Human Pulse Wave Measurement by MEMS Electret Condenser Microphone

    NASA Astrophysics Data System (ADS)

    Nomura, Shusaku; Hanasaka, Yasushi; Ishiguro, Tadashi; Ogawa, Hiroshi

    A micro Electret Condenser Microphone (ECM) fabricated by Micro Electro Mechanical System (MEMS) technology was employed as a novel apparatus for human pulse wave measurement. Since ECM frequency response characteristic, i.e. sensitivity, logically maintains a constant level at lower than the resonance frequency (stiffness control), the slightest pressure difference at around 1.0Hz generated by human pulse wave is expected to detect by MEMS-ECM. As a result of the verification of frequency response of MEMS-ECM, it was found that -20dB/dec of reduction in the sensitivity around 1.0Hz was engendered by a high input-impedance amplifier, i.e. the field effect transistor (FET), mounted near MEMS chip for amplifying tiny ECM signal. Therefore, MEMS-ECM is assumed to be equivalent with a differentiation circuit at around human pulse frequency. Introducing compensation circuit, human pulse wave was successfully obtained. In addition, the radial and ulnar artery tracing, and pulse wave velocity measurement at forearm were demonstrated; as illustrating a possible application of this micro device.

  17. Pulse wave analysis and pulse wave velocity: a critical review of their strengths and weaknesses.

    PubMed

    Davies, Justine Ina; Struthers, Allan D

    2003-03-01

    The study of the pulse using the technique of applanation tonometry is undergoing a resurgence with the development of new computerized equipment. We aim here to present a critical review of the uses, potential uses, strengths and weaknesses of the technique of applanation tonometry for the assessment of augmentation index and pulse wave velocity. We will review the technique of applanation tonometry, the physiological factors affecting pulse wave velocity and pulse wave analysis, the changes in pulse wave velocity and pulse wave analysis with pharmacological interventions, and the use of the technique of applanation tonometry as a prognostic tool. We conclude that, although the technique of applanation tonometry initially seems promising, several pertinent issues need to be addressed before it can be used reliably as a clinical or research tool. Importantly, use of the technique of applanation tonometry to derive the central waveform from non-invasively acquired peripheral data needs to be validated prospectively. PMID:12640232

  18. Pulse Wave Propagation in the Arterial Tree

    NASA Astrophysics Data System (ADS)

    van de Vosse, Frans N.; Stergiopulos, Nikos

    2011-01-01

    The beating heart creates blood pressure and flow pulsations that propagate as waves through the arterial tree that are reflected at transitions in arterial geometry and elasticity. Waves carry information about the matter in which they propagate. Therefore, modeling of arterial wave propagation extends our knowledge about the functioning of the cardiovascular system and provides a means to diagnose disorders and predict the outcome of medical interventions. In this review we focus on the physical and mathematical modeling of pulse wave propagation, based on general fluid dynamical principles. In addition we present potential applications in cardiovascular research and clinical practice. Models of short- and long-term adaptation of the arterial system and methods that deal with uncertainties in personalized model parameters and boundary conditions are briefly discussed, as they are believed to be major topics for further study and will boost the significance of arterial pulse wave modeling even more.

  19. An example of scaling MST Doppler spectra using median spectra, spectral smoothing, and velocity tracing

    NASA Technical Reports Server (NTRS)

    Green, J. L.

    1986-01-01

    Although automatic, computer scaling methods appeared at the start of the MST (mesosphere stratosphere troposphere) radar technique, there is a continuing need for scaling algorithms that perform editing functions and increase the sensitivity of radar by post processing. The scaling method presented is an adaptation of the method of scaling MST Doppler spectra presented by Rastogi (1984). A brief overview of this method is as follows: a median spectrum is calculated from several sequential spectra; the median noise value is subtracted from this derived spectrum; the median spectrum is smoothed; the detection/nondetection decision is made by comparing the smoothed spectrum to the variance of the smoothed noise; and if a signal is detected, then the half-power points of the smoothed echo spectrum are used to place limits on the evaluation of the first two moments of the unsmoothed median spectrum. In all of the above steps, the algorithm is guided by tracing the expected velocity range upward from the lowest range as far as possible. The method is discussed in more detail.

  20. Three-dimensional ray tracing through curvilinear interfaces with application to laser Doppler anemometry in a blood analogue fluid.

    PubMed

    Nugent, Allen H; Bertram, Christopher D

    2010-02-01

    Prediction of the effects of refractive index (RI) mismatch on laser Doppler anemometer (LDA) measurements within a curvilinear cavity (an artificial ventricle) was achieved by developing a general technique for modelling the paths of the convergent beams of the LDA system using 3D vector geometry. Validated by ray tracing through CAD drawings, the predicted maximum tolerance in RI between the solid model and the working fluid was +/- 0.0005, equivalent to focusing errors commensurate with the geometric and alignment uncertainties associated with the flow model and the LDA arrangement. This technique supports predictions of the effects of refraction within a complex geometry. Where the RI mismatch is unavoidable but known, it is possible not only to calculate the true position of the measuring volume (using the probe location and model geometry), but also to estimate degradation in signal quality arising from differential displacement and refraction of the laser beams. PMID:19669821

  1. Heart-Carotid Pulse Wave Velocity a Useful Index of Atherosclerosis in Chinese Hypertensive Patients.

    PubMed

    Li, Chunyue; Xiong, Huahua; Pirbhulal, Sandeep; Wu, Dan; Li, Zhenzhou; Huang, Wenhua; Zhang, Heye; Wu, Wanqing

    2015-12-01

    This study was designed to investigate the relationship between heart-carotid pulse wave velocity (hcPWV) and carotid intima-media thickness (CIMT) in hypertensive patients, and also to examine the effect of pre-ejection period (PEP) on it. Doppler ultrasound device was used to measure CIMT in left common carotid artery. Hypertensive patients were divided into normal (n = 36, CIMT ≤0.8 mm) and thickened (n = 31, CIMT > 0.8 mm) group. Electrocardiogram R-wave-based carotid pulse wave velocity (rcPWV) and aortic valve-carotid pulse wave velocity (acPWV) were calculated as the ratio of the travel length to the pulse transit time with or without PEP, respectively. CIMT has significant relations with rcPWV (r = 0.611, P < 0.0001) and acPWV (r = 0.384, P = 0.033) in thickened group. Moreover, CIMT showed stronger correlation with rcPWV than with acPWV in thickened group. Furthermore, both acPWV and rcPWV were determinant factors of CIMT in thickened group, independent of clinical confounders including age, gender, smoking behavior, systolic blood pressure, diastolic blood pressure, fasting blood glucose, total cholesterol, high-density lipoprotein cholesterol, antihypertensive medication, and plaque occurrence. However, similar results were not found in normal group. Since CIMT has been considered as an index of atherosclerosis, our results suggested that both rcPWV and acPWV could be useful indexes of atherosclerosis in thickened CIMT hypertensive patients. Additionally, if hcPWV is computed with heart-carotid pulse transit time, including PEP could improve the accuracy of atherosclerosis assessment in hypertensive patients. PMID:26705228

  2. Arterial stiffness estimation based photoplethysmographic pulse wave analysis

    NASA Astrophysics Data System (ADS)

    Huotari, Matti; Maatta, Kari; Kostamovaara, Juha

    2010-11-01

    Arterial stiffness is one of the indices of vascular healthiness. It is based on pulse wave analysis. In the case we decompose the pulse waveform for the estimation and determination of arterial elasticity. Firstly, optically measured with photoplethysmograph and then investigating means by four lognormal pulse waveforms for which we can find very good fit between the original and summed decomposed pulse wave. Several studies have demonstrated that these kinds of measures predict cardiovascular events. While dynamic factors, e.g., arterial stiffness, depend on fixed structural features of the vascular wall. Arterial stiffness is estimated based on pulse wave decomposition analysis in the radial and tibial arteries. Elucidation of the precise relationship between endothelial function and vascular stiffness awaits still further study.

  3. Sonar pulse wave form optimization in cluttered environments

    NASA Astrophysics Data System (ADS)

    Weichman, Peter B.

    2006-09-01

    A theory of active sonar (or radar) pulse wave form design, for optimal target detection in cluttered environments, is presented. The received target signal is maximized via a cost function L that incorporates both the signal-to-noise ratio and a generalization of the Heisenberg uncertainty principle, which is used to balance bandwidth (or range resolution) against signal gain. The optimal pulse wave form is the ground state solution to a one-dimensional Schrödinger-type equation in frequency space, with an effective potential energy that tends to concentrate pulse energy in frequency bands where the target reflectivity dominates the clutter reflectivity.

  4. Sonar pulse wave form optimization in cluttered environments.

    PubMed

    Weichman, Peter B

    2006-09-01

    A theory of active sonar (or radar) pulse wave form design, for optimal target detection in cluttered environments, is presented. The received target signal is maximized via a cost function L that incorporates both the signal-to-noise ratio and a generalization of the Heisenberg uncertainty principle, which is used to balance bandwidth (or range resolution) against signal gain. The optimal pulse wave form is the ground state solution to a one-dimensional Schrödinger-type equation in frequency space, with an effective potential energy that tends to concentrate pulse energy in frequency bands where the target reflectivity dominates the clutter reflectivity. PMID:17025776

  5. A fast algorithm for the simulation of arterial pulse waves

    NASA Astrophysics Data System (ADS)

    Du, Tao; Hu, Dan; Cai, David

    2016-06-01

    One-dimensional models have been widely used in studies of the propagation of blood pulse waves in large arterial trees. Under a periodic driving of the heartbeat, traditional numerical methods, such as the Lax-Wendroff method, are employed to obtain asymptotic periodic solutions at large times. However, these methods are severely constrained by the CFL condition due to large pulse wave speed. In this work, we develop a new numerical algorithm to overcome this constraint. First, we reformulate the model system of pulse wave propagation using a set of Riemann variables and derive a new form of boundary conditions at the inlet, the outlets, and the bifurcation points of the arterial tree. The new form of the boundary conditions enables us to design a convergent iterative method to enforce the boundary conditions. Then, after exchanging the spatial and temporal coordinates of the model system, we apply the Lax-Wendroff method in the exchanged coordinate system, which turns the large pulse wave speed from a liability to a benefit, to solve the wave equation in each artery of the model arterial system. Our numerical studies show that our new algorithm is stable and can perform ∼15 times faster than the traditional implementation of the Lax-Wendroff method under the requirement that the relative numerical error of blood pressure be smaller than one percent, which is much smaller than the modeling error.

  6. Arterial compliance probe for local blood pulse wave velocity measurement.

    PubMed

    Nabeel, P M; Joseph, Jayaraj; Sivaprakasam, Mohanasankar

    2015-08-01

    Arterial compliance and vessel wall dynamics are significant in vascular diagnosis. We present the design of arterial compliance probes for measurement of local pulse wave velocity (PWV). Two designs of compliance probe are discussed, viz (a) a magnetic plethysmograph (MPG) based probe, and (b) a photoplethysmograph (PPG) based probe. The ability of the local PWV probes to consistently capture carotid blood pulse waves is verified by in-vivo trials on few volunteers. The probes could reliably perform repeatable measurements of local PWV from carotid artery along small artery sections less than 20 mm. Further, correlation between the measured values of local PWV using probes and various measures of blood pressure (BP) was also investigated. The study indicates that such arterial compliance probes have strong potential in cuff less BP monitoring. PMID:26737589

  7. A Skin-attachable Flexible Piezoelectric Pulse Wave Energy Harvester

    NASA Astrophysics Data System (ADS)

    Yoon, Sunghyun; Cho, Young-Ho

    2014-11-01

    We present a flexible piezoelectric generator, capable to harvest energy from human arterial pulse wave on the human wrist. Special features and advantages of the flexible piezoelectric generator include the multi-layer device design with contact windows and the simple fabrication process for the higher flexibility with the better energy harvesting efficiency. We have demonstrated the design effectiveness and the process simplicity of our skin- attachable flexible piezoelectric pulse wave energy harvester, composed of the sensitive P(VDF-TrFE) piezoelectric layer on the flexible polyimide support layer with windows. We experimentally characterize and demonstrate the energy harvesting capability of 0.2~1.0μW in the Human heart rate range on the skin contact area of 3.71cm2. Additional physiological and/or vital signal monitoring devices can be fabricated and integrated on the skin attachable flexible generator, covered by an insulation layer; thus demonstrating the potentials and advantages of the present device for such applications to the flexible multi-functional selfpowered artificial skins, capable to detect physiological and/or vital signals on Human skin using the energy harvested from arterial pulse waves.

  8. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.

    PubMed

    Huang, Chih-Chung; Chou, Hung-Lung; Chen, Pay-Yu

    2015-02-01

    Measurement of the Doppler power of signals backscattered from flowing blood (henceforth referred to as the Doppler power of flowing blood) and the echogenicity of flowing blood have been used widely to assess the degree of red blood cell (RBC) aggregation for more than 20 y. Many studies have used Doppler flowmeters based on an analogue circuit design to obtain the Doppler shifts in the signals backscattered from flowing blood; however, some recent studies have mentioned that the analogue Doppler flowmeter exhibits a frequency-response problem whereby the backscattered energy is lost at higher Doppler shift frequencies. Therefore, the measured Doppler power of flowing blood and evaluations of RBC aggregation obtained using an analogue Doppler device may be inaccurate. To overcome this problem, the present study implemented a field-programmable gate array-based digital pulsed-wave Doppler flowmeter to measure the Doppler power of flowing blood, in the aim of providing more accurate assessments of RBC aggregation. A clinical duplex ultrasound imaging system that can acquire pulsed-wave Doppler spectrograms is now available, but its usefulness for estimating the ultrasound scattering properties of blood is still in doubt. Therefore, the echogenicity and Doppler power of flowing blood under the same flow conditions were measured using a laboratory pulser-receiver system and a clinical ultrasound system, respectively, for comparisons. The experiments were carried out using porcine blood under steady laminar flow with both RBC suspensions and whole blood. The experimental results indicated that a clinical ultrasound system used to measure the Doppler spectrograms is not suitable for quantifying Doppler power. However, the Doppler power measured using a digital Doppler flowmeter can reveal the relationship between backscattering signals and the properties of blood cells because the effects of frequency response are eliminated. The measurements of the Doppler power and

  9. Reliability assessment for pulse wave measurement using artificial pulse generator.

    PubMed

    Chang, Chi-Wei; Wang, Wei-Kung

    2015-04-01

    This study aimed to assess intrinsic reliabilities of devices for pulse wave measurement (PWM). An artificial pulse generator system was constructed to create a periodic pulse wave. The stability of the periodic output was tested by the DP103 pressure transducer. The pulse generator system was then used to evaluate the TD01C system. Test-re-test and inter-device reliability assessments were conducted on the TD01C system. First, 11 harmonic components of the pulse wave were calculated using Fourier series analysis. For each harmonic component, coefficient of variation (CV), intra-class correlation coefficient (ICC) and Bland-Altman plot were used to determine the degree of reliability of the TD01C system. In addition, device exclusion criteria were pre-specified to improve consistency of devices. The artificial pulse generator system was stable to evaluate intrinsic reliabilities of devices for PWM (ICCs > 0.95, p < 0.001). TD01C was reliable for repeated measurements (ICCs of test-re-test reliability > 0.95, p < 0.001; CVs all < 3%). Device exclusion criteria successfully excluded the device with defect; therefore, the criteria reduced inter-device CVs of harmonics and improved consistency of the selected devices for all harmonic components. This study confirmed the feasibility of intrinsic reliability assessment of devices for PWM using an artificial pulse generator system. Moreover, potential novel findings on the assessment combined with device exclusion criteria could be a useful method to select the measuring devices and to evaluate the qualities of them in PWM. PMID:25693606

  10. [Intracranial volume reserve assessment based on ICP pulse wave analysis].

    PubMed

    Berdyga, J; Czernicki, Z; Jurkiewicz, J

    1994-01-01

    ICP waves were analysed in the situation of expanding intracranial mass. The aim of the study was to determine how big the intracranial added volume has to be in order to produce significant changes of harmonic disturbances index (HFC) of ICP pulse waves. The diagnostic value of HFC and other parameters was compared. The following other parameters were studied: intracranial pressure (ICP), CSF outflow resistance (R), volume pressure response (VPR) and visual evoked potentials (VEP). It was found that ICP wave analysis very clearly reflects the intracranial volume-pressure relation changes. PMID:8028705

  11. Ultrasonic Doppler Modes

    NASA Astrophysics Data System (ADS)

    Tortoli, Piero; Fidanzati, Paolo; Luca, Bassi

    Any US equipment includes Doppler facilities capable of providing information about moving structures inside the human body. In most cases, the primary interest is in the investigation of blood flow dynamics, since this may be helpful for early diagnosis of cardiovascular diseases. However, there is also an increasing interest in tracking the movements of human tissues, since such movements can give an indirect evaluation of their elastic properties, which are valuable indicators of the possible presence of pathologies. This paper aims at presenting an overview of the different ways in which the Doppler technique has been developed and used in medical ultrasound (US), from early continuous wave (CW) systems to advanced pulsed wave (PW) colour-Doppler equipment. In particular, the most important technical features and clinical applications of CW, single-gate PW, multi-gate PW and flow-imaging systems are reviewed. The main signal processing approaches used for detection of Doppler frequencies are described, including time-domain and frequency-domain (spectral) methods, as well as novel strategies like, e.g., harmonic Doppler mode, which have been recently introduced to exploit the benefits of US contrast agents.

  12. [Research on a non-invasive pulse wave detection and analysis system].

    PubMed

    Li, Ting; Yu, Gang

    2008-10-01

    A novel non-invasive pulse wave detection and analysis system has been developed, including the software and the hardware. Bi-channel signals can be acquired, stored and shown on the screen dynamically at the same time. Pulse wave can be reshown and printed after pulse wave analysis and pulse wave velocity analysis. This system embraces a computer which is designed for fast data saving, analyzing and processing, and a portable data sampling machine which is based on a singlechip. Experimental results have shown that the system is stable and easy to use, and the parameters are calculated accurately. PMID:19024446

  13. Brachial-Ankle Pulse Wave Velocity: Myths, Misconceptions, and Realities

    PubMed Central

    Sugawara, Jun; Tanaka, Hirofumi

    2015-01-01

    A variety of techniques to evaluate central arterial stiffness have been developed and introduced. None of these techniques, however, have been implemented widely in regular clinical settings, except for brachial-ankle pulse wave velocity (baPWV). The most prominent procedural advantage of baPWV is its ease of use, since it only requires the wrapping of blood pressure cuffs on the 4 extremities. There is mounting evidence indicating the ability of baPWV to predict the risk of future cardiovascular events and total mortality. Additionally, the guidelines for the management of hypertension in Japan recommended the measurement of baPWV be included in the assessment of subclinical target organ damage. However, baPWV has not been fully accepted worldwide due to perceived theoretical and methodological issues. In this review, we address the most frequently mentioned questions and concerns regarding baPWV to shed some light on this simple and easy arterial stiffness measurement. PMID:26587459

  14. Temporal pattern of pulse wave velocity during brachial hyperemia reactivity

    NASA Astrophysics Data System (ADS)

    Graf, S.; Valero, M. J.; Craiem, D.; Torrado, J.; Farro, I.; Zócalo, Y.; Valls, G.; Bía, D.; Armentano, R. L.

    2011-09-01

    Endothelial function can be assessed non-invasively with ultrasound, analyzing the change of brachial diameter in response to transient forearm ischemia. We propose a new technique based in the same principle, but analyzing a continuous recording of carotid-radial pulse wave velocity (PWV) instead of diameter. PWV was measured on 10 healthy subjects of 22±2 years before and after 5 minutes forearm occlusion. After 59 ± 31 seconds of cuff release PWV decreased 21 ± 9% compared to baseline, reestablishing the same after 533 ± 65 seconds. There were no significant changes observed in blood pressure. When repeating the study one hour later in 5 subjects, we obtained a coefficient of repeatability of 4.8%. In conclusion, through analysis of beat to beat carotid-radial PWV it was possible to characterize the temporal profiles and analyze the acute changes in response to a reactive hyperemia. The results show that the technique has a high sensitivity and repeatability.

  15. Pulse Wave Variation during the Menstrual Cycle in Women with Menstrual Pain.

    PubMed

    Jeon, Soo Hyung; Kim, Kyu Kon; Lee, In Seon; Lee, Yong Tae; Kim, Gyeong Cheol; Chi, Gyoo Yong; Cho, Hye Sook; Kang, Hee Jung; Kim, Jong Won

    2016-01-01

    Objective. This study is performed to obtain objective diagnostic indicators associated with menstrual pain using pulse wave analysis. Methods. Using a pulse diagnostic device, we measured the pulse waves of 541 women aged between 19 and 30 years, placed in either an experimental group with menstrual pain (n = 329) or a control group with little or no menstrual pain (n = 212). Measurements were taken during both the menstrual and nonmenstrual periods, and comparative analysis was performed. Results. During the nonmenstrual period, the experimental group showed a significantly higher value in the left radial artery for the radial augmentation index (RAI) (p = 0.050) but significantly lower values for pulse wave energy (p = 0.021) and time to first peak from baseline (T1) (p = 0.035) in the right radial artery. During the menstrual period, the experimental group showed significantly lower values in the left radial artery for cardiac diastole and pulse wave area during diastole and significantly higher values for pulse wave area during systole, ratio of systolic phase to the full heartbeat, and systolic-diastolic ratio. Conclusion. We obtained indicators of menstrual pain in women during the menstrual period, including prolonged systolic and shortened diastolic phases, increases in pulse wave energy and area of representative pulse wave, and increased blood vessel resistance. PMID:27579304

  16. Pulse Wave Variation during the Menstrual Cycle in Women with Menstrual Pain

    PubMed Central

    Jeon, Soo Hyung; Kim, Kyu Kon; Lee, In Seon; Lee, Yong Tae; Kim, Gyeong Cheol; Chi, Gyoo Yong; Cho, Hye Sook; Kang, Hee Jung

    2016-01-01

    Objective. This study is performed to obtain objective diagnostic indicators associated with menstrual pain using pulse wave analysis. Methods. Using a pulse diagnostic device, we measured the pulse waves of 541 women aged between 19 and 30 years, placed in either an experimental group with menstrual pain (n = 329) or a control group with little or no menstrual pain (n = 212). Measurements were taken during both the menstrual and nonmenstrual periods, and comparative analysis was performed. Results. During the nonmenstrual period, the experimental group showed a significantly higher value in the left radial artery for the radial augmentation index (RAI) (p = 0.050) but significantly lower values for pulse wave energy (p = 0.021) and time to first peak from baseline (T1) (p = 0.035) in the right radial artery. During the menstrual period, the experimental group showed significantly lower values in the left radial artery for cardiac diastole and pulse wave area during diastole and significantly higher values for pulse wave area during systole, ratio of systolic phase to the full heartbeat, and systolic-diastolic ratio. Conclusion. We obtained indicators of menstrual pain in women during the menstrual period, including prolonged systolic and shortened diastolic phases, increases in pulse wave energy and area of representative pulse wave, and increased blood vessel resistance. PMID:27579304

  17. Weight Loss, Dietary Intake and Pulse Wave Velocity.

    PubMed

    Petersen, Kristina; Blanch, Natalie; Keogh, Jennifer; Clifton, Peter

    2015-09-01

    We have recently conducted a meta-analysis to determine the effect of weight loss achieved by an energy-restricted diet with or without exercise, anti-obesity drugs or bariatric surgery on pulse wave velocity (PWV) measured at all arterial segments. Twenty studies, including 1,259 participants, showed that modest weight loss (8% of the initial body weight) caused a reduction in PWV measured at all arterial segments. However, due to the poor methodological design of the included studies, the results of this meta-analysis can only be regarded as hypothesis generating and highlight the need for further research in this area. In the future, well-designed randomised controlled trials are required to determine the effect of diet-induced weight loss on PWV and the mechanisms involved. In addition, there is observational evidence that dietary components such as fruit, vegetables, dairy foods, sodium, potassium and fatty acids may be associated with PWV, although evidence from well-designed intervention trials is lacking. In the future, the effect of concurrently improving dietary quality and achieving weight loss should be assessed in randomised controlled trials. PMID:26587462

  18. Is there a pulse wave encephalopathy component to multiple sclerosis?

    PubMed

    Juurlink, Bernhard H J

    2015-01-01

    The dominant hypothesis in multiple sclerosis is that it is an autoimmune disease; however, there is considerable evidence that the immune attack on myelin may be secondary to a cytodegenerative event. Furthermore, the immune modulating therapies longest in clinical use, although modulating the frequency and severity of exacerbation, do not affect long-term progression towards disability. Clearly alternative perspectives on the etiology of multiple sclerosis are warranted. In this paper I outline the commonalities between idiopathic normal pressure hydrocephalus and multiple sclerosis. These include decreased intracranial compliance as evidenced by increased cerebrospinal fluid volume and velocity of cerebrospinal fluid flow through the cerebral aqueduct; increased ventricular volume; periventricular demyelination lesions; increase in size of Virchow-Robin spaces; presence of Hakim's triad comprised of locomotory disabilities, cognitive problems and bladder control problems. Furthermore, multiple sclerosis is associated with decreased arterial compliance. These are all suggestive that there is a pulse wave encephalopathy component to multiple sclerosis. There are enough resemblances between normal pressure hydrocephalus and multiple sclerosis to warrant further investigation. Whether decreases in intracranial compliance is a consequence of multiple sclerosis or is a causal factor is unknown. Effective therapies can only be developed when the etiology of the disease is understood. PMID:25760216

  19. Weight Loss, Dietary Intake and Pulse Wave Velocity

    PubMed Central

    Petersen, Kristina; Blanch, Natalie; Keogh, Jennifer; Clifton, Peter

    2015-01-01

    We have recently conducted a meta-analysis to determine the effect of weight loss achieved by an energy-restricted diet with or without exercise, anti-obesity drugs or bariatric surgery on pulse wave velocity (PWV) measured at all arterial segments. Twenty studies, including 1,259 participants, showed that modest weight loss (8% of the initial body weight) caused a reduction in PWV measured at all arterial segments. However, due to the poor methodological design of the included studies, the results of this meta-analysis can only be regarded as hypothesis generating and highlight the need for further research in this area. In the future, well-designed randomised controlled trials are required to determine the effect of diet-induced weight loss on PWV and the mechanisms involved. In addition, there is observational evidence that dietary components such as fruit, vegetables, dairy foods, sodium, potassium and fatty acids may be associated with PWV, although evidence from well-designed intervention trials is lacking. In the future, the effect of concurrently improving dietary quality and achieving weight loss should be assessed in randomised controlled trials. PMID:26587462

  20. Assessment of aortic pulse wave velocity by ultrasound: a feasibility study in mice

    NASA Astrophysics Data System (ADS)

    Faita, Francesco; Di Lascio, Nicole; Stea, Francesco; Kusmic, Claudia; Sicari, Rosa

    2014-03-01

    Pulse wave velocity (PWV) is considered a surrogate marker of arterial stiffness and could be useful for characterizing cardiovascular disease progression even in mouse models. Aim of this study was to develop an image process algorithm for assessing arterial PWV in mice using ultrasound (US) images only and test it on the evaluation of age-associated differences in abdominal aorta PWV (aaPWV). US scans were obtained from six adult (7 months) and six old (19 months) wild type male mice (strain C57BL6) under gaseous anaesthesia. For each mouse, diameter and flow velocity instantaneous values were achieved from abdominal aorta B-mode and PW-Doppler images; all measurements were obtained using edge detection and contour tracking techniques. Single-beat mean diameter and velocity were calculated and time-aligned, providing the lnD-V loop. aaPWV values were obtained from the slope of the linear part of the loop (the early systolic phase), while relative distension (relD) measurements were calculated from the mean diameter signal. aaPWV values for young mice (3.5±0.52 m/s) were lower than those obtained for older ones (5.12±0.98 m/s) while relD measurements were higher in young (25%±7%) compared with older animals evaluations (15%±3%). All measurements were significantly different between the two groups (P<0.01 both). In conclusion, the proposed image processing technique well discriminate between age groups. Since it provides PWV assessment just from US images, it could represent a simply and useful system for vascular stiffness evaluation at any arterial site in the mouse, even in preclinical small animal models.

  1. [Research on the Method of Blood Pressure Monitoring Based on Multiple Parameters of Pulse Wave].

    PubMed

    Miao, Changyun; Mu, Dianwei; Zhang, Cheng; Miao, Chunjiao; Li, Hongqiang

    2015-10-01

    In order to improve the accuracy of blood pressure measurement in wearable devices, this paper presents a method for detecting blood pressure based on multiple parameters of pulse wave. Based on regression analysis between blood pressure and the characteristic parameters of pulse wave, such as the pulse wave transit time (PWTT), cardiac output, coefficient of pulse wave, the average slope of the ascending branch, heart rate, etc. we established a model to calculate blood pressure. For overcoming the application deficiencies caused by measuring ECG in wearable device, such as replacing electrodes and ECG lead sets which are not convenient, we calculated the PWTT with heart sound as reference (PWTT(PCG)). We experimentally verified the detection of blood pressure based on PWTT(PCG) and based on multiple parameters of pulse wave. The experiment results showed that it was feasible to calculate the PWTT from PWTT(PCG). The mean measurement error of the systolic and diastolic blood pressure calculated by the model based on multiple parameters of pulse wave is 1.62 mm Hg and 1.12 mm Hg, increased by 57% and 53% compared to those of the model based on simple parameter. This method has more measurement accuracy. PMID:26964321

  2. Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI.

    PubMed

    Markl, Michael; Wallis, Wolf; Brendecke, Stefanie; Simon, Jan; Frydrychowicz, Alex; Harloff, Andreas

    2010-06-01

    The aim of this study was to determine the value of flow-sensitive four-dimensional MRI for the assessment of pulse wave velocity as a measure of vessel compliance in the thoracic aorta. Findings in 12 young healthy volunteers were compared with those in 25 stroke patients with aortic atherosclerosis and an age-matched normal control group (n = 9). Results from pulse wave velocity calculations incorporated velocity data from the entire aorta and were compared to those of standard methods based on flow waveforms at only two specific anatomic landmarks. Global aortic pulse wave velocity was higher in patients with atherosclerosis (7.03 +/- 0.24 m/sec) compared to age-matched controls (6.40 +/- 0.32 m/sec). Both were significantly (P < 0.001) increased compared to younger volunteers (4.39 +/- 0.32 m/sec). Global aortic pulse wave velocity in young volunteers was in good agreement with previously reported MRI studies and catheter measurements. Estimation of measurement inaccuracies and error propagation analysis demonstrated only minor uncertainties in measured flow waveforms and moderate relative errors below 16% for aortic compliance in all 46 subjects. These results demonstrate the feasibility of pulse wave velocity calculation based on four-dimensional MRI data by exploiting its full volumetric coverage, which may also be an advantage over standard two-dimensional techniques in the often-distorted route of the aorta in patients with atherosclerosis. PMID:20512861

  3. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    PubMed

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes. PMID:25732778

  4. a New Approach of Dynamic Blood Pressure Measurement Based on the Time Domain Analysis of the Pulse Wave

    NASA Astrophysics Data System (ADS)

    Zimei, Su; Wei, Xu; Hui, Yu; Fei, Du; Jicun, Wang; Kexin, Xu

    2009-08-01

    In this study the pulse wave characteristics were used as a new approach to measure the human blood pressure. Based the principle of pulse wave and theory of the elastic vascular, the authors analyzed the characteristic of the pulse waveforms and revealed the characteristics points which could be used to represent the blood pressure. In this investigation the relevant mathematical feature was used to identify the relationship between the blood pressure and pulse wave parameters in a more accurate way. It also provided an experimental basis to carry out continuing non-invasive blood pressure monitoring using the pulse wave method.

  5. Effect of Different Phases of Menstrual Cycle on Reflection Index, Stiffness index and Pulse wave velocity in Healthy subjects

    PubMed Central

    TA, Sandhya

    2014-01-01

    Introduction: Arterial compliance will result in stabilizing the fluctuations in arterial pressure and blood flow. So arterial stiffness can be a good indicator for monitoring the cardiovascular system. Arterial stiffness can be measured using indices like reflection index (RI), stiffness index (SI) and Brachial Finger Pulse Wave Velocity (BFPWV). Objectives: Aim of our study was to evaluate the changes in RI, SI and BFPWV during different phases of the menstrual cycle and to correlate RI with SI in healthy female subjects between the age group of 18-30 years from Bangalore, India. Materials and Methods: Basal recordings of RI and SI were determined by Photo Pulse Plethysmography (PPG) picked up from the fingertip using BIOPAC system and BFPWV was obtained using Doppler. Recordings were obtained at three different time points during the menstrual cycle. Analysis was done using repeated measures ANOVA with Bonferroni correction. Result: There was a significant decrease in above parameters p <0.05 during the mid-cycle. Correlation between RI and SI was also significant p<0.05. Conclusion: These findings suggests that the menstrual cycle affects the arterial stiffness and one of the factor is oestrogen. Hence, women are less prone to the incidence of cardiovascular diseases before menopause. Screening for arterial stiffness in a general population, using these indices is valid, economical and reliable. PMID:25386420

  6. Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study

    NASA Astrophysics Data System (ADS)

    Li, Ronny X.; Luo, Jianwen; Balaram, Sandhya K.; Chaudhry, Farooq A.; Shahmirzadi, Danial; Konofagou, Elisa E.

    2013-07-01

    Arterial stiffness is a well-established biomarker for cardiovascular risk, especially in the case of hypertension. The progressive stages of an abdominal aortic aneurysm (AAA) have also been associated with varying arterial stiffness. Pulse wave imaging (PWI) is a noninvasive, ultrasound imaging-based technique that uses the pulse wave-induced arterial wall motion to map the propagation of the pulse wave and measure the regional pulse wave velocity (PWV) as an index of arterial stiffness. In this study, the clinical feasibility of PWI was evaluated in normal, hypertensive, and aneurysmal human aortas. Radiofrequency-based speckle tracking was used to estimate the pulse wave-induced displacements in the abdominal aortic walls of normal (N = 15, mean age 32.5 ± 10.2 years), hypertensive (N = 13, mean age 60.8 ± 15.8 years), and aneurysmal (N = 5, mean age 71.6 ± 11.8 years) human subjects. Linear regression of the spatio-temporal variation of the displacement waveform in the anterior aortic wall over a single cardiac cycle yielded the slope as the PWV and the coefficient of determination r2 as an approximate measure of the pulse wave propagation uniformity. The aortic PWV measurements in all normal, hypertensive, and AAA subjects were 6.03 ± 1.68, 6.69 ± 2.80, and 10.54 ± 6.52 m s-1, respectively. There was no significant difference (p = 0.15) between the PWVs of the normal and hypertensive subjects while the PWVs of the AAA subjects were significantly higher (p < 0.001) compared to those of the other two groups. Also, the average r2 in the AAA subjects was significantly lower (p < 0.001) than that in the normal and hypertensive subjects. These preliminary results suggest that the regional PWV and the pulse wave propagation uniformity (r2) obtained using PWI, in addition to the PWI images and spatio-temporal maps that provide qualitative visualization of the pulse wave, may potentially provide valuable information for the clinical characterization of aneurysms

  7. A noninvasive method to estimate pulse wave velocity in arteries locally by means of ultrasound.

    PubMed

    Brands, P J; Willigers, J M; Ledoux, L A; Reneman, R S; Hoeks, A P

    1998-11-01

    Noninvasive evaluation of vessel wall properties in humans is hampered by the absence of methods to assess directly local distensibility, compliance, and Young's modulus. Contemporary ultrasound methods are capable of assessing end-diastolic artery diameter, the local change in artery diameter as a function of time, and local wall thickness. However, to assess vessel wall properties of the carotid artery, for example, the pulse pressure in the brachial artery still must be used as a substitute for local pulse pressure. The assessment of local pulse wave velocity as described in the present article provides a direct estimate of local vessel wall properties (distensibility, compliance, and Young's modulus) and, in combination with the relative change in artery cross-sectional area, an estimate of the local pulse pressure. The local pulse wave velocity is obtained by processing radio frequency ultrasound signals acquired simultaneously along two M-lines spaced at a known distance along the artery. A full derivation and mathematical description of the method to assess local pulse wave velocity, using the temporal and longitudinal gradients of the change in diameter, are presented. A performance evaluation of the method was carried out by means of experiments in an elastic tube under pulsatile pressure conditions. It is concluded that, in a phantom set-up, the assessed local pulse wave velocity provides reliable estimates for local distensibility. PMID:10385955

  8. Effect of various pulse wave forms for pulse-type magnetic flux pump

    NASA Astrophysics Data System (ADS)

    Bai, Zhiming; Chen, Chuan; Wu, Yanqing; Zhen, Zhen

    2011-09-01

    The excitation current of magnetic pole windings in magnetic flux pump needs to be generated by a control system. In this paper, the control system of pulse-type high temperature superconducting magnetic flux pump is discussed in detail. The control system consists of a control circuit and a drive circuit. A direct current power supply is the unique power supply of the drive circuit. The control circuit is powered by a computer through a USB interface of the computer. The control circuit receives commands from the computer and controls the drive circuit to generate different pulse waves. Each pulse wave generates a unique pulse-type traveling magnetic field and will pump magnetic flux into the superconducting loop. Experiments have been performed to examine the pumping effect of different pulse waves on both MgB 2 and Bi-2223 superconducting loops using the proposed control system, and the best pulse wave has been found. The experimental results show that the magnetic flux pump can compensate current decay up to 32.5 A for MgB 2 loop and 129 A for Bi-2223 loop. It indicates that the control system of the pulse-type magnetic flux pump is effective and feasible.

  9. Imaging pulse wave velocity in mouse retina using swept-source OCT (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Wei, Wei; Wang, Ruikang K.

    2016-03-01

    Blood vessel dynamics has been a significant subject in cardiology and internal medicine, and pulse wave velocity (PWV) on artery vessels is a classic evaluation of arterial distensibility, and has never been ascertained as a cardiovascular risk marker. The aim of this study is to develop a high speed imaging technique to capture the pulsatile motion on mouse retina arteries with the ability to quantify PWV on any arterial vessels. We demonstrate a new non-invasive method to assess the vessel dynamics on mouse retina. A Swept-source optical coherence tomography (SS-OCT) system is used for imaging micro-scale blood vessel motion. The phase-stabilized SS-OCT provides a typical displacement sensitivity of 20 nm. The frame rate of imaging is ~16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of transient pulse waves with adequate temporal resolution. Imaging volumes with repeated B-scans are obtained on mouse retina capillary bed, and the mouse oxymeter signal is recorded simultaneously. The pulse wave on artery and vein are resolved, and with the synchronized heart beat signal, the temporal delay on different vessel locations is determined. The vessel specific measurement of PWV is achieved for the first time with SS-OCT, for pulse waves propagating more than 100 cm/s. Using the novel methodology of retinal PWV assessment, it is hoped that the clinical OCT scans can provide extended diagnostic information of cardiology functionalities.

  10. [Design and implementation of the pulse wave generator with field programmable gate array based on windkessel model].

    PubMed

    Wang, Hao; Fu, Quanhai; Xu, Lisheng; Liu, Jia; He, Dianning; Li, Qingchun

    2014-10-01

    Pulse waves contain rich physiological and pathological information of the human vascular system. The pulse wave diagnosis systems are very helpful for the clinical diagnosis and treatment of cardiovascular diseases. Accurate pulse waveform is necessary to evaluate the performances of the pulse wave equipment. However, it is difficult to obtain accurate pulse waveform due to several kinds of physiological and pathological conditions for testing and maintaining the pulse wave acquisition devices. A pulse wave generator was designed and implemented in the present study for this application. The blood flow in the vessel was simulated by modeling the cardiovascular system with windkessel model. Pulse waves can be generated based on the vascular systems with four kinds of resistance. Some functional models such as setting up noise types and signal noise ratio (SNR) values were also added in the designed generator. With the need of portability, high speed dynamic response, scalability and low power consumption for the system, field programmable gate array (FPGA) was chosen as hardware platform, and almost all the works, such as developing an algorithm for pulse waveform and interfacing with memory and liquid crystal display (LCD), were implemented under the flow of system on a programmable chip (SOPC) development. When users input in the key parameters through LCD and touch screen, the corresponding pulse wave will be displayed on the LCD and the desired pulse waveform can be accessed from the analog output channel as well. The structure of the designed pulse wave generator is simple and it can provide accurate solutions for studying and teaching pulse waves and the detection of the equipments for acquisition and diagnosis of pulse wave. PMID:25764709

  11. A digital multigate Doppler method for high frequency ultrasound.

    PubMed

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method. PMID:25061836

  12. A Digital Multigate Doppler Method for High Frequency Ultrasound

    PubMed Central

    Qiu, Weibao; Ye, Zongying; Yu, Yanyan; Chen, Yan; Chi, Liyang; Mu, Peitian; Li, Guofeng; Wang, Congzhi; Xiao, Yang; Dai, Jiyan; Sun, Lei; Zheng, Hairong

    2014-01-01

    Noninvasive visualization of blood flow with high frequency Doppler ultrasound has been extensively used to assess the morphology and hemodynamics of the microcirculation. A completely digital implementation of multigate pulsed-wave (PW) Doppler method was proposed in this paper for high frequency ultrasound applications. Analog mixer was eliminated by a digital demodulator and the same data acquisition path was shared with traditional B-mode imaging which made the design compact and flexible. Hilbert transform based quadrature demodulation scheme was employed to achieve the multigate Doppler acquisition. A programmable high frequency ultrasound platform was also proposed to facilitate the multigate flow visualization. Experimental results showed good performance of the proposed method. Parabolic velocity gradient inside the vessel and velocity profile with different time slots were acquired to demonstrate the functionality of the multigate Doppler. Slow wall motion was also recorded by the proposed method. PMID:25061836

  13. Non-contact measurement of pulse wave velocity using RGB cameras

    NASA Astrophysics Data System (ADS)

    Nakano, Kazuya; Aoki, Yuta; Satoh, Ryota; Hoshi, Akira; Suzuki, Hiroyuki; Nishidate, Izumi

    2016-03-01

    Non-contact measurement of pulse wave velocity (PWV) using red, green, and blue (RGB) digital color images is proposed. Generally, PWV is used as the index of arteriosclerosis. In our method, changes in blood volume are calculated based on changes in the color information, and is estimated by combining multiple regression analysis (MRA) with a Monte Carlo simulation (MCS) model of the transit of light in human skin. After two pulse waves of human skins were measured using RGB cameras, and the PWV was calculated from the difference of the pulse transit time and the distance between two measurement points. The measured forehead-finger PWV (ffPWV) was on the order of m/s and became faster as the values of vital signs raised. These results demonstrated the feasibility of this method.

  14. Predictive factors for increased aortic pulse wave velocity in renal transplant recipients and its relation to graft outcome.

    PubMed

    Ayub, Muazam; Ullah, Kifayat; Masroor, Imtiaz; Butt, Ghias Uddin

    2015-11-01

    To evaluate aortic stiffness in renal transplant patients and to determine the correlation of renal insufficiency and estimated glomerular filtration rate (eGFR) with aortic pulse wave velocity (APWV), we studied 96 renal transplant patients followed-up at our center. We measured the APWV using transcutaneous Doppler flow recordings and the foot-to-foot method, and calculated the eGFR using the Modification of Diet in Renal Disease equation. The study included 81 (84.4%) males and 15 (15.6%) females. The mean age of the patients was 37.84 ± 10.10 years. The mean duration of transplant was 47.90 ± 34.40 months. The eGFR of the patients ranged from 1 to 120 mL/min, with a mean GFR of 72.6 ± 23.2 mL/min. Sixty-seven (69.8%) patients had eGFR > 60 mL/min and hence had stages 1 and 2 chronic kidney disease (CKD), 27 (28.1%) patients had eGFR 30-60 mL/min and hence had stage 3 CKD and two (2.1%) patients had eGFR <30 mL/min and hence had stages 4 and 5 CKD. The APWV of the patients ranged from 4 to 14.2 m/s, with a mean of 7.49 ± 2.47 m/s. A significant inverse correlation was found between the APWV and eGFR (Pearson correlation coefficient, -0.427, P = 0.00). The mean APWV was significantly higher among patients with higher CKD stage, P = 0.004. We conclude that the APWV is related to the renal graft dysfunction as measured by eGFR. The poorer the renal function, the higher was the APWV. Determination of the APWV may be helpful in predicting the outcome in renal transplant recipients. PMID:26586049

  15. High resolution wavenumber analysis for investigation of arterial pulse wave propagation

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideyuki; Sato, Masakazu; Irie, Takasuke

    2016-07-01

    The propagation of the pulse wave along the artery is relatively fast (several m/s), and a high-temporal resolution is required to measure pulse wave velocity (PWV) in a regional segment of the artery. High-frame-rate ultrasound enables the measurement of the regional PWV. In analyses of wave propagation phenomena, the direction and propagation speed are generally identified in the frequency-wavenumber space using the two-dimensional Fourier transform. However, the wavelength of the pulse wave is very long (1 m at a propagation velocity of 10 m/s and a temporal frequency of 10 Hz) compared with a typical lateral field of view of 40 mm in ultrasound imaging. Therefore, PWV cannot be identified in the frequency-wavenumber space owing to the low resolution of the two-dimensional Fourier transform. In the present study, PWV was visualized in the wavenumber domain using phases of arterial wall acceleration waveforms measured by high-frame-rate ultrasound.

  16. Estimation of local pulse wave velocity using arterial diameter waveforms: Experimental validation in sheep

    NASA Astrophysics Data System (ADS)

    Graf, S.; Craiem, D.; Barra, J. G.; Armentano, R. L.

    2011-12-01

    Increased arterial stiffness is associated with an increased risk of cardiovascular events. Estimation of arterial stiffness using local pulse wave velocity (PWV) promises to be very useful for noninvasive diagnosis of arteriosclerosis. In this work we estimated in an instrumented sheep, the local aortic pulse wave velocity using two sonomicrometry diameter sensors (separated 7.5 cm) according to the transit time method (PWVTT) with a sampling rate of 4 KHz. We simultaneously measured aortic pressure in order to determine from pressure-diameter loops (PWVPDLoop), the "true" local aortic pulse wave velocity. A pneumatic cuff occluder was implanted in the aorta in order to compare both methods under a wide range of pressure levels. Mean pressure values ranged from 47 to 101 mmHg and mean proximal diameter values from 12.5. to 15.2 mm. There were no significant differences between PWVTT and PWVPDLoop values (451±43 vs. 447±48 cm/s, p = ns, paired t-test). Both methods correlated significantly (R = 0.81, p<0.05). The mean difference between both methods was only -4±29 cm/s, whereas the range of the limits of agreement (mean ± 2 standard deviation) was -61 to +53 cm/s, showing no trend. In conclusion, the diameter waveforms transit time method was found to allow an accurate and precise estimation of the local aortic PWV.

  17. Continuous blood pressure monitoring during exercise using pulse wave transit time measurement.

    PubMed

    Lass, J; Meigas, K; Karai, D; Kattai, R; Kaik, J; Rossmann, M

    2004-01-01

    This paper gives an overview of a research, which is focused on the development of the convenient device for continuous non-invasive monitoring of arterial blood pressure. The blood pressure estimation method is based on a presumption that there is a singular relationship between the pulse wave propagation time in arterial system and blood pressure. The parameter used in this study is pulse wave transit time (PWTT). The measurement of PWTT involves the registration of two time markers, one of which is based on ECG R peak detection and another on the detection of pulse wave in peripheral arteries. The reliability of beat to beat systolic blood pressure calculation during physical exercise was the main focus for the current paper. Sixty-one subjects (healthy and hypertensive) were studied with the bicycle exercise test. As a result of current study it is shown that with the correct personal calibration it is possible to estimate the beat to beat systolic arterial blood pressure during the exercise with comparable accuracy to conventional noninvasive methods. PMID:17272172

  18. Lifetime risk factors and arterial pulse wave velocity in adulthood: the cardiovascular risk in young Finns study.

    PubMed

    Aatola, Heikki; Hutri-Kähönen, Nina; Juonala, Markus; Viikari, Jorma S A; Hulkkonen, Janne; Laitinen, Tomi; Taittonen, Leena; Lehtimäki, Terho; Raitakari, Olli T; Kähönen, Mika

    2010-03-01

    Limited and partly controversial data are available regarding the relationship of arterial pulse wave velocity and childhood cardiovascular risk factors. We studied how risk factors identified in childhood and adulthood predict pulse wave velocity assessed in adulthood. The study cohort consisted of 1691 white adults aged 30 to 45 years who had risk factor data available since childhood. Pulse wave velocity was assessed noninvasively by whole-body impedance cardiography. The number of conventional childhood and adulthood risk factors (extreme quintiles for low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, systolic blood pressure, body mass index, and smoking) was directly associated with pulse wave velocity in adulthood (P=0.005 and P<0.0001, respectively). In multivariable regression analysis, independent predictors of pulse wave velocity were sex (P<0.0001), age (P<0.0001), childhood systolic blood pressure (P=0.002) and glucose (P=0.02), and adulthood systolic blood pressure (P<0.0001), insulin (P=0.0009), and triglycerides (P=0.003). Reduction in the number of risk factors (P<0.0001) and a favorable change in obesity status (P=0.0002) from childhood to adulthood were associated with lower pulse wave velocity in adulthood. Conventional risk factors in childhood and adulthood predict pulse wave velocity in adulthood. Favorable changes in risk factor and obesity status from childhood to adulthood are associated with lower pulse wave velocity in adulthood. These results support efforts for a reduction of conventional risk factors both in childhood and adulthood in the primary prevention of atherosclerosis. PMID:20083727

  19. Doppler echocardiography

    SciTech Connect

    Labovitz, A.J.; Williams, G.A.

    1988-01-01

    The authors are successful in presenting a basic book on clinical quantitative Doppler echocardiography. It is not intended to be a comprehensive text, but it does cover clinical applications in a succinct fashion. Only the more common diseases in the adult are considered. The subjects are presented logically and are easy to comprehend. The illustrations are good, and the book is paperbound. The basic principles of Doppler echocardiography are presented briefly. The book ends with chapters on left ventricular function (stroke volume and cardiac output), congenital heart disease, and color Doppler echo-cardiography. There are numerous references and a good glossary and index.

  20. Pulse wave velocity 24-hour monitoring with one-site measurements by oscillometry

    PubMed Central

    Posokhov, Igor N

    2013-01-01

    This review describes issues for the estimation of pulse wave velocity (PWV) under ambulatory conditions using oscillometric systems. The difference between the principles of measuring the PWV by the standard method and by oscillometry is shown, and information on device validation studies is summarized. It was concluded that currently oscillometry is a method that is very convenient to use in the 24-hour monitoring of the PWV, is relatively accurate, and is reasonably comfortable for the patient. Several indices with the same principles as those in the analysis of blood pressure in ambulatory monitoring of blood pressure, namely the assessment of load, variability, and circadian rhythm, are proposed. PMID:23549868

  1. Assessments of Arterial Stiffness and Endothelial Function Using Pulse Wave Analysis

    PubMed Central

    Stoner, Lee; Young, Joanna M.; Fryer, Simon

    2012-01-01

    Conventionally, the assessments of endothelial function and arterial stiffness require different sets of equipment, making the inclusion of both tests impractical for clinical and epidemiological studies. Pulse wave analysis (PWA) provides useful information regarding the mechanical properties of the arterial tree and can also be used to assess endothelial function. PWA is a simple, valid, reliable, and inexpensive technique, offering great clinical and epidemiological potential. The current paper will outline how to measure arterial stiffness and endothelial function using this technique and include discussion of validity and reliability. PMID:22666595

  2. A method for localized computation of Pulse Wave Velocity in carotid structure.

    PubMed

    Patil, Ravindra B; Krishnamoorthy, P; Sethuraman, Shriram

    2015-08-01

    Pulse Wave Velocity (PWV) promises to be a useful clinical marker for noninvasive diagnosis of atherosclerosis. This work demonstrates the ability to perform localized carotid PWV measurements from the distention waveform derived from the Radio Frequency (RF) ultrasound signal using a carotid phantom setup. The proposed system consists of low cost custom-built ultrasound probe and algorithms for envelope detection, arterial wall identification, echo tracking, distension waveform computation and PWV estimation. The method is proposed on a phantom data acquired using custom-built prototype non-imaging probe. The proposed approach is non-image based and can be seamlessly integrated into existing clinical ultrasound scanners. PMID:26736653

  3. Ultrasonic Pulse Waves Propagating through Cancellous Bone Phantoms with Aligned Pore Spaces

    NASA Astrophysics Data System (ADS)

    Hosokawa, Atsushi

    2006-05-01

    To elucidate the propagation phenomena of ultrasonic waves in cancellous bone related to trabecular structure, pulse waves propagating through three cancellous bone phantoms with different skeletal frames have been experimentally observed using a water-immersion ultrasonic technique. Skeletal frames with regularly aligned pore spaces were formed to imitate the orthotropic trabecular structure, using wire gauzes, punched plates and honeycomb ceramics. The propagations of the fast and slow waves, which were clearly observed in the direction of the trabecular alignment of cancellous bone, were investigated with the frame’s structures of these phantoms.

  4. Wall stress and deformation analysis in a numerical model of pulse wave propagation.

    PubMed

    He, Fan; Hua, Lu; Gao, Lijian

    2015-01-01

    To simulate pulse wave propagation, we set up a wave propagation model using blood-wall interaction in previous work. In this paper, our purpose is to investigate wall stress and deformation of the wave propagation model. The finite element method is employed for solving the governing equations of blood and wall. Our results suggest that there are two peaks in the circumferential stress and strain distributions of the normal model. The stress and strain values change with the varieties of different factors, such as wall thickness and vessel diameter. The results indicate that different parameters of fluid and tube wall have remarked impact on wall stress and deformation. PMID:26406044

  5. On the Design of Passive Resonant Circuits to Measure Local Pulse Wave Velocity in a Stent.

    PubMed

    Schächtele, Jonathan

    2016-06-01

    In-stent restenosis is a frequent complication after stent implantation. This article investigates the design of a passive sensor system to be integrated into a stent for the detection of an in-stent restenosis by measuring the local pulse wave velocity (PWV). The proposed system uses two resonant circuits consisting of a capacitive pressure sensor and a coil as transponders. The pressure sensors are located at the proximal and distal end of the stent. An alternating external magnetic field with a constant frequency is applied such that the resonance frequencies of the transponders cross the excitation frequency when the pulse wave passes. The time delay between the resonances at the transponders can be captured to obtain the PWV. A model for the measurement system and a correlation between transponder design parameters and minimal resolvable time delay are derived. This correlation is based on the criterion that the 3 dB bandwidth of the transponder resonances may not overlap in the measurement time interval. This correlation can be used to design and analyze a transponder system for the proposed measurement system. In an experiment, in which the pressure sensors have been emulated by varactor diodes, it could be shown that the model is valid and that the criterion is suitable. Finally, the relevant design parameters of the transponders have been identified and their limitations investigated. PMID:26800547

  6. Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections

    PubMed Central

    Alastruey, Jordi; Hunt, Anthony A E; Weinberg, Peter D

    2014-01-01

    We present a novel analysis of arterial pulse wave propagation that combines traditional wave intensity analysis with identification of Windkessel pressures to account for the effect on the pressure waveform of peripheral wave reflections. Using haemodynamic data measured in vivo in the rabbit or generated numerically in models of human compliant vessels, we show that traditional wave intensity analysis identifies the timing, direction and magnitude of the predominant waves that shape aortic pressure and flow waveforms in systole, but fails to identify the effect of peripheral reflections. These reflections persist for several cardiac cycles and make up most of the pressure waveform, especially in diastole and early systole. Ignoring peripheral reflections leads to an erroneous indication of a reflection-free period in early systole and additional error in the estimates of (i) pulse wave velocity at the ascending aorta given by the PU–loop method (9.5% error) and (ii) transit time to a dominant reflection site calculated from the wave intensity profile (27% error). These errors decreased to 1.3% and 10%, respectively, when accounting for peripheral reflections. Using our new analysis, we investigate the effect of vessel compliance and peripheral resistance on wave intensity, peripheral reflections and reflections originating in previous cardiac cycles. PMID:24132888

  7. Detection and analysis of multi-dimensional pulse wave based on optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shen, Yihui; Li, Zhifang; Li, Hui; Chen, Haiyu

    2014-11-01

    Pulse diagnosis is an important method of traditional Chinese medicine (TCM). Doctors diagnose the patients' physiological and pathological statuses through the palpation of radial artery for radial artery pulse information. Optical coherence tomography (OCT) is an useful tool for medical optical research. Current conventional diagnostic devices only function as a pressure sensor to detect the pulse wave - which can just partially reflect the doctors feelings and lost large amounts of useful information. In this paper, the microscopic changes of the surface skin above radial artery had been studied in the form of images based on OCT. The deformation of surface skin in a cardiac cycle which is caused by arterial pulse is detected by OCT. The patient's pulse wave is calculated through image processing. It is found that it is good consistent with the result conducted by pulse analyzer. The real-time patient's physiological and pathological statuses can be monitored. This research provides a kind of new method for pulse diagnosis of traditional Chinese medicine.

  8. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age

    PubMed Central

    Mohiuddin, Mohammad W.; Rihani, Ryan J.; Laine, Glen A.

    2012-01-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (Ctot) and increases in total peripheral resistance (Rtot) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (cph) make the reflected pressure wave arrive earlier, augmenting systolic pressure. It has recently been shown, however, that increases in cph do not have a commensurate effect on the timing of the reflected wave. We therefore used a validated, large-scale, human arterial system model that includes realistic pulse wave transmission to determine whether increases in cph cause increased PP with age. First, we made the realistic arterial system model age dependent by altering cardiac output (CO), Rtot, Ctot, and cph to mimic the reported changes in these parameters from age 30 to 70. Then, cph was theoretically maintained constant, while Ctot, Rtot, and CO were altered. The predicted increase in PP with age was similar to the observed increase in PP. In a complementary approach, Ctot, Rtot, and CO were theoretically maintained constant, and cph was increased. The predicted increase in PP was negligible. We found that increases in cph have a limited effect on the timing of the reflected wave but cause the system to degenerate into a windkessel. Changes in PP can therefore be attributed to a decrease in Ctot. PMID:22561301

  9. A Distinguishing Arterial Pulse Waves Approach by Using Image Processing and Feature Extraction Technique.

    PubMed

    Chen, Hsing-Chung; Kuo, Shyi-Shiun; Sun, Shen-Ching; Chang, Chia-Hui

    2016-10-01

    Traditional Chinese Medicine (TCM) is based on five main types of diagnoses methods consisting of inspection, auscultation, olfaction, inquiry, and palpation. The most important one is palpation also called pulse diagnosis which is to measure wrist artery pulse by doctor's fingers for detecting patient's health state. In this paper, it is carried out by using a specialized pulse measuring instrument to classify one's pulse type. The measured pulse waves (MPWs) were segmented into the arterial pulse wave curve (APWC) by image proposing method. The slopes and periods among four specific points on the APWC were taken to be the pulse features. Three algorithms are proposed in this paper, which could extract these features from the APWCs and compared their differences between each of them to the average feature matrix, individually. These results show that the method proposed in this study is superior and more accurate than the previous studies. The proposed method could significantly save doctors a large amount of time, increase accuracy and decrease data volume. PMID:27562483

  10. Smart photoplethysmographic sensor for pulse wave registration at different vascular depths.

    PubMed

    Leier, Mairo; Pilt, Kristjan; Karai, Deniss; Jervan, Gert

    2015-08-01

    The aim of this paper is to propose a smart optical sensor for cardiovascular activity monitoring at different tissue layers. Photoplethysmography (PPG) is a noninvasive optical technique for monitoring mainly blood volume changes in the examined tissue. However, different important physiological parameters, such as oxygen saturation, heart and breathing rate, dynamics of skin micro-circulation, vasomotion activity etc., can be extracted from the registered PPG signal. The developed sensor consists of 32 light emitting sources with four different wavelengths, which are located to the four different distances from four photo detectors. Compared to the existing sensors, the system enables to select the optimal LED (light emitting diode) and photo detector couple in order to obtain the pulse wave signal from the interested blood vessels with the highest possible signal to noise ratio. In this study, the designed PPG sensor was tested for the pulse wave registration from radial artery. The highest efficiency and signal to noise ratio was achieved using infrared LED (940 nm) and photo-diode pair. PMID:26736641

  11. The 24-hour pulse wave velocity, aortic augmentation index, and central blood pressure in normotensive volunteers

    PubMed Central

    Kuznetsova, Tatyana Y; Korneva, Viktoria A; Bryantseva, Evgeniya N; Barkan, Vitaliy S; Orlov, Artemy V; Posokhov, Igor N; Rogoza, Anatoly N

    2014-01-01

    The purpose of this study was to examine the pulse wave velocity, aortic augmentation index corrected for heart rate 75 (AIx@75), and central systolic and diastolic blood pressure during 24-hour monitoring in normotensive volunteers. Overall, 467 subjects (206 men and 261 women) were recruited in this study. Participants were excluded from the study if they were less than 19 years of age, had blood test abnormalities, had a body mass index greater than 2 7.5 kg/m2, had impaired glucose tolerance, or had hypotension or hypertension. Ambulatory blood pressure monitoring (ABPM) with the BPLab® device was performed in each subject. ABPM waveforms were analyzed using the special automatic Vasotens® algorithm, which allows the calculation of pulse wave velocity, AIx@75, central systolic and diastolic blood pressure for “24-hour”, “awake”, and “asleep” periods. Circadian rhythms and sex differences in these indexes were identified. Pending further validation in prospective outcome-based studies, our data may be used as preliminary diagnostic values for the BPLab ABPM additional index in adult subjects. PMID:24812515

  12. Duration of Diabetes Predicts Aortic Pulse Wave Velocity and Vascular Events in Alström Syndrome

    PubMed Central

    Smith, Jamie; Carey, Catherine; Barrett, Timothy; Campbell, Fiona; Maffei, Pietro; Marshall, Jan D.; Paisey, Christopher; Steeds, Richard P.; Edwards, Nicola C.; Bunce, Susan; Geberhiwot, Tarekegn

    2015-01-01

    Context: Alström syndrome is characterized by increased risk of cardiovascular disease from childhood. Objective: To explore the association between risk factors for cardiovascular disease, aortic pulse wave velocity, and vascular events in Alström syndrome. Design: Cross-sectional analyses with 5-year follow-up. Setting: The UK NHS nationally commissioned specialist clinics for Alström syndrome. Patients: Thirty-one Alström patients undertook vascular risk assessment, cardiac studies, and aortic pulse wave velocity measurement. Subsequent clinical outcomes were recorded. Interventions: Insulin resistance was treated with lifestyle intervention and metformin, and diabetes with the addition of glitazones, glucagon-like peptide 1 agonists, and/or insulin. Thyroid and T deficiencies were corrected. Dyslipidemia was treated with statins and nicotinic acid derivatives. Cardiomyopathy was treated with standard therapy as required. Main Outcome Measures: The associations of age, gender, and risk factors for cardiovascular disease with aortic pulse wave velocity were assessed and correlated with the effects of reduction in left ventricular function. Vascular events were monitored for 5 years. Results: Aortic pulse wave velocity was positively associated with the duration of diabetes (P = .001) and inversely with left ventricular ejection fraction (P = .036). Five of the cohort with cardiovascular events had higher aortic pulse wave velocity (P = .0247), and all had long duration of diabetes. Conclusions: Duration of diabetes predicted aortic pulse wave velocity in Alström syndrome, which in turn predicted cardiovascular events. This offers hope of secondary prevention because type 2 diabetes can be delayed or reversed by lifestyle interventions. PMID:26066530

  13. Evaluation of agreement between temporal series obtained from electrocardiogram and pulse wave.

    NASA Astrophysics Data System (ADS)

    Leikan, GM; Rossi, E.; Sanz, MCuadra; Delisle Rodríguez, D.; Mántaras, MC; Nicolet, J.; Zapata, D.; Lapyckyj, I.; Siri, L. Nicola; Perrone, MS

    2016-04-01

    Heart rate variability allows to study the cardiovascular autonomic nervous system modulation. Usually, this signal is obtained from the electrocardiogram (ECG). A simpler method for recording the pulse wave (PW) is by means of finger photoplethysmography (PPG), which also provides information about the duration of the cardiac cycle. In this study, the correlation and agreement between the time series of the intervals between heartbeats obtained from the ECG with those obtained from the PPG, were studied. Signals analyzed were obtained from young, healthy and resting subjects. For statistical analysis, the Pearson correlation coefficient and the Bland and Altman limits of agreement were used. Results show that the time series constructed from the PW would not replace the ones obtained from ECG.

  14. High Definition Oscillometry: Non-invasive Blood Pressure Measurement and Pulse Wave Analysis.

    PubMed

    Egner, Beate

    2015-01-01

    Non-invasive monitoring of blood pressure has become increasingly important in research. High-Definition Oscillometry (HDO) delivers not only accurate, reproducible and thus reliable blood pressure but also visualises the pulse waves on screen. This allows for on-screen feedback in real time on data validity but even more on additional parameters like systemic vascular resistance (SVR), stroke volume (SV), stroke volume variances (SVV), rhythm and dysrhythmia. Since complex information on drug effects are delivered within a short period of time, almost stress-free and visible in real time, it makes HDO a valuable technology in safety pharmacology and toxicology within a variety of fields like but not limited to cardiovascular, renal or metabolic research. PMID:26091643

  15. Association of brachial-ankle pulse wave velocity with cardiovascular risk factors in systemic lupus erythematosus.

    PubMed

    Tso, T K; Huang, W N; Huang, H Y; Chang, C K

    2005-01-01

    Systemic lupus erythematosus (SLE) is associated with premature atherosclerosis. Increasing arterial stiffness is closely associated with atherosclerotic cardiovascular diseases, and pulse wave velocity (PWV) is considered to be an indicator of arterial stiffness. The objective of this study was to identify the relationship between brachial-ankle pulse wave velocity (baPWV) and cardiovascular risk factors in patients with SLE. Age, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBS), plasma lipid profile, plasma homocysteine, thiobarbituric acid reactive substances (TBARS), baPWV, ankle-brachial index (ABI), and SLE-related factors were determined in a total of 83 SLE patients (12 males and 71 females). All SLE patients were further classified into two subgroups according to baPWV value (baPWV < 1400 cm/s, n=37 versus baPWV > 1400 cm/s, n=46). The mean baPWV value of studied SLE patients was 1520 +/- 381 cm/s. Age, BMI, SBP, DBP, FBS, TBARS and homocysteine levels were significantly higher in SLE patients with baPWV value > 1400cm/s than in SLE patients with baPWV value < 1400cm/s. In addition, baPWV correlated significantly with age, SBP, DBP, FBS and homocysteine. Moreover, stepwise multiple regression analysis showed that age and SBP were independently associated with baPWV. The results of this study indicate a possible link between vascular stiffness measured by baPWV and cardiovascular risk factors in patients with SLE. PMID:16335579

  16. Assessment of local pulse wave velocity in arteries using 2D distension waveforms.

    PubMed

    Meinders, J M; Kornet, L; Brands, P J; Hoeks, A P

    2001-10-01

    The reciprocal of the arterial pulse wave velocity contains crucial information about the mechanical characteristics of the arterial wall but is difficult to assess noninvasively in vivo. In this paper, a new method to assess local pulse wave velocity (PWV) is presented. To this end, multiple adjacent distension waveforms are determined simultaneously along a short arterial segment, using a single 2D-vessel wall tracking system with a high frame rate (651 Hz). Each B-mode image consists of 16 echo lines spanning a total width of 15.86 mm. Dedicated software has been developed to extract the end-diastolic diameter from the B-mode image and the distension waveforms from the underlying radiofrequency (rf) information for each echo-line. The PWV is obtained by determining the ratio of the temporal and spatial gradient of adjacent distension velocity waveforms. The proposed method is verified in a phantom and in the common carotid artery (CCA) of humans. Phantom experiments show a high concordance between the PWV obtained from 2D distension velocity waveforms (4.21 +/- 0.02 m/s) and the PWV determined using two pressure catheters (4.26 +/- 0.02 m/s). Assuming linear spatial gradients, the PWV can also be obtained in vivo for CCA and averages to 5.5 +/- 1.5 m/s (intersubject variation, n = 23), which compares well to values found in literature. Furthermore, intrasubject PWV compares well with those calculated using the Bramwell-Hill equation. It can be concluded that the PWV can be obtained from the spatial and temporal gradient if the spatial gradient is linear over the observed length of the artery, i.e. the artery should be homogenous in diameter and distension and the influence of reflections must be small. PMID:12051275

  17. Ethnic Differences in and Childhood Influences on Early Adult Pulse Wave Velocity

    PubMed Central

    Silva, Maria J.; Molaodi, Oarabile R.; Enayat, Zinat E.; Cassidy, Aidan; Karamanos, Alexis; Read, Ursula M.; Faconti, Luca; Dall, Philippa; Stansfield, Ben; Harding, Seeromanie

    2016-01-01

    Early determinants of aortic stiffness as pulse wave velocity are poorly understood. We tested how factors measured twice previously in childhood in a multiethnic cohort study, particularly body mass, blood pressure, and objectively assessed physical activity affected aortic stiffness in young adults. Of 6643 London children, aged 11 to 13 years, from 51 schools in samples stratified by 6 ethnic groups with different cardiovascular risk, 4785 (72%) were seen again at aged 14 to 16 years. In 2013, 666 (97% of invited) took part in a young adult (21–23 years) pilot follow-up. With psychosocial and anthropometric measures, aortic stiffness and blood pressure were recorded via an upper arm calibrated Arteriograph device. In a subsample (n=334), physical activity was measured >5 days via the ActivPal. Unadjusted pulse wave velocities in black Caribbean and white UK young men were similar (mean±SD 7.9±0.3 versus 7.6±0.4 m/s) and lower in other groups at similar systolic pressures (120 mm Hg) and body mass (24.6 kg/m2). In fully adjusted regression models, independent of pressure effects, black Caribbean (higher body mass/waists), black African, and Indian young women had lower stiffness (by 0.5–0.8; 95% confidence interval, 0.1–1.1 m/s) than did white British women (6.9±0.2 m/s). Values were separately increased by age, pressure, powerful impacts from waist/height, time spent sedentary, and a reported racism effect (+0.3 m/s). Time walking at >100 steps/min was associated with reduced stiffness (P<0.01). Effects of childhood waist/hip were detected. By young adulthood, increased waist/height ratios, lower physical activity, blood pressure, and psychosocial variables (eg, perceived racism) independently increase arterial stiffness, effects likely to increase with age. PMID:27141061

  18. Detection of Aortic Wall Inclusion Using Regional Pulse Wave Propagation and Velocity In Silico

    PubMed Central

    Shahmirzadi, Danial; Konofagou, Elisa E.

    2012-01-01

    Monitoring of the regional stiffening of the arterial wall may prove important in the diagnosis of various vascular pathologies. The pulse wave velocity (PWV) along the aortic wall has been shown to be dependent on the wall stiffness and has played a fundamental role in a range of diagnostic methods. Conventional clinical methods involve a global examination of the pulse traveling between two remote sites, e.g. femoral and carotid arteries, to provide an average PWV estimate. However, the majority of vascular diseases entail regional vascular changes and therefore may not be detected by a global PWV estimate. In this paper, a fluid-structure interaction study of straight-geometry aortas was carried out to examine the effects of regional stiffness changes on PWV. Five homogeneous aortas with increasing wall stiffness as well as two aortas with soft and hard inclusions were considered. In each case, spatio-temporal maps of the wall motion were used to analyze the regional pulse wave propagation. On the homogeneous aortas, increasing PWVs were found to increase with the wall moduli (R2 = 0.9988), indicating the reliability of the model to accurately represent the wave propagation. On the inhomogeneous aortas, formation of reflected and standing waves was observed at the site of the hard and soft inclusions, respectively. Neither the hard nor the soft inclusion had a significant effect on the velocity of the traveling pulse beyond the inclusion site, which supported the hypothesis that a global measurement of the average PWV could fail to detect regional abnormalities. PMID:24235978

  19. Increasing pulse wave velocity in a realistic cardiovascular model does not increase pulse pressure with age.

    PubMed

    Mohiuddin, Mohammad W; Rihani, Ryan J; Laine, Glen A; Quick, Christopher M

    2012-07-01

    The mechanism of the well-documented increase in aortic pulse pressure (PP) with age is disputed. Investigators assuming a classical windkessel model believe that increases in PP arise from decreases in total arterial compliance (C(tot)) and increases in total peripheral resistance (R(tot)) with age. Investigators assuming a more sophisticated pulse transmission model believe PP rises because increases in pulse wave velocity (c(ph)) make the reflected pressure wave arrive earlier, augmenting systolic pressure. It has recently been shown, however, that increases in c(ph) do not have a commensurate effect on the timing of the reflected wave. We therefore used a validated, large-scale, human arterial system model that includes realistic pulse wave transmission to determine whether increases in c(ph) cause increased PP with age. First, we made the realistic arterial system model age dependent by altering cardiac output (CO), R(tot), C(tot), and c(ph) to mimic the reported changes in these parameters from age 30 to 70. Then, c(ph) was theoretically maintained constant, while C(tot), R(tot), and CO were altered. The predicted increase in PP with age was similar to the observed increase in PP. In a complementary approach, C(tot), R(tot), and CO were theoretically maintained constant, and c(ph) was increased. The predicted increase in PP was negligible. We found that increases in c(ph) have a limited effect on the timing of the reflected wave but cause the system to degenerate into a windkessel. Changes in PP can therefore be attributed to a decrease in C(tot). PMID:22561301

  20. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    PubMed Central

    Vappou, J; Luo, J; Okajima, K; Di Tullio, M; Konofagou, E E

    2014-01-01

    The central Blood Pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce Pulse Wave-based Ultrasound Manometry (PWUM) as a simple-touse, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency (RF) ultrasound signals acquired at high frame rates and the pulse pressure waveform is estimated using both the distension waveform and the local Pulse Wave Velocity (PWV). The method was tested on the abdominal aorta of 11 healthy subjects (age 35.7± 16 y.o.). PWUM pulse pressure measurements were compared to those obtained by radial applanation tonometry using a commercial system. The average intra-subject variability of the pulse pressure amplitude was found to be equal to 4.2 mmHg, demonstrating good reproducibility of the method. Excellent correlation was found between the waveforms obtained by PWUM and those obtained by tonometry in all subjects (0.94

  1. Doppler velocity measurements from large and small arteries of mice

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Entman, Mark L.; Michael, Lloyd H.; Taffet, George E.

    2011-01-01

    With the growth of genetic engineering, mice have become increasingly common as models of human diseases, and this has stimulated the development of techniques to assess the murine cardiovascular system. Our group has developed nonimaging and dedicated Doppler techniques for measuring blood velocity in the large and small peripheral arteries of anesthetized mice. We translated technology originally designed for human vessels for use in smaller mouse vessels at higher heart rates by using higher ultrasonic frequencies, smaller transducers, and higher-speed signal processing. With these methods one can measure cardiac filling and ejection velocities, velocity pulse arrival times for determining pulse wave velocity, peripheral blood velocity and vessel wall motion waveforms, jet velocities for the calculation of the pressure drop across stenoses, and left main coronary velocity for the estimation of coronary flow reserve. These noninvasive methods are convenient and easy to apply, but care must be taken in interpreting measurements due to Doppler sample volume size and angle of incidence. Doppler methods have been used to characterize and evaluate numerous cardiovascular phenotypes in mice and have been particularly useful in evaluating the cardiac and vascular remodeling that occur following transverse aortic constriction. Although duplex ultrasonic echo-Doppler instruments are being applied to mice, dedicated Doppler systems are more suitable for some applications. The magnitudes and waveforms of blood velocities from both cardiac and peripheral sites are similar in mice and humans, such that much of what is learned using Doppler technology in mice may be translated back to humans. PMID:21572013

  2. A simplified measurement of pulse wave velocity is not inferior to standard measurement in young adults and children.

    PubMed

    Edgell, Heather; Stickland, Michael K; MacLean, Joanna E

    2016-06-01

    The standard measurement of pulse wave velocity (PWV) is restricted by the need for simultaneous tonometry measurements requiring two technicians and expensive equipment, limiting this technique to well-resourced settings. In this preliminary study, we compared a simplified method of pulse wave detection from the finger and toe to pulse wave detection from the carotid and radial arteries using applanation tonometry in children and young adults. We hypothesized that the simplified method of PWV measurement would strongly correlate with the standard measurement in different age groups and oxygen conditions. Participants included (a) boys and girls aged 8-12 years and (b) men and women aged 18-40 years. Participants rested supine while carotid and radial artery pulse waves were measured using applanation tonometry and finger and toe pulse waves were simultaneously collected using a Finometer Midi and a piezo-electric pulse transducer, respectively. These measurements were repeated under hypoxic conditions. Finger-toe PWV measurements were strongly correlated to carotid-radial PWV in adults (R=0.58; P=0.011), but not in children (R=0.056; P=0.610). Finger-toe PWV was sensitive enough to show increases in PWV with age (P<0.0001) and hypoxia in children (P<0.0001) and adults (P=0.003). These results indicate that the simplified measurement of finger-toe PWV strongly correlates with the standard measurement of carotid-radial PWV in adults, but not in children. However, finger-toe PWV can be used in either population to determine changes with hypoxia. PMID:26905286

  3. Pulsed Doppler echocardiographic analysis of mitral regurgitation after myocardial infarction.

    PubMed

    Loperfido, F; Biasucci, L M; Pennestri, F; Laurenzi, F; Gimigliano, F; Vigna, C; Rossi, E; Favuzzi, A; Santarelli, P; Manzoli, U

    1986-10-01

    In 72 patients with previous myocardial infarction (MI), mitral regurgitation (MR) was assessed by pulsed-wave Doppler echocardiography and compared with physical and 2-dimensional echocardiographic findings. MR was found by Doppler in 29 of 42 patients (62%) with anterior MI, 11 of 30 (37%) with inferior MI (p less than 0.01) and in none of 20 normal control subjects. MR was more frequent in patients who underwent Doppler study 3 months after MI than in those who underwent Doppler at discharge (anterior MI = 83% vs 50%, p less than 0.01; inferior MI = 47% vs 27%, p = not significant). Of 15 patients who underwent Doppler studies both times, 3 (all with anterior MI) had MR only on the second study. Of the patients with Doppler MR, 12 of 27 (44%) with a left ventricular (LV) ejection fraction (EF) greater than 30% and 1 of 13 (8%) with an EF of 30% or less (p less than 0.01) had an MR systolic murmur. Mitral prolapse or eversion and papillary muscle fibrosis were infrequent in MI patients, whether or not Doppler MR was present. The degree of Doppler MR correlated with EF (r = -0.61), LV systolic volume (r = 0.47), and systolic and diastolic mitral anulus circumference (r = 0.52 and 0.51, respectively). Doppler MR was present in 24 of 28 patients (86%) with an EF of 40% or less and in 16 of 44 (36%) with EF more than 40% (p less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3766410

  4. A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function.

    PubMed

    Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N

    2015-07-01

    The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery-vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. PMID:25766693

  5. Investigating the effect of glucose on aortic pulse wave velocity using pancreatic clamping methodology.

    PubMed

    Puzantian, Houry; Teff, Karen; Townsend, Raymond R

    2015-05-01

    Aortic stiffness, determined by carotid-femoral pulse wave velocity (cfPWV), independently predicts cardiovascular outcomes. Recent studies suggest that glucose levels influence arterial stiffness indices. It is not clear, however, whether glucose affects cfPWV independently of glucoregulatory hormones. The aim of this study was to utilize a pancreatic clamping approach to determine whether plasma glucose independently predicts cfPWV. Healthy participants (N = 10) underwent pancreatic clamping to control glucose at varying concentrations using a 20% dextrose infusion while suppressing endogenous glucagon, insulin, and growth hormone by octreotide and replacing the hormones intravenously to achieve basal concentrations. Tonometric cfPWV, blood pressure, heart rate, plasma glucose, glucagon, insulin, growth hormone, and vasoactive biomarkers were measured. Plasma glucose levels of 150 mg/dl at 1 hr and 200 mg/dl at 2 hr postbaseline were achieved. There were no significant changes in cfPWV (5.8 m/s at 0 hr, 5.9 m/s at 1 hr, and 5.9 m/s at 2 hr) with increased glucose levels. There were small increases in insulin secretion. A definitive role for glucose in cfPWV modulation was not determined; there is a potential role for insulin as a cfPWV modulator. Continued efforts in clarifying the independent roles of glucose and insulin can elucidate novel vessel-related targets for cardiovascular disease prevention and management in patients with impaired glucose tolerance and diabetes. PMID:25802385

  6. Behavioral effects of prenatal exposure to pulsed-wave ultrasound in unanesthetized rats.

    PubMed

    Fisher, J E; Acuff-Smith, K D; Schilling, M A; Meyer, R A; Smith, N B; Moran, M S; O'Brien, W D; Vorhees, C V

    1996-08-01

    The present experiment examined the developmental neurotoxicity of pulsed-wave (pw) ultrasound in rats, using an exposure system designed to eliminate restraint or anesthesia from the exposure conditions. Pregnant Sprague-Dawley CD rats trained to remain immobile in a water-filled ultrasound exposure tank were scanned with 3-MHz pw ultrasound at spatial peak temporal average intensities (ISPTA) of 0, 2, 20, or 30 W/cm2 on embryonic days 4-20 for approximately 10 min/day. The data showed that such insonation produced no adverse effects on maternal weight gain or reproductive outcome, nor on the postnatal growth or survival of the offspring. No exposure-related alterations in behavioral development were observed in the offspring of rats scanned with pw ultrasound during gestation. In addition, there was no consistent evidence of an ultrasound-associated change in the adult offspring behaviors tested; i.e., no treatment effects were found on measures of locomotor activity, water maze learning, and acoustic startle reactivity. An effect on tactile startle was observed on some trials in the low exposure group male offspring, but this effect was neither dose dependent nor consistent with any other finding. Overall, these results indicate that the neurobehavioral development of rats was not altered by prenatal exposure to pw ultrasound at ISPTA levels of up to 30 W/cm2. PMID:8948542

  7. Pulse wave velocity correlates with aortic atherosclerosis assessed with transesophageal echocardiography.

    PubMed

    Szmigielski, C; Styczyński, G; Sobczyńska, M; Milewska, A; Placha, G; Kuch-Wocial, A

    2016-02-01

    Aortic pulse wave velocity (PWV) is a noninvasive vascular parameter that is related to cardiovascular risk. We studied the relationship between aortic PWV and aortic atherosclerosis assessed with transesophageal echocardiography (TEE). The patients referred for TEE before electrical cardioversion of atrial fibrillation were included in the study. Maximal intima-media thickness (IMT) including maximal atherosclerotic plaque thickness of the descending thoracic aorta was measured on TEE images. PWV was measured in those patients who had the sinus rhythm restored. Univariable linear regression was used to test associations between the parameters studied. Variables identified by linear regression, as significantly related to PWV, were further analyzed by multivariable linear regression models. We studied 99 patients (57 men, 42 women, mean age 70.4±11.5 years). With univariable regression, we found that PWV was significantly related to IMT (P<0.0001), age (P<0.0001) and pulse pressure (PP, P=0.005). There was no significant relationship between PWV and systolic, diastolic and mean blood pressures, as well as heart rate. The multivariable regression analysis, with all the variables significant in the univariable analysis in the model, showed that only IMT remained significantly related to PWV (P<0.0001, β=0.31), whereas age (P=0.18) and PP (P=0.16) were not. In conclusion, PWV is related to aortic atherosclerosis assessed with TEE independent of age and blood pressure. PMID:25903165

  8. An experimental-computational study of catheter induced alterations in pulse wave velocity in anesthetized mice

    PubMed Central

    Cuomo, Federica; Ferruzzi, Jacopo; Humphrey, Jay D.; Figueroa, C. Alberto

    2015-01-01

    Computational methods for solving problems of fluid dynamics and fluid-solid-interactions have advanced to the point that they enable reliable estimates of many hemodynamic quantities, including those important for studying vascular mechanobiology or designing medical devices. In this paper, we use a customized version of the open source code SimVascular to develop a computational model of central artery hemodynamics in anesthetized mice that is informed with experimental data on regional geometries, blood flows and pressures, and biaxial wall properties. After validating a baseline model against available data, we then use the model to investigate the effects of commercially available catheters on the very parameters that they are designed to measure, namely, murine blood pressure and (pressure) pulse wave velocity (PWV). We found that a combination of two small profile catheters designed to measure pressure simultaneously in the ascending aorta and femoral artery increased the PWV due to an overall increase in pressure within the arterial system. Conversely, a larger profile dual-sensor pressure catheter inserted through a carotid artery into the descending thoracic aorta decreased the PWV due to an overall decrease in pressure. In both cases, similar reductions in cardiac output were observed due to increased peripheral vascular resistance. As might be expected, therefore, invasive transducers can alter the very quantities that are designed to measure, yet advanced computational models offer a unique method to evaluate or augment such measurements. PMID:25698526

  9. Multiscale entropy analysis of pulse wave velocity for assessing atherosclerosis in the aged and diabetic.

    PubMed

    Wu, Hsien-Tsai; Hsu, Po-Chun; Lin, Cheng-Feng; Wang, Hou-Jun; Sun, Cheuk-Kwan; Liu, An-Bang; Lo, Men-Tzung; Tang, Chieh-Ju

    2011-10-01

    This study proposed a dynamic pulse wave velocity (PWV)-based biomedical parameter in assessing the degree of atherosclerosis for the aged and diabetic populations. Totally, 91 subjects were recruited from a single medical institution between July 2009 and October 2010. The subjects were divided into four groups: young healthy adults (Group 1, n = 22), healthy upper middle-aged adults (Group 2, n = 28), type 2 diabetics with satisfactory blood sugar control (Group 3, n = 21), and unsatisfactory blood sugar control (Group 4, n = 20). A self-developed six-channel electrocardiography (ECG)-PWV-based equipment was used to acquire 1000 successive recordings of PWV(foot) values within 30 min. The data, thus, obtained were analyzed with multiscale entropy (MSE). Large-scale MSE index (MEI(LS)) was chosen as the assessment parameter. Not only did MEI(LS) successfully differentiate between subjects in Groups 1 and 2, but it also showed a significant difference between Groups 3 and 4. Compared with the conventional parameter of PWV(foot) and MEI on R-R interval [i.e., MEI(RRI)] in evaluating the degree of atherosclerotic change, the dynamic parameter, MEI(LS) (PWV), could better reflect the impact of age and blood sugar control on the progression of atherosclerosis. PMID:21693413

  10. Pulse Wave Velocity at Early Adulthood: Breastfeeding and Nutrition during Pregnancy and Childhood

    PubMed Central

    Gigante, Denise Petrucci; de Barros, Fernando Celso Lopes Fernandes

    2016-01-01

    Background Pulse wave velocity (PWV) is an early marker of arterial stiffness. Low birthweight, infant feeding and childhood nutrition have been associated with cardiovascular disease in adulthood. In this study, we evaluated the association of PWV at 30 years of age with birth condition and childhood nutrition, among participants of the 1982 Pelotas birth cohort. Methods In 1982, the hospital births in Pelotas, southern Brazil, were identified just after delivery. Those liveborn infants whose family lived in the urban area of the city were examined and have been prospectively followed. At 30 years of age, we tried to follow the whole cohort and PWV was assessed in 1576 participants. Results Relative weight gain from 2 to 4 years was positively associated with PWV. Regarding nutritional status in childhood, PWV was higher among those whose weight-for-age z-score at 4 years was >1 standard deviation above the mean. On the other hand, height gain, birthweight and duration of breastfeeding were not associated with PWV. Conclusion Relative weight gain after 2 years of age is associated with increased PWV, while birthweight and growth in the first two years of life were not associated. These results suggest that the relative increase of weight later in childhood is associated with higher cardiovascular risk. PMID:27073916

  11. Reference Values of Pulse Wave Velocity in Healthy People from an Urban and Rural Argentinean Population

    PubMed Central

    Díaz, Alejandro; Galli, Cintia; Tringler, Matías; Ramírez, Agustín; Cabrera Fischer, Edmundo Ignacio

    2014-01-01

    In medical practice the reference values of arterial stiffness came from multicenter registries obtained in Asia, USA, Australia and Europe. Pulse wave velocity (PWV) is the gold standard method for arterial stiffness quantification; however, in South America, there are few population-based studies. In this research PWV was measured in healthy asymptomatic and normotensive subjects without history of hypertension in first-degree relatives. Normal PWV and the 95% confidence intervals values were obtained in 780 subjects (39.8 ± 18.5 years) divided into 7 age groups (10–98 years). The mean PWV found was 6.84 m/s ± 1.65. PWV increases linearly with aging with a high degree of correlation (r2 = 0.61; P < 0.05) with low dispersion in younger subjects. PWV progressively increases 6–8% with each decade of life; this tendency is more pronounced after 50 years. A significant increase of PWV over 50 years was demonstrated. This is the first population-based study from urban and rural people of Argentina that provides normal values of the PWV in healthy, normotensive subjects without family history of hypertension. Moreover, the age dependence of PWV values was confirmed. PMID:25215227

  12. Numerical assessment of time-domain methods for the estimation of local arterial pulse wave speed.

    PubMed

    Alastruey, Jordi

    2011-03-15

    A local estimation of pulse wave speed c, an important predictor of cardiovascular events, can be obtained at arterial locations where simultaneous measurements of blood pressure (P) and velocity (U), arterial diameter (D) and U, flow rate (Q) and cross-sectional area (A), or P and D are available, using the PU-loop, sum-of-squares (∑(2)), lnDU-loop, QA-loop or new D(2)P-loop methods. Here, these methods were applied to estimate c from numerically generated P, U, D, Q and A waveforms using a visco-elastic one-dimensional model of the 55 larger human systemic arteries in normal conditions. Theoretical c were calculated from the parameters of the model. Estimates of c given by the loop methods were closer to theoretical values and more uniform within each arterial segment than those obtained using the ∑(2). The smaller differences between estimates and theoretical values were obtained using the D(2)P-loop method, with root-mean-square errors (RMSE) smaller than 0.18 ms(-1), followed by averaging the two c given by the PU- and lnDU-loops (RMSE <2.99 ms(-1)). In general, the errors of the PU-, lnDU- and QA-loops decreased at locations where visco-elastic effects were small and nearby junctions were well-matched for forward-travelling waves. The ∑(2) performed better at proximal locations. PMID:21211799

  13. Measurements of Wall Shear Stress and Aortic Pulse Wave Velocity in Swine with Familial Hypercholesterolemia

    PubMed Central

    Wentland, Andrew L.; Wieben, Oliver; Shanmuganayagam, Dhanansayan; Krueger, Christian G.; Meudt, Jennifer J.; Consigny, Daniel; Rivera, Leonardo; McBride, Patrick E.; Reed, Jess D.; Grist, Thomas M.

    2014-01-01

    PURPOSE To assess measurements of pulse wave velocity (PWV) and wall shear stress (WSS) in a swine model of atherosclerosis. MATERIALS AND METHODS Nine familial hypercholesterolemic (FH) swine with angioplasty balloon catheter-induced atherosclerotic lesions to the abdominal aorta (injured group) and ten uninjured FH swine were evaluated with a 4D phase contrast (PC) MRI acquisition, as well as with radial and Cartesian 2D PC acquisitions, on a 3T MR scanner. PWV values were computed from the 2D and 4D PC techniques, compared between the injured and uninjured swine, and were validated against reference standard pressure probe-based PWV measurements. WSS values were also computed from the 4D PC MRI technique and compared between injured and uninjured groups. RESULTS PWV values were significantly greater in the injured than in the uninjured groups with the 4D PC MRI technique (p=0.03) and pressure probes (p=0.02). No significant differences were found in PWV between groups using the 2D PC techniques (p=0.75–0.83). No significant differences were found for WSS values between the injured and uninjured groups. CONCLUSION The 4D PC MRI technique provides a promising means of evaluating PWV and WSS in a swine model of atherosclerosis, providing a potential platform for developing the technique for the early detection of atherosclerosis. PMID:24964097

  14. A 1D pulse wave propagation model of the hemodynamics of calf muscle pump function

    PubMed Central

    Keijsers, J M T; Leguy, C A D; Huberts, W; Narracott, A J; Rittweger, J; van de Vosse, F N

    2015-01-01

    The calf muscle pump is a mechanism which increases venous return and thereby compensates for the fluid shift towards the lower body during standing. During a muscle contraction, the embedded deep veins collapse and venous return increases. In the subsequent relaxation phase, muscle perfusion increases due to increased perfusion pressure, as the proximal venous valves temporarily reduce the distal venous pressure (shielding). The superficial and deep veins are connected via perforators, which contain valves allowing flow in the superficial-to-deep direction. The aim of this study is to investigate and quantify the physiological mechanisms of the calf muscle pump, including the effect of venous valves, hydrostatic pressure, and the superficial venous system. Using a one-dimensional pulse wave propagation model, a muscle contraction is simulated by increasing the extravascular pressure in the deep venous segments. The hemodynamics are studied in three different configurations: a single artery–vein configuration with and without valves and a more detailed configuration including a superficial vein. Proximal venous valves increase effective venous return by 53% by preventing reflux. Furthermore, the proximal valves shielding function increases perfusion following contraction. Finally, the superficial system aids in maintaining the perfusion during the contraction phase and reduces the refilling time by 37%. © 2015 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. PMID:25766693

  15. Photoplethysmography beyond perfusion and oxygenation monitoring: Pulse wave analysis for hepatic graft monitoring

    SciTech Connect

    Akl, Tony; Wilson, Mark A.; Ericson, Milton Nance; Cote, Gerard L.

    2014-01-01

    Photoplethysmography is a widely used technique in monitoring perfusion and blood oxygen saturation by using the amplitude of the pulsatile signal on one or multiple wavelengths. However, the pulsatile signal carries in its waveform a substantial amount of information about the mechanical properties of the tissue and vasculature under investigation that is still yet to be utilized to its full potential. In this work, we present the feasibility of pulse wave analysis for the application of monitoring hepatic implants and diagnosing graft complications. In particular, we show the possibility of computing the slope of the pulse during the diastole phase to assess the location of vascular complications when they take place. This hypothesis was tested in a series of in vitro experiments using a PDMS based phantom mimicking the optical and mechanical properties of the portal vein. The emptying time of the vessel increased from 305 ms to 515 ms when an occlusion was induced downstream from the phantom. However, in the case of upstream occlusions, the emptying time remained constant. In both cases, a decrease in the amplitude of the pulse was recorded indicating the drop in flow levels. In addition, we show that quantifying the emptying time of the vasculature under investigation can be used to assess its compliance. The emptying time decreased from 305 ms for phantoms with compliance of 15 KPa to 195 ms for phantoms with compliance of 100 KPa. These compliance levels mimic those seen for normal and fibrotic hepatic tissue respectively.

  16. Metabolomic study of carotid–femoral pulse-wave velocity in women

    PubMed Central

    Menni, Cristina; Mangino, Massimo; Cecelja, Marina; Psatha, Maria; Brosnan, Mary J.; Trimmer, Jeff; Mohney, Robert P.; Chowienczyk, Phil; Padmanabhan, Sandosh; Spector, Tim D.; Valdes, Ana M.

    2015-01-01

    Objective: Carotid–femoral pulse-wave velocity (PWV) is a measure of aortic stiffness that is strongly associated with increased risk of cardiovascular morbidity and mortality. The aim of the current study was to identify the molecular markers and the pathways involved in differences in PWV in women, in order to further understand the regulation of arterial stiffening. Methods: A total of 280 known metabolites were measured in 1797 female twins (age range: 18–84 years) not on any antihypertensive medication. Metabolites associated with PWV (after adjustment for age, BMI, metabolite batch, and family relatedness) were entered into a backward linear regression. Transcriptomic analyses were further performed on the top compounds identified. Results: Twelve metabolites were associated with PWV (P < 1.8 × 10−4). One of the most strongly associated metabolites was uridine, which was not associated with blood pressure (BP) and traditional risk factors but correlated significantly with the gene-expression levels of the purinergic receptor P2RY2 (Beta = −0.010, SE = 0.003, P = 0.007), suggesting that it may play a role in regulating endothelial nitric oxide synthase phosphorylation. On the other hand, phenylacetylglutamine was strongly associated with both PWV and BP. Conclusion: Circulating levels of uridine, phenylacetylglutamine, and serine appear strongly correlated with PWV in women. PMID:25490711

  17. Pulse wave detection method based on the bio-impedance of the wrist.

    PubMed

    He, Jianman; Wang, Mengjun; Li, Xiaoxia; Li, Gang; Lin, Ling

    2016-05-01

    The real-time monitoring of pulse rate can evaluate the heart health to some extent, and the measurement of bio-impedance has the potential in wearable health monitoring system. In this paper, an effective method, which contains self-balancing bridge, flexible electrode, and high-speed digital lock-in algorithm (DLIA) with over-sampling, was designed to detect the impedance pulse wave at the wrist. By applying the self-balancing bridge, the basic impedance can be compensated as much as possible, and the low amplitude of impedance variation related to heart pulse can be obtained more easily. And the flexible conductive rubber electrode used in our experiment is human-friendly. Besides, the over-sampling method and high-speed DLIA are used to enhance the effective resolution of the existing data sampled by analog to digital converter. With the high-speed data process and simple circuit above, this proposed method has the potential in wrist-band wearable systems and it can satisfy quests of small volume and low power consumption. PMID:27250460

  18. A novel continuous cardiac output monitor based on pulse wave transit time.

    PubMed

    Sugo, Yoshihiro; Ukawa, Teiji; Takeda, Sunao; Ishihara, Hironori; Kazama, Tomiei; Takeda, Junzo

    2010-01-01

    Monitoring cardiac output (CO) is important for the management of patient circulation in an operation room (OR) or intensive care unit (ICU). We assumed that the change in pulse wave transit time (PWTT) obtained from an electrocardiogram (ECG) and a pulse oximeter wave is correlated with the change in stroke volume (SV), from which CO is derived. The present study reports the verification of this hypothesis using a hemodynamic analysis theory and animal study. PWTT consists of a pre-ejection period (PEP), the pulse transit time through an elasticity artery (T(1)), and the pulse transit time through peripheral resistance arteries (T(2)). We assumed a consistent negative correlation between PWTT and SV under all conditions of varying circulatory dynamics. The equation for calculating SV from PWTT was derived based on the following procedures. 1. Approximating SV using a linear equation of PWTT. 2. The slope and y-intercept of the above equation were determined under consideration of vessel compliance (SV was divided by Pulse Pressure (PP)), animal type, and the inherent relationship between PP and PWTT. Animal study was performed to verify the above-mentioned assumption. The correlation coefficient of PWTT and SV became r = -0.710 (p 〈 0.001), and a good correlation was admitted. It has been confirmed that accurate continuous CO and SV measurement is only possible by monitoring regular clinical parameters (ECG, SpO2, and NIBP). PMID:21095971

  19. Pulse wave detection method based on the bio-impedance of the wrist

    NASA Astrophysics Data System (ADS)

    He, Jianman; Wang, Mengjun; Li, Xiaoxia; Li, Gang; Lin, Ling

    2016-05-01

    The real-time monitoring of pulse rate can evaluate the heart health to some extent, and the measurement of bio-impedance has the potential in wearable health monitoring system. In this paper, an effective method, which contains self-balancing bridge, flexible electrode, and high-speed digital lock-in algorithm (DLIA) with over-sampling, was designed to detect the impedance pulse wave at the wrist. By applying the self-balancing bridge, the basic impedance can be compensated as much as possible, and the low amplitude of impedance variation related to heart pulse can be obtained more easily. And the flexible conductive rubber electrode used in our experiment is human-friendly. Besides, the over-sampling method and high-speed DLIA are used to enhance the effective resolution of the existing data sampled by analog to digital converter. With the high-speed data process and simple circuit above, this proposed method has the potential in wrist-band wearable systems and it can satisfy quests of small volume and low power consumption.

  20. Carotid-radial pulse wave velocity responses following hyperemia in patients with congestive heart failure.

    PubMed

    Liu, Yang; Beck, Andrew; Olaniyi, Olawale; Singh, Sahib B; Shehaj, Fiona; Mann, Ravi-Inder; Hassan, Syed R; Kamran, Haroon; Salciccioli, Louis; Carter, John; Lazar, Jason M

    2014-10-01

    Carotid-radial pulse wave velocity (PWV) normally decreases following hyperemia and is an indicator of vasodilator reserve. This response is impaired in patients with congestive heart failure (CHF). To identify specific factors related to an impaired response, we studied 50 patients (60 ± 14 years, 67% male) with chronic CHF. Baseline PWV was measured using applanation tonometry and repeated 1 minute after release of upper arm occlusion for 5 minutes. Percentage changes (Δ) of PWV were normally distributed and mean ΔPWV was -2.2 ± 15.3%. On univariate analyses, ΔPWV correlated with New York Heart Association class, mean arterial pressure, log brain natriuretic peptide (BNP) levels, and baseline PWV, but not with left ventricular ejection fraction. Multivariate linear regression analysis demonstrated log BNP levels, mean arterial pressure, and baseline PWV (all P < .05) as independent predictors of ΔPWV. Hyperemia increased PWV in 42% of patients. On logistic regression, higher BNP levels and lower baseline PWV were independent predictors of a PWV increase. Higher BNP levels and lower baseline PWV are independent predictors of an abnormal hyperemic PWV response in patients with CHF. Higher BNP levels may reflect abnormal vasodilator reserve. Forty-two percent of heart failure patients showed an increase in PWV following hyperemia, which may reflect more severe arterial vasodilator impairment. PMID:25418489

  1. Pulse wave velocity and age- and gender-dependent aortic wall hardening in fowl

    PubMed Central

    Ruiz-Feria, Ciro A.; Yang, Yimu; Thomason, Donald B.; White, Jarred; Su, Guibin; Nishimura, Hiroko

    2009-01-01

    Before sexual maturation, chickens (Gallus gallus) show high blood pressure (BP) and neointimal plaques in the lower abdominal aortae (AbA). We investigated age/sex-related changes in pulse wave velocity (PWV), elastin, collagen, and protein levels in AbA, and cardiac morphology to determine whether PWV increases during incremental increases in BP of maturing fowl, while arterial stiffness becomes dominant with aging. PWV (m/s) was significantly greater in male chicks (6-7 wk, 9.3 ± 0.8; females, 6.1 ± 0.5) and remained high in cockerels (13 wk), young (27-28 wk), and adults (44-66 wk). PWV increased in prepubertal pullets (10.0 ± 0.9), dropped significantly in young hens, and remained low in adults. In contrast, medial thickness, protein levels, and collagen levels increased, while elastin/collagen ratios decreased, with maturation/aging. Males had heavier ventricular mass and thicker ventricular walls than females at all ages; left ventricular thickness decreased with maturation/aging. Thus, sustained high BP may have caused progressive medial hypertrophy, increased aortic rigidity, and enlarged hearts with left ventricular dilation. PWV of AbA was already greater in male chicks at an age when both sexes have similar collagen levels and low protein levels, suggesting that a factor other than structural stiffness may be an important determinant of PWV. PMID:19689927

  2. Relationship between brachial-ankle pulse wave velocity and metabolic syndrome components in a Chinese population

    PubMed Central

    Zhou, Fang; Zhang, Haifeng; Yao, Wenming; Mei, Hongbin; Xu, Dongjie; Sheng, Yanhui; Yang, Rong; Kong, Xiangqing; Wang, Liansheng; Zou, Jiangang; Yang, Zhijian; Li, Xinli

    2014-01-01

    Abstract The purpose of this study was to assess the relationship between arterial stiffness, as measured by brachial-ankle pulse wave velocity (baPWV), and the presence of the metabolic syndrome (MS) in a Chinese population. A total of 4,445 subjects were enrolled. The prevalence of MS in our study population was 21.7%, 17.2% and 25.6% for the general population, males and females, respectively. With adjustments for age, gender, cigarette smoking, heart rate, total cholesterol, low-density lipoprotein (LDL) cholesterol, and the use of anti-hypertensive drug, the stepwise regression analysis showed that baPWV had a significant relationship with components of MS, including systolic blood pressure (P < 0.001), diastolic blood pressure (P < 0.001), glucose (P < 0.001), high-density lipoprotein (HDL) cholesterol (P  =  0.04), and triglycerides (P < 0.001), but no relationship with waist circumference (P  =  0.25). With an increase in the number of the MS components, baPWV increased significantly both in women and men. This study indicated that the MS is indeed a risk factor for arterial stiffness. Monitoring of baPWV in patients with MS may help in identifying persons at high risk for cardiovascular disease. PMID:25050109

  3. Doppler tracking

    NASA Astrophysics Data System (ADS)

    Thomas, Christopher Jacob

    This study addresses the development of a methodology using the Doppler Effect for high-resolution, short-range tracking of small projectiles and vehicles. Minimal impact on the design of the moving object is achieved by incorporating only a transmitter in it and using ground stations for all other components. This is particularly useful for tracking objects such as sports balls that have configurations and materials that are not conducive to housing onboard instrumentation. The methodology developed here uses four or more receivers to monitor a constant frequency signal emitted by the object. Efficient and accurate schemes for filtering the raw signals, determining the instantaneous frequencies, time synching the frequencies from each receiver, smoothing the synced frequencies, determining the relative velocity and radius of the object and solving the nonlinear system of equations for object position in three dimensions as a function of time are developed and described here.

  4. FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness

    PubMed Central

    Li, Han; Lin, Kexin; Shahmirzadi, Danial

    2016-01-01

    This study aims to quantify the effects of geometry and stiffness of aneurysms on the pulse wave velocity (PWV) and propagation in fluid–solid interaction (FSI) simulations of arterial pulsatile flow. Spatiotemporal maps of both the wall displacement and fluid velocity were generated in order to obtain the pulse wave propagation through fluid and solid media, and to examine the interactions between the two waves. The results indicate that the presence of abdominal aortic aneurysm (AAA) sac and variations in the sac modulus affect the propagation of the pulse waves both qualitatively (eg, patterns of change of forward and reflective waves) and quantitatively (eg, decreasing of PWV within the sac and its increase beyond the sac as the sac stiffness increases). The sac region is particularly identified on the spatiotemporal maps with a region of disruption in the wave propagation with multiple short-traveling forward/reflected waves, which is caused by the change in boundary conditions within the saccular region. The change in sac stiffness, however, is more pronounced on the wall displacement spatiotemporal maps compared to those of fluid velocity. We conclude that the existence of the sac can be identified based on the solid and fluid pulse waves, while the sac properties can also be estimated. This study demonstrates the initial findings in numerical simulations of FSI dynamics during arterial pulsations that can be used as reference for experimental and in vivo studies. Future studies are needed to demonstrate the feasibility of the method in identifying very mild sacs, which cannot be detected from medical imaging, where the material property degradation exists under early disease initiation. PMID:27478394

  5. FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness.

    PubMed

    Li, Han; Lin, Kexin; Shahmirzadi, Danial

    2016-01-01

    This study aims to quantify the effects of geometry and stiffness of aneurysms on the pulse wave velocity (PWV) and propagation in fluid-solid interaction (FSI) simulations of arterial pulsatile flow. Spatiotemporal maps of both the wall displacement and fluid velocity were generated in order to obtain the pulse wave propagation through fluid and solid media, and to examine the interactions between the two waves. The results indicate that the presence of abdominal aortic aneurysm (AAA) sac and variations in the sac modulus affect the propagation of the pulse waves both qualitatively (eg, patterns of change of forward and reflective waves) and quantitatively (eg, decreasing of PWV within the sac and its increase beyond the sac as the sac stiffness increases). The sac region is particularly identified on the spatiotemporal maps with a region of disruption in the wave propagation with multiple short-traveling forward/reflected waves, which is caused by the change in boundary conditions within the saccular region. The change in sac stiffness, however, is more pronounced on the wall displacement spatiotemporal maps compared to those of fluid velocity. We conclude that the existence of the sac can be identified based on the solid and fluid pulse waves, while the sac properties can also be estimated. This study demonstrates the initial findings in numerical simulations of FSI dynamics during arterial pulsations that can be used as reference for experimental and in vivo studies. Future studies are needed to demonstrate the feasibility of the method in identifying very mild sacs, which cannot be detected from medical imaging, where the material property degradation exists under early disease initiation. PMID:27478394

  6. Pulse wave analysis in a 180-degree curved artery model: Implications under physiological and non-physiological inflows

    NASA Astrophysics Data System (ADS)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2013-11-01

    Systolic and diastolic blood pressures, pulse pressures, and left ventricular hypertrophy contribute to cardiovascular risks. Increase of arterial stiffness due to aging and hypertension is an important factor in cardiovascular, chronic kidney and end-stage-renal-diseases. Pulse wave analysis (PWA) based on arterial pressure wave characteristics, is well established in clinical practice for evaluation of arterial distensibility and hypertension. The objective of our exploratory study in a rigid 180-degree curved artery model was to evaluate arterial pressure waveforms. Bend upstream conditions were measured using a two-component, two-dimensional, particle image velocimeter (2C-2D PIV). An ultrasonic transit-time flow meter and a catheter with a MEMS-based solid state pressure sensor, capable of measuring up to 20 harmonics of the observed pressure waveform, monitored flow conditions downstream of the bend. Our novel continuous wavelet transform algorithm (PIVlet 1.2), in addition to detecting coherent secondary flow structures is used to evaluate arterial pulse wave characteristics subjected to physiological and non-physiological inflows. Results of this study will elucidate the utility of wavelet transforms in arterial function evaluation and pulse wave speed. Supported by NSF Grant No. CBET- 0828903 and GW Center for Biomimetics and Bioinspired Engineering.

  7. Alterations in pulse wave propagation reflect the degree of outflow tract banding in HH18 chicken embryos

    PubMed Central

    Shi, Liang; Goenezen, Sevan; Haller, Stephen; Hinds, Monica T.; Thornburg, Kent L.

    2013-01-01

    Hemodynamic conditions play a critical role in embryonic cardiovascular development, and altered blood flow leads to congenital heart defects. Chicken embryos are frequently used as models of cardiac development, with abnormal blood flow achieved through surgical interventions such as outflow tract (OFT) banding, in which a suture is tightened around the heart OFT to restrict blood flow. Banding in embryos increases blood pressure and alters blood flow dynamics, leading to cardiac malformations similar to those seen in human congenital heart disease. In studying these hemodynamic changes, synchronization of data to the cardiac cycle is challenging, and alterations in the timing of cardiovascular events after interventions are frequently lost. To overcome this difficulty, we used ECG signals from chicken embryos (Hamburger-Hamilton stage 18, ∼3 days of incubation) to synchronize blood pressure measurements and optical coherence tomography images. Our results revealed that, after 2 h of banding, blood pressure and pulse wave propagation strongly depend on band tightness. In particular, while pulse transit time in the heart OFT of control embryos is ∼10% of the cardiac cycle, after banding (35% to 50% band tightness) it becomes negligible, indicating a faster OFT pulse wave velocity. Pulse wave propagation in the circulation is likewise affected; however, pulse transit time between the ventricle and dorsal aorta (at the level of the heart) is unchanged, suggesting an overall preservation of cardiovascular function. Changes in cardiac pressure wave propagation are likely contributing to the extent of cardiac malformations observed in banded hearts. PMID:23709601

  8. Arterial pulse wave velocity, inflammatory markers, pathological GH and IGF states, cardiovascular and cerebrovascular disease

    PubMed Central

    Graham, Michael R; Evans, Peter; Davies, Bruce; Baker, Julien S

    2008-01-01

    Blood pressure (BP) measurements provide information regarding risk factors associated with cardiovascular disease, but only in a specific artery. Arterial stiffness (AS) can be determined by measurement of arterial pulse wave velocity (APWV). Separate from any role as a surrogate marker, AS is an important determinant of pulse pressure, left ventricular function and coronary artery perfusion pressure. Proximal elastic arteries and peripheral muscular arteries respond differently to aging and to medication. Endogenous human growth hormone (hGH), secreted by the anterior pituitary, peaks during early adulthood, declining at 14% per decade. Levels of insulin-like growth factor-I (IGF-I) are at their peak during late adolescence and decline throughout adulthood, mirror imaging GH. Arterial endothelial dysfunction, an accepted cause of increased APWV in GH deficiency (GHD) is reversed by recombinant human (rh) GH therapy, favorably influencing the risk for atherogenesis. APWV is a noninvasive method for measuring atherosclerotic and hypertensive vascular changes increases with age and atherosclerosis leading to increased systolic blood pressure and increased left ventricular hypertrophy. Aerobic exercise training increases arterial compliance and reduces systolic blood pressure. Whole body arterial compliance is lowered in strength-trained individuals. Homocysteine and C-reactive protein are two inflammatory markers directly linked with arterial endothelial dysfunction. Reviews of GH in the somatopause have not been favorable and side effects of treatment have marred its use except in classical GHD. Is it possible that we should be assessing the combined effects of therapy with rhGH and rhIGF-I? Only multiple intervention studies will provide the answer. PMID:19337549

  9. The use of pulse wave velocity in predicting pre-eclampsia in high-risk women.

    PubMed

    Katsipi, Irene; Stylianou, Kostas; Petrakis, Ioannis; Passam, Andrew; Vardaki, Eleftheria; Parthenakis, Fragkiskos; Makrygiannakis, Antonios; Daphnis, Eugene; Kyriazis, John

    2014-08-01

    In this study, we evaluated the diagnostic utility of pulse wave velocity (PWV) alone or in combination with other diagnostic markers in predicting pre-eclampsia (PE) in high-risk women. Pregnant women at high risk for PE were recruited between 22 and 26 weeks of gestation and were assessed for (a) PWV, (b) serum levels of the placental soluble fms-like tyrosine kinase 1 (sFlt-1) protein and uric acid and (c) 24-h urinary protein and calcium excretion. Sensitivities and specificities were derived from receiver operating characteristic curves. Of 118 women recruited, 11 and 10 women developed early-onset PE (<34 weeks) and late-onset PE (≥34 weeks), respectively. Of the five diagnostic markers tested, PWV showed the highest detection rate for all cases (21) of PE (81%) and for early-onset PE (82%) at a fixed 10% false-positive rate (FPR), and when combined with sFlt-1, these figures increased to 90% and 92%, respectively. Despite the reduced ability of PWV to predict late-onset PE (detection rate 20%), the combination of PWV with sFlt-1 achieved a detection rate of 50% at a fixed 10% FPR. A suggested cutoff value of 9 m/s for PWV resulted in optimal sensitivity (91%) and specificity (86%) for predicting early-onset PE. This study is the first to show that PWV may be a potentially promising predictor of early-onset PE in women at high risk for PE. The combination of PWV with sFlt-1 may further improve the screening efficacy for predicting PE. PMID:24621469

  10. Carotid Intima-Media Thickness and Pulse Wave Velocity After Recovery From Kawasaki Disease

    PubMed Central

    Lee, Soo Jin; Ahn, Hye Mi; You, Jung Hyun

    2009-01-01

    Background and Objectives Kawasaki disease (KD) is an acute inflammatory process affecting the arterial walls that results in panvasculitis. Recent studies have shown that even after resolution of the disease, endothelial dysfunction persists and may progress to atherosclerosis. The pulse wave velocity (PWV) and the ankle-brachial index (ABI) are simple and non-invasive methods for evaluating the degree of atherosclerosis, and are known as the predictors of cardiovascular disease in adults. Carotid intima-media thickness (cIMT) is also known as a predictor of cardiovascular disease. We conducted this study to determine the change in arterial stiffness by measuring the PWV, ABI, and cIMT in children who have recovered from KD. Subjects and Methods Twenty-five patients with KD and coronary aneurysm were recruited. They all recovered from KD and were normal for more than 8 years. Fifty-five healthy children were evaluated as the control group. Their height, weight, body mass index, and blood pressure (systolic, diastolic, and the mean) were measured. The PWV, ABI, ejection time (ET), and pre-ejection period (PEP) were measured by ultrasonography. The cIMT was measured by ultrasonography. Results The left brachial ankle PWV was significantly higher in the KD group (1020.6±146.5 cm/sec) than the control group (984.0±96.5 cm/sec). The ABI did not differ between the two groups. There was no difference in PEP/ET and cIMT. Conclusion The PWV in children who recovered from KD was higher than the control group. Long-term follow up is necessary in children after recovery from KD even if there is no abnormality in echocardiography. PMID:19949610

  11. Aging Index using Photoplethysmography for a Healthcare Device: Comparison with Brachial-Ankle Pulse Wave Velocity

    PubMed Central

    Hong, Kyung Soon; Park, Kyu Tae

    2015-01-01

    Objectives Recent studies have emphasized the potential information embedded in peripheral fingertip photoplethysmogram (PPG) signals for the assessment of arterial wall stiffening during aging. For the discrimination of arterial stiffness with age, the brachial-ankle pulse wave velocity (baPWV) has been widely used in clinical applications. The second derivative of the PPG (acceleration photoplethysmogram [APG]) has been reported to correlate with the presence of atherosclerotic disorders. In this study, we investigated the association among age, the baPWV, and the APG and found a new aging index reflecting arterial stiffness for a healthcare device. Methods The APG and the baPWV were simultaneously applied to assess the accuracy of the APG in measuring arterial stiffness in association with age. A preamplifier and motion artifact removal algorithm were newly developed to obtain a high quality PPG signal. In total, 168 subjects with a mean ± SD age of 58.1 ± 12.6 years were followed for two months to obtain a set of complete data using baPWV and APG analysis. Results The baPWV and the B ratio of the APG indices were correlated significantly with age (r = 0.6685, p < 0.0001 and r = -0.4025, p < 0.0001, respectively). A regression analysis revealed that the c and d peaks were independent of age (r = -0.3553, p < 0.0001 and r = -0.3191, p < 0.0001, respectively). Conclusions We determined the B ratio, which represents an improved aging index and suggest that the APG may provide qualitatively similar information for arterial stiffness. PMID:25705555

  12. Relationship between global pulse wave velocity and diastolic dysfunction in postmenopausal women

    PubMed Central

    Palmiero, Pasquale; Maiello, Maria; Daly, David D; Zito, Annapaola; Ciccone, Marco Matteo; Nanda, Navin C

    2014-01-01

    Objective: Global aortic pulse wave velocity (PWVg) is a simple, accurate, and noninvasive method to determine large artery stiffness. The goal of our study was to investigate the relationship between PWVg, LV mass, and diastolic function in postmenopausal women. Patients and method: We screened 321 consecutive women with echocardiographic examination to determine PWVg. LV diastolic dysfunction (LVDD) and LV hypertrophy (LVH) were diagnosed according to ASE (American Society Echocardiography) Guidelines. Results: The mean age of the 321 women studied was 59.9 years of age with 20 percent of the women menstruate and 80 percent post-menopausal. Amongst the post-menopausal women, 168 patients had LVDD (66.7%), 127 had mild diastolic dysfunction, 40 had moderate diastolic dysfunction, and 1had severe diastolic dysfunction. In these post-menopausal patients with diastolic dysfunction, 89.3% had an increased PWVg while 10.7% had a normal PWVg which was highly statistically significant (p < 0.001). The patients with a normal PWVg all had mild diastolic dysfunction. Increased left atrial volume indexed for body surface area was present in only 19 women, 12 of whom had LVDD and 14 increased PWVg, but statistical analysis was not performed due to the low number of women affected. There was no statistically significant difference in age between postmenopausal women with and without increased PWVg. Conclusion: In our population of postmenopausal women, we observed a strong relationship between LVDD and LVH with PWVg. Our study supports the usefulness of assessment of aortic stiffness as a marker of cardiovascular disease. PMID:25664082

  13. Brachial-ankle pulse wave velocity as a predictor of mortality in elderly Chinese.

    PubMed

    Sheng, Chang-Sheng; Li, Yan; Li, Li-Hua; Huang, Qi-Fang; Zeng, Wei-Fang; Kang, Yuan-Yuan; Zhang, Lu; Liu, Ming; Wei, Fang-Fei; Li, Ge-Le; Song, Jie; Wang, Shuai; Wang, Ji-Guang

    2014-11-01

    Pulse wave velocity (PWV) is a measure of arterial stiffness and predicts cardiovascular events and mortality in the general population and various patient populations. In the present study, we investigated the predictive value of brachial-ankle PWV for mortality in an elderly Chinese population. Our study subjects were older (≥60 years) persons living in a suburban town of Shanghai. We measured brachial-ankle PWV using an automated cuff device at baseline and collected vital information till June 30, 2013, during follow-up. The 3876 participants (1713 [44.2%] men; mean [±SD] age, 68.1±7.3 years) included 2292 (59.1%) hypertensive patients. PWV was on average 17.8 (±4.0) m/s and was significantly (P<0.0001) associated with age (r=0.48) and in unadjusted analysis with all-cause (n=316), cardiovascular (n=148), stroke (n=46), and noncardiovascular mortality (n=168) during a median follow-up of 5.9 years. In further adjusted analysis, we studied the risk of mortality according to the decile distributions of PWV. Only the subjects in the top decile (23.3-39.3 m/s) had a significantly (P≤0.003) higher risk of all-cause mortality (hazard ratio relative to the whole study population, 1.56; 95% confidence interval, 1.16-2.08), especially in hypertensive patients (hazard ratio, 1.86; 95% confidence interval, 1.31-2.64; P=0.02 for the interaction between PWV and hypertension). Similar trends were observed for cardiovascular, stroke, and noncardiovascular mortality, although statistical significance was not reached (P≥0.08). In conclusion, brachial-ankle PWV predicts mortality in elderly Chinese on the conditions of markedly increased PWV and hypertension. PMID:25259749

  14. Platelet to Lymphocyte Percentage Ratio Is Associated With Brachial-Ankle Pulse Wave Velocity in Hemodialysis.

    PubMed

    Chen, Szu-Chia; Lee, Mei-Yueh; Huang, Jiun-Chi; Tsai, Yi-Chun; Mai, Hsiu-Chin; Su, Ho-Ming; Chang, Jer-Ming; Chen, Hung-Chun

    2016-02-01

    Increased arterial stiffness in patients receiving hemodialysis (HD) is highly prevalent and is associated with cardiovascular morbidity and mortality. In HD, inflammation is one of the major causes of increased arterial stiffness. Activation of platelets and decreased lymphocyte percentage (LYMPH%) may exhibit inflammation. The aim of this study is to examine the relationship between platelet to LYMPH% ratio and arterial stiffness in HD patients.A total of 220 patients receiving HD were enrolled in this study. The brachial-ankle pulse wave velocity (baPWV) was measured using an ankle-brachial index form device. Multivariate linear regression analysis was performed to investigate the relations of the platelet to LYMPH% ratio and baPWV. The value of the platelet to LYMPH% ratio was 59.2 ± 33.3 (10 cells/L/%). After multivariate stepwise analysis, diabetes (β: 163.973, P = 0.02), high systolic blood pressure (per 1 mm Hg, β: 9.010, P < 0.001), high platelet to LYMPH% ratio (per 10 cells/L/%, β: 3.334, P < 0.01), and low albumin (per 0.1 mg/dL, β: -55.912, P < 0.001) were independently associated with an increased baPWV. Furthermore, high white blood cells (per 10 cells/L, β: 3.941, P < 0.001), high neutrophil percentage (per 1%, β: 1.144, P < 0.001), and high CRP (per 1 mg/L, β: 9.161, P = 0.03) were independently associated with an increased platelet to LYMPH% ratio.An increased platelet to LYMPH% ratio is associated with an increased baPWV in HD patients. An easy and inexpensive laboratory measure of platelet to LYMPH% ratio may provide an important information regarding arterial stiffness in patients with HD. PMID:26871812

  15. Brachial-Ankle Pulse Wave Velocity: Background, Method, and Clinical Evidence

    PubMed Central

    Munakata, Masanori

    2016-01-01

    Background The populations of many developed countries are becoming progressively older. In aged societies, assessment of total vascular risk is critically important, because old age is usually associated with multiple risks. In this regard, pulse wave velocity (PWV) could be a global cardiovascular marker, since it increases with advancing age, high blood pressure, hyperglycaemia, and other traditional risks, summating cardiovascular risks. Carotid-femoral PWV has been widely applied in Western countries and has been used as a gold-standard PWV measure. However, this measure has never been implemented by general practitioners in Japan, possibly because of methodological difficulties. The life expectancy of Japanese people is now the highest in the world, and the establishment of an adequate total vascular risk measure is an urgent need. Against this background, brachial-ankle PWV was developed at the beginning of this century. Summary Measurement of this parameter is easy, and its reproducibility is good. Moreover, the generality of the methodology is guaranteed. Brachial-ankle PWV has been reported to consistently increase with most traditional cardiovascular risk factors except dyslipidaemia. A meta-analysis of cohort studies including various levels of risk has shown that a 1 m/s increase in brachial-ankle PWV is associated with a 12% increase in the risk of cardiovascular events. Moreover, simultaneous evaluation of the ankle-brachial index could allow further risk stratification of high-risk individuals, who are common in aged societies. This unique feature is indispensable for the management of aged populations, who usually are exposed to multiple risks and have polyvascular diseases. This evidence, however, is chiefly derived from East Asian countries. The collection of data from Caucasian populations, therefore, remains a task for the future. Key Message Brachial-ankle PWV has the potential to become a measure of arterial stiffness worldwide. PMID:27195241

  16. Platelet to Lymphocyte Percentage Ratio Is Associated With Brachial–Ankle Pulse Wave Velocity in Hemodialysis

    PubMed Central

    Chen, Szu-Chia; Lee, Mei-Yueh; Huang, Jiun-Chi; Tsai, Yi-Chun; Mai, Hsiu-Chin; Su, Ho-Ming; Chang, Jer-Ming; Chen, Hung-Chun

    2016-01-01

    Abstract Increased arterial stiffness in patients receiving hemodialysis (HD) is highly prevalent and is associated with cardiovascular morbidity and mortality. In HD, inflammation is one of the major causes of increased arterial stiffness. Activation of platelets and decreased lymphocyte percentage (LYMPH%) may exhibit inflammation. The aim of this study is to examine the relationship between platelet to LYMPH% ratio and arterial stiffness in HD patients. A total of 220 patients receiving HD were enrolled in this study. The brachial–ankle pulse wave velocity (baPWV) was measured using an ankle–brachial index form device. Multivariate linear regression analysis was performed to investigate the relations of the platelet to LYMPH% ratio and baPWV. The value of the platelet to LYMPH% ratio was 59.2 ± 33.3 (109 cells/L/%). After multivariate stepwise analysis, diabetes (β: 163.973, P = 0.02), high systolic blood pressure (per 1 mm Hg, β: 9.010, P < 0.001), high platelet to LYMPH% ratio (per 109 cells/L/%, β: 3.334, P < 0.01), and low albumin (per 0.1 mg/dL, β: −55.912, P < 0.001) were independently associated with an increased baPWV. Furthermore, high white blood cells (per 109 cells/L, β: 3.941, P < 0.001), high neutrophil percentage (per 1%, β: 1.144, P < 0.001), and high CRP (per 1 mg/L, β: 9.161, P = 0.03) were independently associated with an increased platelet to LYMPH% ratio. An increased platelet to LYMPH% ratio is associated with an increased baPWV in HD patients. An easy and inexpensive laboratory measure of platelet to LYMPH% ratio may provide an important information regarding arterial stiffness in patients with HD. PMID:26871812

  17. Pulse Wave Velocity and Cardiac Output vs. Heart Rate in Patients with an Implanted Pacemaker Based on Electric Impedance Method Measurement

    NASA Astrophysics Data System (ADS)

    Soukup, Ladislav; Vondra, Vlastimil; Viščor, Ivo; Jurák, Pavel; Halámek, Josef

    2013-04-01

    The methods and device for estimation of cardiac output and measurement of pulse wave velocity simultaneously is presented here. The beat-to-beat cardiac output as well as pulse wave velocity measurement is based on application of electrical impedance method on the thorax and calf. The results are demonstrated in a study of 24 subjects. The dependence of pulse wave velocity and cardiac output on heart rate during rest in patients with an implanted pacemaker was evaluated. The heart rate was changed by pacemaker programming while neither exercise nor drugs were applied. The most important result is that the pulse wave velocity, cardiac output and blood pressure do not depend significantly on heart rate, while the stroke volume is reciprocal proportionally to the heart rate.

  18. [Pulse wave velocity and urinary albumin excretion in hypertensive patients treated with perindopril].

    PubMed

    Toblli, Jorge E; Bellido, Claudio A; Iavícoli, Oscar R; Costa, Marta; Forcada, Pedro; Piñeiro, Daniel J; Lerman, Jorge

    2002-01-01

    Systolic and diastolic blood pressures and urinary albumin excretion (UAE) have been recognized as predictors for cardiovascular risk. Furthermore, arterial compliance (AC) disorders assessed by increased aortic pulse wave velocity (PWV) are closely related to changes in blood pressure and strongly correlated with cardiovascular mortality and presence or extent of atherosclerosis. Our purpose in the present study was to determine a relationship between AC using PWV and UAE in a group of non-smoking patients with essential hypertension, and the level of interaction of ACE inhibition on these two variables. A total of 70 non-smoking never treated hypertensive patients (33 men and 37 women), aged 50 +/- 7 years (range 35-69), have been enrolled in this study. All of them underwent PWV by a computerized device (Complior) and UAE determination by radial immunodiffusion method, on baseline and after six months of treatment with perindopril (4.6 +/- 1.4 mg/day). We have found a significant decrease of systolic blood pressure (160.2 +/- 10.6 vs. 131.9 +/- 7.1 mmHg, p < 0.01), diastolic blood pressure (100.6 +/- 5 vs. 81.6 +/- 4.8 mmHg, p < 0.01), PWV (13.4 +/- 1 vs. 9.1 +/- 0.9 m/sec, p < 0.01), and UAE (42.2 +/- 19.3 vs. 11.1 +/- 3.6 mg/day, p < 0.01) at the end of the sixth month when they were compared to baseline values. Furthermore, renal function was also improved by the treatment at the end of the study as illustrated by creatinine clearance (87.5 + 22.5 vs. 102.1 + 23.5 ml/min, p < 0.01). Moreover, a high positive correlation between UAE and PWV at the beginning of the study (r = 0.81; p < 0.01) and after six months of treatment (r = 0.66; p < 0.01) was observed. In addition, PWV vs. UAE, differences between sixth month and baseline have shown a high correlation (r = 0.67; p < 0.01) and using a multiple regression test we found that PWV (t ratio 5.76; p < 0.001) was the most important and significant independent variable that correlates with UAE. These results

  19. Development of a Standard Protocol for the Harmonic Analysis of Radial Pulse Wave and Assessing Its Reliability in Healthy Humans

    PubMed Central

    Chang, Chi-Wei; Chen, Jiang-Ming

    2015-01-01

    This study was aimed to establish a standard protocol and to quantitatively assess the reliability of harmonic analysis of the radial pulse wave measured by a harmonic wave analyzer (TD01C system). Both intraobserver and interobserver assessments were conducted to investigate whether the values of harmonics are stable in successive measurements. An intraclass correlation coefficient (ICC) and a Bland–Altman plot were used for this purpose. For the reliability assessments of the intraobserver and the interobserver, 22 subjects (mean age 45 ± 14 years; 14 males and 8 females) were enrolled. The first eleven harmonics of the radial pulse wave presented excellent repeatability (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\text {ICCs}>0.9$ \\end{document} and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\text {p}<0.001$ \\end{document}) for the intraobserver assessment and high reproducibility (ICCs range from 0.83 to 0.96 and \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\text {p}<0.001$ \\end{document}) for the interobserver assessment. The Bland–Altman plot indicated that more than 90% of harmonic values fell within two standard deviations of the mean difference. Thus, we concluded that the harmonic analysis of the radial pulse wave using the TD01C system is a feasible and reliable method to assess a hemodynamic characteristic in clinical trial. PMID:27170904

  20. Hyperemia-Related Changes in Arterial Stiffness: Comparison between Pulse Wave Velocity and Stiffness Index in the Vascular Reactivity Assessment

    PubMed Central

    Torrado, Juan; Bia, Daniel; Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Armentano, Ricardo L.

    2012-01-01

    Carotid-to-radial pulse wave velocity (PWVcr) has been proposed to evaluate endothelial function. However, the measurement of PWVcr is not without limitations. A new simple approach could have wide application. Stiffness index (SI) is obtained by analysis of the peripheral pulse wave and gives reproducible information about stiffness of large arteries. This study assessed the effects of hyperemia on SI and compared it with PWVcr in 14 healthy subjects. Both were measured at rest and during 8 minutes after ischemia. SI temporal course was determined. At 1 minute, SI and PWVcr decreased (5.58 ± 0.24 to 5.34 ± 0.23 m/s, P < 0.05; 7.8 ± 1.0 to 7.2 ± 0.9 m/s; P < 0.05, resp.). SI was positively related to PWVcr in baseline (r = 0.62 , P < 0.05), at 1 minute (r = 0.79, P < 0.05), and during the whole experimental session (r = 0.52, P < 0.05). Conclusion. Hyperemia significantly decreases SI in healthy subjects. SI was related to PWVcr and could be used to facilitate the evaluation of hyperemia-related changes in arterial stiffness. PMID:22919496

  1. Hyperemia-Related Changes in Arterial Stiffness: Comparison between Pulse Wave Velocity and Stiffness Index in the Vascular Reactivity Assessment.

    PubMed

    Torrado, Juan; Bia, Daniel; Zócalo, Yanina; Farro, Ignacio; Farro, Federico; Armentano, Ricardo L

    2012-01-01

    Carotid-to-radial pulse wave velocity (PWV(cr)) has been proposed to evaluate endothelial function. However, the measurement of PWV(cr) is not without limitations. A new simple approach could have wide application. Stiffness index (SI) is obtained by analysis of the peripheral pulse wave and gives reproducible information about stiffness of large arteries. This study assessed the effects of hyperemia on SI and compared it with PWV(cr) in 14 healthy subjects. Both were measured at rest and during 8 minutes after ischemia. SI temporal course was determined. At 1 minute, SI and PWV(cr) decreased (5.58 ± 0.24 to 5.34 ± 0.23 m/s, P < 0.05; 7.8 ± 1.0 to 7.2 ± 0.9 m/s; P < 0.05, resp.). SI was positively related to PWV(cr) in baseline (r = 0.62 , P < 0.05), at 1 minute (r = 0.79, P < 0.05), and during the whole experimental session (r = 0.52, P < 0.05). Conclusion. Hyperemia significantly decreases SI in healthy subjects. SI was related to PWV(cr) and could be used to facilitate the evaluation of hyperemia-related changes in arterial stiffness. PMID:22919496

  2. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  3. DOPPLER WEATHER SYSTEM

    Energy Science and Technology Software Center (ESTSC)

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever fivemore » minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.« less

  4. Effect of viscosity on the wave propagation: Experimental determination of compression and expansion pulse wave velocity in fluid-fill elastic tube.

    PubMed

    Stojadinović, Bojana; Tenne, Tamar; Zikich, Dragoslav; Rajković, Nemanja; Milošević, Nebojša; Lazović, Biljana; Žikić, Dejan

    2015-11-26

    The velocity by which the disturbance travels through the medium is the wave velocity. Pulse wave velocity is one of the main parameters in hemodynamics. The study of wave propagation through the fluid-fill elastic tube is of great importance for the proper biophysical understanding of the nature of blood flow through of cardiovascular system. The effect of viscosity on the pulse wave velocity is generally ignored. In this paper we present the results of experimental measurements of pulse wave velocity (PWV) of compression and expansion waves in elastic tube. The solutions with different density and viscosity were used in the experiment. Biophysical model of the circulatory flow is designed to perform measurements. Experimental results show that the PWV of the expansion waves is higher than the compression waves during the same experimental conditions. It was found that the change in viscosity causes a change of PWV for both waves. We found a relationship between PWV, fluid density and viscosity. PMID:26454712

  5. Ultrafast Doppler reveals the mapping of cerebral vascular resistivity in neonates

    PubMed Central

    Demené, Charlie; Pernot, Mathieu; Biran, Valérie; Alison, Marianne; Fink, Mathias; Baud, Olivier; Tanter, Mickaël

    2014-01-01

    In vivo mapping of the full vasculature dynamics based on Ultrafast Doppler is showed noninvasively in the challenging case of the neonatal brain. Contrary to conventional pulsed-wave (PW) Doppler Ultrasound limited for >40 years to the estimation of vascular indices at a single location, the ultrafast frame rate (5,000 Hz) obtained using plane-wave transmissions leads to simultaneous estimation of full Doppler spectra in all pixels of wide field-of-view images within a single cardiac cycle and high sensitivity Doppler imaging. Consequently, 2D quantitative maps of the cerebro-vascular resistivity index (RI) are processed and found in agreement with local measurements obtained on large arteries of healthy neonates using conventional PW Doppler. Changes in 2D resistivity maps are monitored during recovery after therapeutic whole-body cooling of full-term neonates treated for hypoxic ischemic encephalopathy. Arterial and venous vessels are unambiguously differentiated on the basis of their distinct hemodynamics. The high spatial (250 × 250 μm2) and temporal resolution (<1 ms) of Ultrafast Doppler imaging combined with deep tissue penetration enable precise quantitative mapping of deep brain vascular dynamics and RI, which is far beyond the capabilities of any other imaging modality. PMID:24667916

  6. Christian Doppler and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Toman, Kurt

    1984-04-01

    A summary is given of Doppler's life and career. He was born 180 years ago on November 29, 1803, in Salzburg, Austria. He died on March 17, 1853 in Venice. The effect bearing his name was first announced in a presentation before the Royal Bohemian Society of the Sciences in Prague on May 25, 1842. Doppler considered his work a generalization of the aberration theorem as discovered by Bradley. With it came the inference that the perception of physical phenomena can change with the state of motion of the observer. Acceptance of the principle was not without controversy. In 1852, the mathematician Petzval claimed that no useful scientific deductions can be made from Doppler's elementary equations. In 1860, Ernst Mach resolved the misunderstanding that clouded this controversy. The Doppler effect is alive and well. Its role in radio science and related disciplines is enumerated.

  7. The velocity of the arterial pulse wave: a viscous-fluid shock wave in an elastic tube

    PubMed Central

    Painter, Page R

    2008-01-01

    Background The arterial pulse is a viscous-fluid shock wave that is initiated by blood ejected from the heart. This wave travels away from the heart at a speed termed the pulse wave velocity (PWV). The PWV increases during the course of a number of diseases, and this increase is often attributed to arterial stiffness. As the pulse wave approaches a point in an artery, the pressure rises as does the pressure gradient. This pressure gradient increases the rate of blood flow ahead of the wave. The rate of blood flow ahead of the wave decreases with distance because the pressure gradient also decreases with distance ahead of the wave. Consequently, the amount of blood per unit length in a segment of an artery increases ahead of the wave, and this increase stretches the wall of the artery. As a result, the tension in the wall increases, and this results in an increase in the pressure of blood in the artery. Methods An expression for the PWV is derived from an equation describing the flow-pressure coupling (FPC) for a pulse wave in an incompressible, viscous fluid in an elastic tube. The initial increase in force of the fluid in the tube is described by an increasing exponential function of time. The relationship between force gradient and fluid flow is approximated by an expression known to hold for a rigid tube. Results For large arteries, the PWV derived by this method agrees with the Korteweg-Moens equation for the PWV in a non-viscous fluid. For small arteries, the PWV is approximately proportional to the Korteweg-Moens velocity divided by the radius of the artery. The PWV in small arteries is also predicted to increase when the specific rate of increase in pressure as a function of time decreases. This rate decreases with increasing myocardial ischemia, suggesting an explanation for the observation that an increase in the PWV is a predictor of future myocardial infarction. The derivation of the equation for the PWV that has been used for more than fifty years is

  8. Stimulated acoustic emission: pseudo-Doppler shifts seen during the destruction of nonmoving microbubbles.

    PubMed

    Tiemann, K; Pohl, C; Schlosser, T; Goenechea, J; Bruce, M; Veltmann, C; Kuntz, S; Bangard, M; Becher, H

    2000-09-01

    The purpose of this study was to evaluate the appearance and the characteristics of stimulated acoustic emission (SAE) as an echo contrast-specific color Doppler phenomenon with impact on myocardial contrast echocardiography (MCE). Stationary microbubbles of the new contrast agent SH-U 563A (Schering AG) were embedded within a tissue-mimicking gel material. Harmonic power Doppler imaging (H-PDI), color Doppler and pulse-wave Doppler data were acquired using an HDI-5000 equipped with a phased-array transducer (1.67/3.3 MHz). In color Doppler mode, bubble destruction resulted in random noise like Doppler signals. PW-Doppler revealed short "pseudo-Doppler" shifts with a broadband frequency spectrum. Quantification of SAE events by H-PDI demonstrated an exponential decay of signal intensities over successive frames. A strong linear relationship was found between bubble concentration and the square root of the linearized H-PDI signal for a range of concentrations of more than two orders of magnitude (R = 0.993, p < 0.0001). Intensity of the H-PDI signals correlated well with emission power (R = 0.96, p = 0.0014). SAE results from disintegration of microbubbles and can be demonstrated by all Doppler imaging modalities, including H-PDI. Intensity of SAE signals is influenced by the applied acoustic power and correlates highly with the concentration of microbubbles. Because intensity of SAE signals correlates highly with echo contrast concentrations, analysis of SAE signals might be used for quantitative MCE. PMID:11053751

  9. Color Doppler and pulse wave assessment of flow in anomalous origin of left coronary artery from pulmonary artery: Pre- and post-surgery

    PubMed Central

    Bhalgat, Parag S.; Naik, Abhijeet V.; Salvi, Prasanna R.; Joshi, Suresh V.

    2016-01-01

    Changes in left coronary artery flow pattern in anomalous left coronary from pulmonary artery can provide valuable insight into pathology and natural history of disease. We wish to discuss a case with pre and post operative left coronary flow pattern with mid term follow up. PMID:27212862

  10. Advances in Doppler OCT

    PubMed Central

    Liu, Gangjun; Chen, Zhongping

    2014-01-01

    We review the principle and some recent applications of Doppler optical coherence tomography (OCT). The advances of the phase-resolved Doppler OCT method are described. Functional OCT algorithms which are based on an extension of the phase-resolved scheme are also introduced. Recent applications of Doppler OCT for quantification of flow, imaging of microvasculature and vocal fold vibration, and optical coherence elastography are briefly discussed. PMID:24443649

  11. Advanced Doppler tracking experiments

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1989-01-01

    The Doppler tracking method is currently the only technique available for broadband gravitational wave searches in the approx. 10(exp -4) to 10(exp -1) Hz low frequency band. A brief review is given of the Doppler method, a discussion of the main noise sources, and a review of experience with current spacecraft and the prospects for sensitivity improvements in an advanced Doppler tracking experiment.

  12. Noninvasive and nonocclusive determination of blood pressure using laser Doppler flowmetry

    NASA Astrophysics Data System (ADS)

    Elter, Peter; Stork, Wilhelm; Mueller-Glaser, Klaus-Dieter; Lutter, Norbert O.

    1999-04-01

    This report describes an approach determining blood pressure noninvasively without cuff. Regarding an elastic, fluid-filled tube as a model of an arterial segment, the solution of the Navier Stokes differential equations delivers a relation between the pressure and velocity pulse. There, simulations prove a minimal sensitivity of blood pressure concerning blood density, blood viscosity and damping. Hence, these parameters can be regarded interindividually as constants. Blood pressure is essentially sensitive on the pulse wave velocity, the velocity pulse, the arterial diameter and the reflection coefficient. To perform measurements, a system was built up comprising at least one laser Doppler blood flow sensor, a high performance DSP hardware and a PC. After individual initial Riva Rocci calibration, arterial diameter and reflection coefficient can be determined. Flow and pulse wave velocity and thus blood pressure can be calculated measuring continuously at least one velocity pulse with the laser Doppler flow sensor at a superficial artery like the a. radialis and simultaneously another cardiovascular signal like an ECG or another flow pulse at a different site of the artery. As a first result, high linear correlations between systolic blood pressure and pulse transit time were obtained.

  13. Predictive value of various Doppler-derived parameters of atrial conduction time for successful atrial fibrillation ablation

    PubMed Central

    Valtuille, Lucas; Choy, Jonathan B; Becher, Harald

    2015-01-01

    Various Doppler-derived parameters of left atrial electrical remodeling have been demonstrated to predict recurrence of atrial fibrillation (AF) after AF ablation. The aim of this study was to compare three Doppler-derived measures of atrial conduction time in patients undergoing AF ablation, and to investigate their predictive value for successful procedure. In 32 prospectively enrolled patients undergoing the first AF ablation, atrial conduction time was estimated by measuring the time delay between the onset of P-wave on the surface ECG to the peak of the a′-wave on the pulsed-wave Doppler and color-coded tissue Doppler imaging of the left atrial lateral wall, and to the peak of the A-wave on the pulsed-wave Doppler of the mitral inflow. There was a significant difference in the baseline atrial conduction time measured by different echocardiographic techniques. Most (88%) patients had normal or only mildly dilated left atrium. At 6 months, 12 patients (38%) had recurrent AF/atrial tachycardia. The duration of history of AF was the only predictor of AF/atrial tachycardia recurrence following the first AF ablation (P=0.024; OR 1.023, CI 1.003–1.044). A combination of normal left atrial volume and history of paroxysmal AF of ≤48 months was associated with the best outcome. Predictive value of the Doppler derived parameters of atrial conduction time may be reduced in the early stages of left atrial remodeling. Future studies may determine which echocardiographic parameter correlates best with the extent of left atrial remodeling and is most predictive of successful AF ablation. PMID:26795694

  14. Measurement of internal diameter changes and pulse wave velocity in fetal descending aorta using the ultrasonic phased-tracking method in normal and growth-restricted fetuses.

    PubMed

    Miyashita, Susumu; Murotsuki, Jun; Muromoto, Jin; Ozawa, Katsusuke; Yaegashi, Nobuo; Hasegawa, Hideyuki; Kanai, Hiroshi

    2015-05-01

    Phased tracking (PT) is an ultrasound-based technique that enables precise measurement of a target velocity. The aims of this study were to use PT to evaluate arterial pulse waveform, pulse wave velocity and fetal pulse pressure in normal and growth-restricted fetuses. One hundred fetuses with normal development and 15 fetuses with growth restriction were analyzed. Ultrasonic raw radiofrequency signals were captured from a direction perpendicular to the vascular axis at the fetal diaphragmatic level for the difference in internal dimensions (DID), or simultaneously from different directions for the pulse wave velocity. Pulsatile movement of the proximal and distal intima of the vessels was analyzed using PT. The fetal DID exhibited no significant changes in growth-restricted fetuses. Pulse wave velocity (3.8 ± 0.32 m/s vs. 2.2 ± 0.069 m/s, p < 0.001) and estimated pulse pressure (6.9 ± 0.90 kPa vs. 2.5 ± 0.18 kPa, p < 0.001) were significantly elevated in growth-restricted fetuses. Assessment of DID and pulse wave velocity of the descending aorta using PT is a feasible, non-invasive approach to evaluation of fetal hemodynamics. PMID:25727918

  15. The Cognitive Doppler.

    ERIC Educational Resources Information Center

    Kozoil, Micah E.

    1989-01-01

    Discusses the learning needs of students in the concrete operational stage in mathematics. Identifies the phenomenon of reduced cognitive performance in an out-of-class environment as the "Cognitive Doppler." Suggests methods of reducing the pronounced effects of the Cognitive Doppler by capitalizing on the students' ability to memorize effective…

  16. Automatic human micro-Doppler signature separation by Hough transform

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jin, Tian; Qiu, Lei; Zhou, Zhimin

    2015-12-01

    The micro-Doppler signature is one of the most prominent information for target classification and identification. As Hough transform (HT) is an efficient tool for detecting weak straight target traces in the image, an HT based algorithm is proposed for micro-Doppler signature separation of multiple persons. Few seconds data is processed at one time to ensure human motion traces approximate to straight lines in the radar slow time-range image. Taking HT to the slow time-range image, each human's motion trace can be recovered through recursively searching the peaks in HT space. Applying time-frequency transform to the range cells around each recovered line, the human micro-Doppler signature can be achieved and separated. Experimental results are given to illustrate the validity of the proposed algorithm.

  17. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  18. One-dimensional modelling of pulse wave propagation in human airway bifurcations in space-time variables.

    PubMed

    Clavica, Francesco; Alastruey, Jordi; Sherwin, Spencer J; Khir, Ashraf W

    2009-01-01

    Airflow in the respiratory system is complicated as it goes through various regions with different geometries and mechanical properties. Three-dimensional (3-D) simulations are typically limited to local areas of the system because of their high computational cost. On the other hand, the one-dimensional (1-D) equations of flow in compliant tubes offer a good compromise between accuracy and computational cost when a global assessment of airflow in the system is required. The aim of the current study is to apply the 1-D formulation in space and time variables to study the propagation of a pulse wave in human airways; first in a simple system composed of just one bifurcation, trachea-main bronchi, according to the symmetrical Weibel model. Then extending the system to include a further generation, the bronchi branches. Pulse waveforms carry information about the functionality and morphology of the respiratory system and the 1-D modelling, in terms of space and time variables, represents an innovative approach for respiratory response interpretation. 1-D modelling in space-time variables has been extensively applied to simulate blood pressure and flow in the cardiovascular system. This work represents the first attempt to apply this formulation to study pulse waveforms in the human bronchial tree. PMID:19965046

  19. Better Management of Cardiovascular Diseases by Pulse Wave Velocity: Combining Clinical Practice with Clinical Research using Evidence-Based Medicine

    PubMed Central

    Khoshdel, Ali R.; Carney, Shane L.; Nair, Balakrishnan R.; Gillies, Alastair

    2007-01-01

    Arterial stiffness measured by pulse wave velocity (PWV) is an accepted strong, independent predictor of cardiovascular events and mortality. However, lack of a reliable reference range has limited its use in clinical practice. In this evidence-based review, we applied published data to develop a PWV risk stratification model and demonstrated its impact on the management of common clinical scenarios. After reviewing 97 studies where PWV was measured, 5 end-stage renal disease patients, 5 hypertensives, 2 diabetics, and 2 elderly studies were selected. Pooling the data by the “fixed-effect model” demonstrated that the mortality and cardiovascular event risk ratio for one level increment in PWV was 2.41 (1.81–3.20) or 1.69 (1.35–2.11), respectively. There was a significant difference in PWV between survived and deceased groups, both in the low and high risk populations. Furthermore, risk comparison demonstrated that 1 standard deviation increment in PWV is equivalent to 10 years of aging, or 1.5 to 2 times the risk of a 10 mmHg increase in systolic blood pressure. Evidence shows that PWV can be beneficially used in clinical practice for cardiovascular risk stratification. Furthermore, the above risk estimates could be incorporated into currently used cardiac risk scores to improve their predictive power and facilitate the clinical application of PWV. PMID:17456834

  20. Effect of Aerobic versus Resistance Exercise on Pulse Wave Velocity, Intima Media Thickness and Left Ventricular Mass in Obese Adolescents.

    PubMed

    Horner, Katy; Kuk, Jennifer L; Barinas-Mitchell, Emma; Drant, Stacey; DeGroff, Curt; Lee, SoJung

    2015-11-01

    A cardiovascular comorbidity in obese adolescents is increased aortic pulse wave velocity (aPWV), carotid intima-media thickness (cIMT) and left ventricular mass (LVM). We investigated in obese adolescents 1) the risk factors associated with aPWV, cIMT and LVM, and 2) the effects of aerobic (AE) versus resistance (RE) exercise alone (without calorie restriction) on aPWV, cIMT, LVM index (LVMI) and cardiometabolic risk factors. Eighty-one obese adolescents (12-18 yrs, BMI ≥95th percentile) were randomized to 3 months of AE (n = 30), RE (n = 27) or a control group (n = 24). Outcome measures included aPWV, cIMT, LVMI, body composition, cardiorespiratory fitness (CRF), blood pressure (BP) and lipids. At baseline, the strongest correlates of aPWV were body weight (r = .31) and diastolic BP (r = .28); of cIMT were body weight (r=0.26) and CRF (r=-0.25); and of LVMI was CRF (r=0.32) after adjusting for sex and race (p < .05 for all). Despite significant reductions in total fat and improvements in CRF in the AE and RE groups, aPWV, cIMT, LVMI, BP, lipids and body weight did not change as compared with controls (p > .05 for all). Interventions of longer duration or together with weight loss may be required to improve these early biomarkers of CVD in obese adolescents. PMID:26181766

  1. The effect of workplace smoking bans on heart rate variability and pulse wave velocity of non-smoking hospitality workers

    PubMed Central

    Rajkumar, Sarah; Schmidt-Trucksäss, Arno; Wellenius, Gregory A.; Bauer, Georg F.; Huynh, Cong Khanh; Moeller, Alexander; Röösli, Martin

    2014-01-01

    Objectives To investigate the effect of a change in second hand smoke (SHS) exposure on heart rate variability (HRV) and pulse wave velocity (PWV), this study utilized a quasi-experimental setting when a smoking ban was introduced. Methods HRV, a quantitative marker of autonomic activity of the nervous system, and PWV, a marker of arterial stiffness, were measured in 55 non-smoking hospitality workers before and 3 to 12 months after a smoking ban and compared to a control group that did not experience an exposure change. SHS exposure was determined with a nicotine specific badge and expressed as inhaled cigarette equivalents per day (CE/d). Results PWV and HRV parameters significantly changed in a dose dependent manner in the intervention group compared to the control group. A one CE/d decrease was associated with a 2.3% (95% CI: 0.2, 4.4; p=0.031) higher root mean square of successive differences (RMSSD), a 5.7 % (95% CI: 0.9, 10.2; p=0.02) higher high frequency component and a 0.72% (95 % CI: 0.40–1.05; p<0.001) lower PWV. Conclusions PWV and HRV significantly improved after introducing smoke-free workplaces indicating a decreased cardiovascular risk. PMID:24504155

  2. Doppler Lidar (DL) Handbook

    SciTech Connect

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  3. Color Doppler flow imaging.

    PubMed

    Foley, W D; Erickson, S J

    1991-01-01

    The performance requirements and operational parameters of a color Doppler system are outlined. The ability of an operator to recognize normal and abnormal variations in physiologic flow and artifacts caused by noise and aliasing is emphasized. The use of color Doppler flow imaging is described for the vessels of the neck and extremities, upper abdomen and abdominal transplants, obstetrics and gynecology, dialysis fistulas, and testicular and penile flow imaging. PMID:1898567

  4. Assessment of Spectral Doppler for an Array-Based Preclinical Ultrasound Scanner Using a Rotating Phantom

    PubMed Central

    Kenwright, David A.; Anderson, Tom; Moran, Carmel M.; Hoskins, Peter R.

    2015-01-01

    Velocity measurement errors were investigated for an array-based preclinical ultrasound scanner (Vevo 2100, FUJIFILM VisualSonics, Toronto, ON, Canada). Using a small-size rotating phantom made from a tissue-mimicking material, errors in pulse-wave Doppler maximum velocity measurements were observed. The extent of these errors was dependent on the Doppler angle, gate length, gate depth, gate horizontal placement and phantom velocity. Errors were observed to be up to 172% at high beam–target angles. It was found that small gate lengths resulted in larger velocity errors than large gate lengths, a phenomenon that has not previously been reported (e.g., for a beam–target angle of 0°, the error was 27.8% with a 0.2-mm gate length and 5.4% with a 0.98-mm gate length). The error in the velocity measurement with sample volume depth changed depending on the operating frequency of the probe. Some edge effects were observed in the horizontal placement of the sample volume, indicating a change in the array aperture size. The error in the velocity measurements increased with increased phantom velocity, from 22% at 2.4 cm/s to 30% at 26.6 cm/s. To minimise the impact of these errors, an angle-dependent correction factor was derived based on a simple ray model of geometric spectral broadening. Use of this angle-dependent correction factor reduces the maximum velocity measurement errors to <25% in all instances, significantly improving the current estimation of maximum velocity from pulse-wave Doppler ultrasound. PMID:25957754

  5. Measurements of systolic time intervals using a transoesophageal pulsed echo-Doppler.

    PubMed

    Tournadre, J P; Muchada, R; Lansiaux, S; Chassard, D

    1999-10-01

    Measurement of systolic time intervals (STI), an index of left ventricular (LV) systolic function, is usually labour intensive and requires considerable expertise to perform accurately. We have evaluated the accuracy of an automated, continuous and non-invasive STI measurement technique using a descending aortic blood velocity Doppler signal obtained using a transoesophageal echo-Doppler system (TEDS) and an ECG signal. STI were measured in adult pigs using a transoesophageal probe (4 x 4 mm pulsed wave Doppler transducer, 5-MHz frequency and a 3 x 3 mm echo transducer, 10-MHz frequency) associated with an ECG recorder. Measurements were performed at baseline and after injection of esmolol and dobutamine. TEDS data were compared with those obtained by one-line recordings of the electrocardiogram and the central aortic arterial pressure wave. Similar mean values were observed for pre-ejection period (PEPI), LV ejection time (LVET) and PEP/LVET with the two methods. Agreement between the methods (Bland and Altman's test) was excellent with 95% confidence intervals for PEP, LVET and PEP/LVET of -7.17 to +1.37 ms, -12.64 to +0.24 ms and -0.033 to +0.028, respectively. We conclude that the combination of descending aorta blood velocity Doppler and ECG signal is an alternative technique for non-invasive and objective measurement of STI, allowing continuous monitoring of LV systolic function. PMID:10673883

  6. Indices of cardiovascular function derived from peripheral pulse wave analysis using radial applanation tonometry: a measurement repeatability study.

    PubMed

    Crilly, Mike; Coch, Christoph; Bruce, Margaret; Clark, Hazel; Williams, David

    2007-08-01

    Pulse wave analysis (PWA) using applanation tonometry is a non-invasive technique for assessing cardiovascular function. It produces three important indices: ejection duration index (ED%), augmentation index adjusted for heart rate (AIX@75), and subendocardial viability ratio (SEVR%). The aim of this study was to assess within- and between-observer repeatability of these measurements. After resting supine for 15 minutes, 20 ambulant patients (16 male) in sinus rhythm underwent four PWA measurements on a single occasion. Two nurses (A & B) independently and alternately undertook PWA measurements using the same equipment (Omron HEM-757; SphygmoCor with Millar hand-held tonometer) blind to the other nurse's PWA measurements. Within- and between-observer differences were analysed using the Bland-Altman ;limits of agreement' approach (mean difference +/- 2 standard deviations, 2SD). Mean age was 56 (blood pressure, BP 136/79; pulse rate 64). BP/PWA measurements remained stable during assessment. Based on the average of two PWA measurements the mean +/- 2SD between-observer difference in ED% was 0.3 +/- 2.0; AIX@75 1.0 +/- 3.9; and SEVR% 1.7 +/- 14.2. Based on a single PWA measurement the between-observer difference was ED% 0.3 +/- 3.3; AIX@75 1.7 +/- 6.9; and SEVR% 0.6 +/- 22.6. Within-observer differences for nurse-A were ED% 0.0 +/- 5.4; AIX@75 1.5 +/- 7.0; and SEVR% 1.7 +/- 39.0 (nurse-B: 0.1 +/- 3.8; 0.1 +/- 8.0; and 0.6 +/- 23.3, respectively). PWA demonstrates high levels of repeatability even when used by relatively inexperienced staff and has the potential to be included in the routine cardiovascular assessment of ambulant patients. PMID:17848475

  7. Integrated multiomics approach identifies calcium and integrin-binding protein-2 as a novel gene for pulse wave velocity

    PubMed Central

    Mangino, Massimo; Cecelja, Marina; Menni, Cristina; Tsai, Pei-Chien; Yuan, Wei; Small, Kerrin; Bell, Jordana; Mitchell, Gary F.; Chowienczyk, Phillip; Spector, Tim D.

    2016-01-01

    Background: Carotid-femoral pulse wave velocity (PWV) is an important measure of arterial stiffness, which is an independent predictor of cardiovascular morbidity and mortality. In this study, we used an integrated genetic, epigenetic and transcriptomics approach to uncover novel molecular mechanisms contributing to PWV. Methods and results: We measured PWV in 1505 healthy twins of European descendent. A genomewide association analysis was performed using standardized residual of the inverse of PWV. We identified one single-nucleotide polymorphism (rs7164338) in the calcium and integrin-binding protein-2 (CIB2) gene on chromosome 15q25.1 associated with PWV [β = −0.359, standard error (SE) = 0.07, P = 4.8 × 10–8]. The same variant was also associated with increased CIB2 expression in leucocytes (β = 0.034, SE = 0.008, P = 4.95 × 10–5) and skin (β = 0.072, SE = 0.01, P = 2.35 × 10–9) and with hypomethylation of the gene promoter (β = −0.899, SE = 0.098, P = 3.63 × 10–20). Conclusion: Our data indicate that reduced methylation of the CIB2 promoter in individuals carrying rs7164338 may lead to increased CIB2 expression. Given that CIB2 is thought to regulate intracellular calcium levels, an increase in protein levels may prevent the accumulation of serum calcium and phosphate, ultimately slowing down the process of vascular calcification. This study shows the power of integrating multiple omics to discover novel cardiovascular mechanisms. PMID:26378684

  8. Association of brachial-ankle pulse wave velocity with atherosclerosis and presence of coronary artery disease in older patients

    PubMed Central

    Chung, Chang-Min; Tseng, Yu-Hsiang; Lin, Yu-Sheng; Hsu, Jen-Te; Wang, Po-Chang

    2015-01-01

    Objective Brachial-ankle pulse wave velocity (baPWV) is a simple and reproducible measure of arterial stiffness and is extensively used to assess risk of cardiovascular disease in Asia. We examined whether baPWV was associated with coronary atherosclerosis and presence and extent of coronary artery disease (CAD) in older patients with chest pain. Methods This cross-sectional study enrolled 370 consecutive patients >65 years old who underwent baPWV measurement and elective coronary angiogram for suspected CAD at a single cardiovascular center, between June 2013 and July 2014. Results In addition to diabetes mellitus and body mass index, baPWV was one of the statistically meaningful predictors of significant CAD (diameter of stenosis >50%) in a multivariate analysis. When the extent of CAD was classified as nonsignificant or significant CAD (ie, one-, two-, and three-vessel disease), there was a significant difference in baPWV between the significant and nonsignificant CAD groups, but not between the three significant CAD groups. Multivariate linear regression analyses showed that the number of diseased vessels and baPWV were both significantly associated with the SYNTAX (SYNergy between percutaneous coronary intervention with TAXus and cardiac surgery) score. The cutoff value of baPWV at 1,874 cm/s had a sensitivity of 60.1%, specificity of 70.8%, and area under receiver operating characteristic curve of 0.639 in predicting CAD. Conclusion Arterial stiffness determined by baPWV was associated independently with CAD severity, as assessed by angiography and the SYNTAX score in older patients with chest pain. As a result, increased arterial stiffness assessed by baPWV is associated with the severity and presence of CAD in older patients. PMID:26316732

  9. BRACHIAL-ANKLE PULSE WAVE VELOCITY IS ASSOCIATED WITH CORONARY CALCIFICATION AMONG 1,131 HEALTHY MIDDLE-AGED MEN

    PubMed Central

    Vishnu, Abhishek; Choo, Jina; Wilcox, Bradley; Hisamatsu, Takashi; Barinas-Mitchell, Emma J M; Fujiyoshi, Akira; Mackey, Rachel H; Kadota, Aya; Ahuja, Vasudha; Kadowaki, Takashi; Edmundowicz, Daniel; Miura, Katsuyuki; Rodriguez, Beatriz L; Kuller, Lewis H; Shin, Chol; Masaki, Kamal; Ueshima, Hirotsugu; Sekikawa, Akira

    2015-01-01

    Background Brachial-ankle pulse wave velocity (baPWV) is a simple and reproducible measure of arterial stiffness and is extensively used to assess cardiovascular disease (CVD) risk in eastern Asia. We examined whether baPWV is associated with coronary atherosclerosis in an international study of healthy middle-aged men. Methods A population-based sample of 1,131 men aged 40–49 years was recruited– 257 Whites and 75 Blacks in Pittsburgh, US, 228 Japanese-Americans in Honolulu, US, 292 Japanese in Otsu, Japan, and 279 Koreans in Ansan, Korea. baPWV was measured with an automated waveform analyzer (VP2000, Omron) and atherosclerosis was examined as coronary artery calcification (CAC) by computed-tomography (GE-Imatron EBT scanner). Association of the presence of CAC (defined as ≥10 Agatston unit) was examined with continuous measure as well as with increasing quartiles of baPWV. Results As compared to the lowest quartile of baPWV, the multivariable-adjusted odds ratio (95% confidence-interval [CI]) for presence of CAC in the combined sample was 1.70 (0.98, 2.94) for 2nd quartile, 1.88 (1.08, 3.28) for 3rd quartile, and 2.16 (1.19, 3.94) for 4th quartile (p-trend = 0.01). The odds for CAC increased by 19% per 100 cm/s increase (p<0.01), or by 36% per standard-deviation increase (p<0.01) in baPWV. Similar effect-sizes were observed in individual races, and were significant among Whites, Blacks and Koreans. Conclusion baPWV is cross-sectionally associated with CAC among healthy middle-aged men. The association was significant in Whites and Blacks in the US, and among Koreans. Longitudinal studies are needed to determine its CVD predictive ability. PMID:25885874

  10. A simplified method for quantifying the subject-specific relationship between blood pressure and carotid-femoral pulse wave velocity.

    PubMed

    Butlin, Mark; Hathway, Peta J; Kouchaki, Zahra; Peebles, Karen; Avolio, Alberto P

    2015-08-01

    Devices that estimate blood pressure from arterial pulse wave velocity (PWV) potentially provide continuous, ambulatory blood pressure monitoring. Accurate blood pressure estimation requires reliable quantification of the relationship between blood pressure and PWV. Regression to population normal values or, when using limb artery PWV, changing hydrostatic blood pressure within the limb provides a calibration index. Population lookup tables require accurate anthropometric correlates, assuming no individual variation. Only devices that measure PWV in the limb can use limb position changes. This study proposes a method for developing a calibration curve independent of lookup tables and useful for large artery PWV measurement, such as carotid-femoral PWV (PWVcf). PWVcf was measured in 27 normal subjects (15 female, 36±19 years) in both the supine and standing position. The change in systemic pressure was measured and hydrostatic pressure change calculated from estimated vessel path length height, measured using body surface distances. Brachial diastolic blood pressure increased for all subjects from supine to standing (supine 70±8 mmHg, standing 83±8 mmHg, p<;0.001) with an additional hydrostatic change across the carotid-femoral path length of 19±2 mmHg (p<;0.001). PWVcf also increased in all subjects (supine 5.2±1.3 m/s, standing 7.3±2.2 m/s, p<;0.001). The subject-specific calibration index (ΔDP/ΔPWVcf) varied amongst the cohort (20±8 mmHg/m/s), was correlated with age (-0.57, p=0.002) and seated aortic systolic pressure (-0.38, p=0.048) and was always greater than zero. Thus, this study describes a simple but novel method of measuring an individualized calibration index using blood pressure and PWV measurements in the supine and standing position. PMID:26737588

  11. Considerations for SphygmoCor radial artery pulse wave analysis: side selection and peripheral arterial blood pressure calibration.

    PubMed

    Martin, Jeffrey S; Borges, Alexandra R; Christy, John B; Beck, Darren T

    2015-10-01

    Methods employed for pulse wave analysis (PWA) and peripheral blood pressure (PBP) calibration vary. The purpose of this study was to evaluate the agreement of SphygmoCor PWA parameters derived from radial artery tonometry when considering (1) timing (before vs. after tonometry) and side selection (ipsilateral vs. contralateral limb) for PBP calibration and (2) side selection for tonometry (left vs. right arm). In 34 subjects (aged 21.9 ± 2.3 years), bilateral radial artery tonometry was performed simultaneously on three instances. PBP assessment via oscillometric sphygmomanometry in the left arm only and both arms simultaneously occurred following the first and second instances of tonometry, respectively. Significant within arm differences in PWA parameters derived before and after PBP measurement were observed in the right arm only (for example, aortic systolic blood pressure, Δ=0.38 ± 0.64 mm Hg). Simultaneously captured bilateral PWA variables demonstrated significant between arm differences in 88% (14/16) and 56% (9/16) of outcome variables when calibrated to within arm and equivalent PBP, respectively. Moreover, the right arm consistently demonstrated lower values for clinical PWA variables (for example, augmentation index, bias=-2.79%). However, 26% (n=9) of participants presented with clinically significant differences (>10 mm Hg) in bilateral PBP and their exclusion from analysis abolished most between arm differences observed. SphygmoCor PWA in the right radial artery results in greater variability independent of the timing of PBP measurement and magnitude of calibration pressures in young subjects. Moreover, bilateral PBP measurement is imperative to identify subjects in whom a significant difference in bilateral PWA outcomes may exist. PMID:25787040

  12. Association of Brachial-Ankle Pulse Wave Velocity and Cardiomegaly With Aortic Arch Calcification in Patients on Hemodialysis

    PubMed Central

    Shin, Ming-Chen Paul; Lee, Mei-Yueh; Huang, Jiun-Chi; Tsai, Yi-Chun; Chen, Jui-Hsin; Chen, Szu-Chia; Chang, Jer-Ming; Chen, Hung-Chun

    2016-01-01

    Abstract Aortic arch calcification (AoAC) is associated with cardiovascular and all-cause mortality in end-stage renal disease population. AoAC can be simply estimated with an AoAC score using plain chest radiography. The objective of this study is to evaluate the association of AoAC with brachial-ankle pulse wave velocity (baPWV) and cardiomegaly in patients who have undergoing hemodialysis (HD). We retrospectively determined AoAC and cardiothoracic ratio (CTR) by chest x-ray in 220 HD patients who underwent the measurement of baPWV. The values of baPWV were measured by an ankle-brachial index-form device. Multiple stepwise logistic regression analysis was used to identify the factors associated with AoAC score >4. Compared patients with AoAC score ≦4, patients with AoAC score >4 had older age, higher prevalence of diabetes and cerebrovascular disease, lower diastolic blood pressure, higher baPWV, higher CTR, higher prevalence of CTR ≧50%, lower total cholesterol, and lower creatinine level. After the multivariate stepwise logistic analysis, old age, cerebrovascular disease, high baPWV (per 100 cm/s, odds ratio [OR] 1.065, 95% confidence interval [CI] 1.003–1.129, P = 0.038), CTR (per 1%, OR 1.116, 95% CI 1.046–1.191, P = 0.001), and low total cholesterol level were independently associated with AoAC score >4. Our study demonstrated AoAC severity was associated with high baPWV and high CTR in patients with HD. Therefore, we suggest that evaluating AoAC on plain chest radiography may be a simple and inexpensive method for detecting arterial stiffness in HD patients. PMID:27175684

  13. Association of Brachial-Ankle Pulse Wave Velocity and Cardiomegaly With Aortic Arch Calcification in Patients on Hemodialysis.

    PubMed

    Shin, Ming-Chen Paul; Lee, Mei-Yueh; Huang, Jiun-Chi; Tsai, Yi-Chun; Chen, Jui-Hsin; Chen, Szu-Chia; Chang, Jer-Ming; Chen, Hung-Chun

    2016-05-01

    Aortic arch calcification (AoAC) is associated with cardiovascular and all-cause mortality in end-stage renal disease population. AoAC can be simply estimated with an AoAC score using plain chest radiography. The objective of this study is to evaluate the association of AoAC with brachial-ankle pulse wave velocity (baPWV) and cardiomegaly in patients who have undergoing hemodialysis (HD).We retrospectively determined AoAC and cardiothoracic ratio (CTR) by chest x-ray in 220 HD patients who underwent the measurement of baPWV. The values of baPWV were measured by an ankle-brachial index-form device. Multiple stepwise logistic regression analysis was used to identify the factors associated with AoAC score >4.Compared patients with AoAC score ≦4, patients with AoAC score >4 had older age, higher prevalence of diabetes and cerebrovascular disease, lower diastolic blood pressure, higher baPWV, higher CTR, higher prevalence of CTR ≧50%, lower total cholesterol, and lower creatinine level. After the multivariate stepwise logistic analysis, old age, cerebrovascular disease, high baPWV (per 100 cm/s, odds ratio [OR] 1.065, 95% confidence interval [CI] 1.003-1.129, P = 0.038), CTR (per 1%, OR 1.116, 95% CI 1.046-1.191, P = 0.001), and low total cholesterol level were independently associated with AoAC score >4.Our study demonstrated AoAC severity was associated with high baPWV and high CTR in patients with HD. Therefore, we suggest that evaluating AoAC on plain chest radiography may be a simple and inexpensive method for detecting arterial stiffness in HD patients. PMID:27175684

  14. Numerical studies of HF Doppler variations caused by ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Takefu, M.; Hiroshige, N.

    HF Doppler variations caused by ionospheric disturbances are studied using an ionosphere model containing sinusoidal traveling electron density fluctuations. The present study uses a more realistic ionosphere model and a more accurate numerical method than previous works using corrugated specular reflector models. The study gives a clue to estimate the TID-associated fluctuations of ionospheric electron density by means of HF Doppler measurements. It is shown that some kinds of characteristic HF Doppler traces result depending on the wavelength of the disturbance and its traveling direction. Numerical results suggest that more or less 5 percent of the background electron density can explain most of the quasi-periodic variations on the observed HF Doppler records.

  15. Combined vector velocity and spectral Doppler imaging for improved imaging of complex blood flow in the carotid arteries.

    PubMed

    Ekroll, Ingvild Kinn; Dahl, Torbjørn; Torp, Hans; Løvstakken, Lasse

    2014-07-01

    Color flow imaging and pulsed wave (PW) Doppler are important diagnostic tools in the examination of patients with carotid artery disease. However, measurement of the true peak systolic velocity is dependent on sample volume placement and the operator's ability to provide an educated guess of the flow direction. Using plane wave transmissions and a duplex imaging scheme, we present an all-in-one modality that provides both vector velocity and spectral Doppler imaging from one acquisition, in addition to separate B-mode images of sufficient quality. The vector Doppler information was used to provide automatically calibrated (angle-corrected) PW Doppler spectra at every image point. It was demonstrated that the combined information can be used to generate spatial maps of the peak systolic velocity, highlighting regions of high velocity and the extent of the stenotic region, which could be used to automate work flow as well as improve the accuracy of measurement of true peak systolic velocity. The modality was tested in a small group (N = 12) of patients with carotid artery disease. PW Doppler, vector velocity and B-mode images could successfully be obtained from a single recording for all patients with a body mass index ranging from 21 to 31 and a carotid depth ranging from 16 to 28 mm. PMID:24785436

  16. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  17. Identifying Coronary Artery Disease in Asymptomatic Middle-Aged Sportsmen: The Additional Value of Pulse Wave Velocity

    PubMed Central

    Braber, Thijs L.; Prakken, Niek H. J.; Mosterd, Arend; Mali, Willem P. Th. M.; Doevendans, Pieter A. F. M.; Bots, Michiel L.; Velthuis, Birgitta K.

    2015-01-01

    Background Cardiovascular screening may benefit middle-aged sportsmen, as coronary artery disease (CAD) is the main cause of exercise-related sudden cardiac death. Arterial stiffness, as measured by pulse wave velocity (PWV), may help identify sportsmen with subclinical CAD. We examined the additional value of PWV measurements to traditional CAD risk factors for identifying CAD. Methods From the Measuring Athlete’s Risk of Cardiovascular events (MARC) cohort of asymptomatic, middle-aged sportsmen who underwent low-dose Cardiac CT (CCT) after routine sports medical examination (SME), 193 consecutive sportsmen (aged 55±6.6 years) were included with additional PWV measurements before CCT. Sensitivity, specificity and predictive values of PWV values (>8.3 and >7.5m/s) assessed by Arteriograph were used to identify CAD (coronary artery calcium scoring ≥100 Agatston Units or coronary CT angiography luminal stenosis ≥50%) and to assess the additional diagnostic value of PWV to established cardiovascular risk factors. Results Forty-seven sportsmen (24%) had CAD on CCT. They were older (58.9 vs. 53.8 years, p<0.001), had more hypertension (17 vs. 4%, p=0.003), higher cholesterol levels (5.7 vs. 5.4mmol/l) p=0.048), and more often were (ever) smokers (55 vs. 34%, p=0.008). Mean PWV was higher in those with CAD (8.9 vs. 8.0 m/s, p=0.017). For PWV >8.3m/s respectively >7.5m/s sensitivity to detect CAD on CT was 43% and 74%, specificity 69% and 45%, positive predictive value 31% and 30%, and negative predictive value 79% and 84%. Adding PWV to traditional risk factor models did not change the area under the curve (from 0.78 (95% CI = 0.709-0.848)) to AUC 0.78 (95% CI 0.710-0.848, p = 0.99)) for prediction of CAD on CCT. Conclusions Limited additional value was found for PWV on top of established risk factors to identify CAD. PWV might still have a role to identify CAD in middle-aged sportsmen if risk factors such as cholesterol are unknown. PMID:26147752

  18. Clinical usefulness of ankle brachial index and brachial-ankle pulse wave velocity in patients with ischemic stroke

    PubMed Central

    Lee, Hyung-Suk; Lee, Hye Lim; Han, Ho-seong; Yeo, Minju; Kim, Ji Seon; Lee, Sung-Hyun; Lee, Sang-Soo; Shin, Dong-Ick

    2016-01-01

    Abstract Ankle brachial index (ABI) and brachial-ankle pulse wave velocity (baPWV) are widely used noninvasive modalities to evaluate atherosclerosis. Recently, evidence has increased supporting the use of ABI and baPWV as markers of cerebrovascular disease. This study sought to examine the relationship between ABI and baPWV with ischemic stroke. This study also aimed to determine which pathogenic mechanism, large artery disease (LAD) or small vessel disease (SVD), is related to ABI or baPWV. Retrospectively, 121 patients with ischemic stroke and 38 subjects with no obvious ischemic stroke history were recruited. First, ABI and baPWV were compared between the groups. Then, within the stroke group, the relevance of ABI and baPWV with regard to SVD and LAD, which were classified by brain magnetic resonance image (MRI) and magnetic resonance angiography (MRA) or computed tomography angiography (CTA) findings, was assessed. The baPWV was higher in the stroke group than non-stroke group (1,944.18±416.6 cm/s vs. 1,749.76±669.6 cm/s, P<0.01). Regarding LAD, we found that mean ABI value was lower in the group with extracranial large artery stenosis (P<0.01), and there was an inverse linear correlation between ABI and the grade of extracranial large artery stenosis (P<0.01). For SVD, there was a significant correlation between SVD and baPWV (2,057.6±456.57 cm/s in the SVD (+) group vs. 1,491±271.62 cm/s in the SVD (-) group; P<0.01). However, the grade of abnormalities detected in SVD did not correlate linearly with baPWV. These findings show that baPWV is a reliable surrogate marker of ischemic stroke. Furthermore, baPWV and ABI can be used to indicate the presence of small vessel disease and large arterial disease, respectively. PMID:27533937

  19. Quantification of the Interrelationship between Brachial-Ankle and Carotid-Femoral Pulse Wave Velocity in a Workplace Population

    PubMed Central

    Cheng, Yi-Bang; Li, Yan; Sheng, Chang-Sheng; Huang, Qi-Fang; Wang, Ji-Guang

    2016-01-01

    Background Brachial-ankle pulse wave velocity (PWV) is increasingly used for the measurement of arterial stiffness. In the present study, we quantified the interrelationship between brachial-ankle and carotid-femoral PWV in a workplace population, and investigated the associations with cardiovascular risk factors and carotid intima-media thickness (IMT). Methods Brachial-ankle and carotid-femoral PWV were measured using the Omron-Colin VP1000 and SphygmoCor devices, respectively. We investigated the interrelationship by the Pearson's correlation analysis and Bland-Altman plot, and performed sensitivity and specificity analyses. Results The 954 participants (mean ± standard deviation age 42.6 ± 14.2 years) included 630 (66.0%) men and 203 (21.3%) hypertensive patients. Brachial-ankle (13.4 ± 2.7 m/s) and carotid-femoral PWV (7.3 ± 1.6 m/s) were significantly correlated in all subjects (r = 0.75) as well as in men (r = 0.72) and women (r = 0.80) separately. For arterial stiffness defined as a carotid-femoral PWV of 10 m/s or higher, the sensitivity and specificity of brachial-ankle PWV of 16.7 m/s or higher were 72 and 94%, respectively. The area under the receiver operating characteristic curve was 0.953. In multiple stepwise regression, brachial-ankle and carotid-femoral PWV were significantly (p < 0.001) associated with age (partial r = 0.33 and 0.34, respectively) and systolic blood pressure (partial r = 0.71 and 0.66, respectively). In addition, brachial-ankle and carotid-femoral PWV were significantly (p < 0.001) associated with carotid IMT (r = 0.57 and 0.55, respectively) in unadjusted analysis, but not in analysis adjusted for cardiovascular risk factors (p ≥ 0.08). Conclusions Brachial-ankle and carotid-femoral PWV were closely correlated, and had similar determinants. Brachial-ankle PWV can behave as an ease-of-use alternative measure of arterial stiffness for assessing cardiovascular risk. PMID:27195246

  20. Effects on carotid-femoral pulse wave velocity 24 h post exercise in young healthy adults.

    PubMed

    Perdomo, Sophy J; Moody, Anne M; McCoy, Stephanie M; Barinas-Mitchell, Emma; Jakicic, John M; Gibbs, Bethany Barone

    2016-06-01

    Arterial stiffness, often measured by carotid-femoral pulse wave velocity (cfPWV), is a subclinical marker of cardiovascular disease that is known to be reduced by exercise training. Exercise is also known to have acute vascular effects, yet it is unclear whether exercise 24 h before cfPWV testing influences this outcome. Thirty healthy, young adults completed a supervised, 30-min bout of moderate-to-vigorous intensity treadmill running. cfPWV, systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were measured both before (after 48 h of abstaining from exercise) and 24 h after (with no additional exercise) the exercise session. From pre-exercise to 24 h post exercise, cfPWV decreased from 6.05±0.82 to 5.84±0.87 m s(-1) (P=0.02), SBP from 119.7±13.8 to 116.8±11.4 mm Hg (P=0.03) and DBP from 65.1±5.7 to 63.2±5.4 mm Hg (P=0.02), with no significant changes in HR. cfPWV was positively correlated with SBP pre-exercise (r=0.54, P<0.01) and post exercise (r=0.53, P<0.01). Changes in blood pressure explained 4-5% of the variability in cfPWV change; adjustments slightly attenuated the 24-h effects of exercise on cfPWV. Some evidence of gender differences was observed with higher cfPWV in males across assessments (P<0.05) and statistically significant reductions in cfPWV in males (-0.36±0.54 m s(-1) (P=0.02)) but not in females (-0.07±0.31 m s(-1) (P=0.41)). In conclusion, cfPWV decreased 24 h after an exercise bout, suggesting that exercise completed in the past 24 h should be considered before cfPWV testing. PMID:26763854

  1. Catadioptric optics for laser Doppler velocimeter applications

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.

    1989-01-01

    This paper examines the adaptation of low-cost Schmidt-Cassegrain astronomical telescopes to perform the laser-beam-focusing and scattered-light collection tasks associated with dual-beam laser Doppler velocimetry. A generic telescope design is analyzed using ray-tracing methods and Gaussian beam-propagation theory. A straightforward modification procedure to convert from infinite to near unity conjugate-ratio operation with very low residual aberration is identified and tested with a 200-mm-aperture telescope modified for f/10 operation. Performance data for this modified telescope configuration are near the diffraction limit and agree well with predictions.

  2. Finnish Meteorological Institute Doppler Lidar

    SciTech Connect

    Ewan OConnor

    2015-03-27

    This doppler lidar system provides co-polar and cross polar attenuated backscatter coefficients,signal strength, and doppler velocities in the cloud and in the boundary level, including uncertainties for all parameters. Using the doppler beam swinging DBS technique, and Vertical Azimuthal Display (VAD) this system also provides vertical profiles of horizontal winds.

  3. The Doppler Pendulum Experiment

    ERIC Educational Resources Information Center

    Lee, C. K.; Wong, H. K.

    2011-01-01

    An experiment to verify the Doppler effect of sound waves is described. An ultrasonic source is mounted at the end of a simple pendulum. As the pendulum swings, the rapid change of frequency can be recorded by a stationary receiver using a simple frequency-to-voltage converter. The experimental results are in close agreement with the Doppler…

  4. Method of optical self-mixing for pulse wave transit time in comparison with other methods and correlation with blood pressure

    NASA Astrophysics Data System (ADS)

    Meigas, Kalju; Lass, Jaanus; Kattai, Rain; Karai, Deniss; Kaik, Juri

    2004-07-01

    This paper is a part of research to develop convenient method for continuous monitoring of arterial blood pressure by non-invasive and non-oscillometric way. A simple optical method, using self-mixing in a diode laser, is used for detection of skin surface vibrations near the artery. These vibrations, which can reveal the pulsate propagation of blood pressure waves along the vasculature, are used for pulse wave registration. The registration of the Pulse Wave Transit Time (PWTT) is based on computing the time delay in different regions of the human body using an ECG as a reference signal. In this study, the comparison of method of optical self-mixing with other methods as photoplethysmographic (PPG) and bioimpedance (BI) for PWTT is done. Also correlation of PWTT, obtained with different methods, with arterial blood pressure is calculated. In our study, we used a group of volunteers (34 persons) who made the bicycle exercise test. The test consisted of cycling sessions of increasing workloads during which the HR changed from 60 to 180 beats per minute. In addition, a blood pressure (NIBP) was registered with standard sphygmomanometer once per minute during the test and all NIBP measurement values were synchronized to other signals to find exact time moments where the systolic blood pressure was detected (Korotkoff sounds starting point). Computer later interpolated the blood pressure signal in order to get individual value for every heart cycle. The other signals were measured continuously during all tests. At the end of every session, a recovery period was included until person's NIBP and heart rate (HR) normalized. As a result of our study it turned out that time intervals that were calculated from plethysmographic (PPG) waveforms were in the best correlation with systolic blood pressure. The diastolic pressure does not correlate with any of the parameters representing PWTT. The pulse wave signals measured by laser and piezoelectric transducer are very similar

  5. High-Frame-Rate Echocardiography Using Coherent Compounding With Doppler-Based Motion-Compensation.

    PubMed

    Poree, Jonathan; Posada, Daniel; Hodzic, Amir; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-07-01

    High-frame-rate ultrasonography based on coherent compounding of unfocused beams can potentially transform the assessment of cardiac function. As it requires successive waves to be combined coherently, this approach is sensitive to high-velocity tissue motion. We investigated coherent compounding of tilted diverging waves, emitted from a 2.5 MHz clinical phased array transducer. To cope with high myocardial velocities, a triangle transmit sequence of diverging waves is proposed, combined with tissue Doppler imaging to perform motion compensation (MoCo). The compound sequence with integrated MoCo was adjusted from simulations and was tested in vitro and in vivo. Realistic myocardial velocities were analyzed in an in vitro spinning disk with anechoic cysts. While a 8 dB decrease (no motion versus high motion) was observed without MoCo, the contrast-to-noise ratio of the cysts was preserved with the MoCo approach. With this method, we could provide high-quality in vivo B-mode cardiac images with tissue Doppler at 250 frames per second. Although the septum and the anterior mitral leaflet were poorly apparent without MoCo, they became well perceptible and well contrasted with MoCo. The septal and lateral mitral annulus velocities determined by tissue Doppler were concordant with those measured by pulsed-wave Doppler with a clinical scanner (r(2)=0.7,y=0.9 x+0.5,N=60) . To conclude, high-contrast echo cardiographic B-mode and tissue Doppler images can be obtained with diverging beams when motion compensation is integrated in the coherent compounding process. PMID:26863650

  6. Doppler radar results

    NASA Technical Reports Server (NTRS)

    Bracalente, Emedio M.

    1992-01-01

    The topics are covered in viewgraph form and include the following: (1) a summary of radar flight data collected; (2) a video of combined aft cockpit, nose camera, and radar hazard displays; (3) a comparison of airborne radar F-factor measurements with in situ and Terminal Doppler Weather Radar (TDWR) F-factors for some sample events; and (4) a summary of wind shear detection performance.

  7. Laser double Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Poffo, L.; Goujon, J.-M.; Le Page, R.; Lemaitre, J.; Guendouz, M.; Lorrain, N.; Bosc, D.

    2014-05-01

    The Laser Doppler flowmetry (LDF) is a non-invasive method for estimating the tissular blood flow and speed at a microscopic scale (microcirculation). It is used for medical research as well as for the diagnosis of diseases related to circulatory system tissues and organs including the issues of microvascular flow (perfusion). It is based on the Doppler effect, created by the interaction between the laser light and tissues. LDF measures the mean blood flow in a volume formed by the single laser beam, that penetrate into the skin. The size of this measurement volume is crucial and depends on skin absorption, and is not directly reachable. Therefore, current developments of the LDF are focused on the use of always more complex and sophisticated signal processing methods. On the other hand, laser Double Doppler Flowmeter (FL2D) proposes to use two laser beams to generate the measurement volume. This volume would be perfectly stable and localized at the intersection of the two laser beams. With FL2D we will be able to determine the absolute blood flow of a specific artery. One aimed application would be to help clinical physicians in health care units.

  8. Doppler Optical Coherence Tomography

    PubMed Central

    Leitgeb, Rainer A.; Werkmeister, René M.; Blatter, Cedric; Schmetterer, Leopold

    2014-01-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  9. Doppler optical coherence tomography.

    PubMed

    Leitgeb, Rainer A; Werkmeister, René M; Blatter, Cedric; Schmetterer, Leopold

    2014-07-01

    Optical Coherence Tomography (OCT) has revolutionized ophthalmology. Since its introduction in the early 1990s it has continuously improved in terms of speed, resolution and sensitivity. The technique has also seen a variety of extensions aiming to assess functional aspects of the tissue in addition to morphology. One of these approaches is Doppler OCT (DOCT), which aims to visualize and quantify blood flow. Such extensions were already implemented in time domain systems, but have gained importance with the introduction of Fourier domain OCT. Nowadays phase-sensitive detection techniques are most widely used to extract blood velocity and blood flow from tissues. A common problem with the technique is that the Doppler angle is not known and several approaches have been realized to obtain absolute velocity and flow data from the retina. Additional studies are required to elucidate which of these techniques is most promising. In the recent years, however, several groups have shown that data can be obtained with high validity and reproducibility. In addition, several groups have published values for total retinal blood flow. Another promising application relates to non-invasive angiography. As compared to standard techniques such as fluorescein and indocyanine-green angiography the technique offers two major advantages: no dye is required and depth resolution is required is provided. As such Doppler OCT has the potential to improve our abilities to diagnose and monitor ocular vascular diseases. PMID:24704352

  10. Non-Invasive Pulse Wave Analysis in a Thrombus-Free Abdominal Aortic Aneurysm after Implantation of a Nitinol Aortic Endograft.

    PubMed

    Georgakarakos, Efstratios; Argyriou, Christos; Georgiadis, George S; Lazarides, Miltos K

    2015-01-01

    Endovascular aneurysm repair has been associated with changes in arterial stiffness, as estimated by pulse wave velocity (PWV). This marker is influenced by the medical status of the patient, the elastic characteristics of the aneurysm wall, and the presence of intraluminal thrombus. Therefore, in order to delineate the influence of the endograft implantation in the early post-operative period, we conducted non-invasively pulse wave analysis in a male patient with an abdominal aortic aneurysm containing no intraluminal thrombus, unremarkable past medical history, and absence of peripheral arterial disease. The estimated parameters were the systolic and diastolic pressure calculated at the aortic level (central pressures), PWV, augmentation pressure (AP) and augmentation index (AI), pressure wave reflection magnitude (RM), and peripheral resistance. Central systolic and diastolic pressure decreased post-operatively. PWV showed subtle changes from 11.6 to 10.6 and 10.9 m/s at 1-week and 1-month, respectively. Accordingly, the AI decreased from 28 to 14% and continued to drop to 25%. The AP decreased gradually from 15 to 6 and 4 mmHg. The wave RM dropped from 68 to 52% at 1-month. Finally, the peripheral resistance dropped from 1.41 to 0.99 and 0.85 dyn × s × cm(-5). Our example shows that the implantation of an aortic endograft can modify the pressure wave reflection over the aortic bifurcation without causing significant alterations in PWV. PMID:26793712

  11. Non-Invasive Pulse Wave Analysis in a Thrombus-Free Abdominal Aortic Aneurysm after Implantation of a Nitinol Aortic Endograft

    PubMed Central

    Georgakarakos, Efstratios; Argyriou, Christos; Georgiadis, George S.; Lazarides, Miltos K.

    2016-01-01

    Endovascular aneurysm repair has been associated with changes in arterial stiffness, as estimated by pulse wave velocity (PWV). This marker is influenced by the medical status of the patient, the elastic characteristics of the aneurysm wall, and the presence of intraluminal thrombus. Therefore, in order to delineate the influence of the endograft implantation in the early post-operative period, we conducted non-invasively pulse wave analysis in a male patient with an abdominal aortic aneurysm containing no intraluminal thrombus, unremarkable past medical history, and absence of peripheral arterial disease. The estimated parameters were the systolic and diastolic pressure calculated at the aortic level (central pressures), PWV, augmentation pressure (AP) and augmentation index (AI), pressure wave reflection magnitude (RM), and peripheral resistance. Central systolic and diastolic pressure decreased post-operatively. PWV showed subtle changes from 11.6 to 10.6 and 10.9 m/s at 1-week and 1-month, respectively. Accordingly, the AI decreased from 28 to 14% and continued to drop to 25%. The AP decreased gradually from 15 to 6 and 4 mmHg. The wave RM dropped from 68 to 52% at 1-month. Finally, the peripheral resistance dropped from 1.41 to 0.99 and 0.85 dyn × s × cm−5. Our example shows that the implantation of an aortic endograft can modify the pressure wave reflection over the aortic bifurcation without causing significant alterations in PWV. PMID:26793712

  12. Blood flow in intracranial aneurysms treated with Pipeline embolization devices: computational simulation and verification with Doppler ultrasonography on phantom models

    PubMed Central

    2015-01-01

    Purpose: The aim of this study was to validate a computational fluid dynamics (CFD) simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. Results: CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. Conclusion: The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents. PMID:25754367

  13. Clinical applications of doppler ultrasound

    SciTech Connect

    Taylor, K.J.W.; Burns, P.N.; Well, P.N.T.

    1987-01-01

    This book introduces a guide to the physical principles and instrumentation of duplex Doppler ultrasound and its applications in obstetrics, gynecology, neonatology, gastroentology, and evaluation of peripheral vascular disease. The book provides information needed to perform Doppler ultrasound examinations and interpret the results. An introduction to Doppler physics and instrumentation is followed by a thorough review of hemodynamics, which explains the principles underlying interpretation of Doppler signals. Of special note is the state-of-the-art coverage of new applications of Doppler in recognition of high-risk pregnancy, diagnosis of intrauterine growth retardation, investigation of neonatal blood flow, evaluation of first-trimester pregnancy, and diagnosis of gastrointestinal disease. The book also offers guidelines on the use of Doppler ultrasound in diagnosing carotid disease, deep venous thrombosis, and aorta/femoral disease.

  14. Laser Doppler diagnostics for orthodontia

    NASA Astrophysics Data System (ADS)

    Ryzhkova, Anastasia V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Ulyanov, Sergey S.; Lepilin, Alexander V.; Kharish, Natalia A.

    2004-06-01

    The results of statistical analysis of Doppler spectra of intensity fluctuations of light, scattered from mucous membrane of oral cavity of healthy volunteers and patients, abused by the orthodontic diseases, are presented. Analysis of Doppler spectra, obtained from tooth pulp of patients, is carried out. New approach to monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of Doppler measuring system on formation of the output signal is studied.

  15. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  16. Laser Doppler velocimetry primer

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1985-01-01

    Advanced research in experimental fluid dynamics required a familiarity with sophisticated measurement techniques. In some cases, the development and application of new techniques is required for difficult measurements. Optical methods and in particular, the laser Doppler velocimeter (LDV) are now recognized as the most reliable means for performing measurements in complex turbulent flows. And such, the experimental fluid dynamicist should be familiar with the principles of operation of the method and the details associated with its application. Thus, the goals of this primer are to efficiently transmit the basic concepts of the LDV method to potential users and to provide references that describe the specific areas in greater detail.

  17. High frame rate and high line density ultrasound imaging for local pulse wave velocity estimation using motion matching: A feasibility study on vessel phantoms.

    PubMed

    Li, Fubing; He, Qiong; Huang, Chengwu; Liu, Ke; Shao, Jinhua; Luo, Jianwen

    2016-04-01

    Pulse wave imaging (PWI) is an ultrasound-based method to visualize the propagation of pulse wave and to quantitatively estimate regional pulse wave velocity (PWV) of the arteries within the imaging field of view (FOV). To guarantee the reliability of PWV measurement, high frame rate imaging is required, which can be achieved by reducing the line density of ultrasound imaging or transmitting plane wave at the expense of spatial resolution and/or signal-to-noise ratio (SNR). In this study, a composite, full-view imaging method using motion matching was proposed with both high temporal and spatial resolution. Ultrasound radiofrequency (RF) data of 4 sub-sectors, each with 34 beams, including a common beam, were acquired successively to achieve a frame rate of ∼507 Hz at an imaging depth of 35 mm. The acceleration profiles of the vessel wall estimated from the common beam were used to reconstruct the full-view (38-mm width, 128-beam) image sequence. The feasibility of mapping local PWV variation along the artery using PWI technique was preliminarily validated on both homogeneous and inhomogeneous polyvinyl alcohol (PVA) cryogel vessel phantoms. Regional PWVs for the three homogeneous phantoms measured by the proposed method were in accordance with the sparse imaging method (38-mm width, 32-beam) and plane wave imaging method. Local PWV was estimated using the above-mentioned three methods on 3 inhomogeneous phantoms, and good agreement was obtained in both the softer (1.91±0.24 m/s, 1.97±0.27 m/s and 1.78±0.28 m/s) and the stiffer region (4.17±0.46 m/s, 3.99±0.53 m/s and 4.27±0.49 m/s) of the phantoms. In addition to the improved spatial resolution, higher precision of local PWV estimation in low SNR circumstances was also obtained by the proposed method as compared with the sparse imaging method. The proposed method might be helpful in disease detections through mapping the local PWV of the vascular wall. PMID:26773791

  18. Consistency of aortic distensibility and pulse wave velocity estimates with respect to the Bramwell-Hill theoretical model: a cardiovascular magnetic resonance study

    PubMed Central

    2011-01-01

    Background Arterial stiffness is considered as an independent predictor of cardiovascular mortality, and is increasingly used in clinical practice. This study aimed at evaluating the consistency of the automated estimation of regional and local aortic stiffness indices from cardiovascular magnetic resonance (CMR) data. Results Forty-six healthy subjects underwent carotid-femoral pulse wave velocity measurements (CF_PWV) by applanation tonometry and CMR with steady-state free-precession and phase contrast acquisitions at the level of the aortic arch. These data were used for the automated evaluation of the aortic arch pulse wave velocity (Arch_PWV), and the ascending aorta distensibility (AA_Distc, AA_Distb), which were estimated from ascending aorta strain (AA_Strain) combined with either carotid or brachial pulse pressure. The local ascending aorta pulse wave velocity AA_PWVc and AA_PWVb were estimated respectively from these carotid and brachial derived distensibility indices according to the Bramwell-Hill theoretical model, and were compared with the Arch_PWV. In addition, a reproducibility analysis of AA_PWV measurement and its comparison with the standard CF_PWV was performed. Characterization according to the Bramwell-Hill equation resulted in good correlations between Arch_PWV and both local distensibility indices AA_Distc (r = 0.71, p < 0.001) and AA_Distb (r = 0.60, p < 0.001); and between Arch_PWV and both theoretical local indices AA_PWVc (r = 0.78, p < 0.001) and AA_PWVb (r = 0.78, p < 0.001). Furthermore, the Arch_PWV was well related to CF_PWV (r = 0.69, p < 0.001) and its estimation was highly reproducible (inter-operator variability: 7.1%). Conclusions The present work confirmed the consistency and robustness of the regional index Arch_PWV and the local indices AA_Distc and AA_Distb according to the theoretical model, as well as to the well established measurement of CF_PWV, demonstrating the relevance of the regional and local CMR indices. PMID

  19. ANL Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Karplus, H. B.; Raptis, A. C.; Lee, S.; Simpson, T.

    1985-10-01

    A flowmeter has been developed for measuring flow velocity in hot slurries. The flowmeter works on an ultrasonic Doppler principle in which ultrasound is injected into the flowing fluid through the solid pipe wall. Isolating waveguides separate the hot pipe from conventional ultrasonic transducers. Special clamp-on high-temperature transducers also can be adapted to work well in this application. Typical flows in pilot plants were found to be laminar, giving rise to broad-band Doppler spectra. A special circuit based on a servomechanism sensor was devised to determine the frequency average of such a broad spectrum. The device was tested at different pilot plants. Slurries with particulates greater than 70 microns (0.003 in.) yielded good signals, but slurries with extremely fine particulates were unpredictable. Small bubbles can replace the coarse particles to provide a good signal if there are not too many. Successful operation with very fine particulate slurries may have been enhanced by the presence of microbubbles.

  20. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    SciTech Connect

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.

    2008-05-15

    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along theultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. Ifattenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler.

  1. A Fisheye Lens as a Photonic Doppler Velocimetry Probe

    SciTech Connect

    Frogget, B. C.

    2012-08-16

    These presentation visuals report an instrument that, by use of a fish-eye lens, generates a beat signal using fiber mixing of unshifted light with Doppler-shifted light and measures the beat frequency. Ray trace diagrams are shown to illustrate advantages and disadvantages. The authors find their instrument has a long tracking distance, and large angle coverage. Index matching eases assembly, reduces return loss and flattens the field.

  2. Doppler Beats or Interference Fringes?

    ERIC Educational Resources Information Center

    Kelly, Paul S.

    1979-01-01

    Discusses the following: another version of Doppler beats; alternate proof of spin-1 sin-1/2 problems; some mechanisms related to Dirac's strings; Doppler redshift in oblique approach of source and observer; undergraduate experiment on noise thermometry; use of the time evolution operator; resolution of an entropy maximization controversy;…

  3. Reduction in visceral adiposity is highly related to improvement in vascular endothelial dysfunction among obese women: an assessment of endothelial function by radial artery pulse wave analysis.

    PubMed

    Park, Si-Hoon; Shim, Kyung-Won

    2005-08-31

    Because obesity is frequently complicated by other cardiovascular risk factors, the impact of a reduction in visceral adiposity on vascular endothelial dysfunction (VED) in obese patients is difficult to determine. In the present study, we evaluated the impact of a reduction in visceral adiposity on VED in obese women. Thirty-six premenopausal obese women (BMI >/= 25 kg/m2) without complications were enrolled in the study. VED was evaluated by determining the augmentation index (AIx) from radial artery pulse waves obtained by applanation tonometry. Changes in AIx in response to nitroglycerin- induced endothelium-independent vasodilatation (DeltaAIx-NTG) and in response to salbutamol administration (DeltaAIx-Salb) were determined before and after weight reduction. After a 12-week weight reduction program, the average weight loss was 7.96 +/- 3.47 kg, with losses of 21.88 +/- 20.39 cm2 in visceral fat areas (p < 0.001). Pulse wave analysis combined with provocative pharmacological testing demonstrated preserved endothelium-independent vasodilation in healthy premenopausal obese women (DeltaAIx-NTG: 31.36 +/- 9.80% before weight reduction vs. 28.25 +/- 11.21% after weight reduction, p > 0.1) and an improvement in endothelial-dependent vasodilation following weight reduction (DeltaAIx-Salb: 10.03 +/- 6.49% before weight reduction vs. 19.33 +/- 9.28% after reduction, p < 0.001). A reduction in visceral adipose tissue was found to be most significantly related to an increase in DeltaAIx-Salb (beta=-0.57, p < 0.001). A reduction in visceral adiposity was significantly related to an improvement in VED. This finding suggests that reduction of visceral adiposity may be as important as the control of other major risk factors in the prevention of atherosclerosis in obese women. PMID:16127776

  4. A database of virtual healthy subjects to assess the accuracy of foot-to-foot pulse wave velocities for estimation of aortic stiffness

    PubMed Central

    Chowienczyk, Phil; Alastruey, Jordi

    2015-01-01

    While central (carotid-femoral) foot-to-foot pulse wave velocity (PWV) is considered to be the gold standard for the estimation of aortic arterial stiffness, peripheral foot-to-foot PWV (brachial-ankle, femoral-ankle, and carotid-radial) are being studied as substitutes of this central measurement. We present a novel methodology to assess theoretically these computed indexes and the hemodynamics mechanisms relating them. We created a database of 3,325 virtual healthy adult subjects using a validated one-dimensional model of the arterial hemodynamics, with cardiac and arterial parameters varied within physiological healthy ranges. For each virtual subject, foot-to-foot PWV was computed from numerical pressure waveforms at the same locations where clinical measurements are commonly taken. Our numerical results confirm clinical observations: 1) carotid-femoral PWV is a good indicator of aortic stiffness and correlates well with aortic PWV; 2) brachial-ankle PWV overestimates aortic PWV and is related to the stiffness and geometry of both elastic and muscular arteries; and 3) muscular PWV (carotid-radial, femoral-ankle) does not capture the stiffening of the aorta and should therefore not be used as a surrogate for aortic stiffness. In addition, our analysis highlights that the foot-to-foot PWV algorithm is sensitive to the presence of reflected waves in late diastole, which introduce errors in the PWV estimates. In this study, we have created a database of virtual healthy subjects, which can be used to assess theoretically the efficiency of physiological indexes based on pulse wave analysis. PMID:26055792

  5. Ethnic Differences in and Childhood Influences on Early Adult Pulse Wave Velocity: The Determinants of Adolescent, Now Young Adult, Social Wellbeing, and Health Longitudinal Study.

    PubMed

    Cruickshank, J Kennedy; Silva, Maria J; Molaodi, Oarabile R; Enayat, Zinat E; Cassidy, Aidan; Karamanos, Alexis; Read, Ursula M; Faconti, Luca; Dall, Philippa; Stansfield, Ben; Harding, Seeromanie

    2016-06-01

    Early determinants of aortic stiffness as pulse wave velocity are poorly understood. We tested how factors measured twice previously in childhood in a multiethnic cohort study, particularly body mass, blood pressure, and objectively assessed physical activity affected aortic stiffness in young adults. Of 6643 London children, aged 11 to 13 years, from 51 schools in samples stratified by 6 ethnic groups with different cardiovascular risk, 4785 (72%) were seen again at aged 14 to 16 years. In 2013, 666 (97% of invited) took part in a young adult (21-23 years) pilot follow-up. With psychosocial and anthropometric measures, aortic stiffness and blood pressure were recorded via an upper arm calibrated Arteriograph device. In a subsample (n=334), physical activity was measured >5 days via the ActivPal. Unadjusted pulse wave velocities in black Caribbean and white UK young men were similar (mean±SD 7.9±0.3 versus 7.6±0.4 m/s) and lower in other groups at similar systolic pressures (120 mm Hg) and body mass (24.6 kg/m(2)). In fully adjusted regression models, independent of pressure effects, black Caribbean (higher body mass/waists), black African, and Indian young women had lower stiffness (by 0.5-0.8; 95% confidence interval, 0.1-1.1 m/s) than did white British women (6.9±0.2 m/s). Values were separately increased by age, pressure, powerful impacts from waist/height, time spent sedentary, and a reported racism effect (+0.3 m/s). Time walking at >100 steps/min was associated with reduced stiffness (P<0.01). Effects of childhood waist/hip were detected. By young adulthood, increased waist/height ratios, lower physical activity, blood pressure, and psychosocial variables (eg, perceived racism) independently increase arterial stiffness, effects likely to increase with age. PMID:27141061

  6. High resolution Doppler lidar

    NASA Technical Reports Server (NTRS)

    Abreu, Vincent J.; Hays, Paul B.; Barnes, John E.

    1989-01-01

    A high resolution lidar system was implemented to measure winds in the lower atmosphere. The wind speed along the line of sight was determined by measuring the Doppler shift of the aerosol backscattered laser signal. The system in its present configuration is stable, and behaves as indicated by theoretical simulations. This system was built to demonstrate the capabilities of the detector system as a prototype for a spaceborne lidar. The detector system investigated consisted of a plane Fabry-Perot etalon, and a 12-ring anode detector. This system is generically similar to the Fabry-Perot interferometer developed for passive wind measurements on board the Dynamics Explorer satellite. That this detector system performs well in a lidar configuration was demonstrated.

  7. Doppler ultrasound--basics revisited.

    PubMed

    Eagle, Mary

    Palpation of pedal pulses alone is known to be an unreliable indicator for the presence of arterial disease. Using portable Doppler ultrasound to measure the resting ankle brachial pressure index is superior to palpation of peripheral pulses as an assessment of the adequacy pf the arterial supply in the lower limb. Revisiting basics, this article aims to aid the clinician to understand and perform hand-held Doppler ultrasound effectively while involving the client or patient in the process. The author describes the basics of Doppler ultrasound, how to select correct equipment for the process, and interpretation of results to further enhance clinicians' knowledge. PMID:16835512

  8. Digital Doppler measurement with spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Hinedi, Sami M.; Labelle, Remi C.; Bevan, Roland P.; Del Castillo, Hector M.; Chong, Dwayne C.

    1991-01-01

    Digital and analog phase-locked loop (PLL) receivers were operated in parallel, each tracking the residual carrier from a spacecraft. The PLL tracked the downlink carrier and measured its instantaneous phase. This information, combined with a knowledge of the uplink carrier and the transponder ratio, permitted the computation of a Doppler observable. In this way, two separate Doppler measurements were obtained for one observation window. The two receivers agreed on the magnitude of the Doppler effect to within 1 mHz. There was less jitter on the data from the digital receiver. This was due to its smaller noise bandwidth. The demonstration and its results are described.

  9. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  10. Dual-Doppler Feasibility Study

    NASA Technical Reports Server (NTRS)

    Huddleston, Lisa L.

    2012-01-01

    When two or more Doppler weather radar systems are monitoring the same region, the Doppler velocities can be combined to form a three-dimensional (3-D) wind vector field thus providing for a more intuitive analysis of the wind field. A real-time display of the 3-D winds can assist forecasters in predicting the onset of convection and severe weather. The data can also be used to initialize local numerical weather prediction models. Two operational Doppler Radar systems are in the vicinity of Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS); these systems are operated by the 45th Space Wing (45 SW) and the National Weather Service Melbourne, Fla. (NWS MLB). Dual-Doppler applications were considered by the 45 SW in choosing the site for the new radar. Accordingly, the 45th Weather Squadron (45 WS), NWS MLB and the National Aeronautics and Space Administration tasked the Applied Meteorology Unit (AMU) to investigate the feasibility of establishing dual-Doppler capability using the two existing systems. This study investigated technical, hardware, and software requirements necessary to enable the establishment of a dual-Doppler capability. Review of the available literature pertaining to the dual-Doppler technique and consultation with experts revealed that the physical locations and resulting beam crossing angles of the 45 SW and NWS MLB radars make them ideally suited for a dual-Doppler capability. The dual-Doppler equations were derived to facilitate complete understanding of dual-Doppler synthesis; to determine the technical information requirements; and to determine the components of wind velocity from the equation of continuity and radial velocity data collected by the two Doppler radars. Analysis confirmed the suitability of the existing systems to provide the desired capability. In addition, it is possible that both 45 SW radar data and Terminal Doppler Weather Radar data from Orlando International Airport could be used to alleviate any

  11. Doppler tracking of planetary spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.

    1992-01-01

    This article concerns the measurement of Doppler shift on microwave links that connect planetary spacecraft with the Deep Space Network. Such measurements are made by tracking the Doppler effect with phase-locked loop receivers. A description of equipment and techniques as well as a summary of the appropriate mathematical models are given. The two-way Doppler shift is measured by transmitting a highly-stable microwave (uplink) carrier from a ground station, having the spacecraft coherently transpond this carrier, and using a phase-locked loop receiver at the ground station to track the returned (downlink) carrier. The largest sources of measurement error are usually plasma noise and thermal noise. The plasma noise, which may originate in the ionosphere or the solar corona, is discussed; and a technique to partially calibrate its effect, involving the use of two simultaneous downlink carriers that are coherently related, is described. Range measurements employing Doppler rate-aiding are also described.

  12. Doppler characteristics of sea clutter.

    SciTech Connect

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  13. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  14. High Resolution Doppler Lidar

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Grant supported the development of an incoherent lidar system to measure winds and aerosols in the lower atmosphere. During this period the following activities occurred: (1) an active feedback system was developed to improve the laser frequency stability; (2) a detailed forward model of the instrument was developed to take into account many subtle effects, such as detector non-linearity; (3) a non-linear least squares inversion method was developed to recover the Doppler shift and aerosol backscatter without requiring assumptions about the molecular component of the signal; (4) a study was done of the effects of systematic errors due to multiple etalon misalignment. It was discovered that even for small offsets and high aerosol loadings, the wind determination can be biased by as much as 1 m/s. The forward model and inversion process were modified to account for this effect; and (5) the lidar measurements were validated using rawinsonde balloon measurements. The measurements were found to be in agreement within 1-2 m/s.

  15. Compact Doppler magnetograph

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, Alexander; Moynihan, Philip I.; Vaughan, Arthur H.; Cacciani, Alessandro

    1998-11-01

    We designed a low-cost flight instrument that images the full solar disk through two narrow band filters at the red nd blue 'wings' of the solar potassium absorption line. The images are produced on a 1024 X 1024 charge-coupled device with a resolution of 2 arcsec per pixel. Four filtergrams taken in a very short time at both wings in the left and right states of circular polarization are used to yield a Dopplergram and a magnetogram simultaneously. The noise-equivalent velocity associated with each pixel is less than 3 m/s. The measured signal is linearly proportional to the velocity in the range +/- 4000 m/s. The range of magnetic fields is from 3 to 3000 Gauss. The optical system of the instrument is simple and easily aligned. With a pixel size of 12 micrometers , the effective focal length is 126 cm. A Raleigh resolution limit of 4 arcsec is achieved with a 5-cm entrance apertures, providing an f/25 focal ratio. The foreoptic is a two-component telephoto lens serving to limit the overall optical length to 89 cm or less. The mass of the instrument is 14 kg. the power required is less than 30 Watts. The Compact Doppler Magnetograph can be used in space mission with severe mass and power requirements. It can also be effectively used for ground-based observations: large telescope, dome or other observatory facilities are not required.

  16. High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Hays, Paul B.

    1999-01-01

    This report summarizes the accomplishments of the High Resolution Doppler Imager (HRDI) on UARS spacecraft during the period 4/l/96 - 3/31/99. During this period, HRDI operation, data processing, and data analysis continued, and there was a high level of vitality in the HRDI project. The HRDI has been collecting data from the stratosphere, mesosphere, and lower thermosphere since instrument activation on October 1, 1991. The HRDI team has stressed three areas since operations commenced: 1) operation of the instrument in a manner which maximizes the quality and versatility of the collected data; 2) algorithm development and validation to produce a high-quality data product; and 3) scientific studies, primarily of the dynamics of the middle atmosphere. There has been no significant degradation in the HRDI instrument since operations began nearly 8 years ago. HRDI operations are fairly routine, although we have continued to look for ways to improve the quality of the scientific product, either by improving existing modes, or by designing new ones. The HRDI instrument has been programmed to collect data for new scientific studies, such as measurements of fluorescence from plants, measuring cloud top heights, and lower atmosphere H2O.

  17. Aortic pulse wave velocity and reflecting distance estimation from peripheral waveforms in humans: detection of age- and exercise training-related differences.

    PubMed

    Pierce, Gary L; Casey, Darren P; Fiedorowicz, Jess G; Seals, Douglas R; Curry, Timothy B; Barnes, Jill N; Wilson, DeMaris R; Stauss, Harald M

    2013-07-01

    We hypothesized that demographic/anthropometric parameters can be used to estimate effective reflecting distance (EfRD), required to derive aortic pulse wave velocity (APWV), a prognostic marker of cardiovascular risk, from peripheral waveforms and that such estimates can discriminate differences in APWV and EfRD with aging and habitual endurance exercise in healthy adults. Ascending aortic pressure waveforms were derived from peripheral waveforms (brachial artery pressure, n = 25; and finger volume pulse, n = 15) via a transfer function and then used to determine the time delay between forward- and backward-traveling waves (Δtf-b). True EfRDs were computed as directly measured carotid-femoral pulse wave velocity (CFPWV) × 1/2Δtf-b and then used in regression analysis to establish an equation for EfRD based on demographic/anthropometric data (EfRD = 0.173·age + 0.661·BMI + 34.548 cm, where BMI is body mass index). We found good agreement between true and estimated APWV (Pearson's R² = 0.43; intraclass correlation = 0.64; both P < 0.05) and EfRD (R² = 0.24; intraclass correlation = 0.40; both P < 0.05). In young sedentary (22 ± 2 years, n = 6), older sedentary (62 ± 1 years, n = 24), and older endurance-trained (61 ± 2 years, n = 14) subjects, EfRD (from demographic/anthropometric parameters), APWV, and 1/2Δtf-b (from brachial artery pressure waveforms) were 52.0 ± 0.5, 61.8 ± 0.4, and 60.6 ± 0.5 cm; 6.4 ± 0.3, 9.6 ± 0.2, and 8.1 ± 0.2 m/s; and 82 ± 3, 65 ± 1 and 76 ± 2 ms (all P < 0.05), respectively. Our results demonstrate that APWV derived from peripheral waveforms using age and BMI to estimate EfRD correlates with CFPWV in healthy adults. This method can reliably detect the distal shift of the reflecting site with age and the increase in APWV with sedentary aging that is attenuated with habitual endurance exercise. PMID:23624628

  18. Real-time arrhythmia detection with supplementary ECG quality and pulse wave monitoring for the reduction of false alarms in ICUs.

    PubMed

    Krasteva, Vessela; Jekova, Irena; Leber, Remo; Schmid, Ramun; Abächerli, Roger

    2016-08-01

    False intensive care unit (ICU) alarms induce stress in both patients and clinical staff and decrease the quality of care, thus significantly increasing both the hospital recovery time and rehospitalization rates. In the PhysioNet/CinC Challenge 2015 for reducing false arrhythmia alarms in ICU bedside monitor data, this paper validates the application of a real-time arrhythmia detection library (ADLib, Schiller AG) for the robust detection of five types of life-threatening arrhythmia alarms. The strength of the application is to give immediate feedback on the arrhythmia event within a scan interval of 3 s-7.5 s, and to increase the noise immunity of electrocardiogram (ECG) arrhythmia analysis by fusing its decision with supplementary ECG quality interpretation and real-time pulse wave monitoring (quality and hemodynamics) using arterial blood pressure or photoplethysmographic signals. We achieved the third-ranked real-time score (79.41) in the challenge (Event 1), however, the rank was not officially recognized due to the 'closed-source' entry. This study shows the optimization of the alarm decision module, using tunable parameters such as the scan interval, lead quality threshold, and pulse wave features, with a follow-up improvement of the real-time score (80.07). The performance (true positive rate, true negative rate) is reported in the blinded challenge test set for different arrhythmias: asystole (83%, 96%), extreme bradycardia (100%, 90%), extreme tachycardia (98%, 80%), ventricular tachycardia (84%, 82%), and ventricular fibrillation (78%, 84%). Another part of this study considers the validation of ADLib with four reference ECG databases (AHA, EDB, SVDB, MIT-BIH) according to the international recommendations for performance reports in ECG monitors (ANSI/AAMI EC57). The sensitivity (Se) and positive predictivity (+P) are: QRS detector QRS (Se, +P)  >  99.7%, ventricular ectopic beat (VEB) classifier VEB (Se, +P)  =  95%, and ventricular

  19. Real-time three-dimensional color Doppler echocardiography for characterizing the spatial velocity distribution and quantifying the peak flow rate in the left ventricular outflow tract

    NASA Technical Reports Server (NTRS)

    Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.; Panza, J. A.; Thomas, J. D.

    2001-01-01

    Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.

  20. MULTI-CHANNEL PULSED DOPPLER SIGNAL PROCESSING FOR VASCULAR MEASUREMENTS IN MICE

    PubMed Central

    Reddy, Anilkumar K.; Madala, Sridhar; Jones, Alan D.; Caro, Walter A.; Eberth, John F.; Pham, Thuy T.; Taffet, George E.; Hartley, Craig J.

    2009-01-01

    The small size, high heart rate, and small tissue displacement of a mouse require small sensors that are capable of high spatial and temporal tissue displacement resolutions and multichannel data acquisition systems with high sampling rates for simultaneous measurement of high fidelity signals. We developed and evaluated an ultrasound-based mouse vascular research system (MVRS) that can be used to characterize vascular physiology in normal, transgenic, surgically altered, and disease models of mice. The system consists of multiple 10/20MHz ultrasound transducers, analog electronics for Doppler displacement and velocity measurement, signal acquisition and processing electronics, and personal computer based software for real-time and offline analysis. In-vitro testing of the system showed that it is capable of measuring tissue displacement as low as 0.1 µm and tissue velocity (µm/s) starting from 0. The system can measure blood velocities up to 9 m/s (with 10 MHz Doppler at a PRF of 125 kHz) and has a temporal resolution of 0.1 milliseconds. Ex-vivo tracking of an excised mouse carotid artery wall using our Doppler technique and a video pixel tracking technique showed high correlation (R2=0.99). The system can be used to measure diameter changes, augmentation index, impedance spectra, pulse wave velocity, characteristic impedance, forward and backward waves, reflection coefficients, coronary flow reserve, and cardiac motion in murine models. The system will facilitate the study of mouse vascular mechanics and arterial abnormalities resulting in significant impact on the evaluation and screening of vascular disease in mice. PMID:19854566

  1. The Evaluation of Left Ventricular Functions with Tissue Doppler Echocardiography in Adults with Celiac Disease

    PubMed Central

    Akin, Fatma E.; Sari, Cenk; Özer-Sari, Sevil; Demirezer-Bolat, Aylin; Durmaz, Tahir; Keles, Telat; Ersoy, Osman; Bozkurt, Engin

    2016-01-01

    Background/Aim: The aim of this study was to investigate the effects of celiac disease on cardiac functions using tissue Doppler echocardiography (TDE). Patients and Methods: The study included 30 patients with celiac disease (CD) and 30 healthy volunteers. Echocardiographic examinations were assessed by conventional echocardiography and tissue Doppler imaging. The peak systolic velocity (S'm), early diastolic myocardial peak velocity (E'm), late diastolic myocardial peak velocity (A'm), E'm/A'm ratio, myocardial precontraction time (PCT'm), myocardial contraction time (CT'm), and myocardial isovolumetric relaxation time (IVRT'm), E to E'm ratio were measured. Results: In pulsed wave Doppler echocardiography, mitral late diastolic flow (A) velocity and E to E'm ratio were significantly higher (P = 0.02 and P = 0,017), E/A ratio was significantly lower (P = 0.008) and IVRT was significantly prolonged (P = 0.014) in patients with CD. In TDE, S'm, E'm, and E'm/A'm ratio were significantly lower, IVRT'm was longer (P = 0.009) from septal mitral annulus and S'm, E'm, E'm/A'm ratio were significantly lower, PCT'm, PCT/ET ratio, IVRT'm were longer, and MPI was higher from lateral mitral annulus in celiac group than controls. Conclusion: Our study confirms that patients with CD have impaired diastolic function. More importantly, we also demonstrated an impairment of myocardial systolic function in patients with CD by TDE. We recommend using TDE in addition to conventional echocardiography parameters for the cardiovascular risk assessment of patients with CD. PMID:26997217

  2. Spectral Doppler estimation utilizing 2-D spatial information and adaptive signal processing.

    PubMed

    Ekroll, Ingvild K; Torp, Hans; Løvstakken, Lasse

    2012-06-01

    The trade-off between temporal and spectral resolution in conventional pulsed wave (PW) Doppler may limit duplex/triplex quality and the depiction of rapid flow events. It is therefore desirable to reduce the required observation window (OW) of the Doppler signal while preserving the frequency resolution. This work investigates how the required observation time can be reduced by adaptive spectral estimation utilizing 2-D spatial information obtained by parallel receive beamforming. Four adaptive estimation techniques were investigated, the power spectral Capon (PSC) method, the amplitude and phase estimation (APES) technique, multiple signal classification (MUSIC), and a projection-based version of the Capon technique. By averaging radially and laterally, the required covariance matrix could successfully be estimated without temporal averaging. Useful PW spectra of high resolution and contrast could be generated from ensembles corresponding to those used in color flow imaging (CFI; OW = 10). For a given OW, the frequency resolution could be increased compared with the Welch approach, in cases in which the transit time was higher or comparable to the observation time. In such cases, using short or long pulses with unfocused or focused transmit, an increase in temporal resolution of up to 4 to 6 times could be obtained in in vivo examples. It was further shown that by using adaptive signal processing, velocity spectra may be generated without high-pass filtering the Doppler signal. With the proposed approach, spectra retrospectively calculated from CFI may become useful for unfocused as well as focused imaging. This application may provide new clinical information by inspection of velocity spectra simultaneously from several spatial locations. PMID:22711413

  3. Power Doppler imaging: clinical experience and correlation with color Doppler US and other imaging modalities.

    PubMed

    Hamper, U M; DeJong, M R; Caskey, C I; Sheth, S

    1997-01-01

    Power Doppler imaging has recently gained attention as an additional color flow imaging technique that overcomes some of the limitations of conventional color Doppler ultrasound (US). Limitations of conventional color Doppler US include angle dependence, aliasing, and difficulty in separating background noise from true flow in slow-flow states. Owing to its increased sensitivity to flow, power Doppler sonography is valuable in low-flow states and when optimal Doppler angles cannot be obtained. Longer segments of vessels and more individual vessels can be visualized with power Doppler US than with conventional color Doppler sonography. Power Doppler sonography increases diagnostic confidence when verifying or excluding testicular or ovarian torsion and confirming thrombosis or occlusion of vessels. Power Doppler sonography also improves evaluation of parenchymal flow and decreases examination times in technically challenging cases. Power Doppler US is a useful adjunct to mean-frequency color Doppler sonography, especially when color Doppler US cannot adequately obtain or display diagnostic information. PMID:9084086

  4. Is There an Association Between Carotid-Femoral Pulse Wave Velocity and Coronary Heart Disease in Patients with Coronary Artery Disease: A Pilot Study

    PubMed Central

    Katsiki, Niki; Kollari, Erietta; Dardas, Sotirios; Dardas, Petros; Haidich, Anna-Bettina; Athyros, Vasilios G.; Karagiannis, Asterios

    2016-01-01

    Arterial stiffness has been shown to predict cardiovascular morbidity and mortality. Carotid-femoral pulse wave velocity (cfPWV) is regarded the gold standard marker of arterial stiffness. In previous studies, cfPWV was associated with the presence of coronary heart disease (CHD). However, with regard to CHD severity as assessed by the Syntax Score, only brachial-ankle PWV was reported to correlate with Syntax Score; no data exist for cfPWV. In this pilot study, we evaluated the possible associations between cfPWV, CHD and Syntax Score in 62 consecutive pa-tients (49 males; mean age: 64±12years) with chest pain undergoing scheduled coronary angiography. cfPWV was signifi-cantly higher in CHD patients than in non-CHD individuals (10 vs. 8.4 m/s; p = 0.003). No significant association was found between cfPWV and CHD severity as assessed by Syntax Score. A cut-off point of 12.3 m/s was considered as diagnostic for abnormally increased cfPWV (specificity: 97%; sensitivity: 12%; positive likelihood ratio: 3.558). Further research is needed to establish the relationship between cfPWV and Syntax Score. PMID:27347222

  5. Effects of Short-Term Exenatide Treatment on Regional Fat Distribution, Glycated Hemoglobin Levels, and Aortic Pulse Wave Velocity of Obese Type 2 Diabetes Mellitus Patients

    PubMed Central

    Park, Keun-Young; Kim, Byung-Joon; Hwang, Won-Min; Kim, Dong-Ho

    2016-01-01

    Background Most type 2 diabetes mellitus patients are obese and have obesity related vascular complications. Exenatide treatment is well known for both decreasing glycated hemoglobin levels and reduction in body weight. So, this study aimed to determine the effects of exenatide on body composition, glycated hemoglobin levels, and vascular stiffness in obese type 2 diabetes mellitus patients. Methods For 1 month, 32 obese type 2 diabetes mellitus patients were administered 5 µg of exenatide twice daily. The dosage was then increased to 10 µg. Patients' height, body weight, glycated hemoglobin levels, lipid profile, pulse wave velocity (PWV), body mass index, fat mass, and muscle mass were measured by using Inbody at baseline and after 3 months of treatment. Results After 3 months of treatment, glycated hemoglobin levels decreased significantly (P=0.007). Triglyceride, total cholesterol, and low density lipoprotein levels decreased, while aspartate aminotransferase and alanine aminotransferase levels were no change. Body weight, and fat mass decreased significantly (P=0.002 and P=0.001, respectively), while interestingly, muscle mass did not decrease (P=0.289). In addition to, Waist-to-hip ratio and aortic PWV decreased significantly (P=0.006 and P=0.001, respectively). Conclusion Effects of short term exenatide use in obese type 2 diabetes mellitus with cardiometabolic high risk patients not only reduced body weight without muscle mass loss, body fat mass, and glycated hemoglobin levels but also improved aortic PWV in accordance with waist to hip ratio. PMID:26676329

  6. Relationship between sum of the four limbs' pulse pressure and brachial-ankle pulse wave velocity and atherosclerosis risk factors in Chinese adults.

    PubMed

    Zheng, Yansong; Li, Zongbin; Shu, Hua; Liu, Minyan; Chen, Zhilai; Huang, Jianhua

    2015-01-01

    The aim of the present study was to analyze the relationship between the sum of the four limbs' pulse pressure (Sum-PP) and brachial-ankle pulse wave velocity (baPWV) and atherosclerosis risk factors and evaluate the feasibility of Sum-PP in diagnosing atherosclerosis systemically. For the purpose, a cross-sectional study was conducted on the basis of medical information of 20748 adults who had a health examination in our hospital. Both Sum-PP and baPWV exhibited significant variations among different human populations grouped by gender, smoking, drinking, and age. Interestingly, Sum-PP had similar varying tendency with baPWV in different populations. And further study in different populations showed that Sum-PP was significantly positively related to baPWV. We also investigated the relationship between Sum-PP, baPWV, and cardiovascular risk factors, respectively. We found that both Sum-PP and baPWV had significant positive correlation with atherosclerosis risk factors while both of them were negatively related to HDL-c. In addition, there was a significant close correlation between Sum-PP and baPWV in the whole population (r = 0.4616, P < 0.0001). Thus, Sum-PP is closely related to baPWV and is of important value for clinical diagnosis of atherosclerosis. PMID:25695080

  7. Pulse wave velocity as marker of preclinical arterial disease: reference levels in a uruguayan population considering wave detection algorithms, path lengths, aging, and blood pressure.

    PubMed

    Farro, Ignacio; Bia, Daniel; Zócalo, Yanina; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Alallón, Walter; Lluberas, Ricardo; Armentano, Ricardo L

    2012-01-01

    Carotid-femoral pulse wave velocity (PWV) has emerged as the gold standard for non-invasive evaluation of aortic stiffness; absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical implementation. This work was carried out in a Uruguayan (South American) population in order to characterize normal, reference, and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV) disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender); asymptomatic subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The included subjects (n = 429) were categorized according to the age decade and the blood pressure levels (at study time). All subjects represented the "reference population"; the group of subjects with optimal/normal blood pressures levels at study time represented the "normal population." Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes. PMID:22666551

  8. Pulse Wave Velocity as Marker of Preclinical Arterial Disease: Reference Levels in a Uruguayan Population Considering Wave Detection Algorithms, Path Lengths, Aging, and Blood Pressure

    PubMed Central

    Farro, Ignacio; Bia, Daniel; Zócalo, Yanina; Torrado, Juan; Farro, Federico; Florio, Lucía; Olascoaga, Alicia; Alallón, Walter; Lluberas, Ricardo; Armentano, Ricardo L.

    2012-01-01

    Carotid-femoral pulse wave velocity (PWV) has emerged as the gold standard for non-invasive evaluation of aortic stiffness; absence of standardized methodologies of study and lack of normal and reference values have limited a wider clinical implementation. This work was carried out in a Uruguayan (South American) population in order to characterize normal, reference, and threshold levels of PWV considering normal age-related changes in PWV and the prevailing blood pressure level during the study. A conservative approach was used, and we excluded symptomatic subjects; subjects with history of cardiovascular (CV) disease, diabetes mellitus or renal failure; subjects with traditional CV risk factors (other than age and gender); asymptomatic subjects with atherosclerotic plaques in carotid arteries; patients taking anti-hypertensives or lipid-lowering medications. The included subjects (n = 429) were categorized according to the age decade and the blood pressure levels (at study time). All subjects represented the “reference population”; the group of subjects with optimal/normal blood pressures levels at study time represented the “normal population.” Results. Normal and reference PWV levels were obtained. Differences in PWV levels and aging-associated changes were obtained. The obtained data could be used to define vascular aging and abnormal or disease-related arterial changes. PMID:22666551

  9. Nd:YAG pulsed-wave laser as support therapy in the treatment of teno-desmopathies of athlete horses: a clinical and experimental trial

    NASA Astrophysics Data System (ADS)

    Fortuna, Damiano; Rossi, Giacomo; Paolini, Cesare; Magi, Alberto; Losani, Fabrizio; Fallaci, Simone; Pacini, Franco; Porciani, Chiara; Sandler, Anna; Dalla Torre, Riccarda; Pinna, Stefania; Venturini, Antonio

    2002-10-01

    The ultrasonic evolution of tendinous repair envisages the recovery of ecogenicity: "reparative phase", followed by the realignment of the collagen fibres: "rehabilitative phase". The primary objective was to verify the safety and efficacy of Nd:YAG pulsed wave on teno- desmopathies of horses. Secondary to shorten "reparative phase" for to provide more time for "rehabilitative phase". The study has been divided into two investigations: experimental and clinical. In the experimental investigation, on 3 meat horses, the safety and tolerance of a power laser (35 W/cm2, 25 J/cm2) was investigated. The clinical investigation was performed on 79 sport horses through randomized double-blind. All subjects (Controls and Treated) received, on the subskin above the tendon lesion, the same local infiltration of immunostimulant. The results indicates that the High Intensity Laser Therapy (HILT) is safe and tolerated. It is able of reducing, in significative way, the "reparative phase", with a lower percentage of relapse (20% Treated and 40% Controls), but it is not able to reduce the time of the "rehabilitative phase".

  10. Pulse-Wave Analysis of Optic Nerve Head Circulation Is Significantly Correlated with Kidney Function in Patients with and without Chronic Kidney Disease

    PubMed Central

    Takahashi, Mao

    2014-01-01

    Aim. To determine whether there is a significant correlation between the optic nerve head (ONH) circulation determined by laser speckle flowgraphy (LSFG) and kidney function. Materials. Seventy-one subjects were investigated. The estimated glomerular filtration rate (GFR) and serum creatinine, cystatin C, and urinary albumin excretion were measured. The ONH circulation was determined by an analysis of the pulse wave of LSFG, and this parameter was named blowout time (BOT). Chronic kidney disease (CKD) was defined to be present when the estimated GFR was <60 mL/min per 1.73 m2. Pearson's correlation coefficients were used to determine the relationship between the BOT and the kidney function. We also examined whether there were significant differences in all parameters in patients with and without CKD. Results. BOT was significantly correlated with the level of creatinine (r = −0.24, P = 0.04), the estimated GFR (r = 0.42, P = 0.0003), cystatin C (r = −0.29, P = 0.01), and urinary albumin excretion (r = −0.29, P = 0.01). The BOT level in subjects with CKD was significantly lower than that in subjects without CKD (P = 0.002). Conclusion. BOT in ONH by LSFG can detect the organ damage such as kidney dysfunction, CKD. PMID:24678413

  11. Pulse-Wave Analysis of Optic Nerve Head Circulation Is Significantly Correlated with Kidney Function in Patients with and without Chronic Kidney Disease.

    PubMed

    Shiba, Tomoaki; Takahashi, Mao; Maeno, Takatoshi

    2014-01-01

    Aim. To determine whether there is a significant correlation between the optic nerve head (ONH) circulation determined by laser speckle flowgraphy (LSFG) and kidney function. Materials. Seventy-one subjects were investigated. The estimated glomerular filtration rate (GFR) and serum creatinine, cystatin C, and urinary albumin excretion were measured. The ONH circulation was determined by an analysis of the pulse wave of LSFG, and this parameter was named blowout time (BOT). Chronic kidney disease (CKD) was defined to be present when the estimated GFR was <60 mL/min per 1.73 m(2). Pearson's correlation coefficients were used to determine the relationship between the BOT and the kidney function. We also examined whether there were significant differences in all parameters in patients with and without CKD. Results. BOT was significantly correlated with the level of creatinine (r = -0.24, P = 0.04), the estimated GFR (r = 0.42, P = 0.0003), cystatin C (r = -0.29, P = 0.01), and urinary albumin excretion (r = -0.29, P = 0.01). The BOT level in subjects with CKD was significantly lower than that in subjects without CKD (P = 0.002). Conclusion. BOT in ONH by LSFG can detect the organ damage such as kidney dysfunction, CKD. PMID:24678413

  12. Laser speckle contrast imaging: age-related changes in microvascular blood flow and correlation with pulse-wave velocity in healthy subjects

    NASA Astrophysics Data System (ADS)

    Khalil, Adil; Humeau-Heurtier, Anne; Mahé, Guillaume; Abraham, Pierre

    2015-05-01

    In the cardiovascular system, the macrocirculation and microcirculation-two subsystems-can be affected by aging. Laser speckle contrast imaging (LSCI) is an emerging noninvasive optical technique that allows the monitoring of microvascular function and can help, using specific data processing, to understand the relationship between the subsystems. Using LSCI, the goals of this study are: (i) to assess the aging effect over microvascular parameters (perfusion and moving blood cells velocity, MBCV) and macrocirculation parameters (pulse-wave velocity, PWV) and (ii) to study the relationship between these parameters. In 16 healthy subjects (20 to 62 years old), perfusion and MBCV computed from LSCI are studied in three physiological states: rest, vascular occlusion, and post-occlusive reactive hyperaemia (PORH). MBCV is computed from a model of velocity distribution. During PORH, the experimental results show a relationship between perfusion and age (R2=0.67) and between MBCV and age (R2=0.72), as well as between PWV and age at rest (R2=0.91). A relationship is also found between perfusion and MBCV for all physiological states (R2=0.98). Relationships between microcirculation and macrocirculation (perfusion-PWV or MBCV-PWV) are found only during PORH with R2=0.76 and R2=0.77, respectively. This approach may prove useful for investigating dysregulation in blood flow.

  13. A pilot study comparison of a new method for aortic pulse wave velocity measurements using transthoracic bioimpedance and thigh cuff oscillometry with the standard tonometric method.

    PubMed

    Brinkmann, Julia; Jordan, Jens; Tank, Jens

    2015-04-01

    Aortic pulse wave velocity (aPWV) can be measured with different methodologies, including applanation tonometry. These pilot study findings suggest that impedance cardiography combined with thigh oscillometry provides comparable results. Intra- and inter-observer variability was tested by two observers in two subjects. We instrumented 41 patients and 12 healthy normotensive controls for impedance cardiography and consecutive applanation tonometry and compared methods using the Bland-Altman method. Observer variability for the impedance-thigh cuff method (range, 3.61%-7.77%) was comparable with the tonometric method (range, 2.93%-7.37%). Comparison of the two methods based on the Bland-Altman plot revealed a good agreement between methods. The bias between impedance and tonometric measurements was -0.28 ± 0.37 m/s. Both measurements were significantly correlated (r(2) = 0.94; P < .0001; slope = 1.038).Impedance cardiography combined with thigh oscillometry is an easy to use approach which, in addition to providing hemodynamic information, yields aPWV measurements comparable to applanation tonometry. Following full validation according to current guidelines, the methodology could prove useful in cardiovascular risk stratification. PMID:25816714

  14. Microwave Doppler reflectometer system in the Experimental Advanced Superconducting Tokamak.

    PubMed

    Zhou, C; Liu, A D; Zhang, X H; Hu, J Q; Wang, M Y; Li, H; Lan, T; Xie, J L; Sun, X; Ding, W X; Liu, W D; Yu, C X

    2013-10-01

    A Doppler reflectometer system has recently been installed in the Experimental Advanced Superconducting (EAST) Tokamak. It includes two separated systems, one for Q-band (33-50 GHz) and the other for V-band (50-75 GHz). The optical system consists of a flat mirror and a parabolic mirror which are optimized to improve the spectral resolution. A synthesizer is used as the source and a 20 MHz single band frequency modulator is used to get a differential frequency for heterodyne detection. Ray tracing simulations are used to calculate the scattering location and the perpendicular wave number. In EAST last experimental campaign, the Doppler shifted signals have been obtained and the radial profiles of the perpendicular propagation velocity during L-mode and H-mode are calculated. PMID:24182112

  15. Planetary Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Murphy, N.; Jefferies, S.; Hart, M.; Hubbard, W. B.; Showman, A. P.; Hernandez, G.; Rudd, L.

    2014-12-01

    Determining the internal structure of the solar system's gas and ice giant planets is key to understanding their formation and evolution (Hubbard et al., 1999, 2002, Guillot 2005), and in turn the formation and evolution of the solar system. While internal structure can be constrained theoretically, measurements of internal density distributions are needed to uncover the details of the deep interior where significant ambiguities exist. To date the interiors of giant planets have been probed by measuring gravitational moments using spacecraft passing close to, or in orbit around the planet. Gravity measurements are effective in determining structure in the outer envelope of a planet, and also probing dynamics (e.g. the Cassini and Juno missions), but are less effective in probing deep structure or the presence of discrete boundaries. A promising technique for overcoming this limitation is planetary seismology (analogous to helioseismology in the solar case), postulated by Vorontsov, 1976. Using trapped pressure waves to probe giant planet interiors allows insight into the density and temperature distribution (via the sound speed) down to the planetary core, and is also sensitive to sharp boundaries, for example at the molecular to metallic hydrogen transition or at the core-envelope interface. Detecting such boundaries is not only important in understanding the overall structure of the planet, but also has implications for our understanding of the basic properties of matter at extreme pressures. Recent Doppler measurements of Jupiter by Gaulme et al (2011) claimed a promising detection of trapped oscillations, while Hedman and Nicholson (2013) have shown that trapped waves in Saturn cause detectable perturbations in Saturn's C ring. Both these papers have fueled interest in using seismology as a tool for studying the solar system's giant planets. To fully exploit planetary seismology as a tool for understanding giant planet structure, measurements need to be made

  16. Power and pulsed Doppler evaluation of ovarian hemodynamic changes during diestrus in pregnant and nonpregnant bitches.

    PubMed

    Polisca, A; Zelli, R; Troisi, A; Orlandi, R; Brecchia, G; Boiti, C

    2013-01-15

    The aim of the study was to further characterize the relationship between hemodynamic changes in the ovary and luteal function in pregnant and nonpregnant bitches. Fourteen German Shepherd bitches were monitored three times a week from the first day of cytological diestrus (D1) until parturition or the end of diestrus (progesterone <2 ng/mL) by color Doppler, pulsed wave spectral Doppler, and power Doppler (PD) ultrasonography. By means of PD the total number of color pixels were calculated. The Doppler parameters evaluated were: peak systolic velocity (PSV), end diastolic velocity (EDV), and both resistive and pulsatility indices. Blood samples were collected three times a week throughout the experiment to determine progesterone (P4) concentrations. The length of diestrus in pregnant versus nonpregnant group was significantly shorter (P < 0.01; 57 ± 1 vs. 63 ± 1, respectively). By means of pulsed wave spectral Doppler the waveform showed a typical pattern of a low-resistive vessel characterized by a rapid systolic peak followed by a slow telediastolic decrease with a relatively high end-diastolic velocity. Blood flow parameters did not differ between left and right ovary. In both groups PSV and EDV showed a gradual decrease with the progress of diestrus; however, the values of PSV and EDV were significantly higher (P < 0.05) in the pregnant group versus nonpregnant group from D31 to D61 and from D49 to D58 respectively. Moreover, a significantly decrease (P < 0.05) of PSV and EDV in the pregnant group was observed from D46 to D58 and from D49 to D55, respectively. The resistive and pulsatility indices showed an increase during diestrus and the values were significantly lower (P < 0.05) in the pregnant group from D49 to D61. By means of PD, the pixel number was significantly higher (P < 0.05) in the pregnant versus nonpregnant group from D40 to D61. In particular, a significant decrease (P < 0.05) in the pixel number in the pregnant group was observed from D46 to

  17. Understanding Doppler Broadening of Gamma Rays

    SciTech Connect

    Rawool-Sullivan, Mohini; Sullivan, John P.

    2014-07-03

    Doppler-broadened gamma ray peaks are observed routinely in the collection and analysis of gamma-ray spectra. If not recognized and understood, the appearance of Doppler broadening can complicate the interpretation of a spectrum and the correct identification of the gamma ray-emitting material. We have conducted a study using a simulation code to demonstrate how Doppler broadening arises and provide a real-world example in which Doppler broadening is found. This report describes that study and its results.

  18. Effects of pressure-dependent segmental arterial compliance and postural changes on pulse wave transmission in an arterial model of the human upper limb.

    PubMed

    Xu, Ke; Butlin, Mark; Avolio, Alberto P

    2011-01-01

    With increasing interest in the effect of postural changes on arterial blood pressure and vascular properties, it is important to understand effects of pressure-dependent arterial compliance. This study investigates effects of pressure-dependent compliance on pulse wave velocity (PWVar), pressure wave shape, and transmission characteristics in an arterial model of the human arm from heart to radial artery from supine to standing. Estimated central pressure waveform was used as the input for the model, calculated using a validated transfer function (SphygmoCor, AtCor Medical) from recorded radial pulses in 10 healthy male subjects (53.8 ± 7.9 years) during 0, 30, 60 and 90 degree head-up tilt. A 5-segment linear model was optimized using estimated central and recorded radial arterial pulse; each segment represented by an equivalent inductance, resistance and capacitance (compliance (C)) Pressure-dependent compliance (C(P)=a · e(b · P) was added to develop a nonlinear model, and the radial pulse calculated. Comparison of the radial pulse calculated by the linear and nonlinear models showed no statistical difference in systolic, diastolic, mean, and pulse pressure in any position of tilt. However, waveform shape was increasingly divergent at higher angles of tilt (RMS error 2.3 ± 1.2 mmHg supine, 6.5 ± 3.0 mmHg standing) as was PWVar (0% increase from supine to standing in the linear model, 16.7% increase in nonlinear model). Fourier analysis demonstrated peak amplitude of transmission being at higher frequencies and phase delay being lower in the nonlinear model relative to the linear model. Pressure-dependent arterial compliance, whilst having no effect on peak values of pressure, has significant effects on waveform shape and transmission speed, especially with a more upright position. PMID:22255815

  19. Fluid overload, pulse wave velocity, and ratio of brachial pre-ejection period to ejection time in diabetic and non-diabetic chronic kidney disease.

    PubMed

    Tsai, Yi-Chun; Chiu, Yi-Wen; Kuo, Hung-Tien; Chen, Szu-Chia; Hwang, Shang-Jyh; Chen, Tzu-Hui; Kuo, Mei-Chuan; Chen, Hung-Chun

    2014-01-01

    Fluid overload is one of the characteristics in chronic kidney disease (CKD). Changes in extracellular fluid volume are associated with progression of diabetic nephropathy. Not only diabetes but also fluid overload is associated with cardiovascular risk factors The aim of the study was to assess the interaction between fluid overload, diabetes, and cardiovascular risk factors, including arterial stiffness and left ventricular function in 480 patients with stages 4-5 CKD. Fluid status was determined by bioimpedance spectroscopy method, Body Composition Monitor. Brachial-ankle pulse wave velocity (baPWV), as a good parameter of arterial stiffness, and brachial pre-ejection period (bPEP)/brachial ejection time (bET), correlated with impaired left ventricular function were measured by ankle-brachial index (ABI)-form device. Of all patients, 207 (43.9%) were diabetic and 240 (50%) had fluid overload. For non-diabetic CKD, fluid overload was associated with being female (β = -2.87, P = 0.003), heart disease (β = 2.69, P = 0.04), high baPWV (β = 0.27, P = 0.04), low hemoglobin (β = -1.10, P < 0.001), and low serum albumin (β = -5.21, P < 0.001) in multivariate analysis. For diabetic CKD, fluid overload was associated with diuretics use (β = 3.69, P = 0.003), high mean arterial pressure (β = 0.14, P = 0.01), low bPEP/ET (β = -0.19, P = 0.03), low hemoglobin (β = -1.55, P = 0.001), and low serum albumin (β = -9.46, P < 0.001). In conclusion, baPWV is associated with fluid overload in non-diabetic CKD and bPEP/bET is associated with fluid overload in diabetic CKD. Early and accurate assessment of these associated cardiovascular risk factors may improve the effects of entire care in late CKD. PMID:25386836

  20. As compared to allopurinol, urate-lowering therapy with febuxostat has superior effects on oxidative stress and pulse wave velocity in patients with severe chronic tophaceous gout.

    PubMed

    Tausche, A-K; Christoph, M; Forkmann, M; Richter, U; Kopprasch, S; Bielitz, C; Aringer, M; Wunderlich, C

    2014-01-01

    We prospectively evaluated whether an effective 12-month uric acid-lowering therapy (ULT) with the available xanthine oxidase (XO) inhibitors allopurinol and febuxostat in patients with chronic tophaceous gout has an impact on oxidative stress and/or vascular function. Patients with chronic tophaceous gout who did not receive active ULT were included. After clinical evaluation, serum uric acid levels (SUA) and markers of oxidative stress were measured, and carotid-femoral pulse wave velocity (cfPWV) was assessed. Patients were then treated with allopurinol (n = 9) or with febuxostat (n = 8) to target a SUA level ≤ 360 μmol/L. After 1 year treatment, the SUA levels, markers of oxidative stress and the cfPWV were measured again. Baseline characteristics of both groups showed no significant differences except a higher prevalence of moderate impairment of renal function (estimated glomerular filtration rate <60 ml/min) in the febuxostat group. Uric acid lowering with either inhibitors of XO resulted in almost equally effective reduction in SUA levels. The both treatment groups did not differ in their baseline cfPWV (allopurinol group: 14.1 ± 3.4 m/s, febuxostat group: 13.7 ± 2.7 m/s, p = 0.80). However, after 1 year of therapy, we observed a significant cfPWV increase in the allopurinol group (16.8 ± 4.3 m/s, p = 0.001 as compared to baseline), but not in the febuxostat patients (13.3 ± 2.3 m/s, p = 0.55). Both febuxostat and allopurinol effectively lower SUA levels in patients with severe gout. However, we observed that febuxostat also appeared to be beneficial in preventing further arterial stiffening. Since cardiovascular events are an important issue in treating patients with gout, this unexpected finding may have important implications and should be further investigated in randomized controlled trials. PMID:24026528

  1. Association of long-term blood pressure variability and brachial-ankle pulse wave velocity: a retrospective study from the APAC cohort

    PubMed Central

    Wang, Yang; Yang, Yuling; Wang, Anxin; An, Shasha; Li, Zhifang; Zhang, Wenyan; Liu, Xuemei; Ruan, Chunyu; Liu, Xiaoxue; Guo, Xiuhua; Zhao, Xingquan; Wu, Shouling

    2016-01-01

    We investigated associations between long-term blood pressure variability (BPV) and brachial-ankle pulse wave velocity (baPWV). Within the Asymptomatic Polyvascular Abnormalities Community (APAC) study, we retrospectively collected long-term BPV and baPWV measures. Long-term BPV was calculated using the mean and standard deviation of systolic blood pressure (SBP) across 4 years based on annual values of SBP. In total, 3,994 subjects (2,284 men) were eligible for inclusion in this study. We stratified the study population into four SBP quartiles. Left and right baPWV was higher in participants with long-term SBPV in the fourth quartile compared with the first quartile (left: 1,725 ± 488 vs. 1,461 ± 340 [p < 0.001]; right: 1,722 ± 471 vs. 1,455 ± 341 [p < 0.001], respectively). We obtained the same result for total baPWV (fourth vs. first quartile: 1,772 ± 429 vs. 1,492 ± 350 [p < 0.001]). Furthermore, there was a trend for gradually increased baPWV (≥1,400 cm/s) with increased SBPV (p < 0.001). After multivariable adjustment, baPWV was positively correlated with long-term BPV (p < 0.001). In conclusion, long-term BPV is significantly associated with arterial stiffness as assessed by baPWV. PMID:26892486

  2. Association between airflow limitation severity and arterial stiffness as determined by the brachial-ankle pulse wave velocity: a cross-sectional study.

    PubMed

    Oda, Masako; Omori, Hisamitsu; Onoue, Ayumi; Cui, Xiaoyi; Lu, Xi; Yada, Hironori; Hisada, Aya; Miyazaki, Wataru; Higashi, Noritaka; Ogata, Yasuhiro; Katoh, Takahiko

    2015-01-01

    Objective Chronic obstructive pulmonary disease (COPD) is often associated with concomitant systemic manifestations and comorbidities, such as cardiovascular disease. There are limited data regarding airflow limitation (AL) and atherosclerosis in Japanese patients, and the potential association between AL and arterial stiffness has not yet been investigated in Japanese patients. Therefore, the purpose of this study was to investigate the association between AL severity and arterial stiffness using the brachial-ankle pulse wave velocity (baPWV). Methods This cross-sectional study included 1,356 subjects aged 40-79 years without clinical cardiovascular diseases who underwent a comprehensive health screening that included spirometry, the baPWV measurement, and blood sampling during medical check-ups in 2009 at the Japanese Red Cross Kumamoto Health Care Center. AL was defined in accordance with the Global Initiative for COPD criteria (forced expiratory volume in one second / forced vital capacity of < 0.7). A cut-off baPWV value of >1,400 cm/s was used for risk prediction and screening. Results The average baPWV (SD) results were 1,578.0 (317.9), 1,647.3 (374.4), and 1,747.3 (320.1) cm/s in the patients with a normal pulmonary function, mild AL, and moderate-to-severe AL, respectively (p< 0.001). Using logistic regression models adjusted for the age, body mass index, smoking status, hypersensitive C-reactive protein levels, hypertension, hyperglycemia, and dyslipidemia, an increased baPWV (>1,400 cm/s) was significantly associated with moderate-to-severe AL compared with a normal pulmonary function (odds ratio=2.76; 95% confidence intervals, 1.37-5.55; p=0.004). Conclusion Our results indicated an association between AL and increased arterial stiffness. Arterial stiffness may therefore worsen with an increase in the severity of AL. PMID:26466690

  3. Independent and Joint Effect of Brachial-Ankle Pulse Wave Velocity and Blood Pressure Control on Incident Stroke in Hypertensive Adults.

    PubMed

    Song, Yun; Xu, Benjamin; Xu, Richard; Tung, Renee; Frank, Eric; Tromble, Wayne; Fu, Tong; Zhang, Weiyi; Yu, Tao; Zhang, Chunyan; Fan, Fangfang; Zhang, Yan; Li, Jianping; Bao, Huihui; Cheng, Xiaoshu; Qin, Xianhui; Tang, Genfu; Chen, Yundai; Yang, Tianlun; Sun, Ningling; Li, Xiaoying; Zhao, Lianyou; Hou, Fan Fan; Ge, Junbo; Dong, Qiang; Wang, Binyan; Xu, Xiping; Huo, Yong

    2016-07-01

    Pulse wave velocity (PWV) has been shown to influence the effects of antihypertensive drugs in the prevention of cardiovascular diseases. Data are limited on whether PWV is an independent predictor of stroke above and beyond hypertension control. This longitudinal analysis examined the independent and joint effect of brachial-ankle PWV (baPWV) with hypertension control on the risk of first stroke. This report included 3310 hypertensive adults, a subset of the China Stroke Primary Prevention Trial (CSPPT) with baseline measurements for baPWV. During a median follow-up of 4.5 years, 111 participants developed first stroke. The risk of stroke was higher among participants with baPWV in the highest quartile than among those in the lower quartiles (6.3% versus 2.4%; hazard ratio, 1.66; 95% confidence interval, 1.06-2.60). Similarly, the participants with inadequate hypertension control had a higher risk of stroke than those with adequate control (5.1% versus 1.8%; hazard ratio, 2.32; 95% confidence interval, 1.49-3.61). When baPWV and hypertension control were examined jointly, participants in the highest baPWV quartile and with inadequate hypertension control had the highest risk of stroke compared with their counterparts (7.5% versus 1.3%; hazard ratio, 3.57; 95% confidence interval, 1.88-6.77). There was a significant and independent effect of high baPWV on stroke as shown among participants with adequate hypertension control (4.2% versus 1.3%; hazard ratio, 2.29, 95% confidence interval, 1.09-4.81). In summary, among hypertensive patients, baPWV and hypertension control were found to independently and jointly affect the risk of first stroke. Participants with high baPWV and inadequate hypertension control had the highest risk of stroke compared with other groups. PMID:27217412

  4. An Open Label Parallel Group Study to Assess the Effects of Amlodipine and Cilnidipine on Pulse Wave Velocity and Augmentation Pressures in Mild to Moderate Essential Hypertensive Patients

    PubMed Central

    Rajashekar, Sujith Tumkur; Buchineni, Madhavulu; Meriga, Rajesh Kumar; Reddy, Chirra Bhakthavasthala; Kumar, Kolla Praveen

    2015-01-01

    Introduction Hypertension is a major cardiovascular risk factor, which affects both large and small arteries. Because of the associated morbidity and mortality and the cost to society, it is an important public health challenge. Population based studies have reported that large artery stiffness is an important determinant of cardiovascular events and mortality in general population and in patients with hypertension. This study was designed to compare the effects of 8 weeks blood pressure control using Amlodepine and cilnidipine on haemodynamic parameters and vascular indices in mild to moderate hypertensive patients. Materials and Methods A total of 60 patients were enrolled in the study. Thirty patients were randomly allocated to either Amlodipine 5 mg OD or Cilnidipine 10 mg OD for duration of eight weeks. Blood Pressure (BP), Heart Rate (HR), carotid-femoral Pulse Wave Velocity (cf PWV), Augmentation Index (AIx) and Aortic augmentation pressure (AoAP) were measured at baseline and at the end of eight weeks. Results The mean change in the central artery stiffness from baseline to week-8 in the Amlodipine group as compared to Cilnidipine group cf PWV -139.3±27.7 vs. -234.1±74.8 cm/s p=<0.0001, AoAP -3.8±1.5 vs. -5.6±3.3 mm of Hg p=0.008 and AIx -6.8±2.4 vs. -10.8±4.4 %, p=<0.0001 respectively. Conclusion This study showed that the L/N-type calcium channel antagonist Cilnidipine has a similar antihypertensive action to Amlodipine, but is superior in improving the arterial stiffness. PMID:26676157

  5. Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements

    PubMed Central

    Alastruey, Jordi; Khir, Ashraf W.; Matthys, Koen S.; Segers, Patrick; Sherwin, Spencer J.; Verdonck, Pascal R.; Parker, Kim H.; Peiró, Joaquim

    2011-01-01

    The accuracy of the nonlinear one-dimensional (1-D) equations of pressure and flow wave propagation in Voigt-type visco-elastic arteries was tested against measurements in a well-defined experimental 1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters required by the numerical algorithm were directly measured in the in vitro setup and no data fitting was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels, which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements. J. Biomech. 40, 3476–3486]. In comparison to the purely elastic model, visco-elasticity significantly reduced the average relative root-mean-square errors between numerical and experimental waveforms over the 70 locations measured in the in vitro model: from 3.0% to 2.5% (p<0.012) for pressure and from 15.7% to 10.8% (p<0.002) for the flow rate. In the frequency domain, average relative errors between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from 0.7% to 0.5% (p<0.107) for pressure and from 7.0% to 3.3% (p<10−6) for the flow rate. These results provide additional support for the use of 1-D reduced modelling to accurately simulate clinically relevant problems at a reasonable computational cost. PMID:21724188

  6. Simultaneous Observations of the Chromosphere with TRACE and SUMER

    NASA Astrophysics Data System (ADS)

    Pasachoff, Jay M.; Tingle, Evan D.; Dammasch, Ingolf E.; Sterling, Alphonse C.

    2011-01-01

    Using mainly the 1600 Å continuum channel and also the 1216 Å Lyman- α channel (which includes some UV continuum and C iv emission) aboard the TRACE satellite, we observed the complete lifetime of a transient, bright chromospheric loop. Simultaneous observations with the SUMER instrument aboard the SOHO spacecraft revealed interesting material velocities through the Doppler effect existing above the chromospheric loop imaged with TRACE, possibly corresponding to extended nonvisible loops, or the base of an X-ray jet.

  7. Development of Doppler Global Velocimetry as a Flow Diagnostics Tool

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1995-01-01

    The development of Doppler global velocimetry is described from its inception to its use as a flow diagnostics tool. Its evolution is traced from an elementary one-component laboratory prototype, to a full three-component configuration operating in a wind tunnel at focal distances exceeding 15 m. As part of the developmental process, several wind tunnel flow field investigations were conducted. These included supersonic flow measurements about an oblique shock, subsonic and supersonic measurements of the vortex flow above a delta wing, and three-component measurements of a high-speed jet.

  8. The Doppler Effect--A New Approach

    ERIC Educational Resources Information Center

    Allen, J.

    1973-01-01

    Discusses the Doppler effect as it applies to different situations, such as a stationary source of sound with the observer moving, a stationary observer, and the sound source and observer both moving. Police radar, satellite surveillance radar, radar astronomy, and the Doppler navigator, are discussed as applications of Doppler shift. (JR)

  9. JAWS multiple Doppler derived winds

    NASA Technical Reports Server (NTRS)

    Elmore, Kimberly L.

    1987-01-01

    An elementary working knowledge is given of the advantages and limitations of the multiple Doppler radar analyses that have recently become available from the Joint Airport Weather Studies (JAWS) project. What Doppler radar is and what it does is addressed and the way Doppler radars were used in the JAWS project to gather wind shear data is described. The working definition of wind shear used is winds that affect aircraft flight over a span of 15 to 45 seconds and turbulence is defined as air motion that cause abrupt aircraft motions. The JAWS data current available contain no turbulence data. The concept of multiple Doppler analysis and the geometry of how it works are described, followed by an explanation of how data gathered in radar space are interpolated to a common Cartesian coordinate system and the limitations involved. A discussion is also presented of the analysis grid and how it was constructed. What the user actually gets is discussed, followed by a discussion of the expected errors in the three orthogonal wind components. Finally, a discussion is presented of why JAWS data are significant.

  10. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.; Wilcox, J. M.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect are made at the Stanford Solar Observatory. These observations show no variations in the rotation rate that exceed the observational error of about 1%. The average rotation rate is indistinguishable from that of sunspots and large-scale magnetic field structures.

  11. Doppler observations of solar rotation

    NASA Technical Reports Server (NTRS)

    Scherrer, P. H.

    1980-01-01

    Daily observations of the photospheric equatorial rotation rate using the Doppler effect mode at the Sanford Solar Observatory are presented. These observations show no variations in the rotation rate that exceed the observational error of about one percent. The average rotation rate is indistinguishable from that of sunspots and large scale magnetic field structures.

  12. The effects of isoflurane anaesthesia on some Doppler-derived cardiac parameters in the common buzzard (Buteo buteo).

    PubMed

    Straub, Jens; Forbes, Neil A; Thielebein, Jens; Pees, Michael; Krautwald-Junghanns, Maria E

    2003-11-01

    In order to gain an initial overview of the influence of anaesthesia on the results of Doppler-derived blood flow measurements in raptors, the heart rate as well as three different sample volumes of pulsed-wave spectral Doppler-derived flow velocity (diastolic flow across the left and right atrioventricular valve, systolic flow across the aortic valve) were determined in 10 common buzzards (Buteo buteo). Measurements were taken once in conscious and once in anaesthetized birds. Anaesthesia was shown to produce significant changes in cardiac parameters recorded in the same birds whilst conscious. When comparing conscious birds with each other (with one exception for right sided ventricular inflow velocity) no correlation between the heart frequency and measured blood flow velocities was evident. This was also the case under anaesthesia. However, significant differences in these parameters were evident when comparing the results obtained before and under anaesthesia. The results suggest that the influence of anaesthesia in raptors is more than a simple reduction of heart rate and that there is also reduction in blood flow velocity. PMID:14550740

  13. Pulse transit times to the capillary bed evaluated by laser Doppler flowmetry.

    PubMed

    Bernjak, Alan; Stefanovska, Aneta

    2009-03-01

    The pulse transit time (PTT) of a wave over a specified distance along a blood vessel provides a simple non-invasive index that can be used for the evaluation of arterial distensibility. Current methods of measuring the PTT determine the propagation times of pulses only in the larger arteries. We have evaluated the pulse arrival time (PAT) to the capillary bed, through the microcirculation, and have investigated its relationship to the arterial PAT to a fingertip. To do so, we detected cardiac-induced pulse waves in skin microcirculation using laser Doppler flowmetry (LDF). Using the ECG as a reference, PATs to the microcirculation were measured on the four extremities of 108 healthy subjects. Simultaneously, PATs to the radial artery of the left index finger were obtained from blood pressure recordings using a piezoelectric sensor. Both PATs correlate in similar ways with heart rate and age. That to the microcirculation is shown to be sensitive to local changes in skin perfusion induced by cooling. We introduce a measure for the PTT through the microcirculation. We conclude that a combination of LDF and pressure measurements enables simultaneous characterization of the states of the macro and microvasculature. Information about the microcirculation, including an assessment of endothelial function, may be obtained from the responses to perturbations in skin perfusion, such as temperature stress or vasoactive substances. PMID:19202235

  14. Two-dimensional ultrasound Doppler velocimeter for flow mapping of unsteady liquid metal flows.

    PubMed

    Franke, S; Lieske, H; Fischer, A; Büttner, L; Czarske, J; Räbiger, D; Eckert, S

    2013-03-01

    We present a novel pulsed-wave ultrasound Doppler system for fluid flow investigations being able to determine two-dimensional vector fields of flow velocities. Electromagnetically-driven liquid metal flows appear as an attractive application field for such a measurement system. Two linear ultrasound transducer arrays each equipped with 25 transducer elements are used to measure the flow field in a square plane of 67×67 mm(2). The application of advanced processing methods as a multi-beam operation, an interlaced echo signal acquisition and a segmental array technique enable high data acquisition rates and concurrently a high spatial resolution, which have not been obtained so far for flow measurements in liquid metals. The extended pulsing strategy and essential operation principles such as the multiplexing electronic concept will be presented within this paper. The capabilities of the measuring system make it suitable for investigations of non-transparent, turbulent flows. Here, we present measurements of liquid metal flows driven by a rotating magnetic field for demonstration purposes. The measuring setup realized here reveals details of the swirling fluid motion in a horizontal section of a cube. Frame acquisition rates up to 30 fps were achieved for a complete two-dimensional flow mapping. PMID:23186828

  15. Azimuthal Doppler Effect in Optical Vortex Spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, Mitsutoshi; Yoshimura, Shinji; Toda, Yasunori; Morisaki, Tomohiro; Terasaka, Kenichiro; Tanaka, Masayoshi

    2015-11-01

    Optical vortices (OV) are a set of solutions of the paraxial Helmholtz equation in the cylindrical coordinates, and its wave front has a spiral shape. Since the Doppler shift is caused by the phase change by the movement in a wave field, the observer in the OV, which has the three-dimensional structured wave front, feels a three-dimensional Doppler effect. Since the multi-dimensional Doppler components are mixed into a single Doppler spectrum, development of a decomposition method is required. We performed a modified saturated absorption spectroscopy to separate the components. The OV and plane wave are used as a probe beam and pump beam, respectively. Although the plane-wave pump laser cancels the z-direction Doppler shift, the azimuthal Doppler shift remains in the saturated dip. The spatial variation of the dip width gives the information of the azimuthal Doppler shift. The some results of optical vortex spectroscopy will be presented.

  16. Laser Doppler vibrometry for assessment of arteriosclerosis: A first step towards validation

    SciTech Connect

    Campo, Adriaan; Dirckx, Joris

    2014-05-27

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter can be estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery (FA) in the groin. However PWV can also be measured locally in the CCA, using non-invasive methods such as ultrasound (US) or laser Doppler vibrometry (LDV). Potential of the latter approach was already explored in previous research, and in this work a first step towards clinical validation is made. 50 hypertension II/III patients aged between 30 and 65 participate in the study. Patients were asked to remain sober for 4 hours prior to the measurements. The trajectory of the CCA in the neck was determined by a trained clinician guided by an US probe. 3 laser Doppler vibrometer (LDV) systems were aimed along the CCA. PWV was then calculated from the distance between beams and the time-shift between waveforms. Immediately after LDV measurements, PWV was measured with US. Additionally, carotid-femoral PWV was measured. As a validation, PWV results of the different techniques were compared with each other, and with medical background of the test subjects. Since data acquisition is still ongoing, data from only 20 patients will be discussed. No trends between measurement methods for PWV are apparent. However, a positive trend was detected between PWV as measured with LDV and blood pressure. More data, including additional experiments will be needed to verify this observation.

  17. Laser Doppler vibrometry for assessment of arteriosclerosis: A first step towards validation

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Dirckx, Joris

    2014-05-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter can be estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery (FA) in the groin. However PWV can also be measured locally in the CCA, using non-invasive methods such as ultrasound (US) or laser Doppler vibrometry (LDV). Potential of the latter approach was already explored in previous research, and in this work a first step towards clinical validation is made. 50 hypertension II/III patients aged between 30 and 65 participate in the study. Patients were asked to remain sober for 4 hours prior to the measurements. The trajectory of the CCA in the neck was determined by a trained clinician guided by an US probe. 3 laser Doppler vibrometer (LDV) systems were aimed along the CCA. PWV was then calculated from the distance between beams and the time-shift between waveforms. Immediately after LDV measurements, PWV was measured with US. Additionally, carotid-femoral PWV was measured. As a validation, PWV results of the different techniques were compared with each other, and with medical background of the test subjects. Since data acquisition is still ongoing, data from only 20 patients will be discussed. No trends between measurement methods for PWV are apparent. However, a positive trend was detected between PWV as measured with LDV and blood pressure. More data, including additional experiments will be needed to verify this observation.

  18. Brachial-to-ankle pulse wave velocity as an independent prognostic factor for ovulatory response to clomiphene citrate in women with polycystic ovary syndrome

    PubMed Central

    2014-01-01

    Background Polycystic ovary syndrome (PCOS) has a risk for cardiovascular disease. Increased arterial stiffness has been observed in women with PCOS. The purpose of the present study was to investigate whether the brachial-to-ankle pulse wave velocity (baPWV) is a prognostic factor for ovulatory response to clomiphene citrate (CC) in women with PCOS. Methods This study was a retrospective cohort study of 62 women with PCOS conducted from January 2009 to December 2012 at the university hospital, Yamagata, Japan. We analyzed 62 infertile PCOS patients who received CC. Ovulation was induced by 100 mg CC for 5 days. CC non-responder was defined as failure to ovulate for at least 2 consecutive CC-treatment cycles. The endocrine, metabolic, and cardiovascular parameters between CC responder (38 patients) and non-responder (24 patients) groups were analyzed. Results In univariate analysis, waist-to-hip ratio, level of free testosterone, percentages of patients with dyslipidemia, impaired glucose tolerance, and diabetes mellitus, blood glucose and insulin levels at 60 min and 120 min, the area under the curve of glucose and insulin after 75-g oral glucose intolerance test, and baPWV were significantly higher in CC non-responders compared with responders. In multivariate logistic regression analysis, both waist-to-hip ratio (odds ratio, 1.77; 95% confidence interval, 2.2–14.1; P = 0.04) and baPWV (odds ratio, 1.71; 95% confidence interval, 1.1–2.8; P = 0.03) were independent predictors of ovulation induction by CC in PCOS patients. The predictive values of waist-to-hip ratio and baPWV for the CC resistance in PCOS patients were determined by the receiver operating characteristic curves. The area under the curves for waist-to-hip ratio and baPWV were 0.76 and 0.77, respectively. Setting the threshold at 0.83 for waist-to-hip ratio offered the best compromise between specificity (0.65) and sensitivity (0.84), while the setting the threshold at 1,182 cm/s for

  19. Effect of Pulsed Wave Low-Level Laser Therapy on Tibial Complete Osteotomy Model of Fracture Healing With an Intramedullary Fixation

    PubMed Central

    Mostafavinia, Atarodalsadat; Masteri Farahani, Reza; Abbasian, Mohammadreza; Vasheghani Farahani, Mohammadmehdi; Fridoni, Mohammadjavad; Zandpazandi, Sara; Ghoreishi, Seyed Kamran; Abdollahifar, Mohammad Amin; Pouriran, Ramin; Bayat, Mohammad

    2015-01-01

    Background: Fractures pose a major worldwide challenge to public health, causing tremendous disability for the society and families. According to recent studies, many in vivo and in vitro experiments have shown the positive effects of PW LLLT on osseous tissue. Objectives: The aim of this study was to evaluate the outcome of infrared pulsed wave low-level laser therapy (PW LLLT) on the fracture healing process in a complete tibial osteotomy in a rat model, which was stabilized by an intramedullary pin. Materials and Methods: This experimental study was conducted at Shahid Beheshti University of Medical Sciences in Tehran, Iran. We performed complete tibial osteotomies in the right tibias for the population of 15 female rats. The rats were divided randomly into three different groups: I) Control rats with untreated bone defects; II) Rats irradiated by a 0.972 J/cm2 PW LLLT; and III) Rats irradiated by a 1.5 J/cm2 PW LLLT. The right tibias were collected six weeks following the surgery and a three-point bending test was performed to gather results. Immediately after biomechanical examination, the fractured bones were prepared for histological examinations. Slides were examined using stereological method. Results: PW LLLT significantly caused an increase in maximum force (N) of biomechanical repair properties for osteotomized tibias in the first and second laser groups (30.0 ± 15.9 and 32.4 ± 13.8 respectively) compared to the control group (8.6 ± 4.5) LSD test, P = 0.019, P = 0.011 respectively). There was a significant increase in the osteoblast count of the first and second laser groups (0.53 ± 0.06, 0.41 ± 0.06 respectively) compared to control group (0.31 ± 0.04) (LSD test, P = 0001, P = 0.007 respectively). Conclusions: This study confirmed the efficacy of PW LLLT on biomechanical strength, trabecular bone volume, callus volume, and osteoblast number of repairing callus in a complete tibial osteotomy animal model at a relatively late stage of the bone

  20. Doppler ultrasound evaluation in preeclampsia

    PubMed Central

    2013-01-01

    Background Worldwide preeclampsia (PE) is the leading cause of maternal death and affects 5 to 8% of pregnant women. PE is characterized by elevated blood pressure and proteinuria. Doppler Ultrasound (US) evaluation has been considered a useful method for prediction of PE; however, there is no complete data about the most frequently altered US parameters in the pathology. The aim of this study was to evaluate the uterine, umbilical, and the middle cerebral arteries using Doppler US parameters [resistance index (RI), pulsatility index (PI), notch (N), systolic peak (SP) and their combinations] in pregnant women, in order to make a global evaluation of hemodynamic repercussion caused by the established PE. Results A total of 102 pregnant Mexican women (65 PE women and 37 normotensive women) were recruited in a cases and controls study. Blood velocity waveforms from uterine, umbilical, and middle cerebral arteries, in pregnancies from 24 to 37 weeks of gestation were recorded by trans-abdominal examination with a Toshiba Ultrasound Power Vision 6000 SSA-370A, with a 3.5 MHz convex transducer. Abnormal general Doppler US profile showed a positive association with PE [odds ratio (OR) = 2.93, 95% confidence interval (CI) = 1.2 - 7.3, P = 0.021)], and a specificity and predictive positive value of 89.2% and 88.6%, respectively. Other parameters like N presence, RI and PI of umbilical artery, as well as the PI of middle cerebral artery, showed differences between groups (P values < 0.05). Conclusion General Doppler US result, as well as N from uterine vessel, RI from umbilical artery, and PI from umbilical and middle cerebral arteries in their individual form, may be considered as tools to determine hemodynamic repercussion caused by PE. PMID:24252303

  1. Effect of heart rate on left ventricular diastolic transmitral flow velocity patterns assessed by Doppler echocardiography in normal subjects.

    PubMed

    Harrison, M R; Clifton, G D; Pennell, A T; DeMaria, A N

    1991-03-15

    Although a number of factors, including age and ventricular loading, are known to influence the pattern of left ventricular (LV) filling as depicted by Doppler echocardiographic transmitral flow velocities, few and conflicting data are available regarding the influence of heart rate (HR). Therefore, 20 volunteers (mean age 30 years) were evaluated with pulsed-wave Doppler echocardiography, performed with the sample volume placed at the mitral anulus level in the apical 4-chamber projection. Transmitral flow measurements comprised peak and integrated early passive (E) and late atrial (A) filling velocities and the slope of velocity decline from peak E filling. Measurements were recorded during baseline (sinus rhythm, mean 70 beats/min) and during transesophageal atrial pacing (mean 88 beats/min). LV end-diastolic dimension, mean arterial pressure and PR interval (corrected for pacing-induced delay in interatrial conduction time) were unchanged during pacing versus baseline measurements. Peak and integrated E filling velocities averaged 0.59 +/- 0.09 m/s and 6 +/- 1 cm, respectively, at baseline and were not significantly greater at the higher HR. In contrast, baseline peak and integrated A velocities averaged 0.37 +/- 0.06 m/s and 2.3 +/- 0.7 cm, respectively, but were significantly greater at the higher HR (0.5 +/- 0.07 m/s and 3.2 +/- 1.1 cm, respectively [p less than 0.003 vs baseline for each]). Further analysis of a subgroup of 9 subjects for whom Doppler measurements were available at 3 HRs (sinus 70; pacing 80 and 90) yielded strong evidence for a linear relation between HR and peak A velocity (A = 0.008 HR - 0.21, with p less than 0.0001 for significance of the linear trend).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2000796

  2. Central blood pressure and pulse wave velocity: relationship to target organ damage and cardiovascular morbidity-mortality in diabetic patients or metabolic syndrome. An observational prospective study. LOD-DIABETES study protocol

    PubMed Central

    2010-01-01

    Background Diabetic patients show an increased prevalence of non-dipping arterial pressure pattern, target organ damage and elevated arterial stiffness. These alterations are associated with increased cardiovascular risk. The objectives of this study are the following: to evaluate the prognostic value of central arterial pressure and pulse wave velocity in relation to the incidence and outcome of target organ damage and the appearance of cardiovascular episodes (cardiovascular mortality, myocardial infarction, chest pain and stroke) in patients with type 2 diabetes mellitus or metabolic syndrome. Methods/Design Design: This is an observational prospective study with 5 years duration, of which the first year corresponds to patient inclusion and initial evaluation, and the remaining four years to follow-up. Setting: The study will be carried out in the urban primary care setting. Study population: Consecutive sampling will be used to include patients diagnosed with type 2 diabetes between 20-80 years of age. A total of 110 patients meeting all the inclusion criteria and none of the exclusion criteria will be included. Measurements: Patient age and sex, family and personal history of cardiovascular disease, and cardiovascular risk factors. Height, weight, heart rate and abdominal circumference. Laboratory tests: hemoglobin, lipid profile, creatinine, microalbuminuria, glomerular filtration rate, blood glucose, glycosylated hemoglobin, blood insulin, fibrinogen and high sensitivity C-reactive protein. Clinical and 24-hour ambulatory (home) blood pressure monitoring and self-measured blood pressure. Common carotid artery ultrasound for the determination of mean carotid intima-media thickness. Electrocardiogram for assessing left ventricular hypertrophy. Ankle-brachial index. Retinal vascular study based on funduscopy with non-mydriatic retinography and evaluation of pulse wave morphology and pulse wave velocity using the SphygmoCor system. The medication used for

  3. Generic Doppler processor speeds radar analysis

    NASA Astrophysics Data System (ADS)

    Engler, Harold F., Jr.; West, Philip D.; Austin, Mark D.; Gardos, Thomas R.

    1991-03-01

    The design and operation of a generic Doppler processor (GDP) are described in detail and illustrated with diagrams. The GDP was developed to facilitate the selection of a Doppler processing method for a radar system; it operates on an industrial desktop computer and makes it possible to switch rapidly among different Doppler processing bandwidths and center frequencies, filtering methods (FFT, analog, etc.), windowing methods, numbers of bits for quantization, and output display formats. The principal components are a programmable baseband clutter filter module, a Doppler processor chassis, a synthetic range-Doppler display, and a spectrum-analyzer-type real-Doppler display. The GDP provides + or - 5O kHz coverage with filter bandwidth 200 Hz, a maximum of 512 channels, 10 range gates, and an instantaneous dynamic range of 60 dB. Also discussed is the efficient finite-impulse-response filter design used to simulate analog filter banks.

  4. Mapping of airborne Doppler radar data

    SciTech Connect

    Lee, W.; Dodge, P.; Marks, F.D. Jr.; Hildebrand, P.H. NOAA, Miami, FL )

    1994-04-01

    Two sets of equations are derived to (1) map airborne Doppler radar data from an aircraft-relative coordinate system to an earth-relative coordinate system, and (2) remove the platform motion from the observed Doppler velocities. These equations can be applied to data collected by the National Oceanic and Atmospheric Administration WP-3D system, the National Center for Atmospheric Research Electra Doppler Radar (ELDORA) system, and other airborne radar systems.

  5. Performance Of A Doppler-Corrected MDPSK Detector

    NASA Technical Reports Server (NTRS)

    Nguyen, Tien M.; Jedrey, Thomas C.; Hinedi, Sami; Agan, Martin J.

    1994-01-01

    Report presents theoretical analysis of effect of rate of change of Doppler shift of received multiple-differential-phase-shift-keyed (MDPSK) radio signal on performance of Doppler-corrected differential detector. In particular detector, phase of received signal corrected for Doppler shift by use of Doppler estimator designed to operate in presence of negligibly small Doppler rate.

  6. Doppler effects on periodicities in Saturn's magnetosphere

    NASA Astrophysics Data System (ADS)

    Carbary, J. F.

    2015-11-01

    The magnetosphere of Saturn exhibits a wide variety of periodic phenomena in magnetic fields, charged particles, and radio emissions. The periodicities are observed from a moving spacecraft, so an issue arises about the periodicities being influenced by the Doppler effects. Doppler effects can be investigated using models of the periodicities and then flying the spacecraft through the model, effectively measuring any Doppler phenomena with the simulation. Using 200 days of typical elliptical orbits from the Cassini mission at Saturn, three models were tested: an azimuthal wave (or "searchlight") model, a radial wave (or "pond ripple") model, and a model of an outwardly traveling spiral wave. The azimuthal wave model produced virtually no Doppler effects in the periodicities because its wave vector is nearly perpendicular to the spacecraft trajectory. The radial wave model generated strong Doppler effects of an upshifted and a downshifted signal (a dual period) on either side of the true period, because the wave vector is either parallel or antiparallel to the spacecraft trajectory. Being intermediate to the searchlight and radial waves, the spiral wave produced Doppler effects but only for low wave speeds (<10 RS/h). For higher wave speeds the Doppler effects were not as clear. The Doppler effects can be mitigated by employing only observations beyond ~15 RS where the spacecraft speed is low compared to the wave speed. The observed periodicities over the same 200 day interval do not show evidence of Doppler effects but generally display a single feature at the expected ~10.7 h period.

  7. Special relativistic visualization by local ray tracing.

    PubMed

    Müller, Thomas; Grottel, Sebastian; Weiskopf, Daniel

    2010-01-01

    Special relativistic visualization offers the possibility of experiencing the optical effects of traveling near the speed of light, including apparent geometric distortions as well as Doppler and searchlight effects. Early high-quality computer graphics images of relativistic scenes were created using offline, computationally expensive CPU-side 4D ray tracing. Alternate approaches such as image-based rendering and polygon-distortion methods are able to achieve interactivity, but exhibit inferior visual quality due to sampling artifacts. In this paper, we introduce a hybrid rendering technique based on polygon distortion and local ray tracing that facilitates interactive high-quality visualization of multiple objects moving at relativistic speeds in arbitrary directions. The method starts by calculating tight image-space footprints for the apparent triangles of the 3D scene objects. The final image is generated using a single image-space ray tracing step incorporating Doppler and searchlight effects. Our implementation uses GPU shader programming and hardware texture filtering to achieve high rendering speed. PMID:20975164

  8. Doppler shift simulation of scattered HF signals during the Tromsø HF pumping experiment on 16 February 1996

    NASA Astrophysics Data System (ADS)

    Borisova, T. D.; Blagoveshchenskaya, N. F.; Moskvin, I. V.; Rietveld, M. T.; Kosch, M. J.; Thidé, B.

    2002-09-01

    Comparisons between bistatic scatter measurements and simulation results during the Tromsø HF pumping experiment on 16 February 1996 are made. Doppler measurements of an HF diagnostic signal scattered from the field-aligned irregularities (FAIs) in the auroral E-region were carried out on the London Tromsø St. Petersburg path at 9410 kHz from 21:00 to 22:00 UT. The scattered signals were observed both from natural and artificial ionospheric irregularities located in the vicinity of Tromsø. To simulate the Doppler frequency shifts, fd , of scattered signals, a radio channel model, named CONE, was developed. The model allows for ray tracing, group and phase paths, and Doppler frequency shift calculations. The calculated Doppler shifts were analyzed for dependence on the magnitude and direction of plasma velocities in the scattering volume. It was found that the velocity components in the north-south direction are crucial for explaining the Doppler frequency shifts of the scattered diagnostic signals. To simulate fd , real velocities obtained from the EISCAT UHF radar at an altitude of 278 km and from the digital all-sky imager during the experiment were employed. The simulation results of Doppler frequency shift variations with time are in reasonable agreement with the experimental Doppler shifts of scattered signals on the London Tromsø St. Petersburg path.

  9. Feasibility of using a reliable automated Doppler flow velocity measurements for research and clinical practices

    NASA Astrophysics Data System (ADS)

    Zolgharni, Massoud; Dhutia, Niti M.; Cole, Graham D.; Willson, Keith; Francis, Darrel P.

    2014-03-01

    Echocardiographers are often unkeen to make the considerable time investment to make additional multiple measurements of Doppler velocity. Main hurdle to obtaining multiple measurements is the time required to manually trace a series of Doppler traces. To make it easier to analyse more beats, we present an automated system for Doppler envelope quantification. It analyses long Doppler strips, spanning many heartbeats, and does not require the electrocardiogram to isolate individual beats. We tested its measurement of velocity-time-integral and peak-velocity against the reference standard defined as the average of three experts who each made three separate measurements. The automated measurements of velocity-time-integral showed strong correspondence (R2 = 0.94) and good Bland-Altman agreement (SD = 6.92%) with the reference consensus expert values, and indeed performed as well as the individual experts (R2 = 0.90 to 0.96, SD = 5.66% to 7.64%). The same performance was observed for peak-velocities; (R2 = 0.98, SD = 2.95%) and (R2 = 0.93 to 0.98, SD = 2.94% to 5.12%). This automated technology allows <10 times as many beats to be acquired and analysed compared to the conventional manual approach, with each beat maintaining its accuracy.

  10. Doppler Ultrasound Detection of Preclinical Changes in Foot Arteries in Early Stage of Type 2 Diabetes

    PubMed Central

    Leoniuk, Jolanta; Łukasiewicz, Adam; Szorc, Małgorzata; Sackiewicz, Izabela; Janica, Jacek; Łebkowska, Urszula

    2014-01-01

    Summary Background There are few reports regarding the changes within the vessels in the initial stage of type 2 diabetes. The aim of this study was to estimate the hemodynamic and morphological parameters in foot arteries in type 2 diabetes subjects and to compare these parameters to those obtained in a control group of healthy volunteers. Material/Methods Ultrasound B-mode, color Doppler and pulse wave Doppler imaging of foot arteries was conducted in 37 diabetic patients and 36 non-diabetic subjects to determine their morphological (total vascular diameter and flow lumen diameter) and functional parameters (spectral analysis). Results In diabetic patients, the overall vascular diameter and wall thickness were statistically significantly larger when compared to the control group in the right dorsalis pedis artery (P=0.01; P=0.001), left dorsalis pedis artery (P=0.007; P=0.006), right posterior tibial artery (P=0.005; P=0.0005), and left posterior tibial artery (P=0.007; P=0.0002). No significant differences were observed in both groups in flow lumen diameters and blood flow parameters (PSV, EDV, PI, RI). In the diabetic group, the level of HbA1c positively correlated with flow resistance index in the right dorsalis pedis artery (r=0.38; P=0.02), right posterior tibial artery (r=0.38; P=0.02) and left posterior tibial artery (r=0.42; P=0.009). The pulsatility index within the dorsalis pedis artery decreased with increased trophic skin changes (r=–0.431, P=0.009). Conclusions In the diabetic group, overall artery diameters larger than and flow lumina comparable to the control group suggest vessel wall thickening occurring in the early stage of diabetes. Doppler flow parameters are comparable in both groups. In the diabetic group, the level of HbA1c positively correlated with flow resistance index and negative correlation was observed between the intensity of trophic skin changes and the pulsatility index. PMID:25202434

  11. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  12. Doppler photoacoustic and Doppler ultrasound in blood with optical contrast agent

    NASA Astrophysics Data System (ADS)

    Sheinfeld, Adi; Eyal, Avishay

    2013-03-01

    Photoacoustic Doppler flowmetry as well as Doppler ultrasound were performed in acoustic resolution regime on tubes filled with flowing blood with indocyanine green (ICG) at different concentrations. The photoacoustic excitation utilized a pair of directly-modulated fiber-coupled 830nm laser-diodes, modulated with either CW or tone-bursts for depthresolved measurements. The amplitude of the Doppler peak in photoacoustic Doppler measurements was found to be proportional to the ICG concentration. Photoacoustic Doppler was measured in ICG at human safe concentrations, but not in whole blood. Comparing the results between the two modalities implied that using a wavelength with higher optical absorption may improve the photoacoustic signal in blood.

  13. Observations of ULF waves on the ground and ionospheric Doppler shifts during storm sudden commencement

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinyan; Liu, Wenlong; Xiao, Zuo; Hao, Yongqiang

    2016-04-01

    Using data from ground-based magnetometers and HF Doppler sounder, we study ultralow frequency (ULF) waves excited during the storm sudden commencement (SSC) on 8 March 2012 and find possible evidence on the link between ULF waves and ionospheric Doppler shifts. Pc1-Pc2 ULF waves are observed from 11:04 to 11:27 UT after the SSC by ground stations of L shell ranging from 1.06 to 2.31, mapping to the topside ionosphere. There are weak responses in this frequency range in the power spectra of ionospheric Doppler shift. From 11:19 to 11:23 UT, oscillations of magnetic field in a lower frequency range of Pc3-Pc4 are observed and are well correlated with the trace of Doppler shift. It is thus suggested that ionospheric Doppler shift can response to ULF oscillations in magnetic field in various frequency ranges, especially in the frequency range of Pc3-Pc4 and below. This paper demonstrates a new mechanism of magnetosphere-ionosphere coupling.

  14. Development of the doppler electron velocimeter: theory.

    SciTech Connect

    Reu, Phillip L.

    2007-03-01

    Measurement of dynamic events at the nano-scale is currently impossible. This paper presents the theoretical underpinnings of a method for making these measurements using electron microscopes. Building on the work of Moellenstedt and Lichte who demonstrated Doppler shifting of an electron beam with a moving electron mirror, further work is proposed to perfect and utilize this concept in dynamic measurements. Specifically, using the concept of ''fringe-counting'' with the current principles of transmission electron holography, an extension of these methods to dynamic measurements is proposed. A presentation of the theory of Doppler electron wave shifting is given, starting from the development of the de Broglie wave, up through the equations describing interference effects and Doppler shifting in electron waves. A mathematical demonstration that Doppler shifting is identical to the conceptually easier to understand idea of counting moving fringes is given by analogy to optical interferometry. Finally, potential developmental experiments and uses of a Doppler electron microscope are discussed.

  15. Observation of the Zero Doppler Effect

    PubMed Central

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-01-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology. PMID:27046395

  16. Inverse Doppler Effects in Broadband Acoustic Metamaterials.

    PubMed

    Zhai, S L; Zhao, X P; Liu, S; Shen, F L; Li, L L; Luo, C R

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with 'flute-like' acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  17. Observation of the Zero Doppler Effect

    NASA Astrophysics Data System (ADS)

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-04-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology.

  18. Observation of the Zero Doppler Effect.

    PubMed

    Ran, Jia; Zhang, Yewen; Chen, Xiaodong; Fang, Kai; Zhao, Junfei; Chen, Hong

    2016-01-01

    The normal Doppler effect has well-established applications in many areas of science and technology. Recently, a few experimental demonstrations of the inverse Doppler effect have begun to appear in negative-index metamaterials. Here we report an experimental observation of the zero Doppler effect, that is, no frequency shift irrespective of the relative motion between the wave signal source and the detector in a zero-index metamaterial. This unique phenomenon, accompanied by the normal and inverse Doppler effects, is generated by reflecting a wave from a moving discontinuity in a composite right/left-handed transmission line loaded with varactors when operating in the near zero-index passband, or the right/left-handed passband. This work has revealed a complete picture of the Doppler effect in metamaterials and may lead to potential applications in electromagnetic wave related metrology. PMID:27046395

  19. Laser Doppler dust devil measurements

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.; Jeffreys, H. B.; Kaufman, J. W.; Weaver, E. A.

    1977-01-01

    A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors.

  20. Techniques in Doppler gravity inversion

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.

    1974-01-01

    The types of Doppler gravity data available for local as opposed to planetwide geophysical modeling are reviewed. Those gravity fields that are determined dynamically in orbit determination programs yield a smoothed representation of the local gravity field that may be used for quantitative modeling. An estimate of the difference between smoothed and true fields can be considered as a noise limitation in generating local gravity models. A nonlinear inversion for the geometry, depth, and density of the Mare Serenitatis mascon using an ellipsoidal model yielded a global least squares minimum in horizontal dimensions, depth, and thickness-density contrast product. It was subsequently found, by using a linear model, that there were an infinite number of solutions corresponding to various combinations of depth and lateral inhomogeneity. Linear modeling was performed by means of generalized inverse theory.

  1. Coherent Doppler Laser Radar: Technology Development and Applications

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  2. Epidemic contact tracing via communication traces.

    PubMed

    Farrahi, Katayoun; Emonet, Rémi; Cebrian, Manuel

    2014-01-01

    Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks. PMID:24787614

  3. Parametric Trace Slicing

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore (Inventor); Chen, Feng (Inventor); Chen, Guo-fang; Wu, Yamei; Meredith, Patrick O. (Inventor)

    2014-01-01

    A program trace is obtained and events of the program trace are traversed. For each event identified in traversing the program trace, a trace slice of which the identified event is a part is identified based on the parameter instance of the identified event. For each trace slice of which the identified event is a part, the identified event is added to an end of a record of the trace slice. These parametric trace slices can be used in a variety of different manners, such as for monitoring, mining, and predicting.

  4. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and

  5. Staggered Multiple-PRF Ultrafast Color Doppler.

    PubMed

    Posada, Daniel; Poree, Jonathan; Pellissier, Arnaud; Chayer, Boris; Tournoux, Francois; Cloutier, Guy; Garcia, Damien

    2016-06-01

    Color Doppler imaging is an established pulsed ultrasound technique to visualize blood flow non-invasively. High-frame-rate (ultrafast) color Doppler, by emissions of plane or circular wavefronts, allows severalfold increase in frame rates. Conventional and ultrafast color Doppler are both limited by the range-velocity dilemma, which may result in velocity folding (aliasing) for large depths and/or large velocities. We investigated multiple pulse-repetition-frequency (PRF) emissions arranged in a series of staggered intervals to remove aliasing in ultrafast color Doppler. Staggered PRF is an emission process where time delays between successive pulse transmissions change in an alternating way. We tested staggered dual- and triple-PRF ultrafast color Doppler, 1) in vitro in a spinning disc and a free jet flow, and 2) in vivo in a human left ventricle. The in vitro results showed that the Nyquist velocity could be extended to up to 6 times the conventional limit. We found coefficients of determination r(2) ≥ 0.98 between the de-aliased and ground-truth velocities. Consistent de-aliased Doppler images were also obtained in the human left heart. Our results demonstrate that staggered multiple-PRF ultrafast color Doppler is efficient for high-velocity high-frame-rate blood flow imaging. This is particularly relevant for new developments in ultrasound imaging relying on accurate velocity measurements. PMID:26780789

  6. Rotational Doppler effect in nonlinear optics

    NASA Astrophysics Data System (ADS)

    Li, Guixin; Zentgraf, Thomas; Zhang, Shuang

    2016-08-01

    The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.

  7. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter.

    PubMed

    Iwasaki, Wataru; Nogami, Hirofumi; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2015-01-01

    Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology. This micro blood flowmeter is wearable and capable of stable measurement signals even during movement. Therefore, we attempted to measure skin blood flow at the forehead, fingertip, and earlobe of seven young men while running as a pilot experiment to extend the utility of the micro blood flowmeter. We measured blood flow in each subject at velocities of 6, 8, and 10 km/h. We succeeded in obtaining stable measurements of blood flow, with few motion artifacts, using the micro blood flowmeter, and the pulse wave signal and motion artifacts were clearly separated by conducting frequency analysis. Furthermore, the results showed that the extent of the changes in blood flow depended on the intensity of exercise as well as previous work with an ergometer. Thus, we demonstrated the capability of this wearable blood flow sensor for measurement during exercise. PMID:26445047

  8. Detection of Site-Specific Blood Flow Variation in Humans during Running by a Wearable Laser Doppler Flowmeter

    PubMed Central

    Iwasaki, Wataru; Nogami, Hirofumi; Takeuchi, Satoshi; Furue, Masutaka; Higurashi, Eiji; Sawada, Renshi

    2015-01-01

    Wearable wireless physiological sensors are helpful for monitoring and maintaining human health. Blood flow contains abundant physiological information but it is hard to measure blood flow during exercise using conventional blood flowmeters because of their size, weight, and use of optic fibers. To resolve these disadvantages, we previously developed a micro integrated laser Doppler blood flowmeter using microelectromechanical systems technology. This micro blood flowmeter is wearable and capable of stable measurement signals even during movement. Therefore, we attempted to measure skin blood flow at the forehead, fingertip, and earlobe of seven young men while running as a pilot experiment to extend the utility of the micro blood flowmeter. We measured blood flow in each subject at velocities of 6, 8, and 10 km/h. We succeeded in obtaining stable measurements of blood flow, with few motion artifacts, using the micro blood flowmeter, and the pulse wave signal and motion artifacts were clearly separated by conducting frequency analysis. Furthermore, the results showed that the extent of the changes in blood flow depended on the intensity of exercise as well as previous work with an ergometer. Thus, we demonstrated the capability of this wearable blood flow sensor for measurement during exercise. PMID:26445047

  9. Power Doppler imaging as a basis for automated endocardial border detection during left ventricular contrast enhancement.

    PubMed

    Mor-Avi, V; Bednarz, J; Weinert, L; Sugeng, L; Lang, R M

    2000-08-01

    Echocardiographic evaluation of left ventricular (LV) systolic function relies on endocardial visualization, which can be improved when necessary using contrast enhancement. However, there is no method to automatically detect the endocardial boundary from contrast-enhanced images. We hypothesized that this could be achieved using harmonic power Doppler imaging. Twenty-two patients were studied in two protocols: (1) 11 patients with poorly visualized endocardium (> 3 contiguous segments not visualized) and (2) 11 consecutive patients referred for dobutamine stress echocardiography who were studied at rest and at peak dobutamine infusion. Patients were imaged in the apical four-chamber view using harmonic power Doppler mode (HP SONOS 5500) during LV contrast enhancement (Optison or Definity DMP115). Digital images were analyzed using custom software designed to automatically extract the endocardial boundary from power Doppler color overlays. LV cavity area was automatically measured frame-by-frame throughout the cardiac cycle, and fractional area change calculated and compared with those obtained by manually tracing the endocardial boundary in end-systolic and end-diastolic gray scale images. Successful border detection and tracking throughout the cardiac cycle was possible in 9 of 11 patients with poor endocardial definition and in 10 of 11 unselected patients undergoing dobutamine stress testing. Fractional area change obtained from power Doppler images correlated well with manually traced area changes (r = 0.82 and r = 0.97, in protocols 1 and 2, respectively). Harmonic power Doppler imaging with contrast may provide a simple method for semi-automated border detection and thus facilitate the objective evaluation of LV function both at rest and under conditions of stress testing. This methodology may prove to be particularly useful in patients with poorly visualized endocardium. PMID:11000587

  10. Non-invasive technique for assessment of vascular wall stiffness using laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Campo, Adriaan; Segers, Patrick; Heuten, Hilde; Goovaerts, Inge; Ennekens, Guy; Vrints, Christiaan; Baets, Roel; Dirckx, Joris

    2014-06-01

    It has been shown that in cardiovascular risk management, stiffness of large arteries has a very good predictive value for cardiovascular disease and mortality. This parameter is best known when estimated from the pulse wave velocity (PWV) measured between the common carotid artery (CCA) in the neck and femoral artery in the groin, but may also be determined locally from short-distance measurements on a short vessel segment. In this work, we propose a novel, non-invasive, non-contact laser Doppler vibrometry (LDV) technique for evaluating PWV locally in an elastic vessel. First, the method was evaluated in a phantom setup using LDV and a reference method. Values correlated significantly between methods (R ≤ 0.973 (p ≤ 0.01)); and a Bland-Altman analysis indicated that the mean bias was reasonably small (mean bias ≤ -2.33 ms). Additionally, PWV was measured locally on the skin surface of the CCA in 14 young healthy volunteers. As a preliminary validation, PWV measured on two locations along the same artery was compared. Local PWV was found to be between 3 and 20 m s-1, which is in line with the literature (PWV = 5-13 m s-1). PWV assessed on two different locations on the same artery correlated significantly (R = 0.684 (p < 0.01)). In summary, we conclude that this new non-contact method is a promising technique to measure local vascular stiffness in a fully non-invasive way, providing new opportunities for clinical diagnosing.

  11. Are the Current Doppler Echocardiography Criteria Able to Discriminate Mitral Bileaflet Mechanical Heart Valve Malfunction? An In Vitro Study.

    PubMed

    Evin, Morgane; Guivier-Curien, Carine; Pibarot, Philippe; Kadem, Lyes; Rieu, Régis

    2016-05-01

    Malfunction of bileaflet mechanical heart valves in the mitral position could either be due to patient-prosthesis mismatch (PPM) or leaflet obstruction. The aim of this article is to investigate the validity of current echocardiographic criteria used for diagnosis of mitral prosthesis malfunction, namely maximum velocity, mean transvalvular pressure gradient, effective orifice area, and Doppler velocity index. In vitro testing was performed on a double activation left heart duplicator. Both PPM and leaflet obstruction were investigated on a St. Jude Medical Master. PPM was studied by varying the St. Jude prosthesis size (21, 25, and 29 mm) and stroke volume (70 and 90 mL). Prosthesis leaflet obstruction was studied by partially or totally blocking the movement of one valve leaflet. Mitral flow conditions were altered in terms of E/A ratios (0.5, 1.0, and 1.5) to simulate physiologic panel of diastolic function. Maximum velocity, effective orifice area, and Doppler velocity index are shown to be insufficient to distinguish normal from malfunctioning St. Jude prostheses. Doppler velocity index and effective orifice area were 1.3 ± 0.49 and 1.83 ± 0.43 cm(2) for testing conditions with no malfunction below the 2.2 and 2 cm(2) thresholds (1.19 cm(2) for severe PPM and 1.23 cm(2) for fully blocked leaflet). The mean pressure gradient reached 5 mm Hg thresholds for several conditions of severe PPM only (6.9 mm Hg and mean maximum velocity value: 183.4 cm/s) whereas such value was never attained in the case of leaflet obstruction. In the case of leaflet obstruction, the maximum velocity averaged over the nine pulsed-wave Doppler locations increased by 38% for partial leaflet obstruction and 75% for a fully blocked leaflet when compared with normal conditions. Current echocardiographic criteria might be suboptimal for the detection of bileaflet mechanical heart valve malfunction. Further developments and investigations are required in order

  12. IIP Update: A Packaged Coherent Doppler Wind Lidar Transceiver. Doppler Aerosol WiNd Lidar (DAWN)

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Koch, Grady J.; Yu, Jirong; Trieu, Bo C.; Amzajerdian, Farzin; Singh, Upendra N.; Petros, Mulugeta

    2006-01-01

    The state-of-the-art 2-micron coherent Doppler wind lidar breadboard at NASA/LaRC will be engineered and compactly packaged consistent with future aircraft flights. The packaged transceiver will be integrated into a coherent Doppler wind lidar system test bed at LaRC. Atmospheric wind measurements will be made to validate the packaged technology. This will greatly advance the coherent part of the hybrid Doppler wind lidar solution to the need for global tropospheric wind measurements.

  13. Doppler Lidar Descent Sensor for Planetary Landing

    NASA Astrophysics Data System (ADS)

    Amzajerdian, F.; Pierrottet, D. F.; Petway, L. B.; Hines, G. D.; Barnes, B. W.

    2012-06-01

    Future robotic and manned missions to Mars demand accurate knowledge of ground velocity and altitude to ensure soft landing at the designated landing location. To meet this requirement, a prototype Doppler lidar has been developed and demonstrated.

  14. Generalized Doppler Formula in a Nonstatic Universe

    ERIC Educational Resources Information Center

    Gross, Peter G.

    1977-01-01

    Derives the general Doppler formula in a nonstatic universe using assumptions of special relativity, homogeneity and isotropy of the universe. Examples of applications to physical cosmology are given. (SL)

  15. Evaluation of a pulsed ultrasonic Doppler flowmeter

    NASA Technical Reports Server (NTRS)

    Wells, M. K.

    1973-01-01

    The in vivo application of the pulsed ultrasound Doppler velocity meter (PUDVM) for measuring arterial velocity waveforms is reported. In particular, the performance of the PUDVM is compared with a hot film anemometer of proven accuracy.

  16. Student Microwave Experiments Involving the Doppler Effect.

    ERIC Educational Resources Information Center

    Weber, F. Neff; And Others

    1980-01-01

    Described is the use of the Doppler Effect with microwaves in the measurement of the acceleration due to gravity of falling objects. The experiments described add to the repertoire of quantitative student microwave experiments. (Author/DS)

  17. High range resolution micro-Doppler analysis

    NASA Astrophysics Data System (ADS)

    Cammenga, Zachary A.; Smith, Graeme E.; Baker, Christopher J.

    2015-05-01

    This paper addresses use of the micro-Doppler effect and the use of high range-resolution profiles to observe complex targets in complex target scenes. The combination of micro-Doppler and high range-resolution provides the ability to separate the motion of complex targets from one another. This ability leads to the differentiation of targets based on their micro-Doppler signatures. Without the high-range resolution, this would not be possible because the individual signatures would not be separable. This paper also addresses the use of the micro-Doppler information and high range-resolution profiles to generate an approximation of the scattering properties of a complex target. This approximation gives insight into the structure of the complex target and, critically, is created without using a pre-determined target model.

  18. Implementing torsional-mode Doppler ladar.

    PubMed

    Fluckiger, David U

    2002-08-20

    Laguerre-Gaussian laser modes carry orbital angular momentum as a consequence of their helical-phase front screw dislocation. This torsional beam structure interacts with rotating targets, changing the orbital angular momentum (azimuthal Doppler) of the scattered beam because angular momentum is a conserved quantity. I show how to measure this change independently from the usual longitudinal momentum (normal Doppler shift) and derive the apropos coherent mixing efficiencies for monostatic, truncated Laguerre and Gaussian-mode ladar antenna patterns. PMID:12206220

  19. Pulsed Doppler lidar airborne scanner

    NASA Technical Reports Server (NTRS)

    Dimarzio, C. A.; Mcvicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-01-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  20. Pulsed Doppler lidar airborne scanner

    NASA Astrophysics Data System (ADS)

    Dimarzio, C. A.; McVicker, D. B.; Morrow, C. E.; Negus, C. C.

    1985-10-01

    This report covers the work accomplished during the reporting period on Pulsed Doppler Lidar Airborne Scanner and describes plans for the next reporting period. The objectives during the current phase of the contract are divided into four phases. Phase 1 includes ground testing of the system and analysis of data from the 1981 Severe Storms Test Flights. Phase 2 consists of preflight preparation and planning for the 1983 flight series. The flight test itself will be performed during Phase 3, and Phase 4 consists of post-flight analysis and operation of the system after that flight test. The range profile from five samples taken during Flight 10, around 1700 Z is given. The lowest curve is taken from data collected upwind of Mt. Shasta at about 10,000 feet of altitude, in a clear atmosphere, where no signals were observed. It thus is a good representation of the noise level as a function of range. The next curve was taken downwind of the mountain, and shows evidence of atmospheric returns. There is some question as to whether the data are valid at all ranges, or some ranges are contaminated by the others.

  1. Doppler-corrected differential detection system

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K. (Inventor); Divsalar, Dariush (Inventor)

    1991-01-01

    Doppler in a communication system operating with a multiple differential phase-shift-keyed format (MDPSK) creates an adverse phase shift in an incoming signal. An open loop frequency estimation is derived from a Doppler-contaminated incoming signal. Based upon the recognition that, whereas the change in phase of the received signal over a full symbol contains both the differentially encoded data and the Doppler induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler induced phase shift, and the Doppler effect can be estimated and removed from the incoming signal. Doppler correction occurs prior to the receiver's final output of decoded data. A multiphase system can operate with two samplings per symbol interval at no penalty in signal-to-noise ratio provided that an ideal low pass pre-detection filter is employed, and two samples, at 1/4 and 3/4 of the symbol interval T sub s, are taken and summed together prior to incoming signal data detection.

  2. Doppler micro sense and avoid radar

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  3. Optimization of Doppler velocity echocardiographic measurements using an automatic contour detection method.

    PubMed

    Gaillard, E; Kadem, L; Pibarot, P; Durand, L-G

    2009-01-01

    Intra- and inter-observer variability in Doppler velocity echocardiographic measurements (DVEM) is a significant issue. Indeed, imprecisions of DVEM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunction. To minimize the variability and rapidity of DVEM, we have developed an automatic method of Doppler velocity wave contour detection, based on active contour models. To validate our new method, results obtained with this method were compared to those obtained manually by an experienced echocardiographer on Doppler echocardiographic images of left ventricular outflow tract and transvalvular flow velocity signals recorded in 30 patients, 15 with aortic stenosis and 15 with mitral stenosis. We focused on three essential variables that are measured routinely by Doppler echocardiography in the clinical setting: the maximum velocity, the mean velocity and the velocity-time integral. Comparison between the two methods has shown a very good agreement (linear correlation coefficient R(2) = 0.99 between the automatically and the manually extracted variables). Moreover, the computation time was really short, about 5s. This new method applied to DVEM could, therefore, provide a useful tool to eliminate the intra- and inter-observer variabilities associated with DVEM and thereby to improve the diagnosis of cardiovascular disease. This automatic method could also allow the echocardiographer to realize these measurements within a much shorter period of time compared to standard manual tracing method. From a practical point of view, the model developed can be easily implanted in a standard echocardiographic system. PMID:19965162

  4. Range rate-Doppler correlation for HF propagation in traveling ionospheric disturbance environments

    NASA Astrophysics Data System (ADS)

    Nickisch, L. J.; Hausman, Mark A.; Fridman, Sergey V.

    2006-10-01

    Using ionospheric sounding together with fast computational inverse processing, it is now possible to obtain good real-time ionospheric models for use in geolocation for over-the-horizon (OTH) radar. However, deflection of HF propagation paths by traveling ionospheric disturbances (TIDs) remains a troubling cause of coordinate registration errors. Bandwidth and coverage limitations in ionospheric soundings preclude the ability to model TID structure in real time in most cases. It would be useful if TID-induced path deflections could be related to radar-measurable quantities like Doppler shift. As a first step in studying this possibility, we have considered the relationship between Doppler shift and group range rate for point-to-point HF propagation paths in TID environments. The nature of group range rate-Doppler correlation is exposed in three ways: (1) simple theoretical modeling, (2) ray tracing in simulated TID environments, and (3) analysis of OTH radar measurements of a fixed beacon. It is shown that group range rate and Doppler shift for fixed-point propagation paths are usually proportional with a ratio that depends on whether ionospheric motion or density changes predominate in the TID environment.

  5. Peculiar transient phenomena observed by HF Doppler sounding on infrasound time scales

    NASA Astrophysics Data System (ADS)

    Chum, J.; Lastovicka, J.; Sindelárová, T.; Buresová, D.; Hruska, F.

    2008-04-01

    Compared to investigations of the influence of gravity and planetary waves on the ionosphere, the effects of infrasound (periods from about 0.01 s to several minutes) variations have not been studied very much in the last 20 years. Here we present some recent results on peculiar transient phenomena occurring at infrasound timescales, as observed by HF Doppler sounding in the Czech Republic. After a brief description of the measuring equipment for continuous HF Doppler sounding of the ionosphere, we deal with the observations of short-time transient changes that are observed in the Doppler spectrograms in time intervals of a minute or less, and therefore cannot be observed by ionosondes. First, we present examples of S-shaped traces and examine the diurnal and seasonal variation of their occurrence. We show that S-shape phenomena appear to be concentrated near sunset and sunrise. We also discuss the possible source of these disturbances and their relationship to gravity and infrasound waves. Then we show rare patterns with Doppler shifts corresponding to quasi-linear shape (QLS) phenomena in the time-frequency space. Their slope may be positive or negative. We present some of their properties and discuss the possible origin of such a phenomenon. Several potential sources of QLSs were excluded, such as aircrafts, satellites, bolides, meteors, meteorites, thunderstorms or geomagnetic storms. We speculate that QLSs may correspond to the radio waves in the Z-mode reflected at the upper hybrid resonance frequency.

  6. Retroreflector for photonic Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Lagoski, Thomas J.; Coutu, Ronald A., Jr.; Starman, LaVern A.

    2009-08-01

    In order to meet the goals of the Department of Defense (DoD) for smaller and more accurate weapons, numerous projects are currently investigating the miniaturization of weapons and munition fuze components. One of these efforts is to characterize the performance of small detonators. The velocity of the flyer, the key component needed to initiate a detonation sequence, can be measured using a photonic Doppler velocimeter (PDV). The purpose of this research was to develop a microelectromechanical system (MEMS) device that would act as an optimal retroreflective surface for the PDV. Two MEMS solutions were explored: one using the PolyMUMPsTM fabrication process and one in-house fabrication design using silicon on insulator (SOI) wafers. The in-house design consisted of an array of corner reflectors created using an SOI wafer. Each corner reflector consisted of three separate mirror plates which were self-assembled by photoresist pad hinges. When heated to a critical temperature (typically 140-160 °C), the photoresist pads melted and the resulting surface tension caused each mirror to rotate into place. The resulting array of corner reflectors was then coated with a thin layer of gold to increase reflectivity. Despite the successful assembly of a PolyMUMPsTM corner reflector, assembling an array of these reflectors was found to be unfeasible. Although the SOI corner reflector design was completed, these devices were not fabricated in time for testing during this research. However, the bidirectional reflectance distribution function (BRDF) and optical cross section (OCS) of commercially available retroreflective tapes were measured. These results can be used as a baseline comparison for future testing of a fabricated SOI corner reflector array.

  7. The leicester Doppler phantom--a digital electronic phantom for ultrasound pulsed Doppler system testing.

    PubMed

    Gittins, John; Martin, Kevin

    2010-04-01

    Doppler flow and string phantoms have been used to assess the performance of ultrasound Doppler systems in terms of parameters such as sensitivity, velocity accuracy and sample volume registration. However, because of the nature of their construction, they cannot challenge the accuracy and repeatability of modern digital ultrasound systems or give objective measures of system performance. Electronic Doppler phantoms are able to make use of electronically generated test signals, which may be controlled precisely in terms of frequency, amplitude and timing. The Leicester Electronic Doppler Phantom uses modern digital signal processing methods and field programmable gate array technology to overcome some of the limitations of previously described electronic phantoms. In its present form, it is able to give quantitative graphical assessments of frequency response and range gate characteristics, as well as measures of dynamic range and velocity measurement accuracy. The use of direct acoustic coupling eliminates uncertainties caused by Doppler beam effects, such as intrinsic spectral broadening, but prevents their evaluation. PMID:20350689

  8. Traveling Ionospheric Disturbance Characteristics Over Texas Using the TIDDBIT HF Doppler Radar

    NASA Astrophysics Data System (ADS)

    Wene, G.; Crowley, G.; Fessler, B.; Bronn, J.

    2004-05-01

    Atmospheric gravity waves (AGW) are generated by numerous lower atmospheric processes, such as storms, and by auroral processes in the ionosphere. At ionospheric heights, the motion of the neutral gas in the AGW sets the ionosphere into motion. The waves displace the isoionic contours, resulting in a travelling ionospheric disturbance (TID). TIDs can be thought of as traveling corrugations in the ionosphere, and they can seriously affect HF radio communications and surveillance systems. Consequently, one of the most sensitive methods for detecting transient changes in the ionosphere is the HF Doppler technique operating in the 3-10 MHz band. A simple Doppler system consists of a CW (continuous wave) radio transmitter and receiver, which are highly frequency-stable. When a HF radio wave is reflected from the ionosphere, movement of the reflection point during passage of a TID produces a change in phase path and a Doppler shift proportional to the time rate of change of the phase path. The Doppler system is sensitive to motions of the ionospheric reflection point, and it therefore provides an accurate measure of both the TID and AGW periods. Similarly, because the TID velocity is determined simply from triangulation using the time-delays between perturbations at different reflection points, the TID velocities are also an accurate estimate of the underlying gravity wave horizontal and vertical trace velocities. HF Doppler systems have advantages over all other techniques for the measurement of TID characteristics. They are more amenable to analysis than data from ionosonde chains, and their time resolution (30 sec) is much higher than that of ionosondes . Unlike total electron content (TEC) methods, which respond to height-integrated TID effects, the HF Doppler radar responds to TIDs at the altitude of the radio reflection point. Finally, HF Doppler systems have low power consumption, so that both spatial and temporal resolution can be maintained for many days without

  9. Spacecraft Doppler Tracking as a Xylophone Detector

    NASA Technical Reports Server (NTRS)

    Tinto, Massimo

    1996-01-01

    We discuss spacecraft Doppler tracking in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we derive a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. Our method provides also for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by non-gravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector. Estimates of the sensitivities achievable by this xylophone are presented for two tests of Einstein's theory of relativity: searches for gravitational waves and measurements of the gravitational red shift. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.

  10. Inverse Doppler Effects in Broadband Acoustic Metamaterials

    PubMed Central

    Zhai, S. L.; Zhao, X. P.; Liu, S.; Shen, F. L.; Li, L. L.; Luo, C. R.

    2016-01-01

    The Doppler effect refers to the change in frequency of a wave source as a consequence of the relative motion between the source and an observer. Veselago theoretically predicted that materials with negative refractions can induce inverse Doppler effects. With the development of metamaterials, inverse Doppler effects have been extensively investigated. However, the ideal material parameters prescribed by these metamaterial design approaches are complex and also challenging to obtain experimentally. Here, we demonstrated a method of designing and experimentally characterising arbitrary broadband acoustic metamaterials. These omni-directional, double-negative, acoustic metamaterials are constructed with ‘flute-like’ acoustic meta-cluster sets with seven double meta-molecules; these metamaterials also overcome the limitations of broadband negative bulk modulus and mass density to provide a region of negative refraction and inverse Doppler effects. It was also shown that inverse Doppler effects can be detected in a flute, which has been popular for thousands of years in Asia and Europe. PMID:27578317

  11. Doppler-corrected differential detection of MPSK

    NASA Technical Reports Server (NTRS)

    Simon, Marvin K.; Divsalar, Dariush

    1989-01-01

    An open-loop technique is presented for estimating and correcting Doppler frequency shift in an M-ary differential phase-shift-keyed (MDPSK) receiver. The novelty of the scheme is based on the observation that whereas the change in phase of the received signal over a full symbol contains the sum of the data (phase) and the Doppler-induced phase shift, the same change in phase over half a symbol (within a given symbol interval) contains only the Doppler-induced phase shift. Thus, by proper processing, the latter can be estimated and removed from the former. Analytical and simulation results are given for the variance of the above estimator, and the error probability performance of the MDPSK receiver is evaluated in the presence of the Doppler correction. Next, the practical considerations associated with the application of this technique on bandlimited Nyquist channels are discussed and incorporated into the final design. It is shown that the receiver can, in the absence of timing jitter, be designed to allow combined Doppler correction and data detection with no penalty due to intersymbol interference (ISI). The effects of ISI due to timing jitter are assessed by computer simulation.

  12. Closed loop tracked Doppler optical coherence tomography based heart monitor for the Drosophila melanogaster larvae.

    PubMed

    Zurauskas, Mantas; Bradu, Adrian; Ferguson, Daniel R; Hammer, Daniel X; Podoleanu, Adrian

    2016-03-01

    This paper presents a novel instrument for biosciences, useful for studies of moving embryos. A dual sequential imaging/measurement channel is assembled via a closed-loop tracking architecture. The dual channel system can operate in two regimes: (i) single-point Doppler signal monitoring or (ii) fast 3-D swept source OCT imaging. The system is demonstrated for characterizing cardiac dynamics in Drosophila melanogaster larva. Closed loop tracking enables long term in vivo monitoring of the larvae heart without anesthetic or physical restraint. Such an instrument can be used to measure subtle variations in the cardiac behavior otherwise obscured by the larvae movements. A fruit fly larva (top) was continuously tracked for continuous remote monitoring. A heartbeat trace of freely moving larva (bottom) was obtained by a low coherence interferometry based doppler sensing technique. PMID:25924107

  13. Studying the precision of ray tracing techniques with Szekeres models

    NASA Astrophysics Data System (ADS)

    Koksbang, S. M.; Hannestad, S.

    2015-07-01

    The simplest standard ray tracing scheme employing the Born and Limber approximations and neglecting lens-lens coupling is used for computing the convergence along individual rays in mock N-body data based on Szekeres swiss cheese and onion models. The results are compared with the exact convergence computed using the exact Szekeres metric combined with the Sachs formalism. A comparison is also made with an extension of the simple ray tracing scheme which includes the Doppler convergence. The exact convergence is reproduced very precisely as the sum of the gravitational and Doppler convergences along rays in Lemaitre-Tolman-Bondi swiss cheese and single void models. This is not the case when the swiss cheese models are based on nonsymmetric Szekeres models. For such models, there is a significant deviation between the exact and ray traced paths and hence also the corresponding convergences. There is also a clear deviation between the exact and ray tracing results obtained when studying both nonsymmetric and spherically symmetric Szekeres onion models.

  14. Compression of polyphase codes with Doppler shift

    NASA Astrophysics Data System (ADS)

    Wirth, W. D.

    It is shown that pulse compression with sufficient Doppler tolerance may be achieved with polyphase codes derived from linear frequency modulation (LFM) and nonlinear frequency modulation (NLFM). Low sidelobes in range and Doppler are required especially for the radar search function. These may be achieved by an LFM derived phase coder together with Hamming weighting or by applying a PNL polyphase code derived from NLFM. For a discrete and known Doppler frequency with an expanded and mismatched reference vector a sidelobe reduction is possible. The compression is then achieved without a loss in resolution. A set up for the expanded reference gives zero sidelobes only in an interval around the signal peak or a least square minimization for all range elements. This version may be useful for target tracking.

  15. Inline Ultrasonic Rheometry by Pulsed Doppler

    SciTech Connect

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  16. Doppler tomography of accretion in binaries

    NASA Astrophysics Data System (ADS)

    Steeghs, D.

    2004-03-01

    Since its conception, Doppler tomography has matured into a versatile and widely used tool. It exploits the information contained in the highly-structured spectral line-profiles typically observed in mass-transferring binaries. Using inversion techniques akin to medical imaging, it permits the reconstruction of Doppler maps that image the accretion flow on micro-arcsecond scales. I summarise the basic concepts behind the technique and highlight two recent results; the use of donor star emission as a means to system parameter determination, and the real-time movies of the evolving accretion flow in the cataclysmic variable WZ Sge during its 2001 outburst. I conclude with future opportunities in Doppler tomography by exploiting the combination of superior data sets, second generation reconstruction codes and simulated theoretical tomograms to delve deeper into the physics of accretion flows.

  17. Doppler experiments with Cassini radio system

    NASA Technical Reports Server (NTRS)

    Comoretto, G.; Bertotti, B.; Iess, L.; Ambrosini, R.

    1992-01-01

    The radio system of the Cassini orbiter will include a K-alpha band downlink channel, mainly intended for telemetry. A K-alpha uplink has also been proposed to allow for a highly accurate gravitational wave experiment. The fourfold increase in frequency will reduce the plasma noise by a factor of 12 and will allow a Doppler accuracy better than 10 exp -15 for time scales of 10 exp 3 - 10 exp 4 s. Extensive Doppler measurements of the gravitational field of Saturn and its satellites can be performed, exploiting the induced change in the velocity of the spacecraft. Possible sources of low-frequency gravitational waves and errors in the Doppler link are discussed.

  18. Rubidium Atomic Line Filtered (RALF) Doppler Velocimetry

    NASA Astrophysics Data System (ADS)

    Fajardo, Mario; Molek, Christopher; Vesely, Annamaria; Lasem Team

    2013-06-01

    We report our progress towards adapting the well-known Global Dopper Velocimetry (GDV) technique, popular in the aerodynamics community, to the order-of-magnitude higher velocities pertinent to shock experiments. In GDV, the narrow-line illumination laser is tuned to an edge of a molecular iodine absorption line; an iodine gas cell converts the Doppler shift of the reflected light to transmitted intensity. We follow the suggestion in the original 1990 patent by Komine and broaden the absorption lines of alkali metal atoms by adding a buffer gas, thereby tuning the transmission edge spectrum to match the Doppler shift (surface velocity) range of interest. We use atomic rubidium vapor cells, with 0 to 1 atmosphere pressures of molecular nitrogen buffer gas, and coin the name ``Rubidium Atomic Line Filtered'' (RALF) Doppler velocimetry. [96ABW-2013-0036

  19. Analysis of Doppler lidar wind measurements

    NASA Technical Reports Server (NTRS)

    Srivastava, R. C.

    1986-01-01

    Doppler lidar and multiple Doppler radar data were obtained in a convectively mixed planetary boundary layer. The lidar measurements were possible due to scattering from existing aerosols; radar reflecting chaff was released in the atmosphere to make it visible to the multiple Doppler radar network. The data were analyzed to obtain detailed horizontal wind structures. The divergence of the horizontal wind was calculated and the anelastic continuity equation integrated to obtain vertical air motions. Differences between the areally averaged quantities and the grid point values provided a measure of the fluctuations in the wind components or the turbulent wind fluctuations. Vertical profiles of the mean winds and quantities related to the turbulent kinetic energy components and the turbulent momentum transfers were also calculated.

  20. Doppler study of the peripheral flows in early gestation.

    PubMed

    Wloch, A; Sodowski, K; Rozmus-Warcholinska, W; Wloch, S; Bodzek, P; Czuba, B; Borowski, D; Cnota, W; Kuka, D; Szaflik, K; Huhta, J

    2008-09-01

    The aim of this study was to determine the first trimester human peripheral arterial and venous blood flow between 5 - 10 weeks of gestation. Two hundred twenty four women with singleton, uncomplicated pregnancies were prospectively studied with transvaginal ultrasound. Ductus venosus, umbilical artery waveforms and pulsatility indexes (PI) were assessed as well as the waveform of the umbilical vein and the mean velocity (V(mean)) of the umbilical artery flow. The heart rate was also obtained and analyzed. The fetal heart rate showed a positive correlation with increasing gestational age R=0.76 (p<0.000001). Recordings from the umbilical artery, umbilical vein and ductus venosus were obtained starting from 7 weeks of gestation. The signal from the ductus venosus presented always as antegrade flow during atrial contractions. The pulsatility index (PI) of DV as well as PI of the umbilical artery remained unchanged during the study (statistically non-significant). The umbilical artery, using Doppler tracing was investigated and an absent diastolic flow was documented in every case. Umbilical artery V(mean) increased from 3.8 + 0.32 cm/s to 9.0 + 0.21 cm/s from 7 to 10 weeks of gestation (p< 0.005). Recordings from the umbilical vein showed the pulsation during atrial contractions. Ductus venosus blood velocity and waveform patterns did not change significantly during the study period. Pulsation in the umbilical vein is a typical Doppler finding at the embryonic time. Placental volume blood flow increased significantly with no change in the placental vascular impedance. PMID:18955756

  1. Broad-band acoustic Doppler current profiler

    USGS Publications Warehouse

    Cobb, E.D.

    1993-01-01

    The broad-band acoustic Doppler current profiler is an instrument that determines velocity based on the Doppler principle by reflecting acoustic signals off sediment particles in the water. The instrument is capable of measuring velocity magnitude and direction throughout a water column and of measuring water depth. It is also capable of bottom tracking and can, therefore, keep track of its own relative position as it is moved across a channel. Discharge measurements can be made quickly and, based on limited tests, accurately with this instrument. ?? 1993.

  2. Laser Doppler Velocimeter particle velocity measurement system

    SciTech Connect

    Wilson, W.W.; Srikantaiah, D.V.; Philip, T.; George, A.

    1993-10-01

    This report gives a detailed description of the operation of the Laser Doppler Velocimeter (LDV) system maintained by DIAL at MSU. LDV is used for the measurement of flow velocities and turbulence levels in various fluid flow settings. Ills report details the operation and maintenance of the LDV system and provides a first-time user with pertinent information regarding the system`s setup for a particular application. Particular attention has been given to the use of the Doppler signal analyzer (DSA) and the burst spectrum analyzer (BSA) signal processors and data analysis.

  3. A visual demo of the Doppler effect

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios

    2010-09-01

    Most physics teachers are familiar with the standard classroom demonstration of the Doppler effect. We invite students to explain the periodic variation of the pitch produced when we swirl a sounding buzzer over our heads. Students are quick to connect this phenomenon to everyday life experiences such as listening to the sound of the siren of a fast-approaching police car or the bell of an approaching train. In addition to these aural experiences, our understanding of the Doppler effect can be strengthened with a useful visual metaphor.

  4. Laser Doppler And Range Systems For Spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, P. W.; Gagliardi, R. M.

    1990-01-01

    Report discusses two types of proposed laser systems containing active transponders measuring distance (range) and line-of-sight velocity (via Doppler effect) between deep space vehicle and earth-orbiting satellite. Laser system offers diffraction advantage over microwave system. Delivers comparable power to distant receiver while using smaller transmitting and receiving antennas and less-powerful transmitter. Less subject to phase scintillations caused by passage through such inhomogeneous media as solar corona. One type of system called "incoherent" because range and Doppler measurements do not require coherence with laser carrier signals. Other type of system called "coherent" because successful operation requires coherent tracking of laser signals.

  5. Ultrasonographic Doppler Use for Female Reproduction Management.

    PubMed

    Bollwein, Heinrich; Heppelmann, Maike; Lüttgenau, Johannes

    2016-03-01

    Transrectal color Doppler ultrasonography is a useful technique to get new information about physiologic and pathophysiologic alterations of the uterus and ovaries in female cattle. During all reproductive stages characteristic changes in uterine blood flow are observed. Cows with puerperal disturbances show delayed decrease in uterine blood flow in the first few weeks postparturition compared with healthy cows. Measurement of follicular blood flow is used to identify normally developing follicles and predict superovulatory response. Determination of luteal blood is more reliable than B-mode sonography to distinguish between functional and nonfunctional corpora lutea. Color Doppler ultrasonography is a promising tool to improve reproductive management in female cattle. PMID:26922117

  6. Velocity precision measurements using laser Doppler anemometry

    NASA Astrophysics Data System (ADS)

    Dopheide, D.; Taux, G.; Narjes, L.

    1985-07-01

    A Laser Doppler Anemometer (LDA) was calibrated to determine its applicability to high pressure measurements (up to 10 bars) for industrial purposes. The measurement procedure with LDA and the experimental computerized layouts are presented. The calibration procedure is based on absolute accuracy of Doppler frequency and calibration of interference strip intervals. A four-quadrant detector allows comparison of the interference strip distance measurements and computer profiles. Further development of LDA is recommended to increase accuracy (0.1% inaccuracy) and to apply the method industrially.

  7. Laser Doppler velocimeter aerial spray measurements

    NASA Technical Reports Server (NTRS)

    Zalay, A. D.; Eberle, W. R.; Howle, R. E.; Shrider, K. R.

    1978-01-01

    An experimental research program for measuring the location, spatial extent, and relative concentration of airborne spray clouds generated by agricultural aircraft is described. The measurements were conducted with a ground-based laser Doppler velocimeter. The remote sensing instrumentation, experimental tests, and the results of the flight tests are discussed. The cross section of the aerial spray cloud and the observed location, extent, and relative concentration of the airborne particulates are presented. It is feasible to use a mobile laser Doppler velocimeter to track and monitor the transport and dispersion of aerial spray generated by an agricultural aircraft.

  8. Selection effects in Doppler velocity planet searches

    NASA Astrophysics Data System (ADS)

    O'Toole, Simon; Tinney, Chris; Jones, Hugh

    2008-05-01

    The majority of extra-solar planets have been discovered by measuring the Doppler velocities of the host star. Like all exoplanet detection methods, the Doppler method is rife with observational biases. Before any robust comparison of mass, orbital period and eccentricity distributions can be made with theory, a detailed understanding of these selection effects is required, something which up to now is lacking. We present here a progress report on our analysis of the selection effects present in Anglo-Australian Planet Search data, including the methodology used and some preliminary results.

  9. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for Planetary Atmospheric Studies

    NASA Astrophysics Data System (ADS)

    Bocanegra Bahamon, Tatiana; Cimo, Giuseppe; Duev, Dmitry; Gurvits, Leonid; Molera Calves, Guifre; Pogrebenko, Sergei

    2015-04-01

    The Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a technique that allows the determination of the radial velocity and lateral coordinates of planetary spacecraft with very high accuracy (Duev, 2012). The setup of the experiment consists of several ground stations from the European VLBI Network (EVN) located around the globe, which simultaneously perform Doppler tracking of a spacecraft carrier radio signal, and are subsequently processed in a VLBI-style in phase referencing mode. Because of the accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of planetary research, among which planetary atmospheric studies, gravimetry and ultra-precise celestial mechanics of planetary systems. In the study at hand the application of this technique for planetary atmospheric investigations is demonstrated. As a test case, radio occultation experiments were conducted with PRIDE having as target ESA's Venus Express, during different observing sessions with multiple ground stations in April 2012 and March 2014. Once each of the stations conducts the observation, the raw data is delivered to the correlation center at the Joint Institute for VLBI in Europe (JIVE) located in the Netherlands. The signals are processed with a high spectral resolution and phase detection software package from which Doppler observables of each station are derived. Subsequently the Doppler corrected signals are correlated to derive the VLBI observables. These two sets of observables are used for precise orbit determination. The reconstructed orbit along with the Doppler observables are used as input for the radio occultation processing software, which consists of mainly two modules, the geometrical optics module and the ray tracing inversion module, from which vertical density profiles, and subsequently, temperature and pressure profiles of Venus

  10. Using assertions with trace

    NASA Astrophysics Data System (ADS)

    Nazimek, Piotr

    2015-09-01

    Algorithms for dynamic detection of assertions are designed to find different types of dependences in programs based only on information collected during their execution without static analysis. Specificity of those algorithms and limited quantity of data to analyze needs to investigate the usage principle of discovered assertions for software dependability increase. This article introduces techniques for increasing usage efficiency of detected assertions through using program execution trace. Concept of trace and of an assertion with trace were defined. The work describes algorithms for reducing the number of traces, shortening traces lengths and reducing the number of observation points identifiers in traces. For several applications fault injection based experiments were conducted in order to check the effectiveness of the proposed approach.

  11. Photoacoustic Doppler Effect from Flowing Small Light-Absorbing Particles

    NASA Astrophysics Data System (ADS)

    Fang, Hui; Maslov, Konstantin; Wang, Lihong V.

    2007-11-01

    From the flow of a suspension of micrometer-scale carbon particles, the photoacoustic Doppler shift is observed. As predicted theoretically, the observed Doppler shift equals half of that in Doppler ultrasound and does not depend on the direction of laser illumination. This new physical phenomenon provides a basis for developing photoacoustic Doppler flowmetry, which can potentially be used for detecting fluid flow in optically scattering media and especially low-speed blood flow of relatively deep microcirculation in biological tissue.

  12. Chaotic system for self-synchronizing Doppler measurement.

    PubMed

    Carroll, Thomas L

    2005-03-01

    In a radar system, it is necessary to measure both range and velocity of a target. The movement of the target causes a Doppler shift of the radar signal, and the size of the Doppler shift is used to measure the velocity of the target. In this work, a chaotic drive-response system is simulated that detects a Doppler shift in a chaotic signal. The response system can detect Doppler shifts in more than one signal at a time. PMID:15836263

  13. Vibration disease: plasma electrolytes and trace elements.

    PubMed

    Tzvetkov, D; Kostova, V; Razboynikova, F; Dimitrov, D; Petrov, I

    1994-01-01

    102 patients with vibration disease (mean age 46 +/- 7, length of service in different jobs using vibration tools 17 +/- 7 years) were studied. Plasma electrolytes and trace elements (sodium, potassium, calcium, magnesium, phosphorus, chloride, iron, copper, zinc, cobalt and manganese) and plasma osmolality were investigated, as well as some specific tests indicative of vibration exposure--cold provocation test, vibration sense, thermoasymmetry (left/right hand), skin electric resistance and hand and finger blood flow (Doppler-ultrasound sonometry). In a large number of patients increased values for the following variables were found--magnesium in 43%, zinc in 45%, cobalt in 57%, manganese in 70% and plasma osmolality in 66%. It is suggested that vibration affects mineral metabolism. However, these disturbances in mineral metabolism are secondary to other pathological changes in the body. PMID:8029523

  14. Doppler effect of subluminal and superluminal sources in eight dimensions

    NASA Astrophysics Data System (ADS)

    Chandola, H. C.; Rajput, B. S.

    1984-06-01

    The study of the relativistic Doppler effect of subliminal and superluminal sources has been undertaken in the eight-dimensional space. It has been shown that correct Doppler shifts are obtained in the external spaces of these sources and the conformal correspondence between Doppler effect curves holds in case of approaching and receeding sources but not in the transverse case.

  15. Satellite Doppler data processing using a microcomputer

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.; Lynn, J. J.

    1977-01-01

    A microcomputer which was developed to compute ground radio beacon position locations using satellite measurements of Doppler frequency shift is described. Both the computational algorithms and the microcomputer hardware incorporating these algorithms were discussed. Results are presented where the microcomputer in conjunction with the NIMBUS-6 random access measurement system provides real time calculation of beacon latitude and longitude.

  16. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  17. Method for Canceling Ionospheric Doppler Effect

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.

    1982-01-01

    Unified transponder system with hydrogen-maser oscillators at both stations can compensate for both motional and ionospheric components of Doppler shift. Appropriate choices of frequency shift in output of mixer m3. System exploits proportionality between dispersive component of frequency shift and reciprocal of frequency to achieve cancellation of dispersive component at output.

  18. Analysis of Doppler radar windshear data

    NASA Technical Reports Server (NTRS)

    Williams, F.; Mckinney, P.; Ozmen, F.

    1989-01-01

    The objective of this analysis is to process Lincoln Laboratory Doppler radar data obtained during FLOWS testing at Huntsville, Alabama, in the summer of 1986, to characterize windshear events. The processing includes plotting velocity and F-factor profiles, histogram analysis to summarize statistics, and correlation analysis to demonstrate any correlation between different data fields.

  19. Three-dimensional power Doppler angiography

    NASA Astrophysics Data System (ADS)

    Guo, Zhenyu; Durand, Louis-Gilles; Holdsworth, David W.; Fenster, Aaron

    1997-05-01

    The purpose of the present study is to improve the quantification of peripheral arterial stenosis using 3D power Doppler angiography and investigate the potential of this technique for generating the arterial tree of the lower limb for surgery planning. Stenotic wall-less agar arteries were created to simulate the femoral and carotid arteries. 3D power Doppler angiograms of those arteries were generated under different hemodynamic conditions using a 3D ultrasound imaging system developed by the Life Imaging System Inc. The effect of multiple stenoses on the 3D power Doppler angiograms was investigated using the femoral arterial phantoms. Using the carotid arterial phantoms, 3D power Doppler angiograms of the carotid arteries were generated and compared with the known geometry. To image a whole lower limb arterial tree for lower limb salvage surgery planning, multiple scans are required to cover the entire field-of- view interested by using a water-coupled scanner. Preliminary in vivo test was performed using water-coupled scanning.

  20. Atmospheric laser Doppler velocimetry - An overview

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.

    1980-01-01

    Research, development, and application of atmospheric laser Doppler velocimetry are overviewed. Consideration is given to operation principles of CO2 heterodyne systems. Global wind, pollution, V/STOL flow, and true airspeed measurements are outlined. Wind energy, dust devils, water spouts, tornadoes, and aircraft wake vortices are covered.

  1. Cross-frequency Doppler sensitive signal processing

    NASA Astrophysics Data System (ADS)

    Wagstaff, Ronald A.

    2005-04-01

    When there is relative motion between an acoustic source and a receiver, a signal can be Doppler shifted in frequency and enter or leave the processing bins of the conventional signal processor. The amount of the shift is determined by the frequency and the rate of change in the distance between the source and the receiver. This frequency Doppler shifting can cause severe reductions in the processors performance. Special cross-frequency signal processing algorithms have recently been developed to mitigate the effects of Doppler. They do this by using calculation paths that cut across frequency bins in order to follow signals during frequency shifting. Cross-frequency spectral grams of a fast-flying sound source were compared to conventional grams, to evaluate the performance of this new signal processing method. The Doppler shifts in the data ranged up to 70 contiguous frequency bins. The resulting cross-frequency grams showed that three paths provided small to no improvement. Four paths showed improvements for either up-frequency or down-frequency shifting, but not for both. Two paths showed substantial improvement for both up-frequency and down-frequency shifting. The cross-frequency paths will be defined, and comparisons between conventional and cross-frequency grams will be presented. [Work supported by Miltec Corporation.

  2. Calculating "g" from Acoustic Doppler Data

    ERIC Educational Resources Information Center

    Torres, Sebastian; Gonzalez-Espada, Wilson J.

    2006-01-01

    Traditionally, the Doppler effect for sound is introduced in high school and college physics courses. Students calculate the perceived frequency for several scenarios relating a stationary or moving observer and a stationary or moving sound source. These calculations assume a constant velocity of the observer and/or source. Although seldom…

  3. Doppler optical coherence tomography of retinal circulation.

    PubMed

    Tan, Ou; Wang, Yimin; Konduru, Ranjith K; Zhang, Xinbo; Sadda, SriniVas R; Huang, David

    2012-01-01

    Noncontact retinal blood flow measurements are performed with a Fourier domain optical coherence tomography (OCT) system using a circumpapillary double circular scan (CDCS) that scans around the optic nerve head at 3.40 mm and 3.75 mm diameters. The double concentric circles are performed 6 times consecutively over 2 sec. The CDCS scan is saved with Doppler shift information from which flow can be calculated. The standard clinical protocol calls for 3 CDCS scans made with the OCT beam passing through the superonasal edge of the pupil and 3 CDCS scan through the inferonal pupil. This double-angle protocol ensures that acceptable Doppler angle is obtained on each retinal branch vessel in at least 1 scan. The CDCS scan data, a 3-dimensional volumetric OCT scan of the optic disc scan, and a color photograph of the optic disc are used together to obtain retinal blood flow measurement on an eye. We have developed a blood flow measurement software called "Doppler optical coherence tomography of retinal circulation" (DOCTORC). This semi-automated software is used to measure total retinal blood flow, vessel cross section area, and average blood velocity. The flow of each vessel is calculated from the Doppler shift in the vessel cross-sectional area and the Doppler angle between the vessel and the OCT beam. Total retinal blood flow measurement is summed from the veins around the optic disc. The results obtained at our Doppler OCT reading center showed good reproducibility between graders and methods (<10%). Total retinal blood flow could be useful in the management of glaucoma, other retinal diseases, and retinal diseases. In glaucoma patients, OCT retinal blood flow measurement was highly correlated with visual field loss (R(2)>0.57 with visual field pattern deviation). Doppler OCT is a new method to perform rapid, noncontact, and repeatable measurement of total retinal blood flow using widely available Fourier-domain OCT instrumentation. This new technology may improve the

  4. Utility of Doppler Myocardial Imaging, Cardiac Biomarkers and Clonal Immunoglobulin Genes to Assess Left Ventricular Performance and Stratify Risk Following Peripheral Blood Stem Cell Transplantation in Patients with Systemic Light Chain Amyloidosis (AL)

    PubMed Central

    Bellavia, Diego; Abraham, Roshini S.; Pellikka, Patricia A.; Dispenzieri, Angela; Burnett, John C.; Al-Zahrani, Ghormallah B.; Green, Tammy D.; Manske, Michelle K.; Gertz, Morie A.; Miller, Fletcher A.; Abraham, Theodore P.

    2011-01-01

    Cardiac dysfunction is a well-recognized complication of light chain amyloidosis (AL). Autologous stem cell transplant (auto-SCT) has emerged as a successful treatment modality for AL patients. In this study, we examined the effect of clonal immunoglobulin light chain genes (VL), which encodes the immunoglobulin light chain protein that ultimately forms amyloid, on cardiac function, in the context of auto-SCT and its impact on overall survival. Longitudinal Doppler myocardial imaging parameters along with cardiac biomarkers were used to assess for cardiac function pre and post auto-SCT. VL gene analysis revealed that Vλ genes, in particular VλVI, were associated with worse cardiac function parameters than Vκ genes. Clonal VL genes appeared to have an impact on left ventricular (LV) function post-transplant and also influenced mortality, with specific VL gene families associated with lower survival. Another key predictor of mortality in this report was change in tricuspid regurgitant flow velocity following auto-SCT. Correlations were also observed between systolic strain rate, systolic strain and VL genes associated with amyloid formation. In summary, clonal VL gene usage influences global cardiac function in AL, with patients having VλVI and VλII-III-associated amyloid more severely affected than those having Vκ or VλI amyloid. Pulsed wave tissue Doppler imaging along with immunoglobulin gene analysis offers novel insights into prediction of mortality and cardiac dysfunction in AL after auto-SCT. PMID:21315556

  5. A MAGNETIC CALIBRATION OF PHOTOSPHERIC DOPPLER VELOCITIES

    SciTech Connect

    Welsch, Brian T.; Fisher, George H.; Sun, Xudong

    2013-03-10

    The zero point of measured photospheric Doppler shifts is uncertain for at least two reasons: instrumental variations (from, e.g., thermal drifts); and the convective blueshift, a known correlation between intensity and upflows. Accurate knowledge of the zero point is, however, useful for (1) improving estimates of the Poynting flux of magnetic energy across the photosphere, and (2) constraining processes underlying flux cancellation, the mutual apparent loss of magnetic flux in closely spaced, opposite-polarity magnetogram features. We present a method to absolutely calibrate line-of-sight (LOS) velocities in solar active regions (ARs) near disk center using three successive vector magnetograms and one Dopplergram coincident with the central magnetogram. It exploits the fact that Doppler shifts measured along polarity inversion lines (PILs) of the LOS magnetic field determine one component of the velocity perpendicular to the magnetic field, and optimizes consistency between changes in LOS flux near PILs and the transport of transverse magnetic flux by LOS velocities, assuming that ideal electric fields govern the magnetic evolution. Previous calibrations fitted the center-to-limb variation of Doppler velocities, but this approach cannot, by itself, account for residual convective shifts at the limb. We apply our method to vector magnetograms of AR 11158, observed by the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observatory, and find clear evidence of offsets in the Doppler zero point in the range of 50-550 m s{sup -1}. In addition, we note that a simpler calibration can be determined from an LOS magnetogram and Dopplergram pair from the median Doppler velocity among all near-disk-center PIL pixels. We briefly discuss shortcomings in our initial implementation, and suggest ways to address these. In addition, as a step in our data reduction, we discuss the use of temporal continuity in the transverse magnetic field direction to correct apparently

  6. Acute hemodialysis effects on doppler echocardiographic indices.

    PubMed

    Abid, Leila; Rekik, Hajer; Jarraya, Fayçal; Kharrat, Ilyes; Hachicha, Jamil; Kammoun, Samir

    2014-07-01

    Conventional echocardiographic (ECHO) parameters of systolic and diastolic function of the left ventricular (LV) have been shown to be load dependent. However, the impact of pre-load reduction on tissue Doppler (TD) parameters of LV function is incompletely understood. To evaluate the effect of a single hemodialysis (HD) session on LV systolic and diastolic function using pulsed Doppler echocardiography and pulsed tissue Doppler imaging (TDI), we studied 81 chronic HD patients (40 males; mean age 52.4 ± 16.4 years) with these tools. ECHO parameters were obtained 30 min before and 30 min after HD. Fluid volume removed by HD was 1640 ± 730 cm³. HD led to reduction in LV end-diastolic volume (P <0.001), end-systolic volume (P <0.001), left atrium area (P <0.001), peak early (E-wave) trans-mitral flow velocity (P <0.001), the ratio of early to late Doppler velocities of diastolic mitral inflow (P <0.001) and aortic time velocity integral (P <0.001). No significant change in peak S velocity of pulmonary vein flow after HD was noted. Early and late diastolic (E') TDI velocities and the ratio of early to late TDI diastolic velocities (E'/A') on the lateral side of the mitral annulus decreased significantly after HD (P = 0.013; P = 0.007 and P = 0.008, respectively). Velocity of flow progression (Vp) during diastole was not affected by pre-load reduction. Pulmonary artery systolic pressure and the diameter of the inferior vena cava decreased significantly (P <0.001 and P <0.001, respectively) after HD. We conclude that most of the Doppler-derived indices of diastolic function are pre-load-dependent and velocity of flow progression was minimally affected by pre-load reduction in HD patients. PMID:24969184

  7. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  8. An electronic Doppler signal generator for assessing continuous-wave ultrasonic Doppler flowmeters

    NASA Astrophysics Data System (ADS)

    Smallwood, R. H.; Dixon, P.

    1986-03-01

    The design and performance of the electric Doppler signal generator are described. The features of the CW ultrasonic Doppler flowmeter, which operates in the 2-10 MHz range, that are relevant to the design of the generator are examined. Methods for evaluating the bandwidth, dynamic range, directional separation, and linearity of the zero-crossing detector are discussed. The use of a polyphase network as a phase shifter to generate a single sideband (SSB) signal is analyzed. The SSB generation is performed at a frequency of 100 kHz and the advantages of generation at this frequency are stated. The selection of proper SSB signals for the system is investigated. The performance of the Doppler signal generator is evaluated with a frequency analyzer; sideband rejection ratios and phase error in the quadrature oscillator are calculated. The Doppler generator was applied to a CW flowmeter and output signal levels were measured. The test reveals that the Doppler signal generator's performance exceeds the flowmeter requirements; rejection of the unwanted sideband exceeds 40 dB for Doppler frequencies up to 10 kHz, which is the minimum upper frequency for 10 MHz flowmeters.

  9. Thin Lens Ray Tracing.

    ERIC Educational Resources Information Center

    Gatland, Ian R.

    2002-01-01

    Proposes a ray tracing approach to thin lens analysis based on a vector form of Snell's law for paraxial rays as an alternative to the usual approach in introductory physics courses. The ray tracing approach accommodates skew rays and thus provides a complete analysis. (Author/KHR)

  10. Trace element emissions

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Steadman, E.N.; Zygarlicke, C.J.; Hauserman, W.B.; Hassett, D.J.

    1994-10-01

    The Energy & Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems, (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions, and (3) identify methods to control trace element emissions.

  11. Transport of Trace Gases

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.

    2005-01-01

    Trace gases measurements are used to diagnose both the chemistry and transport of the atmosphere. These lectures emphasize the interpretation of trace gases measurements and techniques used to untangle chemistry and transport effects. I will discuss PV transform, trajectory techniques, and age-of-air as far as the circulation of the stratosphere.

  12. Doppler lidar results from the San Gorgonio Pass experiments

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.; Skarda, J. R.; Renne, D. S.

    1984-01-01

    During FY-84, the Doppler Lidar data from the San Gorgonio Pass experiments were analyzed, evaluated, and interpreted with regard to signal strength, signal width, magnitude and direction of velocity component and a goodness parameter associated with the expected noise level of the signal. From these parameters, a screening criteria was developed to eliminate questionable data. For the most part analysis supports the validity of Doppler Lidar data obtained at San Gorgonio Pass with respect to the mean velocity magnitude and direction. The question as to whether the Doppler width could be interpreted as a measure of the variance of the turbulence within the Doppler Lidar System (DLS) focal volume was not resolved. The stochastic nature of the Doppler broadening from finite residence time of the particles in the beam as well as other Doppler broadening phenomenon tend to mask the Doppler spread associated with small scale turbulence. Future tests with longer pulses may assist in better understanding.

  13. Traceds: An Experimental Trace Element Partitioning Database

    NASA Astrophysics Data System (ADS)

    Nielsen, R. L.; Ghiorso, M. S.

    2014-12-01

    The goal of this project, which is part of the EARTHCHEM initiative, is to compile the existing experimental trace element partitioning data, and to develop a transparent, accessible resource for the community. The primary goal of experimental trace element partitioning studies is to create a database that can be used to develop models of how trace elements behave in natural geochemical systems. The range of approaches as to how this is accomplished and how the data are reported differs dramatically from one system to another and one investigator to another. This provides serious challenges to the creation of a coherent database - and suggests the need for a standard format for data presentation and reporting. The driving force for this compilation is to provide community access to the complete database for trace element experiments. Our new effort includes all the published analytical results from experimental determinations. In compiling the data, we have set a minimum standard for the data to be included. The threshold criteria include: Experimental conditions (temperature, pressure, device, container, time, etc.) Major element composition of the phases Trace element analyses of the phases Data sources that did not report these minimum components were not included. The rationale for not including such data is that the degree of equilibration is unknown, and more important, no rigorous approach to modeling the behavior of trace elements is possible without a knowledge of the actual concentrations or the temperature and pressure of formation. The data are stored using a schema derived from that of the Library of Experimental Phase Relations (LEPR), modified to account for additional metadata, and restructured to permit multiple analytical entries for various element/technique/standard combinations. Our ultimate goal is to produce a database together with a flexible user interface that will be useful for experimentalists to set up their work and to build

  14. Superharmonic microbubble Doppler effect in ultrasound therapy.

    PubMed

    Pouliopoulos, Antonios N; Choi, James J

    2016-08-21

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  10(4)-5  ×  10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset

  15. Superharmonic microbubble Doppler effect in ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Pouliopoulos, Antonios N.; Choi, James J.

    2016-08-01

    The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5  ×  104–5  ×  107 microbubbles ml‑1) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75–366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s‑1, prior to the onset

  16. A Systematic Review of the Evolution of Laser Doppler Techniques in Burn Depth Assessment

    PubMed Central

    Fitzgerald O'Connor, Edmund; Philp, Bruce

    2014-01-01

    Aims. The introduction of laser Doppler (LD) techniques to assess burn depth has revolutionized the treatment of burns of indeterminate depth. This paper will systematically review studies related to these two techniques and trace their evolution. At the same time we hope to highlight current controversies and areas where further research is necessary with regard to LD imaging (LDI) techniques. Methods. A systematic search for relevant literature was carried out on PubMed, Medline, EMBASE, and Google Scholar. Key search terms included the following: “Laser Doppler imaging,” “laser Doppler flow,” and “burn depth.” Results. A total of 53 studies were identified. Twenty-six studies which met the inclusion/exclusion criteria were included in the review. Conclusions. The numerous advantages of LDI over those of LD flowmetry have resulted in the former technique superseding the latter one. Despite the presence of alternative burn depth assessment techniques, LDI remains the most favoured. Various newer LDI machines with increasingly sophisticated methods of assessing burn depth have been introduced throughout the years. However, factors such as cost effectiveness, scanning of topographically inconsistent areas of the body, and skewing of results due to tattoos, peripheral vascular disease, and anaemia continue to be sighted as obstacles to LDI which require further research. PMID:25180087

  17. Anisotropic sub-Doppler laser cooling in dysprosium magneto-optical traps

    SciTech Connect

    Youn, Seo Ho; Lu, Mingwu; Lev, Benjamin L.

    2010-10-15

    Magneto-optical traps (MOTs) of Er and Dy have recently been shown to exhibit populationwide sub-Doppler cooling due to their near degeneracy of excited- and ground-state Landeg factors. We discuss here an additional, unusual intra-MOT sub-Doppler cooling mechanism that appears when the total Dy MOT cooling laser intensity and magnetic quadrupole gradient increase beyond critical values. Specifically, anisotropically sub-Doppler-cooled cores appear, and their orientation with respect to the quadrupole axis flips at a critical ratio of the MOT laser intensity along the quadrupole axis versus that in the plane of symmetry. This phenomenon can be traced to a loss of the velocity-selective resonance at zero velocity in the cooling force along directions in which the atomic polarization is oriented by the quadrupole field. We present data characterizing this anisotropic laser cooling phenomenon and discuss a qualitative model for its origin based on the extraordinarily large Dy magnetic moment and Dy's near degenerate g factors.

  18. Normal Echocardiographic Measurements in a Korean Population Study: Part II. Doppler and Tissue Doppler Imaging

    PubMed Central

    Choi, Jin-Oh; Shin, Mi-Seung; Kim, Mi-Jeong; Jung, Hae Ok; Park, Jeong Rang; Sohn, Il Suk; Kim, Hyungseop; Park, Seong-Mi; Yoo, Nam Jin; Choi, Jung Hyun; Kim, Hyung-Kwan; Cho, Goo-Yeong; Lee, Mi-Rae; Park, Jin-Sun; Shim, Chi Young; Kim, Dae-Hee; Shin, Dae-Hee; Shin, Gil Ja; Shin, Sung Hee; Kim, Kye Hun; Park, Jae-Hyeong; Lee, Sang Yeub; Kim, Woo-Shik

    2016-01-01

    Background Hemodynamic and functional evaluation with Doppler and tissue Doppler study as a part of comprehensive echocardiography is essential but normal reference values have never been reported from Korean normal population especially according to age and sex. Methods Using Normal echOcaRdiographic Measurements in a KoreAn popuLation study subjects, we obtained normal reference values for Doppler and tissue Doppler echocardiography including tricuspid annular velocities according to current guidelines and compared values according to gender and age groups. Results Mitral early diastolic (E) and late diastolic (A) velocity as well as E/A ratio were significantly higher in women compared to those in men. Conversely, mitral peak systolic and late diastolic annular velocity in both septal and lateral mitral annulus were significantly lower in women compared to those in men. However, there were no significant differences in both septal and lateral mitral early diastolic annular (e') velocity between men and women. In both men and women, mitral E velocity and its deceleration time as well as both E/A and E/e' ratio considerably increased with age. There were no significant differences in tricuspid inflow velocities and tricuspid lateral annular velocities between men and women except e' velocity, which was significantly higher in women compared to that in men. However, changes in both tricuspid inflow and lateral annular velocities according to age were similar to those in mitral velocities. Conclusion Since there were significant differences in Doppler and tissue Doppler echocardiographic variables between men and women and changes according to age were even more considerable in both gender groups, normal Doppler echocardiographic values should be differentially applied based on age and sex. PMID:27358707

  19. Effects of transducer, velocity, Doppler angle, and instrument settings on the accuracy of color Doppler ultrasound.

    PubMed

    Stewart, S F

    2001-04-01

    The accuracy of a commercial color Doppler ultrasound (US) system was assessed in vitro using a rotating torus phantom. The phantom consisted of a thin rubber tube filled with a blood-mimicking fluid, joined at the ends to form a torus. The torus was mounted on a disk suspended in water, and rotated at constant speeds by a motor. The torus fluid was shown in a previous study to rotate as a solid body, so that the actual fluid velocity was dependent only on the motor speed and sample volume radius. The fluid velocity could, thus, be easily compared to the color Doppler-derived velocity. The effects of instrument settings, velocity and the Doppler angle was assessed in four transducers: a 2.0-MHz phased-array transducer designed for cardiac use, a 4.0-MHz curved-array transducer designed for general thoracic use, and two linear transducers designed for vascular use (one 4.0 MHz and one 6.0 MHz). The color Doppler accuracy was found to be significantly dependent on the transducer used, the pulse-repetition frequency and wall-filter frequency, the actual fluid velocity and the Doppler angle (p < 0.001 by analysis of variance). In particular, the phased array and curved array were observed to be significantly more accurate than the two linear arrays. The torus phantom was found to provide a sensitive measure of color Doppler accuracy. Clinicians need to be aware of these effects when performing color Doppler US exams. PMID:11368866

  20. Computer ray tracing speeds.

    PubMed

    Robb, P; Pawlowski, B

    1990-05-01

    The results of measuring the ray trace speed and compilation speed of thirty-nine computers in fifty-seven configurations, ranging from personal computers to super computers, are described. A correlation of ray trace speed has been made with the LINPACK benchmark which allows the ray trace speed to be estimated using LINPACK performance data. The results indicate that the latest generation of workstations, using CPUs based on RISC (Reduced Instruction Set Computer) technology, are as fast or faster than mainframe computers in compute-bound situations. PMID:20563112

  1. Early Changes in Atrial Electromechanical Coupling in Patients with Hypertension: Assessment by Tissue Doppler Imaging

    PubMed Central

    Avci, Burcak Kilickiran; Gulmez, Oyku; Donmez, Guclu; Pehlivanoglu, Seckin

    2016-01-01

    Background: Hypertension (HT) is associated with atrial electrophysiological abnormalities. Echocardiographic pulsed wave tissue Doppler imaging (TDI) is one of the noninvasive methods for evaluation of atrial electromechanical properties. The aims of our study were to investigate the early changes in atrial electromechanical conduction in patients with HT and to assess the parameters that affect atrial electromechanical conduction. Methods: Seventy-six patients with HT (41 males, mean age 52.6 ± 9.0 years) and 41 controls (22 males, mean age 49.8 ± 7.9 years) were included in the study. Atrial electromechanical coupling at the right (PRA), left (PLA), interatrial septum (PIS) were measured with TDI. Intra- (right: PIS-PRA, left: PLA-PIS) and inter-atrial (PLA-PRA) electromechanical delays were calculated. Maximum P-wave duration (Pmax) was calculated from 12-lead electrocardiogram. Results: Atrial electromechanical coupling at PLA (76.6 ± 14.1 ms vs. 82.9 ± 15.8 ms, P = 0.036), left intra-atrial (10.9 ± 5.0 ms vs. 14.0 ± 9.7 ms, P = 0.023), right intra-atrial (10.6 ± 7.8 ms vs. 14.5 ± 10.1 ms, P = 0.035), and interatrial electromechanical (21.4 ± 9.8 ms vs. 28.3 ± 12.7 ms, P = 0.003) delays were significantly longer in patients with HT. The linear regression analysis showed that left ventricular (LV) mass index and Pmax were significantly associated with PLA (P = 0.001 and P = 0.002, respectively), and the LV mass index was the only related factor for interatrial delay (P = 0.001). Conclusions: Intra- and interatrial electromechanical delay, PLA were significantly prolonged in hypertensive patients. LV mass index and Pmax were significantly associated with PLA, and the LV mass index was the only related factor for interatrial delay. The atrial TDI can be a valuable method to assess the early changes of atrial electromechanical conduction properties in those patients. PMID:27231168

  2. ROTATIONAL DOPPLER BEAMING IN ECLIPSING BINARIES

    SciTech Connect

    Groot, Paul J.

    2012-01-20

    In eclipsing binaries the stellar rotation of the two components will cause a rotational Doppler beaming during eclipse ingress and egress when only part of the eclipsed component is covered. For eclipsing binaries with fast spinning components this photometric analog of the well-known spectroscopic Rossiter-McLaughlin effect can exceed the strength of the orbital effect. Example light curves are shown for a detached double white dwarf binary, a massive O-star binary and a transiting exoplanet case, similar to WASP-33b. Inclusion of the rotational Doppler beaming in eclipsing systems is a prerequisite for deriving the correct stellar parameters from fitting high-quality photometric light curves and can be used to determine stellar obliquities as well as, e.g., an independent measure of the rotational velocity in those systems that may be expected to be fully synchronized.

  3. Design of a Doppler reflectometer for KSTAR

    SciTech Connect

    Lee, K. D. Nam, Y. U.; Seo, Seong-Heon; Kim, Y. S.

    2014-11-15

    A Doppler reflectometer has been designed to measure the poloidal propagation velocity on the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It has the operating frequency range of V-band (50-75 GHz) and the monostatic antenna configuration with extraordinary mode (X-mode). The single sideband modulation with an intermediate frequency of 50 MHz is used for the heterodyne measurement with the 200 MHz in-phase and quadrature (I/Q) phase detector. The corrugated conical horn antenna is used to approximate the Gaussian beam propagation and it is installed together with the oversized rectangular waveguides in the vacuum vessel. The first commissioning test of the Doppler reflectometer system on the KSTAR tokamak is planned in the 2014 KSTAR experimental campaign.

  4. Uterine artery Doppler and prediction of preeclampsia.

    PubMed

    Lovgren, Todd R; Dugoff, Lorraine; Galan, Henry L

    2010-12-01

    Identifying patients at risk for preeclampsia would allow an increase in perinatal surveillance and possibly decrease the inherent maternal and fetal morbidity and mortality associated with severe preeclampsia and eclampsia. First and second trimester uterine artery Doppler velocimetry is a sensitive screening tool for the detection of preeclampsia and intrauterine growth retardation (IUGR) requiring delivery before 34 weeks. The performance of uterine artery Doppler velocimetry as a screening test depends on the prevalence of the adverse outcome in the studied population and whether the adverse outcomes are assessed individually or collectively as a group. Future research in this area should focus on identification of additional markers that may be incorporated into a prediction model for early identification of patients at risk for adverse outcomes. PMID:21048456

  5. The Doppler spread theory and parameterization revisited

    NASA Astrophysics Data System (ADS)

    Hines, Colin O.

    2004-07-01

    The author's earlier Doppler Spread Theory (DST) and Doppler Spread Parameterization (DSP) are revisited with a new understanding of the dichotomous roles played by nonlinearity in Eulerian and Lagrangian coordinates, respectively. An embryo Lagrangian DST is introduced and employed to assess the original DST. Earlier results near the Eulerian spectral peak are found to be reasonably valid, whereas those at greater vertical wavenumber are confirmed to have produced too much spreading. The earlier DSP is found to need little if any change, though specific values are suggested for its two most important ``fudge factors''. In a more general context, the continuing identity of a wave undergoing certain nonlinear interactions with other waves is discussed.

  6. Doppler ultrasound studies in pelvic inflammatory disease.

    PubMed

    Tinkanen, H; Kujansuu, E

    1992-01-01

    Ten women with tubo-ovarian abscess caused by pelvic inflammatory disease (PID) were investigated by transvaginal Doppler ultrasound during the acute and healing phases of the infection. The pulsatility index (PI) of the uterine arteries was measured and compared with the values obtained from 19 healthy women. Each control patient was investigated three times during a single menstrual cycle. In PID patients, the PI values were significantly lower than in controls in the same phase of the menstrual cycle. When C-reactive protein was > 50, the PI values were lowest and reverted to normal values when the infection subsided. In a case of chronic infection, the PI did not rise to normal despite normal infection parameters. Doppler ultrasound seems to offer a new method of assessing PID. PMID:1487185

  7. Minior Actinide Doppler Coefficient Measurement Assessment

    SciTech Connect

    Nolan E. Hertel; Dwayne Blaylock

    2008-04-10

    The "Minor Actinide Doppler Coefficient Measurement Assessment" was a Department of Energy (DOE) U-NERI funded project intended to assess the viability of using either the FLATTOP or the COMET critical assembly to measure high temperature Doppler coefficients. The goal of the project was to calculate using the MCNP5 code the gram amounts of Np-237, Pu-238, Pu-239, Pu-241, AM-241, AM-242m, Am-243, and CM-244 needed to produce a 1E-5 in reactivity for a change in operating temperature 800C to 1000C. After determining the viability of using the assemblies and calculating the amounts of each actinide an experiment will be designed to verify the calculated results. The calculations and any doncuted experiments are designed to support the Advanced Fuel Cycle Initiative in conducting safety analysis of advanced fast reactor or acceoerator-driven transmutation systems with fuel containing high minor actinide content.

  8. Measuring Doppler Beaming with Kepler and TESS

    NASA Astrophysics Data System (ADS)

    Mayorga, Laura; Jackiewicz, Jason

    2016-01-01

    The Kepler mission offered unparalleled insight into stellar systems. Due to Kepler's high precision photometry, we can study the reflected light from a planet, the ellipsoidal variations of a star, and the small Doppler beaming signal due to the gravitational interaction between a planet and host star. To predict how the beaming signal varies as a function of stellar system parameters, we numerically simulate the beaming signals both Kepler and the upcoming Transiting Exoplanet Survey Satellite (TESS) would detect. We predict what mass planets TESS will be capable of detecting given the solar neighborhood population of stars and known population of exoplanets. Doppler beaming is largest for massive, short-period planets around cool stars and is more easily detectable by Kepler than TESS. Kepler's advantage is its bluer bandpass, longer time baseline, and higher precision.

  9. Lactotripeptides effect on office and 24-h ambulatory blood pressure, blood pressure stress response, pulse wave velocity and cardiac output in patients with high-normal blood pressure or first-degree hypertension: a randomized double-blind clinical trial.

    PubMed

    Cicero, Arrigo F G; Rosticci, Martina; Gerocarni, Beatrice; Bacchelli, Stefano; Veronesi, Maddalena; Strocchi, Enrico; Borghi, Claudio

    2011-09-01

    Contrasting data partially support a certain antihypertensive efficacy of lactotripeptides (LTPs) derived from enzymatic treatment of casein hydrolysate. Our aim was to evaluate this effect on a large number of hemodynamic parameters. We conducted a prospective double-blind randomized clinical trial, which included 52 patients affected by high-normal blood pressure (BP) or first-degree hypertension. We investigated the effect of a 6-week treatment with the LTPs isoleucine-proline-proline and valine-proline-proline at 3 mg per day, assumed to be functional food, on office BP, 24-h ambulatory BP monitoring (ABPM) values, stress-induced BP increase and cardiac output-related parameters. In the LTP-treated subjects, we observed a significant reduction in office systolic BP (SBP; -5±8 mm Hg, P=0.013) and a significant improvement in pulse wave velocity (PWV; -0.66±0.81 m s(-1), P=0.001; an instrumental biomarker of vascular rigidity). No effect on 24-h ABPM parameters and BP reaction to stress was observed from treatment with the combined LTPs. LTPs, but not placebo, were associated with a mild but significant change in the stroke volume (SV), SV index (markers of cardiac flow), the acceleration index (ACI) and velocity index (VI) (markers of cardiac contractility). No effect was observed on parameters related to fluid dynamics or vascular resistance. LTPs positively influenced the office SBP, PWV, SV, SV index, ACI and VI in patients with high-normal BP or first-degree hypertension. PMID:21753776

  10. Straylight correction to Doppler rotation measurements

    NASA Astrophysics Data System (ADS)

    Andersen, B. N.

    1985-07-01

    The correction of the Pierce and LoPresto (1984) Doppler data on the plasma rotation rate for stray light increases the observed equatorial rotation velocity from 1977 to 2004 m/sec. This correction has an uncertainty of approximately 10 m/sec, because the accurate form of the stray light function is not available. The correction is noted to be largest for the blue lines, in virtue of increased scattering, and for the weak lines, due to the limb effect.

  11. Doppler, Johann Christian Andreas (1803-53)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Born in Salzburg, Austria, Doppler studied and taught mathematics in Vienna. On the verge, because of economic hardship, of emigrating to America, he was offered posts in Prague. Despite huge teaching loads, he was able to carry out some research of his own (in the face of complaints of neglect by his students). In 1842 read a paper to the Royal Bohemian Society `On the colored light of the doubl...

  12. Directional acoustic measurements by laser Doppler velocimeters

    NASA Technical Reports Server (NTRS)

    Mazumder, M. K.; Overbey, R. L.; Testerman, M. K.

    1976-01-01

    Laser Doppler velocimeters (LDVs) are used as velocity microphones to measure sound pressure level in the range from 90 to 130 dB, spectral components, and two-point correlation functions for acoustic-noise source identification. Close agreement between LDV and microphone data is observed. Directional sensitivity and the ability to measure remotely make LDVs useful tools for acoustic measurement where placement of any physical probe is difficult or undesirable, as in the diagnosis of jet noise.

  13. Doppler Lidar Wind Value-Added Product

    SciTech Connect

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.; Riihimaki, L. D.

    2015-07-01

    Wind speed and direction, together with pressure, temperature, and relative humidity, are the most fundamental atmospheric state parameters. Accurate measurement of these parameters is crucial for numerical weather prediction. Vertically resolved wind measurements in the atmospheric boundary layer are particularly important for modeling pollutant and aerosol transport. Raw data from a scanning coherent Doppler lidar system can be processed to generate accurate height-resolved measurements of wind speed and direction in the atmospheric boundary layer.

  14. Coastal salinity measurement using a Doppler Radiometer

    NASA Astrophysics Data System (ADS)

    Schwarz, Benjamin S.; Tatnall, Adrian R. L.; Lewis, Hugh G.

    2012-10-01

    Coastal salinity is characterised by large and variable salinity contrasts on relatively small scales. Measurements of salinity at a resolution compatible with these coastal regions on a regular basis would provide a rich source of information that could be used for a number of applications that have a fundamental bearing on the world's lifestyle. Doppler radiometry offers an approach to capture such measurements, as it reduces the number of required antennas needed to form an image, compared with an Interferometer type instrument. In this work, a Doppler Radiometer type instrument on free-flying satellites is introduced. This approach removes the need for a physical connection between all the antennas, affords the system a degree of reconfigurability, yet is still able to provide data of sufficient resolution. A Y-shaped central hub (similar to the SMOS configuration) is employed with additional antennas mounted on free flying platforms surrounding the central hub. The additional baselines formed between the antennas of the free flying satellites and central hub as well as between the free flying satellites extend the u-v coverage beyond that of just the central hub. The spatial resolution of a Doppler Radiometer system with a Y-shaped hub with a SMOS configuration of antennas, with each arm extended by five 6 m spaced free flying antennas would be of the order of 5 km, when imaging from 800 km. This paper will present some initial results from a study into an instrument concept that could provide coastal salinity measurements at microwave wavelengths. The study focuses on antenna array design and on quantifying the improvement in spatial resolution available by using this method, and includes an investigation into the effects of the relative motion between the hub and the free flying satellites on the imaging. Further, whilst this paper focuses on the application of the Doppler Radiometer to salinity measurement, the techniques described are applicable to other

  15. Laser Doppler systems in pollution monitoring

    NASA Technical Reports Server (NTRS)

    Miller, C. R.; Sonnenschein, C. M.; Herget, W. F.; Huffaker, R. M.

    1976-01-01

    The paper reports on a program undertaken to determine the feasibility of using a laser Doppler velocimeter (LDV) to measure smoke-stack gas exit velocity, particulate concentration, and mass flow. Measurements made with a CO2 laser Doppler radar system at a coal-burning power plant are compared with in-stack measurements made by a pitot tube. The operational principles of a LDV are briefly described along with the system employed in the present study. Data discussed include typical Doppler spectra from smoke-stack effluents at various laser elevation angles, the measured velocity profile across the stack exit, and the LDV-measured exit velocity as a function of the exit velocity measured by the in-stack instrument. The in-stack velocity is found to be about 14% higher than the LDV velocity, but this discrepancy is regarded as a systematic error. In general, linear relationships are observed between the laser data, the exit velocity, and the particulate concentration. It is concluded that an LDV has the capability of determining both the mass concentration and the mass flow from a power-plant smoke stack.

  16. Laser Doppler measurement techniques for spacecraft

    NASA Technical Reports Server (NTRS)

    Kinman, Peter W.; Gagliardi, Robert M.

    1986-01-01

    Two techniques are proposed for using laser links to measure the relative radial velocity of two spacecraft. The first technique determines the relative radial velocity from a measurement of the two-way Doppler shift on a transponded radio-frequency subcarrier. The subcarrier intensity-modulates reciprocating laser beams. The second technique determines the relative radial velocity from a measurement of the two-way Doppler shift on an optical frequency carrier which is transponded between spacecraft using optical Costas loops. The first technique might be used in conjunction with noncoherent optical communications, while the second technique is compatible with coherent optical communications. The first technique simultaneously exploits the diffraction advantage of laser beams and the maturity of radio-frequency phase-locked loop technology. The second technique exploits both the diffraction advantage of laser beams and the large Doppler effect at optical frequencies. The second technique has the potential for greater accuracy; unfortunately, it is more difficult to implement since it involves optical Costas loops.

  17. Doppler Lidar for Wind Measurements on Venus

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Emmitt, George D.; Yu, Jirong; Kavaya, Michael J.

    2010-01-01

    NASA Langley Research Center has a long history of developing 2-micron laser transmitter for wind sensing. With support from NASA Laser Risk Reduction Program (LRRP) and Instrument Incubator Program (IIP), NASA Langley Research Center has developed a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement. The transmitter portion of the transceiver employs the high-pulse-energy, Ho:Tm:LuLiF, partially conductively cooled laser technology developed at NASA Langley. The transceiver is capable of 250 mJ pulses at 10 Hz. It is very similar to the technology envisioned for coherent Doppler lidar wind measurements from Earth and Mars orbit. The transceiver is coupled to the large optics and data acquisition system in the NASA Langley VALIDAR mobile trailer. The large optics consists of a 15-cm off-axis beam expanding telescope, and a full-hemispheric scanner. Vertical and horizontal vector winds are measured, as well as relative backscatter. The data acquisition system employs frequency domain velocity estimation and pulse accumulation. It permits real-time display of the processed winds and archival of all data. This lidar system was recently deployed at Howard University facility in Beltsville, Mary-land, along with other wind lidar systems. Coherent Doppler wind lidar ground-based wind measurements and comparisons with other sensors will be presented. A simulation and data product for wind measurement at Venus will be presented.

  18. Trace Elements and Health

    ERIC Educational Resources Information Center

    Pettyjohn, Wayne A.

    1972-01-01

    Summarizes the effects of arsenic, lead, zinc, mercury, and cadmium on human health, indicates the sources of the elements in water, and considers the possibility of students in high schools analyzing water for trace amounts of the elements. (AL)

  19. Trace Organic Analysis

    ERIC Educational Resources Information Center

    Ember, Lois R.

    1978-01-01

    Trace organic analysis (TOA) is seen as a more useful way to quantify environmental pollutants. Current practices and future trends are discussed in detail. Seven steps in TOA are identified: collection, storage, extraction, concentration, isolation, identification, and quantification. (MA)

  20. Measurement of TID and Gravity Wave Parameters Using An HF Doppler System

    NASA Astrophysics Data System (ADS)

    Wene, G. P.; Crowley, G.; Fessler, B. W.; Bronn, J. S.

    2005-05-01

    The manifestation of atmospheric gravity waves (AGWs) in the ionosphere is called a traveling ionospheric disturbance (TID). TIDs can be thought of as traveling corrugations in the ionosphere, and as such can seriously affect HF radio communications and surveillance systems. They may indirectly play a greater role in disrupting communications by triggering the growth of ionospheric instabilities, resulting in scintillation of radio signals. It is therefore of great interest to monitor TIDs on a routine basis, and to correlate their properties with other phenomena. In this paper, we present data from a unique radio technique for measuring TID properties such as their spectrum, and their spectrally resolved propagation characteristics. One of the most sensitive methods for detecting transient changes in the ionosphere is the HF Doppler technique operating in the 3-10 MHz band. HF Doppler systems have advantages over all other techniques for the measurement of TID characteristics. They are more amenable to analysis than data from ionosonde chains, and their time resolution (30 sec) is much higher than that of ionosondes . Unlike total electron content (TEC) methods, which respond to height-integrated TID effects, the HF Doppler radar responds to TIDs at the altitude of the radio reflection point. Finally, HF Doppler systems have low power consumption, so that both spatial and temporal resolution can be maintained for many days without the costs that would be associated with an incoherent-scatter radar. SwRI recently designed, built and deployed an HF Doppler sounding system in Texas, to investigate TIDs. The TIDDBIT radar consisted of three transmitters (Austin, Uvalde and St. Hedwig) and a receiver in San Antonio, Texas. Using a cross-spectral analysis technique, TID speeds and azimuths were obtained for each wave frequency. We provide a synoptic survey of the TID characteristics observed over Texas during January-March 2002. The Doppler system provides an accurate

  1. Comparing TID simulations using 3-D ray tracing and mirror reflection

    NASA Astrophysics Data System (ADS)

    Huang, X.; Reinisch, B. W.; Sales, G. S.; Paznukhov, V. V.; Galkin, I. A.

    2016-04-01

    Measuring the time variations of Doppler frequencies and angles of arrival (AoA) of ionospherically reflected HF waves has been proposed as a means of detecting the occurrence of traveling ionospheric disturbances (TIDs). Simulations are made using ray tracing through the International Reference Ionosphere (IRI) electron density model in an effort to reproduce measured signatures. The TID is represented by a wavelike perturbation of the 3-D electron density traveling horizontally in the ionosphere with an amplitude that varies sinusoidally with time. By judiciously selecting the TID parameters the ray tracing simulation reproduces the observed Doppler frequencies and AoAs. Ray tracing in a 3-D realistic ionosphere is, however, excessively time consuming considering the involved homing procedures. It is shown that a carefully selected reflecting corrugated mirror can reproduce the time variations of the AoA and Doppler frequency. The results from the ray tracing through the IRI model ionosphere and the mirror model reflections are compared to assess the applicability of the mirror-reflection model.

  2. SMEAT atmosphere trace contaminants.

    NASA Technical Reports Server (NTRS)

    Schornick, J. L.; Heinrich, C. T.; Garcia, G. S., Jr.; Verostko, C. E.

    1973-01-01

    The atmosphere trace contaminant analysis support provided for the Skylab Medical Experiments Altitude Test (SMEAT) which was conducted from July 26 through September 20, 1972, at the JSC Crew Systems Division facility is discussed. Sample acquisition techniques and analytical instrumentation methodology utilized for identification and quantification of the trace contaminants are described. Emphasis is placed on the contaminants found, their occurrence patterns, and possible sources.

  3. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  4. Computer vision approach for ultrasound Doppler angle estimation.

    PubMed

    Saad, Ashraf A; Loupas, Thanasis; Shapiro, Linda G

    2009-12-01

    Doppler ultrasound is an important noninvasive diagnostic tool for cardiovascular diseases. Modern ultrasound imaging systems utilize spectral Doppler techniques for quantitative evaluation of blood flow velocities, and these measurements play a crucial rule in the diagnosis and grading of arterial stenosis. One drawback of Doppler-based blood flow quantification is that the operator has to manually specify the angle between the Doppler ultrasound beam and the vessel orientation, which is called the Doppler angle, in order to calculate flow velocities. In this paper, we will describe a computer vision approach to automate the Doppler angle estimation. Our approach starts with the segmentation of blood vessels in ultrasound color Doppler images. The segmentation step is followed by an estimation technique for the Doppler angle based on a skeleton representation of the segmented vessel. We conducted preliminary clinical experiments to evaluate the agreement between the expert operator's angle specification and the new automated method. Statistical regression analysis showed strong agreement between the manual and automated methods. We hypothesize that the automation of the Doppler angle will enhance the workflow of the ultrasound Doppler exam and achieve more standardized clinical outcome. PMID:18488268

  5. TraceContract

    NASA Technical Reports Server (NTRS)

    Kavelund, Klaus; Barringer, Howard

    2012-01-01

    TraceContract is an API (Application Programming Interface) for trace analysis. A trace is a sequence of events, and can, for example, be generated by a running program, instrumented appropriately to generate events. An event can be any data object. An example of a trace is a log file containing events that a programmer has found important to record during a program execution. Trace - Contract takes as input such a trace together with a specification formulated using the API and reports on any violations of the specification, potentially calling code (reactions) to be executed when violations are detected. The software is developed as an internal DSL (Domain Specific Language) in the Scala programming language. Scala is a relatively new programming language that is specifically convenient for defining such internal DSLs due to a number of language characteristics. This includes Scala s elegant combination of object-oriented and functional programming, a succinct notation, and an advanced type system. The DSL offers a combination of data-parameterized state machines and temporal logic, which is novel. As an extension of Scala, it is a very expressive and convenient log file analysis framework.

  6. Doppler Wind Measurements of Mars Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Sandor, B. J.; Moriarty-Schieven, G. H.

    2003-05-01

    The late August 2003 opposition of Mars, which occurs very near Mars perihelion, presents its largest angular diameter (25 arcsec) over the previous and subsequent 20 years. Sub-millimeter observations from the James Clerk Maxwell Telescope (JCMT) on August 27 (also scheduled for September 3) will provide 345 Ghz CO line integrations at five beam positions on the Mars disk. Differencing spectral line absorptions observed at east, west, south, and north offset positions from a disk center spectrum yields highly accurate measurements of projected doppler velocities relative to the disk center. As demonstrated in similar Venus mesospheric (90-110 km altitude) wind measurements obtained from JCMT in March 2001 and November 2002 (Clancy et al., 2002), this method provides excellent sensitivity (5 m/sec at 40-80 km altitudes) for short integration periods (10-15 minutes). Systematic uncertainties associated with the absorption lineshape and spectrometer baseline and channel characteristics are minimized, and the steep sub-millimeter line core shapes provide improved doppler shift sensitivity relative to millimeter measurements. Direct wind measurements for the Mars atmosphere are extremely important for validation of Mars general circulation models (GCM, e.g. Forget et al., 1999), yet remain beyond current spacecraft mission capabilities. Lellouch et al. (1993) obtained equinoctial (Ls=200) wind determinations in significant disagreement with Mars GCM predictions, employing 230 Ghz CO doppler line shifts from IRAM. JCMT sub-millimeter CO doppler shifts observed during the August 2003 Mars opposition should be much more accurate, with critical zonal and meridional resolution during the key southern summer season. Atmospheric pressure-temperature profiles (0-75km) will also be retrieved from each disk position 12CO spectrum, complementing the Ls dependence of disk average measurements obtained from previous whole disk JCMT Mars 12CO observations. In addition to doppler

  7. Multi-epoch Doppler tomography and polarimetry of QQ Vul

    NASA Astrophysics Data System (ADS)

    Schwope, Axel D.; Catalán, Maria S.; Beuermann, Klaus; Metzner, André; Smith, Robert Connon; Steeghs, Danny

    2000-04-01

    We present multi-epoch high-resolution spectroscopy and photoelectric polarimetry of the long-period polar (AM Herculis star) QQ Vul. The blue emission lines show several distinct components, the sharpest of which can unequivocally be assigned to the illuminated hemisphere of the secondary star and used to trace its orbital motion. This narrow emission line can be used in combination with Nai absorption lines from the photosphere of the companion to build a stable long-term ephemeris for the star: inferior conjunction of the companion occurs at HJD=2448446.4710(5)+Ex0.15452011 day (11). The polarization curves are dissimilar at different epochs, thus supporting the idea of fundamental changes of the accretion geometry, e.g., between one- and two-pole accretion modes. The linear polarization pulses display a random scatter by 0.2 phase units and are not suitable for the determination of the binary period. The polarization data suggest that the magnetic (dipolar) axis has a colatitude of 23 deg, an azimuth of -50 deg, and an orbital inclination between 50 deg and 70 deg. Doppler images of blue emission and red absorption lines show a clear separation between the illuminated and non-illuminated hemispheres of the secondary star. The absorption lines on their own can be used to determine the mass ratio of the binary by Doppler tomography with an accuracy of 15-20 per cent. The narrow emission lines of different atomic species show remarkably different radial velocity amplitudes: K=85-130kms-1. Emission lines from the most highly ionized species, Heii, originate closest to the inner Lagrangian point L1. We can discern two kinematic components within the accretion stream; one is associated with the ballistic part, and the other with the magnetically threaded part of the stream. The location of the emission component associated with the ballistic accretion stream appears displaced between different epochs. Whether this displacement indicates a dislocation of the ballistic

  8. The delta Doppler technique for LDV measurements at long distances

    NASA Technical Reports Server (NTRS)

    Cliff, W. C.

    1976-01-01

    A technique for measuring velocity, referred to as a Delta Doppler technique, was presented. This technique determines scattering source velocities by measuring the difference in Doppler shifts of two different frequencies. By transmitting the two frequencies along the same path, a moving fringe pattern is established such that a nonmoving scatterer at the sensing volume would see an intensity variation exactly equal to the difference in the transmitted frequencies. If the particle has a velocity component along an axis which bisects the angle formed by the transmitter and receiver axes, a Doppler shift in the difference frequency can be measured and the velocity component computed. The frequency measured would correspond to the difference in Doppler frequencies that two laser Doppler velocimeters using separate frequencies (the same frequencies as used previously) would have measured, thus the term Delta Doppler.

  9. The portable Doppler: practical applications in EMS care.

    PubMed

    O'Keefe, K M; Bookman, L

    1976-12-01

    The practical application of a new, commercially available, portable Doppler ultrasound device to the operation of a busy city-county emergency department and ambulance service was investigated. An initial evaluation using healthy volunteers confirmed accuracy and reproducibility of the Doppler blood pressure readings comparable to that of auscultatory and palpatory measurement. In selected patients, the Doppler readings correlated well with readings from patients who had intra-arterial lines. When used in several low flow states, such as testing adequacy of cardiopulmonary resuscitation (CPR) and verification of electromechanical dissociation, the Doppler aided the clinical evaluation and treatment in many cases where traditional methods were useless. The Doppler was also helpful in the evaluation of local arterial injury but this unit was not found sensitive enough for venous disease. Finally, the Doppler enhanced the obtaining of vital signs in the noisy environment of our ambulances. PMID:1018378

  10. Spacecraft Doppler Tracking as a Xylophone Detector of Gravitational Radiation

    NASA Technical Reports Server (NTRS)

    Tinto, M.

    1995-01-01

    Spacecraft Doppler tracking is discussed for detecting gravitational waves in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. A new method is derived for removing from combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. The remaining non-zero gravitational wave signal could be used for detecting gravitational waves.

  11. Applications of Doppler ultrasound in clinical vascular disease

    NASA Technical Reports Server (NTRS)

    Barnes, R. W.; Hokanson, D. E.; Sumner, D. S.; Strandness, D. E., Jr.

    1975-01-01

    Doppler ultrasound has become the most useful and versatile noninvasive technique for objective evaluation of clinical vascular disease. Commercially available continuous-wave instruments provide qualitative and quantitative assessment of venous and arterial disease. Pulsed Doppler ultrasound was developed to provide longitudinal and transverse cross-sectional images of the arterial lumen with a resolution approaching that of conventional X-ray techniques. Application of Doppler ultrasound in venous, peripheral arterial, and cerebrovascular diseases is reviewed.

  12. Doppler and speckle methods for diagnostics in dentistry

    NASA Astrophysics Data System (ADS)

    Ulyanov, Sergey S.; Lepilin, Alexander V.; Lebedeva, Nina G.; Sedykh, Alexey V.; Kharish, Natalia A.; Osipova, Yulia; Karpovich, Alexander

    2002-02-01

    The results of statistical analysis of Doppler spectra of scattered intensity, obtained from tissues of oral cavity membrane of healthy volunteers, are presented. The dependence of the spectral moments of Doppler signal on cutoff frequency is investigated. Some results of statistical analysis of Doppler spectra, obtained from tooth pulp of patients, are presented. New approach for monitoring of blood microcirculation in orthodontics is suggested. Influence of own noise of measuring system on formation of speckle-interferometric signal is studied.

  13. Laser ablation and selective excitation directed to trace element analysis

    NASA Astrophysics Data System (ADS)

    Kwong, V. H. S.

    1980-08-01

    A trace (element) analyser based on laser ablation and selectively excited radiation is proposed as an ultramicro-ultratrace technique for quantitative element analysis. Measurements of trace quantities of chromium in samples of NBS standard reference material (steel), doped skim milk powder and doped flour were undertaken. There is a linear 45 deg slope for Log/Log plot dependence of signal versus concentration that extends at least up to 1.3% (concentration by weight) in the case of chromium. The detection limit for the current unoptimized system is in the ppm range which corresponds to the absolute detection limit of 10 to the 13th power g. Although no chemical interference effects were observed, two physical interference effects were evident: differential mass vaporization and inhomogeneous spatial and temporal distribution of fast expanding analyte. The differential Doppler shift between the atoms along the line of observation reduces self-absorption even at high analyte concentrations.

  14. Trace Fossil Analysis

    NASA Astrophysics Data System (ADS)

    Hasiotis, Stephen T.

    2009-05-01

    Today, the study of trace fossils—ichnology—is an important subdiscipline of geology at the interface of paleontology and sedimentology, mostly because of the efforts of Adolf Seilacher. His ability to synthesize various aspects of ichnology and produce a hierarchy of marine ichna and sedimentary facies has made ichnology useful worldwide in interpreting paleodiversity, rates of sedimentation, oxygenation of bottom water and sediment pore water, and depositional energy. Seilacher's book Trace Fossil Analysis provides a glimpse into the mind, methodology, and insights of the father of modern ichnology, generated from his course notes as a professor and a guest lecturer. The title sounds misleading—readers looking for up-to-date principles and approaches to trace fossil analysis in marine and continental strata will be disappointed. In his preface, however, Seilacher clearly gives direction for the use of his text: “This is a course book—meaning that it is intended to confer not knowledge, but skill.” Thus, it is not meant as a total compilation of all trace fossils, ichnotaxonomy, ichnological interpretations, applications, or the most relevant and up-to-date references. Rather, it takes the reader on a personal journey, explaining how trace fossils are understood in the context of their three-dimensional (3-D) morphology and sedimentary facies.

  15. Eliminating Doppler Effects in Synthetic-Aperture Radar Optical Processors

    NASA Technical Reports Server (NTRS)

    Constantindes, N. J.; Bicknell, T. J.

    1984-01-01

    Pair of photodetectors generates correction signals. Instrument detects Doppler shifts in radar and corrects processing parameters so ambiguities caused by shifts not manifested as double or overlapping images.

  16. PRECISE DOPPLER MONITORING OF BARNARD'S STAR

    SciTech Connect

    Choi, Jieun; Marcy, Geoffrey W.; Howard, Andrew W.; Isaacson, Howard; McCarthy, Chris; Fischer, Debra A.; Johnson, John A.; Wright, Jason T.

    2013-02-20

    We present 248 precise Doppler measurements of Barnard's Star (Gl 699), the second nearest star system to Earth, obtained from Lick and Keck Observatories during the 25 years between 1987 and 2012. The early precision was 20 m s{sup -1} but was 2 m s{sup -1} during the last 8 years, constituting the most extensive and sensitive search for Doppler signatures of planets around this stellar neighbor. We carefully analyze the 136 Keck radial velocities spanning 8 years by first applying a periodogram analysis to search for nearly circular orbits. We find no significant periodic Doppler signals with amplitudes above {approx}2 m s{sup -1}, setting firm upper limits on the minimum mass (Msin i) of any planets with orbital periods from 0.1 to 1000 days. Using a Monte Carlo analysis for circular orbits, we determine that planetary companions to Barnard's Star with masses above 2 M {sub Circled-Plus} and periods below 10 days would have been detected. Planets with periods up to 2 years and masses above 10 M {sub Circled-Plus} (0.03 M {sub Jup}) are also ruled out. A similar analysis allowing for eccentric orbits yields comparable mass limits. The habitable zone of Barnard's Star appears to be devoid of roughly Earth-mass planets or larger, save for face-on orbits. Previous claims of planets around the star by van de Kamp are strongly refuted. The radial velocity of Barnard's Star increases with time at 4.515 {+-} 0.002 m s{sup -1} yr{sup -1}, consistent with the predicted geometrical effect, secular acceleration, that exchanges transverse for radial components of velocity.

  17. Christian Doppler is 200 years young.

    PubMed

    Bollinger, Alfred; Partsch, Hugo

    2003-11-01

    Christian Doppler was born 200 years ago in Salzburg, Austria, on November 29, 1803, worked in Prague and Vienna and died 150 years ago in Venice. In an article of eight pages he described the principle, which made him famous. It appeared in 1842 with the exotic title: "On the Coloured Light of the Double Stars and Certain Other Stars of the Heaven". The validity of his principle for velocity measurement was confirmed by trumpet sounds produced on a train moving towards and away from the observer. Around 1960 Japanese scientists suggested that flow velocity in blood vessels could be determined by analysing the difference of frequency between emitted and backscattered ultrasound. Rushmer and coworkers built machines suitable for medicine in Seattle, where Eugene Strandness recognized their potential and applied them in first studies. In 1967 the technique jumped to Europe and started to be used worldwide. Already by using continuous wave ultrasound it was possible to diagnose occlusive disease of neck and limb arteries, venous thrombosis and valvular insufficiency with accuracy. Measurements of postestenotic ankle blood pressure were facilitated by Doppler sensing. Over the years more sophisticated instruments were developed. Pulsed emission of ultrasound waves opened a way to study flow velocity profiles across large vessels. By combining the method with A or B mode ultrasound blood flow could be quantified and finally perfused segments of blood vessels visualized. Duplex scanning in its simple and then in its colour coded version is nowadays the standard non-invasive technique that nobody would like to miss. Vascular territories like intracranial, renal and intestinal arteries can also be explored. For the assessment of microvascular flow in skin and mucosae laser Doppler instruments were introduced. PMID:14694774

  18. Current-induced spin wave Doppler shift

    NASA Astrophysics Data System (ADS)

    Bailleul, Matthieu

    2010-03-01

    In metal ferromagnets -namely Fe, Co and Ni and their alloys- magnetism and electrical transport are strongly entangled (itinerant magnetism). This results in a number of properties such as the tunnel and giant magnetoresistance (i.e. the dependence of the electrical resistance on the magnetic state) and the more recently addressed spin transfer (i.e. the ability to manipulate the magnetic state with the help of an electrical current). The spin waves, being the low-energy elementary excitations of any ferromagnet, also exist in itinerant magnets, but they are expected to exhibit some peculiar properties due the itinerant character of the carriers. Accessing these specific properties experimentally could shed a new light on the microscopic mechanism governing itinerant magnetism, which -in turn- could help in optimizing material properties for spintronics applications. As a simple example of these specific properties, it was predicted theoretically that forcing a DC current through a ferromagnetic metal should induce a shift of the frequency of the spin waves [1,2]. This shift can be identified to a Doppler shift undergone by the electron system when it is put in motion by the electrical current. We will show how detailed spin wave measurements allow one to access this current-induced Doppler shift [3]. From an experimental point of view, we will discuss the peculiarities of propagating spin wave spectroscopy experiments carried out at a sub-micrometer length-scale and with MHz frequency resolution. Then, we will discuss the measured value of the Doppler shift in the context of both the old two-current model of spin-polarized transport and the more recent model of adiabatic spin transfer torque. [4pt] [1] P.Lederer and D.L. Mills, Phys.Rev. 148, 542 (1966).[0pt] [2] J. Fernandez-Rossier et al., Phys. Rev. B 69, 174412 (2004)[0pt] [3] V. Vlaminck and M. Bailleul, Science 322, 410 (2008).

  19. Stack Trace Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2008-01-16

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallel application. STAT uses the MRNet free based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to form a single call prefix tree.more » The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence classes. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.« less

  20. Stack Trace Analysis Tool

    Energy Science and Technology Software Center (ESTSC)

    2013-02-19

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallell application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to from a single call prefix tree.more » The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence slasses. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.« less

  1. Stack Trace Analysis Tool

    SciTech Connect

    2013-02-19

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallell application. STAT uses the MRNet tree based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to from a single call prefix tree. The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence slasses. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.

  2. Stack Trace Analysis Tool

    SciTech Connect

    2008-01-16

    STAT is a light weight debugging tool that gathers and merges stack traces from all of the processes in a parallel application. STAT uses the MRNet free based overlay network to broadcast commands from the tool front-end to the STAT daemons and for the front-end to gather the traces from the STAT daemons. As the traces propagate through the MRNet network tree, they are merged across all tasks to form a single call prefix tree. The call prefix tree can be examined to identify tasks with similar function call patterns and to delineate a small set of equivalence classes. A representative task from each of these classes can then be fed into a full feature debugger like TotalView for root cause analysis.

  3. An improved instantaneous laser Doppler velocity system

    NASA Astrophysics Data System (ADS)

    Desio, Charles V.; Olcmen, Semih; Schinetsky, Philip

    2016-02-01

    In this paper, improvements made on a single velocity component instantaneous laser Doppler velocimetry (ILDV) system are detailed. The ILDV system developed in this research effort is capable of measuring a single velocity component at a rate as high as two megahertz. The current system accounts for the effects of the laser intensity variation on the measured velocity and eliminates the use of a Pockels cell used in previous ILDV systems. The system developed in the current effort was tested using compressible, subsonic jet flows. The ILDV system developed would be most beneficial where a high data capture rate is needed such as in shock tubes, and high-speed wind tunnels.

  4. Left ventricular performance indices by transesophageal Doppler.

    PubMed

    Thys, D M; Hillel, Z

    1988-11-01

    The purpose of this study was to assess whether blood flow velocity signals, obtained by esophageal continuous-wave Doppler, reflect changes in ventricular performance. Ventricular performance has previously been determined by analysis of blood flow velocity signals sampled in the ascending aorta. In this investigation velocity signals were acquired from the descending aorta, with the use of an esophageal Doppler transducer. Maximum blood flow velocity (Vm), maximum blood flow volume acceleration (Accv), and maximum linear blood flow acceleration (Acc) were the velocity signals used to evaluate left ventricular performance. Twenty-six patients scheduled for myocardial revascularization and anesthetized with fentanyl (50 micrograms/kg) and pancuronium (0.15 mg/kg) were studied. In seven patients (Group I) a good correlation (r = 0.91) was observed between Accv in the ascending and descending aorta. In 10 patients (Group 2), halothane (0.5 and 1.0 MAC end-tidal) was added to the anesthetic. At these halothane concentrations Vm, Accv, and Acc measured in the descending aorta remained unchanged. Decreases were noted in the product of mean arterial pressure (MAP) and Acc (P-Acc; decreased 20% at 0.5 MAC and 39% at 1 MAC) and the product of systemic vascular resistance and Acc (R-Acc; decreased 25% at 1 MAC). In nine patients (Group 3), phenylephrine was used to reverse the decrease in MAP induced by 1 MAC halothane. Under these conditions Vm, Accv, Acc, and P-Acc showed similar decreases (approximately 30% of baseline values), whereas R-Acc returned to baseline values. In summary, indices of blood flow in the descending aorta were easily determined with a commercial transesophageal continuous-wave Doppler device. Descending and ascending aortic blood flow Accv correlated well, and the changes in the product of MAP and Acc in the descending aorta reflected the anticipated, halothane-induced, changes in left ventricular performance. In conclusion, descending aortic blood

  5. [Color Doppler sonography of focal abdominal lesions].

    PubMed

    Licanin, Zoran; Lincender, Lidija; Djurović, V; Salihefendić, Nizama; Smajlović, Fahrudin

    2004-01-01

    Color Doppler sonography (CDS--spectral, color and power), harmonic imaging techniques (THI, PHI), possibility of 3D analysis of picture, usage of contrast agents, have raised the values of ultrasound as a diagnostic method to a very high level. THI--non-linear gray scale modality, is based on the processing of higher reflected frequencies, that has improved a picture resolution, which is presented with less artifacts and limiting effects of obesity and gases. Ultrasound contrast agents improve analysis of micro and macro circulation of the examined area, and with the assessment of velocity of supply in ROI (wash in), distribution and time of signal weakening (wash out), are significantly increasing diagnostic value of ultrasound. Besides the anatomical and topographic presentation of examined region (color, power), Color Doppler sonography gives us haemodynamic-functional information on vascularisation of that region, as well as on pathologic vascularisation if present. Avascular aspect of a focal pathologic lesion corresponds to a cyst or haematoma, while coloration and positive spectral curve discover that anechogenic lesions actually represents aneurysms, pseudoaneurysms or AVF. In local inflammatory lesion, abscess in an acute phase, CDS shows first increased, and then decreased central perfusion, while in a chronic phase, a pericapsular vascularisation is present. Contribution of CDS in differentiation of hepatic tumors (hemangioma, HCC and metastasis) is very significant. Central color dots along the peripheral blood vessels and the blush phenomenon are characteristics of capillary hemangioma, peritumoral vascular ring "basket" of HCC, and "detour" sign of metastasis. The central artery, RI from 0.45 to 0.60 and radial spreading characterize FNH. Hepatic adenoma is characterized by an intratumoral vein, and rarely by a vascular hallo. Further on, blood velocity in tumor defined by Color Doppler, distinguishes malignant from benign lesion, where 40 cm/s is a

  6. Everyday relativity and the Doppler effect

    NASA Astrophysics Data System (ADS)

    Picton Drake, Samuel; Purvis, Alan

    2014-01-01

    It is generally believed that special relativistic effects are important only when studying objects moving at speeds close to that of light. This belief leaves many practicing scientists and engineers with the impression that an understanding of relativity is not necessary for their day jobs. Our aim is to show that the ideas and mathematics of the special theory of relativity are used in practical applications involving objects moving much slower than the speed of light. In particular, we show how the Doppler shift for sound and light can be calculated from the postulates of relativity.

  7. Applying Zeeman Doppler imaging to solar spectra

    NASA Astrophysics Data System (ADS)

    Hussain, G. A. J.; Saar, S. H.; Collier Cameron, A.

    2004-03-01

    A new generation of spectro-polarimeters with high throughput (e.g. CFHT/ESPADONS and LBT/PEPSI) is becoming available. This opportunity can be exploited using Zeeman Doppler imaging (ZDI), a technique that inverts time-series of Stokes V spectra to map stellar surface magnetic fields (Semel 1989). ZDI is assisted by ``Least squares deconvolution'' (LSD), which sums up the signal from 1000's of photospheric lines to produce a mean deconvolved profile with higher S:N (Donati & Collier Cameron 1997).

  8. Short pulse C-band Doppler scatterometer

    NASA Astrophysics Data System (ADS)

    Arakelyan, Artashes K.; Hambaryan, Astghik K.; Smolin, Aleksander I.; Karyan, Vanik V.; Hovhannesyan, Gagik G.; Alaverdyan, Eduard R.; Arakelyan, Arsen A.; Hambaryan, Vardan K.

    2005-05-01

    In this paper C-band (~5.75GHz), dual polarization, Doppler scatterometer is developed, for short distance remote sensing of water surface microwave reflective and spectrum characteristics simultaneous and coincident measurements, under laboratory-control conditions. Developed system will be set on a mobile bogie moving on the height of 6.5m along a stationary platform of 32m of length. It will allow carry out polarimetric (vv, vh, hh, hv), simultaneous and coincident microwave active measurements of pool water surface parameters at angles of incidence from the while of 0-40o.

  9. In-suit Doppler technology assessment

    NASA Technical Reports Server (NTRS)

    Schulze, Arthur E.; Greene, Ernest R.; Nadeau, John J.

    1991-01-01

    The objective of this program was to perform a technology assessment survey of non-invasive air embolism detection utilizing Doppler ultrasound methodologies. The primary application of this technology will be a continuous monitor for astronauts while performing extravehicular activities (EVA's). The technology assessment was to include: (1) development of a full understanding of all relevant background research; and (2) a survey of the medical ultrasound marketplace for expertise, information, and technical capability relevant to this development. Upon completion of the assessment, LSR was to provide an overview of technological approaches and R&D/manufacturing organizations.

  10. Solar Doppler shifts - Sources of continuous spectra

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Harvey, J. W.

    1986-01-01

    Oscillation observations can be used to study nonoscillatory solar phenomena that exhibit Doppler shifts. The paper discusses several effects of these phenomena and their associated temporal and spatial power spectra: (1) they limit the signal-to-noise ratio and sometimes detectability of oscillation modes; (2) there is the potential for better understanding and/or detection of solar phenomena; (3) large-scale convection may spatially modulate oscillation modes, leading to a continuous background spectrum; and (4) in regions of the spectrum where the resolution to separate modes is lacking one can determine upper limits for the integrated effects of modes.

  11. Transmission media effects on precise Doppler tracking

    NASA Technical Reports Server (NTRS)

    Callahan, P. S.

    1978-01-01

    The effects of the transmission media - the earth's troposphere and ionosphere, and the solar wind - on precise Doppler tracking are discussed. The charged particle effects can be largely removed by dual frequency observations; however there are limitations to these corrections (besides system noise and/or finite integration times) including the effects of magnetic fields, diffraction, and differential refraction, all of which must be carefully evaluated. The earth's troposphere can contribute an error of delta f/f approximately 10 to the minus 14th power.

  12. The new Adelaide medium frequency Doppler radar

    NASA Astrophysics Data System (ADS)

    Reid, I. M.; Vandepeer, B. G. W.; Dillon, S.; Fuller, B.

    1993-08-01

    The Buckland Park Aerial Array (35 deg S, 138 deg E) is situated about 40 km north of Adelaide on a flat coastal plain. It was designed by Basil Briggs and Graham Elford, and constructed between 1965 and 1968. The first results were published in the late 1960's. Some aspects of the history of the array are described in Briggs (1993). A new MF Doppler Radar utilizing the array has been developed. This paper describes some of the technical details of this new facility.

  13. Applications of Doppler optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang

    A major development in biomedical imaging in the last decade has been optical coherence tomography (OCT). This technique enables microscale resolution, depth resolved imaging of the detailed morphology of transparent and nontransparent biological tissue in a noncontact and quasi-noninvasive way. In the first part of this dissertation, we will describe the development and the performance of our home-made OCT systems working with different wavelength regions based on free-space and optical fiber Michelson interferometers. The second part will focus on Doppler OCT (DOCT), an important extension of OCT, which enables the simultaneous evaluation of the structural information and of the fluid flow distribution at a localized position beneath the sample surface. Much effort has been spent during the past few years in our laboratory aimed at providing more accurate velocity measurements with an extended dynamic range. We also applied our technique in different research areas such as microfluidics and hemodynamics. Investigations on the optical properties of the biological tissues (such as absorption and scattering) corresponding to different center wavelengths, have been performed in our laboratory. We used a 10 femtosecond Ti:sapphire laser centered at about 810 nm associated with a free-space Michelson interferometer. The infrared sources were centered at about 1310 and 1560 nm with all-fiber interferometers. Comparative studies using three different sources for several in vitro biological tissues based on a graphical method illustrated how the optical properties affect the quality of the OCT images in terms of the penetration depth and backscattering intensity. We have shown the advantage of working with 810-nm emission wavelength for good backscattering amplitude and contrast, while sources emitting at 1570 nm give good penetration depth. The 1330-nm sources provide a good compromise between the two. Therefore, the choice of the source will ultimately determine the

  14. Coronary Artery Imaging with Transthoracic Doppler Echocardiography.

    PubMed

    Takeuchi, Masaaki; Nakazono, Akemi

    2016-07-01

    Coronary artery imaging with transthoracic Doppler echocardiography is a simple and useful technique to diagnose significant coronary artery stenosis. The visualization of mosaic flow in the proximal left coronary artery provides a direct indication of the presence of significant stenosis at the corresponding site during routine echocardiography. Coronary flow velocity reserve (CFVR) has a high diagnostic accuracy and feasibility in detecting the presence of functionally significant coronary stenosis in the left anterior descending coronary artery (LAD) and in the right coronary artery. The measurement of CFVR in the LAD also provides prognostic information in patients with intermediate coronary stenosis. This review summarizes the utility of transthoracic coronary artery imaging. PMID:27216843

  15. Detection of microemboli by transcranial Doppler ultrasound.

    PubMed Central

    Grosset, D G; Georgiadis, D; Kelman, A W; Cowburn, P; Stirling, S; Lees, K R; Faichney, A; Mallinson, A; Quin, R; Bone, I; Pettigrew, L; Brodie, E; MacKay, T; Wheatley, D J

    1996-01-01

    Doppler ultrasound detection of abnormally high-pitched signals within the arterial waveform offers a new method for diagnosis, and potentially for prediction, of embolic complications in at-risk patients. The nature of Doppler "microembolic" signals is of particular interest in patients with prosthetic heart valves, where a high prevalence of these signals is observed. Monitoring the middle cerebral artery with 2-MHz transcranial Doppler ultrasound (TC-2000, Nicolet Biomedical; Warwick, UK), we looked for microemboli signals in 150 patients (95 women and 55 men), and found 1 or more signals during a 30-min recording in 89% of 70 patients with Bjork-Shiley valves (principally monostrut), 54% of 50 patients with Medtronic-Hall valves, and 50% of 30 patients with Carpentier-Edwards valves (p < 0.001, chi 2). In the patients with Bjork-Shiley valves, the mean number of signals per hour was 59 (range, 42-86; 95% confidence interval), which was significantly higher than the mean in patients with Medtronic-Hall and Carpentier-Edwards valves (1.5[range, 0.5-2.5] and 1 [range, 0-5.3], respectively; both p < 0.04, multiple comparisons. Bonferroni correction). In the patients undergoing serial pre- and postoperative studies, the causative role of the valve implant was emphasized. There was no correlation between the number of emboli signals and a prior history of neurologic deficit, cardiac rhythm, previous cardiac surgery, or the intensity of oral anticoagulation, in patients with prosthetic heart valves. In Bjork-Shiley patients, dual (mitral and aortic) valves were associated with more signals than were single valves. In Medtronic-Hall patients, the signal count was greater for valves in the aortic position than it was for valves in the mitral position. Comparative studies of Doppler emboli signals in other clinical settings suggest a difference in composition or size of the underlying maternal between prosthetic valve patients and patients with carotid stenosis. These

  16. Doppler cooling to the quantum limit.

    PubMed

    Chalony, M; Kastberg, A; Klappauf, B; Wilkowski, D

    2011-12-01

    Doppler cooling on a narrow transition is limited by the noise of single scattering events. It shows novel features, which are in sharp contrast with cooling on a broad transition, such as a non-gaussian momentum distribution, and divergence of its mean square value close to the resonance. We have observed those features using 1D cooling on an intercombination transition in strontium, and compared the measurements with theoretical predictions and Monte Carlo simulations. We also find that for very a narrow transition, cooling can be improved using a dipole trap, where the clock shift is canceled. PMID:22242994

  17. Respiratory effort energy estimation using Doppler radar.

    PubMed

    Shahhaidar, Ehsaneh; Yavari, Ehsan; Young, Jared; Boric-Lubecke, Olga; Stickley, Cris

    2012-01-01

    Human respiratory effort can be harvested to power wearable biosensors and mobile electronic devices. The very first step toward designing a harvester is to estimate available energy and power. This paper describes an estimation of the available power and energy due to the movements of the torso during breathing, using Doppler radar by detecting breathing rate, torso displacement, torso movement velocity and acceleration along the sagittal movement of the torso. The accuracy of the detected variables is verified by two reference methods. The experimental result obtained from a healthy female human subject shows that the available power from circumferential movement can be higher than the power from the sagittal movement. PMID:23365993

  18. Common Genetic Variation in the 3-BCL11B Gene Desert Is Associated With Carotid-Femoral Pulse Wave Velocity and Excess Cardiovascular Disease Risk The AortaGen Consortium

    PubMed Central

    Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Isaacs, Aaron; Smith, Albert V.; Yasmin; Rietzschel, Ernst R.; Tanaka, Toshiko; Liu, Yongmei; Parsa, Afshin; Najjar, Samer S.; O’Shaughnessy, Kevin M.; Sigurdsson, Sigurdur; De Buyzere, Marc L.; Larson, Martin G.; Sie, Mark P.S.; Andrews, Jeanette S.; Post, Wendy S.; Mattace-Raso, Francesco U.S.; McEniery, Carmel M.; Eiriksdottir, Gudny; Segers, Patrick; Vasan, Ramachandran S.; van Rijn, Marie Josee E.; Howard, Timothy D.; McArdle, Patrick F.; Dehghan, Abbas; Jewell, Elizabeth; Newhouse, Stephen J.; Bekaert, Sofie; Hamburg, Naomi M.; Newman, Anne B.; Hofman, Albert; Scuteri, Angelo; De Bacquer, Dirk; Ikram, Mohammad Arfan; Psaty, Bruce; Fuchsberger, Christian; Olden, Matthias; Wain, Louise V.; Elliott, Paul; Smith, Nicholas L.; Felix, Janine F.; Erdmann, Jeanette; Vita, Joseph A.; Sutton-Tyrrell, Kim; Sijbrands, Eric J.G.; Sanna, Serena; Launer, Lenore J.; De Meyer, Tim; Johnson, Andrew D.; Schut, Anna F.C.; Herrington, David M.; Rivadeneira, Fernando; Uda, Manuela; Wilkinson, Ian B.; Aspelund, Thor; Gillebert, Thierry C.; Van Bortel, Luc; Benjamin, Emelia J.; Oostra, Ben A.; Ding, Jingzhong; Gibson, Quince; Uitterlinden, André G.; Abecasis, Gonçalo R.; Cockcroft, John R.; Gudnason, Vilmundur; De Backer, Guy G.; Ferrucci, Luigi; Harris, Tamara B.; Shuldiner, Alan R.; van Duijn, Cornelia M.; Levy, Daniel; Lakatta, Edward G.; Witteman, Jacqueline C.M.

    2012-01-01

    Background Carotid-femoral pulse wave velocity (CFPWV) is a heritable measure of aortic stiffness that is strongly associated with increased risk for major cardiovascular disease events. Methods and Results We conducted a meta-analysis of genome-wide association data in 9 community-based European ancestry cohorts consisting of 20,634 participants. Results were replicated in 2 additional European ancestry cohorts involving 5,306 participants. Based on a preliminary analysis of 6 cohorts, we identified a locus on chromosome 14 in the 3′-BCL11B gene desert that is associated with CFPWV (rs7152623, minor allele frequency = 0.42, beta=−0.075±0.012 SD/allele, P = 2.8 x 10−10; replication beta=−0.086±0.020 SD/allele, P = 1.4 x 10−6). Combined results for rs7152623 from 11 cohorts gave beta=−0.076±0.010 SD/allele, P=3.1x10−15. The association persisted when adjusted for mean arterial pressure (beta=−0.060±0.009 SD/allele, P = 1.0 x 10−11). Results were consistent in younger (<55 years, 6 cohorts, N=13,914, beta=−0.081±0.014 SD/allele, P = 2.3 x 10−9) and older (9 cohorts, N=12,026, beta=−0.061±0.014 SD/allele, P=9.4x10−6) participants. In separate meta-analyses, the locus was associated with increased risk for coronary artery disease (hazard ratio [HR]=1.05, confidence interval [CI]=1.02 to 1.08, P=0.0013) and heart failure (HR=1.10, CI=1.03 to 1.16, P=0.004). Conclusions Common genetic variation in a locus in the BCL11B gene desert that is thought to harbor one or more gene enhancers is associated with higher CFPWV and increased risk for cardiovascular disease. Elucidation of the role this novel locus plays in aortic stiffness may facilitate development of therapeutic interventions that limit aortic stiffening and related cardiovascular disease events. PMID:22068335

  19. Evaluation of the effects of pulsed wave LLLT on tibial diaphysis in two rat models of experimental osteoporosis, as examined by stereological and real-time PCR gene expression analyses.

    PubMed

    Mohsenifar, Zhaleh; Fridoni, Mohammadjavad; Ghatrehsamani, Mahdi; Abdollahifar, Mohammad-Amin; Abbaszadeh, Hojjatallah; Mostafavinia, Atarodalsadat; Fallahnezhad, Somaye; Asghari, Mohammadali; Bayat, Saba; Bayat, Mohammad

    2016-05-01

    Osteoporosis (OP) and osteoporotic fracture are major public health issues for society; the burden for the affected individual is also high. Previous studies have shown that pulsed wave low-level laser therapy (PW LLLT) has osteogenic effects. This study intended to evaluate the impacts of PW LLLT on the cortical bone of osteoporotic rats' tibias in two experimental models, ovariectomized and dexamethasone-treated. We divided the rats into four ovariectomized induced OP (OVX-d) and four dexamethasone-treated (glucocorticoid-induced OP, GIOP) groups. A healthy (H) group of rats was considered for baseline evaluations. At 14 weeks following ovariectomy, we subdivided the OVX-d rats into the following groups: (i) control which had OP, (ii) OVX-d rats treated with alendronate (1 mg/kg), (iii) OVX-d rats treated with LLLT, and (iv) OVX-d rats treated with alendronate and PW LLLT. The remaining rats received dexamethasone over a 5-week period and were also subdivided into four groups: (i) control rats treated with intramuscular (i.m.) injections of distilled water (vehicle), (ii) rats treated with subcutaneous alendronate injections (1 mg/kg), (iii) laser-treated rats, and (iv) rats simultaneously treated with laser and alendronate. The rats received alendronate for 30 days and underwent PW LLLT (890 nm, 80 Hz, 0.972 J/cm(2)) three times per week during 8 weeks. Then, the right tibias were extracted and underwent a stereological analysis of histological parameters and real-time polymerase chain reaction (RT-PCR). A significant increase in cortical bone volume (mm(3)) existed in all study groups compared to the healthy rats. There were significant decreases in trabecular bone volume (mm(3)) in all study groups compared to the group of healthy rats. The control rats with OP and rats from the vehicle group showed significantly increased osteoclast numbers compared to most other groups. Alendronate significantly decreased osteoclast numbers in osteoporotic rats

  20. Atom trap trace analysis

    SciTech Connect

    Lu, Z.-T.; Bailey, K.; Chen, C.-Y.; Du, X.; Li, Y.-M.; O'Connor, T. P.; Young, L.

    2000-05-25

    A new method of ultrasensitive trace-isotope analysis has been developed based upon the technique of laser manipulation of neutral atoms. It has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. The atom counts are free of contamination from other isotopes, elements,or molecules. The method is applicable to other trace-isotopes that can be efficiently captured with a magneto-optical trap, and has a broad range of potential applications.

  1. Tropospheric trace gases

    NASA Technical Reports Server (NTRS)

    Gammon, R.; Wofsy, S. C.; Cicerone, R. J.; Delany, A. C.; Harriss, R. T.; Khalil, M. A. K.; Logan, J. A.; Midgley, P.; Prather, M.

    1985-01-01

    Trace gas concentrations in the atmosphere reflect in part the overall metabolism of the biosphere, and in part the broad range of human activities such as agriculture, production of industrial chemicals, and combustion of fossil fuels and biomass. There is compelling evidence that the composition of the atmosphere is now changing. Observed trends in trace gas levels are reviewed and implications for the chemistry of the atmosphere are discussed. Throughout the discussion, particular emphasis is given to those species which are now increasing in the atmosphere.

  2. Is Doppler ultrasound useful for evaluating gestational trophoblastic disease?

    PubMed Central

    Lin, Lawrence H; Bernardes, Lisandra S; Hase, Eliane A; Fushida, Koji; Francisco, Rossana P V

    2015-01-01

    Doppler ultrasound is a non-invasive method for evaluating vascularization and is widely used in clinical practice. Gestational trophoblastic neoplasia includes a group of highly vascularized malignancies derived from placental cells. This review summarizes data found in the literature regarding the applications of Doppler ultrasound in managing patients with gestational trophoblastic neoplasia. The PubMed/Medline, Web of Science, Cochrane and LILACS databases were searched for articles published in English until 2014 using the following keywords: “Gestational trophoblastic disease AND Ultrasonography, Doppler.” Twenty-eight articles met the inclusion criteria and were separated into the 4 following groups according to the aim of the study. 1 Doppler ultrasound does not seem to be capable of differentiating partial from complete moles, but it might be useful when evaluating pregnancies in which a complete mole coexists with a normal fetus. 2 There is controversy in the role of uterine artery Doppler velocimetry in the prediction of development of gestational trophoblastic neoplasia. 3 Doppler ultrasound is a useful tool in the diagnosis of gestational trophoblastic neoplasia because abnormal myometrial vascularization and lower uterine artery Doppler indices seem to be correlated with invasive disease. 4 Lower uterine artery Doppler indices in the diagnosis of gestational trophoblastic neoplasia are associated with methotrexate resistance and might play a role in prognosis. CONCLUSION: Several studies support the importance of Doppler ultrasound in the management of patients with gestational trophoblastic neoplasia, particularly the role of Doppler velocimetry in the prediction of trophoblastic neoplasia and the chemoresistance of trophoblastic tumors. Doppler findings should be used as ancillary tools, along with human chorionic gonadotropin assessment, in the diagnosis of gestational trophoblastic neoplasia. PMID:26735221

  3. Cas A Dynamics: Doppler and Proper Motion

    NASA Astrophysics Data System (ADS)

    DeLaney, Tracey; Smith, J.; Rudnick, L.; Ennis, J.; Rho, J.; Reach, W.; Kozasa, T.; Gomez, H.

    2006-06-01

    We present Doppler velocity images of the young supernova remnant Cassiopeia A in the infrared emission lines of Ar, Ne, Si, and S observed with the Spitzer IRS and covering nearly the whole extent of the remnant. The measured infrared velocities of the shocked ejecta range from -4000 km/s to +6000 km/s. The Si and S emission near the center of the remnant, that is associated with ejecta that have not yet encountered the reverse shock, also shows both red- and blue-shifted structures with velocities between -3000 km/s and +3000 km/s. These unshocked ejecta provide a unique opportunity to study the kinematics of the explosion free from the influences of the reverse shock and CSM. The infrared kinematics are compared to optical and X-ray Doppler velocities and optical, X-ray, and radio proper motions. This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the United States Government under Prime Contract between California Institute of Technology and NASA.

  4. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  5. Doppler global velocimetry data in circular jets

    NASA Astrophysics Data System (ADS)

    Kuhlman, John; Burton, Lucinda; Scarberry, Tom

    2002-07-01

    A two-component Doppler global velocimeter (DGV) system has been improved through the use of vapour-limited iodine cells that have temperature-independent responses, along with nonpolarizing beam splitters and lower f-number lenses. Two-component DGV velocity measurements have been obtained for a 1 inch diameter uniform circular jet flow at a nominal exit velocity of 60 m s-1, as well as for an annular jet and a swirling jet. These data generally agree with earlier point Doppler velocimeter and hot wire anemometer results to within about 2-4 m s-1, and display a total variability from a smooth curve of ±2-3 m s-1. This level of accuracy has been obtained for a system that uses a cw argon ion laser and eight-bit CCD cameras and digitizers. Exceptions to this level of accuracy are noted in regions of significant secondary scattering, due to scattered laser light that is reflected off the lip of the jet nozzle, as well as in regions of low smoke seeding levels, resulting in low signal-to-noise ratios. A significant amount of the variability of the data from a smooth curve is due to the flat field correction.

  6. Ambiguity resolution for satellite Doppler positioning systems

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Marini, J.

    1979-01-01

    The implementation of satellite-based Doppler positioning systems frequently requires the recovery of transmitter position from a single pass of Doppler data. The least-squares approach to the problem yields conjugate solutions on either side of the satellite subtrack. It is important to develop a procedure for choosing the proper solution which is correct in a high percentage of cases. A test for ambiguity resolution which is the most powerful in the sense that it maximizes the probability of a correct decision is derived. When systematic error sources are properly included in the least-squares reduction process to yield an optimal solution the test reduces to choosing the solution which provides the smaller valuation of the least-squares loss function. When systematic error sources are ignored in the least-squares reduction, the most powerful test is a quadratic form comparison with the weighting matrix of the quadratic form obtained by computing the pseudoinverse of a reduced-rank square matrix. A formula for computing the power of the most powerful test is provided. Numerical examples are included in which the power of the test is computed for situations that are relevant to the design of a satellite-aided search and rescue system.

  7. Comparison of Triature Doppler Velocimetry and VISAR

    SciTech Connect

    Cenobio H Gallegos, Bruce Marshall, Matthew Teel, Vincent T Romero, Abel Diaz, and Michael Berninger

    2010-01-01

    Triature Photonic Doppler Velocimetry (TDV) is an adaptation of Photonic Doppler Velocimetry (PDV) that rejects common-mode data noise after splitting PDV three ways, with each signal 120° out of phase from each other. Testing has demonstrated that TDV also improves temporal resolution from the typical five nanoseconds of PDV to a subnanosecond range. This paper compares the temporal response of TDV with that of PDV and VISAR [velocity interferometer system for any reflector] in an experiment with a subnanosecond (~120-picosecond rise time) shock source. Laboratory tests were performed using a high-power laser on targets of copper and aluminum. A Buce Marshall fast VISAR with a single-point PDV and a prototype TDV were used. A special probe that combined PDV, TDV, and fast VISAR made simultaneous velocity measurements. Breakout velocities of 1.3 km/second on copper and 2.5 km/second on aluminum were observed, where TDV resolved rise times of ~200 ps. This resolution was better than that of a fast VISAR, which can achieve ~500 ps temporal resolution. Test methods and results are presented.

  8. Mechanical Device Traces Parabolas

    NASA Technical Reports Server (NTRS)

    Soper, Terry A.

    1989-01-01

    Mechanical device simplifies generation of parabolas of various focal lengths. Based on fundamental geometrical construction of parabola. Constancy of critical total distance enforced by maintaining cable in tension. Applications of device include design of paraboloidal antennas, approximating catenaries on drawings of powerlines or long-wire antennas, and general tracing of parabolas on drawings.

  9. Spectral Bayesian Knowledge Tracing

    ERIC Educational Resources Information Center

    Falakmasir, Mohammad; Yudelson, Michael; Ritter, Steve; Koedinger, Ken

    2015-01-01

    Bayesian Knowledge Tracing (BKT) has been in wide use for modeling student skill acquisition in Intelligent Tutoring Systems (ITS). BKT tracks and updates student's latent mastery of a skill as a probability distribution of a binary variable. BKT does so by accounting for observed student successes in applying the skill correctly, where success is…

  10. Visible Traces. Teacher's Guide.

    ERIC Educational Resources Information Center

    ASIA Society, New York, NY.

    This teacher's guide is based on the exhibition, "Visible Traces: Rare Books and Special Collections from the National Library of China," a collaborative effort of the Queens Borough Public Library and the National Library of China; it links rare treasures from the National Library of China to curriculum standards. The following themes are…

  11. QCD trace anomaly

    SciTech Connect

    Andersen, Jens O.; Leganger, Lars E.; Strickland, Michael; Su, Nan

    2011-10-15

    In this brief report we compare the predictions of a recent next-to-next-to-leading order hard-thermal-loop perturbation theory (HTLpt) calculation of the QCD trace anomaly to available lattice data. We focus on the trace anomaly scaled by T{sup 2} in two cases: N{sub f}=0 and N{sub f}=3. When using the canonical value of {mu}=2{pi}T for the renormalization scale, we find that for Yang-Mills theory (N{sub f}=0) agreement between HTLpt and lattice data for the T{sup 2}-scaled trace anomaly begins at temperatures on the order of 8T{sub c}, while treating the subtracted piece as an interaction term when including quarks (N{sub f}=3) agreement begins already at temperatures above 2T{sub c}. In both cases we find that at very high temperatures the T{sup 2}-scaled trace anomaly increases with temperature in accordance with the predictions of HTLpt.

  12. Investigations of atmospheric dynamics using a CW Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Rao, G. L.

    1974-01-01

    A three-dimensional CW Doppler sounding system currently under operation at the NASA-Marshall Space Flight Center, Alabama is described. The properties of the neutral atmosphere are discussed along with the theory of Doppler sounding technique. Methods of data analyses used to investigate the dynamical phenomena at the ionospheric heights are presented and suggestions for future investigations provided.

  13. Doppler weather radar with predictive wind shear detection capabilities

    NASA Technical Reports Server (NTRS)

    Kuntman, Daryal

    1991-01-01

    The status of Bendix research on Doppler weather radar with predictive wind shear detection capability is given in viewgraph form. Information is given on the RDR-4A, a fully coherent, solid state transmitter having Doppler turbulence capability. Frequency generation data, plans, modifications, system characteristics and certification requirements are covered.

  14. New Doppler echocardiographic applications for the study of diastolic function

    NASA Technical Reports Server (NTRS)

    Garcia, M. J.; Thomas, J. D.; Klein, A. L.

    1998-01-01

    Doppler echocardiography is one of the most useful clinical tools for the assessment of left ventricular (LV) diastolic function. Doppler indices of LV filling and pulmonary venous (PV) flow are used not only for diagnostic purposes but also for establishing prognosis and evaluating the effect of therapeutic interventions. The utility of these indices is limited, however, by the confounding effects of different physiologic variables such as LV relaxation, compliance and filling pressure. Since alterations in these variables result in changes in Doppler indices of opposite direction, it is often difficult to determine the status of a given variable when a specific Doppler filling pattern is observed. Recently, color M-mode and tissue Doppler have provided useful insights in the study of diastolic function. These new Doppler applications have been shown to provide an accurate estimate of LV relaxation and appear to be relatively insensitive to the effects of preload compensation. This review will focus on the complementary role of color M-mode and tissue Doppler echocardiography and traditional Doppler indices of LV filling and PV flow in the assessment of diastolic function.

  15. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550 Section 892.1550 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1550 Ultrasonic pulsed doppler...

  16. A study for developing an ultrasonic Doppler flowmeter

    NASA Astrophysics Data System (ADS)

    Biermans, M.; Bregman, R.

    1984-06-01

    The system parameters for low cost ultrasonic Doppler flowmeters for medical applications were investigated. A flowmeter was built. A phase locked loop is used to find the correct Doppler shift. Laboratory and field tests prove the success of the development, although very often insufficient reflectors exist in the liquids. The accuracy is + or - 5%; the reproducibility is + or - 0.5%.

  17. Micro-Doppler classification of riders and riderless horses

    NASA Astrophysics Data System (ADS)

    Tahmoush, David

    2014-05-01

    Micro-range Micro-Doppler can be used to isolate particular parts of the radar signature, and in this case we demonstrate the differences in the signature between a walking horse versus a walking horse with a rider. Using micro-range micro-Doppler, we can distinguish the radar returns from the rider as separate from the radar returns of the horse.

  18. Imaging doppler velocimeter with downward heterodyning in the optical domain

    DOEpatents

    Reu, Phillip L; Hansche, Bruce D

    2013-05-21

    In a Doppler velocimeter, the incoming Doppler-shifted beams are heterodyned to reduce their frequencies into the bandwidth of a digital camera. This permits the digital camera to produce at every sampling interval a complete two-dimensional array of pixel values. This sequence of pixel value arrays provides a velocity image of the target.

  19. Rotational Doppler effect in x-ray photoionization

    SciTech Connect

    Sun Yuping; Wang Chuankui; Gel'mukhanov, Faris

    2010-11-15

    The energy of the photoelectron experiences a red or blue Doppler shift when the molecule recedes from the detector or approaches him. This results in a broadening of the photoelectron line due to the translational thermal motion. However, the molecules also have rotational degrees of freedom and we show that the translational Doppler effect has its rotational counterpart. This rotational Doppler effect leads to an additional broadening of the spectral line of the same magnitude as the Doppler broadening caused by translational thermal motion. The rotational Doppler broadening as well as the rotational recoil broadening is sensitive to the molecular orbital from which the photoelectron is ejected. This broadening should be taken into account in analysis of x-ray photoemission spectra of super-high resolution and it can be directly observed using x-ray pump-probe spectroscopy.

  20. Doppler-cancelled response to VLF gravitational waves

    NASA Technical Reports Server (NTRS)

    Caporali, A.

    1981-01-01

    The interaction of long periodic gravitational waves with a three link microwave system known as the Doppler Cancelling System is discussed. This system, which was developed for a gravitational redshift experiment, uses one-way and two-way Doppler informatin to construct the beat signal of two reference oscillators moving with respect to each other. The geometric optics approximation is used to derive the frequency shift produced on a light signal propagating in a gravitational wave space-time. The signature left on the Doppler-cancelled beat by burst and continuous gravitational waves is analyzed. A comparison is made between the response to gravitational waves of the Doppler Cancelling System and that of a Doppler tracking system which employs two-way, round-trip radio waves. A three-fold repetition of the gravitational wave form is found to be a common feature of the response functions of both systems. These two functions otherwise exhibit interesting differences.

  1. The joint estimation of differential delay, Doppler, and phase

    NASA Astrophysics Data System (ADS)

    Wax, M.

    1982-09-01

    In radio and sonar applications it sometimes happens that narrow-band signals, originated from a remote source and observed at a pair of receivers, differ by unknown differential phase and Doppler shift in addition to the differential delay corresponding to the range difference. The correspondence presents the joint maximum likelihood (ML) estimate of the differential delay, Doppler, and phase and examines their accuracy by deriving the Cramer-Rao bound. It is shown that joint ML estimators are the values of the delay and Doppler that maximize the magnitude of a generalized ambiguity function analogous to the one used in radar. It is also shown that for long observation time and high enough signal-to-noise ratio there is no degradation in the accuracy of the time-delay estimator due to the additional phase and Doppler uncertainty and that the differential Doppler is uncorrelated with the differential delay and phase estimators.

  2. One way Doppler extractor. Volume 1: Vernier technique

    NASA Technical Reports Server (NTRS)

    Blasco, R. W.; Klein, S.; Nossen, E. J.; Starner, E. R.; Yanosov, J. A.

    1974-01-01

    A feasibility analysis, trade-offs, and implementation for a One Way Doppler Extraction system are discussed. A Doppler error analysis shows that quantization error is a primary source of Doppler measurement error. Several competing extraction techniques are compared and a Vernier technique is developed which obtains high Doppler resolution with low speed logic. Parameter trade-offs and sensitivities for the Vernier technique are analyzed, leading to a hardware design configuration. A detailed design, operation, and performance evaluation of the resulting breadboard model is presented which verifies the theoretical performance predictions. Performance tests have verified that the breadboard is capable of extracting Doppler, on an S-band signal, to an accuracy of less than 0.02 Hertz for a one second averaging period. This corresponds to a range rate error of no more than 3 millimeters per second.

  3. An online three-class Transcranial Doppler ultrasound brain computer interface.

    PubMed

    Goyal, Anuja; Samadani, Ali-Akbar; Guerguerian, Anne-Marie; Chau, Tom

    2016-06-01

    Brain computer interfaces (BCI) can provide communication opportunities for individuals with severe motor disabilities. Transcranial Doppler ultrasound (TCD) measures cerebral blood flow velocities and can be used to develop a BCI. A previously implemented TCD BCI system used verbal and spatial tasks as control signals; however, the spatial task involved a visual cue that awkwardly diverted the user's attention away from the communication interface. Therefore, vision-independent right-lateralized tasks were investigated. Using a bilateral TCD BCI, ten participants controlled online, an on-screen keyboard using a left-lateralized task (verbal fluency), a right-lateralized task (fist motor imagery or 3D-shape tracing), and unconstrained rest. 3D-shape tracing was generally more discernible from other tasks than was fist motor imagery. Verbal fluency, 3D-shape tracing and unconstrained rest were distinguished from each other using a linear discriminant classifier, achieving a mean agreement of κ=0.43±0.17. These rates are comparable to the best offline three-class TCD BCI accuracies reported thus far. The online communication system achieved a mean information transfer rate (ITR) of 1.08±0.69bits/min with values reaching up to 2.46bits/min, thereby exceeding the ITR of previous online TCD BCIs. These findings demonstrate the potential of a three-class online TCD BCI that does not require visual task cues. PMID:26795195

  4. Ray Tracing with Virtual Objects.

    ERIC Educational Resources Information Center

    Leinoff, Stuart

    1991-01-01

    Introduces the method of ray tracing to analyze the refraction or reflection of real or virtual images from multiple optical devices. Discusses ray-tracing techniques for locating images using convex and concave lenses or mirrors. (MDH)

  5. The superiority of combined continuous wave Doppler examination over periorbital Doppler for the detection of extracranial carotid disease.

    PubMed Central

    Trockel, U; Hennerici, M; Aulich, A; Sandmann, W

    1984-01-01

    Non-invasive examination of 431 vessels in 333 patients with cerebrovascular disease in all stages was performed in order to compare the reliability of the periorbital Doppler test alone and together with the more difficult insonation of the carotid arteries in the neck (combined Doppler). These findings were compared with those of subsequent arteriography. Extracranial obstructive (greater than 50%) carotid disease was detected with 100% sensitivity by the combined Doppler, but with only 48% sensitivity by the periorbital indirect test. The specific ability of both methods to identify non-stenotic carotid arteries (less than 50%) was similar at about 98%. Only the combined Doppler examination reliably differentiated various degrees of obstruction, comparable to that obtained with arteriography. Non-obstructive plaques could not be detected or excluded by either Doppler test. More refined methods will be necessary for their evaluation. Images PMID:6693913

  6. Lunar gravity - Apollo 15 Doppler radio tracking

    NASA Technical Reports Server (NTRS)

    Muller, P. M.; Sjogren, W. L.; Wollenhaupt, W. R.

    1974-01-01

    Analysis and interpretation of the lunar gravity measurements obtained from Apollo 15 Doppler radio tracking data. The extent of surface coverage was limited to the trajectory paths of the command and service module during revolutions 3 through 11, when it was at a relatively low periapsis altitude just prior to undocking with the lunar module. The trajectory was close to the most optimal for study of the details of the Serenitatis and Crisium mascons. The periapsis altitude was about 12 km at the center of Mare Serenitatis, one of the largest mascons, and the one in the most favorable viewing geometry. The results obtained strengthen Booker's (1970) contention that all mascons have approximately the same thickness.

  7. Hands-Free Transcranial Color Doppler Probe

    NASA Technical Reports Server (NTRS)

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design.

  8. Spacecraft Doppler tracking with a VLBI antenna

    NASA Technical Reports Server (NTRS)

    Comoretto, G.; Iess, L.; Bertotti, B.; Brenkle, J. P.; Horton, T.

    1990-01-01

    Preliminary results are reported from Doppler-shift measurements to the Voyager-2 spacecraft at a distance of 26 AU, obtained using the 32-m VLBI antenna at Medicina (Italy) during July and August 1988. The apparatus comprises the el-az antenna, an S-X-band receiver, a hydrogen maser to generate the reference signal, a Mark III VLBI terminal, and a digital tone extractor capable of isolating a tone of known frequency from a noisy signal and giving its phase and amplitude. A signal transmitted in S-band from the NASA Deep Space Network (DSN) station in Australia and retransmitted coherently in X-band by Voyager, was received 7 h 6 min later at Medicina and at the DSN station in Madrid. Sample data are presented graphically and shown to be of generally high quality; further in-depth analysis is under way.

  9. Microscale Heat Conduction Models and Doppler Feedback

    SciTech Connect

    Hawari, Ayman I.; Ougouag, Abderrafi

    2015-01-22

    The objective of this project is to establish an approach for providing the fundamental input that is needed to estimate the magnitude and time-dependence of the Doppler feedback mechanism in Very High Temperature reactors. This mechanism is the foremost contributor to the passive safety of gas-cooled, graphite-moderated high temperature reactors that use fuel based on Tristructural-Isotropic (TRISO) coated particles. Therefore, its correct prediction is essential to the conduct of safety analyses for these reactors. Since the effect is directly dependent on the actual temperature reached by the fuel during transients, the underlying phenomena of heat deposition, heat transfer and temperature rise must be correctly predicted. To achieve the above objective, this project will explore an approach that accounts for lattice effects as well as local temperature variations and the correct definition of temperature and related local effects.

  10. Role of transcranial Doppler in cerebrovascular disease.

    PubMed

    Kulkarni, Amit A; Sharma, Vijay K

    2016-01-01

    Transcranial Doppler (TCD) is the only noninvasive modality for the assessment of real-time cerebral blood flow. It complements various anatomic imaging modalities by providing physiological-flow related information. It is relatively cheap, easily available, and can be performed at the bedside. It has been suggested as an essential component of a comprehensive stroke centre. In addition to its importance in acute cerebrovascular ischemia, its role is expanding in the evaluation of cerebral hemodynamics in various disorders of the brain. The "established" clinical indications for the use of TCD include cerebral ischemia, sickle cell disease, detection of right-to-left shunts, subarachnoid hemorrhage, periprocedural or surgical monitoring, and brain death. We present the role of TCD in acute cerebrovascular ischemia, sonothrombolysis, and intracranial stenosis. PMID:27625245

  11. Pulsed laser Doppler measurements of wind shear

    NASA Technical Reports Server (NTRS)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  12. Color Doppler imaging of retinal diseases.

    PubMed

    Dimitrova, Galina; Kato, Satoshi

    2010-01-01

    Color Doppler imaging (CDI) is a widely used method for evaluating ocular circulation that has been used in a number of studies on retinal diseases. CDI assesses blood velocity parameters by using ultrasound waves. In ophthalmology, these assessments are mainly performed on the retrobulbar blood vessels: the ophthalmic, the central retinal, and the short posterior ciliary arteries. In this review, we discuss CDI use for the assessment of retinal diseases classified into the following: vascular diseases, degenerations, dystrophies, and detachment. The retinal vascular diseases that have been investigated by CDI include diabetic retinopathy, retinal vein occlusions, retinal artery occlusions, ocular ischemic conditions, and retinopathy of prematurity. Degenerations and dystrophies included in this review are age-related macular degeneration, myopia, and retinitis pigmentosa. CDI has been used for the differential diagnosis of retinal detachment, as well as the evaluation of retrobulbar circulation in this condition. CDI is valuable for research and is a potentially useful diagnostic tool in the clinical setting. PMID:20385332

  13. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation. PMID:22254704

  14. Laser Doppler systems in atmospheric turbulence

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.

    1976-01-01

    The loss of heterodyne signal power for the Marshall Space Flight Center laser Doppler system due to the random changes in the atmospheric index of refraction is investigated. The current status in the physics of low energy laser propagation through turbulent atmosphere is presented. The analysis and approximate evaluation of the loss of the heterodyne signal power due to the atmospheric absorption, scattering, and turbulence are estimated for the conditions of the January 1973 flight tests. Theoretical and experimental signal to noise values are compared. Maximum and minimum values of the atmospheric attenuation over a two way path of 20 km range are calculated as a function of altitude using models of atmosphere, aerosol concentration, and turbulence.

  15. Doppler cooling and trapping on forbidden transitions.

    PubMed

    Binnewies, T; Wilpers, G; Sterr, U; Riehle, F; Helmcke, J; Mehlstäubler, T E; Rasel, E M; Ertmer, W

    2001-09-17

    Ultracold atoms at temperatures close to the recoil limit have been achieved by extending Doppler cooling to forbidden transitions. A cloud of (40)Ca atoms has been cooled and trapped to a temperature as low as 6 microK by operating a magnetooptical trap on the spin-forbidden intercombination transition. Quenching the long-lived excited state with an additional laser enhanced the scattering rate by a factor of 15, while a high selectivity in velocity was preserved. With this method, more than 10% of precooled atoms from a standard magnetooptical trap have been transferred to the ultracold trap. Monte Carlo simulations of the cooling process are in good agreement with the experiments. PMID:11580503

  16. The solar oscillations investigation: Michelson Doppler imager

    NASA Technical Reports Server (NTRS)

    Hoeksema, J. Todd; Scherrer, P. H.; Bush, R. I.; Title, A.; Tarbell, T.

    1992-01-01

    The Solar Oscillations Investigation (SOI) developed the Michelson Doppler Imager (MDI) to investigate the properties of the solar interior using the tools of helioseismology and of the photosphere and corona using more conventional techniques. The fundamental goal is to understand the Sun by determining its structure and observing its dynamics. The basic observables, velocity, intensity, and magnetic field, are computed on board from up to twenty 1024 by 1024 filtergrams made each minute. Subsequent analysis will extend the region to be explored downward into the solar interior and upward into the corona. While the instrument is dedicated to producing an uninterrupted series of helioseismology data, several magnetograms will be made each day and special eight hour campaigns are being developed to address specific scientific questions, some in coordination with other SOHO (Solar and Heliospheric Observatory) instruments.

  17. Parallax effects in laser Doppler spectroscopy

    SciTech Connect

    Smirnov, V I

    1999-12-31

    Parallax effects in laser Doppler spectroscopy, associated with the variation of the scattering angle during motion of a particle through the probed volume, were investigated by a numerical simulation method based on the Mie scattering theory. It was found that, in general, the shifts of the spectral profile parameters (the average frequency, broadening, asymmetry, and kurtosis) become significant as the parallax number N{sub {psi}{alpha}=}(2/{pi}){psi}{alpha} ({psi} is the angular size of the probed volume, {alpha} = {pi}d/{lambda} is the relative particle diameter) increases. The anomalous ranges of the parameters of the particle and of the optical system, in which marked distortions (such as the polymodal nature and the splitting of the spectral profile) are observed even for a low parallax number (N{sub {psi}{alpha}} || 1), were discovered. (laser applications and other topics in quantum electronics)

  18. Widefield laser doppler velocimeter: development and theory.

    SciTech Connect

    Hansche, Bruce David; Reu, Phillip L.; Massad, Jordan Elias

    2007-03-01

    The widefield laser Doppler velocimeter is a new measurement technique that significantly expands the functionality of a traditional scanning system. This new technique allows full-field velocity measurements without scanning, a drawback of traditional measurement techniques. This is particularly important for tests in which the sample is destroyed or the motion of the sample is non-repetitive. The goal of creating ''velocity movies'' was accomplished during the research, and this report describes the current functionality and operation of the system. The mathematical underpinnings and system setup are thoroughly described. Two prototype experiments are then presented to show the practical use of the current system. Details of the corresponding hardware used to collect the data and the associated software to analyze the data are presented.

  19. Planar Particle Imaging Doppler Velocimetry Developed

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    Two current techniques exist for the measurement of planar, three-component velocity fields. Both techniques require multiple views of the illumination plane in order to extract all three velocity components. Particle image velocimetry (PIV) is a high-resolution, high accuracy, planar velocimetry technique that provides valuable instantaneous velocity information in aeropropulsion test facilities. PIV can provide three-component flow-field measurements using a two-camera, stereo viewing configuration. Doppler global velocimetry (DGV) is another planar velocimetry technique that can provide three component flow-field measurements; however, it requires three detector systems that must be located at oblique angles from the measurement plane. The three-dimensional configurations of either technique require multiple (DGV) or at least large (stereo PIV) optical access ports in the facility in which the measurements are being conducted. Optical access is extremely limited in aeropropulsion test facilities. In many cases, only one optical access port is available. A hybrid measurement technique has been developed at the NASA Glenn Research Center, planar particle image and Doppler velocimetry (PPIDV), which combines elements from both the PIV and DGV techniques into a single detection system that can measure all three components of velocity across a planar region of a flow field through a single optical access port. In the standard PIV technique, a pulsed laser is used to illuminate the flow field at two closely spaced instances in time, which are recorded on a "frame-straddling" camera, yielding a pair of single-exposure image frames. The PIV camera is oriented perpendicular to the light sheet, and the processed PIV data yield the two-component velocity field in the plane of the light sheet. In the standard DGV technique, an injection-seeded Nd:YAG pulsed laser light sheet illuminates the seeded flow field, and three receiver systems are used to measure three components

  20. Lidar Detection of Explosives Traces

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, Sergei M.; Gorlov, Evgeny V.; Zharkov, Victor I.; Panchenko, Yury N.

    2016-06-01

    The possibility of remote detection of traces of explosives using laser fragmentation/laser-induced fluorescence (LF/LIF) is studied. Experimental data on the remote visualization of traces of trinitrotoluene (TNT), hexogen (RDX), trotyl-hexogen (Comp B), octogen (HMX), and tetryl with a scanning lidar detector of traces of nitrogen-containing explosives at a distance of 5 m are presented.

  1. Wind Field Measurements With Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  2. Myocardial Tissue Doppler Velocity in Child Growth

    PubMed Central

    Choi, Sun-Ha; Kim, Nam Kyun; Jung, Jo Won; Choi, Jae Young

    2016-01-01

    Background In adults, tissue Doppler imaging (TDI) is a recommended component of routine echocardiography. However, TDI velocities are less accepted in pediatrics, due to their strong variability and age dependence in children. This study examines the distribution of myocardial tissue Doppler velocities in healthy children to assess the effect of age with cardiac growth on the various echocardiographic measurements. Methods Total 144 healthy children were enrolled in this study. They were recruited from the pediatric outpatient clinic for routine well-child visits. The statistical relationships between age and TDI values were analyzed. Also, the statistical relationships between body surface area (BSA) and TDI values, left ventricle end-diastolic dimension (LVEDD) and TDI values were analyzed. Also, we conducted multivariate analysis of cardiac growth parameters such as, age, BSA, LVEDD and TDI velocity data. Results All of the age, BSA, and LVEDD had positive correlations with deceleration time (DT), pressure half-time (PHT), peak early diastolic myocardial velocity, peak systolic myocardial velocity, and had negative correlations with peak late diastolic velocity (A) and the ratio of trans-mitral inflow velocity to early diastolic velocity of mitral annulus (E/E'). In the multivariate analysis, all of the age, BSA, and LVEDD had positive correlations with DT, PHT, and negative correlations with A and E/E'. Conclusion The cardiac growth parameters related alterations of E/E' may suggest that diastolic myocardial velocities are cardiac growth dependent, and diastolic function has positive correlation with cardiac growth in pediatric group. This cardiac growth related myocardial functional variation would be important for assessment of cardiac involvement either in healthy and sick child. PMID:27081443

  3. Anisotropic ray trace

    NASA Astrophysics Data System (ADS)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  4. TIDDBIT HF Doppler Sounder Measurements of TIDs During the Wallops Island Rocket Launch of October 2007

    NASA Astrophysics Data System (ADS)

    Reynolds, A.; Crowley, G.; Rodrigues, F.; Earle, G.; Bullett, T.; Bishop, R.

    2008-12-01

    The TID Detector Built In Texas (TIDDBIT) sounder was deployed on the East Coast near Wallops Island to support a rocket launch in October 2007. The purpose of the rocket experiment was to study mid-latitude spread-F (MSF), and TIDDBIT provided information on the TID characteristics during the launch and for several days surrounding the launch. The sounder data confirm that waves were present during the rocket launch. This presentation reviews the TIDDBIT results from the experiment, contrasting data collected on different days, and from the same dates a year earlier. HF Doppler sounders represent a low-cost and low- maintenance solution for monitoring acoustic and gravity wave activity in the F-region ionosphere. HF Doppler sounders together with modern data analysis techniques provide both horizontal and vertical phase trace velocities across the entire TID spectrum from periods of 30-s to several hours. ASTRA has extensive experience with HF systems, and is currently building TIDDBIT sounders in New Mexico, and Peru.

  5. The Use of a Laser Doppler Velocimeter in a Standard Flammability Tube

    NASA Technical Reports Server (NTRS)

    Strehlow, R. A.; Flynn, E. M.

    1985-01-01

    The use of the Laser Doppler Velocimeter, (LDV), to measure the flow associated with the passage of a flame through a standard flammability limit tube (SFLT) was studied. Four major results are presented: (1) it is shown that by using standard ray tracing calculations, the displacement of the LDV volume and the fringe rotation within the experimental error of measurement can be predicted; (2) the flow velocity vector field associated with passage of an upward propagating flame in an SFLT is determined; (3) it is determined that the use of a light interruption technique to track particles is not feasible; and (4) it is shown that a 25 mW laser is adequate for LDV measurements in the Shuttle or Spacelab.

  6. 2D full wave modeling for a synthetic Doppler backscattering diagnostic

    SciTech Connect

    Hillesheim, J. C.; Schmitz, L.; Kubota, S.; Rhodes, T. L.; Carter, T. A.; Holland, C.

    2012-10-15

    Doppler backscattering (DBS) is a plasma diagnostic used in tokamaks and other magnetic confinement devices to measure the fluctuation level of intermediate wavenumber (k{sub {theta}}{rho}{sub s}{approx} 1) density fluctuations and the lab frame propagation velocity of turbulence. Here, a synthetic DBS diagnostic is described, which has been used for comparisons between measurements in the DIII-D tokamak and predictions from nonlinear gyrokinetic simulations. To estimate the wavenumber range to which a Gaussian beam would be sensitive, a ray tracing code and a 2D finite difference, time domain full wave code are used. Experimental density profiles and magnetic geometry are used along with the experimental antenna and beam characteristics. An example of the effect of the synthetic diagnostic on the output of a nonlinear gyrokinetic simulation is presented.

  7. Duplex Doppler ultrasound study of the temporomandibular joint

    PubMed Central

    Stagnitti, A.; Marini, A.; Impara, L.; Drudi, F.M.; Lo mele, L.; Lillo Odoardi, G.

    2012-01-01

    Introduction The anatomy and physiology of the temporomandibular joint can be studied clinically and by diagnostic imaging. Magnetic resonance imaging (MRI), radiography (X-ray) and computed tomography (CT) have thus for many years contributed to the study of the kinetics in the mandibular condyle. However, also duplex Doppler ultrasound (US) examination is widely used in the study of structures during movement, particularly vascular structures. Materials and methods A total of 30 patients were referred by the Department of Orthodontics to the Department of Radiological, Oncological and Pathological Sciences, University of Rome “La Sapienza”. All patients underwent duplex Doppler ultrasound (US) examination of the temporomandibular joint using Toshiba APLIO SSA-770A equipment and duplex Doppler multi-display technique, which allows simultaneous display of US images and color Doppler signals. A linear phased array probe with crystal elements was used operating at a basic frequency of 6 MHz during pulsed Doppler spectral analysis and 7.5 MHz during US imaging. Results In normal patients a regular alternation in the spectral Doppler waveforms was obtained, while in patients with temporomandibular joint meniscus dysfunction there was no regularity in the sum of the Fourier series with an unsteady waveform pattern related to irregular movements of the temporomandibular joint. Conclusions In all cases duplex Doppler US examination proved able to differentiate between normal and pathological patients and among the latter this technique permitted identification of the most significant aspects of the dysfunctional diseases. PMID:23397016

  8. Use of Doppler ultrasound for non-invasive urodynamic diagnosis

    PubMed Central

    Ozawa, Hideo; Watanabe, Toyohiko; Uematsu, Katsutoshi; Sasaki, Katsumi; Inoue, Miyabi; Kumon, Hiromi

    2009-01-01

    Objectives: A totally non-invasive transperineal urodynamic technique using Doppler ultrasonography has been developed. Methods: Since normal urine does not have blood cells, urine was thought not to produce the Doppler effects. However, basic studies confirmed that the decrease of pressure at high velocity (Bernouilli effect) caused dissolved gas to form microbubbles, which are detected by Doppler ultrasonography. Subjects sat and the probe was advanced via remote control to achieve gentle contact with the perineal skin. The digital uroflow data signals and the color Doppler ultrasound video images were processed on a personal computer. The flow-velocity curves from two sites; the distal prostatic urethra just above the external sphincter (V1) and the sphincteric urethra (V2) were plotted against time. The parameters of both the pressure-flow studies and the Doppler ultrasound urodynamic studies were compared in men who had various degrees of obstruction. Results: Functional cross-sectional area at prostatic urethra (A1), calculated by Qmax/V1, was lower in the group of bladder outlet obstruction (BOO) vs. control group. Velocity ratio (VR), which was calculated by V1/V2, was the parameter having the best correlation with BOO index, though A1 had a similar correlation. This method is viable to diagnose the degree of BOO. Conclusions: The development of non-invasive Doppler ultrasound videourodynamics (Doppler UDS) will dramatically expand the information on voiding function. PMID:19468440

  9. Ultrasonic Doppler measurement of renal artery blood flow

    NASA Technical Reports Server (NTRS)

    Freund, W. R.; Beaver, W. L.; Meindl, J. D.

    1976-01-01

    Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.

  10. Relativistic formulation for the Doppler-broadened line profile

    SciTech Connect

    Huang, Young-Sea; Chiue, Juang-Han; Huang, Yi-Chi; Hsiung, Te-Chih

    2010-07-15

    Profiles of spectral lines due to the thermal motion of light-emitting particles are formulated based on the classical and the relativistic Doppler effects, respectively. For the classical case, the well-known Doppler-broadened line profile is reproduced. For the relativistic case, the line profile obtained is asymmetrically broadened with increasing temperature. However, the peak frequency remains unshifted, in contrast to blueshifted, as has been predicted in the current literature. Reasoning is given as to why the relativistic Doppler-broadened line profile currently accepted is probably invalid.

  11. [Feasibility study of the Doppler exploration of the renal artery].

    PubMed

    Milon, P; Clavier, E; Genevois, A; Benozio, M

    1990-03-01

    Using arteriography as a reference, the authors investigate the feasibility of pulsed doppler exploration of the normal or pathological renal arteries in 46 successive patients. The poor sensitivity of pulsed doppler, mainly due to the considerable anatomical variations of the renal pedicle, does not currently allow using this technique for the detection of renal arterial stenosis. When combined with angiography, pulsed doppler becomes a definite asset in therapeutic radiology to help in the choice of a treatment and in follow-up. PMID:2191123

  12. Sub-Doppler laser cooling of potassium atoms

    NASA Astrophysics Data System (ADS)

    Landini, M.; Roy, S.; Carcagní, L.; Trypogeorgos, D.; Fattori, M.; Inguscio, M.; Modugno, G.

    2011-10-01

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25±3 μK and 47±5 μK in high-density samples of the two isotopes 39K and 41K, respectively. Our findings should find application to other atomic systems.

  13. Advances in Direct Detection Doppler Lidar Technology and Techniques

    NASA Technical Reports Server (NTRS)

    Gentry, Bruce; Einaudi, Franco (Technical Monitor)

    2001-01-01

    In this paper we will describe the ground based Doppler lidar system which is mounted in a modified delivery van to allow field deployment and operations. The system includes an aerosol double edge receiver optimized for aerosol backscatter Doppler measurements at 1064 nm and a molecular double edge receiver which operates at 355 nm. The lidar system will be described including details of the injection seeded diode pumped laser transmitter and the piezoelectrically tunable high spectral resolution Fabry Perot etalon which is used to measure the Doppler shift. Examples of tropospheric wind profiles obtained with the system will also be presented to demonstrate its capabilities.

  14. Is tissue Doppler echocardiography the Holy Grail for the intensivist?

    PubMed Central

    Poelaert, Jan; Roosens, Carl

    2007-01-01

    Assessment of left ventricular diastolic function in the critically ill patient remains a difficult issue in clinical practice. Combined use of routine transmitral and pulmonary venous Doppler patterns in conjunction with tissue Doppler imaging have been claimed to allow bedside diagnosis of diastolic dysfunction. Although in the previous issue of Critical Care it was clearly demonstrated there might be a difference in load dependency of the early myocardial tissue Doppler velocity between lateral and septal placed sample volume, there remain still several unanswered questions, particularly with respect to the preload dependency of these indices. PMID:17567926

  15. Sub-Doppler laser cooling of potassium atoms

    SciTech Connect

    Landini, M.; Roy, S.; Carcagni, L.; Trypogeorgos, D.; Fattori, M.; Inguscio, M.; Modugno, G.

    2011-10-15

    We investigate the sub-Doppler laser cooling of bosonic potassium isotopes, whose small hyperfine splitting has so far prevented cooling below the Doppler temperature. We find instead that the combination of a dark optical molasses scheme that naturally arises in this kind of system and an adiabatic ramping of the laser parameters allows us to reach sub-Doppler temperatures for small laser detunings. We demonstrate temperatures as low as 25{+-}3 {mu}K and 47{+-}5 {mu}K in high-density samples of the two isotopes {sup 39}K and {sup 41}K, respectively. Our findings should find application to other atomic systems.

  16. Mitigating Doppler shift effect in HF multitone data modem

    NASA Astrophysics Data System (ADS)

    Sonlu, Yasar

    1989-09-01

    Digital communications over High Frequency (HF) radio channels are getting important in recent years. Current HF requirements are for data transmission at rates 2.4 kbps or more to accommodate computer data links and digital secure voice. HF modems which were produced to meet these speeds are, serial modems and parallel modems. On the other hand, the HF sky-wave communication medium, the ionosphere, has some propagation problems such as multipath and Doppler shift. The effect of Doppler shift in a parallel modem which employs Differential Quadrature Phase Shift Keying (DQPSK) modulation is considered and a correction method to mitigate the Doppler Shift effect is introduced.

  17. Interferometric millimeter wave and THz wave doppler radar

    DOEpatents

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  18. Doppler ultrasound signal denoising based on wavelet frames.

    PubMed

    Zhang, Y; Wang, Y; Wang, W; Liu, B

    2001-05-01

    A novel approach was proposed to denoise the Doppler ultrasound signal. Using this method, wavelet coefficients of the Doppler signal at multiple scales were first obtained using the discrete wavelet frame analysis. Then, a soft thresholding-based denoising algorithm was employed to deal with these coefficients to get the denoised signal. In the simulation experiments, the SNR improvements and the maximum frequency estimation precision were studied for the denoised signal. From the simulation and clinical studies, it was concluded that the performance of this discrete wavelet frame (DWF) approach is higher than that of the standard (critically sampled) wavelet transform (DWT) for the Doppler ultrasound signal denoising. PMID:11381694

  19. Rotational Doppler Effect and Barnett Field in Spinning NMR

    NASA Astrophysics Data System (ADS)

    Chudo, Hiroyuki; Harii, Kazuya; Matsuo, Mamoru; Ieda, Jun'ichi; Ono, Masao; Maekawa, Sadamichi; Saitoh, Eiji

    2015-04-01

    We report the observation of the rotational Doppler effect using nuclear magnetic resonance (NMR). We have developed a coil-spinning technique that enables measurements by rotating a detector and fixing a sample. We found that the rotational Doppler effect gives rise to NMR frequency shifts equal to the rotation frequency. We formulate the rotational Doppler effect and the Barnett field using a vector model for the nuclear magnetic moment. This formulation reveals that, with just the sample rotating, both effects cancel each other, thereby explaining the absence of an NMR frequency shift in conventional sample-spinning NMR measurements.

  20. Support vector analysis of color-Doppler images: a new approach for estimating indices of left ventricular function.

    PubMed

    Rojo-Alvarez, J L; Bermejo, J; Juárez-Caballero, V M; Yotti, R; Cortina, C; García-Fernández, M A; Antoranz, J C

    2006-08-01

    Reliable noninvasive estimators of global left ventricular (LV) chamber function remain unavailable. We have previously demonstrated a potential relationship between color-Doppler M-mode (CDMM) images and two basic indices of LV function: peak-systolic elastance (Emax) and the time-constant of LV relaxation (tau). Thus, we hypothesized that these two indices could be estimated noninvasively by adequate postprocessing of CDMM recordings. A semiparametric regression (SR) version of support vector machine (SVM) is here proposed for building a blind model, capable of analyzing CDMM images automatically, as well as complementary clinical information. Simultaneous invasive and Doppler tracings were obtained in nine mini-pigs in a high-fidelity experimental setup. The model was developed using a test and validation leave-one-out design. Reasonably acceptable prediction accuracy was obtained for both Emax (intraclass correlation coefficient Ric, = 0.81) and tau (Ric, = 0.61). For the first time, a quantitative, noninvasive estimation of cardiovascular indices is addressed by processing Doppler-echocardiography recordings using a learning-from-samples method. PMID:16894996

  1. To assess the intimal thickness, flow velocities, and luminal diameter of carotid arteries using high-resolution B-mode ultrasound doppler imaging

    NASA Astrophysics Data System (ADS)

    Vemuru, Madhuri; Jabbar, Afzal; Chandra, Suman

    2004-04-01

    Carotid imaging is a Gold Standard test that provides useful information about the structure and functions of carotid arteries. Spectral imaging helps to evaluate the vessel and hemodynamic changes. High resolution B-mode imaging has emerged as one of the methods of choice for determining the anatomic extent of atherosclerosis and its progression and for assessing cardiovascular risks. The measurements made with Doppler correlate well with pathologic measurements. Recent prospective studies have clearly demonstrated that these measurements of carotid intimal thickness are potent predictors of Myocardial Infarction and Stroke. This method appears very attractive as it is non-invasive, extremely safe, well accepted by the patient and relatively inexpensive. It can be performed serially and has the advantage of visualizing the arterial wall in contrast to angiographic techniques which provide only an outline of the arterial lumen. Recently, there has been an interest in the clinical use of this technique in making difficult clinical decisions like deciding on preventive therapies. 30 subjects aged 21-60 years and 30 subjects aged 61-85 years of both sexes are selected after doing a baseline study to exclude Hypertension, Diabetes, Obesity and Hyperlipidemia. The carotid arteries were examined for intimal thickening, blood flow velocities and luminal diameter. With aging there is a narrowing of the carotid vessels and significant increase in intimal thickening with a consequent increase in the blood flow velocities. Inter-observer, intra-observer and instrument variations are seen and there is no significant change in the values when the distal flow pattern is considered for measurements. Aging produces major cardiovascular changes including decreased elasticity and compliance of great arteries leading to structural and functional alterations in heart and vessels. With aging there is increased intimal thickness and increased pulse wave velocity which is clearly

  2. The Next Generation Airborne Polarimetric Doppler Radar

    NASA Astrophysics Data System (ADS)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  3. Planetary Radio Interferometry and Doppler Experiment (PRIDE) for studying the thermosphere of Venus

    NASA Astrophysics Data System (ADS)

    Bocanegra Bahamón, T. M.; Cimò, G.; Duev, D. A.; Gurvits, L. I.; Marty, J. C.; Molera Calvés, G.; Pogrebenko, S. V.; Rosenblatt, P.

    2013-09-01

    Planetary Radio Interferometry and Doppler Experiment (PRIDE) is a generic experimental setup of on-board and Earth-based radio devices and facilities, which serves as an enhancement of the science return of planetary missions. The main goal of this technique is to provide precise estimates of the spacecraft state vectors, by performing precise Doppler tracking of the spacecraft carrier signal, at one or more Earth-based radio telescopes, and VLBI-style correlation of these signals in phase referencing mode [1]. By allowing an accurate examination of the changes in phase and amplitude of the radio signal propagating from the spacecraft to the multiple stations on Earth, the PRIDE technique can be used for several fields of research, among them: atmospheric and ionospheric structure of planets and their satellites, planetary gravity fields, planets' shapes, masses and ephemerides, solar plasma and different aspects of the theory of general relativity. The PRIDE-team is participating in the so-called Venus Express Atmospheric Drag Experiment (VEx-ADE) campaigns by tracking ESA's Venus Express with multiple radio telescopes on Earth. During each campaign, VEX's orbit pericenter is lowered into an altitude range of approximately 165 to 175 km in order to probe Venus upper atmosphere above its north pole. The first VExADE campaigns were carried out between 2009-2010 using Doppler tracking data acquired by the VEX radio science experiment (VeRa), which provided the first in situ measurements of the density of Venus' polar thermosphere at solar minimum conditions [2]. The last campaign was conducted in December 2012, in which the PRIDE-team participated by tracking VEX with several radio telescopes from the European VLBI Network (EVN) during pericenter passage. A Doppler frequency drop of ∼40 mHz was detected as VEX reached the lowest altitudes at around 170 km. The tracking data for each pericenter pass is fitted for precise orbit determination, from which drag

  4. Trace metal transformations in gasification

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; O`Keefe, C.A.; Katrinak, K.; Allan, S.E.; Hassett, D.J.; Hauserman, W.B.; Zygarlicke, C.J.

    1995-11-01

    The Energy and Environmental Research Center (EERC) is carrying out an investigation that will provide methods to predict the fate of selected trace elements in integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) systems to aid in the development of methods to control the emission of trace elements determined to be air toxics. The goal of this project is to identify the effects of critical chemical and physical transformations associated with trace element behavior in IGCC and IGFC systems. The trace elements included in this project are arsenic, chromium, cadmium, mercury, nickel, selenium, and lead. The research seeks to identify and fill, experimentally and/or theoretically, data gaps that currently exist on the fate and composition of trace elements. The specific objectives are to (1) review the existing literature to identify the type and quantity of trace elements from coal gasification systems; (2) perform laboratory-scale experimentation and computer modeling to enable prediction of trace element emissions; and (3) identify methods to control trace element emissions. Results are presented and discussed on the partitioning of trace metals and the model design for predicting trace metals behavior.

  5. Doppler electron velocimetry : notes on creating a practical tool.

    SciTech Connect

    Reu, Phillip L.; Milster, Tom

    2008-11-01

    The Doppler electron velocimeter (DEV) has been shown to be theoretically possible. This report attempts to answer the next logical question: Is it a practical instrument? The answer hinges upon whether enough electrons are available to create a time-varying Doppler current to be measured by a detector with enough sensitivity and bandwidth. The answer to both of these questions is a qualified yes. A target Doppler frequency of 1 MHz was set as a minimum rate of interest. At this target a theoretical beam current signal-to-noise ratio of 25-to-1 is shown for existing electron holography equipment. A detector is also demonstrated with a bandwidth of 1-MHz at a current of 10 pA. Additionally, a Linnik-type interferometer that would increase the available beam current is shown that would offer a more flexible arrangement for Doppler electron measurements over the traditional biprism.

  6. Quantitative Measurement of the Doppler Shift at an Ultrasonic Frequency

    ERIC Educational Resources Information Center

    Nerbun, R. C.; Leskovec, R. A.

    1976-01-01

    Discussed is a Doppler shift laboratory experiment for an introductory college physics course. Ultrasonic transducers and a digital phase detector circuit "black box" are used to overcome room noise and "standing waves" and to produce an observable frequency shift. (SL)

  7. Extracting and analyzing micro-Doppler from ladar signatures

    NASA Astrophysics Data System (ADS)

    Tahmoush, Dave

    2015-05-01

    Ladar and other 3D imaging modalities have the capability of creating 3D micro-Doppler to analyze the micro-motions of human subjects. An additional capability to the recognition of micro-motion is the recognition of the moving part, such as the hand or arm. Combined with measured RCS values of the body, ladar imaging can be used to ground-truth the more sensitive radar micro-Doppler measurements and associate the moving part of the subject with the measured Doppler and RCS from the radar system. The 3D ladar signatures can also be used to classify activities and actions on their own, achieving an 86% accuracy using a micro-Doppler based classification strategy.

  8. Laser Doppler technology applied to atmospheric environmental operating problems

    NASA Technical Reports Server (NTRS)

    Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.

    1976-01-01

    Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.

  9. Modifications and Moving Measurements of Mobile Doppler LIDAR

    NASA Astrophysics Data System (ADS)

    Liu, Bing-Yi; Liu, Zhi-Shen; Song, Xiao-Quan; Wu, Song-Hua; Bi, De-Cang; Wang, Xi-Tao; Yin, Qi-Wei; Reitebuch, Oliver

    2010-10-01

    In the last annual report of ID. 5291 LIDAR Cal/Val, a mobile Doppler lidar had been developed for 3D wind measurements by the Chinese partners from Ocean Remote Sensing Institute, Ocean University of China. In this year, in order to further improve the mobility of the mobile Doppler lidar for lidar calibration and validation, both GPS and inertial navigation system are integrated on the vehicle for performing measurements during movement. The modifications of the system and the results of the moving measurements are presented. This work simplifies the construction of the mobile Doppler system and makes the lidar more flexible for ground-based wind measurements and validation with the ADM-Aeolus spaceborne Doppler lidar.

  10. Exploratory Meeting on Airborne Doppler Lidar Wind Velocity Measurements

    NASA Technical Reports Server (NTRS)

    Fichtel, G. H. (Editor); Kaufman, J. W. (Editor); Vaughan, W. W. (Editor)

    1980-01-01

    The scientific interests and applications of the Airborne Doppler Lidar Wind Velocity Measurement System to severe storms and local weather are discussed. The main areas include convective phenomena, local circulation, atmospheric boundary layer, atmospheric dispersion, and industrial aerodynamics.

  11. Radiowave Phase Scintillation and Precision Doppler Tracking of Spacecraft

    NASA Technical Reports Server (NTRS)

    Armstrong, J. W.

    1997-01-01

    Phase scintillation cause by propagation through irregularities in the solar wind, ionosphere, and tropospher, introduces noise in spacecraft radio science experiments. The observations reported here are uses to refine the propagation noise model for Doppler tracking of deep space probes.

  12. Laser Doppler instrument measures fluid velocity without reference beam

    NASA Technical Reports Server (NTRS)

    Bourquin, K. R.; Shigemoto, F. H.

    1971-01-01

    Fluid velocity is measured by focusing laser beam on moving fluid and measuring Doppler shift in frequency which results when radiation is scattered by particles either originally present or deliberately injected into moving fluid.

  13. Apparatus and method for noninvasive particle detection using doppler spectroscopy

    DOEpatents

    Sinha, Dipen N.

    2016-05-31

    An apparatus and method for noninvasively detecting the presence of solid particulate matter suspended in a fluid flowing through a pipe or an oil and gas wellbore are described. Fluid flowing through a conduit containing the particulate solids is exposed to a fixed frequency (>1 MHz) of ultrasonic vibrations from a transducer attached to the outside of the pipe. The returning Doppler frequency shifted signal derived from the scattering of sound from the moving solid particles is detected by an adjacent transducer. The transmitted signal and the Doppler signal are combined to provide sensitive particulate detection. The magnitude of the signal and the Doppler frequency shift are used to determine the particle size distribution and the velocity of the particles. Measurement of the phase shift between the applied frequency and the detected Doppler shifted may be used to determine the direction of motion of the particles.

  14. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  15. The Doppler Effect: A Consideration of Quasar Redshifts.

    ERIC Educational Resources Information Center

    Gordon, Kurtiss J.

    1980-01-01

    Provides information on the calculation of the redshift to blueshift ratio introduced by the transverse Doppler effect at relativistic speeds. Indicates that this shift should be mentioned in discussions of whether quasars are "local" rather than "cosmological" objects. (GS)

  16. Doing the Doppler. How to Drive This Concept Home.

    ERIC Educational Resources Information Center

    Koser, John F.

    1990-01-01

    An outdoor activity that demonstrates the Doppler effect is described. Class predictions are verified by actual involvement in collecting data. Presented is a method of analyzing data. Safety concerns are discussed. (KR)

  17. Trace conditioning in insects—keep the trace!

    PubMed Central

    Dylla, Kristina V.; Galili, Dana S.; Szyszka, Paul; Lüdke, Alja

    2013-01-01

    Trace conditioning is a form of associative learning that can be induced by presenting a conditioned stimulus (CS) and an unconditioned stimulus (US) following each other, but separated by a temporal gap. This gap distinguishes trace conditioning from classical delay conditioning, where the CS and US overlap. To bridge the temporal gap between both stimuli and to form an association between CS and US in trace conditioning, the brain must keep a neural representation of the CS after its termination—a stimulus trace. Behavioral and physiological studies on trace and delay conditioning revealed similarities between the two forms of learning, like similar memory decay and similar odor identity perception in invertebrates. On the other hand differences were reported also, like the requirement of distinct brain structures in vertebrates or disparities in molecular mechanisms in both vertebrates and invertebrates. For example, in commonly used vertebrate conditioning paradigms the hippocampus is necessary for trace but not for delay conditioning, and Drosophila delay conditioning requires the Rutabaga adenylyl cyclase (Rut-AC), which is dispensable in trace conditioning. It is still unknown how the brain encodes CS traces and how they are associated with a US in trace conditioning. Insects serve as powerful models to address the mechanisms underlying trace conditioning, due to their simple brain anatomy, behavioral accessibility and established methods of genetic interference. In this review we summarize the recent progress in insect trace conditioning on the behavioral and physiological level and emphasize similarities and differences compared to delay conditioning. Moreover, we examine proposed molecular and computational models and reassess different experimental approaches used for trace conditioning. PMID:23986710

  18. Trace element indiscrimination diagrams

    NASA Astrophysics Data System (ADS)

    Li, Chusi; Arndt, Nicholas T.; Tang, Qingyan; Ripley, Edward M.

    2015-09-01

    We tested the accuracy of trace element discrimination diagrams for basalts using new datasets from two petrological databases, PetDB and GEOROC. Both binary and ternary diagrams using Zr, Ti, V, Y, Th, Hf, Nb, Ta, Sm, and Sc do a poor job of discriminating between basalts generated in various tectonic environments (continental flood basalt, mid-ocean ridge basalt, ocean island basalt, oceanic plateau basalt, back-arc basin basalt, and various types of arc basalt). The overlaps between the different types of basalt are too large for the confident application of such diagrams when used in the absence of geological and petrological constraints. None of the diagrams we tested can clearly discriminate between back-arc basin basalt and mid-ocean ridge basalt, between continental flood basalt and oceanic plateau basalt, and between different types of arc basalt (intra-oceanic, island and continental arcs). Only ocean island basalt and some mid-ocean ridge basalt are generally distinguishable in the diagrams, and even in this case, mantle-normalized trace element patterns offer a better solution for discriminating between the two types of basalt.

  19. Trace element emissions

    SciTech Connect

    Benson, S.A.; Erickson, T.A.; Steadman, E.N.; Zygarlicke, C.J.; Hauserman, W.B.; Hassett, D.J.

    1993-01-01

    The predicting of inorganic transformations (major and minor components) during coal combustion has long been the focus of many research programs (Zygarlicke et al., 1992; Wilemski et al., 1992; Baxter, 1992). In the program described in this paper, the predictive techniques that have been applied to combustion are being modified to predict inorganic transformations under gasification conditions. Many of the current trace element predictive techniques are based on the assumption of equilibrium conditions and not on actual kinetically constrained transformations that occur during coal utilization. The approach used in this program is to combine inorganic transformation algorithms and the thermochemical equilibrium calculations (Ramanathan et al., 1989, 1991). These techniques will be developed to predict the particle-size and composition distribution of the resulting coal ash particulate, along with the state of the vapor species at selected conditions for major, minor, and trace constituents. Many of the computer models recently to predict the evolution of major developed and minor elements during coal gasification were made possible by the development on a highly quantitative analytical technique for coal analysis, CCSEM (Steadman et al., 1990). CCSEM provides a particle-size and composition distribution for the mineral contents of a particular coal for twelve major and minor elements. These raw CCSEM data are the primary input to the newest computer models of ash formation.

  20. Using doppler radar images to estimate aircraft navigational heading error

    DOEpatents

    Doerry, Armin W.; Jordan, Jay D.; Kim, Theodore J.

    2012-07-03

    A yaw angle error of a motion measurement system carried on an aircraft for navigation is estimated from Doppler radar images captured using the aircraft. At least two radar pulses aimed at respectively different physical locations in a targeted area are transmitted from a radar antenna carried on the aircraft. At least two Doppler radar images that respectively correspond to the at least two transmitted radar pulses are produced. These images are used to produce an estimate of the yaw angle error.

  1. Digital Doppler extraction demonstration with the advanced receiver

    NASA Technical Reports Server (NTRS)

    Hinedi, S.; Bevan, R.; Delcastillo, H.; Kinman, P.; Chong, D.; Labelle, R.

    1990-01-01

    A digital Doppler extraction demonstration with the Advanced Receiver 2 (ARX 2) tracking Pioneer 10 and Voyager 2 is described. The measured results are compared with those of the Block 4 receiver that was operating in parallel with the ARX 2. It is shown that the ARX 2 outperforms the Block 4 receiver in terms of Allan variance of the Doppler residuals, the amount of which depends on the scenario of interest.

  2. Software For Clear-Air Doppler-Radar Display

    NASA Technical Reports Server (NTRS)

    Johnston, Bruce W.

    1990-01-01

    System of software developed to present plan-position-indicator scans of clear-air Doppler radar station on color graphical cathode-ray-tube display. Designed to incorporate latest accepted standards for equipment, computer programs, and meteorological data bases. Includes use of Ada programming language, of "Graphical-Kernel-System-like" graphics interface, and of Common Doppler Radar Exchange Format. Features include portability and maintainability. Use of Ada software packages produced number of software modules reused on other related projects.

  3. Monitoring and Analysis of Respiratory Patterns Using Microwave Doppler Radar

    PubMed Central

    Pathirana, Pubudu N.; Steinfort, Christopher Louis; Caelli, Terry

    2014-01-01

    Noncontact detection characteristic of Doppler radar provides an unobtrusive means of respiration detection and monitoring. This avoids additional preparations, such as physical sensor attachment or special clothing, which can be useful for certain healthcare applications. Furthermore, robustness of Doppler radar against environmental factors, such as light, ambient temperature, interference from other signals occupying the same bandwidth, fading effects, reduce environmental constraints and strengthens the possibility of employing Doppler radar in long-term respiration detection, and monitoring applications such as sleep studies. This paper presents an evaluation in the of use of microwave Doppler radar for capturing different dynamics of breathing patterns in addition to the respiration rate. Although finding the respiration rate is essential, identifying abnormal breathing patterns in real-time could be used to gain further insights into respiratory disorders and refine diagnostic procedures. Several known breathing disorders were professionally role played and captured in a real-time laboratory environment using a noncontact Doppler radar to evaluate the feasibility of this noncontact form of measurement in capturing breathing patterns under different conditions associated with certain breathing disorders. In addition to that, inhalation and exhalation flow patterns under different breathing scenarios were investigated to further support the feasibility of Doppler radar to accurately estimate the tidal volume. The results obtained for both experiments were compared with the gold standard measurement schemes, such as respiration belt and spirometry readings, yielding significant correlations with the Doppler radar-based information. In summary, Doppler radar is highlighted as an alternative approach not only for determining respiration rates, but also for identifying breathing patterns and tidal volumes as a preferred nonwearable alternative to the conventional

  4. Muscle activity characterization by laser Doppler Myography

    NASA Astrophysics Data System (ADS)

    Scalise, Lorenzo; Casaccia, Sara; Marchionni, Paolo; Ercoli, Ilaria; Primo Tomasini, Enrico

    2013-09-01

    Electromiography (EMG) is the gold-standard technique used for the evaluation of muscle activity. This technique is used in biomechanics, sport medicine, neurology and rehabilitation therapy and it provides the electrical activity produced by skeletal muscles. Among the parameters measured with EMG, two very important quantities are: signal amplitude and duration of muscle contraction, muscle fatigue and maximum muscle power. Recently, a new measurement procedure, named Laser Doppler Myography (LDMi), for the non contact assessment of muscle activity has been proposed to measure the vibro-mechanical behaviour of the muscle. The aim of this study is to present the LDMi technique and to evaluate its capacity to measure some characteristic features proper of the muscle. In this paper LDMi is compared with standard superficial EMG (sEMG) requiring the application of sensors on the skin of each patient. sEMG and LDMi signals have been simultaneously acquired and processed to test correlations. Three parameters has been analyzed to compare these techniques: Muscle activation timing, signal amplitude and muscle fatigue. LDMi appears to be a reliable and promising measurement technique allowing the measurements without contact with the patient skin.

  5. Doppler-resolved kinetics of saturation recovery

    SciTech Connect

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

  6. Atmospheric aerosol and Doppler lidar studies

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeff; Bowdle, D. A.; Srivastava, V.; Jarzembski, M.; Cutten, D.; Mccaul, E. W., Jr.

    1991-01-01

    Experimental and theoretical studies were performed of atmospheric aerosol backscatter and atmospheric dynamics with Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts. The primary focus of activities related to understanding aerosol backscatter is the GLObal Backscatter Experiment (GLOBE) program. GLOBE is a multi-element effort designed toward developing a global aerosol model to describe tropospheric clean background backscatter conditions that Laser Atmospheric Wind Sounder (LAWS) is likely to encounter. Two survey missions were designed and flown in the NASA DC-8 in November 1989 and May to June 1990 over the remote Pacific Ocean, a region where backscatter values are low and where LAWS wind measurements could make a major contribution. The instrument complement consisted of pulsed and continuous-wave (CW) CO2 gas and solid state lidars measuring aerosol backscatter, optical particle counters measuring aerosol concentration, size distribution, and chemical composition, a filter/impactor system collecting aerosol samples for subsequent analysis, and integrating nephelometers measuring visible scattering coefficients. The GLOBE instrument package and survey missions were carefully planned to achieve complementary measurements under clean background backscatter conditions.

  7. Doppler-resolved kinetics of saturation recovery

    DOE PAGESBeta

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less

  8. Doppler effect induced spin relaxation boom.

    PubMed

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  9. Doppler effect induced spin relaxation boom

    PubMed Central

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-01-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures. PMID:26996253

  10. Doppler effect induced spin relaxation boom

    NASA Astrophysics Data System (ADS)

    Zhao, Xinyu; Huang, Peihao; Hu, Xuedong

    2016-03-01

    We study an electron spin qubit confined in a moving quantum dot (QD), with our attention on both spin relaxation, and the product of spin relaxation, the emitted phonons. We find that Doppler effect leads to several interesting phenomena. In particular, spin relaxation rate peaks when the QD motion is in the transonic regime, which we term a spin relaxation boom in analogy to the classical sonic boom. This peak indicates that a moving spin qubit may have even lower relaxation rate than a static qubit, pointing at the possibility of coherence-preserving transport for a spin qubit. We also find that the emitted phonons become strongly directional and narrow in their frequency range as the qubit reaches the supersonic regime, similar to Cherenkov radiation. In other words, fast moving excited spin qubits can act as a source of non-classical phonons. Compared to classical Cherenkov radiation, we show that quantum dot confinement produces a small but important correction on the Cherenkov angle. Taking together, these results have important implications to both spin-based quantum information processing and coherent phonon dynamics in semiconductor nanostructures.

  11. Evaluating microcirculation by pulsatile laser Doppler signal

    NASA Astrophysics Data System (ADS)

    Chao, P. T.; Jan, M. Y.; Hsiu, H.; Hsu, T. L.; Wang, W. K.; Wang, Y. Y. Lin

    2006-02-01

    Laser Doppler flowmetry (LDF) is a popular method for monitoring the microcirculation, but it does not provide absolute measurements. Instead, the mean flux response or energy distribution in the frequency domain is generally compared before and after stimulus. Using the heartbeat as a trigger, we investigated whether the relation between pressure and flux can be used to discriminate different microcirculatory conditions. We propose the following three pulsatile indices for evaluating the microcirculation condition from the normalized pressure and flux segment with a synchronized-averaging method: peak delay time (PDT), pressure rise time and flux rise time (FRT). The abdominal aortic blood pressure and renal cortex flux (RCF) signals were measured in spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). The mean value of the RCF did not differ between SHR and WKY. However, the PDT was longer in SHR (87.14 ± 5.54 ms, mean ± SD) than in WKY (76.92 ± 2.62 ms; p < 0.001). The FRT was also longer in SHR (66.56 ± 1.98 ms) than in WKY (58.02 ± 1.77 ms; p < 0.001). We propose that a new dimension for comparing the LDF signals, which the results from the present study show, can be used to discriminate RCF signals that cannot be discriminated using traditional methods.

  12. Doppler radar detection of vortex hazard indicators

    NASA Technical Reports Server (NTRS)

    Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.

    1994-01-01

    Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.

  13. Resonant Doppler imaging with common path OCT

    NASA Astrophysics Data System (ADS)

    Koch, Edmund; Hammer, Daniel; Wang, Siqian; Cuevas, Maximiliano; Walther, Julia

    2009-07-01

    Resonant Doppler flow imaging based on optical coherence tomography (OCT) is a recently developed imaging modality that provides, besides the structural information, dynamic blood flow information. We show that this method can be applied to a common path OCT system by mounting the mirror in the reference arm on a small piezo actor leading to a simpler and more stable system design. Besides the known 3 state cycle, we describe other cycles with any number of states leading to higher measurement speed or larger velocity range. The hysteresis of the piezo actor is compensated by applying an optimized electrical signal. Two different approaches, one using a Levenberg-Marquardt optimization, the other using the Prandtl-Ishlinskii model for compensation of hysteresis, are applied to generate the optimized control signal. Besides providing an analytical formula for the calculation of the axial velocity for cycles having certain spacings in the reference velocity, we describe deviations from the signal degradation caused by the transversal part of the motion causing errors in the velocity estimation. The performance of the system with two and three states is first evaluated with a mirror on a loud speaker. Measurements with a flow phantom consisting of 1 % Intralipid dilution flowing through small diameter capillaries show the suitability of the system and the expected deviations at high velocities.

  14. Concealed wire tracing apparatus

    DOEpatents

    Kronberg, James W.

    1994-01-01

    An apparatus and method that combines a signal generator and a passive signal receiver to detect and record the path of partially or completely concealed electrical wiring without disturbing the concealing surface. The signal generator applies a series of electrical pulses to the selected wiring of interest. The applied pulses create a magnetic field about the wiring that can be detected by a coil contained within the signal receiver. An audible output connected to the receiver and driven by the coil reflects the receivers position with respect to the wiring. The receivers audible signal is strongest when the receiver is directly above the wiring and the long axis of the receivers coil is parallel to the wiring. A marking means is mounted on the receiver to mark the location of the wiring as the receiver is directed over the wiring's concealing surface. Numerous marks made on various locations of the concealing surface will trace the path of the wiring of interest.

  15. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  16. Developments in laser Doppler accelerometry (LDAc) and comparison with laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Rothberg, Steve; Hocknell, Alan; Coupland, Jeremy

    This paper outlines the principles and early development of an interferometric technique for remote measurement of vibration acceleration — laser Doppler accelerometry (LDAc). One of the key advantages of LDAc over laser Doppler velocimetry (LDV) is its ability to measure extremely high vibration accelerations and shocks, effectively without limit, and this point is expanded upon in the paper. Early LDAc development showed how unwanted, velocity-dependent optical beats could occur on the photodetector but novel use of a frequency shifting device, whose primary purpose was for direction discrimination, was successful in isolating the required acceleration-dependent beat. A problem remained in the rate at which the velocity-dependent and acceleration-dependent beats broadened during target motion. In a further development, it was possible to 'select' a back reflection to produce a velocity-dependent beat that was NOT modulated in the presence of target motion. The acceleration-dependent beat could then be demodulated and preliminary results are given to demonstrate this outcome.

  17. Developments in laser Doppler accelerometry (LDAc) and comparison with laser Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Rothberg, Steve; Hocknell, Alan; Coupland, Jeremy

    1999-12-01

    This paper outlines the principles and early development of an interferometric technique for remote measurement of vibration acceleration - laser Doppler accelerometry (LDAc). One of the key advantages of LDAc over laser Doppler velocimetry (LDV) is its ability to measure extremely high vibration accelerations and shocks, effectively without limit, and this point is expanded upon in the paper. Early LDAc development showed how unwanted, velocity-dependent optical beats could occur on the photodetector but novel use of a frequency shifting device, whose primary purpose was for direction discrimination, was successful in isolating the required acceleration-dependent beat. A problem remained in the rate at which the velocity-dependent and acceleration-dependent beats broadened during target motion. In a further development, it was possible to 'select' a back reflection to produce a velocity-dependent beat that was NOT modulated in the presence of target motion. The acceleration-dependent beat could then be demodulated and preliminary results are given to demonstrate this outcome.

  18. Sub-Doppler Spectroscopy of H_3^+

    NASA Astrophysics Data System (ADS)

    Hodges, James N.; Perry, Adam J.; Siller, Brian M.; McCall, Benjamin J.

    2013-06-01

    Spectroscopy of H_3^+ is of fundamental interest for advancing ab initio efforts to calculate spectra with high precision and accuracy. H_3^+ is the simplest polyatomic ion, which is why it is an excellent benchmark for theory. In order to perform calculations with spectroscopic accuracy, relativistic and non-adiabatic corrections to the Born-Oppenhiemer approximation must be included; calculations with these considerations agree to within hundredths of a wavenumber. Increasing the precision of the calculations further will require a treatment of quantum electrodynamic effects, as has already been implemented for the diatomic case, and testing these calculations will require higher-precision experimental data to guide ab initio calculations. Noise Immune Cavity Enhanced Optical Heterodyne Velocity Modulation Spectroscopy, or NICE-OHVMS, is a highly sensitive, highly precise technique that we have employed to observe transitions in the ν_2 fundamental band of H_3^+. It combines the advantages of cavity enhancement and heterodyne detection with the ion-neutral discrimination afforded by velocity modulation. Combining a cavity with a high power mid-infrared light source, we can saturate rovibrational transitions. The resulting Lamb dips may be fit in order to determine line centers to a much higher precision than is possible for ordinary Doppler broadened profiles. Additionally, a frequency comb is used to surpass the limited accuracy and precision of a wavemeter. Here we present the results from comb calibrated H_3^+ transitions observed via NICE-OHVMS. Precision and accuracy of ˜ 1 MHz were achieved representing the most accurate and precise H_3^+ line list that has been obtained to date. O. L. Polyansky, J. Tennyson, J. Chem. Phys. (1999), 110, 5056--5064. J. Komasa, et al. J. Chem. Theor. Comp. (2011), 7, 3105--3115. B. M. Siller, et al. Opt. Express (2011), 19, 24822--7. K. N. Crabtree, et al. Chem. Phys. Lett. (2012), 551, 1--6.

  19. Right Ventricular Tissue Doppler in Space Flight

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Barratt, Michael R.; Sargsyan, Ashot E.; Ebert, Douglas; Garcia, Kathleen M.; Martin, David S.; Dulchavsky, Scott A.; Duncan, J. Michael

    2009-01-01

    Tissue Doppler (TD) registers movement of a given sample of cardiac tissue throughout the cardiac cycle. TD spectra of the right ventricle (RV) were obtained from a long-duration ISS crewmember as a portion of an ongoing experiment ("Braslet" test objective). To our knowledge, this is the first report of RV TD conducted in space flight, and the data represent reproducibility and fidelity of this application in space and serve as the first "space normal" data set. Methods RV TD was performed by astronaut scientists remotely guided by an ultrasound expert from Mission Control Center, Houston, TX. In four of the subjects, RV TD was acquired from the free wall near the tricuspid annulus in two separate sessions 4 to 7 days apart. A fifth subject had only one session. All digital DICOM frames were exported for off-line analysis. Systolic (S ), early diastolic (E ) and late diastolic (A ) velocities were measured. RV Tei-index was calculated using diastolic and systolic time intervals as a combined measure of myocardial performance. Results and Discussion The mean values from the first 4 subjects (8 sessions) were used as the on-orbit reference data, and subject 5 was considered as a hypothetical patient for comparison (see Table). The greatest difference was in the early diastolic A (31 %) yet the standard deviation (a) for A amongst the reference subjects was 2.25 (mean = 16.02). Of interest is the Tei index, a simple and feasible indicator of overall ventricular function; it was similar amongst all the subjects. The late diastolic A seems to compensate for the variance in E . Normal Tei index for the RV is < 0.3, yet our data show all but one subject consistently above this level, notwithstanding their nominal responses to daily exercise in microgravity. These data remind us that the physiology of RV preload in altered gravity environments is still not completely understood.

  20. Hands-Free Transcranial Color Doppler Probe

    NASA Technical Reports Server (NTRS)

    Chin, Robert; Madala, Srihdar; Sattler, Graham

    2012-01-01

    Current transcranial color Doppler (TCD) transducer probes are bulky and difficult to move in tiny increments to search and optimize TCD signals. This invention provides miniature motions of a TCD transducer probe to optimize TCD signals. The mechanical probe uses a spherical bearing in guiding and locating the tilting crystal face. The lateral motion of the crystal face as it tilts across the full range of motion was achieved by minimizing the distance between the pivot location and the crystal face. The smallest commonly available metal spherical bearing was used with an outer diameter of 12 mm, a 3-mm tall retaining ring, and 5-mm overall height. Small geared motors were used that would provide sufficient power in a very compact package. After confirming the validity of the basic positioning concept, optimization design loops were completed to yield the final design. A parallel motor configuration was used to minimize the amount of space wasted inside the probe case while minimizing the overall case dimensions. The distance from the front edge of the crystal to the edge of the case was also minimized to allow positioning of the probe very close to the ear on the temporal lobe. The mechanical probe is able to achieve a +/-20deg tip and tilt with smooth repeatable action in a very compact package. The enclosed probe is about 7 cm long, 4 cm wide, and 1.8 cm tall. The device is compact, hands-free, and can be adjusted via an innovative touchscreen. Positioning of the probe to the head is performed via conventional transducer gels and pillows. This device is amendable to having advanced software, which could intelligently focus and optimize the TCD signal.