Science.gov

Sample records for pumped dye laser

  1. Feasibility of solar-pumped dye lasers

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1987-01-01

    Dye laser gains were measured at various pump-beam irradiances on a dye cell in order to evaluate the feasibility of solar pumping. Rhodamine 6G dye was considered as a candidate for the solar-pumped laser because of its high utilization of the solar spectrum and high quantum efficiency. Measurements show that a solar concentration of 20,000 is required to reach the threshold of the dye.

  2. Research of the quenched dye lasers pumped by excimer lasers

    SciTech Connect

    Xue Shaolin; Lou Qihong

    1996-12-31

    In this paper, the quenched dye lasers pumped by XeCl and KrF excimer lasers were investigated theoretically and experimentally. Dye laser pulses with duration of 0.8 ns for XeCl laser pumping and 2 ns for KrF laser pumping were obtained. The dye Rhodamine 6G dissolved in methyl was used as the active medium in the quenched dye laser. When the pump laser was KrF and the active medium was Coumarin 498 the quenched dye laser emitted pulse with duration of about 2 ns. The characteristics of the quenched dye laser was also investigated in detail.

  3. XeCl laser pumped nanosecond dye lasers

    SciTech Connect

    Fu Shefen; Qi Zhangfen; Fang Honglie; Wang Zhijiang

    1987-03-01

    The experimental results are reported on obtaining nanosecond dye laser pulses by means of ''controlled resonator transients,'' using a XeCl laser as the pumping source. Compared with N/sub 2/ laser, XeCl laser is more suited for shorter wavelengths and higher threshold dye laser systems.

  4. Low-threshold dye laser pumped by visible laser diodes

    SciTech Connect

    Scheps, R. . RDT and E Div.)

    1993-10-01

    A continuous-wave (CW) dye laser has been pumped by laser diodes for the first time. Two 10-mW visible laser diodes were polarization-combined to pump a rhodamine 700 dye jet laser. The absorbed pump threshold power was 5.6 mW, and 0.28 mW of output power was produced at 758 nm. The resonator was scalable and generated over 360 mW with a slope efficiency of 57% when pumped with a DCM dye laser at 660 nm.

  5. Beam splitters for dye laser pumping

    NASA Technical Reports Server (NTRS)

    Heaps, W. S.

    1980-01-01

    Problems associated with the development of beam splitters for partitioning pump beams for pulsed dye laser systems are discussed. The operating characteristics of two types of splitters are calculated: a wedge type beam splitter and a constant-deviation prism type beam splitter. The effects of beta-angle variation on the performance of the prism type beam splitter are considered.

  6. Threshold pump power of a solar-pumped dye laser

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.; Kim, Kyung C.; Kim, Kyong H.

    1988-01-01

    Threshold solar power for dye laser pumping has been determined by measuring the gain of a rhodamine 6G dye laser amplifier at various solar-simulated irradiances on an amplifier cell. The measured threshold was 20,000 solar constants (2.7 kW/sq cm) for the dye volume of 2 x 5 x 40 cu mm and the optimum dye concentration of 0.001 M. The threshold is about one-third of that achievable with a high-intensity solar concentrator.

  7. XeCl excimer laser pumped ultrashort cavity dye laser

    SciTech Connect

    Qi Zhangfen; Wang Xiaoyi; Gao Shujuan; Gao Fukang; Fu Shufen; Fang Honglie; Wang Zhijiang

    1987-08-01

    By pumping an adjustable ultrashort cavity length Rh6G dye laser with a XeCl excimer laser of a pulse duration of 15--20 ns, a pulse compression of a factor of at least 15--20 was achieved. Different pulse widths were obtained by varying the spot size and the pump energy.

  8. Advances in blue-green, flashlamp pumped dye laser development

    NASA Astrophysics Data System (ADS)

    Elkins, Robin K.

    It is reported that the use of a new laser dye called Coumarin 314T significantly improves the performance of flashlamp-pumped dye liquid lasers operating in the blue-green spectrum. Output pulse energies from such a laser can now approach or exceed those from similar flashlamp-pumped lasers in the yellow, orange, and red. This improvement has immediate application to studies that require the greater energy per photon that shorter wavelengths provide.

  9. Design and Construction of Simple, Nitrogen-Laser-Pumped, Tunable Dye Lasers

    ERIC Educational Resources Information Center

    Hilborn, Robert C.

    1978-01-01

    The basic physical principles of dye lasers are discussed and used to analyze the design and operation of tunable dye lasers pumped by pulsed nitrogen lasers. Details of the design and construction of these dye lasers are presented. Some simple demonstration experiments are described. (BB)

  10. Excimer-pumped dye laser with high beam quality

    SciTech Connect

    Brink, D.J.; van der Hoeven, C.J.

    1984-12-01

    A novel design for a dye cuvette used in an excimer-pumped dye laser is described. The cuvette consists of a thin-walled quartz tube illuminated equally from four sides. This, combined with the focusing action of the dye-filled tube, results in a homogeneous excitation of the central core of the dye volume and a near TEM (00) output beam is obtained at moderate repetition frequencies. Sufficient data are provided to allow interfacing of the cuvette with standard oscillator-amplifier arrangements.

  11. Passive apparatus for stabilizing a flashlamp-pumped dye laser

    SciTech Connect

    De Wilde, M.A.; Decker, L.J.

    1986-04-29

    A flash lamp pumped, dye laser apparatus is described which consists of a flash lamp and a liquid dye solution in a transparent compartment proximate to the flash lamp. The compartment is also connected to a tubular circulatory system for moving the liquid dye. The dye solution is activated by flashing of the lamp for lasing to emit light, the lamp and compartment enclosed in a cooling first water jacket, the jacket enclosing deionized water for cooling, an improved cooling system wherein the temperature of the deionized water and the liquid dye solution are maintained within 0.5/sup 0/C of one another, enabling the laser for pulsing at a stabilized 10 pulses per second rate.

  12. Q-switched picosecond dye laser pumped by an excimer laser

    SciTech Connect

    Hebling, J.

    1989-02-01

    Single short-pulse generation by Q-switching of a simple dye laser is demonstrated. The dye solution was pumped by the XeCl excimer laser, with a pulse energy of 30 mJ, and a pulse duration of 12 ns. The shortest recorded pulse of the dye laser was 42 ps. This means that a 200-fold pulse shortening was achieved by the Q-switched dye laser.(AIP)

  13. Diode-Pumped Dye Laser Using a Tapered Optical Fiber

    NASA Astrophysics Data System (ADS)

    Patterson, Brian; Stofel, James; Myers, Elliot; Knize, Randy

    2015-05-01

    We describe the construction of a simple dye laser based on a single-mode optical fiber. Light from a 120-mW laser diode (? = 520 nm) is launched into the fiber. The fiber is tapered to a diameter of approximately 1 ?m and placed in Rhodamine 6G laser dye. The pump light interacts with the gain medium through the evanescent field outside the fiber causing stimulated emission, which couples back into the fiber. Mirrors on each end of the fiber provide the necessary feedback for lasing, and a grating is used to narrow the spectral output. We characterize the lasing threshold and output spectrum of the laser. This has been a good project for undergraduate students to learn about lasers and optics.

  14. Dye lasers

    SciTech Connect

    Stone, J.

    1984-04-03

    A dye laser (FIG. 1, 5 or 6) includes a pumping laser source (e.g. 11), an optical resonator (e.g. 13-15), and a dye solution or dye cell (e.g. 12) disposed in the path of the pumping laser light in the resonator. The dye cell disclosed herein comprises a pair of closely spaced transparent discs (21). A motor (26) serves to spin the discs at a high rate of speed. The pumping laser light in the resonator is focused on the discs at a predetermined angle (i.e. the Brewster angle). New, unbleached dye is injected axially with respect to the discs so that the spin force causes a radial flow of the dye solution between the spinning discs and, of course, past the pumping laser light spot.

  15. Laser head for simultaneous optical pumping of several dye lasers. [with single flash lamp

    NASA Technical Reports Server (NTRS)

    Mumola, P. B.; Mcalexander, B. T. (inventors)

    1975-01-01

    The invention is a laser head for simultaneous pumping several dye lasers with a single flash lamp. The laser head includes primarily a multi-elliptical cylinder cavity with a single flash lamp placed along the common focal axis of the cavity and with capillary tube dye cells placed along each of the other focal axes of the cavity. The inside surface of the cavity is polished. Hence, the single flash lamp supplies the energy to the several dye cells.

  16. Continuous-wave synchronously pumped femtosecond dye laser at 1. 3. mu. m

    SciTech Connect

    Choa, F.S.; Liu, Y.; Liu, P.

    1989-02-15

    We report a synchronously pumped, cw mode-locked, near-IR dye laser based on the Kodak Q-switch dye No. 5. Benzyl alcohol is used as the solvent to form a flowing dye jet. Synchronously pumped by 2-psec, 950-mW, compressed pulses of a Nd:YAG laser, the dye laser can be tuned from 1210 to 1340 nm with a maximum output of 5 mW and a pulse duration of 600 fsec.

  17. Single-mode pulsed dye laser pumped by a copper vapor laser

    SciTech Connect

    Zhao Meicun; Zhu Lizhi; Qian Yulan; Tang Xingli

    1987-11-01

    The design of a pulsed single-mode dye laser pumped by a copper vapor laser is presented. The experimental results using Rh6G, RhB, and Kiton Red S are given. The dye laser produces up to 200 mW single-mode average power at an efficiency of over 4.5%. The linewidth of the single-mode laser is 100 MHz and its wavelength range is 563--642 nm.

  18. Compact high flow dye cell for laser-pumped dye lasers

    SciTech Connect

    Stankov, K.A.

    1988-04-01

    The rotor of a split-pole asynchronous motor is used to circulate a dye solution in a cylindrical dye cell. A compact high flow dye cell which is suitable for high repetition rate (>100 Hz ) pumping has been thus developed.

  19. Tunable subnanosecond pulses from short cavity dye laser systems pumped with a nitrogen-TEA laser

    SciTech Connect

    Scott, G.W.; Shen, S.G.; Cox, A.J.

    1984-03-01

    The performance of a laser system consisting of piezoelectrically tunable short cavity dye lasers pumped with a nitrogen-TEA laser is presented. The design and construction details of the nitrogen laser are given, and its pulse energy and pulse duration under various operating conditions are presented. Typically, UV pulses (337 nm) from the N/sub 2/ laser had energies of 80 ..mu..J and durations of 600 ps. The shortest dye laser pulses measured were about 90 ps at 600 nm.

  20. Narrowband tunable dye laser with amplifier pumped by powerful nitrogen laser

    SciTech Connect

    Dorofeyev, S.N.; Klimashina, A.G.; Mnushkin, V.Y.; Nikiforov, V.G.; Trinchuk, B.F.; Tokareva, A.N.; Fedorov, V.A.

    1984-09-01

    A dye laser with a single amplification stage pumped by a nitrogen laser is investigated. The use of the laser/amplitude system significantly increases the maximum pulse power (up to 120 kW) and laser efficiency (up to 17%), and reduces the angular divergence of the laser radiation by a factor of 1.5. The technical characteristics of a device employing solutions of organic compounds and incorporating an amplifier and a radiation frequency converter are presented.

  1. Ar-ion-laser-pumped infrared dye laser at 875-1084 nm

    SciTech Connect

    Kato, K.

    1984-12-01

    High-efficiency high-power cw dye-laser operation has been acheived from 875 to 1084 nm by pumping two styryl derivatives with an Ar-ion laser. Peak output powers as high as 900 and 750 mW were obtained around 925 and 980 nm, respectively.

  2. Scaling up a high average power dye laser amplifier and its new pumping designs

    SciTech Connect

    Takehisa, K.

    1997-01-01

    Scaling up of a high average power dye laser amplifier is discussed. Differences in the characteristics between a high average power dye laser amplifier with transverse pumping and longitudinal pumping are presented by a simple theory and simulations. The simulation results for dye laser amplifiers of 10-kW average output power show that longitudinal pumping is as efficient as transverse pumping with the potential of orders of magnitude lower dye flow rate. New pumping designs are also proposed for a dye laser amplifier aimed to achieve high gain with high efficiency to reduce the number of amplifier stages. Simulation results suggest that the new designs, in comparison with a conventional amplifier, can produce several orders of magnitude higher gain without decreasing the conversion efficiency. {copyright} 1997 Optical Society of America

  3. Characteristics of a dye laser amplifier transversely pumped by copper vapor lasers with a two-dimensional calculation model

    SciTech Connect

    Sugiyama, A.; Nakayama, T.; Kato, M.; Maruyama, Y.

    1997-08-01

    A two-dimensional rate equation model, taking into consideration the transverse absorption loss of pump laser power, is proposed to evaluate the characteristics of a dye laser amplifier with a large input laser beam diameter pumped by high average power copper vapor lasers. The calculations are in good agreement with the measurements taken with a Rhodamine 6G dye, and the model can be used for evaluation of the dye concentration at any wavelength. {copyright} 1997 Optical Society of America

  4. Pulse shortening in dye laser side-pumped by TEA N/sub 2/ laser

    SciTech Connect

    Uchiki, H.; Kobayashi, T.; Yoshizawa, M.

    1983-04-01

    The temporal behavior of the output from a homemade TEA-N/sub 2/-laser (750 ps pulsewidth) pumped dye (R6G) laser was observed with the aid of a streak camera. The observed output pulsewidths are between 60 and 160 ps depending on the configuration of the dye laser cavity. The shortest (60 ps) pulse is obtained when the distances between output mirror and dye cell, and dye cell and grating, are 10 and 105 mm, respectively. The mechanism of the short pulse generation is clarified by comparing experimental results with the results obtained by solving rate equations numerically, where the position dependences of excited-state population and photon flux were taken into account.

  5. High-power high-repetition-rate copper-vapor-pumped dye laser

    SciTech Connect

    Singh, S.; Dasgupta, K.; Kumar, S.; Manohar, K.G.; Nair, L.G.; Chatterjee, U.K. . Laser and Plasma Technology Div.)

    1994-06-01

    The design and development of an efficient high average power dye laser oscillator-amplifier system developed at the Laser and Plasma Technology Division, Bhabha Atomic Research Centre, is reported. The dye laser is pumped by a 6.5-kHz repetition rate copper vapor laser. The signal beam to the dye amplifier is obtained from an efficient narrow-band grazing incidence grating (GIG) dye laser oscillator incorporating a multiple prism beam expander. Amplifier extraction efficiency up to 40% was obtained in a single amplifier stage, using rhodamine 6G (Rh6G) in ethanol. The authors have also demonstrated simultaneous amplification of two laser beams at different wavelengths in the same dye amplifier cell.

  6. Intensity and absorbed-power distribution in a cylindrical solar-pumped dye laser

    NASA Technical Reports Server (NTRS)

    Williams, M. D.

    1984-01-01

    The internal intensity and absorbed-power distribution of a simplified hypothetical dye laser of cylindrical geometry is calculated. Total absorbed power is also calculated and compared with laboratory measurements of lasing-threshold energy deposition in a dye cell to determine the suitability of solar radiation as a pump source or, alternatively, what modifications, if any, are necessary to the hypothetical system for solar pumping.

  7. RECIPROCAL PASSIVE MODE-LOCKING OF A RHODAMINE 6G DYE LASER AND THE Ar+ PUMP LASER

    SciTech Connect

    Yasa, Zafer A.; Amer, Nabil M.

    1980-10-01

    A rhodamine 6G dye laser, internally pumped within the extended cavity of an Ar{sup +} ion laser, is mode-locked when its cavity length is matched to half that of the pump laser: the 5145 {Angstrom} argon laser line is passively mode-locked by the combination of the saturable absorption and the lasing action of the dye which is in turn synchronously pumped and mode-locked. Tunable (5650 {Angstrom} to 5950 {Angstrom}) ~10 pSec pulses are generated, and the average output power is ~ 80 mW.

  8. Pumping dye lasers by optical fibers: a simple and efficient device

    SciTech Connect

    Laporte, P.; Damany, H. )

    1990-09-15

    The performance of a pulsed dye laser pumped through optical fibers by the second harmonic of a Nd:YAG laser is systematically studied by using a simple design. A single fiber (1-mm core) readily gives dye pulse energies in the millijoule per pulse range, with an efficiency of as much as 50% using improvable optics. Pulse time lengthening and delayed two-pulse operation are studied by using a dual-fiber device.

  9. Dye lasers

    SciTech Connect

    Schafer, F.P. )

    1990-01-01

    This book includes chapters on continuous-wave dye lasers and properties of dye lasers and a chapter on continuous-wave dye lasers. There is also a chapter on wavemeters. This book provides an introduction to dye lasers and contains information for scientists and engineers who deal with their applications.

  10. Synchronously pumped mode-locked dye laser pumped by a frequency-doubled mode-locked and /ital Q/-switched diode laser pumped Nd:YAG laser

    SciTech Connect

    Maker, G. T.; Ferguson, A. I.

    1989-08-07

    We have developed a powerful and efficient mode-locked and /ital Q/-switched diode laser pumped Nd:YAG laser. Mode locking has been accomplished using intracavity frequency modulation (FM) to produce continuous-wave mode-locked pulses of 12 ps duration. Acousto-optic pre-lase /ital Q/ switching has produced a train of pulses of about 25 ps average duration at a repetition rate of 360 MHz in an envelope of 75 ns duration. When pumped with a 500 mW diode laser array, the energy in the /ital Q/-switched envelope was 15 /mu/J giving a peak power in the largest pulse of 19 kW. The laser has been frequency doubled in a crystal of potassium titanyl phosphate (KTP) with an efficiency of 36%. The doubled radiation at 532 nm has been used to synchronously pump a mode-locked rhodamine 6G dye laser to produce a train of tunable pulses. The pulse duration of the dye laser was 3.2 ps and the peak power of the largest pulse in the train was 10 kW.

  11. Spectral characteristics of a ternary-mixture of dyes in a dye laser pumped by copper vapor laser

    NASA Astrophysics Data System (ADS)

    Khare, R.; Shukla, P. K.; Shrivastava, V. K.; Nakhe, S. V.

    2014-02-01

    The spectral characteristics of a ternary-mixture, composed of Rhodamine 640, Rhodamine 6G and DCM in ethanol and excited by copper vapor laser, are reported. The concentration of each dye in the ternary-mixture was optimized to provide peak emission at 633 nm and absorb both wavelengths of copper vapor laser, i.e. 510.6 and 578.2 nm. A fluorescence range of 612-679 nm with a relatively broad peak at 631-634 nm was obtained when concentrations of Rhodamine 640, Rhodamine 6G and DCM in the ternary-mixture were 0.90 mM, 0.30 mM and 0.90 mM respectively. This ternary-mixture of dyes in ethanol, when used as a gain medium in a narrowband, tunable dye laser oscillator, transversely pumped by both wavelengths of a copper vapor laser, provided a spectral tuning range of 620-665 nm with an almost flat peak at 630-634 nm.

  12. Performance of an array of plasma pinches as a new optical pumping source for dye lasers

    NASA Astrophysics Data System (ADS)

    Rieger, H.; Kim, K.

    1983-11-01

    A new optical pumping source consisting of an array of plasma pinches in the hypocycloidal-pinch geometry is employed to pump a variety of dye lasers. A dye cuvette is inserted along the symmetry axis of the plasma device such that it may be surrounded by the plasma pinch. The light from the plasma pinch is very intense and rich in ultraviolet, which makes it an attractive optical pumping source for dye lasers, particularly in the blue-green spectral region. Control of the plasma fluorescence is achieved by the choice of gas, its fill pressure, and the capacitor bank voltage and its stored energy. The rise time of this 'plasma flashlamp' depends mainly on the gas species and the fill pressure. Output energy of about 2 mJ per cu cm of lasing medium, or 2 kW/cu cm for a 1-microsec laser pulse, is obtained from rhodamine 6G, coumarin 480, LD 490, and coumarin 504 dyes. That the coumarin-480 and rhodamine-6G lasers have comparable output powers is a direct proof that the present optical-pumping source is more efficient than commercial xenon flashlamps in pumping lasers in the blue-green spectral region.

  13. Modeling a distributed feedback dye laser pumped by a Nd-glass laser

    NASA Astrophysics Data System (ADS)

    Ghani, B. A.; Hammadi, M.

    2006-03-01

    A mathematical model has been developed to describe the dynamic emission of a distributed feedback dye laser (DFDL) pumped by a Nd-glass laser. The model is based on the coupled-wave theory. It allows the investigation of the temporal behavior of the Nd-glass pumping laser source and the DFDL pulses. The model allows studying the effect of the variation of the laser input parameters of the Nd-glass laser, such as maximum amplification coefficient, loss coefficient and pumping rate on the characteristics of DFDL pulses regarding the pulse width, delay time and separation time. The feedback process of the DFDL is provided either by changes of the refractive index or by optical gain or by both together. The model estimates the following: temporal behavior of the density of emitted radiation, energy densities of the first excited singlet and triplet states, DFDL output power, cavity decay time and the temperature of the produced grating. The numerical solution of the nonlinear coupled rate equation system predicts the generation of DFDL picosecond pulses. The calculated results are in good agreement with the available experimental data. The calculations were done using rhodamine 6G dissolved in ethanol as the investigated matrix.

  14. Synchronous pumping of picosecond dye laser using high efficiency second harmonic generation from optical fibres

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.; Bernardin, J. P.; Macdonald, R. L.; Demouchy, G.

    1991-01-01

    The stable operation of a mode-locked dye laser synchronously pumped by the second harmonic of an Nd:YAG laser produced in an Nd codoped germanosilicate optical fiber is reported. The optical fiber preparation technique, which results in a second harmonic conversion efficiency of 2 percent, is described. This optical fiber SHG conversion efficiency is the highest reported to date using a continuous-wave mode-locked laser.

  15. Narrow bandwidth tuning of rhodamine 6G dye pumped by a XeCl excimer laser

    SciTech Connect

    Shangguan Cheng; Ling Ying-yi; Wang Yi-man; Dou Ai-rong; Huang Dan-hong

    1986-03-01

    In this paper the experimental study for narrow bandwidth tuning of ethylene glycol solution of rhodamine 6G pumped by a XeCl excimer laser is reported. The tunable range from 572.7 nm to 612.9 nm with linewidth of 0.004 nm has been obtained. The conversion efficiency is 16.0%. The experimental results of seven other dyes are also presented.

  16. Laser and spectral characteristics of a DCM-propylene carbonate dye laser system pumped by a XeCl excimer laser

    SciTech Connect

    Shangguan Cheng; Lin Yingyi; Jiang Jinquan; Dou Airon; Wang Yiman; Liu Dianyou; Guo Chu

    1987-12-01

    The energy output and spectral characteristics of a DCM-propylene carbonate dye laser system pumped by a XeCl excimer laser have been measured. The results obtained indicate that DCM-propylene carbonate dye laser system shows a lower energy output and wider frequency-tuning range compared with the case of using dimethylsulfoxide as solvent, which is expected from comparison of the fluorescence parameters of DCM in both solvents.

  17. Performance modeling of a flashlamp-pumped dye laser with aqueous acetamide as a solvent

    SciTech Connect

    Everett, P.N.

    1989-12-08

    Further information is presented on performance of a 300 Watt, 6-beam, dye laser reported at last year's conference. The use of Acetamide as a dye solvent is discussed. The lasing results are coupled with modeling of flashlamps and dye, to demonstrate a useful approach to design of dye lasers. Lamps may be driven harder than traditionally accepted.

  18. Construction and Characterization of a Nanosecond Nd:YAG Laser Pumped Distributed Feedback Dye Laser Generating Picosecond Pulses

    NASA Astrophysics Data System (ADS)

    Clark, Timothy; Weckerly, Chris; Ujj, Laszlo

    2013-03-01

    We have constructed a Distributed Feedback Dye Laser (DFDL) using interferometric pumping. DFDL works according to the dynamic modulation of the gain medium creating short pulses. Shortening of the pulses, stability, and dynamic range of the DFDL were investigated. Pulses were measured with the help of a photodiode with a 30 picosecond response time. Traces were recorded with a Tektronics DSA73304D (33GHz) digital serial analyser. The gain medium contains an ethanol solution of Rhodamine 590 dye and DODCI saturable absorber. Increasing the concentration of DODCI saturable absorber resulted in significant pulse shortening (150 to 54 picoseconds). Single pulse generation was achieved when the power of the pump laser was adjusted 10 percent above the laser threshold. The central wavelength of the laser pulses was 587 nm. The mathematical modeling, optical layout of the DFDL, and the results of the temporal and spectral characterization of the laser are presented on the poster. The development of the DFDL will lead to an extensive investigation of short pulse dye lasers for educational purposes and for applications in nonlinear spectroscopy. Financial support from University of West Florida is acknowledged.

  19. Update on flashlamp pumped pulsed dye laser treatment for port wine stains (capillary malformation) patients

    PubMed Central

    Hsiao, Yen-Chang; Chang, Cheng-Jen

    2011-01-01

    Background and Aims: Currently, the method of choice for the treatment of port-wine stains is laser photocoagulation. Because of evolving treatment options, it is no longer enough for port-wine stains merely to be lightened through laser treatment. The best course of management consists of the most appropriate laser that will produce the most complete clearing of a lesion in the fewest treatment sessions with the least morbidity. The goal is generally accomplished with the use of yellow-light lasers. Materials (Subjects) and Methods: Absorption of laser energy by melanin causes localized heating in the epidermis, which may, if not controlled, produce permanent complications such as hypertrophic scarring or dyspigmentation. Refinements of the results can be achieved by using the flashlamp-pumped pulsed dye laser (FLPDL) in conjunction with the cryogen spray cooling (CSC) system. In our related studies, the infrared thermal image instrument is used for doctors in determining the optimum laser light dosage and preventing the side effects caused by FLPDL. Topic application of angiogenesis inhibitor (Imiquimod) in conjunction with pulsed dye laser treatment for the PWS patients has been assessed for improvement of FLPDL treatment. Results: We present the clinical effect of FLPDL, and the efficacy and safety of cooled laser treatment of PWS birthmarks. Our clinical outcome in the laser treatment of patients with PWS has been achieved to maximize thermal impact on targeted vessels, while minimizing adverse complications. Conclusions: CSC in conjunction with FLPDL can improve the treatment of PWS. The infrared image instrument is helpful for doctors in determining the optimum laser light dosage. Topic application of angiogenesis inhibitor (Imiquimod) in conjunction with laser treatment for the PWS patients is promising in the near future. PMID:24155536

  20. Dye lasers

    SciTech Connect

    Kuder, J.E.; McGinnis, J.L.; Goldberg, H.A.; Hart, T.R.; Che, T.M.

    1989-10-31

    This patent describes a dye laser. It consists of a composite composition of an inorganic oxide glass monolith with a microporous structure containing an incorporated solution comprising a solvent component and a lasable dye component. Wherein the glass monolith has sealed outer surfaces.

  1. Oxazine laser dyes

    DOEpatents

    Hammond, Peter R. (Livermore, CA); Field, George F. (Danville, CA)

    1992-01-01

    New oxazine compounds useful as dye laser media in solution, are superiior to prior art materials. The oxazine dyes useful when pumped by the 578.2 nm copper line to operate in the 700-800 nm range are described by formula I ##STR1##

  2. Incendiary potential of the flash-lamp pumped 585-nm tunable dye laser.

    PubMed

    Epstein, R H; Brummett, R R; Lask, G P

    1990-08-01

    The recently introduced pulsed flash-lamp pumped tunable dye laser is used to treat cutaneous port-wine stains. In our practice, infants and children receive general anesthesia for these brief, yet painful, treatments. Because the flammability of this laser has not been reported and because we administer supplemental oxygen and nitrous oxide, we analyzed the incendiary potential of this laser by measuring the flammability of gauze and Telfa strips, hair, clear plastic face masks and tracheal tubes, and green nasal cannulae in 21%-100% oxygen and in nitrous oxide at laser energies between 6.0 and 10.0 J/cm2. (Our clinical range is 6.0-7.0 J/cm2.) In room air, gauze, Telfa, masks, and tubes did not ignite; only gauze ignited at high energy in 100% oxygen. Hair ignited in room air only when struck repeatedly at high energy, but easily ignited in 100% oxygen. Wetting hair with saline prevented ignition in room air and decreased flammability in supplemental oxygen. Green nasal cannulae prongs were extremely flammable in oxygen. Caution should be taken when using supplemental oxygen/nitrous oxide during treatment with the tunable dye laser. PMID:2375518

  3. Mathematical modeling of ruby laser as a pumping source of a ''self Q-switched'' distributed feedback dye laser

    NASA Astrophysics Data System (ADS)

    Ghani, B. Abdul; Hammadi, M.

    2004-11-01

    A mathematical model describing the dynamic emission of the ruby laser as a pumping source of a distributed feedback dye laser (DFDL) has been adapted. The suggested model allows the temporal behavior investigation of the ruby laser and the DFDL on mode characteristics and, moreover, investigating the affect of laser input parameters on the output laser pulses in the ruby laser and in the DFDL. The numerical solutions of a coupled nonlinear rate equations system of the adapted model that predict the generation of picoseconds pulses, with neglecting the effect of refractive index variation, are discussed (feedback process is achieved only by optical gain). The model estimates the density of the emitted radiation, energy density of the first excited state, and the output power of the DFDL. The adapted mathematical model is in good agreement with the available experimental data.

  4. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, T.C.

    1993-03-30

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  5. Monolithic dye laser amplifier

    DOEpatents

    Kuklo, Thomas C. (Ripon, CA)

    1993-01-01

    A fluid dye laser amplifier for amplifying a dye beam by pump beams has a channel structure defining a channel through which a laseable fluid flows and the dye and pump beams pass transversely to one another through a lasing region. The channel structure is formed with two pairs of mutually spaced-apart and mutually confronting glass windows, which are interlocked and make surface-contacts with one another and surround the lasing region. One of the glass window pairs passes the dye beam and the other passes the pump beams therethrough and through the lasing region. Where these glass window pieces make surface-contacts, glue is used to join the pieces together to form a monolithic structure so as to prevent the dye in the fluid passing through the channel from entering the space between the mutually contacting glass window pieces.

  6. Dye laser principles, with applications

    SciTech Connect

    Duarte, F.J. . Dept. of Physics); Hillman, L.W. . Dept. of Physics)

    1990-01-01

    This book contains papers which explain dye laser principles. Topics covered include: laser dynamics, femtosecond dye lasers, CW dye lasers, technology of pulsed dye lases, photochemistry of laser dyes, and laser applications.

  7. Compact rigid dye laser construction

    SciTech Connect

    Sheng, S.C.; Wolgast, S.C.

    1989-01-03

    This patent describes a dye laser of rigid and simplified construction is described having dye pumping means and excitation means, and having a folded resonator cavity with three cavity mirrors, comprising: a solid laser resonator block of integral, rigid material having three non-collinear cavity mirror mount locations in a folded-cavity configuration, defined by a folding mirror mount location and two end mirror locations, openings in the block for passage of a lasing beam in a folded resonating path among the three mirror mount locations, three resonator mirrors at the three mirror mount locations, at least one being fixed rigidly, directly and nonadjustably to the block at the respective mirror mount location, dye nozzle means supported by the block for producing a dye jet positioned to extend across the laser resonator cavity between two of the three mirrors, the dye nozzle means having means for connection to a dye circulation system, pumping beam directing means for receiving and directing a pumping beam to intersect the dye jet where the dye jet crosses the beam resonating path, and dye jet adjustment means for adjusting the position and orientation of the dye nozzle means and the dye jet with respect to the resonator cavity and the pumping beam.

  8. Laser beam control and diagnostic systems for the copper-pumped dye laser system at Lawrence Livermore National Laboratory

    SciTech Connect

    Bliss, E.S.; Peterson, R.L.; Salmon, J.T.; Thomas, R.A.

    1992-11-01

    The laser system described in the previous paper is used for experiments in which success requires tight tolerances on beam position, direction, and wavefront. Indeed, the optimum performance of the laser itself depends on careful delivery of copper laser light to the dye amplifiers, precise propagation of dye laser beams through restricted amplifier apertures, and accurate monitoring of laser power at key locations. This paper describes the alignment systems, wavefront correction systems, and laser diagnostics systems which ensure that the control requirements of both the laser and associated experiments are met. Because laser isotope separation processes utilize more than one wavelength, these systems monitor and control multiple wavelengths simultaneously.

  9. A air-bearing based, random orbital drive system for a longitudinally pumped solid state dye laser

    NASA Astrophysics Data System (ADS)

    de Armond, Fredrik; Dill, Robert; Suelzer, Joseph; Masters, Mark

    2008-05-01

    We present our results of an investigation of organic dye doped plastics as a lasing medium. The host materials we have examined are poly(methyl methacrylate) [acrylic], epoxy, polyester and polyurethane. Various solvents have been used to improve dye dispersion within the material. We produce plastic doped disks which are contained in a Littman configuration cavity. Longitudinal pumping with a frequency doubled pulsed Nd:YAG laser is used. To improve the lifetime of the doped disks we have incorporated the disk into an air-bearing assembly. By introducing translational motion with a solenoid, the disk undergoes random orbital motion with respect to the pump laser beam. Lifetime of the disk, lasing quality parameters (bandwidth, tunability, power) are examined.

  10. Epidermal damage and limited coagulation depth with the flashlamp-pumped pulsed dye laser: a histochemical study.

    PubMed

    Hohenleutner, U; Hilbert, M; Wlotzke, U; Landthaler, M

    1995-05-01

    To investigate vessel coagulation depth and tissue damage in therapy with the flashlamp-pumped pulsed dye laser (585 nm, 5 mm spot size, 450 microsecond pulse duration, 6-8 J/cm2), we used the nitroblue-tetrazolium chloride stain in 22 post-treatment biopsy specimens from patients with port wine stain. With this method, thermally damaged tissue can be easily differentiated from unchanged tissue to the level of single cells. The results showed that in superficial port wine stain vessels up to 150 microns in diameter, vessel coagulation was complete and selective without further dermal damage. With the increase of vessel diameter, strong superficial hemoglobin absorption led to only partial vessel-wall coagulation and, in some cases, to superficial dermal damage. Likewise, deeper vessels were not coagulated because of shadow effects by superficial vessel layers. Thus, the overall vessel-wall coagulation depth of the flashlamp-pumped dye laser was limited to a maximum of 0.65 mm (mean 0.37 mm). In addition, some degree of epidermal damage was present in most specimens, which significantly increased with epidermal melanin content and resulted in epidermal coagulation and blistering in pigmented skin. Our results explain the occurrence of crusting, hyperpigmentation, and hypopigmentation in therapy with the flashlamp-pumped dye laser and its limited effect on dark or hypertrophic port wine stains in adults featuring large vessel diameters or multiple vessel layers. PMID:7738359

  11. Dye system for dye laser applications

    DOEpatents

    Hammond, Peter R. (Livermore, CA)

    1991-01-01

    A dye of the DCM family, [2-methyl-6-[2-(1,2,3,4-tetrahydro-1-methyl-6-quinolinyl)ethenyl]-4H-pyran -4-ylidene]-propanedinitrile, dissolved in 2-phenoxyethanol, is non-mutagenic, stable and efficient, particularly in a pumped continuous wave laser system.

  12. Dye laser amplifier

    DOEpatents

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  13. Argon-pumped tunable dye laser for port-wine stains

    NASA Astrophysics Data System (ADS)

    Teillac-Hamel, Dominique; de Prost, Yves

    1994-12-01

    We have been using a continuous dye laser (coherent medical) for more than two years. The wavelength is 585 nm, the power 1.8 W and the fluence 16 - 18 J/cm2. We have treated 364 patients with port-wine stains and 15 children with ulcerated hemangiomas. The results were analyzed using a computer program developed by a team in Lille. The most frequent color was pale pink, followed by deep pink, red and purple. The mean number of laser sessions was 2.3.

  14. Wideband tuning of XeCl laser-pumped dye-doped sol-gel silica laser

    SciTech Connect

    Lam, K.S.; Lo, D.; Wong, K.H.

    1995-03-01

    Doped and undoped silica slabs were fabricated using the sol-gel technique. Extended UV transmission was observed for HCl-catalyzed sol-gel silica. Under transverse pumping by a XeCi laser, narrowband (<0.9 nm) laser oscillation from Rhodamine Perchlorate (R640)-doped silica slabs was achieved in an echelle grating resonator cavity. Tuning of the R640 silica laser extended from 627 nm to 670 nm.

  15. Optimization of dye Q-switched lasers

    SciTech Connect

    Zhang, X.; Zhao, S.; Wang, Q.; Liu, Y.; Wang, J. )

    1994-04-01

    Analytical expressions for all key parameters of the optimally coupled Q-switched laser are derived. These parameters include the optimal reflectivity of the output mirror, the optimal initial transmission of the dye, and the maximum attainable output energy and corresponding peak power and pulse width for a given pump level. Meanwhile, according to the optimization theory of dye Q-switched lasers, a NAB miniature dye Q-switched laser is studied experimentally and experiment shows a good agreement with the theory.

  16. Synchronously pumped subpicosecond dye oscillator--amplifier system

    SciTech Connect

    Taylor, A.J.; Roberts, J.P.; Gosnell, T.R.; Lester, C.

    1989-05-01

    A tunable subpicosecond dye oscillator--amplifier system that produces 0.20-mJ, 190-fsec pulses at 620 nm in a nearly diffraction-limited beam is demonstrated. The output pulse is temporally broadened by 10% relative to the input pulse. The system consists of a synchronously pumped subpicosecond dye laser followed by a dye amplifier that is quasi-longitudinally pumped using the frequency-doubled output from a Nd:YAG regenerative amplifier.

  17. Theoretical And Experimental Studies On Tunable Dye Lasers

    NASA Astrophysics Data System (ADS)

    Pascu, Mihail L.; Enescu, M.; Pascu, A.; Dumbraveanu, G.; Munteanu, M.; Ionescu, R.; Mihalachioiu, L.

    1989-05-01

    The emission of a transversely pumped dye laser using the rate equation approximation is described considering both the laser and the amplified spontaneous emission (A.S.E.) modes, when a pulsed pumping laser is used. The computed results are in good agreement with the experimental data when the real spatial distribution of pumping energy is considered. A N2-laser pumped tunable dye laser useful for low concentrations measurements of complex mole-cules in solutions is described.

  18. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Kim, K. H.; Stock, L. V.

    1986-01-01

    In order to evaluate the feasibility of the solar pumped dye laser, the parametric study of a dye laser amplifier pumped by a solar simulator and flashlamp was carried out, and the amplifier gains were measured at various pump beam irradiances on the dye cell. Rhodamine 6G was considered as a candidate for the solar pumped laser because of its good utilization of the solar spectrum and high quantum efficiency. The measurement shows that a solar concentration of 20,000 is required to reach the threshold of the dye. The work to construct a kinetic model algorithm which predicts the output parameter of laser was progressed. The kinetic model was improved such that there is good agreement between the theoretical model and experimental data for the systems defined previously as flashlamp pumped laser oscillator, and the long path length solar pumped laser.

  19. Argon-pumped tunable dye laser therapy for facial port-wine stain hemangiomas in adults--a new technique using small spot size and minimal power

    SciTech Connect

    Scheibner, A.; Wheeland, R.G.

    1989-03-01

    A low power, argon-pumped tunable dye laser was used to deliver yellow light of 577 nm. Individual blood vessels within port-wine stain hemangiomas were treated with a 0.1-mm beam of light using 8 X magnification. This technique permits excellent resolution of facial and nuchal port-wine stain hemangiomas in adults without the adverse complications of textural change, permanent pigmentation abnormality, or hypertrophic scarring.

  20. Optofluidic circular grating distributed feedback dye laser

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Li, Zhenyu; Henry, M. David; Scherer, Axel

    2009-07-01

    We demonstrate an optically pumped surface emitting optofluidic dye laser using a second-order circular grating distributed feedback resonator. We present a composite bilayer soft lithography technique specifically developed for the fabrication of our dye laser and investigate a hybrid polymer material system [poly(dimethylsiloxane)/perfluoropolyether] to construct high-resolution Bragg gratings. Our lasers emit single frequency light at low lasing thresholds of 6 μJ/mm2. These optofluidic dye lasers can serve as low-cost and compact coherent light sources that are fully integrated within microfluidic analysis chips and provide an efficient approach to construct compact spectroscopy systems.

  1. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1985-01-01

    This semiannual progress report covers the period from April 1, 1985 to Sept. 30, 1985 under NASA grant NAS1-441 entitled direct solar pumped iodine laser amplifier. During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator was carried out before the amplifier studies. The amplifier studies are postponed to the extended period following completion of the parametric studies. In addition, the kinetic modeling of a solar pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) the radiation characteristics of solar simulator and the parametric characteristics of photodissociation iodine laser continuously pumped by a Vortek solar simulator; (2) kinetic modeling of a solar pumped iodine laser amplifier; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  2. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, Steve A.; Seppala, Lynn G.

    1986-01-01

    A dye laser oscillator in which one light beam is used to pump a continuous tream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  3. Fiber optics interface for a dye laser oscillator and method

    DOEpatents

    Johnson, S.A.; Seppala, L.G.

    1984-06-13

    A dye laser oscillator in which one light beam is used to pump a continuous stream of dye within a cooperating dye chamber for producing a second, different beam is generally disclosed herein along with a specific arrangement including an optical fiber and a fiber optics interface for directing the pumping beam into the dye chamber. The specific fiber optics interface illustrated includes three cooperating lenses which together image one particular dimension of the pumping beam into the dye chamber from the output end of the optical fiber in order to insure that the dye chamber is properly illuminated by the pumping beam.

  4. Characteristics of a Broadband Dye Laser Using Pyrromethene and Rhodamine Dyes

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.; Danehy, Paul M.; Wheeler, Jeffrey L.

    2011-01-01

    A broadband dye laser pumped by a frequency-doubled Nd:YAG laser with a full-width half-maximum (FWHM) from 592 to 610 nm was created for the use in a dual-pump broadband CARS system called WIDECARS. The desired broadband dye laser was generated with a mixture of Pyrromethene dyes as an oscillator gain medium and a spectral selective optic in the oscillator cavity. A mixture of Rhodamine dyes were used in the amplifier dye cell. To create this laser a study was performed to characterize the spectral behavior of broadband dye lasers created with Rhodamine dyes 590, 610, and 640, Pyrromethene dyes 597 and 650 as well as mixture of these dyes.

  5. Dye laser traveling wave amplifier

    NASA Technical Reports Server (NTRS)

    Davidson, F.; Hohman, J.

    1985-01-01

    Injection locking was applied to a cavity-dumped coaxial flashlamp pumped dye laser in an effort to obtain nanosecond duration pulses which have both high energy and narrow-linewidth. In the absence of an injected laser pulse, the cavity-dumped dye laser was capable of generating high energy (approx. 60mJ) nanosecond duration output pulses. These pulses, however, had a fixed center wavelength and were extremely broadband (approx. 6nm FWHM). Experimental investigations were performed to determine if the spectral properties of these outputs could be improved through the use of injection-locking techniques. A parametric study to determine the specific conditions under which the laser could be injection-locked was also carried out. Significant linewidth reduction to 0.0015nm) of the outputs was obtained through injection-locking but only at wavelengths near the peak lasing wavelength of the dye. It was found, however; that by inserting weakly dispersive tuning elements in the laser cavity, these narrow-linewidth outputs could be obtained over a wide (24nm) tuning range. Since the tuning elements had low insertion losses, the tunability of the output was obtained without sacrificing output pulse energy.

  6. Solid state dye laser for medical applications

    NASA Astrophysics Data System (ADS)

    Aldag, Henry R.

    1994-06-01

    The development of solid state dye lasers could lead to a major breakthrough in the cost and compactness of a medical device. Advantages include: elimination of the flow system for the gain medium; ease with which to implement wavelength agility or the replacement of a degraded rod or sheet; and toxicity and flammability become a non-issue. Dye lasers have played a role in cardiology, dermatology, and urology. Of these cardiology is of interest to Palomar. The Palomar Model 3010 flashlamp-pumped dye laser medical device was used during phase 1 FDA clinical trials to break-up blood clots that cause heart attacks, a process known as coronary laser thrombolysis. It is the objective of this research and development effort to produce solid matrix lasers that will replace liquid dye lasers in these medical specialties.

  7. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, K. S.

    1986-01-01

    During this period the parametric studies of the iodine laser oscillator pumped by a Vortek simulator were carried out before amplifier studies. The amplifier studies are postponed to the extended period after completing the parametric studies. In addition, the kinetic modeling of a solar-pumped iodine laser amplifier, and the experimental work for a solar pumped dye laser amplifier are in progress. This report contains three parts: (1) a 10 W CW iodine laser pumped by a Vortek solar simulator; (2) kinetic modeling to predict the time to lasing threshold, lasing time, and energy output of solar-pumped iodine laser; and (3) the study of the dye laser amplifier pumped by a Tamarack solar simulator.

  8. Treatment of Port-Wine Stains with Flash Lamp Pumped Pulsed Dye Laser on Indian Skin: A Six Year Study

    PubMed Central

    Thajudheen, Chandroth Ponnambath; Jyothy, Kannangath; Priyadarshini, Arul

    2014-01-01

    Context: Port-wine stain (PWS) is one of the commonly encountered congenital cutaneous vascular lesions, with an equal sex distribution. Pulsed dye lasers (PDL) have revolutionized the treatment of both congential and acquired cutaneous vascular lesions. The pulsed dye lasers owing to its superior efficacy and safety profile have become the gold standard for the management of port-wine stains. Aims: To evaluate the efficacy and side effects of pulsed dye laser for the management of Port-wine stain on Indian skin. Materials and Methods: Seventy five patients of Fitzpatrick skin types IV&V with PWS underwent multiple treatments with PDL (V beam-Candela) over a period of six years at monthly intervals. Laser parameters were wavelength 595nm, spot sizes 7-10mm, fluence 6-12 j/cm2, pulse duration 0.45-10ms, along with cryogen cooling. Serial photographs were taken before and after every session. Clinical improvement scores of comparable photographs using a quartile grading (o=<20%, 1=21-40%, 2=41-60%, 3=61-80%, 4=>80%) were judged independently by two dermatologists after the series of treatment. Minimum number of treatments was 6 and maximum 17. They were followed up at six monthly intervals to observe re darkening of PWS. Results: No patient showed total clearance.Grade3 improvement was observed in 70 % of children and 50% of adults after 8-10 sessions. Children showed better and faster response than adults. Thirty percent of patients developed post inflammatory hyper pigmentation which resolved over a period of six to eight weeks. Two patients had superficial scarring due to stacking of pulses. None of the patients showed re darkening of PWS till now. Conclusion: Pulsed dye laser is an effective and safe treatment for port-wine stain in Indian skin. PMID:24761097

  9. Continuous-wave organic dye lasers and methods

    DOEpatents

    Shapira, Ofer; Chua, Song-Liang; Zhen, Bo; Lee, Jeongwon; Soljacic, Marin

    2014-09-16

    An organic dye laser produces a continuous-wave (cw) output without any moving parts (e.g., without using flowing dye streams or spinning discs of solid-state dye media to prevent photobleaching) and with a pump beam that is stationary with respect to the organic dye medium. The laser's resonant cavity, organic dye medium, and pump beam are configured to excite a lasing transition over a time scale longer than the associated decay lifetimes in the organic dye medium without photobleaching the organic dye medium. Because the organic dye medium does not photobleach when operating in this manner, it may be pumped continuously so as to emit a cw output beam. In some examples, operation in this manner lowers the lasing threshold (e.g., to only a few Watts per square centimeter), thereby facilitating electrical pumping for cw operation.

  10. Superthin resonator dye laser with THz intermode frequency separation

    NASA Astrophysics Data System (ADS)

    Rudych, P. D.; Surovtsev, N. V.

    2014-10-01

    Two-color laser irradiation is considered an effective way to pump THz excitations for numerous scientific and applied goals. We present a design for convenient laser source with THz intermode frequency separation. The setup is based on dye laser with superthin resonator pumped by a subnanosecond pulse laser. It was proven that the superthin resonator dye laser is useful, possesses high stability and high energy conversion, and generates narrow laser modes. The ability of this laser to pump CARS processes for THz vibrations is demonstrated.

  11. Dye-laser development for plasma magnetic-field diagnostic

    SciTech Connect

    Weber, P.G.

    1982-05-01

    A flash-lamp-pumped dye laser has been constructed and operated in DCM dye, yielding outputs greater than 400 W for 100 ..mu..s in broadband operation. Attempts to tune this laser by injection locking to a narrow-band cw laser poor efficiency and relatively short locked operation.

  12. Upconversion dye-doped polymer fiber laser

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Bhawalkar, Jayant D.; Zhao, Chan F.; Park, Chi K.; Prasad, Paras N.

    1996-06-01

    Two-photon pumped frequency upconversion cavity lasing at 610 nm is accomplished in a dye-doped polymer fiber system, pumped with 12 ns and 1.06 ?m IR laser pulses. The dopant is a novel dye, trans-4-[p-(N-hydroxyethyl-N-methylamino)styryl]-N-methylpyridinium iodide, abbreviated as ASPI, which possesses a greater two-photon absorption cross section and stronger upconversion fluorescence emission compared to common commercial dyes (such as rhodamine 6G). Using a Q-switched Nd:YAG pulse laser as the pump source, cavity lasing could be achieved in a 3-cm-long ASPI-doped poly(2-hydroxyethyl methacrylate) solid fiber of 100 ?m diameter. The experimental results of spectral, temporal, spatial, and input-output characteristics of the cavity lasing are presented. The slope efficiency of upconversion lasing was 0.9%.

  13. Water soluble laser dyes

    DOEpatents

    Hammond, P.R.; Feeman, J.F.; Field, G.F.

    1998-08-11

    Novel water soluble dyes of the formula 1 are provided by the formula described in the paper wherein R{sup 1} and R{sup 4} are alkyl of 1 to 4 carbon atoms or hydrogen; or R{sup 1}--R{sup 2} or R{sup 2}--R{sup 4} form part of aliphatic heterocyclic rings; R{sup 2} is hydrogen or joined with R{sup 1} or R{sup 4} as described above; R{sup 3} is --(CH{sub 2}){sub m}--SO{sub 3}{sup {minus}}, where m is 1 to 6; X is N, CH or formula 2 given in paper where Y is 2 --SO{sub 3}{sup {minus}} ; Z is 3, 4, 5 or 6 --SO{sub 3}{sup {minus}}. The novel dyes are particularly useful as the active media in water solution dye lasers.

  14. Water soluble laser dyes

    DOEpatents

    Hammond, Peter R. (Livermore, CA); Feeman, James F. (Wyomissing, PA); Field, George F. (Santa Ana, CA)

    1998-01-01

    Novel water soluble dyes of the formula I are provided ##STR1## wherein R.sup.1 and R.sup.4 are alkyl of 1 to 4 carbon atoms or hydrogen; or R.sup.1 -R.sup.2 or R.sup.2 -R.sup.4 form part of aliphatic heterocyclic rings; R.sup.2 is hydrogen or joined with R.sup.1 or R.sup.4 as described above; R.sup.3 is --(CH.sub.2).sub.m --SO.sub.3.sup.-, where m is 1 to 6; X is N, CH or ##STR2## where Y is 2 --SO.sub.3.sup.- ; Z is 3, 4, 5 or 6 --SO.sub.3.sup.-. The novel dyes are particularly useful as the active media in water solution dye lasers.

  15. Nanoimprinted polymer photonic crystal dye lasers

    NASA Astrophysics Data System (ADS)

    Christiansen, Mads B.; Smith, Cameron L. C.; Buss, Thomas; Xiao, Sanshui; Mortensen, Niels A.; Kristensen, Anders

    2010-05-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped with the laser dye Pyrromethene 597. A compact frequency doubled Nd:YAG laser (352 nm, 5 ns pulses) is used to pump the lasers from above the chip. The laser devices are 450 nm thick slab waveguides with a rectangular lattice of 100 nm deep air holes imprinted into the surface. The 2-dimensional rectangular lattice is described by two orthogonal unit vectors of length a and b, defining the ?P and ?X directions. The frequency of the laser can be tuned via the lattice constant a (187 nm - 215 nm) while pump light is resonantly coupled into the laser from an angle (?) depending on the lattice constant b (355 nm). The lasers are fabricated in parallel on a 10 cm diameter wafer by combined nanoimprint and photolithography (CNP). CNP relies on a UV transparent quartz nanoimprint stamp with an integrated metal shadow mask. In the CNP process the photonic crystal is formed by mechanical deformation (imprinting) while the larger features are defined by UV exposure through the combined mask/mold.

  16. Green pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Brown, David C.

    2005-04-01

    Initial experiments with pulsed and CW pumping an alexandrite laser rod at 532 nm are presented. This pumping architecture holds promise for the production of scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  17. CW laser pumped emerald laser

    SciTech Connect

    Shand, M.L.; Lai, S.T.

    1984-02-01

    A CW laser-pumped emerald laser is reported. A 34 percent output power slope efficiency is observed with longitudinal pumping by a krypton laser in a nearly concentric cavity. The laser has been tuned from 728.8 to 809.0 nm. Losses in emerald are larger than those of alexandrite determined in a similar cavity. The present data also indicate that the excited state absorption minimum is shifted from that of alexandrite. 13 references.

  18. Laser dye synthesis - group C compounds

    NASA Astrophysics Data System (ADS)

    Grubbs, E. J.

    1988-01-01

    Progress on the syntheses of a number of new potential laser dyes is described. The goal is to generate new structures allowing the upscaling of flashlamp pumped dye lasers to high energies. These systems ideally should show a lower laser action threshold, operate with high efficiencies, and exhibit greater photochemical stabilities than do those presently available. Pavlopoulos has proposed: (1) that the parent aromatic chromophores be substituted by auxochromic groups such as hydroxy, alkoxy, and dialkylamino, and (2) that improvement should result by restricting the chromophore and auxochromic group to coplanarity. This should reduce intersystem crossing and thus improve the quantum fluorescence yield. The potential dye lasers described below are designed to meet these objectives.

  19. A seeded dye laser cavity for intracavity experiments

    NASA Astrophysics Data System (ADS)

    Mohamed, Tarek; Andler, Guillermo; Schuch, Reinhold

    2015-09-01

    A seeded dye laser cavity, synchronously pumped by the 2nd harmonic of the Nd:YAG laser has been designed and experimentally tested. The used seed signal was the well defined narrow linewidth output laser signal (?? = 0.013?nm) from the excimer-dye laser system. Energy considerations showed that the intracavity laser energy, that can be used for an experimental section inside the cavity, can reach an efficiency of 20% of the pumping energy. The wavelength and linewidth are fully controlled by the wavelength and linewidth of the seeding laser.

  20. High efficiency dye laser with low fluorescence yield pyrromethene dyes: experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Jagtap, K. K.; Maity, D. K.; Ray, A. K.; Dasgupta, K.; Ghosh, S. K.

    2011-06-01

    A combined experimental and theoretical study of the photo-physical, laser properties and molecular structures of three relatively recent Pyrromethene (PM) class dyes, PM597, PM580 and PM567, have been carried out. Laser characteristics of these three PM dyes were compared with three other widely used Rhodamine (RH) class dyes, RH6G, RHB and KRS, using a narrow-band dye laser setup, transversely pumped by the second harmonic (532 nm) of a Q-switched Nd-YAG laser. In addition to generating comparative data of these dyes for optimal use in dye lasers, we observed that unlike the RH dyes, the PM dyes show high efficiencies and wide tunability, despite the low fluorescence yield and high rate of non-radiative decay. Particularly, PM597 dye, in spite of a very low quantum yield of fluorescence (?=0.42), high non-radiative decay rate, and a large distortion from planarity in its excited state, when used in a laser cavity it exhibited similar laser efficiency and a beneficially wider tuning curve in comparison to other two PM dyes. Theoretical studies were carried out applying density functional theory and time-dependent density functional theory (DFT/TDDFT) to obtain new information on ground and the first excited state geometrical parameters of the PM dyes. Good correlation between calculated molecular properties and experimental results was observed for the evolution of the longest wavelength absorption maximum.

  1. Solar pumped laser

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  2. Bichromatic emission in a ring dye laser

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.; Sohrab Afzal, R.; Rabinovich, W. S.

    1987-01-01

    An experimental study of a high-Q Rhodamine 6G ring dye laser has been performed, and bichromatic emission (BE) with wavelength spacings as large as 110 A when the laser operated bidirectionally has been measured. The BE vanished at all excitations when the laser was forced into unidirectional operation using a Faraday isolator. However, when a weak reflected beam was allowed to make a single pass in the direction opposite to that allowed by the Faraday device, BE is recovered at the higher pump powers.

  3. Fusion reactor pumped laser

    DOEpatents

    Jassby, Daniel L. (Princeton, NJ)

    1988-01-01

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam.

  4. A tunable dual frequency dye laser - dual frequency oscillator design

    NASA Technical Reports Server (NTRS)

    Abury, Y.

    1983-01-01

    The pulsed dye laser offers a tunable oscillator, followed by three amplifiers. It is pumped by a dual frequency Nd:YAG laser. Tuning and spectral width are controlled by a holographic network connected to a high power telescope. The modified two wavelength dye laser allows for absorption lidar techniques for remote sensing of the atmosphere. Line switching is achieved by electrooptical commutation. A feasibility experiment was performed with the original oscillator. A model was then built, and tested with different dyes. After a few modifications were made to improve the conversion efficiency, this oscillator was inserted in the laser to check whether the amplifier stages were correctly adjusted.

  5. Single mode pulsed dye laser oscillator

    DOEpatents

    Hackel, R.P.

    1992-11-24

    A single mode pulsed dye laser oscillator is disclosed. The dye laser oscillator provides for improved power efficiency by reducing the physical dimensions of the overall laser cavity, which improves frequency selection capability. 6 figs.

  6. Explosively pumped laser light

    DOEpatents

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  7. High pulse-energy flashlamp-pumpable laser dyes

    NASA Astrophysics Data System (ADS)

    Kauffman, Joel M.; Novinski, John A.

    1990-12-01

    To obtain higher pulse energies from laser dyes by means of flashlamp pumping in solution, several new prototype dyes were synthesized and submitted for testing. The dyes were intended to display high pulse energy either in a flowing solution in a non-flammable solvent or in the solid poly methyl methacrylate. The class of laser dye known as 4PyMPO was given an expanded fluorophor by substitution of a biphenylene for the phenylene (P) group. None of the expected increases in extinction coefficient (e), fluorescence quantum yield and emission wavelength were obtained.

  8. Pumped up Lasers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Cutting Edge Optronics released the first of potentially three products to result from an SBIR contract with Goddard Space Flight Center. The first commercial result is the WhisperMiniSlab, a diode pump for high performance laser systems. The slab uses a zig-zag path through the laser crystal which eliminates the need for thermal lensing. The result is smaller lasers with better beam quality for use in medical and industrial applications.

  9. Red-edge laser action from borondipyrromethene dyes

    NASA Astrophysics Data System (ADS)

    Garca-Moreno, Inmaculada; Zhang, Dakui; Costela, ngel; Martn, Virginia; Sastre, Roberto; Xiao, Yi

    2010-04-01

    Long-wavelength fluorescent dyes with improved efficiency and stability are required to realize new photoelectronic and biophotonic applications. We have designed and synthesized novel 2,6- or 3,5-substituted BODIPY (BDP) dyes by a simple protocol to reach wavelength-finely tunable laser action from 600 to 725 nm. The influence of the nature and position of substituents on the laser behavior of the new BDP dyes have been systematically characterized as a function of dye concentration and chemical character of the medium. Regarding efficiency and photostability, the new chromophores outperform the laser action of dyes presently commercialized and considered as benchmarks over this spectral region when pumped under identical conditions. The results obtained provide insight into the always complicated composition-structure-properties relationship of dyes, and suggest possible synthesis routes for new BDP derivatives with properties optimized for specific applications.

  10. Dye laser studies using zig-zag optical cavity

    SciTech Connect

    Klimek, D.E.; Mandl, A.E.; Willman, B. )

    1994-06-01

    The authors report a substantial advance in dye laser performance using a zig-zag optical cavity. This configuration drastically reduces the effects of intrapulse medium disturbances due to acoustics and thermal lensing on pulse duration, beam quality, and extraction efficiency. Laser outputs of up to 2 J were observed from Coumarin-498 dye pumped by a KrF excimer laser. The dye laser output faithfully replicates the flat-top KrF laser pump pulse over the entire 1.7-[mu]s pulse duration. An intrinsic laser photon conversion efficiency (Photons[sub in]/Photons[sub absorbed]) of 44% was measured. When unstable resonator optics were used, beam qualities of about 2 XDL were measured.

  11. Gigawatt Picosecond Dye Lasers and Ultrafast Processes in Semiconductor Lasers.

    NASA Astrophysics Data System (ADS)

    Koch, Thomas Lawson

    1982-03-01

    This thesis is a theoretical and experimental investigation of a gigawatt picosecond dye laser oscillator -amplifier system, and the application of that system to the study of ultrafast lasing and carrier dynamics in semiconductor lasers. Beginning with a review of traveling wave rate equations, nonlinear pulse propagation in a generalized two-level amplifying/absorbing medium is discussed. This permits a qualitative treatment of synchronously mode-locked dye lasers. The formalism is then refined to provide a quantitative analysis of picosecond dye laser amplifier chains, including amplified spontaneous emission, saturable absorbers used for amplifier stage isolation, gain saturation with "angular hole-burning" and triplet losses, and linear and nonlinear pulse shaping effects. Experimentally, the construction and operation of a three stage Nd:YAG laser pumped picosecond dye laser amplifier chain is described. Numerical modeling is used to compare the theoretical analysis with the experimental results. In addition, a brief discussion of picosecond time domain measurement techniques is presented, focussing on nonlinear optical methods. This includes a parametric sum frequency upconversion gating technique used extensively in this work to provide linear, picosecond resolution temporal measurements of optical pulses which are synchronized to the dye laser pulses. The output of the picosecond dye laser system is used to optically generate high carrier densities in semiconductor lasers, and the ensuing short pulse lasing dynamics are investigated and compared to the predictions of a simple rate equation analysis. Novel effects are observed in the spectrally resolved temporal measurements of the lasing output from picosecond optically pumped buried heterostructure semiconductor lasers. A model is developed which includes both broad-band stimulated emission as well as many-valley and hot electron effects in the semiconductor, and the model is in close agreement with the observed behavior. The conclusion is drawn that the picosecond lasing dynamics of semiconductor lasers can be understood if the conventional rate equations are abandoned in favor of a more fundamental analysis which includes not just the dynamics of the optical energy exchange in the laser cavity, but the detailed picosecond dynamics of the semiconductor material as well.

  12. Fusion reactor pumped laser

    DOEpatents

    Jassby, D.L.

    1987-09-04

    A nuclear pumped laser capable of producing long pulses of very high power laser radiation is provided. A toroidal fusion reactor provides energetic neutrons which are slowed down by a moderator. The moderated neutrons are converted to energetic particles capable of pumping a lasing medium. The lasing medium is housed in an annular cell surrounding the reactor. The cell includes an annular reflecting mirror at the bottom and an annular output window at the top. A neutron reflector is disposed around the cell to reflect escaping neutrons back into the cell. The laser radiation from the annular window is focused onto a beam compactor which generates a single coherent output laser beam. 10 figs.

  13. Design, modeling, and performance evaluation of a novel dye cell for a high repetition rate dye laser.

    PubMed

    Singh, Nageshwar; Patel, Hemant K; Dixit, S K; Vora, H S

    2012-10-01

    In this paper, a new dye cell for transverse pumping was designed, modeled, and its performance in a narrow spectral width dispersive resonator, pumped by a high repetition rate copper vapor laser, was investigated. The scheme essentially involves the profiling of the cubical glass and stainless steel cylindrical surface such that convex-plano contour be present near the optical pumping region. The design is an amalgamation of straight and curved periphery to enhance the dye solution flow stabilities near the dye laser axis. A computational fluid dynamics analysis of the liquid flow through this dye cell has been carried out. The dye laser outputs such as optical average power, spectral width and wavelength stability, tuning range, pulse shape, through this new dye cell was evaluated. The dye laser average power about 30 mW was fairly steady over the observation period of more than an hour. The dye laser short-term (1 min) spectral width was within 0.824 0.075 GHz, while, in a long-term, more than an hour, drifted by about 180 MHz. The dye laser wavelength in short-term fluctuates within 0.0065 nm whereas in a long-term, more than an hour, drifted by about 0.0105 nm. The dye laser tuning range was 10 nm with a sub GHz spectral width operation. The pulse shape of the dye laser follows the pump laser pulse profile. Thus, the dye laser has demonstrated fairly long-term stability, without the use of either low expansion material or close loop control on the output. PMID:23126811

  14. Nuclear-pumped gas lasers

    NASA Technical Reports Server (NTRS)

    Aohl, F.; Jalufka, N. W.; Williams, M. D.; Deyoung, R. J.

    1977-01-01

    Laser pumping incorporates use of volumetric helium isotope reaction. Reaction deposits energy nearly uniformly throughout laser volume. Method improves efficiency of system as compared with conventional coating method.

  15. Highly efficient solid-state distributed feedback dye laser based on polymer-filled nanoporous glass composite excited by a diode-pumped solid-state Nd:LSB microlaser.

    PubMed

    Katarkevich, Vasili M; Rubinov, Anatoli N; Efendiev, Terlan Sh; Anufrik, Slavamir S; Koldunov, Modest F

    2015-09-10

    Realization of a compact, robust, highly stable, and efficient solid-state distributed feedback (DFB) dye laser based on pyrromethene 580-doped modified poly-(methyl methacrylate) embedded into nanoporous glass host is reported. A diode-pumped solid-state STA01SH-500 Nd:LSB microlaser (?=532??nm; ?0.5?0.5??ns; EP?80???J; f?500??Hz) is used as a pump source. When pumped well above threshold, a DFB laser emits a train of ultrashort pulses (??1??ns; ?0.5<0.5??ns; ??0.5?0.01??nm), while at excitation intensities not far from threshold, single transform-limited picosecond pulses (?0.5?40??ps; ?0.5??0.5?0.3), tunable from 541 to 598nm, are generated. The DFB lasing efficiency reaches ?60% upon an energy stability of ?1.4% and an overall service life of the active element of ?9107 laser shots. More than an order of magnitude increase in the temperature stability of a lasing wavelength as compared with ethanol solutions of laser dyes is practically demonstrated. PMID:26368971

  16. Nuclear pumped laser II

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Lee, J. H.; Pinkston, W. T.

    1977-01-01

    The first direct nuclear pumped laser using the He-2-(n,p) H-3 reaction is reported. Lasing took place on the 1.79 microns Ar I transition in a mixture of He-3-Ar at approximately 600 Torr total pressure. It was found that the electrically pulsed afterglow He-Ar laser had the same concentration profile as the nuclear pumped laser. As a result, nuclear lasing was also achieved in He-3-Xe (2.027 micron) and He-3-Kr (2.52 micron). Scaling of laser output with both thermal flux and total pressure as well as minority concentration has been completed. A peak output (He-3-Ar) of 3.7 watts has been achieved at a total pressure of 4 atm. Direct nuclear pumping of He-3-Ne has also been achieved. Nuclear pumping of a He-3-NF3 mixture was attempted, lasing in FI at approximately 7000 A, without success, although the potential lasing transitions appeared in spontaneous emission. Both NF3 and 238UF6 appear to quench spontaneous emission when they constitute more than 1% of the gas mixture.

  17. Theoretical studies of solar-pumped lasers

    NASA Astrophysics Data System (ADS)

    Harries, W. L.

    1983-01-01

    Possible types of lasers were surveyed for solar power conversion. The types considered were (1) liquid dye lasers, (2) vapor dye lasers, and (3) nondissociative molecular lasers. These are discussed.

  18. Nuclear pumping of lasers.

    NASA Technical Reports Server (NTRS)

    Russell, G. R.

    1971-01-01

    Summary of the theoretical and experimental work dealing with nuclear lasers that has been completed during the last year (1971), and review of some new work which may help to establish the direction research in this field may take in the future. So far, the most successful experiments have been carried out utilizing nuclear enhancement of electrically excited CO2 lasers. The goal of attaining lasing in gases utilizing nuclear pumping without an applied electric field is much more difficult to achieve but is being pursued. No experimental or theoretical work has been undertaken thus far in the study of the class of lasers where high-energy particles are produced internally in high-temperature multiple ionized plasmas. Some new approaches to high-power nuclear lasers are suggested.

  19. Alexandrite laser pumped by semiconductor lasers

    SciTech Connect

    Scheps, R.; Gately, B.M.; Myers, J.F. ); Krasinski, J.S. ); Heller, D.F. )

    1990-06-04

    We report the first operation of a direct diode-pumped tunable chromium-doped solid-state laser. A small alexandrite (Cr:BeAl{sub 2}O{sub 4}) crystal was longitudinally pumped by two visible laser diodes. The threshold pump power was 12 mW using the {ital R}{sub 1} line at 680.4 nm for the pump transition, and the slope efficiency was 25%. The measured laser output bandwidth was 2.1 nm.

  20. Pulse pumping an optically pumped laser

    SciTech Connect

    Jones, W. B. Jr.

    1984-12-18

    An efficient power supply employs a high current switching transistor to pulse a flashlamp for optical pumping in lasers, such as an Nd:YAG laser at high pulse repetition frequencies. The pulsing circuit offers a simple, flexible, and precise means of pump pulse control. Flashlamp simmer current is provided from the constant dc voltage source with a resistor in parallel with the switching transistor.

  1. Solar Pumped Laser Microthruster

    SciTech Connect

    Rubenchik, A. M.; Beach, R.; Dawson, J.; Siders, C. W.

    2010-10-08

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  2. SOLAR PUMPED LASER MICROTHRUSTER

    SciTech Connect

    Rubenchik, A M; Beach, R; Dawson, J; Siders, C W

    2010-02-05

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  3. Solvent-free fluidic organic dye lasers.

    PubMed

    Choi, Eun Young; Mager, Loic; Cham, Tran Thi; Dorkenoo, Kokou D; Fort, Alain; Wu, Jeong Weon; Barsella, Alberto; Ribierre, Jean-Charles

    2013-05-01

    We report on the demonstration of liquid organic dye lasers based on 9-(2-ethylhexyl)carbazole (EHCz), so-called liquid carbazole, doped with green- and red-emitting laser dyes. Both waveguide and Fabry-Perot type microcavity fluidic organic dye lasers were prepared by capillary action under solvent-free conditions. Cascade Frster-type energy transfer processes from liquid carbazole to laser dyes were employed to achieve color-variable amplified spontaneous emission and lasing. Overall, this study provides the first step towards the development of solvent-free fluidic organic semiconducting lasers and demonstrates a new kind of optoelectronic applications for liquid organic semiconductors. PMID:23669993

  4. Diode pumped solid-state laser oscillators for spectroscopic applications

    NASA Technical Reports Server (NTRS)

    Byer, R. L.; Basu, S.; Fan, T. Y.; Kozlovsky, W. J.; Nabors, C. D.; Nilsson, A.; Huber, G.

    1987-01-01

    The rapid improvement in diode laser pump sources has led to the recent progress in diode laser pumped solid state lasers. To date, electrical efficiencies of greater than 10 percent were demonstrated. As diode laser costs decrease with increased production volume, diode laser and diode laser array pumped solid state lasers will replace the traditional flashlamp pumped Nd:YAG laser sources. The use of laser diode array pumping of slab geometry lasers will allow efficient, high peak and average power solid state laser sources to be developed. Perhaps the greatest impact of diode laser pumped solid state lasers will be in spectroscopic applications of miniature, monolithic devices. Single-stripe diode-pumped operation of a continuous-wave 946 nm Nd:YAG laser with less than 10 m/w threshold was demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. The KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  5. Dye laser tuning with pellicles.

    NASA Technical Reports Server (NTRS)

    Mumola, P. B.

    1973-01-01

    Thin nitrocellulose membranes (pellicles) are shown to exhibit properties which make them suitable for intracavity tuning elements in high-energy pulsed dye lasers. Uncoated pellicles of 2-micron and 8-micron thickness with surface figures of lambda/1 are shown to closely approximate the properties of low-finesse etalons with wide free spectral ranges. Pellicles of 8-micron thickness, coated on both surfaces with 50% reflectivity multilayer dielectrics, are shown to be effective as spectral narrowing elements with peak transmission greater than 80% and resultant laser linewidths of 0.57 nm full width at half-maximum.

  6. Diode-pumped laser research

    NASA Technical Reports Server (NTRS)

    Ramos-Izquierdo, L.; Bufton, J. L.; Chan, K.

    1988-01-01

    The Laboratory for Oceans is currently working on the development of compact laser diode array (LD) pumped Nd:YAG lasers for use in space-based altimetry and ranging. Laser diode-array pumping technology promises to increase the electrical to optical efficiency of solid state lasers by an order of magnitude with a lifetime increase of nearly three orders of magnitude relative to today's conventional flashlamp-pumped laser systems. The small size, efficiency, and ruggedness make LD-pumped solid state lasers ideal for space based applications. In an in-house RTOP effort, a novel multiple-pass LD-pumped Nd:YAG laser amplifier was designed and tested to increase the 100 microjoule output pulse energy of the Lightwave laser oscillator. Preliminary results have yielded a round trip amplifier gain of about 15 percent using 7 microjoule LD-pump energy. As a parallel activity, funding was recently obtained to investigate the possible use of custom made fiber optic arrays to obtain an efficient optical coupling mechanism between the emitting laser diode-arrays and the target solid state laser material. Fiber optic coupling arrays would allow for the easy manipulation of the spatial emitting pattern of the diode pump sources to match either an end or side pumping laser configuration.

  7. Diode-pumped laser research

    NASA Astrophysics Data System (ADS)

    Ramos-Izquierdo, L.; Bufton, J. L.; Chan, K.

    The Laboratory for Oceans is currently working on the development of compact laser diode array (LD) pumped Nd:YAG lasers for use in space-based altimetry and ranging. Laser diode-array pumping technology promises to increase the electrical to optical efficiency of solid state lasers by an order of magnitude with a lifetime increase of nearly three orders of magnitude relative to today's conventional flashlamp-pumped laser systems. The small size, efficiency, and ruggedness make LD-pumped solid state lasers ideal for space based applications. In an in-house RTOP effort, a novel multiple-pass LD-pumped Nd:YAG laser amplifier was designed and tested to increase the 100 microjoule output pulse energy of the Lightwave laser oscillator. Preliminary results have yielded a round trip amplifier gain of about 15 percent using 7 microjoule LD-pump energy. As a parallel activity, funding was recently obtained to investigate the possible use of custom made fiber optic arrays to obtain an efficient optical coupling mechanism between the emitting laser diode-arrays and the target solid state laser material. Fiber optic coupling arrays would allow for the easy manipulation of the spatial emitting pattern of the diode pump sources to match either an end or side pumping laser configuration.

  8. Linewidth of a high pulse repetition rate (~20 kHz) class dye laser

    NASA Astrophysics Data System (ADS)

    Mishra, G. K.; Kumar, Abhay; Prakash, O.; Biswal, R.; Dixit, S. K.; Nakhe, S. V.

    2016-01-01

    A theory is proposed for estimation of linewidth of an ~20 kHz class dye laser transversally pumped by nanosecond pulse width pump lasers such as frequency doubled Q-switched Nd:YAG laser (λ ~ 532 nm) and copper hydrogen bromide laser (λ ~ 510 nm). The experimental results are explained on the bases of dye solution’s thermal and flow parameters obtained by computational fluid dynamics simulation and the proposed theory. The fusion of experimental investigations, computational fluid dynamics simulation and the proposed theory has led to establishment of an empirical relationship to predict the linewidth of the dye laser.

  9. [Analysis on the spectral properties of the stilbene 420 laser dye].

    PubMed

    Peng, Yu-Feng; Meng, De-Wen; Pan, Xiao-Li; Peng, Fang

    2012-07-01

    Stilbene 420 dye solution was prepared and the laser dye absorption spectrum was measured. Q-switched frequency-doubling Nd : YAG laser was used as the pumping source to realize the stilbene 420 dye laser and fluorescence spectra analysis. Laser spectroscopy reached the strongest peak at 425 nm and full width at half maximun (FWHM) is 1 nm. Spectral range was from 420 nm to 440 nm. Fluorescence spectrum peak was at 428.5 nm. Compared with the strongest peak laser, the wavelength difference was 3.5 nm. The highest dye conversion efficiency was 9.26%. PMID:23016355

  10. New efficient laser dyes for the red region: γ-pyrone derivatives and phenalemines

    NASA Astrophysics Data System (ADS)

    Komlev, I. V.; Mezentseva, G. A.; Ponomareva, O. V.; Reznichenko, A. V.; Savvina, L. P.; Khrolova, O. R.; Petukhov, V. A.; Zhukovsky, K. V.

    1995-08-01

    A number of new fluorescence compounds suitable as efficient laser dyes for the red spectral region have been synthesized and investigated. The new dyes are distinguished by good solubility in common organic solvents and high photostability. The laser effect of the dyes has been studied by the second harmonic of YAG:Nd3+ laser ((lambda) equals 532 nm) as a pump source. Some of the prepared DCM derivatives and pyridine analogues are efficient laser dyes. Two compounds from a new class of phenalemines possessing good photostability and excellent laser characteristics for the 600-690 nm spectral region are reported for the first time.

  11. Two-photon pumped lasing dyes and their sol-gel glass/polymer composites

    NASA Astrophysics Data System (ADS)

    Zhao, Chanfeng; He, Guang S.; Bhawalkar, Jayant D.; Park, Chi-Kyun; Prasad, Paras N.

    1996-03-01

    A newly synthesized laser dye, trans-4-[P-(N-ethyl-N-hydroxyethylamino)styryl]- N-methylpyridinium tetraphenylborate (dye I), has high thermal- and photo-stability as well as strong two-photon-induced upconversion emission. Utilizing dye I doped bulk polymer rods, two-photo pumped frequency unconverted cavity lacing has been accomplished using a Q- switched Nd:YAG laser as the pump source. The upconversion lacing efficiency was 3.5%, and the cavity lacing lifetime, in terms of pulse numbers, was more than 4 by 104 pulses at 2 Hz repetition rate. By impregnating these dyes into a silica-gel:polymethylmethacrylate (PMMA) and Vycor-PMMA composite glasses, two-photon cavity lacing properties have also been studied.

  12. High laser efficiency and photostability of pyrromethene dyes mediated by nonpolar solvent.

    PubMed

    Gupta, Monika; Kamble, Priyadarshini; Rath, M C; Naik, D B; Ray, Alok K

    2015-08-10

    Many pyrromethene (PM) dyes have been shown to outperform established rhodamine dyes in terms of laser efficiency in the green-yellow spectral region, but their rapid photochemical degradation in commonly used ethanol or methanol solvents continues to limit its use in high average power liquid dye lasers. A comparative study on narrowband laser efficiency and photostability of commercially available PM567 and PM597 dyes, using nonpolar n-heptane and 1,4-dioxane and polar ethanol solvents, was carried out by a constructed pulsed dye laser, pumped by the second harmonic (532nm) radiation of a Q-switched Nd:YAG laser. Interestingly, both nonpolar solvents showed a significantly higher laser photostability (?100 times) as well as peak efficiency (?5%) of these PM dyes in comparison to ethanol. The different photostability of the PM dyes was rationalized by determining their triplet-state spectra and capability to generate reactive singlet oxygen (O21) by energy transfer to dissolved oxygen in these solvents using pulse radiolysis. Heptane is identified as a promising solvent for these PM dyes for use in high average power dye lasers, pumped by copper vapor lasers or diode-pumped solid-state green lasers. PMID:26368369

  13. Laser-dye synthesis - Group C compounds. Final report

    SciTech Connect

    Grubbs, E.J.

    1988-01-01

    This report describes progress on the syntheses of a number of new potential laser dyes. The goal is to generate new structures allowing the upscaling of flashlamp-pumped dye lasers to high energies. These systems ideally should show a lower laser-action threshold, operate with high efficiencies, and exhibit greater photochemical stabilities than do those presently available. Pavlopoulos has proposed a) that the parent aromatic chromophores be substituted by auxochromic groups such as hydroxy, alkoxy, and dialkylamino, and b) that improvement should result by restricting the chromophore and auxochromic group to coplanarity. This should reduce intersystem crossing and thus improve the quantum-fluorescence yield. The potential dye lasers described below are designed to meet these objectives.

  14. Spectroscopy and laser performance of new BF{sub 2} complex dyes in solution

    SciTech Connect

    Allik, T.H.; Hermes, R.E.; Sathyamoorthi, G.; Boyer, J.H.

    1994-12-31

    Four new BF{sub 2}-complex laser dyes have been synthesized and spectroscopic and laser studies have been performed. The 8-cyano-pyrromethene-BF{sub 2} complexes showed the best performance with red emission and slope efficiencies as high as 48% when pumped with a frequency doubled ND:YAG laser. Additionally, three previously known pyrromethene-BF{sub 2} complex dyes obtained from a commercial source were tested. These dyes showed a relative efficiency of greater than 80%, with one (PM-580) displaying a slope efficiency of 89%. This efficiency is the highest reported for any dye laser.

  15. Multichromatic operations in cw dye lasers

    SciTech Connect

    Fu, H.; Haken, H.

    1988-06-20

    A series of stable multichromatic solutions are presented explicitly on the basis of a band model for cw dye laser. The results explain recent experimental observations of bichromatic operation in cw dye lasers and predict still higher-order multichromatic steady states.

  16. Polymeric-host sulforhodamine-B lasers - Doubled Nd:YAG pumped

    NASA Technical Reports Server (NTRS)

    Gettemy, D. J.; Hermes, R. E.; Barnes, N. P.

    1991-01-01

    Solid-state dye lasers, pumped by a doubled Nd:YAG laser, were evaluated as a function of concentration, output coupler reflectivity and oscillator dimensions. A slope efficiency of up to 62 pct was achieved. A maximum irradiance of 59 MW/sq cm to the dye laser cavity was achieved.

  17. Photonics of laser-excited symmetric cationic polymethine dyes

    SciTech Connect

    Svetlichnyi, Valerii A; Maier, G V; Lapin, I N; Kopylova, T N; Derevyanko, Nadezhda A; Ishchenko, Aleksandr A

    2007-02-28

    Efficient lasing is obtained in the visible and near-IR spectral regions in solutions of symmetric polymethine dyes of the indolenine series (indocyanines) pumped by the second harmonic of a Nd{sup 3+}:YAG laser at 532 nm and an exciplex XeCl* laser at 308 nm into the first (long-wavelength) and higher-lying electronic absorption bands. The quantum lasing efficiency upon UV excitation achieves 37%. It is shown that these dyes can also limit the radiation power of these lasers. Polymethine dyes limit especially efficiently the second-harmonic power, their attenuation factor for the radiation power density of 100 MW cm{sup -2} achieving 14. The nanosecond flash-photolysis study of transient absorption spectra showed that the radiation power is limited by the mechanism of reverse saturated singlet-singlet absorption. It is established that the limiting ability of polymethines strongly depends on their structure. (active media)

  18. Self-pulsing in a band model for dye lasers

    SciTech Connect

    Fu, H.; Haken, H. )

    1990-10-01

    We study the self-pulsing stemming from the Risken-Nummedal-Graham-Haken-type multimode instability in the dye laser described by a band model. Analytical self-pulsing solutions for arbitrary pumping are presented. A distinct feature of the pulsation is that it corresponds to a very low pumping threshold and the required cavity-mode condition can be satisfied in a conventional ring dye laser. Another distinct feature is that the phase velocity of the pulsation may be smaller than the light velocity in the medium. The simple rule, which tells us whether the pulsation is a super- or subcritical one and was found for the two-level model in a previous paper, has been extended to the band model. The results are relevant for experimental investigation of the Risken-Nummedal-Graham-Haken-type multimode instabilities, which are intrinsic to multimode lasers, but have not yet been identified in experiment.

  19. Laser diode pumped solid state laser

    SciTech Connect

    Baer, T.M.; Keirstead, M.S.

    1987-04-07

    This patent describes a high-efficiency, laser diode pumped array, frequency doubled, compact solid state laser, comprising: a rare earth doped birefringent solid laser rod selected from the group consisting of Nd:YLF, Nd:YALO having a front end and a back end, the rod producing a polarized output beam; a housing with means holding the laser rod in fixed position in the housing with its front end forward; a laser array having a predetermined wavelength pumping the laser rod, having a output frequency sufficiently matched to the laser rod to pump the laser rod, secured in the housing behind and in optical alignment with the rod; laser cavity means defining a laser cavity mounted in the housing with the laser rod positioned within the cavity, the laser cavity means further including within the cavity an output coupler means; a frequency doubler, positioned to receive a suitably polarized output beam from the laser rod and to halve its wavelength and double its frequency; a polarization means for polarizing the output beam of the laser rod and substantially maintaining a polarization which optimizes frequency doubling at the frequency doubler and means for matching a focused image of the laser diode with a lasing volume of the laser cavity.

  20. Adaptive holographic pumping of thin-film organic lasers.

    PubMed

    Wood, Simon M; Mavrogordatos, Themistoklis K; Morris, Stephen M; Hands, Philip J W; Castles, Flynn; Gardiner, Damian J; Atkinson, Katie L; Coles, Harry J; Wilkinson, Timothy D

    2013-11-01

    In this Letter, we use a reconfigurable hologram to dynamically control the position of incidence of the pump beam onto a liquid-crystal dye-based laser. The results show that there is an increase in the stability of the laser output with time and the average power when compared with the output of the same laser when it is optically excited using a static pump beam. This technique also provides additional functionality, such as wavelength tuning and spatial shaping of the pump beam, both of which are demonstrated here. PMID:24177125

  1. High-repetition-rate, narrow-band dye lasers with water as a solvent for dyes

    NASA Astrophysics Data System (ADS)

    Ray, Alok K.; Sinha, Sucharita; Kundu, Soumitra; Kumar, Sasi; Nair, Sivagiriyal Karunakaran Sreenivasan; Pal, Tamal; Dasgupta, Kamalesh

    2002-03-01

    The performance of a copper vapor laser-pumped narrow-band dye laser in oscillator-amplifier configuration with water-based binary mixture solvents is described. Although oscillator efficiency in water-surfactant (sodium lauryl sulfate) solvent was comparable with that that employed pure ethanolic solvent, amplifier efficiency was found to be lower. Experiments that were carried out with vertically polarized pump beams and either horizontally or vertically polarized signal beams show that, in case of both the pump and signal having orthogonal polarization (horizontal) and same polarization (vertical), the extraction efficiency for both ethanolic and water-micelle media increased substantially from 15.7% to 18.5% and from 10% to 12.5%, respectively. However, the relative difference remained nearly the same, indicating that a slower orientational diffusion of excited dye molecules in a micellar medium is not responsible for a decrease in amplifier efficiency. Amplifier efficiency comparable with that containing ethanolic dye solutions could be obtained with a binary solvent that comprises a mixture of water and about 30% n-propanol. The performances of two efficient dyes, Rhodamine-6G and Kiton Red S, using water-based solvents were studied.

  2. Distributed feedback dye-doped sol-gel silica lasers

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaolei

    Solid state dye lasers with narrow linewidth and short pulse duration have attracted increasing attention because of their potential applications. Distributed feedback (DFB) laser is an effective compact coherent light source capable of tunable output with narrow linewidth. In this dissertation, lasing characteristics of dye doped sol-gel silica distributed feedback lasers have been investigated. The optical properties of sol-gel silica deduced from measurements of DFB laser output have also been studied. High optical homogeneity sol-gel silica slabs doped with desired concentration of Rhodamine 6G (MG), Coumarin 460 (C460), or Exalite 377E (E377) dye have been fabricated. Spatial periodic gain modulation in the dye doped sol-gel silica slab was created by crossing the diffracted pump beams from a holographic grating (1800 lines/mm) used as a beam splitter. Tunable laser emission in the yellow, the blue, and in the near ultraviolet region has been generated from the distributed feedback geometry using sol-gel silica slabs doped with R6G, C460 or E377 dye respectively. Wavelength tuning range of approximately 20 nm around the emission centers (562 nm, 480 nm, 376 nm) has been realized by varying the pump beams intersection angle. The laser linewidth was of the order of 60~80 pm when pump energy was several times over the threshold. Laser pulse trains with sub-nanosecond spikes were induced. A slope efficiency of approximately 4.5% has been obtained. The time behavior of distributed feedback R6G doped sol- gel silica laser has been studied using a N2 laser as the pump source. Sub-nanosecond pulse duration has been obtained. The pulse number in the output pulse train is sensitive to the pump energy. Experimental results of the time behavior are in good agreement with theoretical calculations. The lasing performance of tunable distributed feedback dye-doped sol-gel silica laser operating at different Bragg scattering order (M = 1, 2, 3) has also been studied. Distributed feedback laser operating at higher Bragg scattering order was observed at higher pump energy threshold and with lower energy conversion efficiency. The energy conversion efficiency of 0.7% (for M = 3) and 11% (for M = 2) has been achieved. Based on the Bragg scattering condition and the temperature dependence of the refractive index (?) of the gain medium, temperature tuning of the laser output was realized in experiment from the distributed feedback R6G doped sol-gel silica/PMMA lasers. Wavelength tuning from 573 nm to 556 mm has been demonstrated by varying the temperature from 21C to 58C. The laser linewidth was kept below 0.5 mm within the whole tuning range. The thermal coefficient of the emission wavelength has been measured. Finally the thermal coefficient of refractive index of sol-gel silica has been derived from these experimental data. Discontinuity in d?/dT curve attributable to phase transition has been observed in dye doped sol-gel silica slab and PMMA bulk. Temperature tuning performance of DFB laser using high temperature treated sol-gel silica as the gain medium has also been investigated.

  3. High brightness diode-pumped organic solid-state laser

    SciTech Connect

    Zhao, Zhuang; Mhibik, Oussama; Nafa, Malik; Chénais, Sébastien; Forget, Sébastien

    2015-02-02

    High-power, diffraction-limited organic solid-state laser operation has been achieved in a vertical external cavity surface-emitting organic laser (VECSOL), pumped by a low-cost compact blue laser diode. The diode-pumped VECSOLs were demonstrated with various dyes in a polymer matrix, leading to laser emissions from 540 nm to 660 nm. Optimization of both the pump pulse duration and output coupling leads to a pump slope efficiency of 11% for a DCM based VECSOLs. We report output pulse energy up to 280 nJ with 100 ns long pump pulses, leading to a peak power of 3.5 W in a circularly symmetric, diffraction-limited beam.

  4. Diode-pumped neodymium lasers

    NASA Astrophysics Data System (ADS)

    Albers, Peter

    1990-08-01

    Since the invention of diode lasers in the early 1960's there had been continuous investigations in laser diode pumped solid state lasers as has been reviewed in detail by a number of papers ( see e.g. [1] ). There are two main advantages of using diode lasers instead of flashlaraps as a pump source for solid state lasers: First the emission of the diode lasers matches well with the absorption bands of several Rare Earth ions that are doped in laser crystals ( mainly Nd3+, but also Er3, Tm3, Dy3', and others ) . This summary will report only about diode lasers at a wavelength of around BlOnm, which fits to an absorptionband of Nd3t Second diode lasers provide the possibility of longitudinally pumped configurations and therefore an excellent mode matching with the solid state laser mode. For both reasons the efficiency of a diode laser puniped solid state laser is nuch higher than of a flashlamp pumped one. Since the early 1980's a much wider interest in diode laser pumped solid state lasers arose. It was stimulated by the improved performance of the new generation of diode lasers in terms of reliability , operational lifetime and output power [21. Two important steps in direction to the diode lasers at present time were the developments of double hetero (DH) structure- and graded index separate confinement hetero (GrInSCH) structurediode lasers. In the same way the development of new production techniques were necessary to ensure the reliability of the diode lasers. Starting with the liquid phase epitaxy (LPE) the (GaAl)As structures are now grown by the molecular beam epitaxy (MBE), mainly used for very high precision laboratory investigations, and metal organic chemical vapour deposition (MOCVD), mainly used for commercial production. As a first commercial product SDL introduced a 100mW array in 1984. Since then the output power of the commercially available diode lasers increased by two orders of magnitude to lOW. These diode lasers are multi stripe bar arrays like the 5W diode laser

  5. Effect of pump efficiency on lasing in dye-doped chiral nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Gillespie, Carrie; Morris, Stephen M.; Coles, Harry J.

    2005-04-01

    The purpose of this study was to investigate the effect of varying the pump efficiency of dye-doped chiral nematic liquid crystal lasers, through the dependence on absorption efficiency. Two dyes from the rhodamine subset of the xanthene family (rhodamine B and rhodamine 6G) with similar chemical properties but different absorption and emission spectra have been compared for a fixed pumping wavelength (532nm). Each dye was dissolved in E49 (a commercial nematic mixture from Merck NB-C) and the resulting mixtures characterised in terms of their absorption and laser induced fluorescence spectra. A high twisting power chiral dopant (BDH1281, also from Merck NB-C) was used to induce 1-D photonic band gaps with the high and low energy edges corresponding to the fluorescence maximum for each dye. Laser action was induced in the resulting four mixtures and typical laser parameters such as slope efficiency and threshold energy were examined for each one. The results indicate that the mixtures doped with rhodamine 6G had an absolute absorption ~ 57% greater than those doped with rhodamine B. Rhodamine 6G-doped mixtures therefore had the highest pump efficiency and lased more than 6 times more efficiently then those doped with rhodamine B. We believe that the performance of rhodamine 6G is also influenced by its greater degree of alignment with the liquid crystal host and a possible input energy dependence of the quantum efficiency of the dyes (indicated by the fluorescence characteristics of the achiral dye-doped mixtures). Further experimentation is needed to determine exactly which parameters are responsible for the superior performance of rhodamine 6G in chiral nematic lasers.

  6. Theoretical studies of solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, Wynford L.

    1990-01-01

    One concept for collecting solar energy is to use large solar collectors and then use lasers as energy converters whose output beams act as transmission lines to deliver the energy to a destination. The efficiency of the process would be improved if the conversion could be done directly using solar pumped lasers, and the possibility of making such lasers is studied. There are many applications for such lasers, and these are examined. By including the applications first, the requirements for the lasers will be more evident. They are especially applicable to the Space program, and include cases where no other methods of delivering power seem possible. Using the lasers for conveying information and surveillance is also discussed. Many difficulties confront the designer of an efficient system for power conversion. These involve the nature of the solar spectrum, the method of absorbing the energy, the transfer of power into laser beams, and finally, the far field patterns of the beams. The requirements of the lasers are discussed. Specific laser configurations are discussed. The thrust is into gas laser systems, because for space applications, the laser could be large, and also the medium would be uniform and not subject to thermal stresses. Dye and solid lasers are treated briefly. For gas lasers, a chart of the various possibilities is shown, and the various families of gas lasers divided according to the mechanisms of absorbing solar radiation and of lasing. Several specific models are analyzed and evaluated. Overall conclusions for the program are summarized, and the performances of the lasers related to the requirements of various applications.

  7. Ultraviolet single-frequency coupled optofluidic ring resonator dye laser.

    PubMed

    Tu, Xin; Wu, Xiang; Li, Ming; Liu, Liying; Xu, Lei

    2012-08-27

    Ultraviolet single-frequency lasing is realized in a coupled optofluidic ring resonator (COFRR) dye laser that consists of a thin-walled capillary microfluidic ring resonator and a cylindrical resonator. The whispering gallery modes (WGMs) in each resonator couple to each other and generate single-frequency laser emission. Single-frequency lasing occurs at 386.75 nm with a pump threshold of 5.9 ?J/mm. The side-mode-suppression ratio (SMSR) is about 20 dB. Moreover, the laser emits mainly in two directions, and each of them has a divergence of only 10.5. PMID:23037052

  8. Quenched-laser operation of a Littman dye oscillator

    SciTech Connect

    Raymond, T.D.; Reiser, C.; Esherick, P.; Michie, R.B.

    1987-01-01

    We demonstrate a means of generating narrowband, tunable laser pulses near 650 nm with continuously adjustable pulse width from 0.2 to 3 nsec. The system utilizes a short-cavity single-mode Littman oscillator which is quenched by a second short-cavity dye laser. Both are pumped by the same 6-nsec full-width-at-half-maximum (FWHM) frequency-doubled single-mode Nd:YAG laser. We also demonstrate a polarization technique in the three-stage amplification of these pulses to an energy of 20 mJ with minimum temporal broadening. 9 refs., 3 figs.

  9. Technology and engineering aspects of high power pulsed single longitudinal mode dye lasers

    NASA Astrophysics Data System (ADS)

    Rawat, V. S.; Mukherjee, Jaya; Gantayet, L. M.

    2015-09-01

    Tunable single mode pulsed dye lasers are capable of generating optical radiations in the visible range having very small bandwidths (transform limited), high average power (a few kW) at a high pulse repetition rate (a few tens of kHz), small beam divergence and relatively higher efficiencies. These dye lasers are generally utilized laser dyes dissolved in solvents such as water, heavy water, ethanol, methanol, etc. to provide a rapidly flowing gain medium. The dye laser is a versatile tool, which can lase either in the continuous wave (CW) or in the pulsed mode with pulse duration as small as a few tens of femtoseconds. In this review, we have examined the several cavity designs, various types of gain mediums and numerous types of dye cell geometries for obtaining the single longitudinal mode pulsed dye laser. Different types of cavity configuration, such as very short cavity, short cavity with frequency selective element and relatively longer cavity with multiple frequency selective elements were reviewed. These single mode lasers have been pumped by all kinds of pumping sources such as flash lamps, Excimer, Nitrogen, Ruby, Nd:YAG, Copper Bromide and Copper Vapor Lasers. The single mode dye lasers are either pumped transversely or longitudinally to the resonator axis. The pulse repletion rate of these pump lasers were ranging from a few Hz to a few tens of kHz. Physics technology and engineering aspects of tuning mechanism, mode hop free scanning and dye cell designs are also presented in this review. Tuning of a single mode dye laser with a resolution of a few MHz per step is a technologically challenging task, which is discussed here.

  10. Dye lasing arrangement including an optical assembly for altering the cross-section of its pumping beam and method

    DOEpatents

    O'Neil, Richard W. (Pleasanton, CA); Sweatt, William C. (Alburquerque, NM)

    1992-01-01

    An optical assembly is disclosed herein along with a method of operation for use in a dye lasing arrangement, for example a dye laser oscillator or a dye amplifier, in which a continuous stream of dye is caused to flow through a given zone in a cooperating dye chamber while the zone is being illuminated by light from a pumping beam which is directed into the given zone. This in turn causes the dye therein to lase and thereby produce a new dye beam in the case of a dye laser oscillator or amplify a dye beam in the case of a dye amplifier. The optical assembly so disclosed is designed to alter the pump beam such that the beam enters the dye chamber with a different cross-sectional configuration, preferably one having a more uniform intensity profile, than its initially produced cross-sectional configuration. To this end, the assembly includes a network of optical components which first act on the beam while the latter retains its initially produced cross-sectional configuration for separating it into a plurality of predetermined segments and then recombines the separated components in a predetermined way which causes the recombined beam to have the different cross-sectional configuration.

  11. Efficient distributed feedback solid state dye laser with a dynamic grating

    NASA Astrophysics Data System (ADS)

    Wadsworth, W. J.; McKinnie, I. T.; Woolhouse, A. D.; Haskell, T. G.

    We present the first operation of a distributed feedback solid state dye laser with a dynamic, pump-induced grating. Broadly tunable, narrow band operation in the region of 616 nm (604-649 nm) has been demonstrated with perylene red laser dye doped in poly(methyl methacrylate) (PMMA), when pumped with a frequency doubled Nd:YAG laser. Conversion efficiencies of 20%, corresponding to 35% optical-to-optical efficiency, have been measured. The laser bandwidth was between 0.01 and 0.04 nm, and smooth tuning over more than 200 GHz has been demonstrated.

  12. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  13. Transverse pumped laser amplifier architecture

    DOEpatents

    Bayramian, Andrew James; Manes, Kenneth R.; Deri, Robert; Erlandson, Alvin; Caird, John; Spaeth, Mary L.

    2015-05-19

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  14. Transverse pumped laser amplifier architecture

    DOEpatents

    Bayramian, Andrew James; Manes, Kenneth; Deri, Robert; Erlandson, Al; Caird, John; Spaeth, Mary

    2013-07-09

    An optical gain architecture includes a pump source and a pump aperture. The architecture also includes a gain region including a gain element operable to amplify light at a laser wavelength. The gain region is characterized by a first side intersecting an optical path, a second side opposing the first side, a third side adjacent the first and second sides, and a fourth side opposing the third side. The architecture further includes a dichroic section disposed between the pump aperture and the first side of the gain region. The dichroic section is characterized by low reflectance at a pump wavelength and high reflectance at the laser wavelength. The architecture additionally includes a first cladding section proximate to the third side of the gain region and a second cladding section proximate to the fourth side of the gain region.

  15. New laser materials for laser diode pumping

    NASA Technical Reports Server (NTRS)

    Jenssen, H. P.

    1990-01-01

    The potential advantages of laser diode pumped solid state lasers are many with high overall efficiency being the most important. In order to realize these advantages, the solid state laser material needs to be optimized for diode laser pumping and for the particular application. In the case of the Nd laser, materials with a longer upper level radiative lifetime are desirable. This is because the laser diode is fundamentally a cw source, and to obtain high energy storage, a long integration time is necessary. Fluoride crystals are investigated as host materials for the Nd laser and also for IR laser transitions in other rare earths, such as the 2 micron Ho laser and the 3 micron Er laser. The approach is to investigate both known crystals, such as BaY2F8, as well as new crystals such as NaYF8. Emphasis is on the growth and spectroscopy of BaY2F8. These two efforts are parallel efforts. The growth effort is aimed at establishing conditions for obtaining large, high quality boules for laser samples. This requires numerous experimental growth runs; however, from these runs, samples suitable for spectroscopy become available.

  16. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  17. Effects of pump modulation on a four-level laser amplifier

    SciTech Connect

    Chakmakjian, S.H.; Koch, K.; Papademetriou, S.; Stroud, C.R. Jr.

    1989-01-01

    A theory is developed to describe the way in which modulations in the pump intensity produce modulations in the gain of a four-level, homogeneously broadened laser amplifier. The theory is tested by carrying out an experiment using an alexandrite crystal pumped by a c-w dye laser. A second dye laser is used to measure the gain in the inverted laser transition. The dependence of the magnitude and the bandwidth of the gain on the pumping rate is determined. Agreement between theory and experiment is good.

  18. Effects of pump modulation on a four-level laser amplifier

    SciTech Connect

    Chakmakjian, S.H.; Koch, K.; Papademetriou, S.; Stroud, C.R. Jr. )

    1989-09-01

    A theory is developed to describe the way in which modulations in the pump intensity produce modulations in the gain of a four-level, homogeneously broadened laser amplifier. The theory is tested by carrying out an experiment using an alexandrite crystal pumped by a cw dye laser. A second dye laser is used to measure the gain in the inverted laser transition. The dependence of the magnitude and the bandwidth of the gain on the pumping rate is determined. Agreement between theory and experiment is good.

  19. Raman-shifted dye laser for water vapor DIAL measurements

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Singh, U. N.; Cotnoir, L. J.; Wilkerson, T. D.; Higdon, N. S.; Browell, E. V.

    1987-01-01

    For improved DIAL measurements of water vapor in the upper troposphere or lower stratosphere, narrowband (about 0.03/cm) laser radiation at 720- and 940-nm wavelengths was generated by stimulated Raman scattering (SRS), using the narrow linewidth (about 0.02/cm) output of a Nd:YAG-pumped dye laser. For a hydrogen pressure of 350 psi, the first Stokes conversion efficiencies to 940 nm were 20 percent and 35 percent, when using a conventional and waveguide Raman cell, respectively. The linewidth of the first Stokes line at high cell pressures, and the inferred collisional broadening coefficients, agree well with those previously measured in spontaneous Raman scattering.

  20. Approximate analytic solutions for the optical pumping of fluorescent dyes

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1978-01-01

    A general technique for solving a system of rate equations describing the interaction of an electromagnetic field and a molecular system is presented. The method is used to obtain approximate time-dependent solutions for the upper-level population of fluorescent dyes in the presence of a pump field.

  1. Dye lasers: Design, operation, and performance. March 1975-October 1989 (Citations from the Searchable Physics Information Notices data base). Report for Mar 75-Oct 89

    SciTech Connect

    Not Available

    1989-11-01

    This bibliography contains citations concerning the design, operation, and performance of dye lasers. Dye materials, pulse techniques, laser pumping systems, experimental applications, design of dye laser systems, and performance evaluations are considered. Modeling of dye laser operation is also discussed. Descriptions of system components and experimental variables, and their effects on laser output are included. References to other laser systems such as carbon dioxide lasers, x-ray lasers, and UV lasers are included in related bibliographies. (Contains 264 citations fully indexed and including a title list.)

  2. Compact and highly efficient laser pump cavity

    DOEpatents

    Chang, Jim J.; Bass, Isaac L.; Zapata, Luis E.

    1999-01-01

    A new, compact, side-pumped laser pump cavity design which uses non-conventional optics for injection of laser-diode light into a laser pump chamber includes a plurality of elongated light concentration channels. In one embodiment, the light concentration channels are compound parabolic concentrators (CPC) which have very small exit apertures so that light will not escape from the pumping chamber and will be multiply reflected through the laser rod. This new design effectively traps the pump radiation inside the pump chamber that encloses the laser rod. It enables more uniform laser pumping and highly effective recycle of pump radiation, leading to significantly improved laser performance. This new design also effectively widens the acceptable radiation wavelength of the diodes, resulting in a more reliable laser performance with lower cost.

  3. Development of a single-longitudinal-mode, high-peak-power, tunable pulsed dye laser

    SciTech Connect

    Black, J.F.; Valentini, J.J. )

    1994-09-01

    A compact, high-peak-power, user-friendly, single-longitudinal-mode (SLM) tunable dye laser has been developed. The device yields [gt]12 mJ pulses of 6 ns duration and [similar to]2.7[times]transform-limited linewidths of [lt]200 MHz. Seamless single-mode tunability of [gt]20 cm[sup [minus]1] is possible without resetting. The dye laser makes efficient use of the pump laser, with [similar to]10% conversion of the 532 nm pump energy to tunable dye power and occupies [lt]4 m[sup 2] (including pump laser and all diagnostics). The linewidth of the device can be switched from [lt]200 MHz SLM operation to [lt]0.5 cm[sup [minus]1] broadband modeless operation by moving one mirror. This allows rapid interchange between high-resolution scanning and a fast survey scan'' mode of operation to isolate the spectral region of interest at low resolution.

  4. Dye laser amplifier including a dye cell contained within a support vessel

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of greater than 30 gallons/minute at a static pressure greater than 150 pounds/square inch and a specifically designed support vessel for containing the dye cell. 6 figs.

  5. Spectroscopic properties and amplified spontaneous emission of fluorescein laser dye in ionic liquids as green media

    NASA Astrophysics Data System (ADS)

    AL-Aqmar, Dalal M.; Abdelkader, H. I.; Abou Kana, Maram T. H.

    2015-09-01

    The use of ionic liquids (ILs) as milieu materials for laser dyes is a promising field and quite competitive with volatile organic solvents and solid state-dye laser systems. This paper investigates some photo-physical parameters of fluorescein dye incorporated into ionic liquids; 1-Butyl-3-methylimidazolium chloride (BMIM Cl), 1-Butyl-3-methylimidazolium tetrachloroaluminate (BMIM AlCl4) and 1-Butyl-3-methylimidazolium tetrafluoroborate (BMIM BF4) as promising host matrix in addition to ethanol as reference. These parameters are: absorption and emission cross-sections, fluorescence lifetime and quantum yield, in addition to the transition dipole moment, the attenuation length and oscillator strength were also investigated. Lasing characteristics such as amplified spontaneous emission (ASE), the gain, and the photostability of fluorescein laser dye dissolved in different host materials were assessed. The composition and properties of the matrix of ILs were found that it has great interest in optimizing the laser performance and photostability of the investigated laser dye. Under transverse pumping of fluorescein dye by blue laser diode (450 nm) of (400 mW), the initial ASE for dye dissolved in BMIM AlCl4 and ethanol were decreased to 39% and 36% respectively as time progressed 132 min. Relatively high efficiency and high fluorescence quantum yield (11.8% and 0.82% respectively) were obtained with good photostability in case of fluorescein in BMIM BF4 that was decreased to ?56% of the initial ASE after continuously pumping with 400 mW for 132 min.

  6. Fusion pumped laser

    DOEpatents

    Pappas, D.S.

    1987-07-31

    The apparatus of this invention may comprise a system for generating laser radiation from a high-energy neutron source. The neutron source is a tokamak fusion reactor generating a long pulse of high-energy neutrons and having a temperature and magnetic field effective to generate a neutron flux of at least 10/sup 15/ neutrons/cm/sup 2//center dot/s. Conversion means are provided adjacent the fusion reactor at a location operable for converting the high-energy neutrons to an energy source with an intensity and energy effective to excite a preselected lasing medium. A lasing medium is spaced about and responsive to the energy source to generate a population inversion effective to support laser oscillations for generating output radiation. 2 figs., 2 tabs.

  7. Fusion pumped laser

    DOEpatents

    Pappas, Daniel S. (Los Alamos, NM)

    1989-01-01

    Apparatus is provided for generating energy in the form of laser radiation. A tokamak fusion reactor is provided for generating a long, or continuous, pulse of high-energy neutrons. The tokamak design provides a temperature and a magnetic field which is effective to generate a neutron flux of at least 10.sup.15 neutrons/cm.sup.2.s. A conversion medium receives neutrons from the tokamak and converts the high-energy neutrons to an energy source with an intensity and an energy effective to excite a preselected lasing medium. The energy source typically comprises fission fragments, alpha particles, and radiation from a fission event. A lasing medium is provided which is responsive to the energy source to generate a population inversion which is effective to support laser oscillations for generating output radiation.

  8. Perylene Dye In A Composite Sol-Gel Glass - A New Solid-State Tunable Laser In The Visible Range

    NASA Astrophysics Data System (ADS)

    Reisfeld, R.; Brusilovsky, D.; Eyal, M.; Miron, E.; Burshtein, Z.; Ivri, J.

    1989-12-01

    A perylene derivative dye, BASF 241, was impregnated into a composite sol-gel glass, and tested as a laser material. Laser tunability was obtained in the range 568 - 583 nm using a 532 nm pump beam (a frequency doubled Nd:YAG laser). Maximum efficiency of 7.4% was obtained at 575 nm. The laser threshold, was about 60 ?J/pulse.

  9. Diode-pumped laser altimeter

    NASA Technical Reports Server (NTRS)

    Welford, D.; Isyanova, Y.

    1993-01-01

    TEM(sub 00)-mode output energies up to 22.5 mJ with 23 percent slope efficiencies were generated at 1.064 microns in a diode-laser pumped Nd:YAG laser using a transverse-pumping geometry. 1.32-micron performance was equally impressive at 10.2 mJ output energy with 15 percent slope efficiency. The same pumping geometry was successfully carried forward to several complex Q-switched laser resonator designs with no noticeable degradation of beam quality. Output beam profiles were consistently shown to have greater than 90 percent correlation with the ideal TEM(sub 00)-order Gaussian profile. A comparison study on pulse-reflection-mode (PRM), pulse-transmission-mode (PTM), and passive Q-switching techniques was undertaken. The PRM Q-switched laser generated 8.3 mJ pulses with durations as short as 10 ns. The PTM Q-switch laser generated 5 mJ pulses with durations as short as 5 ns. The passively Q-switched laser generated 5 mJ pulses with durations as short as 2.4 ns. Frequency doubling of both 1.064 microns and 1.32 microns with conversion efficiencies of 56 percent in lithium triborate and 10 percent in rubidium titanyl arsenate, respectively, was shown. Sum-frequency generation of the 1.064 microns and 1.32 microns radiations was demonstrated in KTP to generate 1.1 mJ of 0.589 micron output with 11.5 percent conversion efficiency.

  10. An amplified tunable picosecond dye laser based on an active-passive mode-locked Nd:YAG laser

    SciTech Connect

    Brucker, G. A.; Young, M. A.; Kelley, D. F.

    1989-08-01

    An amplified tunable picosecond dye laser has been constructed which is pumped by an active-passive mode-locked Nd:YAG laser. The laser is tunable from 555 nm to /gt/700 nm. It provides a maximum of 2-mJ pulses with pulse widths of /similar to/17 ps (FWHM). The tuning range can be extended by frequency doubling and/or mixing with the residual 1064-nm pulses. The dye laser is very stable and relatively inexpensive to construct.

  11. Diode-pumped laser with improved pumping system

    DOEpatents

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  12. Intracavity absorption with a continuous wave dye laser - Quantification for a narrowband absorber

    NASA Technical Reports Server (NTRS)

    Brobst, William D.; Allen, John E., Jr.

    1987-01-01

    An experimental investigation of the dependence of intracavity absorption on factors including transition strength, concentration, absorber path length, and pump power is presented for a CW dye laser with a narrow-band absorber (NO2). A Beer-Lambert type relationship is found over a small but useful range of these parameters. Quantitative measurement of intracavity absorption from the dye laser spectral profiles showed enhancements up to 12,000 (for pump powers near lasing threshold) when compared to extracavity measurements. The definition of an intracavity absorption coefficient allowed the determination of accurate transition strength ratios, demonstrating the reliability of the method.

  13. Lasant Materials for Blackbody-Pumped Lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J. (Editor); Chen, K. Y. (Editor)

    1985-01-01

    Blackbody-pumped solar lasers are proposed to convert sunlight into laser power to provide future space power and propulsion needs. There are two classes of blackbody-pumped lasers. The direct cavity-pumped system in which the lasant molecule is vibrationally excited by the absorption of blackbody radiation and laser, all within the blackbody cavity. The other system is the transfer blackbody-pumped laser in which an absorbing molecule is first excited within the blackbody cavity, then transferred into a laser cavity when an appropriate lasant molecule is mixed. Collisional transfer of vibrational excitation from the absorbing to the lasing molecule results in laser emission. A workshop was held at NASA Langley Research Center to investigate new lasant materials for both of these blackbody systems. Emphasis was placed on the physics of molecular systems which would be appropriate for blackbody-pumped lasers.

  14. Lasers from fission. [nuclear pumping feasibility experiments

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.; Helmick, H. H.

    1975-01-01

    The feasibility of the nuclear pumping of lasers was demonstrated in three experiments conducted independently at three different laboratories. In this context nuclear pumping of lasers is understood to be the excitation of a laser by the kinetic energy of the fission fragments only. A description is given of research concerned with the use of nuclear energy for the excitation of gas lasers. Experimental work was supplemented by theoretical research. Attention is given to a nuclear pumped He-Xe laser, a nuclear pumped CO laser, and a neon-nitrogen laser pumped by alpha particles. Studies involving uranium hexafluoride admixture to laser media are discussed along with research on uranium hexafluoride-fueled reactors.

  15. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, James (Gilroy, CA)

    1992-01-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner.

  16. Dye laser amplifier including a low turbulence, stagnation-free dye flow configuration

    DOEpatents

    Davin, J.

    1992-12-01

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a flow rate of for example 30 gallons/minute, a specifically designed support vessel for containing the dye cell and a screen device for insuring that the dye stream passes into the dye cell in a substantially turbulent free, stagnation-free manner. 9 figs.

  17. Intracavity sum-frequency generation of blue light in a synchronously mode-locked cw dye laser.

    PubMed

    Benicewicz, P K; McGraw, D

    1990-02-01

    Intracavity upconversion is demonstrated in a synchronously pumped Styryl 9M dye laser. Picosecond blue pulses at 463 nm are generated by type II nearly noncritical phase-matched intracavity sum-frequency mixing in KTiOPO(4) of the dye-laser pulses at 824 nm and injected pulses from a mode-locked cw Nd:YAG laser at 1064 nm. PMID:19759745

  18. Laser diode array pumped continuous wave Rubidium vapor laser.

    PubMed

    Zhdanov, B V; Stooke, A; Boyadjian, G; Voci, A; Knize, R J

    2008-01-21

    We have demonstrated continuous wave operation of a laser diode array pumped Rb laser with an output power of 8 Watts. A slope efficiency of 60% and a total optical efficiency of 45% were obtained with a pump power of 18 Watts. This laser can be scaled to higher powers by using multiple laser diode arrays or stacks of arrays. PMID:18542151

  19. Rubidium vapor laser pumped by two laser diode arrays.

    PubMed

    Zhdanov, Boris V; Stooke, Adam; Boyadjian, Gregory; Voci, Adam; Knize, R J

    2008-03-01

    Scaling of alkali lasers to higher powers requires using multiple diode lasers for pumping. The first (to our knowledge) results of a cw rubidium laser pumped by two laser diode arrays are presented. A slope efficiency of 53%, total optical efficiency of 46%, and output power of 17 W have been demonstrated. PMID:18311276

  20. Tunable, high-power, subpicosecond blue-green dye laser system with a two-stage dye amplifier

    SciTech Connect

    Sharp, T.F.; Dane, C.B.; Barber, D.; Tittel, F.K.; Wisoff, P.J. )

    1992-05-01

    This paper reports on a two-stage dye amplifier design that has been developed to amplify tunable, blue=green, subpicosecond dye laser pulses which are generated from a hybrid synchronously mode-locked dye oscillator directly (800 fs) or shorter to 200 fs by a fiber compressor stage. This system has achieved single pulse energies of 2mJ, with an amplified spontaneous emission content of less than 0.1%. Using 40 mJ of the third-harmonic output of an Nd:YAG regenerative amplifier to pump the dye amplifier system, these pulse energies represent an energy extraction efficiency of {approximately}5%. The tunability, stability, and spatial and temporal quality of throughput pulses from the system have also been characterized.

  1. Photophysics of Laser Dye-Doped Polymer Membranes for Laser-Induced Fluorescence Photogrammetry

    NASA Technical Reports Server (NTRS)

    Dorrington, Adrian A.; Jones, Thomas W.; Danehy, Paul M.

    2004-01-01

    Laser-induced fluorescence target generation in dye-doped polymer films has recently been introduced as a promising alternative to more traditional photogrammetric targeting techniques for surface profiling of highly transparent or reflective membrane structures. We investigate the photophysics of these dye-doped polymers to help determine their long-term durability and suitability for laser-induced fluorescence photogrammetric targeting. These investigations included experimental analysis of the fluorescence emission pattern, spectral content, temporal lifetime, linearity, and half-life. Results are presented that reveal an emission pattern wider than normal Lambertian diffuse surface scatter, a fluorescence time constant of 6.6 ns, a pump saturation level of approximately 20 micro J/mm(exp 2), and a useful lifetime of more than 300,000 measurements. Furthermore, two demonstrations of photogrammetric measurements by laser-induced fluorescence targeting are presented, showing agreement between photogrammetric and physically measured dimensions within the measurement scatter of 100 micron.

  2. Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Yuan, Lixiang; Cui, Yiping; Li, Ming; Prasad, Paras N.

    1997-03-01

    The two-photon absorption (TPA), TPA-induced frequency upconversion emission, and two-photon-pumped (TPP) lasing properties of a new dye, trans-4[p-(N-hydroxyethylN-methylamino)stryryl]-N-methylpyridinium iodide (abbreviated as ASPI) were experimentally investigated. This new dye has a moderate TPA cross section (?2?3.920-20 cm4/GW in benzyl alcohol), but exhibits a low lasing threshold and high lasing efficiency when pumped with a 1064 nm pulsed laser beam. Furthermore, the TPA-induced fluorescence yield is strongly dependent on the polarity of the solvent, making it a promising dye for sensing applications. The spectral, temporal, and spatial structures as well as the output/input characteristics of the TPP cavity lasing and the superradiant (cavityless) lasing are systematically measured using a 1 cm path quartz cuvette filled with the ASPI solution or a doped polymer rod. The net conversion efficiency from the absorbed 1064 nm pump pulse energy to the 615 nm upconverted cavity lasing energy was found to be as high as 17%.

  3. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Kim, K. H.; Stock, L. V.

    1987-01-01

    The improvement on the collection system of the Tarmarack Solar Simulator beam was attemped. The basic study of evaluating the solid state laser materials for the solar pumping and also the work to construct a kinetic model algorithm for the flashlamp pumped iodine lasers were carried out. It was observed that the collector cone worked better than the lens assembly in order to collect the solar simulator beam and to focus it down to a strong power density. The study on the various laser materials and their lasing characteristics shows that the neodymium and chromium co-doped gadolinium scandium gallium garnet (Nr:Cr:GSGG) may be a strong candidate for the high power solar pumped solid state laser crystal. On the other hand the improved kinetic modeling for the flashlamp pumped iodine laser provides a good agreement between the theoretical model and the experimental data on the laser power output, and predicts the output parameters of a solar pumped iodine laser.

  4. High power diode pumped alkali vapor lasers

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.

    2008-05-01

    Diode pumped alkali lasers have developed rapidly since their first demonstration. These lasers offer a path to convert highly efficient, but relatively low brightness, laser diodes into a single high power, high brightness beam. General Atomics has been engaged in the development of DPALs with scalable architectures. We have examined different species and pump characteristics. We show that high absorption can be achieved even when the pump source bandwidth is several times the absorption bandwidth. In addition, we present experimental results for both potassium and rubidium systems pumped with a 0.2 nm bandwidth alexandrite laser. These data show slope efficiencies of 67% and 72% respectively.

  5. Behaviors of random laser in dye-doped nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Yao, Fengfeng; Bian, Huanting; Pei, Yanbo; Hou, Chunfeng; Sun, Xiudong

    2016-01-01

    Random lasing in the nematic liquid crystals (NLCs) with a high doping concentration of the laser dye was observed and characterized. With increasing the pump energy after the occurrence of the random laser (RL), the RL intensity first increases gradually to a maximum, then drops sharply to zero, accompanied by the gradual enhancement of scattering manifested by the growth of far-field diffraction rings of the transmitted pump beam in number. The threshold energy per unit pump area, slope efficiency, and maximal output intensity of the NLC RL depend heavily and nonmonotonically on the pump angle. A model involving the pump pulse induced molecular reorientation in NLCs leading to the pump angle dependent enhancement of scattering is proposed to explain the pump angle dependent properties of RLs.

  6. Optically pumped isotopic ammonia laser system

    DOEpatents

    Buchwald, Melvin I.; Jones, Claude R.; Nelson, Leonard Y.

    1982-01-01

    An optically pumped isotopic ammonia laser system which is capable of producing a plurality of frequencies in the middle infrared spectral region. Two optical pumping mechanisms are disclosed, i.e., pumping on R(J) and lasing on P(J) in response to enhancement of rotational cascade lasing including stimulated Raman effects, and, pumping on R(J) and lasing on P(J+2). The disclosed apparatus for optical pumping include a hole coupled cavity and a grating coupled cavity.

  7. Conductive polymer dye laser and diode and method of use

    SciTech Connect

    Moses, D.

    1993-08-17

    A dye laser is described, comprising: a laser dye solution disposed in a resonant cavity comprising a conductive polymer having the chemical formula: wherein R comprises (C[sub 1]-C[sub 10])alkyl, R[prime] is the same or different from R and comprises alkyl, substituted alkyl, benzyl, or substituted benzyl, the substituted compounds selected from the group consisting of -(CH[sub 2])[sub n]CH[sub 3] and -CH[sub 2]C[sub 6]H[sub 4](CH[sub 2])[sub n]Y, wherein Y is 0-alkyl, alkyl, alkenyl or alkynyl and n is greater than 1 and up to 200, and for structure IV, R[double prime] is the same or different from R and comprises (C[sub 1]-C[sub 10])alkyl, and x is greater than about 20 and up to about 200; and a non-aqueous solvent; the solvent being substantially unable to chemically react with the polymer and to absorb and emit light at a wavelength similar to the conductive polymer and a pumping energy source producing stimulated emmission in the dye solution.

  8. Lasers with sub-Poissonian pump

    SciTech Connect

    Marte, M.A.M.; Zoller, P. )

    1989-11-15

    It is shown that, introducing quantum-mechanical degrees of freedom for the pump field, one can model optical-pumping processes of a laser with sub-Poissonian statistics. For a class of pump models containing regular pumping at one end of the range and Poissonian pumping at the other, the exact stationary moments for the pump-field-averaged laser field are calculated in the strong-saturation limit of the lasing transition. It is demonstrated that, in a photodetection experiment of the laser output, complete noise suppression in the photocurrent fluctuation spectrum is, at least in principle, achievable. Finally, an approximate Fokker-Planck equation for photon distribution of the laser field with explicit appearance of the pump-light intensity correlation function in the diffusion term is derived and solved in the stationary limit.

  9. Investigation of the kinetics of intracavity absorption in pulsed dye lasers

    SciTech Connect

    Burakov, V.S.; Malashonok, V.A.; Nechaev, S.V.; Puko, R.A.; Raikov, S.N.; Shedenkov, S.I.

    1986-10-01

    In this work the authors studied the kinetics of intracavity absorption in dye lasers pumped with a lamp (lasing pulse duration of 3 musec) and with the second harmonic of the ruby laser (25 nsec). Oscillograms are shown of the lasing pulse of the laser, obtained with single-pulse and lamp pumping, respectively. The results of the studies performed indicate the complicated nature of the process of intracavity absorption in pulsed dye lasers whose lasing duration is equal to 10/sup -8/-10/sup -6/ sec. The use of a recording system with time resolution of the lasing pulse of the laser enables increasing the sensitivity of intracavity measurements. Graphs are included.

  10. Lasers based on dye-doped sol-gel composite glasses

    NASA Astrophysics Data System (ADS)

    Rahn, Mark D.; King, Terence A.

    1994-10-01

    Higher energy laser action in partially densified sol-gel glass, sol-gel glass composites and polymethylmethacrylate (PMMA) doped with laser dyes is reported. Post-doping, in which the active dye is diffused into the densified porous sol-gel matrix, has been developed into an effective method for the impregnation of organic species. The sol-gel glass composite is formed by refractive index matching the porous sol-gel glass by impregnation with polymethylmethacrylate. This is achieved by in-situ polymerization of methylmethacrylate. This reduced optical attenuation from 0.7 dB/cm to 0.4 dB/cm. By formation of the composite the chemical environment of some dyes is improved. Laser performance is described for the dyes rhodamine 590, pyrromethene 567, and the perylene derivatives perylene orange (KF 241) and perylene red (KF 856), in the three solid state hosts when pumped with the second harmonic of a Nd:YAG laser. As a comparison, their performance is also described in solution. For laser performance, the best combinations of dye and host in terms of both efficiency and photostability were found to be rhodamine 590 in sol-gel glass and perylene orange in sol-gel glass/PMMA composite. Long pulse lasing has also been demonstrated with rhodamine 590 in sol-gel glass and sol-gel glass/PMMA composite and pyrromethene 567 in sol-gel glass, using a flashlamp pumped coumarin 504 dye laser as a pump source, emitting 3 microsecond(s) pulses at 504 nm. We also give the first report on de-oxygenated pyrromethene 567 doped sol-gel glass/PMMA composites. De-oxygenation improved the photostability of this dye in the composite by a factor of four.

  11. Optofluidic microcavities: Dye-lasers and biosensors

    PubMed Central

    Chen, Y.; Lei, L.; Zhang, K.; Shi, J.; Wang, L.; Li, H.; Zhang, X. M.; Wang, Y.; Chan, H. L. W.

    2010-01-01

    Optofluidic microcavities are integrated elements of microfluidics that can be explored for a large variety of applications. In this review, we first introduce the physics basis of optical microcavities and microflow control. Then, we describe four types of optofluidic dye lasers developed so far based on both simple and advanced device fabrication technologies. To illustrate the application potential of such devices, we present two types of laser intracavity measurements for chemical solution and single cell analyses. In addition, the possibility of single molecule detection is discussed. All these recent achievements demonstrated the great importance of the topics in biology and several other disciplines. PMID:24753719

  12. Two-photon pumped cavity lasing in novel dye doped bulk matrix rods

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Zhao, Chan F.; Bhawalkar, Jayant D.; Prasad, Paras N.

    1995-12-01

    Trans-4-[p-(N-ethyl-N-hydroxyethylamino)styryl]-N-methylpyridi that possesses a much greater two-photon absorption cross section and much stronger upconversion fluorescence emission than common organic dyes (such as rhodamine), when excited with near infrared laser radiation. Utilizing ASPT doped bulk polymer rods, two-photon pumped frequency upconverted cavity lasing has been accomplished using a Q-switched Nd:YAG laser as the pump source. The wavelength and pulse duration were 600 nm and 3-6 ns, respectively, for the cavity lasing; whereas the corresponding values for pump pulses were 1.06 ?m and 10 ns, respectively. For a 7 mm long sample rod with a dopant concentration d0=810-3 M/L, the conversion efficiency from the absorbed pump energy to the cavity lasing output was 3.5% at a pump energy level of 1.3 mJ. The lasing lifetime, in terms of pulse numbers, was more than 4104 pulses at 2 Hz repetition rate and room temperature.

  13. Mirrorless dye doped ionic liquid lasers.

    PubMed

    Barna, Valentin; De Cola, Luisa

    2015-05-01

    The study of electromagnetic waves propagation in periodically structured dielectrics and the linear and nonlinear optical phenomena in disordered systems doped with gain media represent one of the most challenging and exciting scientific areas of the past decade. Lasing and Random Lasers (RL) are fascinating examples of topics that synergize multiple scattering of light and optical amplification and lately have been the subject of intense theoretical and experimental studies. In this manuscript we demonstrate laser action in a new category of materials, namely dye doped ionic liquids. Ionic liquids prove to be perfect candidates for building, as shown, a series of exotic boundaryless or confined compact laser systems. Lasing is presented in standard wedge cells, freely suspended ionic liquid films and droplets. The optical emission properties are investigated in terms of spectral analysis, below and above lasing energy threshold behavior, emission efficiency, far field spatial laser modes intensity profiling, temporal emission behavior etc. As demonstrated, these materials can be employed as optimal near future replacements of conventional flammable solvents in already available dye laser instruments. PMID:25969283

  14. Automated pressure scanning of tunable dye lasers

    NASA Astrophysics Data System (ADS)

    Gottscho, R. A.

    1985-04-01

    A method for the remote control of tunable laser frequency tuning is proposed in the framework of real-time monitoring of the chemistry and physics of plasma, combustion, and chemical vapor deposition reactions. The technique presented involves indirect frequency tuning and stabilization by direct control of the laser cavity pressure. The long-term drift in power, resulting from the grating and etalon misalignment is suggested to be correctable by using a second feedback circuit which would optimize laser power by finely tuning the etalon or grating. Experimental results obtained with a dye laser of Hansch type are included; a maximum variation in LIF signal of + or - 7 percent, which corresponds to a frequency drift of + or - 0.005/cm, over a 30-min interval was achieved. A block diagram of the feedback loop and the LIF apparatus are included.

  15. Solar-pumped solid state Nd lasers

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Zapata, L.

    1985-01-01

    Solid state neodymium lasers are considered candidates for space-based polar-pumped laser for continuous power transmission. Laser performance for three different slab laser configurations has been computed to show the excellent power capability of such systems if heat problems can be solved. Ideas involving geometries and materials are offered as potential solutions to the heat problem.

  16. Mechanism for pumping lasers with squeezed light

    SciTech Connect

    Haake, F.; Walls, D.F.; Collett, M.J.

    1989-03-15

    In this paper we demonstrate how the squeezed-pump-laser model of Marte and Walls (Phys. Rev. A 37, 1235 (1988)) may be realized in practice. We consider a three-level atomic medium interacting with two cavity modes pumped with squeezed light. We show that this pumping mechanism both achieves atomic inversion and squeezes the fluctuations on the lasing transition.

  17. High pulse-energy flashlamp-pumpable laser dyes. Final technical report, 1 Oct 89-30 Sep 90

    SciTech Connect

    Kauffman, J.M.; Novinski, J.A.

    1990-12-31

    To obtain higher pulse energies from laser dyes by means of flashlamp pumping in solution, several new prototype dyes were synthesized and submitted to MICOM for testing. The dyes were intended to display high pulse energy either in a flowing solution in a non flammable solvent or in the solid poly (methyl methacrylate). The class of laser dye known as 4PyMPO was given an expanded fluorophor by substitution of a biphenylene for the phenylene (P) group. None of the expected increases in extinction coefficient (e), fluorescence quantum yield and emission wavelength were obtained.

  18. Cladding For Transversely-Pumped Laser Rod

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.; Fan, Tso Yee

    1989-01-01

    Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.

  19. Dye laser amplifier including a specifically designed diffuser assembly

    SciTech Connect

    Davin, J.; Johnston, J.P.

    1992-12-15

    A large (high flow rate) dye laser amplifier in which a continuous replenished supply of dye is excited by a first light beam, specifically a copper vapor laser beam, in order to amplify the intensity of a second different light beam, specifically a dye beam, passing through the dye is disclosed herein. This amplifier includes a dye cell defining a dye chamber through which a continuous stream of dye is caused to pass at a relatively high flow rate and a specifically designed diffuser assembly for slowing down the flow of dye while, at the same time, assuring that as the dye stream flows through the diffuser assembly it does so in a stable manner. 5 figs.

  20. Preliminary investigation of the effects of dye concentration on the output of a multiwavelength dye laser

    NASA Technical Reports Server (NTRS)

    Clark, I. O.; Burney, L. G.

    1974-01-01

    The effects of dye concentration on the output wavelength and energy of a multiwavelength dye laser were investigated. The dyes tested were Coumarin 2 in methyl alcohol and Rhodomine 6G, Acridine Red, and 7-diethylamino-4-methyl Coumarin (7DA 4MC) in ethyl alcohol.

  1. Studies on the two-photon pumped upconverted fluorescence and superradiance of a new organic dye material in solutions

    NASA Astrophysics Data System (ADS)

    Zhou, Guangyong; Wang, Dong; Yang, Shengjun; Xu, Xinguang; Ren, Yan; Shao, Zongshu; Jiang, Minhua; Tian, Yupeng; Hao, Fuying; Li, Shengli

    2002-10-01

    The linear and nonlinear optical properties of a new organic dye, trans-4-p-(N-ethyl-N-ethylamino)-styryl-N-methyl-pyridinium tris(thiocyanato) cadmates (II), are reported in this paper. When pumped with a picosecond laser at the wavelength range of 850-1200 nm, intense upconversion fluorescence can be obtained. The upconversion efficiencies at different pump energies were measured when pumped with a 1064-nm laser beam from a mode-locked Nd:YAG laser. The highest upconversion efficiencies were measured to be 5.8% and 7.6% in dimethyl formamide (DMF) and methanol. The lifetime of the dye in DMF was measured to be 75 ps. The strongest nonlinear absorption was at the wavelength of 940 nm, and the highest upconversion efficiency was at the wavelength of 1030 nm. The difference of the two wavelengths was caused by excited state absorption in the dye at wavelengths shorter than 1000 nm. The dye solution in DMF and methanol show a clear optical power limiting effect.

  2. Studies on the two-photon pumped upconverted fluorescence and superradiance of a new organic dye material in solutions.

    PubMed

    Zhou, Guangyong; Wang, Dong; Yang, Shengjun; Xu, Xinguang; Ren, Yan; Shao, Zongshu; Jiang, Minhua; Tian, Yupeng; Hao, Fuying; Li, Shengli; Shi, Pengfei

    2002-10-20

    The linear and nonlinear optical properties of a new organic dye, trans-4-[p-(N-ethyl-N-ethylamino)-styryl]-N-methyl-pyridinium tris(thiocyanato) cadmates (II), are reported in this paper. When pumped with a picosecond laser at the wavelength range of 850-1200 nm, intense upconversion fluorescence can be obtained. The upconversion efficiencies at different pump energies were measured when pumped with a 1064-nm laser beam from a mode-locked Nd:YAG laser. The highest upconversion efficiencies were measured to be 5.8% and 7.6% in dimethyl formamide (DMF) and methanol. The lifetime of the dye in DMF was measured to be 75 ps. The strongest nonlinear absorption was at the wavelength of 940 nm, and the highest upconversion efficiency was at the wavelength of 1030 nm. The difference of the two wavelengths was caused by excited state absorption in the dye at wavelengths shorter than 1000 nm. The dye solution in DMF and methanol show a clear optical power limiting effect. PMID:12396187

  3. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon

    1990-01-01

    The optimum conditions of a solar pumped iodine laser are found in this research for the case of a continuous wave operation and a pulsed operation. The optimum product of the pressure(p) inside the laser tube and the tube diameter(d) was pd=40 approx. 50 torr-cm on the contrary to the case of a high intensity flashlamp pumped iodine laser where the optimum value of the product is known to be pd=150 torr-cm. The pressure-diameter product is less than 1/3 of that of the high power iodine laser. During the research period, various laser materials were also studied for solar pumping. Among the laser materials, Nd:YAG is found to have the lowest laser threshold pumping intensity of about 200 solar constant. The Rhodamine 6G was also tested as the solar pumped laser material. The threshold pumping power was measured to be about 20,000 solar constant. The amplification experiment for a continuously pumped iodine laser amplifier was performed using Vortek solar simulator and the amplification factors were measured for single pass amplification and triple pass amplification of the 15 cm long amplifier tube. The amplification of 5 was obtained for the triple pass amplification.

  4. Energy transfer in solid-state dye lasers based on methyl methacrylate co-doped with sulforhodamine B and crystal violet

    NASA Astrophysics Data System (ADS)

    Geethu Mani, R. G.; Basheer, Ahamed M.

    2013-11-01

    Laser action in methyl methacrylate (MMA) co-doped with sulforhodamine B and crystal violet dyes was investigated. The dye mixture was incorporated into a solid polymeric matrix and was pumped by a 532-nm Nd:YAG laser. Distributed feedback dye laser (DFDL) action was induced in the dye mixture using a prism arrangement both in the donor and acceptor regions by an energy transfer mechanism. Theoretically, the characteristics of acceptor and donor DFDLs, and the dependence of their pulse widths and output powers on acceptordonor concentrations and pump power, were studied. Experimentally, the output energy of DFDL was measured at the emission peaks of donor and acceptor dyes for different pump powers and different acceptordonor concentrations. Tuning of the output wavelength was achieved by varying the period of the gain modulation of the laser medium. The laser wavelength showed continuous tunability from 563 nm to 648 nm.

  5. Diode-pumped alkali laser-bleached wave dynamics

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.; Miller, Wooddy; Hurd, Ed

    2012-11-01

    A three level analytic model for optically pumped alkali metal vapor lasers is developed by considering the steady state rate equations for the longitudinally averaged number densities of the ground 2S 1/2 and first excited 2P3/2, and 2P1/2 states. The threshold pump intensity includes both the requirements to fully bleach the pump transition and exceed optical losses, typically about 200 Watts/cm2. Slope efficiency depends critically on the fraction of incident photons absorbed. For efficient operation, the collisional relaxation between the two upper levels should be fast to prevent bottle-necking. By assuming a statistical distribution between the upper two levels, the limiting analytic solution for the quasi-two level system is achieved. The highly saturated pump limit of the recently developed three-level model for Diode Pumped Alkali Lasers (DPAL) is also developed. The model is anchored to several recent laser demonstrations. A rubidium laser pumped on the 5 2S1/2 - 5 2P3/2 D2 transition by a pulsed dye laser at pump intensities exceeding 3.5 MW/cm2 (< 1000 times threshold) has been demonstrated. Output energies as high as 12 ?J/pulse are limited by the rate for collision relaxation of the pumped 2P3/2 state to the upper laser 2P1/2 state. More than 250 photons are available for every rubidium atom in the pumped volume during each pulse. For modest alkali atom and ethane spin-orbit relaxer concentrations, the gain medium can only process about 50 photons/atom during the 2 - 8 ns pump pulse. At 110 C and 550 Torr of ethane, the system is bottlenecked. The system efficiency based on absorbed photons approaches 36% even for these extreme pump conditions. Furthermore, at 320C with 2500 torr of helium, a pulsed potassium laser with 1.15 MW/cm2 peak intensity and 9.3% slope efficiency has been demonstrated.

  6. Compression mechanism of subpicosecond pulses by malachite green dye in passively mode-locked rhodamine 6G/DODCI CW dye lasers

    SciTech Connect

    Watanabe, A.; Hara, M.; Kobayashi, H.; Takemura, H.; Tanaka, S.

    1983-04-01

    The pulse width compression effect of a malachite green (MG) dye upon subpicosecond pulses has been experimentally investigated in a CW passively mode-locked rhodamine 6G/DODCI dye laser. The pulse width reduces as MG concentration increases, and reaches 0.34 ps at 1.5 X 10/sup -6/ M. By adding the MG dye, good mode locking is achieved in a rather wide pumping-power range. A computer simulation of pulse growth has also been carried out by using simple rate equations, in which the fast-recovery component of loss due to the MG dye is taken into account. The simulated results can explain some experimental results qualitatively such as pulse width compression and pumping-power restriction. The pulse width compression results essentially from the fast recovery of cavity loss caused by the MG dye.

  7. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  8. Diode pumped alkali vapor fiber laser

    DOEpatents

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  9. Solar-pumped solid-state lasers

    SciTech Connect

    Weksler, M.; Shwartz, J.

    1988-06-01

    Results are presented for direct solar pumping of a ND:YAG rod laser. Stable CW output of more than 60 W was obtained with a slope efficiency exceeding 2 percent. A compound parabolic concentrator, designed to increase the solar radiation coupled into the laser rod, was used in these experiments. The results are consistent with predictions based on a simple solar-pumped laser model, which is also presented. Using this model, it is shown that existing laser materials with broad-band absorption characteristics (e.g., alexandrite and Nd:Cr:GSGG) have a potential for better than 10 percent overall conversion efficiency when solar pumped.

  10. Infrared Pulse-laser Long-path Absorption Measurement of Carbon Dioxide Using a Raman-shifted Dye Laser

    NASA Technical Reports Server (NTRS)

    Minato, Atsushi; Sugimoto, Nobuo; Sasano, Yasuhiro

    1992-01-01

    A pulsed laser source is effective in infrared laser long-path absorption measurements when the optical path length is very long or the reflection from a hard target is utilized, because higher signal-to-noise ratio is obtained in the detection of weak return signals. We have investigated the performance of a pulse-laser long-path absorption system using a hydrogen Raman shifter and a tunable dye laser pumped by a Nd:YAG laser, which generates second Stokes radiation in the 2-micron region.

  11. Diode laser--pumped solid-state lasers.

    PubMed

    Byer, R L

    1988-02-12

    Diode laser-pumped solid-state lasers are efficient, compact, all solid-state sources of coherent optical radiation. Major advances in solid-state laser technology have historically been preceded by advances in pumping technology. The helical flash lamps used to pump early ruby lasers were superseded by the linear flash lamp and arc lamp now used to pump neodymium-doped yttrium-aluminum-garnet lasers. The latest advance in pumping technology is the diode laser. Diode laser-pumped neodymium lasers have operated at greater than 10 percent electrical to optical efficiency in a single spatial mode and with linewidths of less than 10 kilohertz. The high spectral power brightness of these lasers has allowed frequency extension by harmonic generation in nonlinear crystals, which has led to green and blue sources of coherent radiation. Diode laser pumping has also been used with ions other than neodymium to produce wavelengths from 946 to 2010 nanometers. In addition, Q-switched operation with kilowatt peak powers and mode-locked operation with 10-picosecond pulse widths have been demonstrated. Progress in diode lasers and diode laser arrays promises all solid-state lasers in which the flash lamp is replaced by diode lasers for average power levels in excess of tens of watts and at a price that is competitive with flash lamp-pumped laser systems. Power levels exceeding 1 kilowatt appear possible within the next 5 years. Potential applications of diode laser-pumped solid-state lasers include coherent radar, global sensing from satellites, medical uses, micromachining, and miniature visible sources for digital optical storage. PMID:17832940

  12. GaAs laser diode pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Conant, L. C.; Reno, C. W.

    1974-01-01

    A 1.5-mm by 3-cm neodymium-ion doped YAG laser rod has been side pumped using a GaAs laser diode array tuned to the 8680-A absorption line, achieving a multimode average output power of 120 mW for a total input power of 20 W to the final-stage laser diode drivers. The pumped arrangement was designed to take advantage of the high brightness of a conventional GaAs array as a linear source by introducing the pump light through a slit into a close-wrapped gold coated pump cavity. This cavity forms an integrating chamber for the pump light.

  13. A novel, simple and efficient dye laser with low amplified spontaneous emission background for analytical fluorescence and ionization spectroscopy

    SciTech Connect

    Matveev, Oleg I.; Omenetto, Nicolo'

    1995-04-01

    A new, simple, compact and efficient, grazing- incidence type of dye laser is suggested which has a low level of Amplified Spontaneous Emission. By using a Coumarin dye (LD 5000) pumped with a 20 mJ XeCl excimer laser, and a diffraction grating with 3000 grooves/mm, an efficiency of 11%, a spectral bandwidth of 0.6 cm{sup -1} and a tuning range from 458 to 517 nm have been obtained.

  14. [Upconversion luminescent dynamics of HoP5O14 noncrystallite excited by DCM dye laser].

    PubMed

    Chen, X; Li, M; Meng, C; Li, X; Song, Z

    2001-04-01

    The dynamics processes of 370-580 nm upconversion luminescence of HoP5O14 noncrystalline excited by DCM dye laser is reported in this paper. It is found that both mechanisms of energy transfer upconversion among ions and step-wise multiphoton absorption of single ion are involved in the upconversion luminescence, the upconversion dynamics would change greatly when the frequency of pumping laser has a little variation. PMID:12947605

  15. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.

    1987-01-01

    This semiannual progress report covers the period from March 1, 1987 to September 30, 1987 under NASA grant NAG1-441 entitled 'Direct solar-pumped iodine laser amplifier'. During this period Nd:YAG and Nd:Cr:GSGG crystals have been tested for the solar-simulator pumped cw laser, and loss mechanisms of the laser output power in a flashlamp-pumped iodine laser also have been identified theoretically. It was observed that the threshold pump-beam intensities for both Nd:YAG and Nd:Cr:GSGG crystals were about 1000 solar constants, and the cw laser operation of the Nd:Cr:GSGG crystal was more difficult than that of the Nd:YAG crystal under the solar-simulator pumping. The possibility of the Nd:Cr:GSGG laser operation with a fast continuously chopped pumping was also observed. In addition, good agreement between the theoretical calculations and the experimental data on the loss mechanisms of a flashlamp-pumped iodine laser at various fill pressures and various lasants was achieved.

  16. Diode laser-pumped solid-state lasers

    NASA Technical Reports Server (NTRS)

    Fan, Tso Yee; Byer, Robert L.

    1988-01-01

    Recently, interest in diode laser-pumped solid-state lasers has increased due to their advantages over flashlamp-pumped solid-state lasers. A historical overview is presented of semiconductor diode-pumped solid-state lasers beginning with work in the early 1960s and continuing through recent work on wavelength extension of these devices by laser operation on new transitions. Modeling of these devices by rate equations to obtain expressions for threshold, slope efficiency, and figures of merit is also given.

  17. Excitation efficiency of a side-pumped fiberized fluorescent dye microcapillary

    NASA Astrophysics Data System (ADS)

    Vladev, Veselin; Eftimov, Tinko; Nedev, Stefan

    2016-03-01

    In the present work we study the dependence of fluorescence spectra for different pump source characteristics on the length of a micro-capillary filled with a fluorescent dye solution. A standard fiber-optic glass ferrule with two parallel 125 μm inner diameter holes serving as capillary structures has been studied. One of the holes of the ferrule was filled with a solution of Rhodamine 6G in glycerin, while in the second hole an angle-polished single-mode pump optical fiber was placed. Experiments with pump fibers polished at 20°, 25°, 30°, 35°, 40° and 45° with a reflective aluminium coating have been conducted. The analysis of the experimental data shows differences in the behavior of the fluorescent spectra at different polished angles. Theoretical calculations for pump ray trajectories as well as overall power transmission for pump fibers polished at different angles have been made. The results show that the proposed construction could be used in optofluidic chemical and biosensors, microfluidic lasers or as a compact fluorescent source compatible with fiber-optic components.

  18. Exploding conducting film laser pumping apparatus

    DOEpatents

    Ware, Kenneth D.; Jones, Claude R.

    1986-01-01

    Exploding conducting film laser optical pumping apparatus. The 342-nm molecular iodine and the 1.315-.mu.m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  19. A review of laser-pumped infrared lasers

    NASA Technical Reports Server (NTRS)

    Chen, K. Y.

    1985-01-01

    The lasing mechanisms are reviewed of molecules that have demonstrated laser action in the laboratories with laser emissions in the spectral range from 3 to 35 microns. A list of lasants and laser mechanisms are defined. The pumping sources for these lasers are mainly infrared lasers; however, the case in which excitation of bromine atoms at 2.71 microns by a flashlamp as energy input is also included in the review. A conceptual drawing of lasing mechanisms is shown. Three pumping mechanisms are shown, the first being the direct-pumped system in which the lasant molecule absorbs the infrared radiation from pump laser directly, and it is excited into the upper laser level from the ground state. The second system is the indirect-pumped system where the infrared-pump laser first excites an absorbing molecule which stores its vibrational energy. Through collision this energy is transferred to the lasant molecule, populating the upper laser level. In the third system, i.e., in a Br2-CO2 mixture, a flashlamp replaces the infrared laser as the pump source for the absorbing molecule.

  20. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon; Stock, Larry V.

    1989-01-01

    This semiannual progress report covers the period from September 1, 1988 to February 28, 1989 under NASA grant NAG-1-441 entitled, Direct Solar-Pumped Iodine Laser Amplifier. During this period, the research effort was concentrated on the solar pumped master oscillator power amplifier (MOPA) system using n-C3F7I. In the experimental work, the amplification measurement was conducted to identify the optimum conditions for amplification of the center's Vortek solar simulator pumped iodine laser amplifier. A modeling effort was also pursued to explain the experimental results in the theoretical work. The amplification measurement of the solar simulator pumped iodine laser amplifier is the first amplification experiment on the continuously pumped amplifier. The small signal amplification of 5 was achieved for the triple pass geometry of the 15 cm long solar simulator pumped amplifier at the n-C3F7I pressure of 20 torr, at the flow velocity of 6 m/sec and at the pumping intensity of 1500 solar constants. The XeCl laser pumped iodine laser oscillator, which was developed in the previous research, was employed as the master oscillator for the amplification measurement. In the theoretical work, the rate equations of the amplifier was established and the small signal amplification was calculated for the solar simulator pumped iodine laser amplifier. The amplification calculated from the kinetic equations with the previously measured rate coefficients reveals very large disagreement with experimental measurement. Moreover, the optimum condition predicted by the kinetic equation is quite discrepant with that measured by experiment. This fact indicates the necessity of study in the measurement of rate coefficients of the continuously pumped iodine laser system.

  1. Research on solar pumped liquid lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Kurzweg, U. H.; Cox, J. D.; Weinstein, N. H.

    1983-01-01

    A solar pumped liquid laser that can be scaled up to high power (10Mw CW) for space applications was developed. Liquid lasers have the inherent advantage over gases in that they provide much higher lasant densities and thus high power densities. Liquids also have inherent advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13:Nd(3+):ZrC14 liquid was chosen for its high intrinsic efficiency as well as its relatively good stability against decomposition due to protic contamination. The development and testing of the laser liquid and the development of a large solar concentrator to pump the laser was emphasized. The procedure to manufacture the laser liquid must include diagnostic tests of the solvent purity (from protic contamination) at various stages in the production process.

  2. Alternative wavelengths for optically pumped alkali lasers

    NASA Astrophysics Data System (ADS)

    Perram, Glen P.

    2012-06-01

    As pump intensity in Diode Pumped Alkali Lasers (DPAL) is scaled to more than 100 times threshold, several nonlinear optical processes are encountered including two photon absorption and stimulated Raman scattering. A pulsed, optically pumped potassium laser with pump intensities exceeding 1 MW/cm2 has been demonstrated with output intensities exceeding 100 kW/cm2, requiring helium buffer gas pressures above 3 atm. At low pressure Stimulated Electronic Raman Scattering (SERS) has been observed in the same system. Indeed, second and third order SERS has been observed from the DPAL upper laser level. Two-photon absorption at wavelengths near then DPAL pump transition has also been observed and used to demonstrate lasing in the blue and mid infrared. Lasing in the blue has also been achieved by direct excitation of the second excited 2P3/2 level in Cs.

  3. Analytic theory of laser pump systems

    SciTech Connect

    Naida, O.N.; Sergeev, A.M.

    1980-02-01

    Exact quadrature formulas are obtained for the calculation of the transfer coefficients of some systems for optical pumping of lasers. Allowance is made for the Fresnel effects at the boundaries between the media. The formulas obtained can be used in testing computer programs for the design of pump systems and in qualitative analysis of some of these systems.

  4. Laser-induced quantum pumping in graphene

    SciTech Connect

    San-Jose, Pablo; Prada, Elsa; Kohler, Sigmund; Schomerus, Henning

    2012-10-08

    We investigate non-adiabatic electron pumping in graphene generated by laser irradiation with linear polarization parallel or perpendicular to the transport direction. Transport is dominated by the spatially asymmetric excitation of electrons from evanescent into propagating modes. For a laser with parallel polarization, the pumping response exhibits a subharmonic resonant enhancement which directly probes the Fermi energy; no such enhancement occurs for perpendicular polarization. The resonance mechanism relies on the chirality of charge carriers in graphene.

  5. Exploding conducting film laser pumping apparatus

    DOEpatents

    Ware, K.D.; Jones, C.R.

    1984-04-27

    The 342-nm molecular iodine and the 1.315-..mu..m atomic iodine lasers have been optically pumped by intense light from exploding-metal-film discharges. Brightness temperatures for the exploding-film discharges were approximately 25,000 K. Although lower output energies were achieved for such discharges when compared to exploding-wire techniques, the larger surface area and smaller inductance inherent in the exploding-film should lead to improved efficiency for optically-pumped gas lasers.

  6. High power semiconductor disk laser with monolithically integrated pump lasers

    NASA Astrophysics Data System (ADS)

    Diehl, Wolfgang; Albrecht, Tony; Brick, Peter; Furitsch, Michael; Illek, Stefan; Lutgen, Stephan; Pietzonka, Ines; Luft, Johann; Stolz, Wolfgang

    2008-04-01

    Semiconductor disk lasers have attracted a lot of interest in the last few years due to high output power combined with good beam quality and possible wavelength engineering. One of the disadvantages is the need for external optical pumping by edge-emitting semiconductor lasers that increase packaging effort and cost. Therefore, semiconductor disk lasers with monolithically integrated pump lasers would be of high interest. We report on a novel design and experimental realization to monolithically integrate pump lasers with a semiconductor disk laser in a one-step epitaxial design. By careful design of integrated pump lasers and stacking sequence, it is possible to efficiently excite vertical emitter areas with different mesa sizes. First results are shown at 1060 nm emission wavelength with high output power out of mesa diameters of 100 ?m to 400 ?m. The devices can be conveniently characterized on a wafer level using dry-etched pump laser facets. In pulsed operation 1.7W out of a 100 ?m diameter mesa and 2.5W out of a 200 ?m diameter mesa are demonstrated. Additionally, more than 0.6W in cw operation using a 400 ?m structure were achieved. In summary, an innovative approach for truly monolithic integration of a semiconductor disk laser with pump lasers has been pioneered.

  7. Diode pumped Nd:YAG laser development

    NASA Technical Reports Server (NTRS)

    Reno, C. W.; Herzog, D. G.

    1976-01-01

    A low power Nd:YAG laser was constructed which employs GaAs injection lasers as a pump source. Power outputs of 125 mW TEM CW with the rod at 250 K and the pump at 180 K were achieved for 45 W input power to the pump source. Operation of the laser, with array and laser at a common heat sink temperature of 250 K, was inhibited by difficulties in constructing long-life GaAs LOC laser arrays. Tests verified pumping with output power of 20 to 30 mW with rod and pump at 250 K. Although life tests with single LOC GaAs diodes were somewhat encouraging (with single diodes operating as long as 9000 hours without degradation), failures of single diodes in arrays continue to occur, and 50 percent power is lost in a few hundred hours at 1 percent duty factor. Because of the large recent advances in the state of the art of CW room temperature AlGaAs diodes, their demonstrated lifetimes of greater than 5,000 hours, and their inherent advantages for this task, it is recommended that these sources be used for further CW YAG injection laser pumping work.

  8. Research on solar pumped liquid lasers

    NASA Technical Reports Server (NTRS)

    Cox, J. D.; Kurzweg, U. H.; Weinstein, N. H.; Schneider, R. T.

    1985-01-01

    A solar pumped liquid laser that can be scaled up to high power (10 mW CW) for space applications was developed. Liquid lasers have the advantage over gases in that they provide much higher lasant densities and thus high-power densities. Liquids also have advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13: Nd sup 3+:ZrC14 liquid was chosen for its high intrinsic efficiency and its relatively good stability against decomposition due to protic contamination. The development of a manufacturing procedure and performance testing of the laser, liquid and the development of an inexpensive large solar concentrator to pump the laser are examined.

  9. Frequency stabilization of diode-laser-pumped solid state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.

  10. High pulse energy flashlamp pumpable laser dyes

    NASA Astrophysics Data System (ADS)

    Kauffman, Joel M.; Novinski, John

    1990-04-01

    The class of laser dye known as 4PyMPO was given an expanded fluorophor by substitution of a biphenylene for the phenylene group. Neither the derived quaternary salt or zwitterion had a higher extinction coefficient, quantum yield, or bathochromic shift of absorption from that of the parent compound. Replacement of the methoxy M by julolidino was not achieved. In 2-(4'-methoxy 4-biphenyl) 1-propylbenzimidazole, the methanesulfonate acid salt was no higher in quantum yield than the methanesulfonate quat., indicating no steric hindrance to planarity in the excited state. Addition of a phenylene group, again, did not improve the fluorescence properties. A symmetrical version with benzimidazolium ions at both ends is being prepared. Synthesis of a bridged quaterphenyl with stilbenylmethyl groups as potential intramolecular triplet state quenchers is one step from the target molecule. Synthesis of a high-energy dye related to the most effective bridged sexiphenyls known by replacement of benzene rings 2 and 5 by furan rings is one step from the target molecule.

  11. Solar-pumped photodissociation iodine laser

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Weaver, W. R.; Humes, D. H.; Williams, M. D.; Lee, M. H.

    1986-01-01

    The scientific feasibility of a solar-pumped iodine photodissociation laser for space applications is under investigation. Recently, a 2-W CW output for more than one hour was achieved using n-C3F7I vapor as the laser material and a vortex-stabilized argon arc as the light source.

  12. Semiconductor disk laser-pumped subpicosecond holmium fibre laser

    SciTech Connect

    Chamorovskiy, A Yu; Marakulin, A V; Leinonen, T; Kurkov, Andrei S; Okhotnikov, Oleg G

    2012-01-31

    The first passively mode-locked holmium fibre laser has been demonstrated, with a semiconductor saturable absorber mirror (SESAM) as a mode locker. Semiconductor disk lasers have been used for the first time to pump holmium fibre lasers. We obtained 830-fs pulses at a repetition rate of 34 MHz with an average output power of 6.6 mW.

  13. Reactor-pumped laser experimental results

    SciTech Connect

    Hebner, G.A.; Hays, G.N.

    1994-12-31

    Reactor pumped lasers have the potential to be scaled to multi-megawatt power levels with long run times. In proposed designs, the laser will be capable of output powers of several megawatts of power for run times of several hours. Such a laser would have many diverse applications such as material processing, space debris removal and power beaming to geosynchronous satellites or the moon. However, before such systems can be designed, fundamental laser parameters such as small signal gain, saturation intensity and efficiency must be determined over a wide operational parameter space. The authors have recently measured fundamental laser parameters for a selection of nuclear pumped visible and near IR laser transitions in atomic neon, argon and xenon. An overview of the results of this investigation will be presented.

  14. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In Heon; Kim, Khong Hon; Stock, Larry V.

    1988-01-01

    A XeCl laser pumped iodine laser oscillator was developed which will be incorporated into the Master Oscillator Power Amplifier (MOPA) system. The developed XeCl laser produces output energy of about 60 mJ per pulse. The pulse duration was about 10 nsec. The kinetic model for the solar-pumped laser was refined and the algorithm for the calculation of a set of rate equations was improved to increase the accuracy and the efficiency of the calculation. The improved algorithm was applied to explain the existing experimental data taken from a flashlamp pumped iodine laser for three kinds of lasants, i-C3F7I, n-C4F9I, and t-C4F9I. Various solid laser materials were evaluated for solar-pumping. The materials studied were Nd:YAG, Nd:YLF, and Cr:Nd:GSGG crystals. The slope efficiency of 0.17 percent was measured for the Nd:YLF near the threshold pump intensity which was 211 solar constants (29W/sq cm). The threshold pump intensity of the Nd:YAG was measured to be 236 solar constants (32W/sq cm) and the near-threshold slope efficiency was 0.12 percent. True CW laser operation of Cr:Nd:GSGG was possible only at pump intensities less than or equal to 1,500 solar constants (203 W/sq cm). This fact was attributed to the high thermal focusing effect of the Cr:Nd:GSGG rod.

  15. Stable, red laser pumped, multi-kilohertz Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Ogilvy, Hamish; Withford, Michael J.; Piper, James A.

    2006-04-01

    Operation of a miniature Alexandrite laser pulse-pumped at 671 nm by a Q-switched, frequency-doubled, diode-pumped Nd:GdVO4 laser is reported. Average power output ∼150 mW at 765 nm with optical-to-optical slope efficiencies of 28% has been demonstrated for gain-switched operation of the Alexandrite laser at 80 kHz. Q-switched pump-pulse stacking has been used to reduce output pulse width by a factor of 6 and increase peak power by a factor of 38 over gain-switched operation.

  16. Continuous-wave operation of a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Fan, T. Y.; Byer, Robert L.

    1987-01-01

    Single-stripe diode-laser-pumped operation of a continuous-wave 946-nm Nd:YAG laser with less than 10-mW threshold has been demonstrated. A slope efficiency of 16 percent near threshold was shown with a projected slope efficiency well above a threshold of 34 percent based on results under Rhodamine 6G dye-laser pumping. Nonlinear crystals for second-harmonic generation of this source were evaluated. KNbO3 and periodically poled LiNbO3 appear to be the most promising.

  17. Nonlinear optical characterization of poly (methyl methacrylate) polymer doped with different dyes for laser waveguide fabrication

    NASA Astrophysics Data System (ADS)

    Sarkisov, Sergey S.; Darwish, Abdalla M.; Bryant, William; Venkateswarlu, Putcha; Abdeldayem, Hossin A.; Frazier, Donald O.

    1995-10-01

    The charactertization of light guiding and nonlinear optical properties of thin films based on poly(methyl methacrylate) doped with organic dyes 4-dicyanomethylene-2-methyl-6-p- dimethylaminostyryl-4H-pyran (DCM), Pyrromethene 567, and sulforhodamin was done using the prism coupling technique and nonlinear optical spectroscopy. Stimulated light emission in DCM doped waveguide with apparent pump threshold and spectrum narrowing was observed at transverse pumping with frequency doubled Q-switched Nd:YAG laser. PM-567 doped waveguide being transversely pumped with CW Ar+ laser at 514 nm demonstrated fluorescence with 0.19% energy conversion slope efficiency at 616 nm spectral peak. Upconverted fluorescence was found in the same waveguide at longitudinal CW infrared pumping. Sulforhodamin doped films demonstrated multiphoton excited fluorescence and surface enhanced second harmonic generation.

  18. ARTICLES: Molecular infrared lasers using resonant laser pumping (review)

    NASA Astrophysics Data System (ADS)

    Grasyuk, Arkadii Z.; Letokhov, V. S.; Lobko, V. V.

    1980-11-01

    A review is given of investigations of the properties and characteristics of middle-infrared pulsed molecular gas lasers using resonant laser pumping. The physical basis and general operating principles of these lasers are presented. Attention is focused on lasers emitting in the 600-900 cm-1 range using TEA CO2 lasers as pump sources. The conditions for formation of the population inversion and theoretical and practical laser systems are studied under the following headings. 1. Excitation and inversion in the fundamental band; at this point, mention is made of the potential usefulness of an NH3-N2 laser which combines high efficiency, high pulsed and average powers, and tuning in the 770-890 cm-1 range. 2. Excitation of the combination band (or overtone) with inversion in a "hot" band (using CF4, NOCl, CF3I, C2D2, N2O, and other lasers as examples); detailed descriptions are given of a CF4 laser, its physical principles, practical systems, and basic characteristics. 3. Excitation of the fundamental, combination, or difference band with inversion in the difference band (N2O, CO2, and OCS lasers). 4. Two-photon excitation (NH3, SF6 and CH3F lasers). The prospects for the development of lasers using resonant laser pumping and the applications of these lasers are discussed.

  19. Fluorescence enhancement monitoring of pyrromethene laser dyes by metallic Ag nanoparticles.

    PubMed

    Sakr, Mahmoud E M; Abou Kana, Maram T H; Abdel Fattah, Gamal

    2014-11-01

    Fluorescence enhancement monitoring of pyrromethene laser dyes using their complexation with Ag nanoparticles (Ag NPs) was studied. The size of the prepared Ag NPs was determined by transmission electron spectroscopy and UV/Vis absorption spectroscopy. Mie theory was also used to confirm the size of NPs theoretically. The effect of different nanoparticle concentrations on the optical properties of 1 10(-4) M PM dyes shows that 40%of Ag NPs concentration (40%C Ag NPs) in complex is the optimum concentration. Also, the effects of different concentrations of PM dyes in a complex was measured. Emission enhancement factors were calculated for all samples. Fluorescence enhancement efficiencies depended on the input pumping energy of a Nd-YAG laser (wavelength 532 nm and 8 ns pulse duration) were reported and showed the lowest energy (28 and 32 mJ) in the case of PM567 and PM597, respectively. PMID:24652745

  20. Intracavity absorption with a continuous wave dye laser: quantification for a narowband absorber

    SciTech Connect

    Brobst, W.D.; Allen J.E. Jr.

    1987-09-01

    Although it is recognized as a very sensitive detection technique, the general application of intracavity absorption to areas such as chemical kinetics and photochemistry has been somewhat limited. Concerns are frequently expressed about the nonlinear nature, experimental difficulty, and reliability of the technique. To allay some of these objections, the dependence of intracavity absorption on factors such as transition strength, concentration, absorber path length, and pump power has been investigated experimentally for a cw dye laser with a narrowband absorber (NO/sub 2/). For this case a Beer-Lambert type relationship has been confirmed over a useful range of these parameters. The extent of intracavity absorption was quantitatively measured directly from the dye laser spectral profiles and, when compared to extracavity measurements, indicated enhancements as high as 12,000 for pump powers near lasing threshold. By defining an intracavity absorption coefficient, it was possible to demonstrate the reliability of the method by obtaining accurate transition strength ratios.

  1. Investigation of the pump wavelength influence on pulsed laser pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Ogilvy, H.; Withford, M. J.; Mildren, R. P.; Piper, J. A.

    2005-09-01

    Recent theoretical modelling and experimental results have shown that excess lattice phonon energy created dur ing the non-radiative energy transfer from the 4T2 pump manifold to the 2E storage level in Alexandrite when pumped with wavelengths shorter than ˜645 nm causes chaotic lasing output. Shorter pump wavelengths have also been associated with increased non-radiative energy decay and reduced laser efficiency. We report studies of fluorescence emission spectra of Alexandrite illuminated at a range of wavelengths from green to red, which demonstrate reduced fluorescence yield for shorter pump wavelengths at elevated crystal temperatures. Investigations of pulsed laser pumping of Alexandrite over the same spectral range demonstrated reduced pump threshold energy for longer pump wavelengths. High repetition rate pulsed pumping of Alexandrite at 532, 578 and 671 nm showed stable and efficient laser performance was only achieved for red pumping at 671 nm. These results support the theoretical model and demonstrate the potential for scalable, red laser pumped, all-solid-state Alexandrite lasers.

  2. Diode laser-pumped solid-state lasers

    NASA Astrophysics Data System (ADS)

    Byer, Robert L.

    1988-02-01

    An evaluation is made of the consequences for solid-state lasers of novel diode laser-pumping technology. Diode laser-pumped neodymium lasers have operated at an electrical-to-optical efficiency of 10 percent in a single spatial mode, with linewidths of less than 10 kHz, and with a spectral power brightness sufficiently great to allow frequency extension by harmonic generation in nonlinear crystals; this has yielded green and blue sources of coherent radiation. Q-switched operation with kW peak powers and mode-locked operation with 10-picosec pulse widths have also been demonstrated. All-solid-state lasers at prices comparable to those of current flash-lamp-pumped laser systems are foreseen, as are power levels exceeding 1 kW, for coherent radar, global satellite sensing, and micromachining.

  3. Diode laser-pumped solid-state lasers

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    An evaluation is made of the consequences for solid-state lasers of novel diode laser-pumping technology. Diode laser-pumped neodymium lasers have operated at an electrical-to-optical efficiency of 10 percent in a single spatial mode, with linewidths of less than 10 kHz, and with a spectral power brightness sufficiently great to allow frequency extension by harmonic generation in nonlinear crystals; this has yielded green and blue sources of coherent radiation. Q-switched operation with kW peak powers and mode-locked operation with 10-picosec pulse widths have also been demonstrated. All-solid-state lasers at prices comparable to those of current flash-lamp-pumped laser systems are foreseen, as are power levels exceeding 1 kW, for coherent radar, global satellite sensing, and micromachining.

  4. Photoactive dye enhanced tissue ablation for endoscopic laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Ahn, Minwoo; Nguyen, Trung Hau; Nguyen, Van Phuc; Oh, Junghwan; Kang, Hyun Wook

    2015-02-01

    Laser light has been widely used as a surgical tool to treat benign prostate hyperplasia with high laser power. The purpose of this study was to validate the feasibility of photoactive dye injection to enhance light absorption and eventually to facilitate tissue ablation with low laser power. The experiment was implemented on chicken breast due to minimal optical absorption Amaranth (AR), black dye (BD), hemoglobin powder (HP), and endoscopic marker (EM), were selected and tested in vitro with a customized 532-nm laser system with radiant exposure ranging from 0.9 to 3.9 J/cm2. Light absorbance and ablation threshold were measured with UV-VIS spectrometer and Probit analysis, respectively, and compared to feature the function of the injected dyes. Ablation performance with dye-injection was evaluated in light of radiant exposure, dye concentration, and number of injection. Higher light absorption by injected dyes led to lower ablation threshold as well as more efficient tissue removal in the order of AR, BD, HP, and EM. Regardless of the injected dyes, ablation efficiency principally increased with input parameter. Among the dyes, AR created the highest ablation rate of 44.2+/-0.2 μm/pulse due to higher absorbance and lower ablation threshold. Preliminary tests on canine prostate with a hydraulic injection system demonstrated that 80 W with dye injection yielded comparable ablation efficiency to 120 W with no injection, indicating 33 % reduced laser power with almost equivalent performance. In-depth comprehension on photoactive dye-enhanced tissue ablation can help accomplish efficient and safe laser treatment for BPH with low power application.

  5. Independently tunable two-wavelength narrow-band dye laser

    SciTech Connect

    HAN Quansheng; ZHANG Zhiguo

    1984-10-01

    We report a new kind of two-wavelength dye laser, which needs no additional intracavity element. The tuning of the two wavelengths is entirely independent, and the frequency difference is not limited by the gain spectral width of a single dye.

  6. LED pumped polymer laser sensor for explosives

    PubMed Central

    Wang, Yue; Morawska, Paulina O; Kanibolotsky, Alexander L; Skabara, Peter J; Turnbull, Graham A; Samuel, Ifor D W

    2013-01-01

    A very compact explosive vapor sensor is demonstrated based on a distributed feedback polymer laser pumped by a commercial InGaN light-emitting diode. The laser shows a two-stage turn on of the laser emission, for pulsed drive currents above 15.7 A. The double-threshold phenomenon is attributed to the slow rise of the ?30 ns duration LED pump pulses. The laser emits a 533 nm pulsed output beam of ?10 ns duration perpendicular to the polymer film. When exposed to nitroaromatic model explosive vapors at ?8 ppb concentration, the laser shows a 46% change in the surface-emitted output under optimized LED excitation. PMID:25821526

  7. Electron-beam-pumped recombination lasers

    NASA Astrophysics Data System (ADS)

    Rhoades, Robert Lewis

    1992-01-01

    The first known instance of electron-beam pumping of the 546.1 nm mercury laser is reported. This has been achieved using high-energy electrons to create intense ionization in a coaxial diode chamber containing a mixture of noble gases with a small amount of mercury vapor. Also, the results of a study of the 585.3 nm neon laser in He:Ne:Ar mixtures under similar experimental conditions are reported. Both of these lasers are believed to be predominantly pumped by recombination. For the mercury laser, kinetic processes in the partially ionized plasma following the excitation pulse of high-energy electrons should favor the production of atomic mercury ions and molecular ions containing mercury. Subsequent recombination with electrons heavily favors the production of the 7(sup 3)S and 6(sup 3)D states of Hg, of which 7(sup 3)S is the upper level of the reported laser. For the neon laser, the dominant recombining ion has been previously shown to be Ne2(+). One of the dominant roles of helium in recombination lasers is inferred from the data for the neon laser at low helium concentrations. Helium appears to be necessary for the rapid relaxation of the electron energy which then increases the reaction rates for all known recombination processes thus increasing the pump rate into the upper state.

  8. Direct solar-pumped iodine laser amplifier

    NASA Technical Reports Server (NTRS)

    Han, Kwang S.; Hwang, In H.; Stock, Larry V.

    1988-01-01

    A XeCl laser which was developed earlier for an iodine laser oscillator was modified in order to increase the output pulse energy of XeCl laser so that the iodine laser output energy could be increased. The electrical circuit of the XeCl laser was changed from a simple capacitor discharge circuit of the XeCl laser to a Marx system. Because of this improvement the output energy from the XeCl laser was increased from 60 mj to 80 mj. Subsequently, iodine laser output energy was increased from 100 mj to 3 mj. On the other hand, the energy storage capability and amplification characteristics of the Vortek solar simulator-pumped amplifier was calculated expecting the calculated amplification factor is about 2 and the energy extraction efficiency is 26 percent due to the very low input energy density to the amplifier. As a result of an improved kinetic modeling for the iodine solar simulator pumped power amplifier, it is found that the I-2 along the axis of the tube affects seriously the gain profile. For the gas i-C3F7I at the higher pressures, the gain will decrease due to the I-2 as the pumping intensity increases, and at these higher pressures an increase in flow velocity will increase the gain.

  9. Solar Pumped Lasers and Their Applications

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1991-01-01

    Since 1980, NASA has been pursuing high power solar lasers as part of the space power beaming program. Materials in liquid, solid, and gas phases have been evaluated against the requirements for solar pumping. Two basic characteristics of solar insolation, namely its diffuse irradiance and 5800 K blackbody-like spectrum, impose rather stringent requirements for laser excitation. However, meeting these requirements is not insurmountable as solar thermal energy technology has progressed today, and taking advantage of solar pumping lasers is becoming increasingly attractive. The high density photons of concentrated solar energy have been used for mainly electric power generation and thermal processing of materials by the DOE Solar Thermal Technologies Program. However, the photons can interact with materials through many other direct kinetic paths, and applications of the concentrated photons could be extended to processes requiring photolysis, photosynthesis, and photoexcitation. The use of solar pumped lasers on Earth seems constrained by economics and sociopolitics. Therefore, prospective applications may be limited to those that require use of quantum effects and coherency of the laser in order to generate extremely high value products and services when conventional and inexpensive means are ineffective or impossible. The new applications already proposed for concentrated solar photons, such as destruction of hazardous waste, production of renewable fuel, production of fertilizer, and air/water pollution controls, may benefit from the use of inexpensive solar pumped laser matched with the photochemical kinetics of these processes.

  10. Scalable diode array pumped Nd rod laser

    NASA Technical Reports Server (NTRS)

    Zenzie, H. H.; Knights, M. G.; Mosto, J. R.; Chicklis, E. P.; Perkins, P. E.

    1991-01-01

    Experiments were carried out on a five-array pump head which utilizes gold-coated reflective cones to couple the pump energy to Nd:YAG and Nd:YLF rod lasers, demonstrating high efficiency and uniform energy deposition. Because the cones function as optical diodes to light outside their acceptance angle (typically 10-15 deg), much of the diode energy not absorbed on the first pass can be returned to the rod.

  11. Scaling studies of solar pumped lasers

    NASA Technical Reports Server (NTRS)

    Christiansen, W. H.; Chang, J.

    1985-01-01

    A progress report of scaling studies of solar pumped lasers is presented. Conversion of blackbody radiation into laser light has been demonstrated in this study. Parametric studies of the variation of laser mixture composition and laser gas temperature were carried out for CO2 and N2O gases. Theoretical analysis and modeling of the system have been performed. Reasonable agreement between predictions in the parameter variation and the experimental results have been obtained. Almost 200 mW of laser output at 10.6 micron was achieved by placing a small sapphire laser tube inside an oven at 1500 K the tube was filled with CO2 laser gas mixture and cooled by longitudinal nitrogen gas flow.

  12. A radiatively pumped CW CO2 laser

    NASA Astrophysics Data System (ADS)

    Insuik, R. J.; Christiansen, W. H.

    1984-06-01

    A proof of principle experiment to demonstrate the physics of a radiatively pumped laser has been carried out. For the first time, a blackbody cavity has optically pumped a CW CO2 laser. Results are presented from a series of experiments using mixtures of CO2, He, and Ar in which maximum output power was obtained with a 20 percent CO2-15 percent He-65 percent Ar mixture. The dependence of the output power on the blackbody temperature and the cooling gas flow rate is also discussed. By appropriately varying these parameters, continuous output powers of 8-10 mW have been achieved.

  13. A radiatively pumped CW CO2 laser

    NASA Technical Reports Server (NTRS)

    Insuik, R. J.; Christiansen, W. H.

    1984-01-01

    A proof of principle experiment to demonstrate the physics of a radiatively pumped laser has been carried out. For the first time, a blackbody cavity has optically pumped a CW CO2 laser. Results are presented from a series of experiments using mixtures of CO2, He, and Ar in which maximum output power was obtained with a 20 percent CO2-15 percent He-65 percent Ar mixture. The dependence of the output power on the blackbody temperature and the cooling gas flow rate is also discussed. By appropriately varying these parameters, continuous output powers of 8-10 mW have been achieved.

  14. Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly(methyl methacrylate) host media.

    PubMed

    Rahn, M D; King, T A

    1995-12-20

    Laser performance is described for Rhodamine 590, Pyrromethene 567, Perylene red, and Perylene orange in inorganic porous sol-gel glass, poly(methyl methacrylate)(PMMA), a composite of porous sol-gel glass with PMMA and organically modified silicate ormosil glass. Lasers were excited with a flash-lamp-pumped dye laser in the long-pulse-length regime (3 s, 506 nm, 300 mJ) and a second-harmonic Nd:YAG laser in the short-pulse-length regime (6 or 15 ns, 532 nm, 60 mJ). The feasibility of long-pulse-length operation is demonstrated, detailed characteristics of short-pulse operation are described, and laser damage measurements are given. The nonpolar perylene dyes had better performance in partially organic hosts, and the ionic rhodamine and pyrromethene dyes performed best in the inorganic sol-gel glass host. PMID:21068943

  15. Comparison of laser performance of dye molecules in sol-gel, polycom, ormosil, and poly(methyl methacrylate) host media

    NASA Astrophysics Data System (ADS)

    Rahn, Mark D.; King, Terence A.

    1995-12-01

    Laser performance is described for Rhodamine 590, Pyrromethene 567, Perylene red, and Perylene orange in inorganic porous sol-gel glass, poly (methyl methacrylate) (PMMA), a composite of porous sol-gel glass with PMMA and organically modified silicate ormosil glass. Lasers were excited with a flash-lamp-pumped dye laser in the long-pulse-length regime (3 mu s, 506 nm, 300 mJ) and a second-harmonic Nd:YAG laser in the short-pulse-length regime (6 or 15 ns, 532 nm, 60 mJ). The feasibility of long-pulse-length operation is demonstrated, detailed characteristics of short-pulse operation are described, and laser damage measurements are given. The nonpolar perylene dyes had better performance in partially organic hosts, and the ionic rhodamine and pyrromethene dyes performed best in the inorganic sol-gel glass host.

  16. E-beam-pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.

    1995-04-01

    The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.

  17. Optically pumped microplasma rare gas laser.

    PubMed

    Rawlins, W T; Galbally-Kinney, K L; Davis, S J; Hoskinson, A R; Hopwood, J A; Heaven, M C

    2015-02-23

    The optically pumped rare-gas metastable laser is a chemically inert analogue to three-state optically pumped alkali laser systems. The concept requires efficient generation of electronically excited metastable atoms in a continuous-wave (CW) electric discharge in flowing gas mixtures near atmospheric pressure. We have observed CW optical gain and laser oscillation at 912.3 nm using a linear micro-discharge array to generate metastable Ar(4s, 1s(5)) atoms at atmospheric pressure. We observed the optical excitation of the 1s(5) ? 2p(9) transition at 811.5 nm and the corresponding fluorescence, optical gain and laser oscillation on the 2p(10) ? 1s(5) transition at 912.3 nm, following 2p(9)?2p(10) collisional energy transfer. A steady-state kinetics model indicates efficient collisional coupling within the Ar(4s) manifold. PMID:25836515

  18. Optical Features of Spherical Gold Nanoparticle-Doped Solid-State Dye Laser Medium

    NASA Astrophysics Data System (ADS)

    Hoa, D. Q.; Lien, N. T. H.; Duong, V. T. T.; Duong, V.; An, N. T. M.

    2016-02-01

    The development of a new laser medium based on gold nanoparticle/dye-doped polymethylmethacrylate (PMMA) has been investigated. In particular, gold nanoparticles with small (16 nm diameter) spherical shape strongly influenced the absorption and fluorescence emission spectra of [2-[2-[4-(dimethylamino)phenyl]ethenyl]-6-methyl-4H-pyran-4-ylidene]-propanedinitrile (DCM) laser dye. Fluorescence quenching and enhancement of DCM emission were observed for various concentrations of gold nanoparticles (GNPs). Fluorescence intensity enhancement was recorded for the sample containing 1.5 × 1010 par/mL GNPs and doped with 3 × 10-5 mol/L DCM. Thermal photodegradation was significantly decreased by using low pump energy for laser emission.

  19. A frequency doubled pressure-tunable oscillator-amplifier dye laser system

    NASA Technical Reports Server (NTRS)

    Moriarty, A.; Heaps, W.; Davis, D. D.

    1976-01-01

    A tunable high-repetition-rate oscillator-amplifier dye-laser system is reported. The dye laser described was longitudinally pumped with the second harmonic of a Nd-YAG laser operating at 10 Hz. Using three Faraday-Perot etalons and pressure tuning, a maximum fundamental output power of the order of 6 MW with a corresponding spectral width of less than 0.003 nm at 564 nm was obtained. The fundamental at 564 nm was frequency doubled to give a maximum power level of 0.6 MW of second-harmonic output power with a spectral width less than 0.0015 nm at 282 nm. Frequency stability could be maintained to within approximately 15% of the line-width.

  20. Uniformity of pump intensity distribution in diode-array side-pumped laser rod

    NASA Astrophysics Data System (ADS)

    Liu, Wenwen; Niu, Yanxiong; Liu, Haixia; Wang, Caili; Niu, Haisha; Man, Da

    2014-11-01

    Diode-pumped solid-state lasers are high efficiency, long lifetime, compact and reliable, so they have been covering a wide range of applications. Thermal effect is a major limiting factor in scaling the average power of high-power solid-state lasers, so it is a critical issue in designing diode-pumped solid-state lasers. The uniform pump intensity distribution in laser rod can weaken the influence of thermal effects in laser, and the research of improving the pump distribution uniformity has attracted a great deal of attention. People usually establish a model of single diode-bar pumped laser rod to calculate the distribution. However, for diode-array pumped high-power lasers, the model is limited and has deviation with the actual pump distribution, which cannot reflect the real working conditions in the laser. In this paper, the theoretical model of diode-array pumped laser rod is built. Based on the actual working environment of diode-array side-pumped Tm:YAG laser rod, the expression of pump intensity distribution in the laser medium is deduced. Additionally, the influence of total pump power, pump structure, Tm:YAG rod characteristic parameters and pump beam radius on pump intensity distribution are simulated and analyzed. Moreover, the parameters are optimized in order to obtain the optimistic results which are efficient to improve the uniformity of pump distribution. The results show that when the pumping distance from diode-array to the rod's surface is 3mm, the distance between two rows of diode-bars is 1mm, the absorption coefficient is 330m-1,the pump beam width is 2.5mm,the pump intensity distribution of five-way pumped laser rod is improved, and then the thermal effects could be weakened. The presented results can provide theoretical guidance to design and optimization of high-power lasers.

  1. Optimisation of a multistage pulsed dye laser system

    SciTech Connect

    Vasil'ev, S V; Kuz'mina, M A; Mishin, V A

    2001-06-30

    A multistage narrow-band dye laser amplifying system with an output power of up to several kilowatts is considered as a whole. Such systems became necessary due to the development of the method of laser isotope separation (the AVLIS method). The use of the simplified model of an amplifying cell allowed us to solve analytically the equations describing the laser system and to determine optimal parameters of each stage. The dye laser system with an output power of 1 kW is optimised based on the model proposed. The accuracy of the obtained estimates was verified by a direct numerical simulation of the system based on a rigorous solution of the equations describing the interaction of radiation with the dye solution. (lasers, active media)

  2. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  3. High efficiency cw laser-pumped tunable alexandrite laser

    SciTech Connect

    Lai, S.T.; Shand, M.L.

    1983-10-01

    High efficiency cw alexandrite laser operation has been achieved. With longitudinal pumping by a krypton laser in a nearly concentric cavity, a 51% output power slope efficiency has been measured. Including the transmission at the input coupler mirror, a quantum yield of 85% has been attained above threshold. Tunability from 726 to 802 nm has also been demonstrated. The low loss and good thermal properties make alexandrite ideal for cw laser operation.

  4. CW arc-lamp-pumped alexandrite lasers

    SciTech Connect

    Samelson, H.; Walling, J.C.; Wernikowski, T.; Harter, D.J.

    1988-06-01

    The performance characteristics of arc-lamp- (Xe and Hg) pumped, CW alexandrite lasers are described in detail. The modes of operation considered are free running, tuned, and repetitively Q-switched. The experimental arrangement and apparatus are also outlined. The experimental results are discussed in terms of a steady-state model, and the areas of agreement and difficulty are pointed out.

  5. Photophysical, photochemical and laser behavior of some diolefinic laser dyes in sol-gel and methyl methacrylate/2-hydroxyethyl methacrylate copolymer matrices

    NASA Astrophysics Data System (ADS)

    Sakr, Mahmoud A. S.; Abdel Gawad, El-Sayed A.; Abou Kana, Maram T. H.; Ebeid, El-Zeiny M.

    2015-08-01

    The photophysical properties such as singlet absorption, molar absorptivity, fluorescence spectra, dipole moment, fluorescence quantum yields, fluorescence lifetimes and laser activity of 1,4-bis (β-Pyridyl-2-Vinyl) Benzene (P2VB), 2,5-distyryl-pyrazine (DSP) and 1,4-bis(2-methylstyryl)benzene(MSB) diolefineic laser dyes have been measured in different restricted hosts. (P2VB), (DSP) and (MSB) are embedded in transparent sol-gel glass and a copolymer of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) media. The absorption and fluorescence properties of these laser dyes in sol-gel glass matrices are compared with their respective properties in copolymer host. The photostability of these laser dyes in sol-gel glass and (MMA/HEMA) copolymer samples are measured in terms of half-life method (using nitrogen laser 337.1 nm in pumping), as the number of pulses necessary to reduce the dye laser intensity to 50% of its original value. The gel laser materials show improved photostability upon pumping by nitrogen laser compared with those in organic polymeric host matrix.

  6. Passive mode locking of an energy transfer continuous-wave dye laser

    NASA Astrophysics Data System (ADS)

    French, P. M. W.; Taylor, J. R.

    1986-08-01

    The first passive mode locking of a continuous-wave energy transfer dye laser is reported. Using an argon ion laser-pumped mixture of rhodamine 6G and sulphur rhodamine 101 as the active medium, pulses of less than 500 fs duration have been generated over the spectral range 652-694 nm using two different saturable absorbers in a simple linear cavity without dispersion optimization. Pulses as short as 120 fs have been measured using standard second-harmonic generation autocorrelation techniques.

  7. Laser photolysis of fluorone dyes in a chitosan matrix

    SciTech Connect

    Slyusareva, E A; Sizykh, A G; Gerasimova, M A; Slabko, V V; Myslivets, S A

    2012-08-31

    Kinetics of laser-induced photobleaching of fluorone dyes (fluorescein, dibromofluorescein, eosin Y, erythrosin B, Rose Bengal) is studied in a chitosan matrix. For all dyes the bleaching kinetics at the intensities of laser radiation 0.7 - 11.9 W cm{sup -2} demonstrates quasi-monomolecular behaviour. The results are analysed using a kinetic model, based on the four-level (S{sub 0}, S{sub 1}, T{sub 1}, T{sub n}) scheme of the dye with chemically active triplet states taken into account. It is shown that the rate constants of the chemical reaction involving higher triplet states in the dyes studied amount to (3.9 - 18.6) Multiplication-Sign 10{sup 6} s{sup -1} and exceed the analogous values for the reaction involving the first lower triplet states by nine orders of magnitude. The rate of reaction involving the first triplet states appeared to be higher by one - two orders of magnitude than that in the case of higher triplet states involved because of low population of the latter. The possible mechanism of dye bleaching with participation of chitosan that consists in reduction of the dye to the leuco form by transfer of hydrogen from the chitosan matrix is discussed. (interaction of laser radiation with matter. laser plasmas)

  8. Prototype laser-diode-pumped solid state laser transmitters

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Cheng, Emily A. P.; Wallace, Richard W.

    1989-01-01

    Monolithic, diode-pumped Nd:YAG ring lasers can provide diffraction-limited, single-frequency, narrow-linewidth, tunable output which is adequate for use as a local oscillator in a coherent communication system. A laser was built which had a linewidth of about 2 kHz, a power of 5 milliwatts, and which was tunable over a range of 30 MHz in a few microseconds. This laser was phase-locked to a second, similar laser. This demonstrates that the powerful technique of heterodyne detection is possible with a diode-pumped laser used as the local oscillator. Laser diode pumping of monolithic Nd:YAG rings can lead to output powers of hundreds of milliwatts from a single laser. A laser was built with a single-mode output of 310 mW. Several lasers can be chained together to sum their power, while maintaining diffraction-limited, single frequency operation. This technique was demonstrated with two lasers, with a total output of 340 mW, and is expected to be practical for up to about ten lasers. Thus with lasers of 310 mW, output of up to 3 W is possible. The chaining technique, if properly engineered, results in redundancy. The technique of resonant external modulation and doubling is designed to efficiently convert the continuous wave, infrared output of our lasers into low duty-cycle pulsed green output. This technique was verified through both computer modeling and experimentation. Further work would be necessary to develop a deliverable system using this technique.

  9. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    SciTech Connect

    Hwang, I.H. . Dept. of Physics); Lee, J.H. . Langley Research Center)

    1991-09-01

    This paper reports on the efficiencies and threshold pump intensities of various solid-state laser materials that have been estimated to compare their performance characteristics as direct solar-pumped CW lasers. Among the laser materials evaluated in this research, alexandrite has the highest slope efficiency of about 12.6%; however, it does not seem to be practical for solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AMO) solar constants and its slope efficiency is about 12% when thermal deformation is completely prevented.

  10. High power diode lasers for solid-state laser pumps

    NASA Technical Reports Server (NTRS)

    Linden, Kurt J.; Mcdonnell, Patrick N.

    1994-01-01

    The development and commercial application of high power diode laser arrays for use as solid-state laser pumps is described. Such solid-state laser pumps are significantly more efficient and reliable than conventional flash-lamps. This paper describes the design and fabrication of diode lasers emitting in the 780 - 900 nm spectral region, and discusses their performance and reliability. Typical measured performance parameters include electrical-to-optical power conversion efficiencies of 50 percent, narrow-band spectral emission of 2 to 3 nm FWHM, pulsed output power levels of 50 watts/bar with reliability values of over 2 billion shots to date (tests to be terminated after 10 billion shots), and reliable operation to pulse lengths of 1 ms. Pulse lengths up to 5 ms have been demonstrated at derated power levels, and CW performance at various power levels has been evaluated in a 'bar-in-groove' laser package. These high-power 1-cm stacked-bar arrays are now being manufactured for OEM use. Individual diode laser bars, ready for package-mounting by OEM customers, are being sold as commodity items. Commercial and medical applications of these laser arrays include solid-state laser pumping for metal-working, cutting, industrial measurement and control, ranging, wind-shear/atmospheric turbulence detection, X-ray generation, materials surface cleaning, microsurgery, ophthalmology, dermatology, and dental procedures.

  11. Optically pumped rare-gas lasers

    NASA Astrophysics Data System (ADS)

    Mikheyev, P. A.

    2015-08-01

    The modern state of the research of a new promising optically pumped laser system with an active medium formed by metastable rare-gas atoms is briefly reviewed. The kinetics of these media is similar to that of laser media based on alkali metal vapour; however, the gas medium is inert. Metastable atoms can be produced in an electric discharge. As in alkali lasers, the specific laser power output under atmospheric pressure can be several hundreds of watts per 1 cm3. The lasing wavelengths lie in the near-IR range and fall in the transparency window of the terrestrial atmosphere. This new concept makes it possible to develop a closed-cycle cw laser with megawatt power levels and high beam quality.

  12. Microwave accelerator E-beam pumped laser

    DOEpatents

    Brau, Charles A. (Los Alamos, NM); Stein, William E. (Los Alamos, NM); Rockwood, Stephen D. (Los Alamos, NM)

    1980-01-01

    A device and method for pumping gaseous lasers by means of a microwave accelerator. The microwave accelerator produces a relativistic electron beam which is applied along the longitudinal axis of the laser through an electron beam window. The incident points of the electron beam on the electron beam window are varied by deflection coils to enhance the cooling characteristics of the foil. A thyratron is used to reliably modulate the microwave accelerator to produce electron beam pulses which excite the laser medium to produce laser pulse repetition frequencies not previously obtainable. An aerodynamic window is also disclosed which eliminates foil heating problems, as well as a magnetic bottle for reducing laser cavity length and pressures while maintaining efficient energy deposition.

  13. A modified pump laser system to pump the titanium sapphire laser

    NASA Technical Reports Server (NTRS)

    Petway, Larry B.

    1990-01-01

    As a result of the wide tunability of the titanium sapphire laser NASA has sited it to be used to perform differential absorption lidar (DIAL) measurements of H2O vapor in the upper and lower troposphere. The titanium sapphire laser can provide a spectrally narrow (0.3 to 1.0 pm), high energy (0.5 to 1.0 J) output at 727, 762, and 940 nm which are needed in the DIAL experiments. This laser performance can be obtained by addressing the line-narrowing issues in a master oscillator and the high energy requirement in a fundamental mode oscillator. By injection seeding, the single frequency property of the master oscillator can produce a line narrow high energy power oscillator. A breadboard model of the titanium sapphire laser that will ultimately be used in NASA lidar atmospheric sensing experiment is being designed. The task was to identify and solve any problem that would arise in the actual laser system. One such problem was encountered in the pump laser system. The pump laser that is designed to pump both the master oscillator and power oscillator is a Nd:YLF laser. Nd:YLF exhibits a number of properties which renders this material an attractive option to be used in the laser system. The Nd:YLF crystal is effectively athermal; it produces essentially no thermal lensing and thermally induced birefringence is generally insignificant in comparison to the material birefringence resulting from the uniaxial crystal structure. However, in application repeated fracturing of these laser rods was experience. Because Nd:YLF rods are not commercially available at the sizes needed for this application a modified pump laser system to replace the Nd:YLF laser rod was designed to include the more durable Nd:YAG laser rods. In this design, compensation for the thermal lensing effect that is introduced because of the Nd:YAG laser rods is included.

  14. Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm

    SciTech Connect

    Risk, W.P.; Lenth, W.

    1987-12-01

    We report the use of GaAlAs laser-diode arrays to pump a cw Nd:YAG laser operating on the 946-nm /sup 4/F/sub 3/2/..-->../sup 4/I/sub 9/2/ transition. At room temperature, the lasing threshold was reached with 58 mW of absorbed pump power, and, with 175 mW of absorbed pump power, 42 mW of output power at 946 nm was obtained in a TEM/sub 00/ mode by using 0.7% output coupling. In addition, pumping with an infrared dye laser operating in a pure TEM/sub 00/ mode was used to investigate the effects of reabsorption loss that are characteristic of the 946-nm laser transition. LiIO/sub 3/ was used as an intracavity doubling crystal, and 100 ..mu..W of blue light was generated by using diode-laser pumping in a nonoptimized cavity.

  15. BRIEF COMMUNICATIONS: Investigation of the lasing characteristics of new laser dyes for the green and red parts of the spectrum

    NASA Astrophysics Data System (ADS)

    Krymova, A. I.; Petukhov, V. A.; Popov, M. B.

    1985-10-01

    An investigation was made of the lasing characteristics of solutions of various new dyes in the coumarin, naphthalimide, and benzanthrone classes pumped transversely by the second harmonic of ruby laser radiation. Lasing in the blue, green, and red parts of the spectrum was obtained for most of the compounds studied. A comparison was made between these materials and laser dyes widely used in these spectral ranges. The compounds studied included some with a lasing efficiency substantially higher than uranin in the green and cresyl violet in the red, and with a photostability not inferior to these two.

  16. Conversion of the luminescence of laser dyes in opal matrices to stimulated emission

    SciTech Connect

    Alimov, O K; Basiev, T T; Orlovskii, Yu V; Osiko, V V; Samoilovich, M I

    2008-07-31

    The luminescence and laser characteristics of a synthetic opal matrix filled with organic dyes are studied upon excitation by nanosecond laser pulses. The appearance of stimulated emission in a partially ordered scattering medium is investigated. It is shown that if the luminescence spectrum of a dye (oxazine-17) is located far outside the photonic bandgap of the opal matrix, stimulated emission along a preferential direction in the (111) plane is observed when pumping exceeds a threshold even without an external optical cavity. The stimulated emission spectrum is considerably narrower than the luminescence spectrum and consists of several narrow lines located within the dye luminescence band. If the luminescence spectrum of a dye (rhodamine 6G) overlaps with the photonic bandgap of the opal matrix, a different picture is observed. The loss of radiation in the matrix leads to the red shift of the luminescence spectrum, while the stimulated emission as in the case of oxazine-17 lies is observed within the luminescence band. (active media, lasers, and amplifiers)

  17. Preparation of 6-hydroxyindolines and their use for preparation of novel laser dyes

    DOEpatents

    Field, G.F.; Hammond, P.R.

    1993-10-26

    A novel method is described for the synthesis of 6-hydroxyindolines and new fluorescent dyes produced therefrom, which dyes are ring-constrained indoline-based rhodamine class dyes. These dyes have absorption and emission spectra which make them particularly useful in certain dye laser applications.

  18. Preparation of 6-hydroxyindolines and their use for preparation of novel laser dyes

    DOEpatents

    Field, George F. (Danville, CA); Hammond, Peter R. (Livermore, CA)

    1993-01-01

    A novel method for the synthesis of 6-hydroxyindolines and new fluorescent dyes produced therefrom, which dyes are ring-constrained indoline-based rhodamine class dyes. These dyes have absorption and emission spectra which make them particularly useful in certain dye laser applications.

  19. Dye-enhanced ablation of enamel by pulsed lasers.

    PubMed

    Jennett, E; Motamedi, M; Rastegar, S; Frederickson, C; Arcoria, C; Powers, J M

    1994-12-01

    Laser removal of dental hard tissue has been proposed as a replacement for or augmented approach to the dental handpiece. The main limitation for widespread usage of lasers in dentistry has been inefficient ablation of dental hard tissue, accompanied by potential laser-induced damage to the surrounding tissue. The research focuses on a novel approach for enhancement of tissue ablation and confinement of laser interaction to a small tissue volume by controlled placement of an exogenous dye on the enamel surface. Studies were done with both pulsed alexandrite and pulsed Nd:YAG lasers, with indocyanine green and India ink, respectively, used as photo-absorbers. These dye-enhanced laser processes demonstrated the feasibility of this technique for cavity preparation. While control studies produced little or no appreciable crater, average preparation depth for the dye-enhanced ablation was from 1 to 1.5 mm, with a diameter of approximately 0.6 mm. Knoop hardness measurements show that, surrounding the crater, there is small annular region slightly softened by the laser action. SEM studies of the interior structure of the tooth did not show significant damage to the surrounding tissue. Temperature measurement studies indicated that the pulsed nature of the laser, combined with the photo-absorbing dye, effectively prevented significant temperature rise at the pulp. The remarkable effectiveness of this technique in creating cavity preparations and the absence of any notable collateral damage to the surrounding tissue suggest that dye-enhanced pulsed-laser ablation could be used as an alternative to the dental handpiece in selected procedures. PMID:7814756

  20. Theoretical study of iterative pump number of diode pumped solid state laser

    NASA Astrophysics Data System (ADS)

    Liu, W.; Guo, J.; Sang, F.

    2015-02-01

    A novel conception of iterative pump number was introduced in this work for the first time. Based on the conservation of energy, the equivalent model for the lasering of solid state laser was built up, the iterative pump number was calculated, and a formula for the output power of laser was given. This formula presented the relationships among the output power of laser, pumping power of diode and the thickness of laser medium. The output power predicted by this formula is consistent with experimental results, so this formula could be an important tool for the designing of parameter for diode pumped solid state laser.

  1. Synthesis of bridged oligophenylene laser dyes. Final report, Oct 89-Feb 91

    SciTech Connect

    Kelley, C.J.; Qin, Y.

    1991-05-10

    Bridged hydrocarbon oligophenylene laser dyes with 6 and 8 benzene rings with differing numbers of dipropylmethylene bridges have been synthesized. These molecules are highly fluorescent in the 400-430 nm region. The structure of the previously synthesized unbridged methoxy-substituted azaterphenyl, 4-PyMPP, has been shortened by the insertion of a 2,6-disubstituted naphthalene for a 4,4'-biphenylene subunit. Both the naphthalene analog and 4-PyMPP itself have been lengthened by a phenylene unit; one bridging group was also present in the latter, an azaquaterphenyl. After naphthalene analog fluoresced at the shortest wavelength (480 nm in the blue green) while the longer molecules both fluoresced in the yellow (550+ nm). Six new compounds have been submitted to MICOM for testing as flashlamp pumped laser dyes.

  2. Linewidth characteristics of Raman-shifted dye laser output at 720 and 940 nm

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Singh, U. N.; Cotnoir, L. J.; Wilkerson, T. D.; Higdon, N. S.; Browell, E. V.

    1986-01-01

    Raman conversion efficiency and line broadening are reported for Stokes operation at 720 and 940 nm, with hydrogen and deuterium as the Raman source, and using an Nd:YAG pumped Quanta-Ray PDL-2 dye laser. The dye laser linewidth is 0.2/cm (FWHM) with the grating alone as an intracavity element, and the conversion efficiency at 400 psi was found to be 40 and 20 percent for outputs of 720 and 940 nm, respectively. Pressure broadening coefficients of (9.2 + or - 0.9) x 10 to the -5th per cm/psi for hydrogen, and 7.7 x 10 to the -5th per cm/psi for deuterium, were obtained in good agreement with previous results. The linewidth at the first Stokes wavelength was shown to be determined by pressure broadening in the Raman medium.

  3. UV laser interaction with a fluorescent dye solution studied using pulsed digital holography.

    PubMed

    Amer, Eynas; Gren, Per; Sjdahl, Mikael

    2013-10-21

    A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. Simultaneously, a frequency doubled pulse (532 nm) from the same laser is used to probe the solvent perpendicularly resulting in a gain through stimulated laser induced fluorescence (LIF) emission. The resulting gain of the probe beam is recorded using digital holography by blending it with a reference beam on the detector. Two digital holograms without and with the pump beam were recorded. Intensity maps were calculated from the recorded digital holograms and used to calculate the gain of the probe beam due to the stimulated LIF. In addition numerical data of the local temperature rise was calculated from the corresponding phase maps using Radon inversion. It was concluded that about 15% of the pump beam energy is transferred to the dye solution as heat while the rest is consumed in the radiative process. The results show that pulsed digital holography is a promising technique for quantitative study of fluorescent species. PMID:24150372

  4. Pyrromethene-BF2 complexes as laser dyes

    NASA Astrophysics Data System (ADS)

    Shah, Mayur; Thangaraj, Kannappan; Soong, Mou-Ling; Wolford, Lionel T.; Boyer, Joseph H.; Politzer, Ieva R.; Pavlopoulos, Theodore G.

    1990-05-01

    In 1984, less than two decades after its discovery, a review described the dye laser as one of the most useful and practical of tunable coherent sources. Laser dye activity was presumed to reflect a casual relationship with various ancillary properties including photostability, solubility and other interactions with solvent, fluorescence quantum yield, molar extinction of absorption, and minimal overlap of fluorescence with onset of absorption spectral regions, (S-S) and triplet-triplet (T-T). Bathochromic and hyperchromic shifts were introduced by the substitution of auxochromic and antiauxochromic groups but this benefit was often offset by the ability of certain groups, e.g., nitro, cyano, and heavy atoms, to quench laser activity. Since the known dyes were each deficient in one or more properties, the search for new structures to offer superior performance standards was undertaken.

  5. Terahertz graphene lasers: Injection versus optical pumping

    SciTech Connect

    Ryzhii, Victor; Otsuji, Taiichi; Ryzhii, Maxim; Mitin, Vladimir

    2013-12-04

    We analyze the formation of nonequilibrium states in optically pumped graphene layers and in forward-biased graphene structures with lateral p-i-n junctions and consider the conditions of population inversion and lasing. The model used accounts for intraband and interband relaxation processes as well as deviation of the optical phonon system from equilibrium. As shown, optical pumping suffers from a significant heating of both the electron-hole plasma and the optical phonon system, which can suppress the formation of population inversion. In the graphene structures with p-i-n junction, the injected electrons and holes have relatively low energies, so that the effect of cooling can be rather pronounced, providing a significant advantage of the injection pumping in realization of graphene terahertz lasers.

  6. Solar-pumped gas laser development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1980-01-01

    A survey of gas properties through detailed kinetic models led to the identification of critical gas parameters for use in choosing appropriate gas combinations for solar pumped lasers. Broadband photoabsorption in the visible or near UV range is required to excite large volumes of gas and to insure good solar absorption efficiency. The photoexcitation density is independent of the absorption bandwidth. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than 10 A to insure lasing threshold over reasonable gain lengths. The system should show a high degree of chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. Although photoexcitation of electronic vibrational transitions is considered as a possible system if the emission bands sufficiently narrow, it appears that photodissociation into atomic metastables is more likely to result in a successful solar pumped laser system.

  7. Optically pumped distributed feedback dye lasing with slide-coated TiO₂ inverse-opal slab as Bragg reflector.

    PubMed

    Han, Sung Gu; Lim, Jongchul; Shin, Jinsub; Lee, Sung-Min; Park, Taiho; Yoon, Jongseung; Woo, Kyoungja; Lee, Hyunjung; Lee, Wonmok

    2014-08-15

    We demonstrate an optical amplification of organic dye within a TiO2 inverse-opal (IO) distributed feedback (DFB) reflector prepared by a slide-coating method. Highly reflective TiO2 IO film was fabricated by slide coating the binary aqueous dispersions of polystyrene microspheres and charge-stabilized TiO2 nanoparticles on a glass slide and subsequently removing the polymer-opal template. TiO2 IO film was infiltrated, in turn, with the solutions of DCM, a fluorescent dye in various solvents with different indices of refraction. Optical pumping by frequency-doubled Nd:YAG laser resulted in amplified spontaneous emission in each dye solution. In accordance with the semi-empirical simulation by the FDTD method, DCM in ethanol showed the best emission/stopband matching for the TiO2 IO film used in this study. Therefore, photo excitation of a DCM/ethanol cavity showed a single-mode DFB lasing at 640 nm wavelength at moderate pump energy. PMID:25121863

  8. Direct nuclear-pumped laser amplifier

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1981-01-01

    A (He-3)-Xe gas mixture, excited by the He-3(n,p)H-3 reaction, has been employed to amplify the output of a (He-3)Xe direct nuclear-pumped laser. Lasing occurred at the 2.63 micron line of XeI in the oscillator. The oscillator output was reflected through 180 deg and passed through the amplifier system. Power measurements of the oscillator output and the amplifier output show the laser power to be amplified by a factor of 3 for the (He-3)-Xe system. Amplification by a factor of 5 was obtained for a (He-3)-CO system.

  9. Pulsed mononode dye laser developed for a geophysical application

    NASA Technical Reports Server (NTRS)

    Jegou, J. P.; Pain, T.; Megie, G.

    1986-01-01

    Following the extension of the lidar technique in the study of the atmosphere, the necessity of having a high power pulsed laser beam with a narrowed bandwidth and the possibility of selecting a particular wavelength within a certain spectral region arises. With the collaboration of others, a laser cavity using the multiwave Fizeau wedge (MWFW) was developed. Using the classical method of beam amplification with the aid of different stages, a new pulsed dye laser device was designed. The originality resides in the use of reflecting properties of the MFWF. Locally a plan wave coming with a particular angular incidence is reflected with a greater than unity coefficient; this is the consequence of the wedge angle which doubles the participation of every ray in the interferometric process. This dye laser operation and advantages are discussed. The feasibility of different geophysical applications envisageable with this laser is discussed.

  10. Solution-processable, photo-stable, low-threshold, and broadly tunable thin film organic lasers based on novel high-performing laser dyes

    NASA Astrophysics Data System (ADS)

    Daz-Garca, Mara. A.; Morales-Vidal, Marta; Ramrez, Manuel G.; Villalvilla, Jos M.; Boj, Pedro G.; Quintana, Jos A.; Retolaza, A.; Merino, S.

    2015-09-01

    Thin film organic lasers (TFOLs) represent a new generation of inexpensive, mechanically flexible devices with demonstrated applicability in numerous applications in the fields of spectroscopy, optical communications and sensing requiring an organic, efficient, stable, wavelength-tunable and solution-processable laser material. A distributed feedback (DFB) laser is a particularly attractive TFOL because it shows single mode emission, low pump energy, easy integration with other devices, mechanical flexibility and potentially low production cost. Here, amplified spontaneous emission (ASE) and DFB laser applications of novel high performing perylene dyes and p-phenylenevinylene (PV) oligomers, both dispersed in thermoplastic polymers, used as passive matrixes, are reported. Second-order DFB lasers based on these materials show single mode emission, wavelength tunability across the visible spectrum, operational lifetimes of >105 pump pulses, larger than previously reported PV oligomers or polymers, and thresholds close to pumping requirements with light-emitting diodes.

  11. Efficiency and threshold pump intensity of CW solar-pumped solid-state lasers

    NASA Technical Reports Server (NTRS)

    Hwang, In H.; Lee, Ja H.

    1991-01-01

    The authors consider the relation between the threshold pumping intensity, the material properties, the resonator parameters, and the ultimate slope efficiencies of various solid-state laser materials for solar pumping. They clarify the relation between the threshold pump intensity and the material parameters and the relation between the ultimate slope efficiency and the laser resonator parameters such that a design criterion for the solar-pumped solid-state laser can be established. Among the laser materials evaluated, alexandrite has the highest slope efficiency of about 12.6 percent; however, it does not seem to be practical for a solar-pumped laser application because of its high threshold pump intensity. Cr:Nd:GSGG is the most promising for solar-pumped lasing. Its threshold pump intensity is about 100 air-mass-zero (AM0) solar constants and its slope efficiency is about 12 percent when thermal deformation is completely prevented.

  12. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

  13. Solar-pumped laser for free space power transmission

    NASA Technical Reports Server (NTRS)

    Lee, Ja H.

    1989-01-01

    Laser power transmission; laser systems; space-borne and available lasers; 2-D and 1 MW laser diode array systems; technical issues; iodine solar pumped laser system; and laser power transmission applications are presented. This presentation is represented by viewgraphs only.

  14. Transversely diode-pumped alkali metal vapour laser

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, A. M.

    2015-09-01

    We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum).

  15. Feasibility study: Monodisperse polymer particles containing laser-excitable dyes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, John W.; Chen, Jing-Hong

    1993-01-01

    The objective was to determine the feasibility of the preparation of monodisperse spherical poly(methyl methacrylate) and polystyrene particles that contain laser-excitable dyes in the size range 0.1 microns to 1 cm. Poly(methyl methacrylate) and polystyrene were chosen because of their excellent optical properties. The sphericity was required for uniformity of spectral output of re-irradiated light from the dye-containing particles. The monodispersity was required to give each particle the same optical properties when exposed to laser light.

  16. The pump parameters optimization in LDA pumped solid-state laser

    NASA Astrophysics Data System (ADS)

    Han, Yaofeng; Zhang, Ruofan; Yang, Hongru

    2015-02-01

    Based on the propagation of Gaussian light, Zemax program is used to simulate the pump light propagating process and absorbing distribution for LDA side-pump laser rod,and the corresponding heat load distribution analysis of the rod is done by using Lascad program.On the basis of simulation results,the pump parameters of LDA side-pump Nd:YAG are optimized which provide valuable guidances for side-pump LDA designing and pump module engineering.

  17. Grating THz laser with optical pumping

    NASA Astrophysics Data System (ADS)

    Khoury, Jed; Haji-saeed, Bahareh; Woods, Charles; Kierstead, John

    2010-04-01

    In this paper, we present a design for a widely tunable solid-state optically and electrically pumped THz laser based on the Smith-Purcell free-electron laser. In the free-electron laser, an energetic electron beam pumps a metallic grating to generate surface plasmons. Our solid-state optically pumped design consists of a thin layer of dielectic, such as SiNx, sandwiched between a corrugated structure and a thin metal or semiconductor layer. The lower layer is for current streaming, and replaces the electron beam in the original design. The upper layer consists of one micro-grating for coupling the electromagnetic field in, another for coupling out, and a nano-grating for coupling with the current in the lower layer for electromagnetic field generation. The surface plasmon waves generated from the upper layer by an external electromagnetic field, and the lower layer by the applied current, are coupled. Emission enhancement occurs when the plasmonic waves in both layers are resonantly coupled.

  18. Applications for reactor-pumped lasers

    SciTech Connect

    Lipinski, R.J.; McArthur, D.A.

    1994-10-01

    Nuclear reactor-pumped lasers (RPLs) have been developed in the US by the Department of Energy for over two decades, with the primary research occurring at Sandia National Laboratories and Idaho National Engineering Laboratory. The US program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1,271, 1,733, 1,792, 2,032, 2,630, 2,650, and 3,370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, and 3-D ceramic lithography. In addition, a ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night.

  19. Nd laser pumped by laser diodes. Professional paper

    SciTech Connect

    Scheps, R.

    1989-08-01

    Performance data for laser diode pumped cw Nd:BEL and Nd :YAG lasers are presented. Two phased laser diode arrays are used as the pump source, each emitting 500 mW. The heat sink for the arrays is temperature controlled to allow for wavelength tunability. A Nd:YAG rod was pumped under similiar conditions and the results are compared. Although the absorption bandwidth for Nd:BEL is substantially broader than for Nd:YAG, the Nd:BEL was found to have a higher threshold for lasing. Both rods had slope efficiencies of 42 percent. The dependence of the output mirror reflectivity was measured, with Nd:BEL showing a greater sensitivity to reflectivity than Nd:YAG. The optimum reflectivities were found to be .98 and .97 for Nd:BEL and Nd:YAG respectively. The maximum TEMOO cw power achieved for each rod at these reflectivities was 250 mW for Nd:BEL and 283 mW for Nd:YAG. We conclude that under the conditions used in this work, both BEL and YAG hosts perform comparably. Measurements of higher output power and efficiency have recently been made using two 1-watt single stripe laser diodes as the pump source, and these results are given as well.

  20. Scalable pump source for diode pumped alkali laser

    NASA Astrophysics Data System (ADS)

    Hersman, F. W.; Distelbrink, J. H.; Ketel, J.; Sargent, D.; Watt, D. W.

    2014-02-01

    External cavity diode laser systems are well-suited for diode pumped alkali laser (DPAL) systems due to their high power efficiency and excellent wavelength control under changing thermal loads. By conditioning the characteristics of feedback power, external cavities can narrow the spectral bandwidth and limit transverse modes of diode laser bars. Existing configurations typically use low-efficiency diffraction gratings at the Littrow angle to send back to the diodes a small fraction of the power, while directing the majority of the power forward in the output beam. We previously reported that a stepped mirror allows a single external cavity to condition the output beams of a stack of diode array bars. In this report, we describe a new approach that could use a single external cavity to condition the output beams of several hundred diode array bars. A high efficiency grating is used to feedback essentially all the power in the external cavity, and power splitters then distribute the power to multiple diode array stacks. A 384 bar module capable of 20 kW power output into a modelimited slowly diverging beam with a spectral width below 0.050 nm has been designed and proposed for use in a DPAL. A 50 bar 3 kW prototype is currently being assembled.

  1. Advanced solar energy conversion. [solar pumped gas lasers

    NASA Technical Reports Server (NTRS)

    Lee, J. H.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar pumped lasers, was successfully excited with a 4 kW beam from a xenon arc solar simulator, thus proving the feasibility of the concept. The experimental set up and the laser output as functions of operating conditions are presented. The preliminary results of the iodine laser amplifier pumped with the HCP array to which a Q switch for giant pulse production was coupled are included. Two invention disclosures - a laser driven magnetohydrodynamic generator for conversion of laser energy to electricity and solar pumped gas lasers - are also included.

  2. Polarized three-photon-pumped laser in a single MOF microcrystal

    PubMed Central

    He, Huajun; Ma, En; Cui, Yuanjing; Yu, Jiancan; Yang, Yu; Song, Tao; Wu, Chuan-De; Chen, Xueyuan; Chen, Banglin; Qian, Guodong

    2016-01-01

    Higher order multiphoton-pumped polarized lasers have fundamental technological importance. Although they can be used to in vivo imaging, their application has yet to be realized. Here we show the first polarized three-photon-pumped (3PP) microcavity laser in a single host–guest composite metal–organic framework (MOF) crystal, via a controllable in situ self-assembly strategy. The highly oriented assembly of dye molecules within the MOF provides an opportunity to achieve 3PP lasing with a low lasing threshold and a very high-quality factor on excitation. Furthermore, the 3PP lasing generated from composite MOF is perfectly polarized. These findings may eventually open up a new route to the exploitation of multiphoton-pumped solid-state laser in single MOF microcrystal (or nanocrystal) for future optoelectronic and biomedical applications. PMID:26983592

  3. Polarized three-photon-pumped laser in a single MOF microcrystal.

    PubMed

    He, Huajun; Ma, En; Cui, Yuanjing; Yu, Jiancan; Yang, Yu; Song, Tao; Wu, Chuan-De; Chen, Xueyuan; Chen, Banglin; Qian, Guodong

    2016-01-01

    Higher order multiphoton-pumped polarized lasers have fundamental technological importance. Although they can be used to in vivo imaging, their application has yet to be realized. Here we show the first polarized three-photon-pumped (3PP) microcavity laser in a single host-guest composite metal-organic framework (MOF) crystal, via a controllable in situ self-assembly strategy. The highly oriented assembly of dye molecules within the MOF provides an opportunity to achieve 3PP lasing with a low lasing threshold and a very high-quality factor on excitation. Furthermore, the 3PP lasing generated from composite MOF is perfectly polarized. These findings may eventually open up a new route to the exploitation of multiphoton-pumped solid-state laser in single MOF microcrystal (or nanocrystal) for future optoelectronic and biomedical applications. PMID:26983592

  4. Efficiency of Nd laser materials with laser diode pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.; Cross, Patricia L.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    For pulsed laser-diode-pumped lasers, where efficiency is the most important issue, the choice of the Nd laser material makes a significant difference. The absorption efficiency, storage efficiency, and extraction efficiency for Nd:YAG, Nd:YLF, Nd:GSGG, Nd:BEL, Nd:YVO4, and Nd:glass are calculated. The materials are then compared under the assumption of equal quantum efficiency and damage threshold. Nd:YLF is found to be the best candidate for the application discussed here.

  5. High-power diode laser pumps for alkali lasers (DPALs)

    NASA Astrophysics Data System (ADS)

    Kissel, Heiko; Khler, Bernd; Biesenbach, Jens

    2012-03-01

    We present performance data of recent high-power laser diodes emitting at typical pump wavelengths for alkali vapor lasers: 852 nm for cesium, 780 nm for rubidium, 766 nm for potassium, and 670 nm for lithium atoms. Due to different approaches in alkali laser systems, we report on usual pumps at these non-standard wavelengths with typical line widths of a few nm used for collisional and pressure broadened gas absorption lines as well as on wavelength stabilized laser diodes using volume Bragg gratings (VBGs) for systems with narrow gas absorption lines. The detailed characterization of laser diodes available at DILAS includes power, efficiency, spectral data, and life time results. While bars at 6xx and 7xx nm are limited in optical output power due to the strong in-built strain, especially the bars at 852 nm with a small inbuilt strain have the biggest potential in terms of pump power. The power conversion efficiency in cw operation is as high as 60% at 100 W. Higher power and operation at increased heat sink temperatures up to 50C are possible depending on lifetime requirements.

  6. Excited state proton transfer dye lasers

    NASA Astrophysics Data System (ADS)

    Uzhinov, Boris M.; Druzhinin, Sergei I.

    1998-02-01

    Reactions of proton phototransfer in organic compounds and photochemical lasers based on these reactions are considered. A principle of operation of a photochemical laser is described. Selection criteria of acid-base systems to serve as active media in photochemical lasers are determined. A list of acid-base laser systems, conditions of their fabrication, and emission characteristics are collated. Specific losses in photochemical lasers are analysed. Methods of expanding the spectral range of tunable emission in the photochemical lasers are described. The bibliography includes 134 references.

  7. Optically pumped mid-infrared vibrational hydrogen chloride laser

    NASA Astrophysics Data System (ADS)

    Miller, Harold C.; McCord, John; Hager, Gordon D.; Davis, Steven J.; Kessler, William J.; Oakes, David B.

    1998-10-01

    The results of an experimental investigation of an optically pumped vibrational laser in HCl are reported. Two different excitation sources were used: a Nd:yttrium-aluminum-garnet laser pumped optical parametric oscillator and a Raman shifted alexandrite laser. Overtone pumping on the (2,0) and (3,0) bands was employed to produce laser oscillation on the (3,2) and (2,1) bands near 3.8 ?m. We also developed a model for the optically pumped laser and compare predictions of the model to the observed behavior of the laser. The photon efficiency of the HCl laser was found to be approximately 60%, consistent with model predictions and with previous optically pumped hydrogen halide lasers.

  8. Amplified spontaneous emission in solar-pumped iodine laser

    NASA Technical Reports Server (NTRS)

    Cho, Yong S.; Hwang, In H.; Han, Kwang S.; Lee, Ja H.

    1992-01-01

    The amplified spontaneous emission (ASE) from a long pulse, solar-simulating radiation pumped iodine laser amplifier is studied. The ASE threshold pump intensity is almost proportional to the inverse of the laser gain length when the gas pressure is constant in the laser tube.

  9. Convenient Microscale Synthesis of a Coumarin Laser Dye Analog

    ERIC Educational Resources Information Center

    Aktoudianakis, Evangelos; Dicks, Andrew P.

    2006-01-01

    Coumarin (2H-1-benzopyran-2-one) and its derivatives constitute a fascinating class of organic substances that are utilized industrially in areas such as cosmetics, food preservatives, insecticides and fluorescent laser dyes. The product can be synthesized, purified, and characterized within two hours with benefits of microscale reactivity being

  10. Convenient Microscale Synthesis of a Coumarin Laser Dye Analog

    ERIC Educational Resources Information Center

    Aktoudianakis, Evangelos; Dicks, Andrew P.

    2006-01-01

    Coumarin (2H-1-benzopyran-2-one) and its derivatives constitute a fascinating class of organic substances that are utilized industrially in areas such as cosmetics, food preservatives, insecticides and fluorescent laser dyes. The product can be synthesized, purified, and characterized within two hours with benefits of microscale reactivity being…

  11. Multimode-diode-pumped gas (alkali-vapor) laser

    SciTech Connect

    Page, R H; Beach, R J; Kanz, V K

    2005-08-22

    We report the first demonstration of a multimode-diode-pumped gas laser--Rb vapor operating on the 795 nm resonance transition. Peak output of {approx}1 Watt was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible.

  12. Multimode-diode-pumped gas (alkali-vapor) laser.

    PubMed

    Page, Ralph H; Beach, Raymond J; Kanz, V Keith; Krupke, William F

    2006-02-01

    We report what we believe to be the first demonstration of a multimode-diode-pumped gas laser: Rb vapor operating on the 795 nm D1 resonance transition. Peak output of approximately 1 W was obtained using a volume-Bragg-grating stabilized pump diode array. The laser's output radiance exceeded the pump radiance by a factor greater than 2000. Power scaling (by pumping with larger diode arrays) is therefore possible. PMID:16480206

  13. Efficient tunable near-infrared solid-state dye laser with good beam quality

    NASA Astrophysics Data System (ADS)

    Russell, Jeffrey A.; Pacheco, Dennis P.; Aldag, Henry R.

    2005-04-01

    We have demonstrated a laser-pumped, near-infrared solid-state dye laser (SSDL) with a slope efficiency approximately equal to 35%, tunability over approximately equal to 40 nm (from 710 to 750 nm) and M2 < 1.3. This device utilizes a folded three-mirror resonator containing a tight focus for the gain medium and a collimated section for the tuning element. The folded cavity is astigmatically compensated through proper choice of sample thickness and cavity fold angle. We achieved low-threshold operation through the tight intracavity focus and by mounting the sample at Brewster"s angle. Two pump lasers were used in this study: (1.) a flashlamp-pumped dye laser (FPDL) with an output wavelength of 630 nm and a pulse duration of approximately equal to 1 microsecond; and (2.) a pulsed red diode laser with an output wavelength of 671 nm and a pulse duration of approximately equal to 200 ns. The gain medium consists of the near-infrared dye Oxazine 725 in the solid host modified PMMA. With the FPDL as the pump source, slope efficiencies up to approximately equal to 35% were measured at the center of the tuning range. A single-plate birefringent filter (BRF) was used to tune the output from approximately equal to 710 to 750 nm with a single output wavelength. The BRF narrowed the spectral output from approximately equal to 15 to approximately equal to 0.8 nm, and provided smooth, continuous tuning over the 40-nm range. Lasing was observed outside this range, but the output consisted of two wavelengths separated by approximately equal to 50 nm (the free spectral range of the BRF). Time-resolved data showed that, for these cases, the laser switches from the shorter to the longer wavelength during the pulse. Input/output curves were generated as a function of resonator feedback for several output wavelengths. Findlay-Clay analyses were used to determine the round-trip cavity loss at each wavelength. The results correlate well with known losses in the resonator, including dye self-absorption losses. Beam-quality measurements were made near the peak of the tuning curve (lambda approximately equal to 727 nm) with a cavity feedback of 95%. At 1.5x threshold, the laser output had an M2 value of approximately equal to 1.06. At 7x threshold, the beam quality degraded slightly to M2 approximately equal to 1.26. Good temporal tracking was observed between the pump and output pulses, once the SSDL turned on. With design improvements to reduce the threshold, the tunable SSDL was also lased using the diode laser as the pump source. Further characterization of this device under direct diode-pumping is in process.

  14. Diode-pumped 10 W continuous wave cesium laser.

    PubMed

    Zhdanov, Boris; Knize, R J

    2007-08-01

    An efficient cesium vapor laser pumped with a continuous wave laser diode array has been demonstrated. The linewidth of the pump source was narrowed using the external cavity to match it to the cesium absorption line. The output power of the continuous wave cesium laser was 10 W, which exceeds previous results by more than a factor of 10, and the slope efficiency was 68%. The overall optical efficiency was 62%, which is a factor of 6 higher than previous pulsed laser results for alkali lasers with diode laser array pumping. PMID:17671572

  15. Optically pumped S/sub 2/ blue-green laser*

    SciTech Connect

    Yu Junhua; Sun Shangwen; Cheng Yongkang; Zhou Li; Ma Zuguang

    1988-02-01

    B-X laser oscillation of S/sub 2/ was achieved in a S/sub 2/ vapor laser pumped by a XeCl excimer laser. The related laser parameters were measured and eight laser lines in the 430--520 nm range were observed.

  16. Solar-pumped gas laser development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1981-01-01

    The direct conversion of solar radiation into an inverted population for extraction in an optical cavity holds promise as a relatively simple system design. Broad-band photoabsorption in the visible or near-UV range is required to excite large volumes of gas and to ensure good solar absorption efficiency. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than approximately 10 A. The system should show chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. A search of electronic-vibrational transitions in diatomic molecules satisfying these conditions is now in progress. A photodissociation-pumped atomic iodine laser is now being tested under solar pumping conditions. Photodissociation studies for thallium spin-flip metastable formation will begin in the near future.

  17. High-energy transversely pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Komashko, A.

    2011-03-01

    We report on the results from our transversely pumped alkali laser. This system uses an Alexandrite laser to pump a stainless steel laser head. The system uses methane and helium as buffer gasses. Using rubidium, the system produced up to 40 mJ of output energy when pumped with 63 mJ. Slope efficiency was 75%. Using potassium as the lasing species the system produced 32 mJ and a 53% slope efficiency.

  18. DOE reactor-pumped laser program

    SciTech Connect

    Felty, J.R.; Lipinski, R.J.; McArthur, D.A.; Pickard, P.S.

    1993-12-31

    FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous high-power operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. A ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night. The compact size and self-contained power also makes an RPL very suitable for ship basing so that power-beaming activities could be situated around the globe. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, wide-area deposition of diamond-like coatings, and 3-D ceramic lithography.

  19. DOE reactor-pumped laser program

    SciTech Connect

    Felty, J.R.; Lipinski, R.J.; McArthur, D.A.; Pickard, P.S.

    1994-12-31

    FALCON is a high-power, steady-state, nuclear reactor-pumped laser (RPL) concept that is being developed by the Department of Energy. The FALCON program has experimentally demonstrated reactor-pumped lasing in various mixtures of xenon, argon, neon, and helium at wavelengths of 585, 703, 725, 1271, 1733, 1792, 2032, 2630, 2650, and 3370 nm with intrinsic efficiency as high as 2.5%. The major strengths of a reactor-pumped laser are continuous highpower operation, modular construction, self-contained power, compact size, and a variety of wavelengths (from visible to infrared). These characteristics suggest numerous applications not easily accessible to other laser types. A ground-based RPL could beam its power to space for such activities as illuminating geosynchronous communication satellites in the earth`s shadow to extend their lives, beaming power to orbital transfer vehicles, removing space debris, and providing power (from earth) to a lunar base during the long lunar night. The compact size and self-contained power also makes an RPL very suitable for ship basing so that power-beaming activities could be situated around the globe. The continuous high power of an RPL opens many potential manufacturing applications such as deep-penetration welding and cutting of thick structures, wide-area hardening of metal surfaces by heat treatment or cladding application, wide-area vapor deposition of ceramics onto metal surfaces, production of sub-micron sized particles for manufacturing of ceramics, wide-area deposition of diamond-like coatings, and 3-D ceramic lithography.

  20. High efficiency CW green-pumped alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, J. W.; Brown, D. C.

    2006-02-01

    High power, CW and pulsed alexandrite lasers were produced by pumping the laser rod with a high quality diode pumped 532 nm laser sources. This pumping architecture provides stable performance with output power > 1.4 W at 767nm in the free running mode and 0.78W at 1000 Hz. An output of 80 mW at 375.5 nm was achieved at 500 Hz. This approach holds promise for the production of a scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  1. Fissioning uranium plasmas and nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.; Thom, K.

    1975-01-01

    Current research into uranium plasmas, gaseous-core (cavity) reactors, and nuclear-pumped lasers is discussed. Basic properties of fissioning uranium plasmas are summarized together with potential space and terrestrial applications of gaseous-core reactors and nuclear-pumped lasers. Conditions for criticality of a uranium plasma are outlined, and it is shown that the nonequilibrium state and the optical thinness of a fissioning plasma can be exploited for the direct conversion of fission fragment energy into coherent light (i.e., for nuclear-pumped lasers). Successful demonstrations of nuclear-pumped lasers are described together with gaseous-fuel reactor experiments using uranium hexafluoride.

  2. Dye lasing arrangement including an optical assembly for altering the cross-section of its pumping beam and method

    SciTech Connect

    O'Neil, R.W.; Sweatt, W.C.

    1992-09-15

    This patent describes a lasing arrangement in which a continuous stream of dye is caused to flow through a lasing zone in a cooperating due chamber while the lasing zone is being illuminated by a pumping beam having an initially produced cross-sectional configuration, which beam is directed through a dye chamber window into the lasing zone causing the dye therein to lase and thereby produce or amplify a dye beam, an optical assembly for altering the initially produced cross-sectional configuration of the pumping beam such that the pumping beam enters the dye chamber with an altered cross-sectional configuration corresponding generally to the cross-sectional configuration of the dye chamber window. It comprises first optical means; and second optical means.

  3. Interface module for transverse energy input to dye laser modules

    DOEpatents

    English, Jr., Ronald E.; Johnson, Steve A.

    1994-01-01

    An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.

  4. Interface module for transverse energy input to dye laser modules

    DOEpatents

    English, R.E. Jr.; Johnson, S.A.

    1994-10-11

    An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.

  5. A new coumarin laser dye 3-(benzothiazol-2-yl)-7-hydroxycoumarin

    NASA Astrophysics Data System (ADS)

    Azim, S. A.; Al-Hazmy, S. M.; Ebeid, E. M.; El-Daly, S. A.

    2005-04-01

    The electronic absorption, and emission spectra as well as fluorescence quantum yield of 3-(benzothiazol-2-yl)-7-hydroxycoumarin (BTHC) were measured in different solvents and are affected by solvent polarity (? f). The deprotonation of BTHC by triethylamine is a reversible process. BTHC is relatively photostable, the quantum yield of photodecomposition ( ?c) was found to be 210 -4 and 2.710 -4 in EtOH and DMF, respectively. The fluorescence lifetimes of BTHC were measured in the absence and in the presence of molecular oxygen and were found to be 2.82 and 2.78 ns, respectively. BTHC acts as good laser dye upon pumping with nitrogen laser (? ex=337.1 nm) in ethanol and gives laser emission with maxima at 508 and 522 nm.

  6. Treatment of basal-cellular skin cancer and heavy concomitant diseases by a photodynamic therapeutic method with a dye laser LITT-PDT

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. A.; Soldatov, A. N.; Vusik, M. V.; Reimer, I. V.

    2008-01-01

    Experimental results of initial testing dye-laser "LITT-PDT" pumped by a copper vapor laser are presented. "LITT PDT" is a modern laser medical complex on CVL-pumped dye laser, generating radiation in a red spectrum area with a tuning wavelength of 630 - 700 nm and preserving high intensity of radiation on each wavelength, necessary for treatment by a photodynamic therapeutic method (PDM). Radiation in a red spectrum area (630 - 700 nm) enables treatment for oncological diseases by PDM using any photosensitizer. The given laser medical complex, generating radiation simultaneously on yellow and green discrete spectrum lines, makes methods of low intensive laser therapy for treatment of precancer and dermatological diseases possible.

  7. Squeezed light from conventionally pumped multi-level lasers

    NASA Technical Reports Server (NTRS)

    Ralph, T. C.; Savage, C. M.

    1992-01-01

    We have calculated the amplitude squeezing in the output of several conventionally pumped multi-level lasers. We present results which show that standard laser models can produce significantly squeezed outputs in certain parameter ranges.

  8. Femtosecond laser direct writing of single mode polymer micro ring laser with high stability and low pumping threshold.

    PubMed

    Parsanasab, Gholam-Mohammad; Moshkani, Mojtaba; Gharavi, Alireza

    2015-04-01

    We have demonstrated an optically pumped polymer microring laser fabricated by two photon polymerization (TPP) of SU-8. The gain medium is an organic dye (Rhodamine B) doped in SU-8, and the laser cavity is a double coupled microring structure. Single mode lasing was obtained from the two coupled rings each with 30 m and 29 m radii using Vernier effect. Low laser threshold of 0.4 J/mm(2) is achieved using 1 m wide polymer waveguides and the quality factor is greater than 10(4) at 612.4 nm wavelength. The lasing remained stable with pump energies from threshold to energies as high as 125 times the threshold. PMID:25968669

  9. Study of photoproducts of Rhodamine 6G in ethanol upon powerful laser pumping

    SciTech Connect

    Batishche, S.A.; Malevich, N.A.; Mostovnikov, V.A.

    1995-04-01

    Absorption spectra of rhodamine 6G in ethanol solution are measured using, the technique of laser probing upon pumping by a doubled Nd {sup 3+}:YAG laser with pulse length{tau}{sub 01}{approx_equal}16ns. It is shown that, at the pumping energy density {ge}1.5 J/cm{sup 2}, short-lived ({tau} < 25 ns) and long-lived photoproducts formed in the dye solution, which absorbed in a wide spectral range, including the lasing region. The estimates show that the probability of rhodamine 6G transformation to the photoproduct upon three-step excitation at 532 nm achieves {approximately}2.5 X 10{sup -3}. It is noted that, in order to obtain reliable spectroscopic information using this technique, one should take into account the intense scattering of probing radiation by thermal noise gratings, which are formed due to self-diffraction of the pumping radiation into noise components.

  10. Nuclear pumped laser research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Russell, G. R.

    1979-01-01

    Using a partially nuclear excited xenon flashlamp to pump an iodine laser, laser pulse shapes were analyzed with and without nuclear flashlamp augmentation. The pulse shapes indicate that the deposition of nuclear energy is equally as effective as electrical energy deposition in producing laser pulse energy output. The amplification of the E-beam pumped CF3I was measured at pressures of several atmospheres. Preliminary data shows that, for a part of the iodine laser pulse, amplification of almost a factor of two is measured. This measurement indicates that the gain in an E-beam pumped CF3I is an order of magnitude greater than in the coaxial laser tube.

  11. The pulsed dye laser and atherosclerotic vascular disease.

    PubMed

    Murray, A; Crocker, P R; Wood, R F

    1988-04-01

    The use of a pulsed dye laser to ablate atheromatous tissue obtained from post-mortem human aortic specimens is reported. Laser energy was delivered with a 600 micron quartz fibre, at a wavelength of 504 nm and a pulse length of 1 microseconds. Pulse energy was varied from 30-140 mJ, producing peak pulse powers of the order of 100 kW. With these parameters the laser ablated fatty, fibrous and calcified plaques. At this wavelength atheroma is vaporized but there is minimal damage to normal vessel wall, due to preferential absorption of the laser light. Light microscopy shows that by microsecond pulsing, thermal damage to surrounding tissues associated with continuous wave lasers is avoided. Transmission electron micrographs reveal a sharp demarcation between a laser crater and the adjacent vessel wall with little ultrastructural disruption. Scanning electron micrographs show the crater walls to be smooth. The pulsed dye laser may therefore be effective in the treatment of occlusive peripheral vascular disease without undue risk of vessel perforation. PMID:3359148

  12. Quantum theory of a squeezed-pump laser

    SciTech Connect

    Marte, M.A.M.; Walls, D.F.

    1988-02-15

    We analyze a model of a laser pumped by an incoherent source in a squeezed vacuum state. The squeezed pump introduces an anisotropy of phase in the laser output. Above threshold two stable solutions are found, with phases corresponding to the directions along which the noise of the bath is quenched. These solutions are illustrated by the potential function of the laser field. An analysis of fluctuations shows that the laser field has reduced phase fluctuations but not below the quantum limit.

  13. Recycle Rate in a Pulsed, Optically Pumped Rubidium Laser

    SciTech Connect

    Miller, Wooddy S.; Sulham, Clifford V.; Holtgrave, Jeremy C.; Perram, Glen P.

    2010-10-08

    A pulsed, optically pumped rubidium laser operating in analogy to the diode pumped alkali laser (DPAL) system at pump intensities as high as 750 kW/cm{sup 2} has been demonstrated with output energies of up to 13 {mu}J/pulse. Output energy is dramatically limited by spin-orbit relaxation rates under these high intensity pump conditions. More than 250 photons are available for every rubidium atom in the pumped volume, requiring a high number of cycles per atom during the 2-8 ns duration of the pump pulse. At 550 Torr of ethane, the spin-orbit relaxation rate is too slow to effectively utilize all the incident pump photons. Indeed, a linear dependence of output energy on pump pulse duration for fixed pump energy is demonstrated.

  14. Tuning laser output characteristics of a pyrotechnically pumped free-running Nd:YAG laser in terms of pumping kinetics

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoli; Yang, Fan; Luo, Jiangshan; Tang, Yongjian

    2015-02-01

    Using light radiation directly produced by combustion of some pyrotechnics as pumping sources of solid state lasers is a potentially effective way to obtain compact and high energy lasers. Kinetics of this kind of pumping is studied in terms of pulse energy and pulse time characteristics as well as laser output energy. Pumping kinetics is turned through changing fabrication methods of the pumping modules. It was found that the useful light energy and pulse time for the pyrotechnic pumping light showed opposite changing trend. Compressing pulse duration from 45 ms to about 10 ms would simultaneously cause 20%~ 50% decreases in useful light radiation energy. However, the laser output energy produced by these pumping sources only had a variation 9%, ranging from 427 mJ to 468 mJ. Reasons were related to the decrease in fluorescence loss in pumping energy below the threshold for the pyrotechnic modules having shorter pulse duration but higher radiation power.

  15. Cascaded Energy Transfer for Efficient Broad-Band Pumping of High Quality, Micro Lasers

    SciTech Connect

    Rotschild, Carmel; Tomes, M.; Mendoza, H.; Andrew, T. L.; Swager, Timothy M.; Carmon, T.; Baldo, Marc

    2011-05-24

    Micro-ring lasers that exhibit a quality factor (Q) larger than 5.2 × 10{sup 6} with a direct-illumination, non-resonant pump are demonstrated. The micro-rings are coated with three organic dyes forming a cascaded energy-transfer, which reduces material-losses by a factor larger than 10{sup 4}, transforming incoherent light to coherent light with high quantum-efficiency. The operating principle is general and can enable fully integrated on-chip, high-Q micro-lasers.

  16. Average power limits of diode-laser-pumped solid state lasers.

    PubMed

    Basu, S; Byer, R L

    1990-04-20

    We investigated the average power limits of diode laser pumped slab lasers and present design calculations for several laser configurations. In the laser designs, a number of diode lasers, each one of which is coupled to an optical fiber are employed to pump a solid state laser material in a zigzag slab or a disk geometry. The systems described here can produce multiple kilowatts of average output power with currently available diode lasers in a cost-effective manner. PMID:20563080

  17. Key techniques for space-based solar pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    He, Yang; Xiong, Sheng-jun; Liu, Xiao-long; Han, Wei-hua

    2014-12-01

    In space, the absence of atmospheric turbulence, absorption, dispersion and aerosol factors on laser transmission. Therefore, space-based laser has important values in satellite communication, satellite attitude controlling, space debris clearing, and long distance energy transmission, etc. On the other hand, solar energy is a kind of clean and renewable resources, the average intensity of solar irradiation on the earth is 1353W/m2, and it is even higher in space. Therefore, the space-based solar pumped lasers has attracted much research in recent years, most research focuses on solar pumped solid state lasers and solar pumped fiber lasers. The two lasing principle is based on stimulated emission of the rare earth ions such as Nd, Yb, Cr. The rare earth ions absorb light only in narrow bands. This leads to inefficient absorption of the broad-band solar spectrum, and increases the system heating load, which make the system solar to laser power conversion efficiency very low. As a solar pumped semiconductor lasers could absorb all photons with energy greater than the bandgap. Thus, solar pumped semiconductor lasers could have considerably higher efficiencies than other solar pumped lasers. Besides, solar pumped semiconductor lasers has smaller volume chip, simpler structure and better heat dissipation, it can be mounted on a small satellite platform, can compose satellite array, which can greatly improve the output power of the system, and have flexible character. This paper summarizes the research progress of space-based solar pumped semiconductor lasers, analyses of the key technologies based on several application areas, including the processing of semiconductor chip, the design of small and efficient solar condenser, and the cooling system of lasers, etc. We conclude that the solar pumped vertical cavity surface-emitting semiconductor lasers will have a wide application prospects in the space.

  18. Linewidth-tunable laser diode array for rubidium laser pumping

    SciTech Connect

    Li Zhiyong; Tan Rongqing; Xu Cheng; Li Lin

    2013-02-28

    To optimise the pump source for a high-power diodepumped rubidium vapour laser, we have designed a laser diode array (LDA) with a narrowed and tunable linewidth and an external cavity formed by two volume Bragg gratings (VBGs). Through controlling the temperature differences between the two VBGs, the LDA linewidth, which was 1.8 nm before mounting the two VBGs, was tunable from 100 pm to 0.2 nm, while the output power changed by no more than 4 %. By changing simultaneously the temperature in both VBGs, the centre wavelength in air of the linewidth-tunable LDA was tunable from 779.40 nm to 780.05 nm. (control of laser radiation parameters)

  19. CW YVO4:Er Laser with Resonant Pumping

    NASA Astrophysics Data System (ADS)

    Gorbachenya, K. N.; Kisel, V. E.; Yasukevich, A. S.; Matrosov, V. N.; Tolstik, N. A.; Kuleshov, N. V.

    2015-05-01

    The lasing characteristics of a YVO4:Er laser with resonant pumping in the 1.5-1.6 μm range are studied. Lasing is obtained at λ = 1603 nm with a differential efficiency of up to 61%. YVO4:Er crystals are found to offer promise for use in efficient resonantly (in-band) pumped lasers.

  20. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, Joseph

    1992-01-01

    A resonantly photo-pumped x-ray laser (10) is formed of a vanadium (12) and titanium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state neon-like titanium ions (34) are resonantly photo-pumped by line emission from fluorine-like vanadium ions (32).

  1. Vanadium-pumped titanium x-ray laser

    DOEpatents

    Nilsen, J.

    1992-05-26

    A resonantly photo-pumped x-ray laser is formed of a vanadium and titanium foil combination that is driven by two beams of intense line focused optical laser radiation. Ground state neon-like titanium ions are resonantly photo-pumped by line emission from fluorine-like vanadium ions. 4 figs.

  2. CO.sub.2 optically pumped distributed feedback diode laser

    DOEpatents

    Rockwood, Stephen D.

    1980-01-01

    A diode laser optically pumped by a CO.sub.2 coherent source. Interference fringes generated by feeding the optical pumping beam against a second beam, periodically alter the reflectivity of the diode medium allowing frequency variation of the output signal by varying the impingent angle of the CO.sub.2 laser beams.

  3. Treatment of facial skin using combinations of CO2, Q-switched alexandrite, and/or flashlamp-pumped dye and/or erbium lasers in the same treatment session

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard E.; Manuskiatti, Woraphong; Goldman, Mitchel P.

    1998-07-01

    Skin aging caused from chronological and photodamage processes results in many alterations in skin appearance. In many circumstances, patients who pursue CO2 laser resurfacing for facial rejuvenation are also concerned with other photoaging alternations that are beyond the efficacy of the CO2 laser. We demonstrated an approach to aged facial skin by using combined treatments of appropriate lasers.

  4. Photophysical characterization of pyrromethene 597 laser dye in cross-linked silicon-containing organic copolymers

    NASA Astrophysics Data System (ADS)

    Tyagi, A.; del Agua, D.; Penzkofer, A.; García, O.; Sastre, R.; Costela, A.; García-Moreno, I.

    2007-12-01

    Samples of the dipyrromethene-BF 2 dye PM597 incorporated in copolymers of 3-trimethoxysilylpropyl 2-methylprop-2-enoate (TMSPMA, number of polymerizable CC double bonds: κ = 1) with 2-(2-methylprop-2-enoyloxy)ethyl 2-methylprop-2-enoate (EGDMA, κ = 2), [2-(hydroxymethyl)-3-prop-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate (PETA, κ = 3), and [3-prop-2-enoyloxy-2,2-bis(prop-2-2-enoyloxymethyl)propyl]prop-2-enoate (PETRA, κ = 4) are characterized. The fluorescence quantum distributions, fluorescence quantum yields, degrees of fluorescence polarization, and fluorescence lifetimes are measured. The radiative lifetimes are calculated from fluorescence lifetime and quantum yield. Absorption coefficient spectra are determined from transmission measurements. Absolute absorption cross-section spectra and dye concentrations are obtained by calibration to the radiative lifetimes and to saturable absorptions. Excited-state absorption cross-sections at 527 nm are determined by saturable absorption measurements. The photo-degradation is studied under cw laser excitation conditions and quantum yields of photo-degradation are extracted. The excited-state absorption cross-sections were found to be rather small, and the photo-stability turned out to be high (up to 3 million excitation cycles before degradation) making this class of dipyrromethene dye-doped polymers attractive active laser media. Structural and thermo-mechanical properties of the materials have been determined by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry, densitometry, and refractometry. They improve with increasing inter-crossing (copolymerization of TMSPMA with PETA and PETRA). The laser properties of the PM597 doped copolymers were evaluated by transverse pumping with 6 ns laser pulses at 532 nm. The best laser materials resulted to be the 7:3 and 9:1 TMSPMA-monomer copolymers.

  5. Efficient optical filter for TEA CO sub 2 laser pumped mid IR molecular lasers

    SciTech Connect

    Sarkar, S.K.; Biswas, D.J.; Nayak, A. )

    1990-04-20

    Trifluoromethyl iodide, CF{sub 3}I, has been shown to be an efficient optical filter for TEA CO{sub 2} laser pumped several mid IR molecular lasers. Its absorption characteristics and effectiveness of filtering capacity were examined using a pump TEA CO{sub 2} laser and a 12.08-{mu}m NH{sub 3} laser.

  6. High-spectral brightness pump sources for diode-pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Hu, Wentao; Patel, Falgun D.; Osowski, Mark L.; Lammert, Robert M.; Oh, Se W.; Panja, Chameli; Elarde, Victor C.; Vaissi, Laurent; Ungar, Jeffrey E.

    2009-02-01

    The development of on-chip grating stabilized semiconductor lasers for diode pumped solid state lasers is discussed. The diode lasers, specifically at wavelengths of 808nm, 976nm, and 1532nm are stabilized via internal gratings to yield a typical center wavelength tolerance of +/- 1nm, FWHM of < 1-2nm, and a temperature tuning coefficient of < 0.09 nm/C. We also report on the CW and QCW operation of conduction cooled bars, stacks, and fiber coupled modules. Simulations show that on-chip stabilized pump sources yield performance improvements over standard pumping schemes. A comparison in laser performance is shown for typical DPSS configuration.

  7. Single-frequency tunable laser for pumping cesium frequency standards

    SciTech Connect

    Zhuravleva, O V; Ivanov, Andrei V; Leonovich, A I; Kurnosov, V D; Kurnosov, K V; Chernov, Roman V; Shishkov, V V; Pleshanov, S A

    2006-08-31

    A single-frequency tunable laser for pumping the cesium frequency standard is studied. It is shown experimentally that the laser emits at a single frequency despite the fact that a few longitudinal modes of the external cavity fall within the reflection band of a fibre Bragg grating (FBG) written in the optical fibre. The laser wavelength can be tuned by varying the pump current of the laser, its temperature, and the FBG temperature. The laser linewidth does not exceed 2 MHz for 10 mW of output power. (lasers)

  8. Long-Lifetime Laser Materials For Effective Diode Pumping

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1991-01-01

    Long quantum lifetimes reduce number of diodes required to pump. Pumping by laser diodes demonstrated with such common Nd laser materials as neodymium:yttrium aluminum garnet (Nd:YAG) and Nd:YLiF4, but such materials as Nd:LaF3, Nd:NaF.9YF3, and possibly Nd:YF3 more useful because of long lifetimes of their upper laser energy levels. Cost effectiveness primary advantage of solid-state laser materials having longer upper-laser-level lifetimes. Because cost of diodes outweighs cost of laser material by perhaps two orders of magnitude, cost reduced significantly.

  9. Dye laser amplifier including an improved window configuration for its dye beam

    DOEpatents

    O'Neil, Richard W. (Pleasanton, CA); Davin, James M. (Livermore, CA)

    1992-01-01

    A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough.

  10. Dye laser amplifier including an improved window configuration for its dye beam

    DOEpatents

    O'Neil, R.W.; Davin, J.M.

    1992-12-01

    A dye laser amplifier in which a continuously replenished supply of dye is excited with a first light beam in order to amplify the intensity of a second different light beam passing therethrough is disclosed herein. This amplifier includes a cell though which a continuous stream of the dye is caused to pass, and means for directing the first beam into the cell while the second beam is directed into and through the same cell. There is also disclosed herein a specific improvement to this amplifier which resides in the use of a pair of particularly configured windows through which the second beam passes along fixed paths as the second beam enters and exits the dye cell. Each of these windows has a relatively thick main section which is substantially larger in dimensions transverse to its beam path than the cross section of the second beam itself, whereby to add structural integrity to the overall window. At the same time, the latter includes a second section which is disposed entirely within the confines of the main section and through which the second beam is intended to pass in its entirety. This second section is made substantially thinner than the main section in order to reduce optical distortion as the second beam passes therethrough. 4 figs.

  11. Evolution of gain and absorption in a cw mode-locked dye laser

    SciTech Connect

    Wu, Y.X.; Ho, P.

    1989-04-01

    We have measured the evolution of the gain (Rhodamine) and absorber (DODCI) dyes inside a cw mode-locked dye laser. The recovery time of each dye after the passage of the intracavity pulse was much longer than 1 psec. However, a probe pulse passing through one dye and then through the other dye experienced a net gain that lasted only /similar to/1 psec, the duration of the pulse. The results are consistent with the mechanism of pulse formation in a dye laser mode locked by a slow saturable absorber proposed by New and Haus (IEEE J. Quantum Electron. QE-10, 115 (1974); QE-11, 736 (1975)).

  12. Quasicontinuous wave linearly polarized rubidium vapor laser pumped by a 5-bar laser diode stack

    NASA Astrophysics Data System (ADS)

    Li, Zhiyong; Tan, Rongqing; Huang, Wei; Zhang, Dandan

    2014-11-01

    We report a quasicontinuous wave (CW) linearly polarized rubidium vapor laser. The pumping source consists of five laser diode bars and its linewidth is reduced from the raw 1.8 to 0.2 nm by a bulk volume Bragg grating. Instead of adopting the "quasi-waveguide structure" gain cell, the pumping light of the rubidium vapor laser propagates freely in the vapor cell. The pumping light with polarization perpendicular to one of the rubidium laser is coupled into the resonator cavity by the polarized beam splitter. This laser configuration is suitable for a convection-cooling diode-pumped alkali vapor laser.

  13. Solar Pumped Nd:Cr:GSGG Laser

    NASA Astrophysics Data System (ADS)

    Noter, Yoram; Oron, Moshe; Shwartz, Josef; Weksler, Meyer; Yogev, Amnon

    1989-07-01

    Direct solar illumination was used to pump a 1/4" x 3" Nd:Cr:GSGG rod and achieved quasi CW laser action at average powers of 20 watt. The solar radiation was chopped at a duty cycle of 20% to avoid crystal fracture. Peak power outputs were as high as 100 watt on a clear day. Slope efficiencies, relative to the solar power reaching the crystal, were close to 10%. Near field and far field beam patterns were recorded by a TV system in order to study the thermal behavior of the crystal. At maximum irradiation levels, the output from a 25 cm long flat concave cavity, had a beam divergence on the order of 30 mrad. Details of the experimental system and the calibration procedures are given.

  14. Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode

    NASA Astrophysics Data System (ADS)

    Zhdanov, B. V.; Venus, G.; Smirnov, V.; Glebov, L.; Knize, R. J.

    2015-08-01

    This paper presents results of cooperative efforts on development of a continuous wave Cs diode pumped alkali laser with moderate output power, which can be considered as a prototype of the commercial device. The developed system operates at 895 nm with output power about 4 W and slope efficiency 28%. Measured turn on time of this system from the standby mode is about a minute.

  15. Continuous wave Cs diode pumped alkali laser pumped by single emitter narrowband laser diode.

    PubMed

    Zhdanov, B V; Venus, G; Smirnov, V; Glebov, L; Knize, R J

    2015-08-01

    This paper presents results of cooperative efforts on development of a continuous wave Cs diode pumped alkali laser with moderate output power, which can be considered as a prototype of the commercial device. The developed system operates at 895 nm with output power about 4 W and slope efficiency 28%. Measured turn on time of this system from the standby mode is about a minute. PMID:26329171

  16. Diode pumped alkali vapor lasers for high power applications

    NASA Astrophysics Data System (ADS)

    Zweiback, J.; Krupke, B.; Komashko, A.

    2008-02-01

    General Atomics has been engaged in the development of diode pumped alkali vapor lasers. We have been examining the design space looking for designs that are both efficient and easily scalable to high powers. Computationally, we have looked at the effect of pump bandwidth on laser performance. We have also looked at different lasing species. We have used an alexandrite laser to study the relative merits of different designs. We report on the results of our experimental and computational studies.

  17. Recent nuclear pumped laser results. [gas mixtures and laser plasmas

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Wells, W. E.; Akerman, M. A.; Anderson, J. H.

    1976-01-01

    Recent direct nuclear pumped laser research has concentrated on experiments with three gas mixtures (Ne-N2, He-Ne-O2, and He-Hg). One mixture has been made to lase and gain has been achieved with the other two. All three of these mixtures are discussed with particular attention paid to He-Hg. Of interest is the 6150-angstroms ion transition in Hg(+). The upper state of this transition is formed directly by charge transfer and by Penning ionization.

  18. Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin.

    PubMed

    Anderson, R R; Parrish, J A

    1981-01-01

    Basic theoretical considerations of the optical and thermal transfer processes that govern the thermal damage induced in tissue by lasers are discussed. An approximate, predictive model and data are proposed for the purpose of selecting a laser that maximizes damage to cutaneous blood vessels and minimizes damage to the surrounding connective tissue and the overlying epidermis. The variables of wavelength, exposure duration, and incident energy density are modeled, and a flashlamp-pumped dye laser operating at or near the 577 nm absorption band of HbO2, with a pulse width (0.3 microsecond) less than the estimated, approximately 1 millisecond, thermal relaxation times for microvessels is chosen for experimental exposures of normal Caucasian skin. Highly specific laser-induced damage to blood vessels is demonstrated both clinically and histologically. This is in striking contrast to the previously reported widespread, diffuse necrosis caused by other lasers. The incident energy and preliminary observations of wavelength and temperature dependence for vascular damage thresholds are consistent with theoretical predictions. Whereas typically 20 joules/cm2 of argon laser irradiation (514 and 488 nm, approximately 100 msec) is required to induce widespread thermal damage, the pulsed dye laser requires only about 2 joules/cm2 to induce highly specific vascular damage. The potential usefulness of dye laser-induced selective vascular damage as a treatment modality for portwine stain hemangiomas and other vascular lesions is discussed. In addition to possible treatment applications, the dye laser or other sources meeting the requirements for producing such damage may also offer a useful experimental tool for inducing predictable damage to microvasculature. Histopathologic and clinical studies related to these possibilities are in progress. PMID:7341895

  19. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    SciTech Connect

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-22

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  20. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  1. Absolute tracer dye concentration using airborne laser-induced water Raman backscatter

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1981-01-01

    The use of simultaneous airborne-laser-induced dye fluorescence and water Raman backscatter to measure the absolute concentration of an ocean-dispersed tracer dye is discussed. Theoretical considerations of the calculation of dye concentration by the numerical comparison of airborne laser-induced fluorescence spectra with laboratory spectra for known dye concentrations using the 3400/cm OH-stretch water Raman scatter as a calibration signal are presented which show that minimum errors are obtained and no data concerning water mass transmission properties are required when the laser wavelength is chosen to yield a Raman signal near the dye emission band. Results of field experiments conducted with an airborne conical scan lidar over a site in New York Bight into which rhodamine dye had been injected in a study of oil spill dispersion are then indicated which resulted in a contour map of dye concentrations, with a minimum detectable dye concentration of approximately 2 ppb by weight.

  2. Resonant tandem pumping of Tm-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Creeden, Daniel; Johnson, Benjamin R.; Rines, Glen A.; Setzler, Scott D.

    2014-06-01

    We have demonstrated efficient lasing of a Tm-doped fiber when pumped with another Tm-doped fiber. In these experiments, we use a 1908 nm Tm-doped fiber laser as a pump source for another Tm-doped fiber laser, operating at a slightly longer wavelength (~2000 nm). Pumping in the 1900 nm region allows for very high optical efficiencies, low heat generation, and significant power scaling potential due to the use of fiber laser pumping. The trade-off is that the ground-state pump absorption at 1908 nm is ~37 times lower than at 795nm. However, the absorption cross-section is still sufficiently high enough to achieve effective pump absorption without exceedingly long fiber lengths. This may also be advantageous for distributing the thermal load in higher power applications.

  3. XeCl laser pumped iodine laser using t-C4F9I

    NASA Technical Reports Server (NTRS)

    Hwang, In Heon; Han, Kwang S.; Lee, Ja H.

    1989-01-01

    An iodine photodissociation laser using t-C4F9I as the active material was pumped by a XeCl laser. An iodine laser output energy of 3 mJ with pulse duration of 25 ns was obtained when the pumping pulse energy was 80 mJ, the iodine pressure was 70 torr, and the reflectance of the output mirror was 85 percent. The high pumping efficiency and low threshold pump power achieved in this experiment are attributable to the high absorption cross section at the pump laser wavelength (308 nm) of the iodide used.

  4. XeCl laser pumped iodine laser using t-C4F9I

    NASA Technical Reports Server (NTRS)

    Hwang, In Heon; Han, Kwang S.

    1989-01-01

    An iodine photodissociation laser using t-C4F9I as the active material was pumped by an XeCl laser. An iodine laser output energy of 3 mJ with pulse duration of 25 ns was obtained when the pumping pulse energy was 80 mJ, the iodide pressure was 70 torr, and the reflectance of the output mirror was 85 percent. The high pumping efficiency and low threshold pump power achieved in this experiment are attributable to the high absorption cross section at the pump laser wavelength (308 nm) of the iodide used.

  5. Nuclear-Pumped Lasers. [efficient conversion of energy liberated in nuclear reactions to coherent radiation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The state of the art in nuclear pumped lasers is reviewed. Nuclear pumped laser modeling, nuclear volume and foil excitation of laser plasmas, proton beam simulations, nuclear flashlamp excitation, and reactor laser systems studies are covered.

  6. Laser desorption/ionization mass spectrometry of dye-sensitized solar cells: identification of the dye-electrolyte interaction.

    PubMed

    Ellis, Hanna; Leandri, Valentina; Hagfeldt, Anders; Boschloo, Gerrit; Bergquist, Jonas; Shevchenko, Denys

    2015-05-01

    Dye-sensitized solar cells (DSCs) have great potential to provide sustainable electricity from sunlight. The photoanode in DSCs consists of a dye-sensitized metal oxide film deposited on a conductive substrate. This configuration makes the photoanode a perfect sample for laser desorption/ionization mass spectrometry (LDI-MS). We applied LDI-MS for the study of molecular interactions between a dye and electrolyte on the surface of a TiO2 photoanode. We found that a dye containing polyoxyethylene groups forms complexes with alkali metal cations from the electrolyte, while a dye substituted with alkoxy groups does not. Guanidinium ion forms adducts with neither of the two dyes. PMID:26259656

  7. DPSS Laser Beam Quality Optimization Through Pump Current Tuning

    SciTech Connect

    Omohundro, Rob; Callen, Alice; Sukuta, Sydney; /San Jose City Coll.

    2012-03-30

    The goal of this study is to demonstrate how a DPSS laser beam's quality parameters can be simultaneously optimized through pump current tuning. Two DPSS lasers of the same make and model were used where the laser diode pump current was first varied to ascertain the lowest RMS noise region. The lowest noise was found to be 0.13% in this region and the best M{sup 2} value of 1.0 and highest laser output power were simultaneously attained at the same current point. The laser manufacturer reported a M{sup 2} value of 1.3 and RMS noise value of .14% for these lasers. This study therefore demonstrates that pump current tuning a DPSS laser can simultaneously optimize RMS Noise, Power and M{sup 2} values. Future studies will strive to broaden the scope of the beam quality parameters impacted by current tuning.

  8. High-intensity coherent vacuum ultraviolet source using unfocussed commercial dye lasers.

    PubMed

    Albert, Daniel R; Proctor, David L; Davis, H Floyd

    2013-06-01

    Using two or three commercial pulsed nanosecond dye lasers pumped by a single 30 Hz Nd:YAG laser, generation of 0.10 mJ pulses at 125 nm (6 10(13) photons?pulse) has been demonstrated by resonance enhanced four-wave mixing of collimated (unfocussed) laser beams in mercury (Hg) vapor. Phase matching at various vacuum ultraviolet (VUV) wavelengths is achieved by tuning one laser in the vicinity of the 6 (1)S0 ? 6 (3)P1 resonance near 253.1 nm. A number of different mixing schemes are characterized. Our observations using broadband lasers (~0.15 cm(-1) bandwidths) are compared to previous calculations pertaining to four-wave mixing of low intensity narrowband laser beams. Prospects for further increases in pulse energies are discussed. We find that VUV tuning curves and intensities are in good agreement with theoretical predictions. The utility of the VUV light source is demonstrated by "soft universal" single-photon VUV ionization in crossed molecular beam studies and for generation of light at 130.2 nm for oxygen atom Rydberg time-of-flight experiments. PMID:23822330

  9. Laser velocimetry with fluorescent dye-doped polystyrene microspheres.

    PubMed

    Lowe, K Todd; Maisto, Pietro; Byun, Gwibo; Simpson, Roger L; Verkamp, Max; Danehy, Paul M; Tiemsin, Pacita I; Wohl, Christopher J

    2013-04-15

    Simultaneous Mie scattering and laser-induced fluorescence (LIF) signals are obtained from individual polystyrene latex microspheres dispersed in an air flow. Microspheres less than 1 ?m mean diameter were doped with two organic fluorescent dyes, Rhodamine B (RhB) and dichlorofluorescein (DCF), intended either to provide improved particle-based flow velocimetry in the vicinity of surfaces or to provide scalar flow information (e.g., marking one of two fluid streams). Both dyes exhibit measureable fluorescence signals that are on the order of 10(-3) to 10(-4) times weaker than the simultaneously measured Mie signals. It is determined that at the conditions measured, 95.5% of RhB LIF signals and 32.2% of DCF signals provide valid laser-Doppler velocimetry measurements compared with the Mie scattering validation rate with 6.5 W of 532 nm excitation, while RhB excited with 1.0 W incident laser power still exhibits 95.4% valid velocimetry signals from the LIF channel. The results suggest that the method is applicable to wind tunnel measurements near walls where laser flare can be a limiting factor and monodisperse particles are essential. PMID:23595429

  10. Model of a pulsed liquid solar-pumped spaceborne laser

    SciTech Connect

    Seregin, A A; Seregina, E A

    2004-02-28

    A model of a pulsed liquid solar-pumped laser is constructed. A neodymium-containing phosphorus oxychloride (POCl{sub 3}-SnCl{sub 4}-Nd{sup 3+}) liquid is proposed as an active medium. The lasing parameters of this medium are calculated for a spaceborne laser as functions of its size and the coefficient of solar energy concentration. (lasers)

  11. Combined cw single-frequency ring dye/Ti:sapphire laser

    SciTech Connect

    Kobtsev, Sergey M; Baraulya, Vladimir I; Lunin, Vladimir M

    2006-12-31

    A new combined cw single-frequency dye/Ti:sapphire laser with a ring resonator located in the horizontal plane and improved radiation frequency stability is developed. The short-term radiation linewidth does not exceed 10 kHz for the Ti:sapphire laser and is smaller than 100 kHz for the dye laser. The drift velocity of the emission line does not exceed 25 MHz h{sup -1}. The scheme and design of the developed laser are presented which allow convenient switching of the laser between its solid-state and dye configurations. (lasers)

  12. Development of injection-seeded optical parametric laser systems with pulsed dye amplifiers for high-spectral-resolution combustion diagnostics

    NASA Astrophysics Data System (ADS)

    Bhuiyan, Aizaz Hossain

    The development and application of optical parametric (OP) systems with pulsed dye amplifiers producing single frequency mode (SFM), narrow linewidth, and tunable laser radiation for high-spectral-resolution laser diagnostics is described. An optical parametric generator (OPG) was developed, consisting of a pair of counter-rotating ? barium borate (?-BBO) crystals pumped by third-harmonic output of an injection-seeded Nd:YAG laser. The OPG crystals themselves are injection-seeded using a continuous wave (cw) distributed feedback (DFB) diode laser or external cavity diode laser (ECDL) at idler wavelength. The OPG is converted for some applications into an optical parametric oscillator (OPO) by incorporating a feedback cavity. The signal output from the OP system is amplified using pulsed dye amplifiers. The PDAs are pumped either by second-harmonic or third-harmonic output of the Nd:YAG laser depending on the OP output wavelength and the dye solution used in PDAs. The linewidth of the laser beam produced using OP/PDA systems is 200 MHz and the spatial beam profile is nearly Gaussian. Initial application of OP/PDA system included two-photon laser induced fluorescence (LIF) of atomic oxygen in counter-flow flames, dual pump coherent anti-Stokes Raman spectroscopy (CARS) for N2 and CO2, and nitric oxide (NO) planar laser induced fluorescence (PLIF) in compressible flowfield. A two-photon pump polarization spectroscopy probe (TPP-PSP) laser system has also been developed using two SFM OPG/PDA systems for the detection of atomic hydrogen (H-atom) in flames. In TPP-PSP, a 243-nm pump beam excites the 1S-2S two photon transition and the excited atoms in 2S level are probed by polarization spectroscopy between n=2 and n=3 manifolds using a circularly polarized 656-nm pump and a linearly polarized 656-nm probe laser beam. Using the TPP-PSP scheme, atomic hydrogen was detected at concentrations as low as 11 ppm. The use of injection-seeded OPG/PDAs as SFM sources for the pump and probe beams allows accurate measurement of signal intensities and spectral lineshapes. A detailed investigation of the effect of 243-nm and 656-nm pump beam energies on the different transitions of atomic hydrogen was performed. TPP-PSP lineshapes for high energy 243-nm and 656-nm pump beams showed significant broadening when compared with lineshapes for lower energy 243-nm and 656-nm pump beams. A continuous shifting of the center of n=2-n=3 transition was also observed with increasing 243-nm pump beam energy. Sub-Doppler H-atom lineshapes were also investigated and exhibited significant narrowing. The effect of varying collisional environments on the TPP-PSP signal from atomic hydrogen was investigated by performing measurements in near-adiabatic hydrogen-air flames. The results of these measurements are very encouraging for quantitative measurements of atomic hydrogen in flames.

  13. Tunable narrow linewidth laser output from PM567 doped nematic liquid crystal under holographic pumping

    NASA Astrophysics Data System (ADS)

    Chen, D. Y.; Fan, Y. K.; Fan, R. W.; Xia, Y. Q.

    2011-12-01

    LC cell injected the mixture of dye pyrromethene 567 (PM567) and nematic liquid crystal (NLC) by capillary action was prepared. Holographic pumping with a Nd:YAG laser (532 nm, 1 Hz, 10 ns) to form gain distributed feedback in the cell, tunable laser output from the cell was investigated. Through changing the intersection angles of the two coherent light beams from 46 to 50, the tuning range we obtained is about 37 nm (550-587 nm). Additionally, the FWHM of the laser under such experimental setup was less than 0.1 nm even without the resonant cavity, and the threshold of the laser was about 26 ?J, which was very low as we known.

  14. Long-Pulse E-Beam Pumped Excimer Laser

    NASA Astrophysics Data System (ADS)

    McAllister, Gary L.; Morton, Richard G.; Richardson, William K.

    1987-03-01

    Long pulse excimer lasers are of interest as a means for increasing, with constant energy, the impulse coupled to a target. The reduced power associated with the long pulse width also increases the laser optics damage threshold. A direct e-beam pumped XeC1 laser has been operated with a 5 p's pulse length. The e-beam pump is a cold cathode, large area diode which has operated up to 10 ?s pulse width. Fuel burn-up of the halogen donor occurs at approximately the same specific pump energy (J/l ) observed with microsecond pulse lengths.

  15. Thin-disk laser pump schemes for large number of passes and moderate pump source quality

    NASA Astrophysics Data System (ADS)

    Schuhmann, Karsten; Hnsch, Theodor W.; Kirch, Klaus; Knecht, Andreas; Kottmann, Franz; Nez, Francois; Pohl, Randolf; Taqqu, David; Antognini, Aldo

    2015-11-01

    Novel thin-disk laser pump layouts are proposed yielding an increased number of passes for a given pump module size and pump source quality. These novel layouts result from a general scheme which bases on merging two simpler pump optics arrangements. Some peculiar examples can be realized by adapting standard commercially available pump optics simply by intro ducing an additional mirror-pair. More pump passes yield better efficiency, opening the way for usage of active materials with low absorption. In a standard multi-pass pump design, scaling of the number of beam passes brings ab out an increase of the overall size of the optical arrangement or an increase of the pump source quality requirements. Such increases are minimized in our scheme, making them eligible for industrial applications

  16. Thin-disk laser pump schemes for large number of passes and moderate pump source quality.

    PubMed

    Schuhmann, Karsten; Hnsch, Theodor W; Kirch, Klaus; Knecht, Andreas; Kottmann, Franz; Nez, Francois; Pohl, Randolf; Taqqu, David; Antognini, Aldo

    2015-11-10

    Thin-disk laser pump layouts yielding an increased number of passes for a given pump module size and pump source quality are proposed. These layouts result from a general scheme based on merging two simpler pump optics arrangements. Some peculiar examples can be realized by adapting standard, commercially available pump optics with an additional mirror pair. More pump passes yield better efficiency, opening the way for the usage of active materials with low absorption. In a standard multipass pump design, scaling of the number of beam passes brings about an increase in the overall size of the optical arrangement or an increase in the pump source quality requirements. Such increases are minimized in our scheme, making them eligible for industrial applications. PMID:26560764

  17. Multiple pass effects in high efficiency laser pumping cavities.

    PubMed

    Evtuhov, V; Neeland, J K

    1967-03-01

    Some effects connected with multiple passes of pump radiation in laser pump cavities are discussed. These effects include changes in mercury arc lamp operating characteristics, when the lamps are used inside the cavities as pump sources, and unexpectedly low pulse (but not cw) thresholds in double elliptical cavities. It is shown analytically that these effects can, at least in part, be attributed to the shapes of the pump light energy distribution curves after multiple passes through the pump cavities, and to the relative opacities of flash and continuous lamps. PMID:20057775

  18. Spectrum and lasing characteristics of a new blue-green laser dye

    SciTech Connect

    Yen Fwujiun; Hwang Derjau; Chen Zoushen; Teng Yuehlih

    1986-12-01

    A new laser dye in the blue-green spectral region was synthesized. The spectral and lasing properties are presented. The tuning range of the dye can be shifted in the spectral range between 457 and 521 nm by the choice of solvent. The dye has a high efficiency and good photochemical stability.

  19. Preparation of certain m-aminophenols and the use thereof for preparation of laser dyes

    DOEpatents

    Hammond, Peter R.

    1986-01-01

    Methods are provided for making certain m-aminophenols using a sulfonation/alkali fusion procedure. The aminophenols are key intermediates in the synthesis of dyes, particularly efficient, stable dyes for laser application. Preparations of some rhodamine and phenoxazone dyes from the m-aminophenols are described.

  20. Preparation of certain m-aminophenols and the use thereof for preparation of laser dyes

    DOEpatents

    Hammond, P.R.

    1983-12-29

    Methods are provided for making certain m-aminophenols using a sulfonation/alkali fusion procedure. The aminophenols are key intermediates in the synthesis of dyes, particularly efficient, stable dyes for laser application. Preparations of some rhodamine and phenoxazone dyes from the m-aminophenols are described.

  1. Ultraviolet lasers. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Mauk, S. C.

    1980-01-01

    Reports cited from the international literature describe various aspects of ultraviolet lasers including laser output, far ultraviolet radiation, electron pumping, optical pumping, and laser materials. Gas lasers, pulsed lasers, dye lasers, CO2 lasers, xenon fluoride lasers, and transversely excited atmospheric (TEA) lasers are considered. This updated bibliography contains 283 citations, 66 of which are new additions to the previous edition.

  2. Continuously tunable energy transfer laser operation in four-dye mixture systems

    NASA Astrophysics Data System (ADS)

    Muto, S.; Ito, C.; Inaba, H.

    1983-11-01

    Theoretical as well as experimental investigation of the energy transfer dye laser (ETDL) operation has been performed, aimed at development of a dye laser which covers a wide wavelength range without exchanging a dye mixture. The following two dye mixtures are shown to be very effective: Rhodamine 6(R6G)-Safrain T(ST)-Cresyl Violet (CV)-Nile Blue(NB) and Coumarin 1 (C1)-Acriflavine(A)-Uranine(U)-R6G. Their desirable dye concentrations are derived and the tuning characteristics are measured. Continuous tuning was achieved over 130 nm in either case, and hence almost the entire visible range is covered with these two ETDL's.

  3. Laser Assisted Cancer Immunotherapy: Optical Dye Distribution in Tumors

    NASA Astrophysics Data System (ADS)

    Swindle, Ryan

    2005-03-01

    Laser Assisted Cancer Immunotherapy is an experimental modality used to treat superficial tumors implanted on sterile Balb/C mice. The goal of the project is to induce a positive immune response toward a complete eradication of the primary tumor. Optimal necrosis results from depositing the maximum amount of thermal energy into the tumor without damaging the surrounding healthy tissue. In our laboratory, the optical dye, indocyanine green (ICG), is injected into the center of the tumor prior to surface and interstitial laser irradiation. A diode laser operating at a wavelength near 804 nm exerts thermal energy into the tumor via ICG absorption at 790 nm. Maximum immune response should occur with a uniform distribution of ICG throughout the tumor. By mapping the ICG distribution, the spatial homogeneity of the dye can be determined, which, in turn, mimics the tumor temperature profile. After excision, the tumors were cut into samples of approximately 250 microns thick and dissolved in a chemical detergent. Each sample was run through an absorption spectrometer to determine the distribution of ICG throughout the tumor. Results for both radial and depth profiles of ICG tumor distribution will be presented.

  4. Intensity scaling of an optically pumped potassium laser

    NASA Astrophysics Data System (ADS)

    Hurd, Edward J.; Holtgrave, Jeremy C.; Perram, Glen P.

    2015-12-01

    A pulsed, optically pumped potassium laser has been demonstrated with output intensity exceeding 7 MW/cm2. By using a surrogate pump, heat pipe gain cell, and helium pressure of 2500 Torr, the intensity of Diode Pumped Alkali Lasers (DPAL) has been increased by a factor of 38. Bottlenecking due to slow fine structure mixing can be avoided without hydrocarbon buffer gases with as many as 375 lasing photons obtained per potassium atom following a 7.4 ns pump pulse. A slope efficiency of 9.4% is achieved and primarily limited by a mismatch between pumped and cavity mode volumes. Laser performance is well described by a three-level, longitudinally averaged model without ionization.

  5. Simulation and modeling of laser-tissue interactions based on a liposome-dye system.

    PubMed

    Mensah, F E; Sridhar, R; Misra, P

    2010-12-01

    This work presents an overview of the use of liposomes for targeted delivery of photosensitizers to tumors for Photodynamic Therapy (PDT). It assesses the results of a quantitative model to explain the interaction of short-pulsed lasers (in the nanosecond and picosecond domains) with a liposome-dye complex in terms of a localized photo-induced thermal mechanism. Incorporation of an organic dye (sulforhodamine) within lipid vesicles has been investigated in conjunction with the effect of laser irradiation on the integrity of the liposome-dye complex. The variation of the absorption coefficient as a function of wavelength for dye-encapsulated liposomes before and after laser-induced release of dye was studied and modeled. The commercial software Mathematica was used to develop a Gaussian model for the energy absorption by the liposome-dye complex. Dye release from 3 microm - liposome encapsulating 25 mM aqueous solution of sulforhodamine dye was studied using 8 ns laser pulses at the second harmonic of the Nd:YAG laser (at 532 nm) and compared with dye release employing 25 ps - laser pulses. In addition, the temperature-dependence of the dye release has been included in the photo-thermal model. PMID:21141674

  6. Diode pumped cascade Er:Y2O3 laser

    NASA Astrophysics Data System (ADS)

    Sanamyan, T.

    2015-12-01

    A cascade, diode-pumped, continuous wave (CW), dual-wavelength operation in a 0.5% Er3+:Y2O3 cryogenic ceramic laser is demonstrated for the first time. The laser operates on cascaded Er (4I11/2?????4I13/2?????4I15/2) transitions and can deliver 24 and 13?W at 1.6 and 2.7 ?m, respectively. The overall efficiency with respect to the absorbed ~980?nm power was 62%. This is, to our best knowledge, the first demonstration of an efficient, high power, cascade, erbium laser achieved in bulk solid-state lasers. The analysis of the output power, the lasers wavelengths and slope efficiency for each individual laser transition are presented for pure CW operation mode. Also presented are the temporal behaviors of each laser line as a function of pump pulse duration in the quasi-CW regime.

  7. Stimulated Raman scattering of laser dye mixtures dissolved in multiple scattering media

    SciTech Connect

    Yashchuk, V P; Komyshan, A O; Tikhonov, E A; Olkhovyk, L A

    2014-10-31

    Stimulated Raman scattering (SRS) of a mixture of rhodamine 6G and pyrromethene 605 laser dyes in vesicular films is studied. It is shown that a peculiar interaction of dyes occurs under conditions of multiple scattering of light from vesicles. This interaction manifests itself as SRS excitation of one of the dyes by random lasing of the other dye, provided that the random lasing spectrum overlaps the Stokes lines of the first dye. In addition, there is energy transfer between molecules of these dyes if their luminescence and absorption spectra overlap. The results obtained confirm that the mechanism of SRS from laser dyes in multiple scattering media is similar to that in coherent-active Raman spectroscopy. These results extend the possibility of determining the vibrational spectrum of dye molecules from their secondary radiation in these media. (nonlinear optical phenomena)

  8. Beam intensity reshaping by pump modification in a laser amplifier.

    PubMed

    Litvin, Igor A; Collet, Oliver J P; King, Gary; Strauss, Hencharl

    2015-11-16

    We propose a new technique for laser beam shaping into a desirable beam profile by using a laser amplifier with a pump beam that has a modified intensity profile. We developed the analytical formula, which describes the transformation of the seed beam into the desired beam profile in a four level amplifiers small signal regime. We propose a numerically method to obtain the required pump intensity profile in the case where high pump power saturated the laser crystal or for three level materials. The theory was experimentally verified by one dimensionally shaping a Gaussian shaped seed into a Flat-Top beam in a Ho:YLF amplifier pumped by a Tm:YLF laser with a HG01 intensity profile. PMID:26698497

  9. AlGaAs diode pumped tunable chromium lasers

    DOEpatents

    Krupke, William F. (Pleasanton, CA); Payne, Stephen A. (Castro Valley, CA)

    1992-01-01

    An all-solid-state laser system is disclosed wherein the laser is pumped in the longwave wing of the pump absorption band. By utilizing a laser material that will accept unusually high dopant concentrations without deleterious effects on the crystal lattice one is able to compensate for the decreased cross section in the wing of the absorption band, and the number of pump sources which can be used with such a material increases correspondingly. In a particular embodiment a chromium doped colquiriite-structure crystal such as Cr:LiSrAlF.sub.6 is the laser material. The invention avoids the problems associated with using AlGaInP diodes by doping the Cr:LiSrAlF.sub.6 heavily to enable efficient pumping in the longwave wing of the absorption band with more practical AlGaAs diodes.

  10. High efficiency >26 W diode end-pumped Alexandrite laser.

    PubMed

    Teppitaksak, Achaya; Minassian, Ara; Thomas, Gabrielle M; Damzen, Michael J

    2014-06-30

    We show for the first time that multi-ten Watt operation of an Alexandrite laser can be achieved with direct red diode-pumping and with high efficiency. An investigation of diode end-pumped Alexandrite rod lasers demonstrates continuous-wave output power in excess of 26W, more than an order of magnitude higher than previous diode end-pumping systems, and slope efficiency 49%, the highest reported for a diode-pumped Alexandrite laser. Wavelength tuning from 730 to 792nm is demonstrated using self-seeding feedback from an external grating. Q-switched laser operation based on polarization-switching to a lower gain axis of Alexandrite has produced ~mJ-pulse energy at 1kHz pulse rate in fundamental TEM(00) mode. PMID:24977887

  11. Instabilities in a three-level coherently pumped laser

    NASA Technical Reports Server (NTRS)

    Ryan, J. C.; Lawandy, N. M.

    1987-01-01

    A theory for a coherently pumped, homogeneously broadened laser is developed which predicts instability at excitations 1.6 times threshold. The system exhibits a period-doubling sequence, chaos, and a period-three window.

  12. Efficient laser performance of a cryogenic Yb:YAG laser pumped by fiber coupled 940 and 969?nm laser diodes

    NASA Astrophysics Data System (ADS)

    Jambunathan, V.; Miura, T.; T?snohldkov, L.; Lucianetti, A.; Mocek, T.

    2015-01-01

    Laser performance of Yb:YAG at different cryogenic temperatures pumped by a fiber coupled diode laser emitting at 940 and 969?nm were presented. The pump laser diode bandwidth, absorption bandwidth as well as absorption of the laser material at cryogenic temperatures play a vital role on laser performance. The laser threshold decreases and the output power and slope efficiency increase when cooled to cryogenic temperatures.

  13. Analysis of the pump-beam path in corner-pumped slab laser

    SciTech Connect

    Chen Li; Qiang Liu; Mali Gong; Gang Chen; Ping Yan

    2007-06-30

    The propagation of the pump radiation in active slab elements is considered. Conditions of the total internal reflection of the pump radiation are obtained, and are used to construct a series of graphical illustrations of reflection characteristics of different active elements. (control of laser radiation parameters)

  14. Pulsed dye laser for the treatment of nail psoriasis.

    PubMed

    Yin, Natalie; Choudhary, Sonal; Nouri, Keyvan

    2013-09-01

    Psoriasis can involve the skin, joints, and nails, either alone or in combination. Psoriasis of the nails can involve both the nail bed and nail matrix. The treatment of nail psoriasis largely depends on the severity of symptoms. The pulsed dye laser (PDL) recently has demonstrated efficacy in treating resistant plaque-type psoriasis and has been suggested as an alternative to conventional therapies. We review 4 studies of PDL for nail psoriasis and discuss the findings in relation to treatment recommendations. Ultimately, a standardized regimen for the treatment of nail psoriasis remains elusive. PMID:24153141

  15. Intracavity absorption in a double-cavity dye laser

    SciTech Connect

    Loloee, M.R.; Heider, S.M.; Brink, G.O.

    1984-01-01

    A double-cavity optical configuration designed to investigate the sensitivity of intracavity absorption in a cw multimode dye laser is reported. The configuration consists of two optical cavities coupled together through a common partially transmitting mirror. An atomic beam of sodium is used as a low-density absorber to compare the sensitivity of a double-cavity configuration with that of a single cavity. The results are that the sensitivity of the double-cavity system is about half of that obtained with the usual single cavity. An interpretation of the results is made in terms of the super regen model of intracavity absorption.

  16. Remote chemical sensing by laser optical pumping

    SciTech Connect

    Stevens, C.G.; Magnotta, F.

    1996-08-01

    We are exploring a new approach to remote chemical identification that promises higher precision than can be achieved by conventional DIAL approaches. This technique also addresses and potentially solves the problem of detecting a target gas in the presence of an interfering gas or gases. This new approach utilizes an eye-safe infrared optical pumping pulse to deplete the population of a specific rotational level(s) and then sends probe pulses at the same or different wavelengths to interrogate the bleaching of the absorption. We have experimentally measured optical saturation fluence level at atmospheric pressure for HCl, and find this level to be {approximately}1 mJ/cm{sup 2}, significantly below eye-safe limits in agreement with calculations. Calculations have been performed on other molecules of interest with similar results. In the laboratory, using time-delay-replicated pulses at a single frequency we have made absorption measurements with precision levels routinely approaching 0.1% after averaging 200 laser pulses. These results as well as those of two other pulse experiments will be presented. 5 refs., 9 figs., 1 tab.

  17. The LASL program in nuclear pumped liquid lasers

    NASA Technical Reports Server (NTRS)

    Mansfield, C. R.; Bird, P. F.; Davis, J. F.

    1979-01-01

    The development of nuclear-pumped, liquid-based lanthanide ion lasers is discussed. Early investigations of lanthanide ion lasers have lead to solid-state and gaseous neodymium lasers, and a demonstration of lasing in the liquid state. Solvents containing organic chelating agents have been employed in liquid Eu(+3) and Tb(+3) lasers to extend fluorescence lifetimes, however aprotic solvents have been found to enable the development of large-scale liquid lasers. The advantages to be gained from high-power nuclear-pumped lasers based on lanthanide solutions include the high density of fissile materials possible, and a nuclear pumping cell which can operate in either a nuclear or optical pumping mode is being fabricated at the Los Alamos Scientific Laboratory to investigate the nuclear pumping of liquid lanthanide ion lasers. Areas that need exploration before specific laser design features can be considered include energy channeling within the liquid upon excitation, radiation damage due to solvent dissociation, and reactor technology for the development of a self-critical liquid reactor.

  18. [Peculiarity of pulsed dye laser lithotriptor and its clinical application].

    PubMed

    Matsumoto, T; Miki, M; Mamiya, Y; Hirata, T; Shimizu, H; Tochimoto, M; Ito, T; Aika, T

    1989-09-01

    Ultrasound lithotriptors (USL) and electrohydraulic lithotriptors (EHL) are representative lithotriptors for endoscopic elimination of upper urinary tract stones. However, they have some disadvantages. For example, USL can not be used with flexible scopes and EHL can cause unexpected tissue injury. To overcome these problems, the pulsed dye laser lithotriptor (MDL-1, Candera Co.) was developed. The characteristics of this laser lithotriptor and its direct effects on tissue was investigated. This pulsed dye laser lithotriptor generates a 504 nm wavelength green light beam by using a combination of a xenon flash lamp and the greenish dye composed of coumarin solution. The maximum output energy is 60 mJ/pulse and the pulse duration is 1.5 microsecond. The pulse rate can be varied from 1 to 20 Hz. First, the intensity of the shock wave was measured by using a combination of a piezoelectric element and an oscilloscope, and then, the results were compaired with those obtained by a similar experiment with an EHL. The average intensity of the shock wave was 54.4 mW under the conditions of 40 mJ/pulse of output energy and 10 Hz of pulse duration. On the other hand, the EHL generated an average of 54.7 W under the conditions of 400 mJ/pulse output energy. Then, fragmentation of various kinds of urinary stones in saline solution was performed. The results showed that this lithotriptor could fragment almost all kinds of stones except cystine stones. Then, hen's eggs were used to observe the effect if laser bean influenced on the organism immediately behind the photoradiated object. Only the egg shell was demolished but the egg membrane below the eggshell did not undergo any change. After these experiments, skin, liver, kidney and urinary bladder of nude mice and human prostatic urethral mucosa in case of TUR-P were irradiated by this laser. The results showed that laser energy caused slight penetration and localized hemorrhage from the surface of epithelium to subcutaneous tissue. It was confirmed that these effects were generated when the tip of the quartz fiber was in direct contact with the object.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2574247

  19. Nuclear pumped lasers: Advantages of O2 (1 delta)

    NASA Technical Reports Server (NTRS)

    Taylor, J. J.

    1979-01-01

    Nuclear pumped laser technology was evaluated as a possible future weapons contender. It was determined that in order to become a primary weapon the following engineering problems must be solved: shielding, heat dissipation, high efficiency fixed focus pumping, good beam quality, and thermal blooming.

  20. Quantum mechanical features of optically pumped CW FIR lasers

    NASA Technical Reports Server (NTRS)

    Seligson, D.; Leite, J. R. R.; Sanchez, A.; Feld, M. S.; Ducloy, M.

    1977-01-01

    Quantum mechanical predictions for the gain of an optically pumped CW FIR laser are presented for cases in which one or both of the pump and FIR transitions are pressure or Doppler broadened. The results are compared to those based on the rate equation model. Some of the quantum mechanical predictions are verified in CH3OH.

  1. Efficient potassium diode pumped alkali laser operating in pulsed mode.

    PubMed

    Zhdanov, Boris V; Rotondaro, Matthew D; Shaffer, Michael K; Knize, Randall J

    2014-07-14

    This paper presents the results of our experiments on the development of an efficient hydrocarbon free diode pumped alkali laser based on potassium vapor buffered by He gas at 600 Torr. A slope efficiency of more than 50% was demonstrated with a total optical conversion efficiency of 30%. This result was achieved by using a narrowband diode laser stack as the pump source. The stack was operated in pulsed mode to avoid limiting thermal effects and ionization. PMID:25090540

  2. Modeling of diode pumped metastable rare gas lasers.

    PubMed

    Yang, Zining; Yu, Guangqi; Wang, Hongyan; Lu, Qisheng; Xu, Xiaojun

    2015-06-01

    As a new kind of optically pumped gaseous lasers, diode pumped metastable rare gas lasers (OPRGLs) show potential in high power operation. In this paper, a multi-level rate equation based model of OPRGL is established. A qualitative agreement between simulation and Rawlins et al.'s experimental result shows the validity of the model. The key parameters' influences and energy distribution characteristics are theoretically studied, which is useful for the optimized design of high efficient OPRGLs. PMID:26072754

  3. High-efficiency laser dyes for high-energy dye lasers. Interim technical report No. 15, 1 June 1989-31 May 1990

    SciTech Connect

    Pavlopoulos, T.G.; Boyer, J.H.

    1989-01-01

    There is great demand for high-efficiency, high-energy, high-repetition-rate, wavelength-tunable lasers for many industrial and scientific applications. There is presently no laser available that both fulfills these requirements and operates in the near-ultraviolet/visible/near-infrared region of the spectrum. Dye lasers, operating with improved laser dyes, are the best near-term prospects to fill the void. Among dye lasers, those which employ flashlamps as excitation sources are technically simple and therefore relatively inexpensive. They also convert electric power most efficiently into laser light. Coaxial and linear flashlamps are available. Linear flashlamps are the least expensive. However, when a single linear flashlamp is used, dye lasers are difficult to upscale much beyond 10-Joules/pulse outputs. This results from the necessity of employing flashlamps with steep risetimes (in the microsecond range and less) to obtain laser action from the laser dye. Flashlamps meeting this stringent requirement are difficult to build for operation above 1000 Joules.

  4. Small signal gain measurement of liquid oxygen under different wavelength laser pump

    NASA Astrophysics Data System (ADS)

    Shi, Zhe; Li, Hui; Zhou, Canhua; Liu, Jinbo; Cai, Xianglong; Hu, Shu; Gai, Baodong; Zhou, Dongjian; Liu, Dong; Guo, Jingwei; Jin, Yuqi

    2015-02-01

    Oxygen molecules existed in pairs under liquid condition, the radiation from vibrational ground state of 1 ? state to the first vibrational excited state of 3 ? state was electronic dipole moment transition allowed, and a photon with wavelength of 1580 nm was emitted. In our experiment, dye laser with wavelength of 581 nm, 634 nm, 764 nm was used to excite liquid oxygen to different excited states, while a tunable OPO was used as the seeder laser, and the small signal gain was measured to be 0.23 cm-1, 0.3 cm-1 and 0.076 cm-1 respectively. The small signal gain (pump by photon of 634 nm) was significantly higher than that of common solid state lasers and chemical lasers. When the fundamental output of a Q-switched Nd:YAG laser was used as the pump source, the corresponding small signal gain was 0.12 cm-1. The profiles of small signal gain form 1579.2 nm to 1580.8 nm were also presented. These results were consistent with theoretical calculation. The high positive gain indicated that the liquid oxygen was a potential medium for high energy laser. A comprehensive parameter optimization was still necessary in order to improve the mall signal gain.

  5. Application of reactor-pumped lasers to power beaming

    SciTech Connect

    Repetti, T.E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technially or economically competitive with more mature solid-state technologies for application to power beaming. 58 refs.

  6. Application of reactor-pumped lasers to power beaming

    NASA Astrophysics Data System (ADS)

    Repetti, T. E.

    1991-10-01

    Power beaming is the concept of centralized power generation and distribution to remote users via energy beams such as microwaves or laser beams. The power beaming community is presently performing technical evaluations of available lasers as part of the design process for developing terrestrial and space-based power beaming systems. This report describes the suitability of employing a nuclear reactor-pumped laser in a power beaming system. Although there are several technical issues to be resolved, the power beaming community currently believes that the AlGaAs solid-state laser is the primary candidate for power beaming because that laser meets the many design criteria for such a system and integrates well with the GaAs photodiode receiver array. After reviewing the history and physics of reactor-pumped lasers, the advantages of these lasers for power beaming are discussed, along with several technical issues which are currently facing reactor-pumped laser research. The overriding conclusion is that reactor-pumped laser technology is not presently developed to the point of being technically or economically competitive with more mature solid-state technologies for application to power beaming.

  7. Feasibility of supersonic diode pumped alkali lasers: Model calculations

    NASA Astrophysics Data System (ADS)

    Barmashenko, B. D.; Rosenwaks, S.

    2013-04-01

    The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  8. Feasibility of supersonic diode pumped alkali lasers: Model calculations

    SciTech Connect

    Barmashenko, B. D.; Rosenwaks, S.

    2013-04-08

    The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  9. Novel laterally pumped by prism laser configuration for compact solid-state lasers

    NASA Astrophysics Data System (ADS)

    Dascalu, T.; Salamu, G.; Sandu, O.; Voicu, F.; Pavel, N.

    2013-05-01

    We propose a new laser configuration in which the pump radiation is coupled into the laser crystal through a prism. The laser medium is square shaped and the prism is attached on one of its lateral sides, near one of the crystal extremities. The diode-laser fiber end is placed close to the prism hypotenuse, the pump radiation is coupled into the laser crystal through the opposite surface of the prism and propagates into the crystal through total internal reflections. This laser geometry is simple to align and permits the realization of compact diode-pumped laser systems, as well as power scaling. A diode-pumped Nd:YAG laser yielding pulses of 2.1 mJ energy under a pump with pulses of 9.9 mJ is demonstrated. The laser slope efficiency is 0.22. Furthermore, this geometry enables one to obtain passively Q-switched lasers with the saturable absorber crystal placed between the resonator high-reflectivity mirror and the laser crystal. A Nd:YAG laser, passively Q-switched by a Cr4+:YAG crystal with initial transmission T0 = 0.90, delivering laser output with a pulsed energy of 93 ?J, a duration of 26 ns and a pump threshold of 1.9 mJ, is realized in order to prove the concept.

  10. Laser performance of Coumarin 540A dye molecules in polymeric host media with different viscosities: From liquid solution to solid polymer matrix

    SciTech Connect

    Costela, A.; Garcia-Moreno, I.; Barroso, J.; Sastre, R.

    1998-01-01

    Photophysical parameters and lasing properties of Coumarin 540A dye molecules are studied in solutions of increasing viscosity, from liquid solutions in 1,4-dioxane to solid solutions in poly(methyl methacrylate). The fluorescence quantum yield and lasing efficiencies decrease as the viscosity of the solution increases, reflecting the strong influence of the rigidity of the medium on the radiative processes. The photodegradation mechanisms acting on the fluorophores are analyzed by following the dependence of laser induced fluorescence and laser output on the number of pump laser pulses. The fluorescence redistribution after pattern photobleaching technique is used, and Fick{close_quote}s second law is applied to study the diffusion of dye molecules in the highly viscous polymer solutions. The diffusion coefficients of the dye molecules as a function of the increased viscosity of the medium are determined. {copyright} {ital 1998 American Institute of Physics.}

  11. Four-Pass Coupler for Laser-Diode-Pumped Solid-State Laser

    NASA Technical Reports Server (NTRS)

    Coyle, Donald B.

    2008-01-01

    A four-pass optical coupler affords increased (in comparison with related prior two-pass optical couplers) utilization of light generated by a laser diode in side pumping of a solid-state laser slab. The original application for which this coupler was conceived involves a neodymium-doped yttrium aluminum garnet (Nd:YAG) crystal slab, which, when pumped by a row of laser diodes at a wavelength of 809 nm, lases at a wavelength of 1,064 nm. Heretofore, typically, a thin laser slab has been pumped in two passes, the second pass occurring by virtue of reflection of pump light from a highly reflective thin film on the side opposite the side through which the pump light enters. In two-pass pumping, a Nd:YAG slab having a thickness of 2 mm (which is typical) absorbs about 84 percent of the 809-nm pump light power, leaving about 16 percent of the pump light power to travel back toward the laser diodes. This unused power can cause localized heating of the laser diodes, thereby reducing their lifetimes. Moreover, if the slab is thinner than 2 mm, then even more unused power travels back toward the laser diodes. The four-pass optical coupler captures most of this unused pump light and sends it back to the laser slab for two more passes. As a result, the slab absorbs more pump light, as though it were twice as thick. The gain and laser cavity beam quality of a smaller laser slab in conjunction with this optical coupler can thus be made comparable to those of a larger two-pass-pumped laser slab.

  12. Study of the mechanism of dye laser intracavity absorption

    SciTech Connect

    Kumar, P.

    1980-01-01

    The process of Intracavity Absorption (ICA) in a cw multimode dye laser is studied in an attempt to look for a possible mechanism of the process. An atomic beam of barium is used as an absorber because it very closely represents a two level atom, simplifying the interpretation of the data. The line shape of the signals observed by intracavity absorption is complex consisting of both absorption and enhancement features. The detailed line shape depends upon the absorber density in the path of the laser and the total optical power in the laser cavity. In the high absorber density and low cavity power regime, absorption feature is predominant whereas at low absorber density and high cavity power enhancement is observed. The absorber density and the cavity power dependence of the enhancement and the absorption features is experimentally determined. The line shape also depends upon the laser scan rate across the adsorption profile. All these results disagree with the existing steady state rate equation models. The newly developed Super-Regen model seems successful in qualitatively predicting the observed line shapes and the time dependent behavior. When the laser is not wavelength scanned, spectral condensation and locking of the laser to the absorption line occurs. This is termed as the Enhancement Effect. The enhancement signal is found to increase linearly with the absorber density at low densities, rises exponentially and then saturates at the highest densities used. Also the laser beam waist in the long leg of the cavity is found to be larger for frequencies locked to the absorption line compared to the ones away from it. No satisfactory explanation of the phenomenon is available at the present time.

  13. Photophysical parameters and fluorescence quenching of 7-diethylaminocoumarin (DEAC) laser dye

    NASA Astrophysics Data System (ADS)

    El-Mossalamy, E. H.; Obaid, A. Y.; El-Daly, S. A.

    2011-10-01

    The optical properties including electronic absorption spectrum, emission spectrum, fluorescence quantum yield, and dipole moment of electronic transition of 7-diethylaminocoumarin (DEAC) laser dye have been measured in different solvents. Both electronic absorption and fluorescence spectra are red shifted as the polarity of the medium increases, indicating that the dipole moment of molecule increases on excitation. The fluorescence quantum yield of DEAC decreases as the polarity of solvent increases, a result of the role of solvent polarity in stabilization of the twisting of the intramolecular charge transfer (TICT) in excited state, which is a non-emissive state, as well as hydrogen bonding with the hetero-atom of dye. The emission spectrum of DEAC has also been measured in cationic (CTAC) and anionic (SDS) micelles, the intensity increases as the concentration of surfactant increases, and an abrupt change in emission intensity is observed at critical micelle concentration (CMC) of surfactant. 210 -3 mol dm -3 of DEAC gives laser emission in the blue region on pumping with nitrogen laser ( ?ex=337.1 nm). The laser parameters such as tuning range, gain coefficient ( ?), emission cross section ( ?e), and half-life energy have been calculated in different solvents, namely acetone, dioxane , ethanol, and dimethyforamide (DMF). The photoreactivity of DEAC has been studied in CCl 4 at a wavelength of 366 nm. The values of photochemical yield ( ?c) and rate constant ( k) are determined. The interaction of organic acceptors such as picric acid (PA), tetracyanoethylene (TCNE), and 7,7,8,8-tetracynoquinonedimethane (TCNQ) with DEAC is also studied using fluorescence measurements in acetonitrile (CH 3CN); from fluorescence quenching study we assume the possible electron transfer from excited donor DEAC to organic acceptor forming non-emissive exciplex.

  14. Output power characteristics of diode-pumped cesium vapor laser

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Nagaoka, Ryuji; Nagaoka, Hiroki; Nagai, Toru; Wani, Fumio

    2015-12-01

    We examine the output power as a function of the cesium vapor density in a diode-pumped cesium vapor laser. Since the pump light bandwidth of our apparatus is considerably wider than the absorption bandwidth, a fair amount of the pump power is unabsorbed. An optical-to-optical conversion efficiency of 70% is observed with respect to the absorbed pump power. Beyond a certain point, the output power starts to reduce despite linear increase in absorption power along with increase in the Cs number density. We perform a numerical simulation to study the observed phenomena, and it is found that spontaneous emission from the upper laser level is the main channel of the pump power loss.

  15. Passively Q-switched side pumped monolithic ring laser

    NASA Technical Reports Server (NTRS)

    Li, Steven X. (Inventor)

    2012-01-01

    Disclosed herein are systems and methods for generating a side-pumped passively Q-switched non-planar ring oscillator. The method introduces a laser into a cavity of a crystal, the cavity having a round-trip path formed by a reflection at a dielectrically coated front surface, a first internal reflection at a first side surface of the crystal at a non-orthogonal angle with the front, a second internal reflection at a top surface of the crystal, and a third internal reflection at a second side surface of the crystal at a non-orthogonal angle with the front. The method side pumps the laser at the top or bottom surface with a side pump diode array beam and generates an output laser emanating at a location on the front surface. The design can include additional internal reflections to increase interaction with the side pump. Waste heat may be removed by mounting the crystal to a heatsink.

  16. Quantum statistics of a squeezed-pump laser

    SciTech Connect

    Marte, M.A.; Ritsch, H.; Walls, D.F.

    1988-08-29

    A laser with squeezed-pump fluctuations is found to oscillate with one of two macroscopically distinct phases. The phase diffusion rate is reduced below that of the usual laser and the output light may have amplitude fluctuations reduced below the vacuum level.

  17. Optimization of laser fibers for high pump light absorption

    NASA Astrophysics Data System (ADS)

    Bierlich, Jörg; Kobelke, Jens; Jetschke, Sylvia; Grimm, Stephan; Unger, Sonja; Schuster, Kay

    2014-03-01

    For the implementation of novel fiber laser concepts, such as extra-large mode area (X-LMA) fiber lasers or multi-core fiber lasers alternative manufacturing processes for highly-doped silica glasses and the laser fibers fabricated from it are required. For efficient laser operation a high absorption of pump power in the active fiber core is a necessary condition. To increase the pump light absorption the fiber development aimed at the preparation of laser-active and adapted passive single-large core fibers up to multi-core structures with 7 large cores showing broken circular fiber symmetry. The optimization of the optical fibers which will be shown in detail is based on the combination of several innovative manufacturing methods such as the powder sintering technology (REPUSIL), the preform preparation by stack-and-draw technique and the fiber drawing process. The described procedure is particularly suitable to produce multifilament glass preforms resp. laser fibers with large cores in which the radial and lateral indices of refraction can be adjusted homogeneously and reproducibly. Due to the realized increase of the laser-active core volume in these fibers the pump light absorption could be considerably increased and the resulting shorter fiber length allows the use of fibers with a moderate attenuation. The results concerning the characterization of materials science and the optical aspects e. g. the dopant concentration distributions and related refractive index profiles as well attenuation and pump absorption spectra will be presented.

  18. COMPUTER MODEL OF TEMPERATURE DISTRIBUTION IN OPTICALLY PUMPED LASER RODS

    NASA Technical Reports Server (NTRS)

    Farrukh, U. O.

    1994-01-01

    Managing the thermal energy that accumulates within a solid-state laser material under active pumping is of critical importance in the design of laser systems. Earlier models that calculated the temperature distribution in laser rods were single dimensional and assumed laser rods of infinite length. This program presents a new model which solves the temperature distribution problem for finite dimensional laser rods and calculates both the radial and axial components of temperature distribution in these rods. The modeled rod is either side-pumped or end-pumped by a continuous or a single pulse pump beam. (At the present time, the model cannot handle a multiple pulsed pump source.) The optical axis is assumed to be along the axis of the rod. The program also assumes that it is possible to cool different surfaces of the rod at different rates. The user defines the laser rod material characteristics, determines the types of cooling and pumping to be modeled, and selects the time frame desired via the input file. The program contains several self checking schemes to prevent overwriting memory blocks and to provide simple tracing of information in case of trouble. Output for the program consists of 1) an echo of the input file, 2) diffusion properties, radius and length, and time for each data block, 3) the radial increments from the center of the laser rod to the outer edge of the laser rod, and 4) the axial increments from the front of the laser rod to the other end of the rod. This program was written in Microsoft FORTRAN77 and implemented on a Tandon AT with a 287 math coprocessor. The program can also run on a VAX 750 mini-computer. It has a memory requirement of about 147 KB and was developed in 1989.

  19. An optically pumped carbon monoxide laser operating at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Ivanov, E.; Frederickson, K.; Leonov, S.; Lempert, W. R.; Adamovich, I. V.; Rich, J. W.

    2013-09-01

    A flowing gas, optically pumped, CO laser has been designed and built. The laser has been made to operate on the fundamental (?5 ?m) infrared bands of the CO vibrational states. The laser is powered by absorption of continuous wave radiation from an electric-discharge-excited CO laser. With this system, the kinetics of the establishment and maintenance of strong population inversions in CO at temperatures above 300 K is studied, independently of the complications of the electron impact processes and of other chemical channels which are present in electric discharge CO lasers. Lasing is obtained at temperatures up to 450 K, well above the cryogenic operating temperatures of conventional electric discharge CO lasers. The vibrational population distribution in the optically pumped laser is measured and the laser output power is determined as a function of the system operating parameters. Laser power conversion factors up to 14% have been observed. An optically pumped CO laser kinetic model is used to analyze the experimental results, providing insight into the details of secondary lasing kinetics.

  20. Linewidth characteristics of Raman-shifted dye laser output at 720 and 940 nm

    NASA Technical Reports Server (NTRS)

    Grossmann, B. E.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.; Higdon, N. S.

    1986-01-01

    A compact and simple simultaneous multi-wavelength dye laser cavity was developed for a differential absorption technique. Dielectric multilayer interference filters were inserted inside the cavities as tuning elements, and two types of a DIAL system were constucted by using the dye laser tuned with dielectric multilayer filters to measure NO2 concentration. The usefulness of this dye laser was clarified for the differential absoroption technique in outdoor experiments. Some basic designs of the laser cavity with these filters to get simultaneously multi-wavelength output are summarized.

  1. Compact VCSEL pumped Q-switched Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Cole, Brian; Hays, Alan; McIntosh, Chris; Nettleton, John; Goldberg, Lew

    2012-03-01

    We have explored using 808nm Vertical Cavity Surface emitting laser (VCSEL) arrays for end-pumping of Nd:YAG lasers. A variety of laser designs were explored including a compact passively Q-switched lasers that produced a 22mJ pulse having a pulse width of <1.5ns, and an actively Q-switched laser that produced a 40mJ pulse having a 7 ns pulse width. The VCSEL pumped actively Q-switched laser was used as a source for sum frequency generation. Using a 2mm type II KTP and 3mm type I LBO, we generated greater than 5mJ at 355nm with a 21% THG conversion efficiency.

  2. Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method

    SciTech Connect

    Savage-Leuchs; Matthias P.

    2009-05-26

    Apparatus and method for collimating pump light of a first wavelength from laser diode(s) into a collimated beam within an enclosure having first and second optical ports, directing pump light from the collimated beam to the first port; and directing signal light inside the enclosure between the first and second port. The signal and pump wavelengths are different. The enclosure provides a pump block having a first port that emits pump light to a gain fiber outside the enclosure and that also passes signal light either into or out of the enclosure, and another port that passes signal light either out of or into the enclosure. Some embodiments use a dichroic mirror to direct pump light to the first port and direct signal light between the first and second ports. Some embodiments include a wavelength-conversion device to change the wavelength of at least some of the signal light.

  3. Improving Reliability of High Power Quasi-CW Laser Diode Arrays for Pumping Solid State Lasers

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Meadows, Byron L.; Baker, Nathaniel R.; Barnes, Bruce W.; Baggott, Renee S.; Lockard, George E.; Singh, Upendra N.; Kavaya, Michael J.

    2005-01-01

    Most Lidar applications rely on moderate to high power solid state lasers to generate the required transmitted pulses. However, the reliability of solid state lasers, which can operate autonomously over long periods, is constrained by their laser diode pump arrays. Thermal cycling of the active regions is considered the primary reason for rapid degradation of the quasi-CW high power laser diode arrays, and the excessive temperature rise is the leading suspect in premature failure. The thermal issues of laser diode arrays are even more drastic for 2-micron solid state lasers which require considerably longer pump pulses compared to the more commonly used pump arrays for 1-micron lasers. This paper describes several advanced packaging techniques being employed for more efficient heat removal from the active regions of the laser diode bars. Experimental results for several high power laser diode array devices will be reported and their performance when operated at long pulsewidths of about 1msec will be described.

  4. Diode edge-pumped passively Q-switched microchip laser

    NASA Astrophysics Data System (ADS)

    Kong, Weipeng; Tsunekane, Masaki; Taira, Takunori

    2015-09-01

    There is an increasing demand for high-intensity subnanosecond lasers for emerging industrial applications. While femtosecond and picosecond laser sources are considered promising, they suffer from the significant drawbacks of increased complexity and cost. In this regard, we demonstrate a unique edge-pumped passively Q-switched Nd∶YAG/Cr4+∶YAG microchip laser. The microchip is made of a Nd∶YAG/Sm∶YAG composite ceramic, and a Sm∶YAG cladding is utilized as both the pump beam waveguide and amplified spontaneous emission absorber. With the use of a flat-concave laser cavity, we obtain single-pulse energy of 1.66 mJ for an absorbed pump energy of 24 mJ. Further, the resulting pulse width is 683 ps, and the repetition rate is 10 Hz.

  5. Geometrical transformation of linear diode-laser arrays for longitudinal pumping of solid-state lasers

    SciTech Connect

    Leger, J.R.; Goltsos, W.C.

    1992-05-26

    A 200-stripe linear diode-laser array is geometrically transformed into a two-dimensional, symmetric virtual source with symmetric divergence to end-pump a Nd:YAG laser. The geometrical transformation is performed by two planes of diffractive optical elements separated by a 2.6-cm gap. Discounting optical losses, a TEM00-mode slope efficiency of 56 percent is demonstrated. Methods of increasing the throughput efficiency of the diffractive elements (currently approximately 50 percent per element) re explored. A theoretical model for estimating the maximum useful pump array size in longitudinally pumped rod and fiber lasers shows that this pump geometry is close to optimum.

  6. Cs laser with unstable cavity transversely pumped by multiple diode lasers.

    PubMed

    Zhdanov, B V; Shaffer, M K; Knize, R J

    2009-08-17

    We have demonstrated a Cs vapor laser with an unstable resonator transversely pumped by 15 narrowband laser diode arrays. A slope efficiency of 43%, a total optical efficiency of 31% and a maximum output power 49 W were obtained with a pump power of 157 Watts. PMID:19687954

  7. PicoGreen dye as an active medium for plastic lasers

    NASA Astrophysics Data System (ADS)

    Pradeep, C.; Vallabhan, C. P. G.; Radhakrishnan, P.; Nampoori, V. P. N.

    2015-08-01

    Deoxyribonucleic acid lipid complex thin films are used as a host material for laser dyes. We tested PicoGreen dye, which is commonly used for the quantification of single and double stranded DNA, for its applicability as lasing medium. PicoGreen dye exhibits enhanced fluorescence on intercalation with DNA. This enormous fluorescence emission is amplified in a planar microcavity to achieve yellow lasing. Here the role of DNA is not only a host medium, but also as a fluorescence dequencher. With the obtained results we have ample reasons to propose PicoGreen dye as a lasing medium, which can lead to the development of DNA based bio-lasers.

  8. High power tandem-pumped thulium-doped fiber laser.

    PubMed

    Wang, Yao; Yang, Jianlong; Huang, Chongyuan; Luo, Yongfeng; Wang, Shiwei; Tang, Yulong; Xu, Jianqiu

    2015-02-01

    We propose a cascaded tandem pumping technique and show its high power and high efficient operation in the 2-?m wavelength region, opening up a new way to scale the output power of the 2-?m fiber laser to new levels (e.g. 10 kW). Using a 1942 nm Tm(3+) fiber laser as the pump source with the co- (counter-) propagating configuration, the 2020 nm Tm(3+) fiber laser generates 34.68 W (35.15W) of output power with 84.4% (86.3%) optical-to-optical efficiency and 91.7% (92.4%) slope efficiency, with respect to launched pump power. It provides the highest slope efficiency reported for 2-?m Tm(3+)-doped fiber lasers, and the highest output power for all-fiber tandem-pumped 2-?m fiber oscillators. This system fulfills the complete structure of the proposed cascaded tandem pumping technique in the 2-?m wavelength region (~1900 nm ? ~1940 nm ? ~2020 nm). Numerical analysis is also carried out to show the power scaling capability and efficiency of the cascaded tandem pumping technique. PMID:25836159

  9. High average power diode pumped solid state lasers for CALIOPE

    SciTech Connect

    Comaskey, B.; Halpin, J.; Moran, B.

    1994-07-01

    Diode pumping of solid state media offers the opportunity for very low maintenance, high efficiency, and compact laser systems. For remote sensing, such lasers may be used to pump tunable non-linear sources, or if tunable themselves, act directly or through harmonic crystals as the probe. The needs of long range remote sensing missions require laser performance in the several watts to kilowatts range. At these power performance levels, more advanced thermal management technologies are required for the diode pumps. The solid state laser design must now address a variety of issues arising from the thermal loads, including fracture limits, induced lensing and aberrations, induced birefringence, and laser cavity optical component performance degradation with average power loading. In order to highlight the design trade-offs involved in addressing the above issues, a variety of existing average power laser systems are briefly described. Included are two systems based on Spectra Diode Laboratory`s water impingement cooled diode packages: a two times diffraction limited, 200 watt average power, 200 Hz multi-rod laser/amplifier by Fibertek, and TRW`s 100 watt, 100 Hz, phase conjugated amplifier. The authors also present two laser systems built at Lawrence Livermore National Laboratory (LLNL) based on their more aggressive diode bar cooling package, which uses microchannel cooler technology capable of 100% duty factor operation. They then present the design of LLNL`s first generation OPO pump laser for remote sensing. This system is specified to run at 100 Hz, 20 nsec pulses each with 300 mJ, less than two times diffraction limited, and with a stable single longitudinal mode. The performance of the first testbed version will be presented. The authors conclude with directions their group is pursuing to advance average power lasers. This includes average power electro-optics, low heat load lasing media, and heat capacity lasers.

  10. Investigation of radial temperature gradients in diode pumped alkali lasers using tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fox, Charles D.; Perram, Glen P.

    2012-03-01

    Heat loads in Diode Pumped Alkali Lasers (DPAL) have been investigated using a diode laser to probe the radial dependence of the absorbance. A TiS pump laser heats the medium in a T=50-100C cesium heat pipe with 5 Torr nitrogen used for quenching. A tunable diode laser probes the spectral absorbance of the cesium cell. Local alkali concentration, temperature, and saturation broadening modify Voigt lineshapes in the wing of the hyperfine split lines. The temperature within the pumped volume exceeds the wall temperature by almost 200 C.

  11. A modular, reconfigurable-cavity, pulsed dye laser for the advanced undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Sohl, John E.; Payton, Stephen G.

    1997-07-01

    The modular pulsed dye laser described is extremely easy to build, is quickly reconfigurable into different laser cavity designs, and is usable for experiments in spectroscopy. The laser can be constructed with readily available optical components and simple hand tools. This laser is designed primarily to illustrate the performance differences of three different dye laser cavity designs: the Littrow grating (Hnsch) cavity, and both the single- and double-grating grazing incidence cavities. In the double-grating configuration, the laser's linewidth of 0.007 nm is on the order of ten times narrower than many commercially available pulsed dye lasers. Thus the laser also has excellent performance as a spectroscopic tool. Construction, typical performance, and application details are described.

  12. Tunable ultraviolet co-doped dye laser of Pyrromethene 597 and Rhodamine 610

    NASA Astrophysics Data System (ADS)

    Lu, Zhenzhong; Sun, Yanling; Ma, Lin; Liu, Jifang

    2015-12-01

    The laser performance of Pyrromethene 597 (PM597) and Rhodamine 610 mixture is studied. A wide tuning range from 580 to 655?nm is achieved. The laser linewidth obtained is less than 0.1?nm. The highest conversion efficiency of 42.5% is obtained at 600?nm. Using a beta-BaB2O4 (BBO) crystal to frequency double the dye laser into ultraviolet (UV), a tuning range from 296 to 324?nm is obtained. The peak conversion efficiency from the dye laser to the UV laser is 9.7% and the highest UV laser output energy is 9.51 mJ at 301.25?nm. To the best of our knowledge, the tuning range and the conversion efficiency are the best under the same condition so far. All our results indicate that high laser performance can be achieved using a laser dyes mixture.

  13. Single-frequency diode-pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Bollig, Christoph

    1997-11-01

    The work discussed in this thesis covers two broad areas: Novel techniques for the single-frequency operation of miniature, diode-pumped solid-state lasers and the high- power (i.e. multi-watt) operation of diode-bar end-pumped lasers in the eyesafe 2 ?m wavelength region. A monolithic Nd-doped phosphate glass laser is described, in which unidirectional, hence single-frequency operation is enforced by the acousto-optic effect in the laser medium. The loss difference for the two counter- propagating waves relies on an acousto-optic self- feedback mechanism which can yield high loss differences even for very small diffraction efficiencies. Reliable single-frequency output is maintained indefinitely with an applied radio-frequency power of 0.2 W. Single- frequency output powers up to 30 mW for 400 mW of pump power are demonstrated. A technique is developed which facilitates reliable single-frequency operation of actively Q-switched lasers at repetition rates beyond the inverse lifetime of the upper laser level. Stable single-frequency operation of a Q-switched laser requires the initial establishment of a stable prelase which is free from spiking. Relying on the natural decay of spiking limits repetition rates and hence average power. Using feedback suppression of spiking, a Q-switched Nd:YAG laser is demonstrated which operates on a single frequency at repetition rates up to 25 kHz, with 88% of available cw power extracted. In the second part of this thesis, the high-power operation of diode-bar end-pumped solid-state lasers operating in the eyesafe 2 ?m wavelength region is discussed. Efficient operation of a Tm:YAG laser end- pumped by a beam-shaped 20 W diode bar is demonstrated. At a mount temperature of 20oC an output beam of 4.1 W with M2 values of 1.2 and 1.4 in the orthogonal planes is obtained for 13.5 W of diode power incident on the rod. This laser is then used to intracavity-pump a Ho:YAG laser, which avoids the upconversion problems usually associated with Tm3+-Ho3+-codoped lasers. At a mount temperature of 10oC for both the Tm:YAG and the Ho:YAG rods, an output power of the Ho:YAG of up to 2.1 W at 2097 nm is obtained for 9.2 W of diode power incident on the Tm:YAG rod.

  14. Potential of solar-simulator-pumped alexandrite lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, Russell J.

    1990-01-01

    An attempt was made to pump an alexandrite laser rod using a Tamarak solar simulator and also a tungsten-halogen lamp. A very low optical laser cavity was used to achieve the threshold minimum pumping-power requirement. Lasing was not achieved. The laser threshold optical-power requirement was calculated to be approximately 626 W/sq cm for a gain length of 7.6 cm, whereas the Tamarak simulator produces 1150 W/sq cm over a gain length of 3.3 cm, which is less than the 1442 W/sq cm required to reach laser threshold. The rod was optically pulsed with 200 msec pulses, which allowed the alexandrite rod to operate at near room temperature. The optical intensity-gain-length product to achieve laser threshold should be approximately 35,244 solar constants-cm. In the present setup, this product was 28,111 solar constants-cm.

  15. High Power 938nm Cladding Pumped Fiber Laser

    SciTech Connect

    Dawson, J; Beach, R; Brobshoff, A; Liao, Z; Payne, S; Pennington, D; Taylor, L; Hackenberg, W; Bonaccini, D

    2002-12-26

    We have developed a Nd:doped cladding pumped fiber amplifier, which operates at 938nm with greater than 2W of output power. The core co-dopants were specifically chosen to enhance emission at 938nm. The fiber was liquid nitrogen cooled in order to achieve four-level laser operation on a laser transition that is normally three level at room temperature, thus permitting efficient cladding pumping of the amplifier. Wavelength selective attenuation was induced by bending the fiber around a mandrel, which permitted near complete suppression of amplified spontaneous emission at 1088nm. We are presently seeking to scale the output of this laser to 10W. We will discuss the fiber and laser design issues involved in scaling the laser to the 10W power level and present our most recent results.

  16. Efficiency of continuous-wave solar pumped semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Johnson, Stanley; Küppers, Franko; Pau, Stanley

    2013-04-01

    We report the results of an efficient solar pumped semiconductor laser system that uses high efficiency multi-junction photovoltaic cells and laser diodes in order to achieve the sunlight to laser light conversion efficiency of over 10% without any active cooling and concentration optics. Semiconductor lasers with wavelength from 445 nm to 1550 nm are powered directly by an array of photovoltaic (PV) cells under one sun illumination (100 mW/cm2). The maximum energy efficiency reaches 10.34% at 976 nm with an output power of 4.31 W. This system is inherently more efficient than direct solar pumped lasers that have been studied in the past and could play a key role in future renewable energy production and power beaming applications.

  17. Random laser action in dye doped nanoporous polymeric film

    NASA Astrophysics Data System (ADS)

    L, Jiantao; Fan, Ting; Chen, Guojie

    2015-12-01

    We report on the demonstration of random lasing action in dye doped nanoporous polymer films fabricated by spin-coating method. Through the photoluminescence experiment we found that the multimode lasing occurs due to the multiple light scattering processes, while the holes distributed randomly in the samples play the role of scattering centers. Above the lasing threshold, some discrete peaks with a linewidth less than 0.4 nm emerge upon the broad spontaneous band and the system shows the linear input-output characteristics. The lasing threshold and slope efficiency show a dependence on the diameter of the holes. Our work enriches the field of organic random lasers and brings out a new type of active disordered medium.

  18. Pump-controlled modal interactions in microdisk lasers

    NASA Astrophysics Data System (ADS)

    Liew, Seng Fatt; Ge, Li; Redding, Brandon; Solomon, Glenn S.; Cao, Hui

    2015-04-01

    We demonstrate an effective control of nonlinear interactions of lasing modes in a semiconductor microdisk cavity by shaping the pump profile. A target mode is selected at the expense of its competing modes either by increasing their lasing thresholds or suppressing their power slopes above the lasing threshold. Despite the strong spatial overlap of the lasing modes at the disk boundary, adaptive pumping enables an efficient selection of any lasing mode to be the dominant one, leading to a switch of lasing frequency. The theoretical analysis illustrates both linear and nonlinear effects of selective pumping and quantifies their contributions to lasing-mode selection. This work shows that adaptive pumping not only provides a powerful tool to control the nonlinear process in multimode lasers, but also enables the tuning of lasing characteristic after the lasers have been fabricated.

  19. Strong terahertz radiation from air plasmas generated by an aperture-limited Gaussian pump laser beam

    SciTech Connect

    Peng Xiaoyu; Toncian, Toma; Jung, Ralph; Willi, Oswald; Li Chun; Li Yutong; Wang Weimin; Wang Shoujun; Liu Feng; Chen Min; Pukhov, Alexander; Sheng Zhengming; Zhang Jie

    2009-03-09

    Terahertz radiation generated by focusing the fundamental laser pulse and its second harmonic into ambient air strongly saturates with increasing pump laser energy. We demonstrate a simple method to control the Gaussian pump laser beam to improve the output of terahertz radiation with an adjustable aperture. With the optimal aperture-limited pump laser beams, the terahertz wave amplitudes can be enhanced by more than eight times depending on the pump laser parameters than those of aperture-free cases.

  20. Concept of nuclear reactor pumped laser for ICF

    NASA Astrophysics Data System (ADS)

    Dyachenko, Peter P.

    1996-05-01

    It is well known that attempts of civil utilization of fusion energy encounter many difficulties. At the same time we know that creation of thermonuclear weapon had been possible by using of the nuclear fission reaction as ignition of the nuclear fusion. The question arises—can help us similar idea in civil case and how that can be realized? In paper, it is shown that such idea is useful in this case and can be realized using nuclear reactor pumped laser. Contemporary state of research in nuclear reactor pumped laser for ICF field is considered. Progress by IPPE (Obninsk, Russia) in the development of the energy model of pulse reactor pumped laser system with waiting output energy about 50 kJ is reported.

  1. LaRC results on nuclear pumped noble gas lasers

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.

    1979-01-01

    The recent experiment and theoretical results obtained for noble gas nuclear laser systems are presented. It is shown that the noble gas lasers are among the easiest systems to pump by nuclear excitation and as a result, all of the noble gases except He have lased under nuclear excitation. The noble gas systems are not ideal for high-power applications but they do give valuable insight into the operation and pumping mechanisms associated with nuclear lasers. At present, the Ar-Xe system is the best noble gas candidate for (U-235)F6 pumping. It appears that the quenching of Ar-Xe lasing is a result of the fluorine and not the uranium or fission fragments themselves. Thus, to achieve lasing with UF6, a fluorine compatible system must be found.

  2. BRIEF COMMUNICATIONS: Optically pumped ultraviolet BR2 laser

    NASA Astrophysics Data System (ADS)

    Kamrukov, A. S.; Kozlov, N. P.; Protasov, Yu S.; Ushmarov, E. Yu

    1989-12-01

    A report is given of lasing achieved for the first time in optically pumped molecular bromine (D' 3?2g?A' 3?2u, ?L approx 292 nm). It was pumped by thermal vacuum ultraviolet radiation emitted by plasmadynamic discharges of magnetoplasma compressors, formed directly in the laser active medium. An output energy of ~ 1.1 J was obtained per laser pulse of ~ 5-?s duration from a Br2:Ar approx 1:450 active mixture at a pressure of ~ 4 atm. A comparison was made of the experimental output parameters of optically pumped Br2, I2, and XeF (B-X) lasers when their geometries and excitation energies were identical.

  3. Composition and method of preparation of solid state dye laser rods

    DOEpatents

    Hermes, Robert E. (Los Alamos, NM)

    1992-01-01

    The present invention includes solid polymeric-host laser rods prepared using bulk polymerization of acrylic acid ester comonomers which, when admixed with dye(s) capable of supporting laser oscillation and polymerized with a free radical initiator under mild thermal conditions, produce a solid product having the preferred properties for efficient lasing. Unsaturated polymerizable laser dyes can also be employed as one of the comonomers. Additionally, a method is disclosed which alleviates induced optical stress without having to anneal the polymers at elevated temperatures (>85.degree. C.).

  4. Broadly tunable, longitudinally diode-pumped Alexandrite laser

    NASA Astrophysics Data System (ADS)

    Strotkamp, M.; Witte, U.; Munk, A.; Hartung, A.; Gausmann, S.; Hengesbach, S.; Traub, M.; Hoffmann, H.-D.; Hoeffner, J.; Jungbluth, B.

    2014-02-01

    We present design and first performance data of a broadly tunable Alexandrite laser longitudinally pumped by a newly developed high brightness single emitter diode laser module with output in the red spectral range. Replacing the flashlamps, which are usually used for pumping Alexandrite, will increase the efficiency and maintenance interval of the laser. The pump module is designed as an optical stack of seven single-emitter laser diodes. We selected an optomechanical concept for the tight overlay of the radiation using a minimal number of optical components for collimation, e.g. a FAC and a SAC lens, and focusing. The module provides optical output power of more than 14 W (peak pulse output in the focus) with a beam quality of M2 = 41 in the fast axis and M2 = 39 in the slow axis. The Alexandrite crystal is pumped from one end at a repetition rate of 35 Hz and 200μs long pump pulses. The temperature of the laser crystal can be tuned to between 30 °C and 190 °C using a thermostat. The diode-pumped Alexandrite laser reaches a maximum optical-optical efficiency of 20 % and a slope efficiency of more than 30 % in fundamental-mode operation (M2 < 1.10). When a Findlay-Clay analysis with four different output couplers is conducted, the round-trip loss of the cavity is determined to be around 1 %. The wavelength is tunable to between 755 and 788 nm via crystal temperature or between 745 and 805 nm via an additional Brewster prism.

  5. Thermo-optic nonlinearity of the laser dye LDS 867 under low power CW laser excitation

    NASA Astrophysics Data System (ADS)

    Mary, K. A. Ann; Mary, E. J. Sonia; Vidyadharan, Viji; Philip, Reji; Unnikrishnan, N. V.

    2015-02-01

    Thermally induced optical nonlinearity of the laser dye LDS 867 is studied in ethanol solution using the self phase modulation and closed aperture z-scan techniques, employing a continuous wave low power He-Ne laser beam for excitation. The nonlinear optical (NLO) coefficients are obtained by analyzing the z-scan curve on the basis of the thermal lens model. The dye exhibits a negative thermal nonlinearity which can be inferred from the occurrence of a pre-focal peak followed by a post-focal valley in the z-scan. The large nonlinear refractive index (n2) measured at the excitation wavelength of 633nm reveals that the material is NLO active even at low excitation powers of less than 1 mW. Results indicate that LDS 867 is a promising material for optical power limiting applications.

  6. Optically pumped semiconductor lasers for atomic and molecular physics

    NASA Astrophysics Data System (ADS)

    Burd, S.; Leibfried, D.; Wilson, A. C.; Wineland, D. J.

    2015-03-01

    Experiments in atomic, molecular and optical (AMO) physics rely on lasers at many different wavelengths and with varying requirements on spectral linewidth, power and intensity stability. Optically pumped semiconductor lasers (OPSLs), when combined with nonlinear frequency conversion, can potentially replace many of the laser systems currently in use. We are developing a source for laser cooling and spectroscopy of Mg+ ions at 280 nm, based on a frequency quadrupled OPSL with the gain chip fabricated at the ORC at Tampere Univ. of Technology, Finland. This OPSL system could serve as a prototype for many other sources used in atomic and molecular physics.

  7. Diode-pumped high-efficiency Tm:YAG lasers

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Song, Jie; Shen, Deyuan; Kim, Nam Seong; Ueda, Ken-Ichi; Huo, Yujing; He, Shufang; Cao, Yuhui

    1999-01-01

    Eye-safe solid-state lasers that operate at 2 mm wavelength have many applications in medical, remote sensing and military technologies. With a 3-W CW laser-diode pumping, we obtained 760 mW 2.01 mm Tm:YAG laser under CW operation. The slope efficiency was 44% and the optical to optical efficiency reached 36%. In the acousto-optic Q-switched operation, laser pulses with the energy of 1.2mJ and 380 ns FWHM width have been achieved.

  8. Efficient Oscillator for 192-?m Optically Pumped Pulsed Laser

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Qu, Yanchen; Zhao, Weijiang; Zhang, Ruiliang

    2015-09-01

    An efficient cavity oscillator for a 192-?m pulsed laser radiation is presented when pumped with a transverse excited atmospheric (TEA) CO2 laser. A maximum power of 7.1 kW is achieved from a 100-cm cavity. The oscillation behavior of the 192-?m laser has resulted in an increase in energy of 45 % as compared with a mirror-less process and an energy conversion efficiency of 0.1 %. Oscillation characteristics are discussed including the pulse width and time delay. The laser spot size is measured according to the knife-edge scan technique while the output beam quality M2 factor is about 1.33.

  9. Pump and probe spectroscopy with continuous wave quantum cascade lasers

    SciTech Connect

    Kirkbride, James M. R.; Causier, Sarah K.; Dalton, Andrew R.; Ritchie, Grant A. D.; Weidmann, Damien

    2014-02-07

    This paper details infra-red pump and probe studies on nitric oxide conducted with two continuous wave quantum cascade lasers both operating around 5 ?m. The pump laser prepares a velocity selected population in a chosen rotational quantum state of the v = 1 level which is subsequently probed using a second laser tuned to a rotational transition within the v = 2 ? v = 1 hot band. The rapid frequency scan of the probe (with respect to the molecular collision rate) in combination with the velocity selective pumping allows observation of marked rapid passage signatures in the transient absorption profiles from the polarized vibrationally excited sample. These coherent transient signals are influenced by the underlying hyperfine structure of the pump and probe transitions, the sample pressure, and the coherent properties of the lasers. Pulsed pump and probe studies show that the transient absorption signals decay within 1 ?s at 50 mTorr total pressure, reflecting both the polarization and population dephasing times of the vibrationally excited sample. The experimental observations are supported by simulation based upon solving the optical Bloch equations for a two level system.

  10. Diode-Pumped, Q-Switched, Frequency-Doubling Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1993-01-01

    Experimental Q-switched, diode-pumped, intracavity-frequency-doubling laser generates pulses of radiation at wavelength of 532 nm from excitation at 810 nm. Principal innovative feature distinguishing laser from others of its type: pulsed operation of laser at pulse-repetition frequencies higher than reported previously. Folded resonator keeps most of second-harmonic radiation away from Q-switcher, laser crystal, and laser diodes. Folding mirror highly reflective at fundamental laser wavelength and highly transmissive at second-harmonic laser wavelength. By virtue of difference of about 0.6 percent between reflectivities in two polarizations at fundamental wavelength, folding mirror favors polarized oscillation at fundamental wavelength. This characteristic desirable for doubling of frequency in some intracavity crystals.

  11. Graphene surface emitting terahertz laser: Diffusion pumping concept

    SciTech Connect

    Davoyan, Arthur R.; Morozov, Mikhail Yu.; Popov, Vyacheslav V.; Satou, Akira; Otsuji, Taiichi

    2013-12-16

    We suggest a concept of a tunable graphene-based terahertz (THz) surface emitting laser with diffusion pumping. We employ significant difference in the electronic energy gap of graphene and a typical wide-gap semiconductor, and demonstrate that carriers generated in the semiconductor can be efficiently captured by graphene resulting in population inversion and corresponding?THz lasing from graphene. We develop design principles for such a laser and estimate its performance. We predict up to 50?W/cm{sup 2} terahertz power output for 100?kW/cm{sup 2} pump power at frequency around 10?THz at room temperature.

  12. Optimization of rod diameter in solid state lasers side pumped with multiple laser diode arrays

    NASA Technical Reports Server (NTRS)

    Sims, Newton, Jr.; Chamblee, Christyl M.; Barnes, Norman P.; Lockard, George E.; Cross, Patricia L.

    1992-01-01

    Results of a study to determine the optimum laser rod diameter for maximum output energy in a solid state neodymium laser transversely pumped with multiple laser diode arrays are reported here. Experiments were performed with 1.0 mm, 1.5 mm and 2.0 mm rod radii of both neodymium doped Y3Al5O12 (Nd:YAG) and La2Be2O5 (Nd:BeL) pumped with laser diode arrays having a maximum combined energy of 10.5 mJ. Equations were derived which predict the optimum rod radius and corresponding output mirror reflectivity for a given laser material and total pump energy. Predictions of the equations agreed well with the experiments for each of the laser materials which possessed significantly different laser properties from one another.

  13. Nonlinear fibre-optic devices pumped by semiconductor disk lasers

    SciTech Connect

    Chamorovskiy, A Yu; Okhotnikov, Oleg G

    2012-11-30

    Semiconductor disk lasers offer a unique combination of characteristics that are particularly attractive for pumping Raman lasers and amplifiers. The advantages of disk lasers include a low relative noise intensity (-150 dB Hz{sup -1}), scalable (on the order of several watts) output power, and nearly diffraction-limited beam quality resulting in a high ({approx}70 % - 90 %) coupling efficiency into a single-mode fibre. Using this technology, low-noise fibre Raman amplifiers operating at 1.3 {mu}m in co-propagation configuration are developed. A hybrid Raman-bismuth doped fibre amplifier is proposed to further increase the pump conversion efficiency. The possibility of fabricating mode-locked picosecond fibre lasers operating under both normal and anomalous dispersion is shown experimentally. We demonstrate the operation of 1.38-{mu}m and 1.6-{mu}m passively mode-locked Raman fibre lasers pumped by 1.29-{mu}m and 1.48-{mu}m semiconductor disk lasers and producing 1.97- and 2.7-ps pulses, respectively. Using a picosecond semiconductor disk laser amplified with an ytterbium-erbium fibre amplifier, the supercontinuum generation spanning from 1.35 {mu}m to 2 {mu}m is achieved with an average power of 3.5 W. (invited paper)

  14. Diode-Pumped Mode-Locked LiSAF Laser

    SciTech Connect

    1996-02-01

    Under this contract we have developed Cr{sup 3+}:LiSrAlF{sub 6} (Cr:LiSAF, LiSAF) mode-locked lasers suitable for generation of polarized electrons for CEBAF. As 670 nm is an excellent wavelength for optical pumping of Cr:LiSAF, we have used a LIGHTWAVE developed 670 nm diode pump module that combines the output of ten diode lasers and yields approximately 2 Watts of optical power. By the use of a diffraction limited pump beam however, it is possible to maintain a small mode size through the length of the crystal and hence extract more power from Cr:LiSAF laser. For this purpose we have developed a 1 Watt, red 660nm laser (LIGHTWAVE model 240R) which serves as an ideal pump for Cr:LiSAF and is a potential replacement of costly and less robust krypton laser. This new system is to compliment LIGHTWAVE Series 240, and is currently being considered for commercialization. Partially developed under this contract is LIGHTWAVEs product model 240 which has already been in our production lines for a few months and is commercially available. This laser produces 2 Watts of output at 532 nm using some of the same technology developed for production of the 660nm red system. It is a potential replacement for argon ion lasers and has better current and cooling requirements and is an excellent pump source for Ti:Al{sub 2}O{sub 3}. Also, as a direct result of this contract we now have the capability of commercially developing a mode-locked 100MHz Cr:LiSAF system. Such a laser could be added to our 100 MHz LIGHTWAVE Series 131. The Series 131 lasers provide pico second pulses and were originally developed under another DOE SBIR. Both models of LIGHTWAVE Series 240 lasers, the fiber coupled pump module and the 100MHz LiSAF laser of Series 131 have been partially developed under this contract, and are commercially competitive products.

  15. Temperature distribution of laser crystal in LD end-pumped Nd:YAG/LBO blue laser

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zheng, Yibo; Li, Simian; Jia, Liping; Kang, Junjian

    2012-11-01

    In this study, LD end-pumped Nd:YAG/LBO solid state blue laser is realized by even hollow cavity. A thermal distribution model of Nd:YAG crystal is established. Based on the calculation, the temperature distribution of laser crystal is obtained. The results show that the temperature decreases from the pump end to the launch end exponentially. When the pumping power is 10 W and the radius of pumping beams is 240?m, a biggest output power 1.06 W of blue light is achieved, giving an optical conversion efficiency of 10.6%.

  16. Development of an optical parametric generator with pulsed dye amplification for high-resolution laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Bhuiyan, A. H.; Richardson, D. R.; Naik, S. V.; Lucht, R. P.

    2009-03-01

    An injection-seeded optical parametric generator (OPG), coupled with three pulsed dye amplification (PDA) stages, was shown to produce tunable, narrow linewidth laser radiation. The OPG was composed of a pair of beta barium borate ( ?-BBO) crystals and pumped by the third harmonic (355 nm) output of a seeded Nd:YAG laser. The OPG was injection-seeded at the idler wavelength (824 nm) using an external cavity diode laser (ECDL) with a mode-hop-free tuning range of 20 GHz. Using the PDA stages, the OPG output signal (624 nm) was amplified to 19 mJ/pulse, while maintaining a spectral linewidth of approximately 160 MHz at full-width-half-maximum (FWHM) which was within a factor of 2 of the Fourier limit. A system of lenses and apertures was used to minimize amplified spontaneous emission (ASE) in the PDA stages. Using the OPG/PDA system, two-photon laser-induced fluorescence measurements of atomic oxygen were performed by sum-frequency-mixing the 624-nm beam with the third harmonic output of the seeded Nd:YAG laser to generate approximately 1 mJ/pulse of ultraviolet radiation near 226 nm. Voigt line shapes were found to be in good agreement with oxygen atom spectra in atmospheric-pressure, laminar, counter-flow flames; the magnitude of Doppler and collisional broadening was approximately the same. The measured O-atom concentration profile was found to compare well with that calculated using an opposed-flow flame code.

  17. Measuring the Dispersion Curve of a PMMA-Fibre Optic Cable Using a Dye Laser

    ERIC Educational Resources Information Center

    Zorba, Serkan; Farah, Constantine; Pant, Ravi

    2010-01-01

    An advanced undergraduate laboratory experiment is outlined which uses a dye laser to map out the chromatic dispersion curve of a polymethyl methacrylate (PMMA) optical fibre. Seven different wavelengths across the visible spectrum are employed using five different dyes. The light pulse is split into two pulses, one to a nearby photodetector and…

  18. Measuring the Dispersion Curve of a PMMA-Fibre Optic Cable Using a Dye Laser

    ERIC Educational Resources Information Center

    Zorba, Serkan; Farah, Constantine; Pant, Ravi

    2010-01-01

    An advanced undergraduate laboratory experiment is outlined which uses a dye laser to map out the chromatic dispersion curve of a polymethyl methacrylate (PMMA) optical fibre. Seven different wavelengths across the visible spectrum are employed using five different dyes. The light pulse is split into two pulses, one to a nearby photodetector and

  19. Infantile hemangioma: pulsed dye laser versus surgical therapy

    NASA Astrophysics Data System (ADS)

    Remlova, E.; Dostalova, T.; Michalusova, I.; Vranova, J.; Jelinkova, H.; Hubacek, M.

    2014-05-01

    Hemangioma is a mesenchymal benign tumor formed by blood vessels. Anomalies affect up to 10% of children and they are more common in females than in males. The aim of our study was to compare the treatment efficacy, namely the curative effect and adverse events, such as loss of pigment and appearance of scarring, between classical surgery techniques and laser techniques. For that reason a group of 223 patients with hemangioma was retrospectively reviewed. For treatment, a pulsed dye laser (PDL) (Rhodamine G, wavelength 595 nm, pulsewidth between 0.45 and 40 ms, spot diameter 7 mm, energy density 9-11 J cm-2) was used and the results were compared with a control group treated with classical surgical therapy under general anesthesia. The curative effects, mainly number of sessions, appearance of scars, loss of pigment, and relapses were evaluated as a marker of successful treatment. From the results it was evident that the therapeutic effects of both systems are similar. The PDL was successful in all cases. The surgery patients had four relapses. Classical surgery is directly connected with the presence of scars, but the system is safe for larger hemangiomas. It was confirmed that the PDL had the optimal curative effect without scars for small lesions (approximately 10 mm). Surgical treatment under general anesthesia is better for large hemangiomas; the disadvantage is the presence of scars.

  20. Skin welding using pulsed laser radiation and a dye

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Walsh, Joseph T., Jr.

    1998-07-01

    Previous skin welding studies have used continuous wave (CW) delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage to surrounding tissue. This damage may prevent normal wound healing. Strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a pulsed mode. Two-cm-long, full-thickness incisions were made in guinea pig skin. India ink was used as an absorber, and egg white albumin was used as an adhesive. A 5-mm-diameter spot of CW, 1.06-micrometer Nd:YAG laser radiation was scanned over the weld site, producing 100 millisecond pulses. The cooling time between scans and number of scans was varied. Thermal damage zones were measured using a transmission polarizing microscope to identify birefringence changes in tissue. Tensile strengths were measured using a tensiometer. For pulsed welding and long cooling times, weld strengths of 2.4 kg/cm2 were measured, and thermal damage to the epidermis was limited to approximately 500 micrometers. With CW welding, comparable weld strengths resulted in approximately 2700 micrometer of thermal damage. CW laser radiation weld strengths were only 0.6 kg/cm2 when thermal damage in the epidermis was limited to approximately 500 micrometers.

  1. Advances in NASA research on nuclear-pumped lasers

    NASA Technical Reports Server (NTRS)

    De Young, R. J.

    1982-01-01

    NASA has been primarily interested in nuclear-pumped lasers using the He-3 or U-235F6 reaction for lasant excitation. With He-3 excitation, a large volume, multiple-path He-3-Ar nuclear laser has produced an output of 1 kilowatt. Power deposition was shown to be homogeneous over this volume. The CO laser has been pumped for the first time using the He-3 reaction, producing approximately 200 Watts. Using a boron-10 coating to excite N2, nuclear lasing has been achieved in CO2 in a transfer laser configuration. Nuclear lasing of Ar-Xe has been demonstrated using fission fragment excitation from U-235F6. Research on the gas core reactor has resulted in a steady state operational power of 30 kilowatts with flowing U-235F6 in an argon vortex.

  2. Resonantly pumped single-longitudinal-mode Ho:YAG laser

    NASA Astrophysics Data System (ADS)

    Ju, Y. L.; Liu, W.; Yao, B. Q.; Dai, T. Y.; Wu, J.; Duan, X. M.; Shen, Y. J.; Wang, Y. Z.

    2016-01-01

    We demonstrated a 1.9-μm-pumped high-efficiency single-longitudinal-mode Ho:YAG laser with intra-cavity etalons for the first time. By inserting the F-P etalons into the laser cavity, single-longitudinal-mode Ho:YAG lasing was achieved at a wavelength of 2081.2 nm. The maximum single-longitudinal-mode output power of 309 mW was obtained with absorbed pump power of 4.97 W, corresponding to a slope efficiency of 12.77 %. The oscillating wavelength can be tuned (from 2077 to 2081 nm), and single-longitudinal-mode laser is achieved at each wavelength. The M 2 factors of the single-longitudinal-mode Ho:YAG laser in the x and y directions were 1.18 and 1.2, respectively.

  3. Solar-simulator-pumped atomic iodine laser kinetics

    NASA Technical Reports Server (NTRS)

    Wilson, H. W.; Raju, S.; Shiu, Y. J.

    1983-01-01

    The literature contains broad ranges of disagreement in kinetic data for the atomic iodine laser. A kinetic model of a solar-simulator-pumped iodine laser is used to select those kinetic data consistent with recent laser experiments at the Langley Research Center. Analysis of the solar-simulator-pumped laser experiments resulted in the following estimates of rate coefficients: for alkyl radical (n-C3F7) and atomic iodine (I) recombination, 4.3 x 10 to the 11th power (1.9) + or - cu cm/s; for n-C3F7I stabilized atomic iodine recombination (I + I) 3.7 x 10 to the -32nd power (2.3) + or -1 cm to the 6th power/s; and for molecular iodine (I2) quenching, 3.1 x 10 to the -11th power (1.6) + or - 1 cu cm/s. These rates are consistent with the recent measurements.

  4. LED pumped Nd:YAG laser development program

    NASA Technical Reports Server (NTRS)

    Farmer, G. I.; Kiang, Y. C.; Lynch, R. J.

    1973-01-01

    The results of a development program for light emitting diode (LED) pumped Nd:YAG lasers are described. An index matching method to increase the coupling efficiency of the laser is described. A solid glass half-cylinder of 5.0 by 5.6 centimeters was used for index matching and also as a pumping cavity reflector. The laser rods were 1.5 by 56 millimeters with dielectric coatings on both end surfaces. The interfaces between the diode array, glass cylinder, and laser rod were filled with viscous fluid of refractive index n = 1.55. Experiments performed with both the glass cylinder and a gold coated stainless steel reflector of the same dimensions under the same operating conditions indicate that the index matching cylinder gave 159 to 200 percent improvement of coupling efficiency over the metal reflector at various operating temperatures.

  5. Fiber-laser pumped actively Q-switched Er:LuYAG laser at 1648 nm

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Wang, Y.; Zhao, T.; Zhu, H. Y.; Shen, D. Y.

    2016-02-01

    We demonstrated an acousto-optic Q-switched 1648 nm Er:LuYAG laser resonantly pumped by a cladding-pumped Er,Yb fiber laser at 1532 nm. Stable Q-switching operation was obtained with the pulse repetition rate (PRR) varying from 200 Hz to 10 kHz. At PRR of 200 Hz, the laser yielded Q-switched pulses with 3.3 mJ pulse energy and 65 ns pulse duration, corresponding to a peak power of 50.7 kW for 10.4 W of incident pump power.

  6. Cladding for transverse-pumped solid-state laser

    NASA Technical Reports Server (NTRS)

    Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)

    1989-01-01

    In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.

  7. Invasive leg vein treatment with 1064/1319 Nd:YAG laser: combination with dye laser treatment

    NASA Astrophysics Data System (ADS)

    Smucler, Roman; Horak, Ladislav; Mazanek, Jiri

    1999-06-01

    More than 2 500 leg veins patients were treated with dye laser / ScleroPlus, Candela, USA / successfully in our clinic and we use this therapy as the basic cosmetics treatment. But especially diameter of leg vein is limiting factor. Very often we have to treat some cases that are not ideal for classical surgical or for dye laser method. We decided to make invasive perivenous laser coagulation. We adapted original Czech 1064/1319 nm Nd:YAG laser / US patent pending /, which is new combine tool, for invasive application. Principe: After we have penetrated the cutis with laser fiber we coagulate leg veins during slowly perivenous motion. Perfect preoperative examination is a condition of success. After 15 months we have very interesting results. Some patients / 15%/ were perfect treated only with this possibility but excellent results are acquired from combination with dye laser.

  8. Solar Pumped High Power Solid State Laser for Space Applications

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Laycock, Rustin L.; Green, Jason J. A.; Walker, Wesley W.; Cole, Spencer T.; Frederick, Kevin B.; Phillips, Dane J.

    2004-01-01

    Highly coherent laser light provides a nearly optimal means of transmitting power in space. The simplest most direct means of converting sunlight to coherent laser light is a solar pumped laser oscillator. A key need for broadly useful space solar power is a robust solid state laser oscillator capable of operating efficiently in near Earth space at output powers in the multi hundred kilowatt range. The principal challenges in realizing such solar pumped laser oscillators are: (1) the need to remove heat from the solid state laser material without introducing unacceptable thermal shock, thermal lensing, or thermal stress induced birefringence to a degree that improves on current removal rates by several orders of magnitude and (2) to introduce sunlight at an effective concentration (kW/sq cm of laser cross sectional area) that is several orders of magnitude higher than currently available while tolerating a pointing error of the spacecraft of several degrees. We discuss strategies for addressing these challenges. The need to remove the high densities of heat, e.g., 30 kW/cu cm, while keeping the thermal shock, thermal lensing and thermal stress induced birefringence loss sufficiently low is addressed in terms of a novel use of diamond integrated with the laser material, such as Ti:sapphire in a manner such that the waste heat is removed from the laser medium in an axial direction and in the diamond in a radial direction. We discuss means for concentrating sunlight to an effective areal density of the order of 30 kW/sq cm. The method integrates conventional imaging optics, non-imaging optics and nonlinear optics. In effect we use a method that combines some of the methods of optical pumping solid state materials and optical fiber, but also address laser media having areas sufficiently large, e.g., 1 cm diameter to handle the multi-hundred kilowatt level powers needed for space solar power.

  9. Low-threshold stimulated emission from lysozyme amyloid fibrils doped with a blue laser dye

    NASA Astrophysics Data System (ADS)

    Sznitko, L.; Hanczyc, P.; Mysliwiec, J.; Samoc, M.

    2015-01-01

    Amyloid fibrils are excellent self-assembling nanotemplates for organic molecules such as dyes. Here, we demonstrate that laser dye-doped lysozyme type fibrils exhibit significantly reduced threshold for stimulated emission compared to that observed in usual matrices. Laser action was studied in slab planar waveguides of the amyloids doped with Stilbene 420 laser dye prepared using a film casting technique. The lowering of the threshold of stimulated emission is analyzed in the context of intrinsic structure of the amyloid nanotemplates, electrostatic interaction of different microstructures with dye molecules, as well as material properties of the cast layers. All these factors are considered to be of importance for introducing gain for random laser operation.

  10. Solid hosts for dye laser rods: Part 2, Some experimental results

    SciTech Connect

    Erickson, G.F.

    1987-01-01

    Attempts and problems encountered in producing high quality polymer dye laser rods are discussed. Purification methods used on the monomer materials, curing agent problems, and gamma radiation curing are considered. 7 figs.

  11. Dye-dispersion study at proposed pumped-storage project on Hudson River at Cornwall, New York

    USGS Publications Warehouse

    Dunn, Bernard; Gravlee, George C.

    1978-01-01

    Data were collected during a dye-dispersion study on a 6-mile, tide-affected reach of the Hudson River near the proposed Cornwall Pumped Storage Project on September 21-22, 1977. The results indicated that complete mixing did not occur during the first tidal cycle but was complete after two or more cycles. The fluorometric dye-tracing procedure was used to determine the dispersion characteristics of the water mass. Rhodamine WT dye, 20-percent solution, was continuously injected on the west side of the river throughout an ebb tide, and its movement was monitored during a 30-hour period. Samples were collected both individually and continuously. Automatic dye samplers were used at selected cross sections near each bank. Bathymetric measurements were made at eight cross sections between Newburgh and West Point to determine the depths. (Woodard-USGS)

  12. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser

    SciTech Connect

    Wang, Chun; Lv, Shasha; Bi, Jin; Liu, Fang; Li, Liufeng; Chen, Lisheng

    2014-08-15

    We present the development of a dye-laser-based spectrometer operating at 550–600 nm. The spectrometer will be used to detect an ultra-narrow clock transition ({sup 1}S{sub 0}-{sup 3}P{sub 0}) in an Ytterbium optical lattice clock and perform high-resolution spectroscopy of iodine molecules trapped in the sub-nanometer channels of zeolite crystal (AlPO{sub 4}-11). Two-stage Pound-Drever-Hall frequency stabilization is implemented on the tunable continuous-wave dye laser to obtain a reliable operation and provide stable laser radiations with two different spectral linewidths. In the first-stage frequency locking, a compact home-built intracavity electro-optic modulator is adopted for suppressing fast frequency noise. With an acquisition time of 0.1 s the 670-kHz linewidth of the free-running dye laser is reduced to 2 kHz when locked to a pre-stabilization optical cavity with a finesse of 1170. When the pre-stabilized laser is locked to a high-finesse optical cavity, a linewidth of 1.4 Hz (2 s) is observed and the frequency stability is 3.7 × 10{sup −15} (3 s). We also measure and analyze the individual noise contributions such as those from residual amplitude modulation and electronic noise. The ongoing upgrades include improving long-term frequency stability at time scales from 10 to 100 s and implementing continuous frequency scan across 10 GHz with radio-frequency precision.

  13. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser

    NASA Astrophysics Data System (ADS)

    Wang, Chun; Lv, Shasha; Liu, Fang; Bi, Jin; Li, Liufeng; Chen, Lisheng

    2014-08-01

    We present the development of a dye-laser-based spectrometer operating at 550-600 nm. The spectrometer will be used to detect an ultra-narrow clock transition (1S0-3P0) in an Ytterbium optical lattice clock and perform high-resolution spectroscopy of iodine molecules trapped in the sub-nanometer channels of zeolite crystal (AlPO4-11). Two-stage Pound-Drever-Hall frequency stabilization is implemented on the tunable continuous-wave dye laser to obtain a reliable operation and provide stable laser radiations with two different spectral linewidths. In the first-stage frequency locking, a compact home-built intracavity electro-optic modulator is adopted for suppressing fast frequency noise. With an acquisition time of 0.1 s the 670-kHz linewidth of the free-running dye laser is reduced to 2 kHz when locked to a pre-stabilization optical cavity with a finesse of 1170. When the pre-stabilized laser is locked to a high-finesse optical cavity, a linewidth of 1.4 Hz (2 s) is observed and the frequency stability is 3.7 × 10-15 (3 s). We also measure and analyze the individual noise contributions such as those from residual amplitude modulation and electronic noise. The ongoing upgrades include improving long-term frequency stability at time scales from 10 to 100 s and implementing continuous frequency scan across 10 GHz with radio-frequency precision.

  14. Developing a narrow-line laser spectrometer based on a tunable continuous-wave dye laser.

    PubMed

    Wang, Chun; Lv, Shasha; Liu, Fang; Bi, Jin; Li, Liufeng; Chen, Lisheng

    2014-08-01

    We present the development of a dye-laser-based spectrometer operating at 550-600 nm. The spectrometer will be used to detect an ultra-narrow clock transition ((1)S0-(3)P0) in an Ytterbium optical lattice clock and perform high-resolution spectroscopy of iodine molecules trapped in the sub-nanometer channels of zeolite crystal (AlPO4-11). Two-stage Pound-Drever-Hall frequency stabilization is implemented on the tunable continuous-wave dye laser to obtain a reliable operation and provide stable laser radiations with two different spectral linewidths. In the first-stage frequency locking, a compact home-built intracavity electro-optic modulator is adopted for suppressing fast frequency noise. With an acquisition time of 0.1 s the 670-kHz linewidth of the free-running dye laser is reduced to 2 kHz when locked to a pre-stabilization optical cavity with a finesse of 1170. When the pre-stabilized laser is locked to a high-finesse optical cavity, a linewidth of 1.4 Hz (2 s) is observed and the frequency stability is 3.7 × 10(-15) (3 s). We also measure and analyze the individual noise contributions such as those from residual amplitude modulation and electronic noise. The ongoing upgrades include improving long-term frequency stability at time scales from 10 to 100 s and implementing continuous frequency scan across 10 GHz with radio-frequency precision. PMID:25173252

  15. Random distributed feedback Raman fiber laser with polarized pumping

    NASA Astrophysics Data System (ADS)

    Wu, H.; Wang, Z. N.; Churkin, D. V.; Vatnik, I. D.; Fan, M. Q.; Rao, Y. J.

    2015-01-01

    In this letter, the polarization properties of a random fiber laser operating via Raman gain and random distributed feedback owing to Rayleigh scattering are investigated for the first time. Using polarized pump, the partially polarized generation is obtained with a generation spectrum exhibiting discrete narrow spectral features contrary to the smooth spectrum observed for the depolarized pump. The threshold, output power, degree of polarization and the state of polarization (SOP) of the lasing can be significantly influenced by the SOP of the pump. Fine narrow spectral components are also sensitive to the SOP of the pump wave. Furthermore, we found that random lasing’s longitudinal power distributions are different in the case of polarized and depolarized pumping that results in considerable reduction of the generation slope efficiency for the polarized radiation. Our results indicate that polarization effects play an important role on the performance of the random fiber laser. This work improves the understanding of the physics of random lasing in fibers and makes a step forward towards the establishment of the vector model of random fiber lasers.

  16. Investigations of laser pumped gas cell atomic frequency standard

    NASA Technical Reports Server (NTRS)

    Volk, C. H.; Camparo, J. C.; Fueholz, R. P.

    1982-01-01

    The performance characteristics of a rubidium gas cell atomic frequency standard might be improved by replacing the standard rubidium discharge lamp with a single mode laser diode. Aspects of the laser pumped gas cell atomic clock studied include effects due to laser intensity, laser detuning, and the choice of the particular atomic absorption line. Results indicate that the performance of the gas cell clock may be improved by judicious choice of the operating parameters of the laser diode. The laser diode also proved to be a valuable tool in investigating the operation of the conventional gas cell clock. Results concerning linewidths, the light shift effect and the effect of isotopic spin exchange in the conventional gas cell clock are reported.

  17. Rapid prototyping of a micro pump with laser micromaching

    SciTech Connect

    Wong, C.C.; Chu, D.; Liu, S.L.; Tuck, M.R.; Mahmud, Z.; Amatucci, V.

    1995-08-01

    A micro electrohydrodynamic (EHD) injection pump has been developed using laser micromaching technology. Two designs have been fabricated, tested, and evaluated. The first design has two silicon pieces with KOH-etched wells which are stacked on the top of each other. The wells am etched on one side of the wafer and gold is deposited on the other side to serve as the pump electrodes. A ND:YAG laser is used to drill an array holes in the well region of both silicon die. This creates a grid distribution with a rectangular pattern. Next the well regions of the die are aligned, and the parts are bonded together using a Staystik thermoplastic. The pump unit is then mounted into a ceramic package over the hole drilled to permit fluid flow. Aluminum ribbon wire bonds are used to connect the pump electrodes to the package leads. Isolation of metallization and wires is achieved by filling the package well and coating the wires with polyimide.When a voltage is applied at the electrodes, ions are injected into the working fluid, such as an organic solvent, thus inducing flow. The second design has the die oriented ``back-to-back`` and bonded together with stayform. A ``back-to-back`` design will decrease the grid distance so that a smaller voltage is required for pumping. Preliminary results have demonstrated that this micro pump can achieved a pressure head of about 287 Pa with an applied voltage of 120 volts.

  18. L -band microwave pumped XeCl laser without preionization

    SciTech Connect

    Klingenberg, H.H.; Gekat, F.; Spindler, G. )

    1990-03-20

    A peak power of 300 W of a microwave pumped XeCl laser has been obtained without preionization techniques. So far the system operates at a repetition frequency of 10 Hz. The pulse width was determined to be 65 ns.

  19. Anomalous dispersion and the pumping of far infrared (FIR) lasers

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.

    1978-01-01

    It is shown that the anomalous dispersion at the pump transition in molecular far-infrared lasers (FIR) can lead to sizable focusing and defocusing effects. Criteria for beam spreading and trapping are considered with CH2F as an example.

  20. Nuclear-driven flashlamp pumping of the atomic iodine laser

    NASA Astrophysics Data System (ADS)

    Miley, G. H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear-excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor, investigated the fluorescence of the excimer XeBr under nuclear pumping with B-10 and He-3, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1 percent. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes: a TRIGA pulse; a fast burst reactor pulse; and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10 percent) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C3F7I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  1. Nuclear-driven flashlamp pumping of the atomic iodine laser

    SciTech Connect

    Miley, G.H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear- excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor investigated the fluorescence of the excimer XeBr under nuclear pumping with {sup 10}B and {sup 3}He, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1%. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes, a TRIGA pulse, a fast burst reactor pulse, and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10%) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C{sub 3}F{sub 7}I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  2. Power scaling of a directly diode-laser-pumped Ti:sapphire laser.

    PubMed

    Roth, Peter W; Burns, David; Kemp, Alan J

    2012-08-27

    Improvements in the output power of a directly GaN diode-laser-pumped Ti:Al2O3 laser are achieved by using double-sided pumping. In continuous wave operation, an output power of 159 mW is reported. A tuning range of over 125 nm with output powers in excess of 100 mW is achieved. Pulses of 111 fs duration and an average power of 101 mW are demonstrated by mode locking the laser with a saturable Bragg reflector. Pumping with GaN diode lasers at wavelengths around 450 nm induces an additional parasitic crystal loss of about 1% per resonator roundtrip that is not observed at the conventional green pump wavelengths. PMID:23037110

  3. Excited-state absorption of pump radiation as a loss mechanism in solid-state lasers

    SciTech Connect

    Kliewer, M.L.; Powell, R.C.

    1989-08-01

    The characteristics of optical pumping dynamics occuring in laser-pumped rare earth-doped, solid-state laser materials were investigated by using a tunable alexandrite laser to pump Y3Al5O12:Nd(3+) in an optical cavity. It was found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelength resulting in low slope efficiencies, intense fluorescence emission is observed form the sample in the blue-green spectral region. This is attributed to the excited state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process will be an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  4. Excited state absorption of pump radiation as a loss mechanism in solid-state lasers

    SciTech Connect

    Kliewer, M.L.; Powell, R.C.

    1989-08-01

    The characteristics of optical pumping dynamics occurring in laser-pumped rare earth-doped, solid-state laser materials were investigated by using a tunable alexandrite laser to pump Y/sub 3/Al/sub 5/O/sub 12/:Nd/sup 3+/ in an optical cavity. It was found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelengths resulting in low slope efficiencies, intense fluorescence emission is observed from the sample in the blue-green spectral region. This is attributed to the excited state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process will be an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  5. Excited state absorption of pump radiation as a loss mechanism in solid-state lasers

    NASA Technical Reports Server (NTRS)

    Kliewer, Michael L.; Powell, Richard C.

    1989-01-01

    The characteristics of optical pumping dynamics in laser-pumped, rare-earth-doped, solid-state laser materials are investigated by using a tunable alexandrite laser to pump Y3Al5O12:Nd(3+) in an optical cavity. It is found that the slope efficiency of the Nd laser operation depends strongly on the wavelength of the pump laser. For pump wavelengths resulting in low slope efficiencies, intense fluorescence emission is observed from the sample in the blue-green spectral region. This is attributed to the excited-state absorption of pump photons which occurs during radiationless relaxation from the pump band to the metastable state. This type of process is an important loss mechanism for monochromatic pumping of laser systems at specific pump wavelengths.

  6. Ho:KLuW microchip laser intracavity pumped by a diode-pumped Tm:KLuW laser

    NASA Astrophysics Data System (ADS)

    Serres, J. M.; Loiko, P. A.; Mateos, X.; Yumashev, K. V.; Kuleshov, N. V.; Petrov, V.; Griebner, U.; Aguil, M.; Daz, F.

    2015-07-01

    A compact intracavity-pumped microchip Ho laser is realized using stacked Tm:KLuW/Ho:KLuW crystals pumped by a laser diode at 805 nm; both crystals are cut for light propagation along the N g optical indicatrix axis and emit with polarization along the N m axis. Maximum CW output power of 285 mW is achieved at a wavelength of 2080 nm for 5.6 W absorbed pump power in the Tm:KLuW crystal with a maximum slope efficiency of 8.3 %. Maximum total (Tm3+ and Ho3+ emission) output of 887 mW with a slope efficiency of 23 % is achieved. Laser operation is obtained in the 1867-1900 nm spectral range corresponding to the Tm emission, while Ho emits at 2078-2100 nm, depending on the output coupling. The microchip Ho laser generates a near-circular output beam with M 2 < 1.1. The compact laser setup with plane-plane cavity provides automatic mode-matching condition for the Tm and Ho laser modes.

  7. Traveling-wave laser-produced-plasma energy source for photoionization laser pumping and lasers incorporating said

    DOEpatents

    Sher, Mark H. (Los Altos, CA); Macklin, John J. (Stanford, CA); Harris, Stephen E. (Palo Alto, CA)

    1989-09-26

    A traveling-wave, laser-produced-plasma, energy source used to obtain single-pass gain saturation of a photoionization pumped laser. A cylindrical lens is used to focus a pump laser beam to a long line on a target. Grooves are cut in the target to present a surface near normal to the incident beam and to reduce the area, and hence increase the intensity and efficiency, of plasma formation.

  8. Highly efficient solar-pumped Nd:YAG laser.

    PubMed

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod. PMID:22274224

  9. Coherent communication link using diode-pumped lasers

    NASA Technical Reports Server (NTRS)

    Kane, Thomas J.; Wallace, Richard W.

    1989-01-01

    Work toward developing a diffraction limited, single frequency, modulated transmitter suitable for coherent optical communication or direct detection communication is discussed. Diode pumped, monolithic Nd:YAG nonplanar ring oscillators were used as the carrier beam. An external modulation technique which can handle high optical powers, has moderate modulation voltage, and which can reach modulation rates of 1 GHz was invented. Semiconductor laser pumped solid-state lasers which have high output power (0.5 Watt) and which oscillate at a single frequency, in a diffraction limited beam, at the wavelength of 1.06 microns were built. A technique for phase modulating the laser output by 180 degrees with a 40-volt peak to peak driving voltage is demonstrated. This technique can be adapted for amplitude modulation of 100 percent with the same voltage. This technique makes use of a resonant bulk modulator, so it does not have the power handling limitations of guided wave modulators.

  10. Experimental study of the diode pumped alkali laser (DPAL)

    NASA Astrophysics Data System (ADS)

    Endo, Masamori; Nagaoka, Ryuji; Nagaoka, Hiroki; Nagai, Toru; Wani, Fumio

    2014-02-01

    A small-scale cesium diode-pumped alkali laser (DPAL) apparatus has been developed for fundamental researches. A commercial laser diode with volume Bragg grating outcoupler is used to pump the gain cell longitudinally. Both windows of the gain cell are set at Brewster's angle for minimum loss and maximum durability. Output coupling coefficient is continuously variable from 13% to 85% by the slanted quartz plate outcoupler inserted in the optical resonator. Small signal gain is measured with a laser diode probe at various gain cell temperatures. A 6.5 W continuouswave output with 56% optical-to-optical conversion efficiency (based on the absorbed power) has been achieved. A numerical simulation code is developed and its calculation results are in good agreement with the experiments.

  11. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    DOEpatents

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  12. Laser pumped superconductive energy storage system

    SciTech Connect

    Wolf, A.A.

    1983-11-08

    A superconductive energy storage system comprising a magnetic field surrounding a superconducting coil having large currents circulating therein, cooling said coil to superconducting temperatures, starting said circulating current in said superconducting coil inductively by a small primer coil, transmitting additional energy into said energy storage system utilizing a laser beam, and retaining said energy in said energy storage system until needed.

  13. Mechanism of dye-enhanced enamel ablation by Alexandrite laser radiation

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.; Oraevsky, Alexander A.; Motamedi, Massoud; Rastegar, Sohi; Tittel, Frank K.

    1995-05-01

    Insufficient light absorption in hard dental tissues makes laser ablation in near UV, visible or near IR spectral ranges very inefficient to be employed for tooth cavity preparations. We used deposition of a liquid absorber, indocyanine green (ICG) dye, to overcome this problem. Experiments employed Alexandrite laser anticipating that future near IR diode laser technology will replace existing medical lasers. Ablation kinetics and mechanisms for both free-running and Q-switched modes of Alexandrite laser were studied with the aim to determine optimal parameters of laser irradiation and optimal volume of the dye. Four experimental parameters were monitored during each ablation event: (1) incident laser fluence, (2) temporal profile of the laser pulse, (3) temporal profile and magnitude of laser-induced stress transients, (4) temporal profile and spectrum of plasma emission. We also examined kinetics of plume by probing ablation products with CW He-Ne laser beam. Results depicted ablation process as a complex multistage phenomenon. Two distinct stages associated with the tooth ablation are revealed in the free-running mode: (1) ablation of a dye droplet from a tooth surface by the first laser micropulse of a 250-microsecond(s) macropulse, (2) plasma mediated ablation of a melted layer of enamel produced by thermal explosion of the dye. Plasma jet formation was delayed 10-100 microsecond(s) against the beginning of free-running pulse. Ablation stages and their efficiency are defined by laser irradiation parameters, dye concentration and its total volume. In contrast, Q-switched (nanosecond) laser ablation occurs as a one stage process, and, therefore, less efficient. In addition, Q-switched mode irradiation induces shock waves amplitudes that are about an order of magnitude higher compared with that induced by the free-running irradiation. Experimental comparison of Q-switched and free-running modes of irradiation is evident in favor of free-running mode that produces a nice smooth crater without noticeable thermomechanical damage to surrounding tissues.

  14. Influence of pump pulse structure on a transient collisionally pumped Ni -like Ag x-ray laser

    NASA Astrophysics Data System (ADS)

    Janulewicz, K. A.; Nickles, P. V.; King, R. E.; Pert, G. J.

    2004-07-01

    Results of numerical simulations on a Ni -like silver x-ray laser pumped by a single picosecond laser pulse are presented. Since the mechanisms responsible for the significant reduction in the pump energy are not well understood, the results of theoretical simulations with emphasis on the plasma kinetics and dynamics in a Ni -like Ag x-ray laser are presented and referred to the experimental data. Special attention has been paid to the influence of the pump pulse shape and length on the gain and its duration. It was found that a low-level pulse pedestal being an integral part of the leading edge of the pump pulse is very beneficial to the pump energy reduction. The thermal cooling process has been identified as the mechanism strongly contributing to gain termination if a low-energy single-profile laser pulse with the width of a few picoseconds is used in the pump process.

  15. New ytterbium-phosphate glass for diode-pumped lasers

    SciTech Connect

    Galagan, B I; Glushchenko, I N; Denker, B I; Sverchkov, S E; Kisel', V E; Kuril'chik, S V; Kuleshov, N V

    2009-10-31

    A new ytterbium laser glass based on an alumoborophosphate composition is developed. It is shown that the chemical and thermal stabilities of this glass are record-high for phosphate glasses and that its spectral and luminescent characteristics compare well with popular laser glasses. A mould of laser-quality glass doped with ytterbium with a concentration of 5x10{sup 20} cm{sup -3} is synthesised. Active laser elements 5x5x2 mm in size are prepared from this glass for longitudinal diode pumping. These elements were used to fabricate a laser, whose output power in the cw regime reached 783 mW and maximum slope efficiency was 28.9%. Pulses with a duration of {approx}150 fs and a peak power of about 5 kW are obtained in the passive mode-locking regime. (active media)

  16. Concepts for efficient high power solar pumped solid state lasers

    NASA Astrophysics Data System (ADS)

    Opower, H.; Lindner, F.; Zittel, W.

    1988-01-01

    The energetic efficiencies obtainable with current solid state laser systems are examined and used in a theoretical study of a combined solar-pumped laser power plant. It is suggested that the incident light in such a system would be split into two parts. In one part the wavelength would be adjusted to the absorption spectra of the special laser crystals. This part would serve as the laser source. The other part of the light would deliver its energy to a solar dynamic and/or photovoltaic converter. The maximum yield that could be obtained from this type of system is estimated for ruby, Ti sapphire, Nd:YAG, and Nd-Cr-GSGG lasers.

  17. New diode wavelengths for pumping solid-state lasers

    SciTech Connect

    Skidmore, J.A.; Emanuel, M.A.; Beach, R.J.

    1995-01-01

    High-power laser-diode arrays have been demonstrated to be viable pump sources for solid-state lasers. The diode bars (fill factor of 0.7) were bonded to silicon microchannel heatsinks for high-average-power operation. Over 12 W of CW output power was achieved from a one cm AlGaInP tensile-strained single-quantum-well laser diode bar. At 690 nm, a compressively-strained single-quantum-well laser-diode array produced 360 W/cm{sup 2} per emitting aperture under CW operation, and 2.85 kW of pulsed power from a 3.8 cm{sup 2} emitting-aperture array. InGaAs strained single-quantum-well laser diodes emitting at 900 nm produced 2.8 kW pulsed power from a 4.4 cm{sup 2} emitting-aperture array.

  18. Dye-laser intracavity absorption spectrum of the hydrogen molecule

    SciTech Connect

    Kim, K.H.

    1986-01-01

    Dye-laser intracavity absorption (ICA) has been used to study the molecular spectrum of H/sub 2/ excited by a microwave discharge in the wavelength region between 5680 and 6204 A. Transitions from the non-predissociated 2c/sup 3/II/sub u/ state are prominent in the spectrum, and also transitions from the 2a/sup 3/..sigma../sub g//sup +/ state to higher states appear strongly. In addition, some transitions from the predissociated 2c/sup 3/II/sub u/ state to excited states are also observed. The lifetimes of the 2a/sup 3/..sigma../sub g//sup +/ and predissociated 2c/sup 3/II/sub u/ states, which are of the order of 10/sup -8/ and 10/sup -9/ seconds, respectively, are very short compared to that of the metastable 2c/sup 3/II/sub u/ states (10/sup -3/ sec). This shows that ICA is very sensitive and allows the observation of transitions from short-lived states. Also, from this experiment, it turns out that ICA might be a useful tool to study physical processes such as collision and energy distribution, in excited molecules.

  19. Rotational diffusion and solvatochromic correlation of coumarin 6 laser dye.

    PubMed

    Raikar, U S; Renuka, C G; Nadaf, Y F; Mulimani, B G; Karguppikar, A M

    2006-11-01

    Rotational diffusion of coumarin 6 (C6) laser dye has been examined in n-decane and methanol as a function of temperature. The rotational reorientation of this probe has been measured in these solvents. It is observed that the decrease in viscosity of the solution is responsible for the decrease in the rotational relaxation time of the probe molecule. The molecule C6 has long reorientation times in n-decane solvent as compared to methanol over all temperatures. It is found that the coumarin 6 rotates slower in n-decane than in methanol especially at higher values of viscosity over temperature. Two methods are chosen to determine the ground state and excited state dipole moments. The change in dipole moments is estimated from Bakhshiev-Chamma-Viallet equations and, the ground and excited state dipole moments from Kawski et al. equations, by using the variations of the Stokes shifts with the dielectric constant and refractive index of the solvent. Our results are quite reliable which are solvatochromic correlation obtained using solvent polarity functions. The reported results show that excited state dipole moment is greater than ground state dipole moment, which indicates that the excited state is more polar than the ground state. PMID:17031572

  20. Absorption, luminescent and lasing properties of laser dyes in silica gel matrices and thin gel films

    SciTech Connect

    Shaposhnikov, A A; Kuznetsova, Rimma T; Kopylova, T N; Maier, G V; Tel'minov, E N; Pavich, T A; Arabei, S M

    2004-08-31

    The absorption and emission properties of eight organic compounds in silica gel matrices of different chemical compositions and different types (bulk samples and thin films) are studied upon excitation by a XeCl laser and the second harmonic of a Nd:YAG laser. The mechanisms of the laser-induced changes in the spectral parameters of molecules in silica gel matrices are discussed and the photostability of the laser dyes in silica gel films is estimated. (active media)

  1. Diode-pumped caesium vapour laser with closed-cycle laser-active medium circulation

    SciTech Connect

    Bogachev, A V; Garanin, Sergey G; Dudov, A M; Eroshenko, V A; Kulikov, S M; Mikaelian, G T; Panarin, V A; Pautov, V O; Rus, A V; Sukharev, Stanislav A

    2012-02-28

    The creation of a caesium vapour laser with closed-cycle circulation of the laser-active medium is first reported. The power of the laser radiation amounted to {approx}1 kW with the 'light-to-light' conversion efficiency of {approx}48 %. Quasi-two-dimensional computational model of the laser operation that provides adequate description of experimental results is considered. Calculated and experimental dependences of the laser radiation power on the temperature of the cuvette walls, laser medium pressure and pump power are presented.

  2. Powerful 2-?m all-fiber laser sources pumped by Raman fiber lasers

    NASA Astrophysics Data System (ADS)

    Wang, Xiong; Zhou, Pu; Zhang, Hanwei; Jin, Xiaoxi; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-11-01

    We present novel and powerful pump schemes for fiber laser sources operating near 2 ?m, which employing high power Raman fiber lasers (RFLs) to provide sufficient pump light. Firstly, we demonstrate a Tm-doped fiber laser (TDFL) pumped by two RFLs at 1173 nm. The output power of the TDFL reached 96 W with slope efficiency of 0.42, and the central wavelength located at 1943.3 nm. This is the first TDFL with 100 W-level output power pumped by RFLs around Tm3+ ions' ~1200 nm absorption band. Secondly, we demonstrate a Ho-doped fiber laser (HDFL) employing a 1150 nm RFL as pump source. The 1150 nm RFL provided 110 W pump power and the output power of the HDFL reached 42 W with slope efficiency of 0.37. The lasing wavelength covered from 2046.8 nm to 2049.5 nm with optical signal-to-noise ratio more than 30 dB. This is the first HDFL pumped by a 1150 nm RFL and the highest output power achieved at this pump band. In the last, we present a high power Ho-doped fiber (HDF) superfluorescent source (SS) pumped by a 1150 nm RFL. The SS's output power reached 1.5 W, and the full width at half maximum was about 30 nm. This is the highest output power achieved in HDF as far as we know. The results above indicate promising and powerful pump schemes to achieve higher power output in fiber lasers near 2 ?m, which also can be further improved by optimizing the parameters of the sources.

  3. DCOOD optically pumped by a 13CO2 laser: new terahertz laser lines

    NASA Astrophysics Data System (ADS)

    Viscovini, R. C.; Moraes, J. C. S.; Costa, L. F. L.; Cruz, F. C.; Pereira, D.

    2008-06-01

    In this work we report on new optically pumped THz laser lines from deuterated formic acid (DCOOD). An isotopic 13CO2 laser was used for the first time as a pump source for this molecule, and a Fabry Perot cavity was used as a THz laser resonator. Optoacoustic absorption spectra were used as a guide to search for new THz laser lines. We could observe six new laser lines in the range from 303.8 ?m (0.987 THz) to 725.1 ?m (0.413 THz). The lines were characterized according to wavelength, relative polarization, relative intensity, and optimum working pressure. The transferred lamb-dip technique was used to measure the frequency absorption transition for both of these laser lines. Furthermore, we also present a catalogue of all THz laser lines generated from DCOOD.

  4. Supersonic diode pumped alkali lasers: Computational fluid dynamics modeling

    NASA Astrophysics Data System (ADS)

    Rosenwaks, Salman; Yacoby, Eyal; Waichman, Karol; Sadot, Oren; Barmashenko, Boris D.

    2015-10-01

    We report on recent progress on our three-dimensional computational fluid dynamics (3D CFD) modeling of supersonic diode pumped alkali lasers (DPALs), taking into account fluid dynamics and kinetic processes in the lasing medium. For a supersonic Cs DPAL with laser section geometry and resonator parameters similar to those of the 1-kW flowing-gas subsonic Cs DPAL [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] the maximum achievable output power, ~ 7 kW, is 25% higher than that achievable in the subsonic case. Comparison between semi-analytical and 3D CFD models for Cs shows that the latter predicts much higher maximum achievable output power than the former. Optimization of the laser parameters using 3D CFD modeling shows that very high power and optical-to-optical efficiency, 35 kW and 82%, respectively, can be achieved in a Cs supersonic device pumped by a collimated cylindrical (0.5 cm diameter) beam. Application of end- or transverse-pumping by collimated rectangular (large cross section ~ 2 - 4 cm2) beam makes it possible to obtain even higher output power, > 250 kW, for ~ 350 kW pumping power. The main processes limiting the power of Cs supersonic DPAL are saturation of the D2 transition and large ~ 40% losses of alkali atoms due to ionization, whereas the influence of gas heating is negligibly small. For supersonic K DPAL both gas heating and ionization effects are shown to be unimportant and the maximum achievable power, ~ 40 kW and 350 kW, for pumping by ~ 100 kW cylindrical and ~ 700 kW rectangular beam, respectively, are higher than those achievable in the Cs supersonic laser. The power achieved in the supersonic K DPAL is two times higher than for the subsonic version with the same resonator and K density at the gas inlet, the maximum optical-to-optical efficiency being 82%.

  5. 551 nm Generation by sum-frequency mixing of intracavity pumped Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Li, S. T.; Zhang, X. H.

    2012-02-01

    We present for the first time a Nd:YAG laser emitting at 1319 nm intracavity pumped by a 946 nm diode-pumped Nd:YAG laser. A 809 nm laser diode is used to pump the first Nd:YAG crystal emitting at 946 nm, and the second Nd:YAG laser emitting at 1319 nm intracavity pumped at 946 nm. Intracavity sumfrequency mixing at 946 and 1319 nm was then realized in a LBO crystal to reach the yellow range. We obtained a continuous-wave output power of 158 mW at 551 nm with a pump laser diode emitting 18.7 W at 809 nm.

  6. Theoretical studies of solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1983-01-01

    Metallic vapor lasers of Na2 and Li2 are examined as solar energy converters. The absorbed photons cause transitions to vibrational-rotational levels in an upper electronic state. With broad band absorption the resultant levels can have quantum numbers considerably higher than the upper lasing level. The excited molecule then relaxes to the upper lasing level which is one of the lower vibrational levels in the upper electronic state. The relaxation occurs from collisions, provided the molecule is not quenched into the ground level electronic state. Lasing occurs with a transition to a vibrational level in the lower electronic state. Rough estimates of solar power efficiencies are 1 percent for Na2 and probably a similar figure for Li2. The nondissociative lasers from a family distinct from materials which dissociate to yield an excited atom.

  7. Diode-pumped multilayer Yb:YAG composite ceramic laser Diode-pumped multilayer Yb:YAG composite ceramic laser

    NASA Astrophysics Data System (ADS)

    Tang, F.; Cao, Y. G.; Huang, J. Q.; Guo, W.; Liu, H. G.; Wang, W. C.; Huang, Q. F.; Li, J. T.

    2012-08-01

    All-ceramic multilayer composite ytterbium doped yttrium aluminum garnet (Yb:YAG) laser gain medium with doping concentration distribution of 0-5-10-15-20-15-10-5-0 at.% Yb ions was successfully fabrication by the technique of tape casting and simple vacuum sintering process. Full dense microstructure is achieved, and excellent optical properties are gained. The obtained result shows that the optical transmittance of >80% is reached when the wavelength is larger than 500 nm. The emission cross section is 4.0310-20 cm2 at the wavelength of 1030 nm. Continuous wave (CW) laser performance is further demonstrated when the sample is pumped by 940 nm fiber-coupler diode laser. The threshold absorbed pump power is 5.9 W, and the slope efficiency attains to 27% with transmission of output coupler of 6%.

  8. Environmental testing of a diode-laser-pumped Nd:YAG laser and a set of diode-laser-arrays

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Lesh, J. R.

    1989-01-01

    Results of the environmental test of a compact, rigid and lightweight diode-laser-pumped Nd:YAG laser module are discussed. All optical elements are bonded onto the module using space applicable epoxy, and two 200 mW diode laser arrays for pump sources are used to achieve 126 mW of CW output with about 7 percent electrical-to-optical conversion efficiency. This laser assembly and a set of 20 semiconductor diode laser arrays were environmentally tested by being subjected to vibrational and thermal conditions similar to those experienced during launch of the Space Shuttle, and both performed well. Nevertheless, some damage to the laser front facet in diode lasers was observed. Significant degradation was observed only on lasers which performed poorly in the life test. Improvements in the reliability of the Nd:YAG laser are suggested.

  9. Electric-discharge-pumped nitrogen ion laser

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J.; Wittig, C.

    1976-01-01

    The routine operation is described of an N2(+) laser oscillating on the first negative band system of N2(+) which is produced in a preionized transverse discharge device. The discharge design incorporates features which favor the efficient production of the excitation transfer reaction of He2(+) with N2. A capacitive discharge switched by means of a high-current grounded grid thyratron is used to meet the design requirement of a volumetric discharge in high-pressure gas mixtures where the electric discharge need not have an ultrafast rise time (greater than 10 nsec) but should be capable of transferring large quantities of stored electric energy to the gas. A peak power of 180 kW in an 8-nsec laser pulse was obtained with a 0.1% mixture of N2 in helium at a total pressure of 3 atm. The most intense laser oscillations were observed on the (0,1) vibrational transition at 427.8 microns.

  10. Analysis of pump excited state absorption and its impact on laser efficiency

    NASA Astrophysics Data System (ADS)

    Kerridge-Johns, W. R.; Damzen, M. J.

    2015-12-01

    Excited state absorption (ESA) is a process that occurs in many laser gain media and can significantly impact their efficiencies of operation. In this work we develop a model to quantify the effect of ESA at the pump wavelength on laser efficiency, threshold and heating. In an analysis based on the common end pumped laser geometry we derive solutions and analytical expressions that model the laser behaviour. From these solutions we discuss the main parameters affecting efficiency, such as the laser cavity loss, pump ESA cross section and stimulated emission cross section. Methodologies are described to minimise the impact of pump ESA, for example by minimising cavity loss. It is also shown that altering the pumping geometry can significantly improve performance by improved distribution of the population inversion. Double end pumping can approximately halve the effect of pump ESA compared to single end pumping, and side pumping also has the potential to arbitrarily reduce its effect.

  11. Direct laser interference patterning of polystyrene films doped with azo dyes, using 355 nm laser light

    NASA Astrophysics Data System (ADS)

    Broglia, M. F.; Suarez, S.; Soldera, F.; Mcklich, F.; Barbero, C. A.; Bellingeri, R.; Alustiza, F.; Acevedo, D.

    2014-05-01

    The generation of line-like periodic patterns by direct laser interference patterning (DLIP) of polystyrene films (PS) at a wavelength of 355 nm has been investigated. No structuration is achieved in plain PS due to the weak absorption of the polymer at 355 nm. On the other hand, patterning is achieved on films doped (PSd) with an azo dye (2-anisidine ? 2-anisidine) which is incorporated in the polymer solution used for film preparation. Periodic micro-structures are generated. DLIP on PSd results in the swelling of the surface at low fluences, while at high laser intensities it causes the ablation of the regions at the interference maxima positions. The results contrast with the usual process of DLIP on PS (at shorter wavelengths, like 266 nm) where only ablation is detected. The results suggest that decomposition of the azo dye is the driving force of the patterning which therefore differ from the patterning obtained when plain PS is irradiated with laser light able to be absorbed by the aromatic ring in PS (e.g. 266 nm). The biocompatibility of these materials and adhesion of cells was tested, the data from in vitro assays shows that fibroblast cells are attached and proliferate extensively on the PSd films.

  12. 946 nm Diode Pumped Laser Produces 100mJ

    NASA Technical Reports Server (NTRS)

    Axenson, Theresa J.; Barnes, Norman P.; Reichle, Donald J., Jr.

    2000-01-01

    An innovative approach to obtaining high energy at 946 nm has yielded 101 mJ of laser energy with an optical-to-optical slope efficiency of 24.5%. A single gain module resonator was evaluated, yielding a maximum output energy of 50 mJ. In order to obtain higher energy a second gain module was incorporated into the resonator. This innovative approach produced un-surprised output energy of 101 mJ. This is of utmost importance since it demonstrates that the laser output energy scales directly with the number of gain modules. Therefore, higher energies can be realized by simply increasing the number of gain modules within the laser oscillator. The laser resonator incorporates two gain modules into a folded "M-shaped" resonator, allowing a quadruple pass gain within each rod. Each of these modules consists of a diode (stack of 30 microlensed 100 Watt diode array bars, each with its own fiber lens) end-pumping a Nd:YAG laser rod. The diode output is collected by a lens duct, which focuses the energy into a 2 mm diameter flat to flat octagonal pump area of the laser crystal. Special coatings have been developed to mitigate energy storage problems, including parasitic lasing and amplified spontaneous emission (ASE), and encourage the resonator to operate at the lower gain transition at 946 nm.

  13. Fiber Raman laser and amplifier pumped by Nd3+:YVO4 solid state laser

    NASA Astrophysics Data System (ADS)

    Liu, Deming; Zhang, Minming; Liu, Shuang; Nie, Mingju; Wang, Ying

    2005-04-01

    Pumping source is the key technology of fiber Raman amplifiers (FRA) which are important for ultra long haul and high bit rate dense wavelength division multiplexing (DWDM) systems. In this paper the research work of the project, "Fiber Raman Laser and Amplifier pumped by Nd3+:YVO4 Solid State Laser", supported by the National High-tech Program (863-program) of China is introduced, in which a novel 14xx nm pump module with fine characteristics of high efficiency, simplicity, compactness and low cost is researched and developed. A compact 1342 nm Nd3+:YVO4 diode pumped solid state laser (DPSSL) module is developed with the total laser power of 655mW and the slope efficiency of 42.6% pumped by a 2W 808nm laser diode (LD). A special C-lens fiber collimator is designed to couple the 1342nm laser beam into a piece of single mode fiber (SMF) and the coupling efficiency of 80% is reached. The specific 14xx nm output laser is generated from a single stage Raman resonator which includes a pair of fiber Bragg gratings and a piece of Germanic-silicate or Phospho-silicate fiber pumped by such DPSSL module. The slope efficiency for conversion from 1342 to 14xx nm radiation is 75% and the laser power is more than 300mW each. Finally, Raman gain experiments are carried out with 100km SMF. 100 nm bandwidth with 10dB on-off Raman gain and 1.1dB gain flatness is achieved by pumped at 1425, 1438, 1455 and 1490nm.

  14. TARANIS: A Pump Source for X-Ray Lasers

    NASA Astrophysics Data System (ADS)

    Nersisyan, G.; Dzelzainis, T.; Lewis, CLS; Riley, D.; Ferrari, R.; Zepf, M.; Borghesi, M.; Romagnani, L.; Doria, D.; Marlow, D.; Dromey, B.

    A new laser system has recently been installed within the Centre for Plasma Physics (CCP) at the Queen's University Belfast (QUB) and is known as TARANIS (Terawatt Apparatus for Relativistic and Non-linear Interdisciplinary Science). It will support a wide-ranging science programme, including X-ray laser studies. The laser is a CPA Nd:Glass system capable of delivering 20J in 600 fs in each of two beams. Alternatively, either beam can generate 30J in 1 ns in uncompressed mode allowing the synchronous production of ps-ps, ps-ns or ns-ns pulse combinations for various X-ray laser pump scenarios. Although the system is limited to 10 min shot cycles it offers scope for the systematic study of XRL schemes not always feasible at national laser facilities. Here, we present a brief report detailing the laser's parameters and its capabilities in relation to X-ray lasers. Also outlined is our plan for experimental X-ray laser work in QUB and some results from preliminary shots taken in preparation for a full X-ray laser experiment.

  15. Demonstration of a diode-pumped metastable Ar laser.

    PubMed

    Han, Jiande; Glebov, Leonid; Venus, George; Heaven, Michael C

    2013-12-15

    Pulsed lasing from optically pumped rare gas metastable atoms (Ne, Ar, Kr, and Xe) has been demonstrated previously. The laser relies on a three-level scheme, which involves the (n+1)p[5/2](3) and (n+1)p[1/2](1) states from the np(5)(n+1)p electronic configuration and the metastable (n+1)s[3/2](2) level of the np(5)(n+1)s configuration (Racah notation). Population inversions were achieved using relaxation from ((n+1)p[5/2](3) to (n+1)p[1/2](1) induced by collisions with helium or argon at pressures near 1 atm. Pulsed lasing was easily achieved using the high instantaneous pump intensities provided by a pulsed optical parametric oscillator excitation laser. In the present study we examine the potential for the development of a continuous wave (CW) optically pumped Ar laser. We report lasing of the 4p[1/2](1)→4s[3/2](2) (912.547 nm) transition following CW diode laser excitation of the 4p[5/2](3)←4s[3/2](2) line (811.754 nm). A pulsed discharge was used to generate Ar 4s[3/2](2), and the time-resolved lasing kinetics provide insights concerning the radiative and collisional relaxation processes. PMID:24343016

  16. Laser demonstration and performance characterization of optically pumped Alkali Laser systems

    NASA Astrophysics Data System (ADS)

    Sulham, Clifford V.

    Diode Pumped Alkali Lasers (DPALs) offer a promising approach for high power lasers in military applications that will not suffer from the long logistical trails of chemical lasers or the thermal management issues of diode pumped solid state lasers. This research focuses on characterizing a DPAL-type system to gain a better understanding of using this type of laser as a directed energy weapon. A rubidium laser operating at 795 nm is optically pumped by a pulsed titanium sapphire laser to investigate the dynamics of DPALs at pump intensities between 1.3 and 45 kW/cm2. Linear scaling as high as 32 times threshold is observed, with no evidence of second order kinetics. Comparison of laser characteristics with a quasi-two level analytic model suggests performance near the ideal steady-state limit, disregarding the mode mis-match. Additionally, the peak power scales linearly as high as 1 kW, suggesting aperture scaling to a few cm2 is sufficient to achieve tactical level laser powers. The temporal dynamics of the 100 ns pump and rubidium laser pulses are presented, and the continually evolving laser efficiency provides insight into the bottlenecking of the rubidium atoms in the 2P3/2 state. Lastly, multiple excited states of rubidium and cesium were accessed through two photon absorption in the red, yielding a blue and an IR photon through amplified stimulated emission. Threshold is modest at 0.3 mJ/pulse, and slope efficiencies increase dramatically with alkali concentrations and peak at 0.4%, with considerable opportunity for improvement. This versatile system might find applications for IR countermeasures or underwater communications.

  17. High power, high efficiency, 2D laser diode arrays for pumping solid state lasers

    SciTech Connect

    Rosenberg, A.; McShea, J.C.; Bogdan, A.R.; Petheram, J.C.; Rosen, A.

    1987-11-01

    This document reports the current performance of 2D laser diode arrays operating at 770 nm and 808 nm for pumping promethium and neodymium solid state lasers, respectively. Typical power densities are in excess of 2kw/cm/sup 2/ with overall efficiencies greater than 30%.

  18. Highly Efficient Operation of Tm:fiber Laser Pumped Ho:YLF Laser

    NASA Technical Reports Server (NTRS)

    Bai, Yingxin; Petros, M.; Yu, Jirong; Petzar, Paul; Trieu, Bo; Chen, Sam; Lee, Hyung; Singh, U.

    2006-01-01

    A 19 W, TEM(sub 00) mode, Ho:YLF laser pumped by continuous wave Tm:fiber laser has been demonstrated at the room temperature. The slope efficiency and optical-to-optical efficiency are 65% and 55%, respectively.

  19. Effects of argon, dye, and Nd:YAG lasers on epidermis, dermis, and venous vessels

    SciTech Connect

    Landthaler, M.; Haina, D.; Brunner, R.; Waidelich, W.; Braun-Falco, O.

    1986-01-01

    The aim of the present study, which was performed at the dorsal aspects of the ears of guinea pigs, was to compare effects of different lasers on epidermis, dermis, and small venous vessels. Irradiations were performed with argon, dye, and Nd:YAG lasers. In the first series tissue repair processes were studied after argon laser application. Laser defects were excised after 1, 4, 8, and 14 days and were prepared for routine histological examination. The breadth of epidermal defect and extent of dermal coagulation and occlusion of vessels by thrombus formation were examined histologically. In a second series parameters of irradiation (ie, exposure time, laser power) of the three different lasers were changed systematically. Laser-induced morphological tissue changes could be best observed 24 hours after irradiation. Each of the lasers led to occlusion of vessels by thrombus formation and also coagulated epidermis and dermis. The extent of dermal and epidermal coagulation was less pronounced after dye laser application. Using short exposure times it was possible to reduce the extent of epidermal damage caused by argon and Nd:YAG lasers. Only 50-msec dye laser pulses led to intravascular thrombus formation without epidermal and dermal damage.

  20. QUANTITATIVE DETECTION OF ENVIRONMENTALLY IMPORTANT DYES USING DIODE LASER/FIBER-OPTIC RAMAN

    EPA Science Inventory

    A compact diode laser/fiber-optic Raman spectrometer is used for quantitative detection of environmentally important dyes. This system is based on diode laser excitation at 782 mm, fiber optic probe technology, an imaging spectrometer, and state-of-the-art scientific CCD camera. ...