Science.gov

Sample records for pumped krf excimer

  1. 10 x 10 cm-sq aperture 1 Hz repetition rate X-ray preionized-discharge pumped KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Mizoguchi, H.; Endoh, A.; Jethwa, J.; Schaefer, F. P.

    A 10 x 10 sq cm aperture X-ray preionized discharge-pumped KrF excimer amplifier for subpicosecond pulse amplification is demonstrated experimentally in the oscillator mode operation. A fast pulse-forming line (36 nF, 340 kV) together with a peaking capacitor (6 nF) switched with a rail-gap switch, and collimated X-ray preionization is employed to obtain a wide and uniform discharge. The active cross section of the laser beam is about 10 x 8 sq cm and the intense plateau region is about 10 x 5.5 sq cm. The laser pulse energy exceeds 4.7 J in a 28 ns pulse (FWHM).

  2. Boron trichloride purification with a KrF excimer laser

    SciTech Connect

    Hyer, R.C.; Hartford, A. Jr.; Atencio, J.H.

    1980-01-01

    Selective ultraviolet photolysis using a KrF excimer laser has been used to substantially reduce the phosgene impurity in a binary mixture of boron trichloride and phosgene. Infrared spectroscopic analysis of the sample before and after irradiation shows that it is possible to highly purify commercially available boron trichloride with this technique.

  3. Research of the quenched dye lasers pumped by excimer lasers

    SciTech Connect

    Xue Shaolin; Lou Qihong

    1996-12-31

    In this paper, the quenched dye lasers pumped by XeCl and KrF excimer lasers were investigated theoretically and experimentally. Dye laser pulses with duration of 0.8 ns for XeCl laser pumping and 2 ns for KrF laser pumping were obtained. The dye Rhodamine 6G dissolved in methyl was used as the active medium in the quenched dye laser. When the pump laser was KrF and the active medium was Coumarin 498 the quenched dye laser emitted pulse with duration of about 2 ns. The characteristics of the quenched dye laser was also investigated in detail.

  4. Progress in discharge-pumped excimer lasers

    NASA Astrophysics Data System (ADS)

    Pike, Charles T.

    1993-04-01

    This paper describes recent results achieved in the development of discharge pumped excimer lasers at the Textron Defense Systems organization (formerly the Avco Research Laboratory). Included is a description of a KrF laser with more than one Joule output at 2.4% efficiency, a 200 mJ XeCl laser operating with a 500 nsec wide pulse, and a several Joule, discharge pumped, KrCl laser operating at 222 nm. All of these devices are switched using thyratrons and are therefore capable of repetitive performance. The KrF and XeCl experiments were conducted with the same laser device operating with a conventional capacitor transfer excitation circuit for the KrF experiments but modified to operate with a pulser-sustainer discharge circuit using magnetic switching for the XeCl tests. The KrCl device is a 40 liter volume system built by Northrop and also operates with a magnetically switched discharge.

  5. KrF excimer laser precision machining of hard and brittle ceramic biomaterials.

    PubMed

    Huang, Yao-Xiong; Lu, Jian-Yi; Huang, Jin-Xia

    2014-06-01

    KrF excimer laser precision machining of porous hard-brittle ceramic biomaterials was studied to find a suitable way of machining the materials into various desired shapes and sizes without distorting their intrinsic structure and porosity. Calcium phosphate glass ceramics (CPGs) and hydroxyapatite (HA) were chosen for the study. It was found that KrF excimer laser can cut both CPGs and HA with high efficiency and precision. The ablation rates of CPGs and HA are respectively 0.081 µm/(pulse J cm(-2)) and 0.048 µm/(pulse  J cm(-2)), while their threshold fluences are individually 0.72 and 1.5 J cm(-2). The cutting quality (smoothness of the cut surface) is a function of laser repetition rate and cutting speed. The higher the repetition rate and lower the cutting speed, the better the cutting quality. A comparison between the cross sections of CPGs and HA cut using the excimer laser and using a conventional diamond cutting blade indicates that those cut by the excimer laser could retain their intrinsic porosity and geometry without distortion. In contrast, those cut by conventional machining had distorted geometry and most of their surface porosities were lost. Therefore, when cutting hard-brittle ceramic biomaterials to prepare scaffold and implant or when sectioning them for porosity evaluation, it is better to choose KrF excimer laser machining. PMID:24784833

  6. Picosecond VUV anti-Stokes Raman laser pumped by a KrF laser

    NASA Astrophysics Data System (ADS)

    Takahashi, Akihiko; Maeda, Mitsuo; Muraoka, Katsunori; Akazaki, Masanori

    1989-02-01

    Generation of picosecond vacuum ultraviolet pulses by anti-Stokes stimulated Raman Scattering (ASRS) in hydrogen gas is reported. A tunable picosecond KrF excimer laser (30 ps FWHM, 12 mJ) is used as a pump source, and a series of anti-Stokes lines up to the 9th order (128.8 nm) is efficiently generated. The transient effects due to the finite decay time of the Raman medium are discussed for the present picosecond ASRS experiment.

  7. Practical resolution enhancement effect by new complete antireflective layer in KrF excimer laser lithography

    NASA Astrophysics Data System (ADS)

    Ogawa, Tohru; Kimura, Mitsumori; Gocho, Tetsuo; Tomo, Yoichi; Tsumori, Toshiro

    1993-08-01

    A new complete anti-reflective layer (ARL) for KrF excimer laser lithography, which becomes an excimer laser lithography to a practical mass production tool beyond 0.35 micrometers rule devices, is developed. This new ARL, whose material is a type of hydro silicon oxynitride film (SiOxNy:H), can be applied to tungsten silicide (W-Si) and even to aluminum silicon (Al- Si) substrates by controlling deposition conditions in plasma enhanced chemical vapor deposition systems. Using this SiOxNy:H film with 30 nm and 25 nm thicknesses on W-Si and Al-Si substrates respectively, critical dimension variations for both substrates are drastically reduced to within 0.02 micrometers for 0.30 micrometers imaging. On actual device structures, with these SiOxNy:H film as an ARL, notching effects by halation are completely reduced. Moreover, these SiOxNy:H film can not only be deposited with topographical uniformity but also etched with conventional SiO2 etching conditions. Another advantage with ARL is a depth of focus enhancement effect. With a SiOxNy:H film depth of focus for the critical dimension is enlarged more than 23% for 0.35 micrometers line and space patterns. Accordingly, practical resolution is enhanced. From the above effect, the limitations of KrF excimer laser lithography for ideal substrate conditions are considered from the point of view of optimal projection lens NA for various feature sizes.

  8. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  9. Sub-500-nm patterning of glass by nanosecond KrF excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Bekesi, J.; Meinertz, J.; Simon, P.; Ihlemann, J.

    2013-01-01

    The surface of flint glass of type F2 is patterned by nanosecond KrF excimer laser ablation. Strong UV absorption provides a comparatively low ablation threshold and precise ablation contours. By using a two-grating interferometer, periodic surface patterns with 330 nm period and 100 nm modulation depth are obtained. This method enables the fabrication of 7 mm×13 mm wide grating areas with perfectly aligned grooves without the need of high-precision sample positioning. By double exposure, crossed gratings with adjustable depths in the two orthogonal directions can be generated.

  10. Comparison of KrF and ArF excimer laser treatment of biopolymer surface

    NASA Astrophysics Data System (ADS)

    Michaljaničová, I.; Slepička, P.; Heitz, J.; Barb, R. A.; Sajdl, P.; Švorčík, V.

    2015-06-01

    The goal of this work was the investigation of the impact of two different excimer lasers on two biocompatible and biodegradable polymers (poly-L-lactide and poly hydroxybutyrate). Both polymers find usage in medical and pharmaceutical fields. The polymers were modified by KrF and ArF excimer lasers. Subsequently the impact on surface morphology, surface chemistry changes, and thermal properties was studied by means of confocal and AFM microscopy, FTIR and XPS spectroscopy and DSC calorimetry. Under the same conditions of laser treatment it was observed that ArF laser causes more significant changes on surface chemistry, surface morphology and pattern formation on the polymers under investigation. The data obtained in this work can be used for a wide range of possible applications, in tissue engineering or in combination with metallization in electronics, e.g. for biosensors.

  11. Raman scattering measurements in flames using a tunable KrF excimer laser.

    PubMed

    Wehrmeyer, J A; Cheng, T S; Pitz, R W

    1992-04-01

    Using a narrow-band tunable KrF excimer laser as a spontaneous vibrational Raman scattering source, we demonstrate that single-pulse concentration and temperature measurements, with only minimal fluorescence interference, are possible for all major species (O(2), N(2), H(2)O, and H(2)) at all stoichiometries (fuel-lean to fuel-rich) of H(2)-air flames. Photon-statistics-limited precisions in these instantaneous and spatially resolved single-pulse measurements are typically 5%, which are based on the relative standard deviations of single-pulse probability distributions. Optimal tuning of the narrow-band KrF excimer laser (248.623 nm) for the minimization of OH A(2)Sigma-X(2)II and O(2)B(3)Sigma(u)(-)-X(3)Sigma(g)(-) fluorescence interference is determined from fluorescence excitation spectra. In addition to the single-pulse N(2) Stokes/anti-Stokes ratio temperature measurement technique, a time-averaged temperature measurement technique ispresented that matches the N(2) Stokes Raman spectrum to theoretical spectra by using a single intermediate sta frequency to account for near-resonance enhancement. Raman flame spectra in CH(4)-air flames are presented that have good signal-to-noise characteristics and show promise for single-pulse UV Raman measurements in hydrocarbon flames. PMID:20720783

  12. Observation of atmospheric ozone by dial with Raman lasers pumped by a KrF laser

    NASA Technical Reports Server (NTRS)

    Maeda, M.; Shibata, T.

    1986-01-01

    Since the XeCl excimer laser (308 nm) was first used in Differential Absorption Lidar (DIAL) for stratospheric ozone detection, the XeCl ozone lidar became a useful tool for the monitoring of the stratospheric ozone concentration. Shorter wavelength lasers are needed for the observation of ozone in the troposphere where the ozone concentration is about one order of magnitude smaller than in the stratosphere. In 1983, tropospheric ozone was observed with the combination of the second Stokes line (290.4 nm) of stimulated Raman scattering from methane pumped by a KrF laser and the XeCl laser line. The measurement of the ozone distribution from ground to 30 km was reported, using three Stokes lines of Raman lasers pumped by a KrF laser. At wavelengths shorter than 295 nm, the background solar radiation is effectively suppressed by atmospheric ozone. Such a solar-blind effect can be expected when two wavelengths 277 and 290.4 nm are used for DIAL ozone detection. A preliminary measurement of the day time ozone distribution in the troposphere is presented using these wavelengths generated by a KrF laser with a Raman shifter. Analysis using the lidar equation predicts the maximum detectable range is 7 km.

  13. High-power gas-discharge excimer ArF, KrCl, KrF and XeCl lasers utilising two-component gas mixtures without a buffer gas

    NASA Astrophysics Data System (ADS)

    Razhev, A. M.; Kargapol'tsev, E. S.; Churkin, D. S.

    2016-03-01

    Results of an experimental study of the influence of a gas mixture (laser active medium) composition on an output energy and total efficiency of gas-discharge excimer lasers on ArF* (193 nm), KrCl* (222 nm), KrF* (248 nm) and XeCl* (308 nm) molecules operating without a buffer gas are presented. The optimal ratios of gas components (from the viewpoint of a maximum output energy) of an active medium are found, which provide an efficient operation of laser sources. It is experimentally confirmed that for gas-discharge excimer lasers on halogenides of inert gases the presence of a buffer gas in an active medium is not a necessary condition for efficient operation. For the first time, in two-component gas mixtures of repetitively pulsed gas-discharge excimer lasers on electron transitions of excimer molecules ArF*, KrCl*, KrF* and XeCl*, the pulsed energy of laser radiation obtained under pumping by a transverse volume electric discharge in a low-pressure gas mixture without a buffer gas reached up to 170 mJ and a high pulsed output power (of up to 24 MW) was obtained at a FWHM duration of the KrF-laser pulse of 7 ns. The maximal total efficiency obtained in the experiment with two-component gas mixtures of KrF and XeCl lasers was 0.8%.

  14. KrF excimer laser lithography with a phase-shifting mask for gigabit-scale ultra large scale integration

    NASA Astrophysics Data System (ADS)

    Imai, Akira; Terasawa, Tsuneo; Hasegawa, Norio; Asai, Naoko; Tanaka, Toshihiko P.; Okazaki, Shinji

    1996-10-01

    Resolution-enhancement technologies such as alternating-type phase-shifting masks (PSMs), half-tone PSMs, and the off- axis illumination method in optical lithography are necessary for manufacturing gigabit-scale ultra large scale integration (ULSI) devices. Because an alternating-type PSM is the most effective way to enhance resolution, we examine the resolution capabilities of KrF excimer laser lithography combined with the use of an alternating-type PSM through simulations. Our goal is to apply this technique to attain pattern delineation smaller than 200 nm. We simulate light intensity profiles for various types of PSMs in terms of the 3-D mask structure, and find that a PSM structure with a spin-on glass (SOG) phase shifter on a Cr layer that is thinner than in a conventional mask is one of the best choices for KrF excimer laser lithography. We examine potential problems such as the durability of the SOG phase shifters to KrF excimer laser irradiation exposure, and phase angle error due to the surface topography of the Cr aperture patterns. From our experimental results, we confirm that the optical characteristics of the PSM are not degraded, and the phase angle can be controlled with an accuracy sufficient for gigabit-scale ULSI device fabrication. Improved PSMs with a thin Cr layer and SOG phase shifters were successfully used to fabricate several layers of experimental 1-Gbit dynamic random access memory (DRAM) devices with sufficient resolution capability.

  15. Rapid discharge-pumped wide aperture X-ray preionized KrF laser

    NASA Astrophysics Data System (ADS)

    Mizoguchi, H.; Endoh, A.; Jethwa, J.; Rácz, B.; Schäfer, F. P.

    1991-03-01

    A wide aperture X-ray preionized discharge-pumped KrF excimer laser has been constructed. A flat plate pulse-forming line (36 nF, 340 kV) charges a peaking capacitor (6 nF) through a rail-gap to facilitate a rapid discharge in the laser head. Collimated X-ray preionization is employed to obtain a wide and uniform discharge. The laser is intended to be used as a short pulse amplifier and results are presented when characterized as an oscillator. The active cross-section of the laser beam is 10×8 cm2 with 50 cm effective electrode length. The laser pulse energy exceeds 4.7 J in a 28 ns pulse (FWHM).

  16. Raman scattering measurements in flames using a tunable KrF excimer laser

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Cheng, Tsarng-Sheng; Pitz, Robert W.

    1992-01-01

    A narrow-band tunable KrF excimer laser is used as a spontaneous vibrational Raman scattering source to demonstrate that single-pulse concentration and temperature measurements, with only minimal fluorescence interference, are possible for all major species (O2, N2, H2O, and H2) at all stoichiometries (fuel-lean to fuel rich) of H2-air flames. Photon-statistics-limited precisions in these instantaneous and spatially resolved single-pulse measurements are typically 5 percent, which are based on the relative standard deviations of single-pulse probability distributions. In addition to the single-pulse N2 Stokes/anti-Stokes ratio temperature measurement technique, a time-averaged temperature measurement technique is presented that matches the N2 Stokes Raman spectrum to theoretical spectra by using a single intermediate state frequency to account for near-resonance enhancement. Raman flame spectra in CH4-air flames are presented that have good signal-to-noise characteristics and show promise for single-pulse UV Raman measurements in hydrocarbon flames.

  17. Analysis of damage threshold of K9 glass irradiated by 248-nm KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Shao, Jingzhen; Li, Hua; Nie, Jinsong; Fang, Xiaodong

    2016-02-01

    The theoretical model of K9 glass irradiated by a 248-nm KrF excimer laser was established, and a numerical simulation was performed to calculate temperature and thermal stress fields in the K9 glass sample using the finite element method. The laser-induced damage thresholds were defined and calculated, and the effect of repetition frequency and the number of pulses on the damage threshold were also studied. Furthermore, the experiment research was carried out to confirm the numerical simulation. The damage threshold and damage morphology were analyzed by means of a metallurgical microscope and scanning electron microscopy. The simulation and experimental results indicated that the damage mechanism of K9 glass irradiated by a KrF excimer laser was melting damage and stress damage, and the stress damage first appeared inside the K9 glass sample. The tensile stress damage threshold, the compressive stress damage threshold, and the melting damage threshold were 0.64, 0.76, and 1.05 J/cm2, respectively. The damage threshold decreased with increasing repetition frequency and number of laser pulses. The experimental results indicated that the damage threshold of K9 glass was 2.8 J/cm2.

  18. Preparation of Ultrafine Fe–Pt Alloy and Au Nanoparticle Colloids by KrF Excimer Laser Solution Photolysis

    PubMed Central

    2009-01-01

    We prepared ultrafine Fe–Pt alloy nanoparticle colloids by UV laser solution photolysis (KrF excimer laser of 248 nm wavelength) using precursors of methanol solutions into which iron and platinum complexes were dissolved together with PVP dispersant to prevent aggregations. From TEM observations, the Fe–Pt nanoparticles were found to be composed of disordered FCC A1 phase with average diameters of 0.5–3 nm regardless of the preparation conditions. Higher iron compositions of nanoparticles require irradiations of higher laser pulse energies typically more than 350 mJ, which is considered to be due to the difficulty in dissociation of Fe(III) acetylacetonate compared with Pt(II) acetylacetonate. Au colloid preparation by the same method was also attempted, resulting in Au nanoparticle colloids with over 10 times larger diameters than the Fe–Pt nanoparticles and UV–visible absorption peaks around 530 nm that originate from the surface plasmon resonance. Differences between the Fe–Pt and Au nanoparticles prepared by the KrF excimer laser solution photolysis are also discussed. PMID:20596425

  19. Formation of a narrow beam from an excimer laser pumped by gamma rays

    SciTech Connect

    Lazhintsev, B V; Nor-Arevyan, V A

    2002-06-30

    A laser pumped by a travelling gamma-radiation wave and consisting of a cylindrical part forming spontaneous superradiation and a conical amplifier is considered. The energy parameters of an excimer conical KrF amplifier are investigated. The factors influencing the divergence of induced radiation at the output of the conical amplifier are analysed for various durations of a pump pulse. It is shown that the divergence of radiation emitted by the laser with an active medium length of 10 m may be as high as 10{sup -4} rad. The scheme of laser-beam focusing on the target for the purposes of laser-induced fusion is considered. (control of laser radiation parameters)

  20. Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame.

    PubMed

    Pitz, R W; Wehrmeyer, J A; Bowling, J M; Cheng, T S

    1990-05-20

    Spontaneous vibrational Raman scattering (VRS) is produced by a broadband excimer laser at 248 nm (KrF) in a H(2)-air flame and VRS spectra are recorded for lean, stoichiometric, and rich flames. Except at very lean flame conditions, laser-induced fluorescence (LIF) processes interfere with VRS Stokes lines from H(2), H(2)O, and O(2). No interference is found for the N(2) Stokes and N(2) anti-Stokes lines. In a stoichiometric H(2)/air flame, single-pulse measurements of N(2) concentration and temperature (by the VRS Stokes to anti-Stokes ratio) have relative standard deviation of 7.7 and 10%, respectively. These single pulse measurement errors compare well with photon statistics calculations using measured Raman cross sections. PMID:20563170

  1. Molecular design and synthesis of 3-oxocyclohexyl methacrylate for ArF and KrF excimer laser resist

    SciTech Connect

    Kozaki, Koji; Kaimoto, Yuko; Takahashi, Makoto

    1994-09-01

    The authors originally designed 3-oxocyclohexyl methacrylate (OCMA) for an acid-labile component in chemical amplification. The key concept of the molecular design of the 3-oxocyclohexyl substituent was the introduction of acidic protons at the {alpha}-position of the elimination site by using a ketone functional group. OCMA was synthesized by esterification of 1,3-cyclohexanediol and methacryloyl chloride followed by pyridinium dichromate oxidation. Using AIBN as an initiator, the authors also prepared poly(OCMA-co-AdMA) (AdMA: adamantyl methacrylate) by a thermally induced radical copolymerization of OCMA and AdMA. The resist comprises the copolymer and 10 wt % of triphenylsulfonium hexafluoroantimonate as a photoacid generator (PAG). This resist has high sensitivity, good thermal stability, good dry etch resistance, and good postexposure delay durability. Using a KrF excimer laser stepper (NA = 0.45) and 2-propanol mixed aqueous alkali developer, the authors obtained 0.3-{mu}m line and space patterns with this resist. A resist with 1 wt % of the PAG has an acceptable transmittance at 193 nm, proving that this resist is suitable for ArF excimer lithography. 29 refs., 10 figs., 2 tabs.

  2. High-NA high-throughput scanner compatible 2-kHz KrF excimer laser for DUV lithography

    NASA Astrophysics Data System (ADS)

    Nakarai, Hiroaki; Hisanaga, Naoto; Suzuki, Natsushi; Matsunaga, Takeshi; Asayama, Takeshi; Akita, Jun; Igarashi, Toru; Ariga, Tatsuya; Bushida, Satoru; Enami, Tatsuo; Nodomi, Ryoichi; Takabayashi, Yuichi; Sakanishi, Syouich; Suzuki, Takashi; Tomaru, Hitoshi; Nakao, Kiyoharu

    2000-07-01

    We have succeeded in the development of an excimer laser with ultra narrow bandwidth applicable to high N.A. scanners targeting on the 0.13micrometers -design rule. Key word of our solution for 0.13micrometers -design rule was 'extended technologies of currently available KrF excimer laser unit. As the result we could shorten development time remarkably. The narrower the laser spectrum, the less the influence of chromatic aberration on exposure projection lens; this is a well-known fact. We have developed the technologies to achieve spectral bandwidths less than 0.5pm, 20 percent narrower than our current model G20K. In order to attain this number, the major design change was made on line narrowing module, which was redesigned to minimize the dispersion of wavelength element. In addition gas condition was fine-tuned for the new line narrowing module. Integrated energy stability has been improved within +/- 0.35 percent with 35 pulses window by the introduction of a high efficiency pules power module and a faster gas circulation system. The rest of oscillation performances and durability equate with the base model G20K. The intelligent gas control system extended gas exchange interval up to 200 million pulses or 7 days. The G20K already passed through 10 billion-pulse test. Total energy loss was within 4mJ which is small enough to be compensated by gas injection and voltage change; it is a unique compensation system of Komatsu.

  3. Development of a Silicon Based Electron Beam Transmission Window for Use in a KrF Excimer Laser System

    SciTech Connect

    C.A. Gentile; H.M. Fan; J.W. Hartfield; R.J. Hawryluk; F. Hegeler; P.J. Heitzenroeder; C.H. Jun; L.P. Ku; P.H. LaMarche; M.C. Myers; J.J. Parker; R.F. Parsells; M. Payen; S. Raftopoulos; J.D. Sethian

    2002-11-21

    The Princeton Plasma Physics Laboratory (PPPL), in collaboration with the Naval Research Laboratory (NRL), is currently investigating various novel materials (single crystal silicon, <100>, <110> and <111>) for use as electron-beam transmission windows in a KrF excimer laser system. The primary function of the window is to isolate the active medium (excimer gas) from the excitation mechanism (field-emission diodes). Chosen window geometry must accommodate electron energy transfer greater than 80% (750 keV), while maintaining structural integrity during mechanical load (1.3 to 2.0 atm base pressure differential, approximate 0.5 atm cyclic pressure amplitude, 5 Hz repetition rate) and thermal load across the entire hibachi area (approximate 0.9 W {center_dot} cm superscript ''-2''). In addition, the window must be chemically resistant to attack by fluorine free-radicals (hydrofluoric acid, secondary). In accordance with these structural, functional, and operational parameters, a 22.4 mm square silicon prototype window, coated with 500 nm thin-film silicon nitride (Si{sub 3}N{sub 4}), has been fabricated. The window consists of 81 square panes with a thickness of 0.019 mm {+-} 0.001 mm. Stiffened (orthogonal) sections are 0.065 mm in width and 0.500 mm thick (approximate). Appended drawing (Figure 1) depicts the window configuration. Assessment of silicon (and silicon nitride) material properties and CAD modeling and analysis of the window design suggest that silicon may be a viable solution to inherent parameters and constraints.

  4. Surface studies on benzophenone doped PDMS microstructures fabricated using KrF excimer laser direct write lithography

    NASA Astrophysics Data System (ADS)

    Kant, Madhushree Bute; Shinde, Shashikant D.; Bodas, Dhananjay; Patil, K. R.; Sathe, V. G.; Adhi, K. P.; Gosavi, S. W.

    2014-09-01

    This paper discusses microfabrication process for benzophenone doped polydimethylsiloxane (PDMS) using laser lithography. KrF excimer laser of 248 nm with 20 ns pulse width at repetition rate of 1 Hz was used for microfabrication of undoped and benzophenone doped PDMS. The doped-PDMS shows sensitivity below 365 nm, permitting processing under ambient light. The analysis of etch depth revealed that doped PDMS shows self developable sensitivity at lower fluence of ∼250 mJ/cm2. The unexposed and exposed surface was studied using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and Scanning electron microscopy (SEM). Spectrocopic analysis indicated increase in Csbnd O, Cdbnd O, Sisbnd O3 and Sisbnd O4 bonding at the expense of Sisbnd C and Sisbnd O2 bonds of PDMS. In case of laser exposed doped-PDMS, removal of benzophenone from probe depth of spectroscopy was observed. Whereas the surface morphology of exposed and unexposed doped-PDMS was observed to be same, indicating clean development of PDMS micropatterns. The present study indicates that addition of 3.0 wt.% benzophenone in PDMS enhance self development sensitivity of PDMS. The self developable results on doped-PDMS are quite encouraging for its potential use in point of care Lab-On-Chip applications, for fabricating micropatterns using direct write laser lithography technology.

  5. Neutron-pumped excimer flashlamp sources

    NASA Astrophysics Data System (ADS)

    Miley, George H.; Prelas, Mark A.

    2004-01-01

    A Nuclear Pumped Flashlamp (NPF) is closely related to a Nuclear-Pumped Laser NPL in that both use nuclear radiation to excite the medium. The NPF does not require as high peak power as is needed for NPL inversion. Still, with a reactor source, a large volume NPF can be designed to deliver extremely large fluorescence in the UV up to the infrared range, depending on the media employed. The NPF can then be used for industrial applications or for pumping a laser requiring a high intensity light pump. The first experimental example of this approach was a 3He-XeBr2 NPF employed in 1993 to pump a small iodine laser. The present paper discusses issues involved in scaling such a NPF up to an ultra high energy output.

  6. KrF- and ArF-excimer-laser-induced absorption in silica glasses produced by melting synthetic silica powder

    SciTech Connect

    Kuzuu, Nobu; Sasaki, Toshiya; Kojima, Tatsuya; Tanaka, Jun-ichiro; Nakamura, Takayuki; Horikoshi, Hideharu

    2013-07-07

    KrF- and ArF-excimer-laser-induced absorption of silica glasses produced by electric melting and flame fusion of synthetic silica powder were investigated. The growth of KrF-laser-induced absorption was more gradual than that of ArF-laser-induced absorption. Induced absorption spectra exhibited a peak at about 5.8 eV, of which the position and width differed slightly among samples and laser species. Widths of ArF-laser-induced absorption spectra were wider than those of KrF-laser-induced spectra. KrF-laser-induced absorption is reproducible by two Gaussian absorption bands peaking at 5.80 eV with full width at half maximum (FWHM) of 0.62 eV and at 6.50 eV with FWHM of 0.74 eV. For reproduction of ArF-laser-induced absorption, Gaussian bands at 5.41 eV with FWHM of 0.62 eV was necessary in addition to components used for reproducing KrF-laser-induced absorption. Based on the discussion of the change of defect structures evaluated from change of absorption components, we proposed that the precursor of the 5.8-eV band ascribed to E Prime center ({identical_to}Si{center_dot}) is {identical_to}Si-H HO-Si{identical_to} structures formed by the reaction between strained Si-O-Si bonds and interstitial H{sub 2} molecules during the irradiation.

  7. Formation of laser irradiation by non-uniform pumping discharge of KrF laser

    NASA Astrophysics Data System (ADS)

    Bychkov, Yurii I.; Panchenko, Yurii N.; Yampolskaya, Sofiya A.; Yastremskii, Arcadii G.

    2015-12-01

    Results of 2D simulation of a KrF laser are presented. In the model, inhomogeneities of distributions of the electric field and plasma particle concentration are considered. It is demonstrated, that the laser energy depends not only on the value of the total pump power, but also from its spatial distribution. The shape of the electrodes is a major determinant of the spatial distribution of pumping power in the active medium. For electrodes with small radii of curvature, the pumping power in the center of the discharge may be too high. This leads to the suppression of radiation in the center of the discharge and the limitation of the laser energy.

  8. Species-resolved laser-probing investigations of the hydrodynamics of KrF excimer and copper vapor laser ablation processing of materials

    NASA Astrophysics Data System (ADS)

    Ventzek, Peter L. G.; Gilgenbach, Ronald M.; Ching, Chi H.; Lindley, R. A.

    1993-06-01

    Hydrodynamic phenomena from KrF excimer laser ablation (10-3-20 J/cm2) of polyimide, polyethyleneterephthalate, and aluminum are diagnosed by laser beam deflection, schlieren photography, shadowgraphy, laser-induced-fluorescence and dye-laser- resonance absorption photography (DLRAP). Experiments were performed in vacuum and gaseous environments (10-5 to 760 Torr). In vacuum, the DLRAP diagnostic shows species-resolved plume expansion which is consistent with that of a reflected rarefaction wave. Increasing the background gas pressure reveals the formation of sound/shock compared to CN in the laser-ablated polyimide (Vespel) plume/shock in inert (e.g. argon) and reactive (e.g. air) gases. At low pressures (less than 10 Torr) Al and CN species are in close contact with the shock front. As the pressure increases, the species front tends to recede, until at high pressures (over 200 Torr) the species are restrained to only a few mm above the target surface. After sufficient expansion, Al and CN are no longer detectable; only the shadowgraph of the hot gas plume remains. Since CN is observable in both inert and reactive environments, it can be concluded that CN is not a reaction product between the background gas and the ablated species. By way of comparison to excimer laser ablation processing of materials, copper vapor laser machined polyimide and polymethylmethacrylate (transparent to green and yellow copper vapor laser light) are also investigated. The two polymers are observed to have markedly different machined surfaces. Hydrodynamic effects for the copper vapor laser machined materials are investigated using HeNe laser beam deflection.

  9. Periodic structure with a periodicity of 2-3.5 μm on crystalline TiO2 induced by unpolarized KrF excimer lasers

    NASA Astrophysics Data System (ADS)

    He, Rong; Ma, Hongliang; Zheng, Jiahui; Han, Yongmei; Lu, Yuming; Cai, Chuanbing

    2016-08-01

    Laser-induced periodic surface structures (LIPSS) were processed on the TiO2 bulk surface under the irradiation of 248 nm unpolarized KrF excimer laser pulses in air. Spatial LIPSS periods ranging from 2 to 3.5 μm are ascribed to the capillary wave. These microstructures were analyzed at different laser pulse numbers with the laser energy from 192 to 164 mJ. The scanning electron microscopy results indicated eventually stripes that have been disrupted as the increase in the laser pulse numbers, which is reasonably explained by the energy accumulating effect. In addition, investigations were concentrated on the surface modifications at pre-focal plane, focal plane and post-focal plane in the same defocusing amount. Compared with condition at pre-focal plane, in addition to the plasma produced at target, the air was also breakdown for the situation of post-focal plane. So it was reasonable that stripes appeared at pre-focal plane but not at post-focal plane.

  10. Synthesis of diamond on WC-Co substrates using a KrF excimer laser in combination with a combustion flame

    NASA Astrophysics Data System (ADS)

    Han, Y. X.; Ling, H.; Lu, Y. F.

    2007-02-01

    A KrF excimer laser was used in combination with a combustion flame to deposit diamond films on cemented tungsten carbide (WC-Co) substrates. The laser has a wavelength of 248 nm, a pulse width of 23 ns, a pulse energy range of 84~450 mJ, and a repetition rate up to 50 Hz. Using the combustion flame method, diamond films were deposited on the laser-processed WC-Co substrates for 10 min. The morphologies of the deposited diamond films were examined using a scanning electron microscopy (SEM). The composition and bonding structures in the deposited films were studied by energy dispersive X-ray analysis (EDX) and Raman spectroscopy, respectively. The film adhesion was characterized by scratching a razor across the films. It was found that C composition on WC-Co substrate surfaces was eliminated by the laser irradiation. As a consequence, diamond nucleation density decreased and diamond grains grew larger in the laser-processed areas. Based on the experimental results, a film growth mechanism at different deposition temperature ranges corresponding to pre-deposition laser-surface-treatment effects was proposed.

  11. Theoretical Modeling of the Discharge-Pumped Xenon - Excimer Laser.

    NASA Astrophysics Data System (ADS)

    Zhu, Sheng-Bai

    The present dissertation is dedicated to a theoretical study of the discharge pumped XeCl excimer laser. For a better description of our system, Two modelings which supplement each other from different angles have been successfully developed. The first one, a comprehensive kinetics model which can be applied to the detailed simulations of the temporal behavior of the discharge characteristics and laser performance, is constructed by a set of coupled first -order differential equations, such as the rate equations, the Boltzmann equation, the external electric circuit equations, the energy balance equation, and the equations of optical resonator. The starting and termination of the discharge are taken into deliberation for the first time, especially for the Blumlein case. Some 70 kinetic processes and 23 chemical species are included. Such a problem can only be numerically solved by means of an elaborate computer code. Another model, on the other hand, pays attention to the quasi-steady-state to facilitate parametric study. A group of rate coefficients for the kinetic processes involving free electrons are approximated by analytic expressions using numerical results compiled from computer code calculations. Explicit expressions of the number densities for all relevant chemical species are obtained. Among them, HCI(O), H, and Cl can never reach steady-state population. Time history of the concentrations for these species are computed instead. With the discussions about the effect of vibrational relaxation and state-to-state transfer in the upper energy level, and the discussions about the rotational structure, collisional broadening, and dissociation of the diatomic ground state, we have extensively investigated the spontaneous emission spectra, the small-signal gain, the non-saturable absorption, the steady-state laser output power, and various efficiencies. Saturation effects in laser oscillators and laser amplifiers are discussed as well. These topics relate to the

  12. The Nike electron-beam-pumped KrF laser amplifiers

    SciTech Connect

    Sethian, J.D.; Pawley, C.J.; Obenschain, S.P.

    1997-04-01

    Nike is a recently completed multikilojoule krypton-fluoride (KrF) laser that has been built to study the physics of direct-drive inertial confinement fusion. The two final amplifiers of the Nike laser are both electron-beam-pumped systems. This paper describes these two amplifiers, with an emphasis on the pulsed power. The smaller of the two has a 20 x 20 cm aperture, and produces an output laser beam energy in excess of 100 J. This 20 cm Amplifier uses a single 12 kJ Marx generator to inject two 300 kV, 75 kA, 140 ns flat-top electron beams into opposite sides of the laser cell. The larger amplifier in Nike has a 60 x 60 cm aperture, and amplifies the laser beam up to 5 kJ. This 60 cm amplifier has two independent electron beam systems. Each system has a 170 kJ Marx generator that produces a 670 kV, 540 kA, 240 ns flat-top electron beam. Both amplifiers are complete, fully integrated into the laser, meet the Nike system requirements, and are used routinely for laser-target experiments.

  13. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.

    1976-01-01

    A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.

  14. Double-sided electron-beam generator for KrF laser excitation

    SciTech Connect

    Schlitt, L.; Swingle, J.

    1980-05-01

    Several laser systems excited by electron beam have been identified as candidates for pump sources for laser fusion applications. The electron beam generators required must be compact, reliable and capable of synchronization with other system components. A KrF laser producing a minimum output of 25 J was needed for the RAPIER (Raman Amplifier Pumped by Intensified Excimer Radiation) system. A double-sided electron beam system was designed and constructed specifically for this purpose and has produced > 35 J of KrF output. Each of the two electron beam machines in the system operates with an rms jitter of 0.4 ns and together occupy approx. 3.5 m/sup 2/ of floor space. The successful operation of this laser has engendered requests for a description of the engineering details of this system. This document contains a brief description of the design issues and a full set of engineering drawings for this KrF laser amplifier.

  15. Narrow bandwidth tuning of rhodamine 6G dye pumped by a XeCl excimer laser

    SciTech Connect

    Shangguan Cheng; Ling Ying-yi; Wang Yi-man; Dou Ai-rong; Huang Dan-hong

    1986-03-01

    In this paper the experimental study for narrow bandwidth tuning of ethylene glycol solution of rhodamine 6G pumped by a XeCl excimer laser is reported. The tunable range from 572.7 nm to 612.9 nm with linewidth of 0.004 nm has been obtained. The conversion efficiency is 16.0%. The experimental results of seven other dyes are also presented.

  16. Blue satellites of absorption spectrum study of sodium based excimer-pumped alkali vapor laser

    NASA Astrophysics Data System (ADS)

    Hu, Shu; Gai, Baodong; Guo, Jingwei; Tan, Yannan; Liu, Jinbo; Li, Hui; Cai, Xianglong; Shi, Zhe; Liu, Wanfa; Jin, Yuqi; Sang, Fengting

    2015-02-01

    Sodium based excimer-pump alkali laser (Na-XPAL) is expected to be an efficient method to generate sodium beacon light, but the information about the spectroscopic characters of Na-XPAL remains sparse so far. In this work, we utilized the relative fluorescence intensity to study the absorption spectrum of blue satellites of complexes of sodium with different collision partners. The yellow fluorescence of Na D1 and D2 line was clearly visible. After processing the fluorescence intensity and the input pumping laser relative intensity, we obtained the Na-CH4 system's blue satellites was from 553nm to 556nm. Meanwhile, we experimentally demonstrated the Na-Ar and Na-Xe system's wavelength range of blue satellites. Also, it was observed that the Na-Xe system's absorption was stronger than the other two systems.

  17. Excimer-pumped alkali vapor lasers: a new class of photoassociation lasers

    NASA Astrophysics Data System (ADS)

    Readle, J. D.; Wagner, C. J.; Verdeyen, J. T.; Spinka, T. M.; Carroll, D. L.; Eden, J. G.

    2010-02-01

    Excimer-pumped alkali vapor lasers (XPALs) are a new class of photoassociation lasers which take advantage of the spectrally broad absorption profiles of alkali-rare gas collision pairs. In these systems, transient alkali-rare gas molecules are photopumped from the thermal continuum to a dissociative X2Σ+ 1/2 interaction potential, subsequently populating the n2P3/2 state of the alkali. The absorption profiles >=5 nm and quantum efficiencies >98% have been observed in oscillator experiments, indicating XPAL compatibility with conventional high power laser diode arrays. An alternative technique for populating the n2P3/2 state is direct photoexcitation on the n2P3/2<--n2S1/2 atomic transition. However, because the XPAL scheme employs an off-resonant optical pump, the strengths of resonantly-enhanced nonlinear processes are minimized. Additionally, the absorption coefficient may be adjusted by altering the number densities of the lasing species and/or perturbers, a valuable asset in the design of large volume, high power lasers. We present an overview of XPAL lasers and their operation, including the characteristics of recently demonstrated systems photopumped with a pulsed dye laser. Lasing has been observed in Cs at both 894 nm and 852 nm by pumping CsAr or CsKr pairs as well as in Rb at 795 nm by pumping RbKr. These results highlight the important role of the perturbing species in determining the strength and position of the excimer absorption profile. It is expected that similar results may be obtained in other gas mixtures as similar collision pair characteristics have historically been observed in a wide variety of transient diatomic species.

  18. Excimer lasers

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Hess, L. D.; Stephens, R. R.; Pepper, D. M.

    1977-01-01

    The results of a two-year investigation into the possibility of developing continuous wave excimer lasers are reported. The program included the evaluation and selection of candidate molecular systems and discharge pumping techniques. The K Ar/K2 excimer dimer molecules and the xenon fluoride excimer molecule were selected for study; each used a transverse and capillary discharges pumping technique. Experimental and theoretical studies of each of the two discharge techniques applied to each of the two molecular systems are reported. Discharge stability and fluorine consumption were found to be the principle impediments to extending the XeF excimer laser into the continuous wave regime. Potassium vapor handling problems were the principal difficulty in achieving laser action on the K Ar/K2 system. Of the four molecular systems and pumping techniques explored, the capillary discharge pumped K Ar/K2 system appears to be the most likely candidate for demonstrating continuous wave excimer laser action primarily because of its predicted lower pumping threshold and a demonstrated discharge stability advantage.

  19. Wavelength conversion with excimer lasers

    SciTech Connect

    Booker, J.; Eichner, L.; Storz, R.H.; Bucksbaum, P.H.; Freeman, R.R.

    1983-01-01

    Harmonic generation was studied using a high powered, ultrashort pulse KrF excimer laser. Third, fifth, and seventh harmonic outputs were observed at 82.8 nm, 49.7 nm, and 35.5 nm. The nonlinear interaction took place at the intersection of the laser focus with a pulsed, supersonic gas jet expansion.

  20. Biocompatible layers fabricated using KrF laser

    NASA Astrophysics Data System (ADS)

    Jelínek, Miroslav; Kocourek, Tomás; Vrbová, Miroslava; Konarík, David; Remsa, Jan

    2008-11-01

    Thin films of hydroxyapatite, hydroxyapatite doped with silver and thin diamond like carbon layers were prepared using KrF excimer laser deposition. Tooth prostheses, textile blood vessels and artificial heart valves were covered and tested. Examples of physical tests, and in vitro and in vivo analysis using minipigs and sheep are presented.

  1. Short-wavelength stimulated raman scattering in a silica fiber pumped by an XeBr excimer laser

    SciTech Connect

    Mizunami, T.; Takagi, K.

    1989-08-01

    A UV-grade silica optical fiber was pumped by a 281.8 nm XeBr excimer laser. The first Stokes spectrum was observed at 285 nm. The spectral width was one half of that of the spontaneous Raman spectrum. A numerical analysis of stimulated Raman scattering which includes two-photon absorption loss is presented. The Raman-gain coefficient was determined by the analysis of observed nonlinearity in Stokes output and was found to be 1.8 x 10/sup -5/ cm/MW. It was also shown that two-photon absorption is a more important loss factor than linear attenuation. The shortest limit of wavelength for amplification by stimulated Raman scattering is also discussed.

  2. UV-VUV excimer emitter pumped by a subnormal glow discharge

    SciTech Connect

    Shuaibov, Aleksandr K; Dashchenko, Arkadii I; Shevera, Igor' V

    2001-04-30

    Characteristics of a small-size excimer emitter operating on an Ar - Cl{sub 2} mixture excited by a subnormal glow discharge are studied. It is shown that this discharge is a source of multiwavelength emission in a range of 175 - 258 nm. The optimum pressures lie in ranges of 0.3 - 0.5 kPa for chlorine and 2 - 4 kPa for argon. The average power of UV- VUV emission reaches 0.7 W, with the emission efficiency equal to 3 %. The emitter can be used in microelectronics, high-energy chemistry, short-wavelength photometry, biophysics, and medicine. (laser applications and other topics in quantum electronics)

  3. Electron collisions with cesium atoms - benchmark calculations and application to modeling an excimer-pumped alkali laser

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg; Bartschat, Klaus; Babaeva, Natalia; Kushner, Mark

    2014-10-01

    The B-spline R-matrix (BSR) with pseudostates method was employed to describe electron collisions with cesium atoms. Over 300 states were kept in the close-coupling expansion, including a large number of pseudostates to model the effect of the Rydberg spectrum and the ionization continuum on the results for transitions between the discrete physical states of interest. Predictions for elastic scattering, excitation, and ionization for incident energies up to 200 eV are presented and compared to previous results [2,3] and experimental data. Our data were used to model plasma formation in the excimer-pumped alkali laser, XPAL, operating on the Cs (62P3 / 2 , 1 / 2 --> (62S1 / 2) (852nm and 894nm) transitions. At sufficiently high operating temperature, pump power, and repetition rate, plasma formation in excess of 1014--1015cm-3 occurs. This may reduce laser output power by electron collisional mixing of the upper and lower laser levels. Work supported by the NSF under PHY-1068140, PHY-1212450, and the XSEDE allocation PHY-090031 (OZ, KB), and by the DoD High Energy Laser Multidisciplinary Research Initiative (NYB, MJK).

  4. Electron collisions with cesium atoms—benchmark calculations and application to modeling an excimer-pumped alkali laser

    NASA Astrophysics Data System (ADS)

    Zatsarinny, Oleg; Bartschat, Klaus; Babaeva, Natalia Yu; Kushner, Mark J.

    2014-06-01

    The B-spline R-matrix (BSR) with pseudostates method is employed to describe electron collisions with cesium atoms. Over 300 states are kept in the close-coupling expansion, including a large number of pseudostates to model the effect of the Rydberg spectrum and, most importantly, the ionization continuum on the results for transitions between the discrete physical states of interest. Predictions for elastic scattering, momentum transfer, excitation and ionization are presented for incident energies up to 200 eV and compared with results from previous calculations and available experimental data. In a second step, the results are used to model plasma formation in an excimer-pumped alkali laser operating on the Cs (62P3/2,1/2 → 62S1/2) (852 nm and 894 nm) transitions. At sufficiently high operating temperature of a Cs-Ar containing quartz cell, pump power, and repetition rate, plasma formation in excess of 1014-1015 cm-3 occurs. This may reduce laser output power by electron collisional mixing of the upper and lower laser levels.

  5. Numbers Of Merit In Excimer Laser Reliability Analysis

    NASA Astrophysics Data System (ADS)

    Austin, Lindsay; Basting, Dirk; Kahlert, Hans-Jurgen; Rebhan, Ulrich; Muckenheim, Wolfgang

    1989-04-01

    Recent results confirm new advances in XeC1 excimer laser discharge design have achieved major milestones in reliability - 1010 pulses without replacing the thyratron, electrodes, capacitors or power supply. Other data on standard KrF excimer lasers allow statistical analysis of numbers of merit, including MTBF and maintenance intervals. Projections are made of operating costs and maintenance for both continuous operation and low duty cycle of two different size lasers with all major gases: XeCl, KrF and ArF.

  6. Single-photon ionization quadrupole mass spectrometry with an electron beam pumped excimer light source.

    PubMed

    Mühlberger, F; Wieser, J; Morozov, A; Ulrich, A; Zimmermann, R

    2005-04-01

    The application of soft ionization methods for mass spectrometry (MS), such as single-photon ionization (SPI) using vacuum ultraviolet (VUV) light, provides powerful analytical instrumentation for real-time on-line monitoring of organic substances in gaseous matrixes. A compact and mobile quadrupole mass spectrometer (QMS) system using a novel electron beam pumped rare gas VUV lamp for SPI has been developed for on-line analysis of organic trace compounds (ppb concentrations). The VUV radiation of the light source is employed for SPI in the ion source of the QMS. The concept of the interfacing of the VUV light source with the QMS is described and the SPI-QMS is characterized. On-line detection limits down to 50 ppb for benzene, toluene, and m-xylene were achieved. The instrument is well suited for continuous measurements of aromatic and aliphatic trace compounds and can therefore be used for on-line monitoring of trace compounds in dynamically fluctuating process gases. First measurements of gas standards, petrochemical samples, and on-line monitoring of automotive exhaust are presented. PMID:15801756

  7. KrF laser-induced ablation and patterning of Y--Ba--Cu--O films

    SciTech Connect

    Heitz, J.; Wang, X.Z.; Schwab, P.; Baeuerle, D. ); Schultz, L. )

    1990-09-01

    The ablation and patterning of Y--Ba--Cu--O films on (100) SrTiO{sub 3} and (100) MgO substrates by KrF excimer-laser light projection was investigated. Three different regimes of laser-material interactions were observed. Transition temperatures and critical current densities in laser-fabricated strip lines were investigated.

  8. Excimer Laser Surface Treatment Of Non-Ferrous Alloys

    NASA Astrophysics Data System (ADS)

    Georgiopoulos, Michael; Hontzopoulos, Elias I.; Fotakis, Costas; Tsipas, D. N.; Floros, T.

    1989-04-01

    Excimer laser (KrF, ArF) radiation has been used for the surface modification of Al - Si and Ni alloys with the aim to improve their corrosion-errosion and hardness properties. A variety of experimental techniques including direct laser surface treatment and laser assisted chemical vapour deposition (CVD) have been employed and the parameters for process optimization have been determined.

  9. Formation of short high-power laser radiation pulses in excimer mediums

    NASA Astrophysics Data System (ADS)

    Losev, V. F., Sr.; Ivanov, N. G.; Panchenko, Yu. N.

    2007-06-01

    Presently an excimer mediums continue are examined as one of variants for formation of powerful and over powerful pulses of laser radiation with duration from units of nanosecond up to tens femtosecond. The researches on such powerful installations as "NIKE" (USA) and << SUPER ASHURA >>, Japan) proceed in this direction. The main advantage of excimer mediums is the opportunity to work in a frequency mode, absence of restriction on the size of active area, high uniformity of a gas working medium, high efficiency (up to 10 %) and wide spectral range of laser radiation (KrF, XeCl ~ 2nm, XeF (C-A), Xe IICl ~ 50-100 nanometers). Research in area of high quality laser beams formation in excimer mediums and its amplification in high power amplifiers are carried out the long time in Institute of High Current Electronics SB RAS, Tomsk, Russia. The wide aperture XeCl laser system of MELS-4k is used for these investigations. Last time we take part in program on development of high power excimer laser system with a petawatt level of power. This system supposes the formation and amplification high quality laser beams with different pulse duration from units of nanosecond up to tens femtosecond. We research the possibility of laser beams formation in excimer mediums with ps-ns pulse duration having the low noise and divergence near to diffraction limit. In other hand, we are developing the wide aperture XeF(C-A) amplifier with optical pump on base electron accelerator. According to our estimations of the XeF(C-A) amplifier based on the converter of e-beam energy to the Xe II* fluorescence at 172 nm will allow to obtain up to 100 TW peak power in a 30 fs pulse.

  10. Excimer laser ablation of ferrites

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    1991-02-01

    Laser etching of ferrites was previously done by scanning a focused continuous-wave laser beam on a ferrite sample in a chemical environment. We study the phenomenon of photo-ablation of Ni-Zn or Mn-Zn ferrites by pulsed 248-nm KrF excimer laser irradiation. A transfer lens system is used to project a grating pattern of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluence for ablation at the ferrite surface is about 0.3 J/cm2. A typical fluence of 1 J/cm2 is used. The etched grooves produced are typically 20-50 μm wide, with depths achieved as deep as 70 μm . Groove straightness is good as long as a sharp image is projected onto the sample surface. The wall angle is steeper than 60 degrees. Scanning electron microscopy of the etched area shows a ``glassy'' skin with extensive microcracks and solidified droplets being ejected that is frozen in action. We found that this skin can be entirely removed by ultrasonic cleaning. A fairly efficient etching rate of about 10 nm/pulse for a patterned area of about 2 mm×2 mm is obtained at a fluence of 1 J/cm2. This study shows that projection excimer laser ablation is useful for micromachining of ferrite ceramics, and indicates that a hydrodynamic sputtering mechanism involving droplet emission is a cause of material removal.

  11. Research on the characteristics of H sub 2 Raman conversion pumping by a 1-J XeCl excimer laser

    SciTech Connect

    Lou, Q. , P. O. Box 8730, Beijing, China and Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, P. O. Box 8211, Shanghai, China )

    1989-09-15

    Detailed results are presented of a high-efficiency Raman conversion of a 1-J XeCl excimer laser with an unstable resonator. We had 90% photon conversion of 18-MW-power XeCl laser radiation with 39% photon efficiency to the third Stokes order at 499 nm. The effects of rare-gas concentration in a H{sub 2}--rare-gas mixture on the Raman conversion characteristics were investigated. Finally, stimulated Raman scattering between the excited states of H{sub 2} at high gas pressure was observed, and conditions for generating these lines are discussed.

  12. Stimulated Raman scattering in lead vapor pumped by a long-pulse 1-J XeCl excimer laser

    SciTech Connect

    Lou, Q.; Huo, Y.

    1988-08-15

    The parametric dependence of the output energies and efficiencies for the Raman conversion of the radiation from a long-pulse 1-J XeCl excimer laser in Pb vapor was investigated. The effects of atom depletion and buffer gas on the stimulated Raman scattering output were discussed in detail. Multipeak structures of the waves of the Raman-shifted pulses were observed which could be attributed to the coherent effects in Raman scattering. A computer model was introduced to explain the multipeak structures of the stimulated Raman scattering waveforms.

  13. Excimer laser ablation of ferrite ceramics

    NASA Astrophysics Data System (ADS)

    Tam, A. C.; Leung, W. P.; Krajnovich, D.

    We study the ablation of Ni-Zn or Mn-7n ferrites by 248-nm KrF excimer laser irradiation for high-resolution patterning. A transfer lens system is used to project the image of a mask irradiated by the pulsed KrF laser onto the ferrite sample. The threshold fluente for ablation of the ferrite surface is about 0.3 J/cm2. A typical fluente of 1 J/cm2 is used to produce good-quality patterning. Scanning electron microscopy of the ablated area shows a "glassy" skin with extensive microcracks and solidified droplets being ejected that is frozen in action. This skin can be removed by ultrasonic cleaning.

  14. Experimental Investigation and Modeling of Kinetic Processes in a KrF Laser

    NASA Astrophysics Data System (ADS)

    Bychkov, Yu. I.; Yastremskii, A. G.; Yampolskaya, S. A.; Losev, V. F.; Dudarev, V. V.; Panchenko, Yu. N.; Puchikin, A. V.

    2014-11-01

    The KrF laser with radiation pulse duration at half maximum of 20 ns is experimentally investigated. A self-consistent model is developed considering the electric circuit, the kinetic processes in the active medium, and the formation of laser radiation in a resonator. Time dependences of the discharge current and voltage on the capacitor and discharge electrodes, plasma particle concentration, and rate constants of the processes determining the characteristics of the discharge and laser radiation are presented. Processes are revealed that determines the characteristics of the space charge and laser radiation. The kinetics of the processes of production and annihilation of KrF excimer molecules is studied in detail. It is demonstrated that high rates of destruction of excimer molecules increases the time of delay of generation thereby decreasing the efficiency of laser generation and limiting the possibility of decreasing laser radiation pulse duration.

  15. Excimer Laser Ablation of Egg Tempera Paints and Varnishes

    NASA Astrophysics Data System (ADS)

    Morais, P. J.; Bordalo, R.; Santos, L. dos; Marques, S. F.; Salgueiredo, E.; Gouveia, H.

    In this work a series of egg tempera paint and varnish systems have been prepared, artificially aged and irradiated with KrF excimer laser at a wavelength of 248 nm. The samples were prepared with pure pigments and selected mixtures. It was found that, for some pigments, the colour changed upon laser irradiation even at low energy densities, below the ablation threshold while for other inorganic pigmented egg temperas the degree of discoloration is very small at moderate fluence of ˜0.30 J cm?2. The varnish systems did not present signs of discoloration. The thickness, superficial roughness and magnitude of the colour changes of the samples were measured. X-ray diffraction, Raman spectroscopy and UV/visible spectroscopy were used in order to investigate the changes induced by the KrF excimer laser radiation.

  16. Nuclear pumped electronic transition laser studies

    NASA Technical Reports Server (NTRS)

    Hughes, W. M.; Helmick, H. H.

    1979-01-01

    An experiment is proposed that should yield unambiguous absolute results on the production efficiency of rare gas excimers from fission fragments. Laser threshold efficiency is parameterized and calculations indicate that some lasers can be operated using relatively simple experimental apparatus adjacent to GODIVA. Operation of a KrF excimer laser adjacent to GODIVA appears to be possible, although the neutron pulse width is not well matched to the laser pulse duration. However, calculation indicates that KrF excimer laser output on the order of a joule may be possible.

  17. Efficiency of excimer molecule formation in plasma jets of inert gas mixtures with SF6 and CCl4

    NASA Astrophysics Data System (ADS)

    Rogulich, V. S.; Starodub, V. P.; Shevera, V. S.

    1988-10-01

    The formation of krypton and xenon monofluorides and monochlorides in continuous plasma jets of inert gas mixtures with SF6 and CCl4 molecules is investigated experimentally. Absolute concentrations of KrF, XeF, KrCl, and XeCl excimer molecules in the jet are determined. The energy efficiency of specific input power conversion to the spontaneous B-X emission in the KrF band is estimated at 2-4 percent. Ways of increasing the concentration of excimer molecules in the plasma jet are analyzed.

  18. A survey of advanced excimer optical imaging and lithography

    NASA Astrophysics Data System (ADS)

    Matsumoto, Koichi; Suwa, Kyoichi

    1998-11-01

    The first item discussed in this paper is to estimate the future trend regarding minimum geometry and the optical parameters, such as NA and wavelength. Simulations based on aerial images are performed for the estimation. The resolution limit is defined as a minimum feature size which retains practical depth of focus (DOF). Pattern geometry is classified into two categories, which are dense lines and isolated lines. Available wavelengths are assumed to be KrF excimer laser (λ=248 nm), ArF excimer laser (λ=193 nm) and F2 excimer laser (λ=157 nm). Based upon the simulation results, the resolution limit is estimated for each geometry and each wavelength. The second item is to survey ArF optics. At present, the ArF excimer laser is regarded as one of the most promising candidates as a next-generation light source. Discussions are ranging over some critical issues. The lifetime of ArF optics supposedly limited by the radiation compaction of silica glass is estimated in comparison with KrF optics. Availability of calcium fluoride (CaF2) is also discussed. As a designing issue, a comparative study is made about the optical configuration, dioptric or catadioptric. In the end, our resist-based performance is shown.

  19. Excimer Laser Application For Cataract Surgery

    NASA Astrophysics Data System (ADS)

    Bath, Patricia E.; Mueller, Gerhard; Apple, David J.; Stolzenburg, Norbert M.

    1988-06-01

    The ablation threshold of bovine lenses was determined for excimer laser radiatiF at 308 nanreters. The ablation th5eshold for bovine lenses was approximately 0.6J/cm +/-0.1J/cm , for cortex and 1J/cm for nucleus. The threshold for bovine nucleus was higher than the threshold for cortex and difference was statistically significant at the 0.05 level. The relatively low ablation threshold for bovine lenses demonstrates the potential effectiveness of excimer laser radiation at 308 nm for cataract surgery. An experimental prototype has been developed and results of its application demonstrated. Further experiments to demonstrate safety for the retina and adjacent ocular structures are necessary because of the well known hazards of ultraviolet radiation. The potential of theleymir laser for keratorefractive surgery is currently under intensive investigation. In preliminary studies the ablation behavior of bovine lenses was investigated. The objective of this study was to quantify ablation rates as the first step in determining the specification for a laser system which would be practical in the clinical setting. Although excimer laser systems are available at 193 nm (ArF), 248 (KrF) and 351 (xeF) we selected 308 nm because of the availability of fiberoptics for the transmission of 308 nm as well as the known absorbance of human lenses in the 280 nm region.

  20. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1987-08-01

    The authors have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reactions cell. Spark schlieren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect.

  1. The NIKE KrF laser program

    SciTech Connect

    Sethian, J.D.; Bodner, S.E.; Gerber, K.A.; Lehmberg, R.H.; McLean, E.A.; Obenschain, S.P.; Pawley, C.J.; Pronko, M.S.; Stamper, J.A.; Deniz, A.V.; Hardgrove, J.; Lehecka, T.; McGeoch, M.W.

    1994-10-05

    NIKE is a large angularly multiplexed Krypton-Fluoride (KrF) laser under development at the Naval Research Laboratory. It is designed to explore the technical and physics issues of direct drive laser fusion. When completed, NIKE will deliver 2--3 kJ of 248 nm light in a 4 nsec pulse with intensities exceeding 2{times}10{sup 14} W/cm{sup 2} onto a planar target. Spatially and temporally incoherent light will be used to reduce the ablation pressure nonuniformities to less than 2% in the target focal plane. These parameters are predicted to be those required for a high gain ICF pellet. The NIKE system consists of a commercial oscillator/amplifier front end, an array of gas discharge amplifiers, two electron beam pumped amplifiers (one with a 20{times}20 cm{sup 2} aperture, the other with a 60{times}60 cm{sup 2} aperture) and the optics required to relay, encode, and decode the beam. Approximately two-thirds of the system is operational and currently undergoing tests. The output of the smaller e-beam system, the 20 cm Amplifier, exceeds both the uniformity and energy required to drive the final e-beam system, the 60 cm Amplifier. The pulsed power components of the 60 cm Amplifier have been built, and initial tests show the electron beam deposited by the system meets the laser requirements for pumping uniformity and energy deposition. {copyright} 1994 {ital American} {ital Institute} {ital of} {ital Physics}

  2. UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser

    NASA Technical Reports Server (NTRS)

    Shirley, John A.

    1990-01-01

    Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.

  3. Generation of strongly coupled plasmas by high power excimer laser

    NASA Astrophysics Data System (ADS)

    Zhu, Yongxiang; Liu, Jingru; Zhang, Yongsheng; Hu, Yun; Zhang, Jiyan; Zheng, Zhijian; Ye, Xisheng

    2013-05-01

    (ultraviolet). To generate strongly coupled plasmas (SCP) by high power excimer laser, an Au-CH-Al-CH target is used to make the Al sample reach the state of SCP, in which the Au layer transforms laser energy to X-ray that heating the sample by volume and the CH layers provides necessary constraints. With aid of the MULTI-1D code, we calculate the state of the Al sample and its relationship with peak intensity, width and wavelength of laser pulses. The calculated results suggest that an excimer laser with peak intensity of the magnitude of 1013W/cm2 and pulse width being 5ns - 10ns is suitable to generate SCP with the temperature being tens of eV and the density of electron being of the order of 1022/cm-3. Lasers with shorter wavelength, such as KrF laser, are preferable.

  4. Phosphorus doping of 4H SiC by liquid immersion excimer laser irradiation

    SciTech Connect

    Ikeda, Akihiro; Nishi, Koji; Ikenoue, Hiroshi; Asano, Tanemasa

    2013-02-04

    Phosphorus doping of 4H SiC is performed by KrF excimer laser irradiation of 4H SiC immersed in phosphoric acid. Phosphorus is incorporated to a depth of a few tens of nanometers at a concentration of over 10{sup 20}/cm{sup 3} without generating significant crystal defects. Formation of a pn junction diode with an ideality factor of 1.06 is demonstrated.

  5. Excimer laser ablation of polymer-clay nanocomposites

    NASA Astrophysics Data System (ADS)

    Chang, I.-Ta

    The ablation behavior of Polystyrene-Organically Modified Montmorillonite (OMMT) nanocomposites was evaluated by measuring the weight loss induced by KrF excimer laser irradiation of the nanocomposite specimens under air atmosphere. The characteristic values of ablation, ablation threshold fluence and effective absorption coefficient for polystyrene and its naonocomposites were calculated based on the weight loss data. The effects of morphology due to spatial variation in injection molded samples are also discussed in this work. Results demonstrate that both the dispersion state and the concentration of clay play important roles in excimer laser ablation. The sensitivity of threshold fluence and absorption coefficient to dispersion state of OMMT depends on the clay concentration. The excimer laser induced surface micro/nano structure formation and modification of PS-Clay Nanocomposites at various OMMT concentrations were also investigated. Scanning electron microscopy, atomic force microscopy and Fourier Transform Infrared (FTIR) spectroscopy with attenuated total reflectance accessory were utilized to analyze the ablated surface. Results show that, in general, better dispersion of OMMT leads to less continuous surface structures and more pronounced carbonyl regions on FTIR spectra. Clay nanoparticles are exposed on ablated surfaces and affect surface structure formation after irradiation by laser. A mechanism for the formation of excimer laser induced surface structures on injection molded parts is thus proposed.

  6. Compact ultrafast orthogonal acceleration time-of-flight mass spectrometer for on-line gas analysis by electron impact ionization and soft single photon ionization using an electron beam pumped rare gas excimer lamp as VUV-light source.

    PubMed

    Mühlberger, F; Saraji-Bozorgzad, M; Gonin, M; Fuhrer, K; Zimmermann, R

    2007-11-01

    Orthogonal acceleration time-of-flight mass spectrometers (oaTOFMS), which are exhibiting a pulsed orthogonal extraction of ion bunches into the TOF mass analyzer from a continuous primary ion beam, are well-suited for continuous ionization methods such as electron impact ionization (EI). Recently an electron beam pumped rare gas excimer lamp (EBEL) was introduced, which emits intensive vacuum UV (VUV) radiation at, e.g., 126 nm (argon excimer) and is well suited as the light source for soft single photon ionization (SPI) of organic molecules. In this paper, a new compact oaTOFMS system which allows switching between SPI, using VUV-light from an EBEL-light source, and conventional EI is described. With the oaTOFMS system, EBEL-SPI and EI mass spectral transients can be recorded at very high repetition rates (up to 100 kHz), enabling high duty cycles and therefore good detection efficiencies. By using a transient recorder card with the capability to perform on-board accumulation of the oaTOF transients, final mass spectra with a dynamic range of 106 can be saved to the hard disk at a rate of 10 Hz. As it is possible to change the ionization modes (EI and SPI) rapidly, a comprehensive monitoring of complex gases with highly dynamic compositions, such as cigarette smoke, is possible. In this context, the EI based mass spectra address the bulk composition (compounds such as water, oxygen, carbon dioxide, etc. in the up to percentage concentration range) as well as some inorganic trace gases such as argon, sulfur dioxide, etc. down to the low ppm level. The EBEL-SPI mass spectra on the other hand are revealing the organic composition down to the lower ppb concentration range. PMID:17900147

  7. Excimer Laser Etching

    SciTech Connect

    Boatner, Lynn A; Longmire, Hu Foster; Rouleau, Christopher M; Gray, Allison S

    2008-04-01

    Excimer laser radiation at a wavelength of = 248 nm represents a new etching method for the preparation of metallographic specimens. The method is shown to be particularly effective for enhancing the contrast between different phases in a multiphase metallographic specimen.

  8. Breakdown voltages for discharges initiated from plasma pulses produced by high-frequency excimer lasers

    SciTech Connect

    Yamaura, Michiteru

    2006-06-19

    The triggering ability under the different electric field was investigated using a KrF excimer laser with a high repetition rate of kilohertz order. Measurements were made of the magnitude of impulse voltages that were required to initiate a discharge from plasmas produced by a high-frequency excimer laser. Breakdown voltages were found to be reduced by 50% through the production of plasmas in the discharge gap by a high-frequency excimer laser. However, under direct-current electric field, triggering ability decreased drastically due to low plasma density. It is considered that such laser operation applied for laser-triggered lightning due to the produced location of plasma channel is formed under the impulse electric field since an electric field of the location drastically reduces temporary when the downward leader from thunderclouds propagates to the plasma channel.

  9. Excimer laser system Profile-500

    NASA Astrophysics Data System (ADS)

    Atejev, V. V.; Bukreyev, V. S.; Vartapetov, Serge K.; Semenov, A. D.; Sugrobov, V. A.; Turin, V. S.; Fedorov, Sergei N.

    1999-07-01

    The description of ophthalmological excimer laser system 'PROFILE-500' for photorefractive and physiotherapeutic keratectomy is presented. Excimer Laser Systems 'PROFILE- 500' are optical system that use ArF excimer lasers to perform photorefractive keratectomy or LASIK; surgical procedures used to correct myopia, hyperopia and astigmatism.

  10. Laser excited fluorescence in the cesium-xenon excimer and the cesium dimer

    NASA Technical Reports Server (NTRS)

    Exton, R. J.; Snow, W. L.; Hillard, M. E.

    1978-01-01

    Argon ion laser lines are used to excite fluorescence in a mixture of cesium and xenon. Excimer band fluorescence is observed at higher pressures (about 1 atm) while at lower pressures (several torr) a diffuse fluorescence due to the cesium dimer is observed whose character changes with exciting wavelength. The excimer fluorescence is shown to be directly related to the location of the exciting wavelength within previously measured Cs/Xe line shapes. This fact suggests that the excimer systems may be efficiently pumped through these line shapes. Qualitative energy-level schemes are proposed to explain the observations in both the excimer and dimer systems.

  11. Excimer lamp stereolithography

    NASA Astrophysics Data System (ADS)

    Satoh, Saburoh; Tanaka, Takao; Ihara, Satoshi; Yamabe, Chobei

    2000-06-01

    For the laser stereo-lithography, a XeCl excimer lamp with cylindrical tube has been adopted to achieve a lower cost type UV light source. Because of excellent high output efficiency, it is possible to be down sizing of a power supplier and a lamp head and to be air-cooling. And moreover to extract the maximum output power and efficiency, we applied an optical fiber system for its lithography optics. With this excimer lamp the maximum UV emission per pulse 25 (mu) J at 100 Hz and the maximum average power 10 mW at 1000 Hz were obtained.

  12. Excimer Lasers In Medicine

    NASA Astrophysics Data System (ADS)

    Tittel, Frank K.; Saidi, Iyad S.; Pettit, George H.; Wisoff, P. J.; Sauerbrey, Roland A.

    1989-06-01

    Excimer lasers emit light energy, short optical pulses at ultraviolet wavelengths, that results in a unique laser tissue interaction. This has led to an increasing number of studies into medical applications of these lasers in fields such as ophthalmology, urology, cardiology and neurology.

  13. Excimer laser induced nanostructuring of silicon surfaces.

    PubMed

    Kumar, Prashant; Krishna, Mamidipudi Ghanashyam; Bhattacharya, Ashok

    2009-05-01

    The effect of KrF excimer laser energy density (below and above the ablation threshold), number of shots and angle of laser incidence on the morphological reconstruction, structure and specular reflectance of Si[311] surfaces is reported. At low energy densities (0.1 to 0.3 J/cm2) laser irradiation results in a variety of nanostructures, depending on laser energy density and number of shots, such as nanopores (40-60 nm dia) and nanoparticles (40-80 nm dia). At energies greater than the laser ablation threshold (2 to 5 J/cm2) the formation of nanowires (200 nm dia, 6-8 microm length), and closely spaced silicon nanograins (100-150 nm dia) is observed. Experiments to study the effect of laser irradiation in the proximity of a fixed shape such as a linear step edge in the form of a stainless steel blade and a cylindrical cross-section Cu wire were also carried out. In both cases, linearly organized nanoparticles (150-200 nm diameter) and nanowires (60-80 nm diameter) formed close to the edge. There is a systematic degradation of long-range order with the number of shots and laser energy density as evidenced from X-ray diffraction studies. At an energy density of 2 J/cm2, and 100 shots the [311] oriented silicon surface made a transition to a randomly oriented nanocrystalline state. PMID:19452995

  14. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1986-10-01

    We have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reaction cell. Spark schileren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect. Modelling studies of the ignition process aid in the interpretation of the experimental results, and show that the ignition we observe is not due solely to thermal effects, but is strongly dependent on the number and type of radicals present initially after photolysis. Ignition using other hydocarbons as fuels was also demonstrated. 30 refs., 9 figs. 2 tabs.

  15. Ignition by excimer laser photolysis of ozone

    SciTech Connect

    Lucas, D.; Dunn-Rankin, D.; Hom, K.; Brown, N.J.

    1986-01-01

    The authors have ignited mixtures of hydrogen, oxygen, and ozone in closed cells with 248 nm radiation from a KrF excimer laser. Ozone, the only significant absorber in this system, absorbs a single photon and produces oxygen atoms which initiate combustion. A discretized, time-dependent Beer's law model is used to demonstrate that the radical concentration immediately after photolysis is a function of laser power, ozone concentration, focal length, and separation between the lens and reaction cell. Spark schlieren photographs are used to visualize the ignition events and identify the ignition sites. The effects of equivalence ratio, pressure, and the initial gas temperature on the minimum ozone concentration needed to produce ignition are presented, and only the initial temperature has a significant effect. Modelling studies of the igniton process aid in the interpretation of the experimental results, and show that the ignition is not due solely to thermal effects, but is strongly dependent on the number and type of radicals present initially after photolysis. Ignition using other hydrocarbons as fuels was also demonstrated.

  16. Single photon ionization time-of-flight mass spectrometry with a pulsed electron beam pumped excimer VUV lamp for on-line gas analysis: setup and first results on cigarette smoke and human breath.

    PubMed

    Mühlberger, F; Streibel, T; Wieser, J; Ulrich, A; Zimmermann, R

    2005-11-15

    Single-photon ionization (SPI) using vacuum ultraviolet (VUV) light produced by an electron beam pumped rare gas excimer source has been coupled to a compact and mobile time-of-flight mass spectrometer (TOFMS). The novel device enables real-time on-line monitoring of organic trace substances in complex gaseous matrixes down to the ppb range. The pulsed VUV radiation of the light source is employed for SPI in the ion source of the TOFMS. Ion extraction is also carried out in a pulsed mode with a short time delay with respect to ionization. The experimental setup of the interface VUV light source/time-of-flight mass spectrometer is described, and the novel SPI-TOFMS system is characterized by means of standard calibration gases. Limits of detection down to 50 ppb for aliphatic and aromatic hydrocarbons were achieved. First on-line applications comprised real-time measurements of aromatic and aliphatic trace compounds in mainstream cigarette smoke, which represents a highly dynamic fluctuating gaseous matrix. Time resolution was sufficient to monitor the smoking process on a puff-by-puff resolved basis. Furthermore, human breath analysis has been carried out to detect differences in the breath of a smoker and a nonsmoker, respectively. Several well-known biomarkers for smoke could be identified in the smoker's breath. The possibility for even shorter measurement times while maintaining the achieved sensitivity makes this new device a promising tool for on-line analysis of organic trace compounds in process gases or biological systems. PMID:16285693

  17. Excimer laser irradiation of metal surfaces

    NASA Astrophysics Data System (ADS)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  18. Raman shifting of KrF laser radiation for tropospheric ozone measurements

    NASA Technical Reports Server (NTRS)

    Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Ismail, Syed

    1991-01-01

    The differential absorption lidar (DIAL) measurement of tropospheric ozone requires use of high average power UV lasers operating at two appropriate DIAL wavelengths. Laboratory experiments have demonstrated that a KrF excimer laser can be used to generate several wavelengths with good energy conversion efficiencies by stimulated Raman shifting using hydrogen (H2) and deuterium (D2). Computer simulations for an airborne lidar have shown that these laser emissions can be used for the less than 5 percent random error, high resolution measuremment of ozone across the troposphere using the DIAL technique. In the region of strong ozone absorption, laser wavelengths of 277.0 and 291.7 nm were generated using H2 and D2, respectively. In addition, a laser wavelength at 302.0 nm was generated using two cells in series, with the first containing D2 and the second containing H2. The energy conversion efficiency for each wavelength was between 14 and 27 percent.

  19. Overview on the high power excimer laser technology

    NASA Astrophysics Data System (ADS)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  20. KrF lasers for inertial confinement fusion

    SciTech Connect

    Harris, D.B.; Cartwright, D.C.; Figueira, J.F.; McDonald, T.E.; Sorem, M.E.

    1989-01-01

    The KrF laser has been proposed for inertial confinement fusion (ICF) since its discovery in 1975. Since that time, the laser has seen significant development and has been increased in energy many orders of magnitude to the several kilojoule energy level. The suitability of the KrF laser as a driver for ICF energy applications has been continually reviewed. The latest assessments indicate that the KrF laser still appears to be the leading laser candidate. A worldwide effort exists to advance the KrF laser for ICF applications. 21 refs., 1 fig.

  1. Osseointegration of KrF laser hydroxylapatite films on Ti6A14V alloy by mini-pigs: loaded osseointegration of dental implants

    NASA Astrophysics Data System (ADS)

    Dostalova, Tatjana; Jelinek, Miroslav; Himmlova, Lucia; Grivas, Christos

    1999-05-01

    Aim of study was to evaluate osseointegration of the KrF laser hydroxyapatite coated titanium alloy Ti6Al4V dental implants. For deposition KrF excimer laser in stainless- steel deposition chamber was used. Thickness of HA films were round 1 μm . Mini-pigs were used in this investigation. Implants were placed vertically into the lower jaw. After 14 weeks unloaded osseointegration the metal ceramic crowns were inserted. the experimental animals were sacrificed (1 year post insertion). The vertical position of implants was controlled with a radiograph. Microscopical sections were cut and ground. Sections were viewed using microscope with CCD camera. 1 year osseointegration in lower jaw confirmed by all implants presence of newly formed bone around the all implants. Laser-deposited coating the layer of fibrous connective tissue was seen only seldom. In the control group (titamium implant without cover) the fibrous connective tissue was seen between implant and newly formed bone.

  2. Excimer laser photoresist stripping

    NASA Astrophysics Data System (ADS)

    Genut, Menachem; Tehar-Zahav, Ofer; Iskevitch, Eli; Livshits, Boris

    1996-06-01

    A new method for stripping the most challenging photoresists on deep sub-micron technology semiconductor wafers has been developed. The method uses a combination of UV excimer laser ablation and reactive chemistry to strip the photoresist in a single dry process, eliminating the wet acids or solvents often used following ashing of high dose implantation (HDI) and reactive ion etching (RIE). The stripping process combines new removal mechanisms: chemical assisted UV excimer laser ablation/etching, laser induced chemical etching of side walls and residues, and enhanced combustion. During the laser pulses photolysis of the process gas occurs, UV laser radiation breaks the photoresist polymer chain bonds, and the photoresist (including foreign materials imbedded in it) is ablated. The combustion is ignited by the ablative impact of laser radiation and enhanced by the radicals formed during photo-thermal decomposition of the process gases. Following this process, the volatilized products and gases are evacuated. The optimum laser stripping conditions were developed to provide a wide process window for the most challenging stripping conditions, such as after HDI and RIE (metal, polysilicon), without causing damage to the wafer devices. A photoresist stripping system based on the described technology was designed and built. The system has been designated as the L-StripperTM and provides stripping time of 0.15 s/(micrometer cm2).

  3. High power excimer laser micromachining

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Paetzel, Rainer

    2006-02-01

    Today's excimer lasers are well-established UV laser sources for a wide variety of micromachining applications. The excimer's high pulse energy and average power at short UV wavelengths make them ideal for ablation of various materials, e. g., polyimide, PMMA, copper, and diamond. Excimer micromachining technology, driven by the ever-shrinking feature sizes of micro-mechanical and micro-electronic devices, is used for making semiconductor packaging microvias, ink jet nozzle arrays, and medical devices. High-power excimer laser systems are capable of processing large areas with resolution down to several microns without using wet chemical processes. For instance, drilling precise tapered holes and reel-to-reel manufacturing of disposable sensors have proven to be very cost-effective manufacturing techniques for volume production. Specifically, the new industrial excimer laser-the LAMBDA SX 315C-easily meets the high demands of cost-effective production. The stabilized output power of 315 watts at 300 Hz (308 nm) and its outstanding long-term stability make this laser ideal for high-duty-cycle, high-throughput micromachining. In this paper, high-power excimer laser technology, products, applications, and beam delivery systems will be discussed.

  4. Production excimer laser equipment overview

    NASA Astrophysics Data System (ADS)

    Sercel, Jeffrey P.

    1993-04-01

    Excimer lasers were commercialized in the late 1970's. The laser community thought that by the early 1980's these UV lasers would enjoy a fruitful industrial market position. CO2 and solid state lasers required almost two decades to be fully accepted as industrial machine while the excimer laser was expected to be a fast learner benefiting from the learning curve of its big brothers. In retrospect, early excimer lasers had a bad reputation for being complicated, expensive and frequently out of commission. By the late 1980's a few excimer laser manufacturers had engineered the problems to acceptable levels for successful pilot lines and small scale manufacturing to begin. At this time, the real industrial learning curves began as engineers worked to refine many subsystems and support technologies. Today, excimer lasers are being used as true industrial lasers. They have a bright future with numerous and diverse market opportunities. This paper is an overview of the technologies proven to be successful in adapting modern excimer lasers to successful full production situations.

  5. Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Xu, S. C.; Man, B. Y.; Jiang, S. Z.; Liu, A. H.; Hu, G. D.; Chen, C. S.; Liu, M.; Yang, C.; Feng, D. J.; Zhang, C.

    2014-09-01

    We present a method for few-layer graphene growth on nonmetallic substrates using excimer KrF laser ablation of ordered pyrolytic graphite. The graphene is scalable and its thickness is controllable. It can be deposited on virtually any nonmetallic substrates at a relative low temperature of 750 °C. This laser-based method is highly efficient and the whole growing process takes less than 100 s. Raman spectroscopy confirms the formation of sp2-bonded carbon with a grain size of about 40 nm. The optical transmittance and conductivity of the graphene films are comparable with exfoliated or metal-catalyzed graphene. This work demonstrates a promising laser-based, transfer-free technique for synthesis of graphene.

  6. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  7. Electra: Repetitively Pulsed Angularly Multiplexed KrF Laser System Performance

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew; Myers, Matthew; Giuliani, John; Sethian, John; Burns, Patrick; Hegeler, Frank; Jaynes, Reginald

    2008-11-01

    As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system. The multistage amplifier system consists of a commercial discharge laser and two doubled sided electron beam pumped amplifiers. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Two angularly multiplexed beams have extracted 30 J of KrF laser light with an aperture 8 x 10 cm^2, which is sufficient to extract over 500 J from the main amplifier and models agree. The main amplifier of Electra in oscillator mode has demonstrated single shot and rep-rate laser energies exceeding 700 J with 100 ns pulsewidth at 248 nm with an aperture 29 x 29 cm^2. Continuous operation of the KrF electron beam pumped oscillator has lasted for more than 2.5 hours without failure at 1 Hz and 2.5 Hz. The measured intensity and pulse energy for durations greater than thousand shots are consistent at measurable rep-rates of 1 Hz, 2.5 Hz and 5 Hz.

  8. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, Roger P.

    1992-01-01

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput.

  9. Vacuum barrier for excimer lasers

    DOEpatents

    Shurter, R.P.

    1992-09-15

    A barrier for separating the vacuum area of a diode from the pressurized gas area of an excimer laser. The barrier is a composite material comprising layers of a metal such as copper, along with layers of polyimide, and a matrix of graphite fiber yarns impregnated with epoxy. The barrier is stronger than conventional foil barriers, and allows greater electron throughput. 3 figs.

  10. Automatic alignment of double optical paths in excimer laser amplifier

    NASA Astrophysics Data System (ADS)

    Wang, Dahui; Zhao, Xueqing; Hua, Hengqi; Zhang, Yongsheng; Hu, Yun; Yi, Aiping; Zhao, Jun

    2013-05-01

    A kind of beam automatic alignment method used for double paths amplification in the electron pumped excimer laser system is demonstrated. In this way, the beams from the amplifiers can be transferred along the designated direction and accordingly irradiate on the target with high stabilization and accuracy. However, owing to nonexistence of natural alignment references in excimer laser amplifiers, two cross-hairs structure is used to align the beams. Here, one crosshair put into the input beam is regarded as the near-field reference while the other put into output beam is regarded as the far-field reference. The two cross-hairs are transmitted onto Charge Coupled Devices (CCD) by image-relaying structures separately. The errors between intersection points of two cross-talk images and centroid coordinates of actual beam are recorded automatically and sent to closed loop feedback control mechanism. Negative feedback keeps running until preset accuracy is reached. On the basis of above-mentioned design, the alignment optical path is built and the software is compiled, whereafter the experiment of double paths automatic alignment in electron pumped excimer laser amplifier is carried through. Meanwhile, the related influencing factors and the alignment precision are analyzed. Experimental results indicate that the alignment system can achieve the aiming direction of automatic aligning beams in short time. The analysis shows that the accuracy of alignment system is 0.63μrad and the beam maximum restoration error is 13.75μm. Furthermore, the bigger distance between the two cross-hairs, the higher precision of the system is. Therefore, the automatic alignment system has been used in angular multiplexing excimer Main Oscillation Power Amplification (MOPA) system and can satisfy the requirement of beam alignment precision on the whole.

  11. An electrically triggered 200 kV rail-gap switch for wide aperture excimer lasers

    NASA Astrophysics Data System (ADS)

    Endoh, A.; Watanabe, S.; Watanabe, M.

    1984-03-01

    A wide aperture (7 x 7 sq cm), high output energy (5 J in KrF and 13.8 J in XeCl), UV preionized excimer laser is described. A self-breakdown rail gap was employed as an output switch with the maximum voltage and current up to 230 kV and 300 kA, respectively. To solve the switching jitter problem associated with the self-breakdown, an electrical triggering was investigated. The measured minimum switching time delay and gap closing time were 40 and 10 ns, respectively. The number of channels up to 50 was observed with a uniform distribution over the 80-cm electrode length. The triggering jitter was measured to be less than a nanosecond. The maximum operation voltage of the triggered rail gap was 200 kV. The successful trigger operation was obtained in the range 30-98 percent of the self-breakdown voltage.

  12. Multi-level diffractive optical elements produced by excimer laser ablation of sol-gel.

    PubMed

    Neiss, Estelle; Flury, Manuel; Mager, Loïc; Rehspringer, Jean-Luc; Fort, Alain; Montgomery, Paul; Gérard, Philippe; Fontaine, Joël; Robert, Stéphane

    2008-09-01

    Material ablation by excimer laser micromachining is a promising approach for structuring sol-gel materials as we demonstrate in the present study. Using the well-known direct etching technique, the behaviour of different hybrid organic/inorganic self-made sol-gel materials is examined with a KrF* laser. Ablated depths ranging from 0.1 to 1.5 microm are obtained with a few laser pulses at low fluence (< 1 J/cm(2)). The aim is to rapidly transfer surface relief multi-level diffractive patterns in such a substrate, without intermediate steps. The combination with the 3D profilometry technique of coherence probe microscopy permits to analyse the etching process with the aim of producing multi-level Diffractive Optical Elements (DOE). Examples of four-level DOEs with 10 microm square elementary cells are presented, as well as their laser reconstructions in the infrared. PMID:18773015

  13. Photo-fragmentation of selenium powder by Excimer laser ablation in liquids

    NASA Astrophysics Data System (ADS)

    Van Overschelde, O.; Guisbiers, G.

    2015-10-01

    Laser ablation in liquids is especially adapted to produce nanoparticles free of any contamination as suited for biological and medical applications. A KrF Excimer laser delivering an UV light at 248 nm and operating at low fluence (F~0.5 J/cm2) was used to irradiate a micro-sized powder of selenium dispersed into a de-ionized water solution. To avoid any agglomeration of the selenium nanoparticles during the irradiation, surfactants (SDS and CTAB) were added to the solution and their efficiency was compared. The concentration of surfactants had to be chosen around the critical micellar concentration to produce small selenium nanoparticles (<60 nm). Moreover, SDS shows better mono-disperse size distribution compared to CTAB. Finally, photo-fragmentation is found to be more efficient than bulk thermal ablation to produce very small selenium nanoparticles (less than 10 nm).

  14. Resonant third harmonic generation of KrF laser in Ar gas.

    PubMed

    Rakowski, R; Barna, A; Suta, T; Bohus, J; Földes, I B; Szatmári, S; Mikołajczyk, J; Bartnik, A; Fiedorowicz, H; Verona, C; Verona Rinati, G; Margarone, D; Nowak, T; Rosiński, M; Ryć, L

    2014-12-01

    Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence. PMID:25554270

  15. Resonant third harmonic generation of KrF laser in Ar gas

    NASA Astrophysics Data System (ADS)

    Rakowski, R.; Barna, A.; Suta, T.; Bohus, J.; Földes, I. B.; Szatmári, S.; Mikołajczyk, J.; Bartnik, A.; Fiedorowicz, H.; Verona, C.; Verona Rinati, G.; Margarone, D.; Nowak, T.; Rosiński, M.; Ryć, L.

    2014-12-01

    Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence.

  16. Resonant third harmonic generation of KrF laser in Ar gas

    SciTech Connect

    Rakowski, R.; Barna, A.; Suta, T.; Földes, I. B.; Bohus, J.; Szatmári, S.; Mikołajczyk, J.; Bartnik, A.; Fiedorowicz, H.; Verona, C.; Verona Rinati, G.; Margarone, D.; Nowak, T.; and others

    2014-12-15

    Investigations of emission of harmonics from argon gas jet irradiated by 700 fs, 5 mJ pulses from a KrF laser are presented. Harmonics conversion was optimized by varying the experimental geometry and the nozzle size. For the collection of the harmonic radiation silicon and solar-blind diamond semiconductor detectors equipped with charge preamplifiers were applied. The possibility of using a single-crystal CVD diamond detector for separate measurement of the 3rd harmonic in the presence of a strong pumping radiation was explored. Our experiments show that the earlier suggested 0.7% conversion efficiency can really be obtained, but only in the case when phase matching is optimized with an elongated gas target length corresponding to the length of coherence.

  17. High power KrF laser development at Los Alamos

    SciTech Connect

    McDonald, T.; Cartwright, D.; Fenstermacher, C.; Figueira, J.; Goldstone, P.; Harris, D.; Mead, W.; Rosocha, L.

    1988-01-01

    The objective of the high power laser development program at Los Alamos is to appraise the potential of the KrF laser as a driver for inertial confinement fusion (ICF), ultimately at energy levels that will produce high target gain (gain of order 100). A KrF laser system prototype, the 10-kJ Aurora laser, which is nearing initial system operation, will serve as a feasibility demonstration of KrF technology and system design concepts appropriate to large scale ICF driver systems. The issues of affordable cost, which is a major concern for all ICF drivers now under development, and technology scaling are also being examined. It is found that, through technology advances and component cost reductions, the potential exists for a KrF driver to achieve a cost goal in the neighborhood of $100 per joule. The authors suggest that the next step toward a multimegajoule laboratory microfusion facility (LMF) is an ''Intermediate Driver'' facility in the few hundred kilojoule to one megajoule range, which will help verify the scaling of driver technology and cost to an LMF size. An Intermediate Driver facility would also increase the confidence in the estimates of energy needed for an LMF and would reduce the risk in target performance. 5 refs., 4 figs., 1 tab.

  18. Plasma mirrors for short pulse KrF lasers.

    PubMed

    Gilicze, Barnabás; Barna, Angéla; Kovács, Zsolt; Szatmári, Sándor; Földes, István B

    2016-08-01

    It is demonstrated for the first time that plasma mirrors can be successfully applied for KrF laser systems. High reflectivity up to 70% is achieved by optimization of the beam quality on the plasma mirror. The modest spectral shift and the good reflected beam quality allow its applicability for high power laser systems for which a new arrangement is suggested. PMID:27587094

  19. Recent progress in the Los Alamos KrF Program

    SciTech Connect

    McDonald, T.E.; Cartwright, D.C.; Coggeshall, S.V.; Fenstermacher, C.A.; Figueira, J.F.; Foreman, L.R.; Goldstone, P.D.; Hanson, D.E.; Harris, D.B.; Hauer, A.A.

    1988-01-01

    The goal of the Inertial Confinement Fusion Program (ICF) is to develop the ability to ignite and burn small masses of thermonuclear fuel. Although the present near-term objectives of the program are directed toward defense applications, ICF research continues to be carried out with a view to the longer term goal of commercial power production. The characteristics of a KrF laser make it an attractive candidate as an ICF driver. The KrF wavelength of 248 nm provides a target coupling that is very high at intensities of 10/sup 14/w/cm/sup 2/. In addition, the KrF laser can be repetitively operated at frequencies appropriate for a power reactor and has an intrinsically high efficiency, which allows projections to the long-term goal of energy production. The ICF program at Los Alamos consists of driver development, target design and fabrication, and target experimentation. The major effort at present is the investigation and development of KrF technology to determine its applicability for use in a laboratory driver at Los Alamos. Such a driver would be used in defense related technology studies and in areas of scientific study such as highly ionized materials and high-energy-density physics.

  20. Plasma mirrors for short pulse KrF lasers

    NASA Astrophysics Data System (ADS)

    Gilicze, Barnabás; Barna, Angéla; Kovács, Zsolt; Szatmári, Sándor; Földes, István B.

    2016-08-01

    It is demonstrated for the first time that plasma mirrors can be successfully applied for KrF laser systems. High reflectivity up to 70% is achieved by optimization of the beam quality on the plasma mirror. The modest spectral shift and the good reflected beam quality allow its applicability for high power laser systems for which a new arrangement is suggested.

  1. Excimer states in microhydrated adenine clusters.

    PubMed

    Smith, V R; Samoylova, E; Ritze, H-H; Radloff, W; Schultz, T

    2010-09-01

    We present femtosecond pump-probe mass and photoelectron spectra for adenine (A) and microhydrated A(m)(H(2)O)(n) clusters. Three distinct relaxation processes of photoexcited electronic states were distinguished: in unhydrated A, relaxation of the optically bright pipi* state occurred via the dark npi* state with respective lifetimes of <0.1 and 1.3 ps. In microhydrated clusters A(H(2)O)(n), relaxation via the npi* state is quenched by a faster relaxation process, probably involving pisigma* states. For the predominantly hydrogen-bonded adenine dimer (A(2)), excited state relaxation is dominated by monomer-like processes. When the adenine dimer is clustered with several water molecules, we observe a nanosecond lifetime from excimer states in pi-stacked clusters. From the electron spectra we estimate adiabatic ionization potentials of 8.32 eV (A), 8.27 eV (A(H(2)O)(1)), 8.19 eV (A(H(2)O)(2)), 8.10 eV (A(H(2)O)(3)), 8.18 eV (A(2)), and 8.0 eV (A(2)(H(2)O)(3-5)). PMID:20556283

  2. Random noise can help to improve synchronization of excimer laser pulses

    PubMed Central

    Mingesz, Róbert; Barna, Angéla; Mellár, János

    2016-01-01

    Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications. PMID:26998325

  3. Random noise can help to improve synchronization of excimer laser pulses.

    PubMed

    Mingesz, Róbert; Barna, Angéla; Gingl, Zoltán; Mellár, János

    2016-02-01

    Recently, we have reported on a compact microcontroller-based unit developed to accurately synchronize excimer laser pulses (Mingesz et al. 2012 Fluct. Noise Lett. 11, 1240007 (doi:10.1142/S021947751240007X)). We have shown that dithering based on random jitter noise plus pseudorandom numbers can be used in the digital control system to radically reduce the long-term drift of the laser pulse from the trigger and to improve the accuracy of the synchronization. In this update paper, we present our new experimental results obtained by the use of the delay-controller unit to tune the timing of a KrF excimer laser as an addition to our previous numerical simulation results. The hardware was interfaced to the laser using optical signal paths in order to reduce sensitivity to electromagnetic interference and the control algorithm tested by simulations was applied in the experiments. We have found that the system is able to reduce the delay uncertainty very close to the theoretical limit and performs well in real applications. The simple, compact and flexible system is universal enough to also be used in various multidisciplinary applications. PMID:26998325

  4. Excimer laser in arthroscopic surgery

    NASA Astrophysics Data System (ADS)

    Koort, Hans J.

    1991-05-01

    The development of efficient high-power lasersystems for use in surgery, especially in arthroscopic fields, leads to a new push for all endoscopic techniques. Both techniques, laser and endoscope, complete each other in an ideal way and allow applications which could not be reached with conventional techniques. One of the newer laser types is the excimer laser, which will be a good choice for surface treatment because of its very considerate interaction with tissue. One example is the ablation or smoothing of articular cartilage and meniscal shaving in orthopaedics. On the other hand, the power of this laser system is high enough to cut tissue, for instance in the lateral release, and offers therefore an alternative to the mechanical and electrical instruments. All lasers can only work fine with effective delivery systems. Sometimes there is only a single fiber, which becomes very stiff at diameters of more than 800 micrometers . This fiber often allows only the tangential treatment of tissue, most of the laser power is lost in the background. New fiber systems with many, sometimes hundreds of very thin single fibers, could offer a solution. Special handpieces and fibersystems offer distinct advantages in small joint arthroscopy, especially those for use with excimer lasers will be discussed.

  5. Excimer lasers drive large-area microprocessing

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Tapié, Jean-Luc

    2012-09-01

    Excimer lasers emitting in the UV to far UV region are by nature the laser sources enabling the highest optical resolution and strongest material-photon interaction. At the same time, excimer lasers deliver unmatched UV pulse energies and output powers up to the kilowatt range. Thus, they are the key to fast and effective large area processing of smallest structures with micron precision. As a consequence, excimer lasers are the UV technology of choice when it comes to high-performance microstructuring with unsurpassed quality and process repeatability in applications such as drilling advanced ink jet nozzles or patterning biomedical sensor structures.

  6. 100-nm node lithography with KrF?

    NASA Astrophysics Data System (ADS)

    Fritze, Michael; Tyrrell, Brian; Astolfi, David K.; Yost, Donna; Davis, Paul; Wheeler, Bruce; Mallen, Renee D.; Jarmolowicz, J.; Cann, Susan G.; Liu, Hua-Yu; Ma, M.; Chan, David Y.; Rhyins, Peter D.; Carney, Chris; Ferri, John E.; Blachowicz, B. A.

    2001-09-01

    We present results looking into the feasibility of 100-nm Node imaging using KrF, 248-nm, exposure technology. This possibility is not currently envisioned by the 1999 ITRS Roadmap which lists 5 possible options for this 2005 Node, not including KrF. We show that double-exposure strong phase- shift, combined with two mask OPC, is capable of correcting the significant proximity effects present for 100-nm Node imaging at these low k1 factors. We also introduce a new PSM Paradigm, dubbed 'GRATEFUL,' that can image aggressive 100-nm Node features without using OPC. This is achieved by utilizing an optimized 'dense-only' imaging approach. The method also allows the re-use of a single PSM for multiple levels and designs, thus addressing the mask cost and turnaround time issues of concern in PSM technology.

  7. Semiconductor processing with excimer lasers

    SciTech Connect

    Young, R.T.; Narayan, J.; Christie, W.H.; van der Leeden, G.A.; Rothe, D.E.; Cheng, L.J.

    1983-01-01

    The advantages of pulsed excimer lasers for semiconductor processing are reviewed. Extensive comparisons of the quality of annealing of ion-implanted Si obtained with XeCl and ruby lasers have been made. The results indicate that irrespective of the large differences in the optical properties of Si at uv and visible wavelengths, the efficiency of usage of the incident energy for annealing is comparable for the two lasers. However, because of the excellent optical beam quality, the XeCl laser can provide superior control of the surface melting and the resulting junction depth. Furthermore, the concentrations of electrically active point defects in the XeCl laser annealed region are 2 to 3 orders of magnitude lower than that obtained from ruby or Nd:YAG lasers. All these results seem to suggest that XeCl lasers should be suitable for fabricating not only solar cells but also the more advanced device structures required for VLSI or VHSIC applications.

  8. Laser Plasma and Hydrodynamics Experiments with KrF Lasers

    NASA Astrophysics Data System (ADS)

    Weaver, James

    2006-10-01

    The proposed Fusion Test Facility (FTF) will exploit the unique features of Krypton Fluoride (KrF) lasers to achieve ignition and substantial gain (>20) at <500 kJ laser energies using direct drive.[1] The strategy uses highly uniform, high bandwidth, 248 nm KrF laser illumination at intensities near 2 x 10^15 W/cm^2 to accelerate low-aspect ratio pellets to implosion velocities of 400 km/s. Higher than usual implosion velocity allows ignition at substantially reduced laser energy. Amplitudes of both hydrodynamic instability during the pellet implosion and deleterious laser plasma instability (LPI) in the corona must be kept sufficiently low if one is to achieve ignition and gain. Increased laser intensity reduces hydrodynamic instability because it allows acceleration of thicker, low aspect ratio pellets, but is also more likely to produce deleterious LPI. The deep UV wavelength of KrF should allow use of these higher intensities. Studies of hydrodynamic instabilities and laser plasma instabilities (LPI) are the subject of ongoing experiments at the 2-3 kJ Nike KrF laser. The Nike laser has demonstrated highly uniform UV irradiation of planar targets at moderate laser intensities (I˜10^14 W/cm^2), including the recent addition of short duration ``spike'' prepulses for hydrodynamic stability studies. A new effort in LPI physics is underway at the Nike facility where the peak intensity is being extended above 10^15 W/cm^2 by a combination of smaller focal diameters and shorter pulse lengths. This talk will discuss progress in the ongoing experiments at Nike in support of the FTF design. [1] S. P. Obenschain, et al., Phys. Plasmas 13 056329 (2006).

  9. 308nm excimer laser in dermatology.

    PubMed

    Mehraban, Shadi; Feily, Amir

    2014-01-01

    308nm xenon-chloride excimer laser, a novel mode of phototherapy, is an ultraviolet B radiation system consisting of a noble gas and halide. The aim of this systematic review was to investigate the literature and summarize all the experiments, clinical trials and case reports on 308-nm excimer laser in dermatological disorders. 308-nm excimer laser has currently a verified efficacy in treating skin conditions such as vitiligo, psoriasis, atopic dermatitis, alopecia areata, allergic rhinitis, folliculitis, granuloma annulare, lichen planus, mycosis fungoides, palmoplantar pustulosis, pityriasis alba, CD30+ lympho proliferative disorder, leukoderma, prurigo nodularis, localized scleroderma and genital lichen sclerosus. Although the 308-nm excimer laser appears to act as a promising treatment modality in dermatology, further large-scale studies should be undertaken in order to fully affirm its safety profile considering the potential risk, however minimal, of malignancy, it may impose. PMID:25606333

  10. Granuloma Annulare Treated with Excimer Laser

    PubMed Central

    Ragi, Jennifer; Milgraum, Sandy

    2012-01-01

    Objective: To review the current therapy for granuloma annulare and report a case of refractory generalized granuloma annulare successfully treated with excimer laser. A discussion about the characteristics of excimer laser and the mechanism of its effectiveness is presented. Design: Patient case report and literature review. Setting: Outpatient dermatology practice. Participants: A 73-year-old woman suffering from generalized granuloma annulare for more than 40 years. Measurements: Change in clinical appearance of lesions. Results: Use of excimer laser therapy resulted in prompt and complete resolution in treated areas with no residual skin changes or side effects. Conclusion: Excimer laser therapy is a powerful treatment modality with minimal side effects for patients with granuloma annulare. Further study is necessary to elucidate optimal dosing, long-term efficacy, and safety profile. PMID:23198013

  11. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.

    PubMed

    Mansour, M S; Chen, Y C

    1996-07-20

    We have applied a line UV Raman, Rayleigh, and laser-induced predissociation fluorescence technique for measurement of turbulent hydrocarbon flames. The species concentration of CO(2), O(2), CO, N(2), CH(4), H(2)O, OH, and H(2) and the temperature are measured instantaneously and simultaneously along a line of 11.4 mm, from which the gradients with respect to mixture fraction and spatial direction are obtained. The technique has been successfully tested in a laminar premixed stoichiometric methane flame and a laminar hydrogen diffusion flame. In addition the technique has been tested in a highly turbulent rich premixed methane flame. The data show that the technique can be used to provide instantaneous measurements of local profiles that describe the local flame structure in highly turbulent flames. PMID:21102834

  12. Electra: durable repetitively pulsed angularly multiplexed KrF laser system

    NASA Astrophysics Data System (ADS)

    Wolford, Matthew F.; Myers, Matthew C.; Giuliani, John L.; Sethian, John D.; Burns, Patrick M.; Hegeler, Frank; Jaynes, Reginald

    2008-02-01

    Electra is a repetitively pulsed, electron beam pumped Krypton Fluoride (KrF) laser at the Naval Research Laboratory that is developing the technologies that can meet the Inertial Fusion Energy (IFE) requirements for durability, efficiency, and cost. The technologies developed on Electra should be directly scalable to a full size fusion power plant beam line. As in a full size fusion power plant beam line, Electra is a multistage laser amplifier system which, consists of a commercial discharge laser (LPX 305i, Lambda Physik), 175 keV electron beam pumped (40 ns flat-top) preamplifier, and 530 keV (100 ns flat-top) main amplifier. Angular multiplexing is used in the optical layout to provide pulse length control and to maximize laser extraction from the amplifiers. Single shot yield of 452 J has been extracted from the initial shots of the Electra laser system using a relatively low energy preamplifier laser beam. In rep-rate burst of 5 Hz for durations of one second a total energy of 1.585 kJ (average 317 J/pulse) has been attained. Total energy of 2.5 kJ has been attained over a two second period. For comparison, the main amplifier of Electra in oscillator mode has demonstrated at 2.5 Hz rep-rate average laser yield of 270 J over a 2 hour period.

  13. Effect of excimer laser on microbiological organisms

    SciTech Connect

    Keates, R.H.; Drago, P.C.; Rothchild, E.J.

    1988-10-01

    The effect of radiation emitted from an excimer laser filled with argon fluoride gas at 193 nm on Serratia marcescens, Pseudomonas aeruginosa, Staphylococcus aureus, streptococcus faecalis, Hemophilus influenzae, Candida albicans, and Aspergillus niger (collectively labeled the microorganisms) was examined. Colonies were subjected to a variable number of radiation pulses from the excimer laser applied after a 36-hour period of incubation at 37 degrees C, at which time the colonies were fully grown and showed no viability. The lack of viability was confirmed with a subculture from each area that received radiation; all subcultures were negative. The characteristics of the radiation paralleled those used by Serdavic, Darrell, Krueger, et al in 1985. This radiation treatment is believed to be within a therapeutic range, which suggests that the excimer laser, pending further investigation, may be useful in the treatment of corneal infections.

  14. 308-nm excimer laser in endodontics

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim

    1992-06-01

    Root canal preparation was performed on 20 extracted human teeth. After opening the coronal pulp, the root canals were prepared by 308 nm excimer laser only. All root canals were investigated under SEM after separation in the axial direction. By sagittal separation of the mandibles of freshly slaughtered cows, it was possible to get access to the tissues and irradiate under optical control. Under irradiation of excimer laser light, tissue starts to fluoresce. It was possible to demonstrate that each tissue (dentin, enamel, bone, pulpal, and connective tissue) has a characteristic spectral pattern. The SEM analyses showed that it is well possible to prepare root canals safely. All organic soft tissue has been removed by excimer laser irradiation. There was no case of via falsa. The simultaneous spectroscopic identification of the irradiated tissue provides a safe protection from overinstrumentation. First clinical trials on 20 patients suffering of chronical apical parodontitis have been carried out successfully.

  15. Combination Of Narrow Bandwidth Excimer Laser And Monochromatic Reduction Projection Lens

    NASA Astrophysics Data System (ADS)

    Kajiyama, K.; Saito, K.; Moro, N.; Maeda, Y.; Natsuaki, H.

    1988-01-01

    This paper will discuss the problems associated with excimer laser photo-lithography -the combination of a KrF narrow band width excimer laser (non-injection locked type) with a large field fused silica monochromatic reduction lens. An excimer laser with a KrF narrow bandwidth, in combination with a large field monochromatic lens which is appropriate for use with such laser, have been developed and tested. The system's resolution capability has been confirmed at 0.4 um L/S with MP2400 resist. The laser has been designed so as to be installed and maintained in a clean room environment as well as to have a very narrow spectrum line. A very narrow band-width beam, down to 0.003nm, has been attained through a stable resonator with more than 20mJ pulse energy. The ultra-compact laser head (300mm x 545mm x 1100mm) contains a small laser discharge unit (182mm x 156mm x 584mm), and no amplifier because the oscillator is highly efficient in spite of the narrow line emission. Maintenance is much easier in the clean room environment. Users can replace the discharge unit as easily as they would change Hg-lamp, only taking twenty minutes, and while they clean the window and check the electrodes of the removed unit, the laser can be operated with the easily installed replacement -already passivated discharge unit. The laser head unit is separated from a gas circulating unit and trigger pulse circuit - vibration, heat, EMI noise and particle generation. Therefore, it can be installed even in the thermal clean chamber of a stepper. The N.A. (numerical aperture) of the monochromatic lens is 0.36 and the field size is 15mm x 15mm. In fact, three kinds of lenses with N.A.s of 0.4, 0.35 and 0.3 respectively, were designed and individually evaluated for their OTF's and defocus's dependence on the light source's spectral width, and also their co-relationship. In parallel, simulations on the relationship between each lens' chromatic aberration and laser spectral width were completed and

  16. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr-1Nb alloy

    NASA Astrophysics Data System (ADS)

    Yang, Jiaoxi; Wang, Xin; Wen, Qiang; Wang, Xibing; Wang, Rongshan; Zhang, Yanwei; Xue, Wenbin

    2015-12-01

    The main purpose of this research was to investigate the effect of microarc oxidation (MAO) and excimer laser processing on the corrosion resistance of Zr-1Nb alloy in service environment. The pre-oxide film was fabricated on the surface of Zr-1Nb cladding tubes by MAO processing, and then subjected to KrF excimer laser irradiation. The surface morphology of the pre-oxide film was observed using a scanning electron microscope; phase compositions and quantities were determined using an X-ray diffraction; surface roughness was determined using a profilometer; and thermal expansion coefficient was measured using a dilatometer. Autoclave experiments were conducted for 94 days in an aqueous condition of 360 °C under 18.6 MPa in 0.01 mol/L LiOH solutions. The results showed that MAO + laser treatment resulted in a significant increase in the corrosion resistance of Zr-1Nb cladding tubes at high temperatures, because laser melting and etching could lead to a reduction in surface roughness and an increase in compactness of the pre-oxide film, and laser processing could promote the transformation of m-ZrO2 phase to t-ZrO2 phase. The best corrosion resistance was obtained when the pulse energy was 500 mJ, scanning speed was 0.13 mm/s, and pulse number was 2400.

  17. Effect of triggered discharge using an excimer laser with high-repetition-rate of the order of kilohertz

    SciTech Connect

    Yamaura, Michiteru; Watanabe, Takashi; Hayashi, Nobuya; Ihara, Satoshi

    2005-03-28

    The triggering ability of the laser-triggered lightning method is improved by using a KrF excimer laser with a high-repetition-rate of the order of kHz order. It is clarified that the effect of a triggered discharge is considerably enhanced when the plasma density is greater than 10{sup 13} cm{sup -3}. Thus far, the laser-triggered lightning method has not been expected to display a triggering ability since one pulse of an excimer laser possesses energy of less than 1 J, and the produced plasma has a low density of 10{sup 12} cm{sup -3}, its plasma density is one order lower than that required for its application in the triggering and guiding of lightning discharge. The enhancement of plasma density achieved by utilizing the accumulation effect of charged particles generated by the high-repetition-rate laser was 10{sup 13} cm{sup -3}. This led to an effective a 50% reduction in the self-breakdown voltage.

  18. Laser plasma instability experiments with KrF lasersa)

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Afeyan, B.; Phillips, L.; Seely, J.; Feldman, U.; Brown, C.; Karasik, M.; Serlin, V.; Aglitskiy, Y.; Mostovych, A. N.; Holland, G.; Obenschain, S.; Chan, L.-Y.; Kehne, D.; Lehmberg, R. H.; Schmitt, A. J.; Colombant, D.; Velikovich, A.

    2007-05-01

    Deleterious effects of laser-plasma instability (LPI) may limit the maximum laser irradiation that can be used for inertial confinement fusion. The short wavelength (248nm), large bandwidth, and very uniform illumination available with krypton-fluoride (KrF) lasers should increase the maximum usable intensity by suppressing LPI. The concomitant increase in ablation pressure would allow implosion of low-aspect-ratio pellets to ignition with substantial gain (>20) at much reduced laser energy. The proposed KrF-laser-based Fusion Test Facility (FTF) would exploit this strategy to achieve significant fusion power (150MW) with a rep-rate system that has a per pulse laser energy well below 1 MJ. Measurements of LPI using the Nike KrF laser are presented at and above intensities needed for the FTF (I˜2×1015W/cm2). The results to date indicate that LPI is indeed suppressed. With overlapped beam intensity above the planar, single beam intensity threshold for the two-plasmon decay instability, no evidence of instability was observed via measurements of 3/2ωo and 1/2ωo harmonic emissions.

  19. Excimer laser channel creation in polyethersulfone hollow fibers for compartmentalized in vitro neuronal cell culture scaffolds.

    PubMed

    Brayfield, Candace A; Marra, Kacey G; Leonard, John P; Tracy Cui, X; Gerlach, Jörg C

    2008-03-01

    Hollow fiber scaffolds that compartmentalize axonal processes from their cell bodies can enable neuronal cultures with directed neurite outgrowth within a three-dimensional (3-D) space for controlling neuronal cell networking in vitro. Controllable 3-D neuronal networks in vitro could provide tools for studying neurobiological events. In order to create such a scaffold, polyethersulfone (PES) microporous hollow fibers were ablated with a KrF excimer laser to generate specifically designed channels for directing neurite outgrowth into the luminal compartments of the fibers. Excimer laser modification is demonstrated as a reproducible method to generate 5microm diameter channels within PES hollow fiber walls that allow compartmentalization of neuronal cell bodies from their axons. Laser modification of counterpart flat sheet PES membranes with peak surface fluences of 1.2Jcm(-2) results in increased hydrophobicity and laminin adsorption on the surface compared with the unmodified PES surface. This is correlated to enhanced PC12 cell adhesion with increasing fluence onto laser-modified PES membrane surfaces coated with laminin when compared with unmodified surfaces. Adult rat neural progenitor cells differentiated on PES fibers with laser-created channels resulted in spontaneous cell process growth into the channels of the scaffold wall while preventing entrance of cell bodies. Therefore, laser-modified PES fibers serve as scaffolds with channels conducive to directing neuronal cell process growth. These hollow fiber scaffolds can potentially be used in combination with perfusion and oxygenation hollow fiber membrane sets to construct a hollow fiber-based 3-D bioreactor for controlling and studying in vitro neuronal networking in three dimensions between compartmentalized cultures. PMID:18060849

  20. Corneal topography of excimer laser photorefractive keratectomy.

    PubMed

    Klyce, S D; Smolek, M K

    1993-01-01

    The application of the 193 nm excimer laser for keratorefractive surgery promises to deliver a higher degree of precision and predictability than traditional procedures such as radial keratotomy. The development and evaluation of keratorefractive surgery have benefited from the parallel advances made in the field of corneal topography analysis. We used the Computed Anatomy Topography Modeling System (TMS-1) to analyze a Louisiana State University (LSU) Eye Center series of patients who had photorefractive keratectomy for the treatment of myopia with the VISX Twenty/Twenty excimer laser system. The excimer ablations were characterized by a relatively uniform distribution of surface powers within the treated zone. In the few cases that exhibited marked refractive regression, corneal topography analysis showed correlative changes. With topographical analysis, centration of the ablations relative to the center of the pupil could be evaluated. Marked improvement in centration occurred in the patients of LSU Series IIB in which the procedure to locate the point on the cornea directly over the pupil's center during surgery was refined. Corneal topographical analysis provides objective measures of keratorefractive surgical results and is able to measure the precise tissue removal effect of excimer laser ablation without the uncertainties caused by measuring visual acuity alone. Our observations forecast the need for improved aids to center the laser ablations and for the development of a course of treatment to prevent post-ablation stromal remodeling. PMID:8450433

  1. Excimer laser crystallization of amorphous silicon carbide produced by ion implantation

    NASA Astrophysics Data System (ADS)

    Hedler, A.; Urban, S.; Falk, F.; Hobert, H.; Wesch, W.

    2003-01-01

    4H-SiC was implanted with 100-250 keV Ge + and Xe + ions and doses of 1×10 14 to 1×10 16 cm -2 at room temperature in order to produce 40-200 nm thick amorphous surface layers. The samples were irradiated with 1-50,000 pulses of a KrF excimer laser (248 nm wavelength, 30 ns pulse duration) using fluences of 150-900 mJ/cm 2 to investigate the crystallization process as a function of the laser parameters. Crystallization as well as redistribution of the impurity atoms were analyzed by Rutherford backscattering spectrometry and infrared reflection measurements. Phase transitions occurring during the irradiation were studied by means of time-resolved reflectivity measurements. In order to explain the observed phase transitions numerical analysis was performed by solving the inhomogeneous heat flow equation using the parameters of the corresponding phases. In this work, we give a consistent description of the experimental results by the numerical simulations for the given laser setup. Depending on the amorphous layer thickness, melting, solidification, and crystallization of the amorphous phase can be effectively controlled by both the laser fluence and the number of laser pulses.

  2. Characterization of excimer laser ablation generated pepsin particles using multi-wavelength photoacoustic instrument

    NASA Astrophysics Data System (ADS)

    Hopp, B.; Kecskeméti, G.; Smausz, T.; Ajtai, T.; Filep, A.; Utry, N.; Kohut, A.; Bozóki, Z.; Szabó, G.

    2012-05-01

    Preparation of organic thin layers on various special substrates using the pulsed laser deposition (PLD) technique is an important task from the point of view of bioengineering and biosensor technologies. Earlier studies demonstrated that particle ejection starts during the ablating laser pulse resulting in significant shielding effects which can influence the real fluence on the target surface and consequently the efficiency of layer preparation. In this study, we introduce a photoacoustic absorption measurement technique for in-situ characterization of ablated particles during PLD experiments. A KrF excimer laser beam ( λ=248 nm, FWHM=18 ns) was focused onto pepsin targets in a PLD chamber; the applied laser fluences were 440 and 660 mJ/cm2. We determined the wavelength dependence of optical absorption and mass specific absorption coefficient of laser ablation generated pepsin aerosols in the UV-VIS-NIR range. On the basis of our measurements, we calculated the absorbance at the ablating laser wavelength, too. We demonstrated that when the laser ablation generated pepsin aerosols spread through the whole PLD chamber the effect of absorptivity is negligible for the subsequent pulses. However, the interaction of the laser pulse and the just formed particle cloud generated by the same pulse is more significant.

  3. The Role of Crystalline Water in the Interaction of Excimer Laser Light with Brushite

    NASA Astrophysics Data System (ADS)

    Dawes, M. L.; Langford, S. C.; Dickinson, J. T.

    1998-03-01

    A number of minerals of environmental interest contain waters of hydration, sometimes called crystalline water. Hydrated crystals often show dramatic changes in optical properties as well as mechanical properties, both influencing the response of the material to radiation. From an analytic point of view, very little is known about the influence of hydration regarding laser desorption and ablation phenomena. We explore the interaction of excimer laser light (KrF 248 nm) with single crystal brushite (CaHPO_4.2H_2O), a model biomineral phosphate containing H_2O. We first show that defects dominate the interactions as revealed by high sensitivity detection of Ca^+ at low fluences and that this ion emission predicts ablation thresholds. The most probable ion energy, which occurs at 11 eV, is much higher than the incident photon energy of 5 eV. The ion intensities also display a highly nonlinear fluence dependence, typically 6-8th order, entirely consistent with ion emission models we have recently presented. We show that laser coupling can be enhanced several orders of magnitude by generation of defects, i.e., by mechanical treatment, heating, or exposure to electron beams and that the consequences of crystalline H_2O and HPO_4^2- decomposition play major and related roles in this defect production.

  4. Glass etching initiated by excimer laser photolysis of CF/sub 2/Br/sub 2/

    SciTech Connect

    Brannon, J.H.

    1986-04-24

    KrF and ArF excimer laser irradiation of glass surfaces immersed in gaseous CF/sub 2/Br/sub 2/ is found to induce etching. The etch mechanism is considered to be nonthermal on the basis of the small value of the glass absorption coefficent and wavelength variable etching experiments. The etch rate dependence on surface fluence is presented for three pressures. SEM photos reveal a rough surface morphology in the etched region that apparently is not a chemical effect but results solely from the laser irradiation. Photochemical and spectroscopic analysis of the irradiated gas provides evidence for CF/sub 2/ and CF/sub 2/Br as being major photolysis products. C/sub 2/F/sub 4/ was also found to cause etching at 248 and 193 nm. This is evidence that CF/sub 2/, resulting from C/sub 2/F/sub 4/ photolysis, is alone capable of initiating glass etching in the presence of laser light. The paper concludes by discussing the observed inability of the CF/sub 3/ releasing parent gases CF/sub 3/Br and CF/sub 3/I to significantly etch glass when irradiated in their appropriate absorption bands. 31 references, 9 figures, 1 table.

  5. Surface properties modifications obtained on ceramics and metals resulting from excimer laser processing technique

    NASA Astrophysics Data System (ADS)

    Nicolas, Gines; Autric, Michel L.; Ocana, Jose L.

    1998-09-01

    The unique properties of a UV laser beam (high energy, short pulse duration) allow to transform the surface of ultrahard materials such as ceramics. In this way, a KrF excimer laser was used in this study in order to modify in selected zones, the surface of metals (aluminum alloy, titanium alloy and stainless steel) and oxides (Al2O3, ZrO2), carbide (SiC) and nitride (AlN). These ceramics possess good mechanical and thermal properties but exhibit a brittle behavior due to the granular structure. In a suitable range where the irradiated zone is melted and defects are removed, initial properties are modified (roughness, porosity, hardness, chemical composition). A cleaned and smoothed surface can be obtained without pores and cracks. These sites where corrosion attack starts are minimized and can lead to improve functions in potential industrial applications. The results presented in this work have been obtained by different analysis techniques such as scanning electron microscopy (SEM) to examine morphology, Auger spectroscopy (AES) to give chemical composition and depths profiles, mechanical tests to show roughness and hardness, grazing X-ray diffraction (XRD) to find structure.

  6. Effect of ambient environment on excimer laser induced micro and nano-structuring of stainless steel

    NASA Astrophysics Data System (ADS)

    Umm-i-Kalsoom; Bashir, Shazia; Ali, Nisar; Akram, Mahreen; Mahmood, Khaliq; Ahmad, Riaz

    2012-11-01

    The effect of laser fluence and an ambient environment on the formation and development of the micro and nano-structures on the laser irradiated stainless steel (AISI-304) targets have been investigated. For this purpose KrF excimer laser (λ = 248 nm, t = 20 ns, repetition rate 20 Hz) has been used. The targets are exposed for various laser fluences ranging from 0.72 J cm-2 to 1.27 J cm-2 under the vacuum condition and in the oxygen environment at a pressure of 133 mbar. Various features of treated targets, such as surface morphology, chemical composition and crystalline structure are analyzed by scanning electron microscope, energy dispersive X-ray spectroscopy and X-ray diffraction techniques, respectively. Scanning electron microscope analysis reveals the formation of laser-induced periodic surface structures (LIPSS), cavities, hillocks in both ambient environments (vacuum, oxygen). Cone-formation on the top of wave like ridges is observed under vacuum condition. In case of oxygen only redeposition is observed. Energy dispersive X-ray spectroscopy analysis exhibits that there is variation in chemical composition in both environments. When the target is treated in oxygen environment enhancement of the surface oxygen content is observed. X-ray diffraction exhibits that no new phases are formed under vacuum condition but a phase change in oxygen ambient is observed. For various fluences the variation in the peak intensity, crystallinity and d-spacing is observed under both ambient conditions.

  7. The Effect of Excimer Laser Treatment on the Surface Roughness and Fracture Strength of Alumina Substrates

    SciTech Connect

    Smoot, J.E.

    1998-05-13

    The microelectronics industry requires alumina substrates with exceptionally smooth surfaces and few surface defects to allow successful deposition of metallic films for reliable electronic performance. Irradiation by a 248-nm wavelength excimer laser beam (KrF) at a fluence of 125 mJ/mm{sup 2} and at various angles of incidence is shown to significantly reduce the surface roughness of alumina substrates. However, irradiation also creates a fine particulate deposit of alumina that only partially adheres to the substrate and impedes deposition of metal films. Annealing in air between 1350 C and 1450 C was found to remove the particles by sintering. As-received material showed surface roughness average (R{sub a}) mean values of 457 nm, which was reduced to 60 nm (mean) following irradiation and 71 nm (mean) following irradiation and annealing at 1350 C. Irradiation also produced a decrease in the number and severity of surface defects. The flexural strength and Weibull modulus were both increased by laser irradiation and thermal treatment. Flexural strength went from an as-received value of 450 MPa to 560 MPa following irradiation/sintering, measured at 10% probability of failure. The Weibull modulus was increased from the as-received value of about 9, to about 13 following irradiation/sintering. It was concluded that irradiation at an angle of incidence of 60{degree} from perpendicular was most effective in producing a low surface roughness.

  8. Multilevel diffractive optical element manufacture by excimer laser ablation and halftone masks

    NASA Astrophysics Data System (ADS)

    Quentel, Francois; Fieret, Jim; Holmes, Andrew S.; Paineau, Sylvain

    2001-06-01

    A novel method is presented to manufacture multilevel diffractive optical elements (DOEs) in polymer by single- step KrF excimer laser ablation using a halftone mask. The DOEs have a typical pixel dimension of 5 micrometers and are up to 512 by 512 pixels in size. The DOEs presented are Fresnel lenses and Fourier computer generated holograms, calculated by means of a conventional iterative Fourier transform algorithm. The halftone mask is built up as an array of 5 micrometers -square pixels, each containing a rectangular or L- shaped window on an opaque background. The mask is imaged onto the polymer with a 5x, 0.13 NA reduction lens. The pixels are not resolved by the lens, so they behave simply as attenuators, allowing spatial variation of the ablation rate via the window size. The advantages of halftone mask technology over other methods, such as pixel-by-pixel ablation and multi-mask overlay, are that it is very fast regardless of DOE size, and that no high-precision motion stages and alignment are required. The challenges are that the halftone mask is specific to the etch curve of the polymer used, that precise calibration of each grey-level is required, and that the halftone mask must be calculated specifically for the imaging lens used. This paper describes the design procedures for multilevel DOEs and halftone masks, the calibration of the various levels, and some preliminary DOE test results.

  9. Unique capabilities for ICF and HEDP research with the KrF laser

    NASA Astrophysics Data System (ADS)

    Obenschain, Stephen; Bates, Jason; Chan, Lop-Yung; Karasik, Max; Kehne, David; Sethian, John; Serlin, Victor; Weaver, James; Oh, Jaechul; Jenkins, Bruce; Lehmberg, Robert; Hegeler, Frank; Terrell, Stephen; Aglitskiy, Yefim; Schmitt, Andrew

    2014-10-01

    The krypton-fluoride (KrF) laser provides the shortest wavelength, broadest bandwidth and most uniform target illumination of all developed high-energy lasers. For directly driven targets these characteristics result in higher and more uniform ablation pressures as well as higher intensity thresholds for laser-plasma instability. The ISI beam smoothing scheme implemented on the NRL Nike KrF facility allows easy implementation of focal zooming where the laser radial profile is varied during the laser pulse. The capability for near continuous zooming with KrF would be valuable towards minimizing the effects of cross beam energy transport (CBET) in directly driven capsule implosions. The broad bandwidth ISI beam smoothing that is utilized with the Nike KrF facility may further inhibit certain laser plasma instability. In this presentation we will summarize our current understanding of laser target interaction with the KrF laser and the benefits it provides for ICF and certain HEDP experiments. Status and progress in high-energy KrF laser technology will also be discussed. Work supported by the Deparment of Energy, NNSA.

  10. Excimer laser photorefractive surgery of the cornea

    NASA Astrophysics Data System (ADS)

    Gaster, Ronald N.

    1998-09-01

    The 193 nm argon fluoride (ArF) excimer laser can effectively be used to change the radius of curvature of the cornea and thus alter the refractive state of the eye. This change allows myopic (nearsighted) patients to see well with less dependence on glasses or contact lenses. The two major techniques of laser refractive surgery currently in effect in the United States are photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK). This paper will discuss these refractive cornea surgical techniques.

  11. Percutaneous angioscopy after excimer laser angioplasty

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Kvasnicka, Jan; Geschwind, Herbert J.; Uchida, Yasumi

    1992-08-01

    Angioscopy has proved to provide more detailed information on lesion morphology before and after interventional procedures than angiography. Therefore, to evaluate the effects of laser angioplasty, angioscopy was performed in five patients with peripheral or coronary vascular disease who underwent excimer laser angioplasty. The excimer laser was operated at 308 nm, 135 nsec, 25 Hz, and 40 - 60 mJ/mm2 and was coupled into multifiber wire-guided catheters of 1.4 to 2.0 mm diameter for coronary lesions and 2.2 mm for peripheral lesions. There were three coronary (one left anterior descending, one circumflex, one right coronary artery) and two peripheral (one common iliac artery, one superficial femoral artery) lesions. Angioscopy was successfully performed before and after laser ablation without any complications in all five lesions. The characteristics of angioscopic findings after excimer laser angioplasty consisted of flaps, fractures of plaques, and abundant tissue remnants. There was no apparent thermal injury. Recanalized channels were small and irregular. These results indicate that (1) angioscopy is effective and safe for evaluation of lesion morphology after laser angioplasty, (2) laser ablation does not result in thermal injury, and (3) irregular channels after recanalization and abundant tissue remnants may explain the suboptimal results after laser angioplasty.

  12. High-power, highly stable KrF laser with a 4-kHz pulse repetition rate

    NASA Astrophysics Data System (ADS)

    Borisov, V. M.; El'tsov, A. V.; Khristoforov, O. B.

    2015-08-01

    An electric-discharge KrF laser (248 nm) with an average output power of 300 W is developed and studied. A number of new design features are related to the use of a laser chamber based on an Al2O3 ceramic tube. A high power and pulse repetition rate are achieved by using a volume discharge with lateral preionisation by the UV radiation of a creeping discharge in the form of a homogeneous plasma sheet on the surface of a plane sapphire plate. Various generators for pumping the laser are studied. The maximum laser efficiency is 3.1%, the maximum laser energy is 160 mJ pulse-1, and the pulse duration at half maximum is 7.5 ns. In the case of long-term operation at a pulse repetition rate of 4 kHz and an output power of 300 W, high stability of laser output energy (σ <= 0.7%) is achieved using an all-solid-state pump system.

  13. Human excimer laser corneal surgery: preliminary report.

    PubMed Central

    L'Esperance, F A; Taylor, D M; Del Pero, R A; Roberts, A; Gigstad, J; Stokes, M T; Warner, J W; Telfair, W B; Martin, C A; Yoder, P R

    1988-01-01

    The first human trial utilizing the argon fluoride excimer laser at 193 nm to produce a superficial keratectomy in ten human eyes has been described with the histopathological evaluation of four eyes and the longer gross appearance of six eyes at intervals extending to 10 months post-excimer laser treatment. The process of laser superficial keratectomy has proved to be one of the promising areas of surgical intervention for reconstructive or refractive keratoplasty in the future. Intensive investigations need to be undertaken on the corneal wound healing process following laser ablation as well as the nature, and long-term stability of the corneal excisions or induced refractive corrections. It is essential that the optimal laser parameters be established for the various refractive corrections and other corneal surgical techniques, and that pathophysiologic and histopathologic changes that have been induced by the excimer laser-corneal tissue interaction in animals and humans be critically and extensively analyzed. Images FIGURE 1 FIGURE 19 A FIGURE 19 B FIGURE 20 A FIGURE 20 B FIGURE 21 A FIGURE 21 B FIGURE 22 A FIGURE 22 B FIGURE 23 FIGURE 24 FIGURE 25 FIGURE 26 FIGURE 27 FIGURE 28 FIGURE 29 A FIGURE 29 B FIGURE 29 C FIGURE 29 D FIGURE 30 A FIGURE 30 B FIGURE 31 A FIGURE 31 B FIGURE 32 FIGURE 33 FIGURE 34 FIGURE 35 FIGURE 36 FIGURE 37 A FIGURE 37 B FIGURE 37 C FIGURE 38 A FIGURE 38 B FIGURE 39 A FIGURE 39 B FIGURE 39 C FIGURE 40 A FIGURE 40 B PMID:2979049

  14. Optical Pattern Generator Using Excimer Laser

    NASA Astrophysics Data System (ADS)

    Hafner, Bernhard F.

    1988-01-01

    Reticles (masks on enlarged scale) are needed for optical pattern transfer in the production of integrated semiconductor circuits. In order to meet present requirements for 5X reticles only a direct writing technique is feasible. This means direct exposing of photoresist either with light or an electron beam. Many of todays highly dense reticles require some 10 5 to 10 6 discrete exposures when generated with an optical pattern generator. Optical pattern generators normally use mercury arc lamps to expose positive photoresist, which in turn need 200 milliseconds for each of these discrete exposures, thus requiring to stop the table at every exposure position ("stop and go" mode). This results in running times of several days per reticle. Therefore most reticles are nowadays being manufactured with very expensive e-beam machines. In the early 80's we started the first experiments to expose photoresist with an excimer laser. In order to obtain the maximum gain in speed, the goal was to operate with only one excimer laser pulse per exposure, so that a fast "flash on the fly" operation with an optical pattern generator became true. Equipping a conventional optical pattern generator with an excimer laser as the light source, it has become possible to expose substrates coated with standard photoresist in the "flash on the fly" mode with only 13 nanoseconds per flash. So the thruput could be increased up to 25 times in comparison to a pattern generator equipped with a mercury lamp. A comparison of both operation modes will show that an immense increase of speed is possible, even when a ten years old M3600 pattern generator is used. This system is in function now with very high reliability since more than three years in our IC development line.

  15. Selective area in situ conversion of Si (0 0 1) hydrophobic to hydrophilic surface by excimer laser irradiation in hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Liu, Neng; Huang, Xiaohuan; Dubowski, Jan J.

    2014-09-01

    We report on a method of rapid conversion of a hydrophobic to hydrophilic state of an Si (0 0 1) surface irradiated with a relatively low number of pulses of an excimer laser. Hydrophilic Si (0 0 1), characterized by the surface contact angle (CA) of near 15°, is fabricated following irradiation with either KrF or ArF excimer lasers of hydrophobic samples (CA ˜ 75°) immersed in a 0.01% H2O2/H2O solution. The chemical and structural analysis carried with x-ray photoelectron spectroscopy and atomic force microscopy measurements confirmed the formation of OH-terminated Si (0 0 1) surface with no detectable change in the surface morphology of the laser-irradiated material. To investigate the efficiency of this laser-induced hydrophilization process, we demonstrate a selective area immobilization of biotin-conjugated fluorescein-stained nanospheres outside of the laser-irradiated area. The results demonstrate the potential of the method for the fabrication of biosensing architectures and advancements of the Si-based microfluidic device technology.

  16. Excimer laser machining of optical fiber taps

    NASA Astrophysics Data System (ADS)

    Coyle, Richard J.; Serafino, Anthony J.; Grimes, Gary J.; Bortolini, James R.

    1991-05-01

    Precision openings for construction of an optical backplane have been machined in an optical fiber using an excimer laser operating at a wavelength of 193 nm. The openings were made by imaging the laser beam onto the polymer fiber cladding with a telescope, then ablating the cladding with a sufficient number of pulses to expose the core. Circular openings measuring 250 and 625 microns and elliptical openings measuring 650 X 350 microns have been made in the cladding of a 1 mm polymer-clad silica fiber. Examination by scanning electron microscopy reveals that the best quality openings are obtained with either the smaller circular geometry or the elliptical geometry. For various reasons, elliptical openings, with the major axis oriented along the longitudinal axis of the fiber, appear more suitable for tap construction. Individual optical fiber taps have been constructed by attaching a tap fiber to a laser machined opening in a central fiber using an ultraviolet-curable acralate. Individual tap measurements were made on the elliptical and the 250 micron circular openings. In addition, a triple tap assembly was made using elliptical tap openings. These results indicate that the excimer laser machining technique may be applicable to the construction of a linear tapped bus for optical backplanes.

  17. Matrix metalloproteinase expression in excimer laser wounded rabbit corneas

    NASA Astrophysics Data System (ADS)

    Hahn, Taewon; Chamon, Wallace; Akova, Yonja; Stark, Walter J.; Stetler-Stevenson, William G.; Azar, Dimitri T.

    1994-06-01

    This study was performed to obtain information about matrix metalloproteinase (MMP) expression in excimer-wounded corneas and to determine whether MMPs expression correlates with the depth of the ablation. 6-mm excimer keratectomy (60 or 180 micrometers ) was performed using the 193-mm ArF excimer laser on 12 NZW rabbits. Corneas treated with mechanical epithelial debridement and untreated corneas served as controls. Rabbits were killed at 20 and 30 hr after laser ablation. Zymography after SDS extraction was performed on regenerated central epithelium and the central stroma to determine MMPs expression. We observed enzymatic activity of a 92 KDa band in the epithelium of excimer-ablated corneas but not in that following debridement wounds and untreated controls. The expression of the 92 KDa MMP was most pronounced with the deeper excimer ablation. A 72 KDa band of enzymatic activity present in the stroma of all treated and control eyes was also seen in the epithelium of excimer-ablated corneas. These proteolytic enzymes may play an important role in wound healing and remodelling after excimer keratectomy.

  18. Excimer laser annealing for low-voltage power MOSFET

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Okada, Tatsuya; Noguchi, Takashi; Mazzamuto, Fulvio; Huet, Karim

    2016-08-01

    Excimer laser annealing of lumped beam was performed to form the P-base junction for high-performance low-voltage-power MOSFET. An equivalent shallow-junction structure for the P-base junction with a uniform impurity distribution is realized by adopting excimer laser annealing (ELA). The impurity distribution in the P-base junction can be controlled precisely by the irradiated pulse energy density and the number of shots of excimer laser. High impurity activation for the shallow junction has been confirmed in the melted phase. The application of the laser annealing technology in the fabrication process of a practical low-voltage trench gate MOSFET was also examined.

  19. Magnetic and crystallographic properties of Co-Cr-(Ta,Pt)/Cr films deposited by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Ishikawa, A.; Tanahashi, K.; Yahisa, Y.; Hosoe, Y.; Shiroishi, Y.

    1994-05-01

    The crystal structure and magnetic properties of Co-alloy films deposited by KrF excimer laser ablation were investigated. A pulsed laser beam with wavelength of 248 nm was focused onto the deposition targets which were fixed in the vacuum chamber. Cr underlayer and Co-alloy films were successively deposited at a rate of 0.012 nm/pulse. The film surface was microscopically smooth compared to the sputtered films. This may be due to the low shadowing effect during the laser deposition. The composition of the film was reproducibly controlled, though there was a slight difference between the composition of film and target material. The coercivities of Co-Cr-Pt/Cr films formed on the Si and Ni-P substrates at 250 °C were 130 and 220 Oe, which were about one-fifth of the coercivity of sputtered films. Crystallographic analyses showed that Cr underlayer had no crystal orientation, and Co-alloy film consisted of fine fcc-type crystal grains. Low coercivity of the laser-deposited film is probably due to the lack of hcp Co phase.

  20. Cost-effective SU-8 micro-structures by DUV excimer laser lithography for label-free biosensing

    NASA Astrophysics Data System (ADS)

    Sanza, F. J.; Laguna, M. F.; Casquel, R.; Holgado, M.; Barrios, C. A.; Ortega, F. J.; López-Romero, D.; García-Ballesteros, J. J.; Bañuls, M. J.; Maquieira, A.; Puchades, R.

    2011-04-01

    Cost-effective SU-8 micro-structures on a silicon substrate were developed using 248 nm excimer laser KrF projection, studying the influence of the different variables on the final pattern geometry, finding out that the most critical are exposure dose and post-bake condition. Also a novel and cost effective type of photomask based on commercial polyimide Kapton produced by 355 nm DPSS laser microprocessing was developed, studying the influence of the cutting conditions on the photomask. Finally, as a likely application the biosensing capability with a standard BSA/antiBSA immunoassay over a 10 × 10 micro-plates square lattice of around 10 μm in diameter, 15 μm of spacing and 400 nm in height was demonstrated, finding a limit of detection (LOD) of 33.4 ng/ml which is in the order of magnitude of bioapplications such as detection of cortisol hormone or insulin-like growth factor. Low cost fabrication and vertical interrogation characterization techniques lead to a promising future in the biosensing technology field.

  1. Permanent excimer superstructures by supramolecular networking of metal quantum clusters.

    PubMed

    Santiago-Gonzalez, Beatriz; Monguzzi, Angelo; Azpiroz, Jon Mikel; Prato, Mirko; Erratico, Silvia; Campione, Marcello; Lorenzi, Roberto; Pedrini, Jacopo; Santambrogio, Carlo; Torrente, Yvan; De Angelis, Filippo; Meinardi, Francesco; Brovelli, Sergio

    2016-08-01

    Excimers are evanescent quasi-particles that typically form during collisional intermolecular interactions and exist exclusively for their excited-state lifetime. We exploited the distinctive structure of metal quantum clusters to fabricate permanent excimer-like colloidal superstructures made of ground-state noninteracting gold cores, held together by a network of hydrogen bonds between their capping ligands. This previously unknown aggregation state of matter, studied through spectroscopic experiments and ab initio calculations, conveys the photophysics of excimers into stable nanoparticles, which overcome the intrinsic limitation of excimers in single-particle applications-that is, their nearly zero formation probability in ultra-diluted solutions. In vitro experiments demonstrate the suitability of the superstructures as nonresonant intracellular probes and further reveal their ability to scavenge reactive oxygen species, which enhances their potential as anticytotoxic agents for biomedical applications. PMID:27493181

  2. Permanent excimer superstructures by supramolecular networking of metal quantum clusters

    NASA Astrophysics Data System (ADS)

    Santiago-Gonzalez, Beatriz; Monguzzi, Angelo; Azpiroz, Jon Mikel; Prato, Mirko; Erratico, Silvia; Campione, Marcello; Lorenzi, Roberto; Pedrini, Jacopo; Santambrogio, Carlo; Torrente, Yvan; De Angelis, Filippo; Meinardi, Francesco; Brovelli, Sergio

    2016-08-01

    Excimers are evanescent quasi-particles that typically form during collisional intermolecular interactions and exist exclusively for their excited-state lifetime. We exploited the distinctive structure of metal quantum clusters to fabricate permanent excimer-like colloidal superstructures made of ground-state noninteracting gold cores, held together by a network of hydrogen bonds between their capping ligands. This previously unknown aggregation state of matter, studied through spectroscopic experiments and ab initio calculations, conveys the photophysics of excimers into stable nanoparticles, which overcome the intrinsic limitation of excimers in single-particle applications—that is, their nearly zero formation probability in ultra-diluted solutions. In vitro experiments demonstrate the suitability of the superstructures as nonresonant intracellular probes and further reveal their ability to scavenge reactive oxygen species, which enhances their potential as anticytotoxic agents for biomedical applications.

  3. Sub-megajoule high performance KrF direct-drive target designs

    NASA Astrophysics Data System (ADS)

    Colombant, Denis; Gardner, J. H.; Afeyan, B. B.; Manheimer, W.

    2005-10-01

    In direct-drive ICF, the intensity on target has historically been kept lower than about 10^15/cm^2 to avoid potential laser plasma instabilities. However, because of the I 2̂ scaling of most of the laser plasma instabilities, the KrF laser at 248 nm has a factor of 2 advantage over its closest competitor, the third harmonic of Nd glass laser light (351 nm). In addition, the smaller wavelength of KrF gives higher collisional absorption and the > 1 THz bandwidth is advantageous for both beam smoothing and instability suppression. The laser architecture makes it easy to zoom the focal spot to follow an imploding pellet and thereby increase absorption efficiency. The purpose of this paper is to investigate what can be gained in terms of performance and hydrodynamic stability by making use of the factor of 2 in laser intensity, as well as zooming. Our preliminary results indicate that KrF allows substantial reductions in the laser energy required for ignition while maintaining moderate gains. Target designs will be presented showing how the trade-off between gain and hydrodynamic stability is altered by using the advantages of KrF.

  4. KrF laser amplifier with phase-conjugate Brillouin retroreflectors.

    PubMed

    Gower, M C

    1982-09-01

    We have demonstrated the use of phase-conjugate stimulated Brillouin scattering mirrors to produce high-quality, short-pulse KrF laser beams from angular multiplexed and regenerative amplifiers. The mirror was also shown to isolate systems optically from amplifier spontaneous emission. Automatic alignment of targets using this mirror as a retroreflector was also demonstrated. PMID:19714043

  5. Near-field nonuniformities in angularly multiplexed KrF fusion lasers with induced spatial incoherence

    NASA Astrophysics Data System (ADS)

    Lehmberg, Robert H.; Chan, Yung

    2005-05-01

    Induced spatial incoherence (ISI) has been proposed for KrF laser drivers to achieve the high degree of spatial beam uniformity required for direct-drive inertial confinement fusion. Although ISI provides ultrasmooth illumination at the far field of the laser, where the target is located, it can still allow the beams in the quasi-near field to develop a time-averaged spatial structure. This speckle, which arises primarily from random-phase aberration, builds up as the laser beams propagate away from the pupil plane located at the final amplifier stage; it is distinct from any structure imposed by gain nonuniformities in the amplifiers. Because of the spatial incoherence, the speckle is significantly smaller than that experienced by coherent beams. Nevertheless, it remains a damage issue, especially for the long beam delay paths required in angularly multiplexed KrF lasers. We develop a novel algorithm for calculating the time-integrated intensities; compare simulations and measurements of the near-field speckle in the Nike KrF laser; and explore options, such as aberration reduction and optical relaying, for controlling the problem in future angularly multiplexed KrF drivers. © Optical Society of America

  6. Repetitively pulsed, high energy KrF lasers for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Myers, M. C.; Sethian, J. D.; Giuliani, J. L.; Lehmberg, R.; Kepple, P.; Wolford, M. F.; Hegeler, F.; Friedman, M.; Jones, T. C.; Swanekamp, S. B.; Weidenheimer, D.; Rose, D.

    2004-12-01

    Krypton fluoride (KrF) lasers produce highly uniform beams at 248 nm, allow the capability of 'zooming' the spot size to follow an imploding pellet, naturally assume a modular architecture and have been developed into a pulsed-power-based industrial technology that readily scales to a fusion power plant sized system. There are two main challenges for the fusion power plant application: to develop a system with an overall efficiency of greater than 6% (based on target gains of 100) and to achieve a durability of greater than 3 × 108 shots (two years at 5 Hz). These two issues are being addressed with the Electra (700 J, 5 Hz) and Nike (3000 J, single shot) KrF lasers at the Naval Research Laboratory. Based on recent advances in pulsed power, electron beam generation and transport, hibachi (foil support structure) design and KrF physics, wall plug efficiencies of greater than 7% should be achievable. Moreover, recent experiments show that it may be possible to realize long lived electron beam diodes using ceramic honeycomb cathodes and anode foils that are convectively cooled by periodically deflecting the laser gas. This paper is a summary of the progress in the development of the critical KrF technologies for laser fusion energy.

  7. Excimer laser ceramic and metal surface alloying applications

    NASA Astrophysics Data System (ADS)

    Hontzopoulos, E.; Zervaki, A.; Zergioti, Y.; Hourdakis, G.; Raptakis, E.; Giannacopoulos, A.; Fotakis, C.

    1991-02-01

    Recent excimer laser based deposition and surface modification techniques for ceramic and metallurgical engineering applications are reported. These include the improvement of the anti-corrosion and erosion properties and wear resistance of metal alloys and the formation of surface conducting patterns on ceramic materials. Excimer laser chemical vapour deposition (LCVD) applications B, AI and Hf or multielement combinations are discussed together with studies which aim at a better understanding of the fundamental processes governing the deposition process.

  8. Concentration, temperature, and density in a hydrogen-air flame by excimer-induced Raman scattering

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Bowling, John M.; Pitz, Robert W.

    1988-01-01

    Single-pulse, vibrational Raman scattering (VRS) is an attractive laser diagnostic for the study of supersonic hydrogen-air combustion. The VRS technique gives a complete thermodynamic description of the gas mixture at a point in the reacting flow. Single-pulse, vibrational Raman scattering can simultaneously provide independent measurements of density, temperature, and concentration of each major species (H2, H2O, O2 and N2) in a hydrogen/air turbulent combustor. Also the pressure can be calculated using the ideal gas law. However, single-pulse VRS systems in current use for measurement of turbulent combustion have a number of shortcomings when applied to supersonic flows: (1) slow repetition rate (1 to 5 Hz), (2) poor spatial resolution (0.5x0.3x0.3 cu mm), and (3) marginal time resolution. Most of these shortcomings are due to the use of visible wavelength flash-lamp pumped dye lasers. The advent of UV excimer laser allows the possibility of dramatic improvements in the single-pulse, vibrational Raman scattering. The excimer based VRS probe will greatly improve repetition rate (100 to 500 Hz), spatial resolution (0.1x0.1x0.1 cu mm) and time resolution (30ns). These improvements result from the lower divergence of the UV excimer, higher repetition rate, and the increased Raman cross-sections (15 to 20 times higher) at ultra-violet (UV) wavelengths. With this increased capability, single-pulse vibrational Raman scattering promises to be an ideal non-intrusive probe for the study of hypersonic propulsion flows.

  9. Efficient gas lasers pumped by generators with inductive energy storage

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.; Panchenko, Alexei N.; Tel'minov, Alexei E.

    2008-05-01

    Laser and discharge parameters in mixtures of rare gases with halogens driven by a pre-pulse-sustainer circuit technique are studied. Inductive energy storage with semiconductor opening switch was used for the high-voltage pre-pulse formation. It was shown that the pre-pulse with a high amplitude and short rise-time along with sharp increase of discharge current and uniform UV- and x-ray preionization allow to form long-lived stable discharge in halogen containing gas mixtures. Improvement of both pulse duration and output energy was achieved for XeCl-, XeF-, KrCl- and KrF excimer lasers. Maximal laser output was as high as 1 J at efficiency up to 4%. Increase both of the radiation power and laser pulse duration were achieved in N2-NF3 (SF6) and He-F2 (NF3) gas mixtures, as well.

  10. Photo-triggering and secondary electron produced ionization in electric discharge ArF* excimer lasers

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Kushner, Mark J.

    2011-10-01

    Electric discharge excimer lasers are sustained in multi-atmosphere attaching gas mixtures that are typically preionized to enable a reproducible, uniform glow, which maximizes optical quality and gain. This preionization is often accomplished using UV light produced by a corona discharge within the plasma cavity. To quantify the relationship between corona discharge properties and those of the laser discharge, the triggering of electron avalanche by preionizing UV light in an electric discharge-pumped ArF* excimer laser was numerically investigated using a two-dimensional model. The preionizing UV fluxes were generated by a corona-bar discharge driven by the same voltage pulse as the main discharge sustained in a multi-atmospheric Ne/Ar/Xe/F2 gas mixture. The resulting peak photo-electron density in the inter-electrode spacing is around 108 cm-3, and its distribution is biased toward the UV source. The preionization density increases with increasing dielectric constant and capacitance of the corona bar. The symmetry and uniformity of the discharge are, however, improved significantly once the main avalanche develops. In addition to bulk electron impact ionization, the ionization generated by sheath accelerated secondary electrons was found to be important in sustaining the discharge current at experimentally observed values. At peak current, the magnitude of the ionization by sheath accelerated electrons is comparable to that from bulk electron impact in the vicinity of the cathode.

  11. The development and progress of XeCl Excimer laser system

    NASA Astrophysics Data System (ADS)

    Zhang, Yongsheng; Ma, Lianying; Wang, Dahui; Zhao, Xueqing; Zhu, Yongxiang; Hu, Yun; Qian, Hang; Shao, Bibo; Yi, Aiping; Liu, Jingru

    2015-05-01

    A large angularly multiplexed XeCl Excimer laser system is under development at the Northwest Institute of Nuclear Technology (NINT). It is designed to explore the technical issues of uniform and controllable target illumination. Short wavelength, uniform and controllable target illumination is the fundamental requirement of high energy density physics research using large laser facility. With broadband, extended light source and multi-beam overlapping techniques, rare gas halide Excimer laser facility will provide uniform target illumination theoretically. Angular multiplexing and image relay techniques are briefly reviewed and some of the limitations are examined to put it more practical. The system consists of a commercial oscillator front end, three gas discharge amplifiers, two electron beam pumped amplifiers and the optics required to relay, encode and decode the laser beam. An 18 lens array targeting optics direct and focus the laser in the vacuum target chamber. The system is operational and currently undergoing tests. The total 18 beams output energy is more than 100J and the pulse width is 7ns (FWHM), the intensities on the target will exceed 1013W/cm2. The aberration of off-axis imaging optics at main amplifier should be minimized to improve the final image quality at the target. Automatic computer controlled alignment of the whole system is vital to efficiency and stability of the laser system, an array of automatic alignment model is under test and will be incorporated in the system soon.

  12. Spectroscopic study of rare-gas excimer formation in a direct-current discharge with supersonic expansion

    NASA Astrophysics Data System (ADS)

    Kiik, M. J.; Dubé, P.; Stoicheff, B. P.

    1995-02-01

    Emission spectra of the rare-gas excimers Ar2*, Kr2*, and Xe2* were excited in a dc jet discharge with supersonic expansion. Absorption and fluorescence emission measurements provided atomic population densities for levels of the 1s manifold. Changes in intensities of the atomic resonance lines and the VUV bands were examined as the plasma was irradiated with laser radiation tuned to specific atomic transitions between levels of the 1s and 2p manifolds. This technique of optical pumping has established that excimers in the A 3Σ+u state are the main contributors to the observed bands from this source. Rate equations were developed to explain the observed intensity changes. Comparisons of the calculated and observed changes indicated that population mixing amongst levels of the 1s manifold caused by electron collisions is an important process in regulating the population in the 1s5 atomic level that leads to the formation of rare-gas excimers by collisions with ground level atoms.

  13. Ablation with a single micropatterned KrF laser pulse: quantitative evidence of transient liquid microflow driven by the plume pressure gradient at the surface of polyesters

    NASA Astrophysics Data System (ADS)

    Weisbuch, F.; Tokarev, V. N.; Lazare, S.; Débarre, D.

    A microscopic flow of a transient liquid film produced by KrF laser ablation is evidenced on targets of PET and PEN. Experiments were done by using single pulses of the excimer laser beam micropatterned with the aid of submicron projection optics and grating masks. The samples of various crystalline states, ablated with a grating-forming beam (period Λ=3.7 μm), were precisely measured by atomic force microscopy, in order to evidence any deviation from the ablation behavior predicted by the current theory (combination of ablation curve and beam profile). This was confirmed by comparing various behaviors dependent on the polymer nature (PC, PET and PEN). PC is a normally ablating polymer in the sense that the ablated profile can be predicted with previous theory neglecting liquid-flow effects. This case is called `dry' ablation and PC is used as a reference material. But, for some particular samples like crystalline PET, it is revealed that during ablation a film of transient liquid, composed of various components, which are discussed, can flow under the transient action of the gradient of the pressure of the ablation plume and resolidify at the border of the spot after the end of the pulse. This mechanism is further supported by a hydrodynamics theoretical model in which a laser-induced viscosity drop and the gradient of the plume pressure play an important role. The volume of displaced liquid increases with fluence (0.5 to 2 J/cm2) and satisfactory quantitative agreement is obtained with the present model. The same experiment done on the same PET polymer but prepared in the amorphous state does not show microflow, and such an amorphous sample behaves like the reference PC (`dry' ablation). The reasons for this surprising result are discussed.

  14. The excimer laser: science fiction fantasy or practical tool?

    PubMed

    Biamino, Giancarlo

    2004-12-01

    Nearly 20 years ago, in vitro experiments left no doubt about the fact that laser light can ablate atherosclerotic plaque. The initial enthusiastic results with the technology, particularly in coronary arteries, were followed by reports showing unacceptably high restenosis and complication rates. These poor results were due to the premature application of an underdeveloped technology, a lack of understanding of laser/tissue interaction, and the use of incorrect lasing techniques. Consequently, and without discrimination, all lasers were banned from the catheterization laboratories for nearly a decade. Technological enhancements of the excimer laser, combined with refined catheter lasing techniques, resulted in greater debulking of atherosclerotic material in long superficial femoral artery occlusions. These results triggered the application of the excimer laser technique as an atherectomy tool in more complex lesions below the knee. The multicenter Laser Atherectomy for Critical Ischemia study clearly demonstrated that the excimer laser technology resulted in limb salvage rates >90% in patients with critical limb ischemia (CLI). Furthermore, new clinical results indicate that the excimer laser is very effective in dissolving thrombotic obstructions, redirecting this technology to the coronary field. The results of the excimer laser in CLI validate the role of the cool laser in treating complex peripheral vascular disease. The results suggest a larger indication for this technology and support a more aggressive use of these interventional techniques in the treatment of this large patient cohort. However, all lasers are not equally effective in debulking atherosclerotic material. Only the athermic process associated with the excimer laser produces a safe and effective endovascular ablation of obstructive atherosclerotic and/or thrombotic material. The appropriate and safe utilization of the equipment and lasing techniques, combined with correct indications and

  15. The Excimer Laser: Its Impact on Science and Industry

    NASA Astrophysics Data System (ADS)

    Basting, Dirk

    2010-03-01

    After the laser was demonstrated in 1960, 15 years were required to develop a practical method for extending laser emission into the UV: the Excimer laser. This historical review will describe the challenges with the new medium and provide an insight into the technological achievements. In the transition from Science to Industry it will be shown how start-ups successfully commercialized laboratory prototypes. The pioneers in this rapidly expanding field will be identified and the influence of government-funded research as well as the role of venture capital will be discussed. In scientific applications, the fields of photochemistry and material research were particularly stimulated by the advent of a reliable UV light source. Numerous industrial applications and worldwide research in novel applications were fueled In the early and mid 80's by progress in excimer laser performance and technology. The discovery of ablative photocomposition of polymer materials by Srinivasan at IBM opened the door to a multitude of important excimer applications. Micromachining with extreme precision with an excimer laser enabled the success of the inkjet printer business. Biological materials such as the human cornea can also be ``machined'' at 193nm, as proposed in 1983 by Trokel and Srinivasan. This provided the foundation of a new medical technology and an industry relying on the excimer laser to perform refractive surgery to correct vision Today, by far the largest use of the excimer laser is in photolithography to manufacture semiconductor chips, an application discovered by Jain at IBM in the early 80's. Moore's law of shrinking the size of the structure to multiply the number of transistors on a chip could not have held true for so long without the deep UV excimer laser as a light source. The presentation will conclude with comments on the most recent applications and latest market trends.

  16. Calcified lesion modeling for excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Scott, Holly A.; Archuleta, Andrew; Splinter, Robert

    2009-06-01

    Objective: Develop a representative calcium target model to evaluate penetration of calcified plaque lesions during atherectomy procedures using 308 nm Excimer laser ablation. Materials and Methods: An in-vitro model representing human calcified plaque was analyzed using Plaster-of-Paris and cement based composite materials as well as a fibrinogen model. The materials were tested for mechanical consistency. The most likely candidate(s) resulting from initial mechanical and chemical screening was submitted for ablation testing. The penetration rate of specific multi-fiber catheter designs and a single fiber probe was obtained and compared to that in human cadaver calcified plaque. The effects of lasing parameters and catheter tip design on penetration speed in a representative calcified model were verified against the results in human cadaver specimens. Results: In Plaster of Paris, the best penetration was obtained using the single fiber tip configuration operating at 100 Fluence, 120 Hz. Calcified human lesions are twice as hard, twice as elastic as and much more complex than Plaster of Paris. Penetration of human calcified specimens was highly inconsistent and varied significantly from specimen to specimen and within individual specimens. Conclusions: Although Plaster of Paris demonstrated predictable increases in penetration with higher energy density and repetition rate, it can not be considered a totally representative laser ablation model for calcified lesions. This is in part due to the more heterogeneous nature and higher density composition of cadaver intravascular human calcified occlusions. Further testing will require a more representative model of human calcified lesions.

  17. Excimer laser ablation of the lens.

    PubMed

    Nanevicz, T M; Prince, M R; Gawande, A A; Puliafito, C A

    1986-12-01

    Ablation of the bovine crystalline lens was studied using radiation from an excimer laser at four ultraviolet wave lengths as follows: 193 nm (argon fluoride), 248 nm (krypton fluoride), 308 nm (xenon chloride), and 351 nm (xenon fluoride). The ablation process was quantitated by measuring mass ablated with an electronic balance, and characterized by examining ablation craters with scanning electron microscopy. The highest ablation rate was observed at 248 nm with lower rates at 193 and 308 nm. No ablation was observed at 351 nm. Scanning electron microscopy revealed the smoothest craters at 193 nm while at 248 nm there was vacuolization in the crater walls and greater disruption of surrounding tissue. The craters made at 308 nm did not have as smooth a contour as the 193-nm lesions. The spectral absorbance of the bovine lens was calculated at the wavelengths used for ablation and correlated with ablation rates and thresholds. High peak-power, pulsed ultraviolet laser radiation may have a role in surgical removal of the lens. PMID:3789982

  18. Neutron detection by scintillation of noble-gas excimers

    NASA Astrophysics Data System (ADS)

    McComb, Jacob Collin

    Neutron detection is a technique essential to homeland security, nuclear reactor instrumentation, neutron diffraction science, oil-well logging, particle physics and radiation safety. The current shortage of helium-3, the neutron absorber used in most gas-filled proportional counters, has created a strong incentive to develop alternate methods of neutron detection. Excimer-based neutron detection (END) provides an alternative with many attractive properties. Like proportional counters, END relies on the conversion of a neutron into energetic charged particles, through an exothermic capture reaction with a neutron absorbing nucleus (10B, 6Li, 3He). As charged particles from these reactions lose energy in a surrounding gas, they cause electron excitation and ionization. Whereas most gas-filled detectors collect ionized charge to form a signal, END depends on the formation of diatomic noble-gas excimers (Ar*2, Kr*2,Xe* 2) . Upon decaying, excimers emit far-ultraviolet (FUV) photons, which may be collected by a photomultiplier tube or other photon detector. This phenomenon provides a means of neutron detection with a number of advantages over traditional methods. This thesis investigates excimer scintillation yield from the heavy noble gases following the boron-neutron capture reaction in 10B thin-film targets. Additionally, the thesis examines noble-gas excimer lifetimes with relationship to gas type and gas pressure. Experimental data were collected both at the National Institute of Standards and Technology (NIST) Center for Neutron Research, and on a newly developed neutron beamline at the Maryland University Training Reactor. The components of the experiment were calibrated at NIST and the University of Maryland, using FUV synchrotron radiation, neutron imaging, and foil activation techniques, among others. Computer modeling was employed to simulate charged-particle transport and excimer photon emission within the experimental apparatus. The observed excimer

  19. KrF laser cost/performance model for ICF commercial applications

    SciTech Connect

    Harris, D.B.; Pendergrass, J.H.

    1985-01-01

    Simple expressions suitable for use in commercial-applications plant parameter studies for the direct capital cost plus indirect field costs and for the efficiency as a function of repetition rate were developed for pure-optical-compression KrF laser fusion drivers. These simple expressions summarize estimates obtained from detailed cost-performance studies incorporating recent results of ongoing physics, design, and cost studies. Contributions of KrF laser capital charges and D and M costs to total levelized constant-dollar (1984) unit ICF power generation cost are estimated as a function of plant size and driver pulse energy using a published gain for short-wavelength lasers and representative values of plant parameters.

  20. Lithography process for KrF in the sub-0.11 μm node

    NASA Astrophysics Data System (ADS)

    Yuhang, Zhao; Jun, Zhu; Jiarong, Tong; Xuan, Zeng

    2009-09-01

    Currently, 200 mm wafer foundry companies are beginning to explore production feasibility under ground rules smaller than 0.11 μm while maintain the cost advantages of KrF exposure tool systems. The k1 factor under 0.11 μm at 248 nm illumination will be below 0.35, which means the process complexity is comparable with 65 nm at 193 nm illumination. In this paper, we present our initial study in the CD process window, mask error factor and CD through pitch performance at the 0.09 μm ground rule for three critical layers—gate poly, metal and contact. The wafer data in the process window and optical proximity will be analyzed. Based on the result, it is shown that the KrF tool is fully capable of sub 0.11 μm node mass production.

  1. Excimer laser processing of backside-illuminated CCDS

    NASA Technical Reports Server (NTRS)

    Russell, S. D.

    1993-01-01

    An excimer laser is used to activate previously implanted dopants on the backside of a backside-illuminated CCD. The controlled ion implantation of the backside and subsequent thin layer heating and recrystallization by the short wavelength pulsed excimer laser simultaneously activates the dopant and anneals out implant damage. This improves the dark current response, repairs defective pixels and improves spectral response. This process heats a very thin layer of the material to high temperatures on a nanosecond time scale while the bulk of the delicate CCD substrate remains at low temperature. Excimer laser processing backside-illuminated CCD's enables salvage and utilization of otherwise nonfunctional components by bringing their dark current response to within an acceptable range. This process is particularly useful for solid state imaging detectors used in commercial, scientific and government applications requiring a wide spectral response and low light level detection.

  2. Development of KrF hybrid resist for a dual-isolation application

    NASA Astrophysics Data System (ADS)

    Liu, Sen; Holmes, Steven; Chen, Kuang Jung; Huang, Wu-song; Kwong, Ranee; Breyta, Greg; Doris, Bruce; Cheng, Kangguo; Luning, Scott; Vinet, Maud; Grenouillet, Laurent; Liu, Qing; Colburn, Matt; Wu, Chung-Hsi

    2013-03-01

    As an option to traditional positive or negative photoresist, hybrid resist has been developed to provide an alternative way to create small trench features, at the range of 20-60 nm, by generating with a single expose, with both positive and negative responses to TMAH developer in one resist layer. [1] Here we report the design and development of a series of frequency-doubling KrF hybrid resists for an Extremely Thin Silicon on Insulator (ETSOI) dual-isolation application for 20 nm node and beyond. The resist formulations were optimized in terms of photo-acid generators (PAGs), PAG loading level and polymers. The resulting KrF hybrid resists are compatible with conventional KrF lithography processes, including conventional illumination, binary masks and 0.26 N TMAH developer, to afford a spacewidth of 20-60 nm. The space CD can be controlled by means of formulation and process options, but is insensitive to expose dose and mask CD. On integrated wafers, the hybrid resists have demonstrated good lithography performance, including through-pitch CD uniformity, focus/expose process window, profile, LER and RIE behavior. This hybrid resist process has been used to fabricate initial development structures for high performance dual-isolation ETSOI devices.

  3. Improved corrosion resistance of excimer laser treated stainless steel

    NASA Astrophysics Data System (ADS)

    Emmel, A.; Schubert, Emil; Barnikel, J.; Stiele, H. J.; Bergmann, Hans W.

    1994-09-01

    Excimer laser surface processing is well-known for material ablation, cleaning, deoxidation, smoothing or roughening. A typical industrial application is the polymer ablation for electronic components, however, the treatment of metals is only on the threshold of industrial use. A novel application reported here, may be an excimer treatment in air leading to oxide and nitrogen dissolution, resulting in an improved corrosion resistance. It is known from literature that corrosion resistance can be enhanced by laser surface alloying e.g. gas nitriding of Ti using CO2-lasers. However, all these techniques have the disadvantage of producing inhomogeneous layers. The aim of this study was to use the reactions during excimer laser irradiation of steel in air to produce layers in the thickness range of 0,1 to 2 micrometers with novel properties. Using the Siemens XP2020 excimer laser it was possible to scan technologically reasonable surface areas with energy densities in the range of 20 to 80 mJ/mm2 and several pulses per area. Steel sheets of 1.4541 (DIN) were irradiated in air and subsequently analyzed by XRD, SEM, TEM, AES and Mossbauer spectroscopy. The corrosion behavior was tested potentio-dynamically in 0,5 N H2SO4 and by gravimetric measurements of the weight loss. The XRD results showed, that the remaining delta-ferrite was eliminated. Both Mossbauer and Auger spectroscopy indicated a strong N- dissolution, hereby stabilizing the austenite. The TEM-investigations revealed fine dispersed oxides (chromites) and an increased dislocation density, resulting in pre-cellular arrangements after relaxation. Corrosion tests suggested the reduction of the material removal rates by a factor of 10 compared to untreated samples. The U(i) curves showed that after the excimer treatment less Cr is presented due to oxide formation in the surface layer. These Cr-oxides are the main reason for the improved corrosion resistance of excimer laser treated stainless steel.

  4. Theory of optical excitation spectra and depolarization dynamics in bilayer WS2 from the viewpoint of excimers

    NASA Astrophysics Data System (ADS)

    Yu, T.; Wu, M. W.

    2014-07-01

    We investigate the optical excitation spectra and the photoluminescence depolarization dynamics in bilayer WS2. A different understanding of the optical excitation spectra in the recent photoluminescence experiment by Zhu et al. (arXiv:1403.6224) in bilayer WS2 is proposed. In the experiment, four excitations (1.68, 1.93, 1.99, and 2.37 eV) are observed and identified to be the indirect exciton for the Γ valley, trion, A exciton, and B exciton excitations, respectively, with the redshift for the A exciton energy measured to be 30˜50 meV when the sample synthesized from monolayer to bilayer. According to our study, by considering that there exist both the intralayer and charge-transfer excitons in the bilayer WS2, with interlayer hopping of the hole, there exists an excimer state composed by the superposition of the intralayer and charge-transfer exciton states. Accordingly, we show that the four optical excitations in the bilayer WS2 are the A charge-transfer exciton, A' excimer, B' excimer, and B intralayer exciton states, respectively, with the calculated resonance energies showing good agreement with the experiment. In our picture, the speculated indirect exciton, which involves a high-order phonon absorption/emission process, is not necessary. Furthermore, the binding energy for the excimer state is calculated to be 40 meV, providing reasonable explanation for the experimentally observed energy redshift of the A exciton. Based on the excimer states, we further derive the exchange interaction Hamiltonian. Then the photoluminescence depolarization dynamics due to the electron-hole exchange interaction is studied in the pump-probe setup by the kinetic spin Bloch equations. We find that there is always a residual photoluminescence polarization that is exactly half of the initial one, lasting for an infinitely long time, which is robust against the initial energy broadening and strength of the momentum scattering. This large steady-state photoluminescence

  5. Advances in 193 nm excimer lasers for mass spectrometry applications

    NASA Astrophysics Data System (ADS)

    Delmdahl, Ralph; Esser, Hans-Gerd; Bonati, Guido

    2016-03-01

    Ongoing progress in mass analysis applications such as laser ablation inductively coupled mass spectrometry of solid samples and ultraviolet photoionization mediated sequencing of peptides and proteins is to a large extent driven by ultrashort wavelength excimer lasers at 193 nm. This paper will introduce the latest improvements achieved in the development of compact high repetition rate excimer lasers and elaborate on the impact on mass spectrometry instrumentation. Various performance and lifetime measurements obtained in a long-term endurance test over the course of 18 months will be shown and discussed in view of the laser source requirements of different mass spectrometry tasks. These sampling type applications are served by excimer lasers delivering pulsed 193 nm output of several mJ as well as fast repetition rates which are already approaching one Kilohertz. In order to open up the pathway from the laboratory to broader market industrial use, sufficient component lifetimes and long-term stable performance behavior have to be ensured. The obtained long-term results which will be presented are based on diverse 193 nm excimer laser tube improvements aiming at e.g. optimizing the gas flow dynamics and have extended the operational life the laser tube for the first time over several billion pulses even under high duty-cycle conditions.

  6. XeCl excimer laser excited by longitudinal discharge

    SciTech Connect

    Zhou, Z.; Zeng, Y.; Qiu, M.

    1983-08-15

    XeCl excimer laser excited by longitudinal gas discharge is reported. The main characteristics of the laser output and the laser energy in dependence of the operating parameters were measured. The laser pulse duration was 35 ns and the maximum laser energy 317 ..mu..J with improvement by preionization.

  7. Surface treatment of metals with excimer and CO2 lasers

    NASA Astrophysics Data System (ADS)

    Haidemenopoulos, G. N.; Zervaki, A.; Papadimitriou, K.; Tsipas, D. N.; McIntosh, J.; Zergioti, G.; Manousaki, G.; Hontzopoulos, Elias I.

    1993-05-01

    The availability of a variety of lasers including the high-power cw CO2 lasers, the pulsed- mode infrared Nd-YAG, and the pulsed-mode ultraviolet excimer laser has led to the development of many interesting applications of laser technology to materials processing. Among them the surface modification of metallic alloys appears to be one of the most important and very close to implementation in various industries. Specifically the applications of excimer lasers have been discussed in a recent workshop in the framework of the Eureka EU 205 program. The major topics concerned with surface modifications that were discussed in this workshop were surface smoothing and roughening, surface cleaning of Ti and Cu, mixing and interdiffusion of predeposited layers, surface irradiation of Cu-alloys to improve the corrosion resistance, surface remelting of Al-alloys for grain refinement through rapid solidification, and surface remelting of Ni-P electroless coatings on Al alloys for the improvement of corrosion resistance. Laser alloying of Ni-base superalloys has also been discussed. Applications discussed here include the surface treatment of Ni-base superalloys with high-power CO2 laser, the surface treatment of aluminum alloys with excimer lasers, the laser assisted chemical vapor deposition (LCVD) of wear and corrosion resistant layers of Ti, TiC, and TiN on tool steels, and the fracture surface sulphur printing with excimer lasers.

  8. Novel technique for high-quality microstructuring with excimer lasers

    NASA Astrophysics Data System (ADS)

    Roth, Stephan; Geiger, Manfred

    2000-06-01

    Laser micromachining has become increasingly established in many microsystem applications during the past years. These new fields occasion higher demands on the quality of micromachiend devices combined with high resolution and working velocity. Due to the disadvantages of conventional excimer laser processing, a novel technique is required to meet these demands. The main problems of conventional excimer laser machining are the redeposition of ablated material on the irradiated work piece and the formation of a strong melting phase especially for metals. These difficulties greatly reduce the applicability of excimer laser material processing for manufacturing microsystems technology components. By applying a thin water film to the substrate surface, the redeposition of ablated material can be completely avoided, which results in a better quality of the microstructures. Usage of a water film, however, has proved to lead to a marked reduction of the ablation rate for the examined materials - ceramics and stainless steel. Therefore, one of the objectives of future research will be to raise the ablation rate in order to render excimer laser processing more interesting economically. Adding alcoholic additives, among others, has improved the wetting of the liquid films on the surface. The effect of the modified chemical composition of the liquid on ablation rate and structure quality for various materials is presented here.

  9. Analysis of glycosaminoglycans in rabbit cornea after excimer laser keratectomy

    PubMed Central

    Kato, T.; Nakayasu, K.; Ikegami, K.; Obara, T.; Kanayama, T.; Kanai, A.

    1999-01-01

    BACKGROUND/AIMS—The biochemical basis for the development of subepithelial opacity of the cornea after excimer laser keratectomy has yet to be fully defined. The aim of this study was to evaluate the alterations of glycosaminoglycans (GAGs) after excimer laser keratectomy.
METHODS—Rabbit corneas were harvested on days 5, 10, 20, and 30 after excimer laser photoablation. The amount of main disaccharide units was determined by high performance liquid chromatography (HPLC). In addition, immunohistochemical studies were performed on corneal sections 20 days after the ablation.
RESULTS—The concentrations of ΔDi-0S at 5 and 10 days were significantly lower than before the ablation. ΔDi-6S showed a significant increase 5 days after the ablation but ΔDi-4S did not show any significant change. There was a significant increase in ΔDi-HA at 20 and 30 days after ablation. In immunohistochemistry, the positive staining for ΔDi-6S and hyaluronic acid was observed in the subepithelial region. These immunohistochemical results were well correlated with the HPLC findings.
CONCLUSIONS—The increase in chondroitin-6 sulphate and hyaluronic acid may be related to corneal subepithelial opacity after excimer laser keratectomy.

 PMID:10216064

  10. Electrical properties of Sb-doped epitaxial SnO2 thin films prepared using excimer-laser-assisted metal-organic deposition

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Tetsuo; Nakajima, Tomohiko; Shinoda, Kentaro

    2013-12-01

    Excimer-laser-assisted metal-organic deposition (ELAMOD) was used to prepare Sb-doped epitaxial (001) SnO2 thin films on (001) TiO2 substrates at room temperature. The effects of laser fluence, the number of shots with the laser, and Sb content on the electrical properties such as resistivity, carrier concentration, and carrier mobility of the films were investigated. The resistivity of the Sb-doped epitaxial (001) SnO2 thin film prepared using an ArF laser was lower than that of the film prepared using a KrF laser. The van der Pauw method was used to measure the resistivity, carrier concentration, and carrier mobility of the Sb-doped epitaxial (001) SnO2 thin films in order to determine the effect of Sb content on the electrical resistivity of the films. The lowest resistivity obtained for the Sb-doped epitaxial (001) SnO2 thin films prepared using ELAMOD with the ArF laser and 2 % Sb content was 2.5 × 10-3 Ω cm. The difference between the optimal Sb concentrations and resistivities of the films produced using either ELAMOD or conventional thermal MOD was discussed.

  11. Effect of excimer laser annealing on a-InGaZnO thin-film transistors passivated by solution-processed hybrid passivation layers

    NASA Astrophysics Data System (ADS)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Fujii, Mami N.; Nonaka, Toshiaki; Ishihara, Ryoichi; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2016-01-01

    We demonstrate the use of excimer laser annealing (ELA) as a low temperature annealing alternative to anneal amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) passivated by a solution-processed hybrid passivation layer. Usually, a-IGZO is annealed using thermal annealing at high temperatures of up to 400 °C. As an alternative to high temperature thermal annealing, two types of ELA, XeCl (308 nm) and KrF (248 nm) ELA, are introduced. Both ELA types enhanced the electrical characteristics of a-IGZO TFTs leading to a mobility improvement of ~13 cm2 V-1 s-1 and small threshold voltage which varied from ~0-3 V. Furthermore, two-dimensional heat simulation using COMSOL Multiphysics was used to identify possible degradation sites, analyse laser heat localization, and confirm that the substrate temperature is below 50 °C. The two-dimensional heat simulation showed that the substrate temperature remained at very low temperatures, less than 30 °C, during ELA. This implies that any flexible material can be used as the substrate. These results demonstrate the large potential of ELA as a low temperature annealing alternative for already-passivated a-IGZO TFTs.

  12. Comparison study for sub-0.13-μm lithography between ArF and KrF lithography

    NASA Astrophysics Data System (ADS)

    Kim, Seok-Kyun; Kim, YoungSik; Kim, Jin-Soo; Bok, Cheol-Kyu; Ham, Young-Mog; Baik, Ki-Ho

    2000-07-01

    In this paper we investigated the feasibility of printing sub-0.13 micrometers device patterns with ArF and KrF lithography by using experiment and simulation. To do this we evaluated various cell structures with different sizes from 0.26 micrometers to 0.20 micrometers pitch. In experiment 0.60NA ArF and 0.70NA KrF exposure tools, commercial and in house resists and bottom anti-reflective coating (BARC) materials are used. To predict and compare with experimental data we also used our developed simulation tool HOST base don diffused aerial iamge model. We found that ArF lithography performance is a little bit better than KrF and therefore 0.70NA KrF lithography can be used up to 0.12 micrometers design rule device and 0.60NA ArF lithography can be used up to 0.11 micrometers . But to get more than 10 percent expose latitude, 0.13 micrometers with KrF and 0.12 micrometers with ArF are the minimum design rule size. However to obtain process margin we had to use extreme off-axis illumination (OAI) which results in large isolated- dense bias and poor linearity including isolated pattern. Using higher NA can reduce ID bias and mask error factor. For contact hole it is more effective to use KrF lithography because resist thermal flow process can be used to shrink C/H size. Our developed ArF resist and BARC shows good performance and we can reduce k1 value up to 0.34. Through this study we verified again that ArF lithography can be applied for sub-0.13 micrometers device through sub-0.10 micrometers with high contrast resist and 0.75NA exposure tool.

  13. APPLICATIONS OF LASERS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser system based on a commercial microwave oscillator with time compression of a microwave pump pulse

    NASA Astrophysics Data System (ADS)

    Arteev, M. S.; Vaulin, V. A.; Slinko, V. N.; Chumerin, P. Yu; Yushkov, Yu G.

    1992-06-01

    An analysis is made of the possibility of using a commercial microsecond microwave oscillator, supplemented by a device for time compression of microwave pulses, in pumping of industrial lasers with a high efficiency of conversion of the pump source energy into laser radiation. The results are reported of preliminary experiments on the commissioning of an excimer XeCl laser.

  14. Excimer laser coronary angioplasty: relative risk analysis of clinical results

    NASA Astrophysics Data System (ADS)

    Bittl, John A.

    1992-08-01

    Reports of successful use of excimer laser coronary angioplasty for complex coronary artery disease abound, yet firm indications for its use have not been defined. We attempted to treat 858 coronary stenoses in 764 consecutive patients (mean age 61 years; range 32 - 91 years; 75% men; 76% with Class III or IV angina) with excimer laser angioplasty at 308 nm. Successful treatment was achieved in 86% of patients, as indicated by excimer laser angioplasty, we used relative risk analysis. This showed that certain angiographic features, such as lesions at a vessel bifurcation (odds ratio, OR equals 0.46; 95% confidence interval 0.23, 0.88; P equals 0.017;) or in a tortuous segment (OR equals 0.54; 95% CI equals 0.34, 0.88; P equals 0.041), have decreased likelihood of clinical success. On the other hand, ostial stenoses (OR equals 1.06; 95% CI equals 0.44, 2.56, P equals 0.903) and saphenous vein graft lesions (OR equals 2.17; 95% CI equals 0.98, 4.82; P equals 0.051) have acceptable success rates. Diffuse disease (> 20 mm), total occlusions and calcified lesions were treated as successfully as all other lesion types. Successful treatment with excimer laser coronary angioplasty was also achieved in almost all patients (15/16) who had a prior unsuccessful attempt at balloon angioplasty in the lesion was crossed with a guidewire yet resists either balloon catheter passage or full dilatation. Follow-up angiography was obtained in 70% of eligible patients. Angiographic restenosis, defined by > 50% stenosis, was seen in 60% of patients. Relative risk analysis showed an increased risk of restenosis when adjunctive balloon angioplasty was not used (OR equals 1.68; 95% CI equals 1.02, 2.28; P equals 0.039). Other variables known to affect the outcome of balloon angioplasty, such as lesion length or stenosis in degenerated saphenous vein bypass graft, did not influence the

  15. Cross-shaped photoluminescence of excimers in perylene crystals

    NASA Astrophysics Data System (ADS)

    Tanaka, Daichi; Numata, Yudai; Nakagawa, Kazuya; Kobayashi, Takayoshi; Tokunaga, Eiji

    2016-04-01

    Cross-shaped excimer (self-trapped exciton) luminescence from α- and β-perylene single crystals of 50-100 μm was found when they were excited at the center of the crystals with a continuous-wave (cw) laser resonant with the exciton absorption. The cross shape is formed by the two lines which intersect at the excited position and are perpendicular to the sides of the crystals of parallelogram shape. Luminescence is emitted from the excited spot and 4 side edges in the cross shape. The most striking feature is that the luminescence intensity at the edges was as high as or higher than at the excited spot. The possibility of the exciton propagation or the waveguide effect is rejected both experimentally and theoretically. This phenomenon can be reasonably explained only when the radiative transition probability of excimers is significantly enhanced at the crystals side edges than at the center due to the lower symmetry.

  16. Triggering Excimer Lasers by Photoionization from Corona Discharges

    NASA Astrophysics Data System (ADS)

    Xiong, Zhongmin; Duffey, Thomas; Brown, Daniel; Kushner, Mark

    2009-10-01

    High repetition rate ArF (192 nm) excimer lasers are used for photolithography sources in microelectronics fabrication. In highly attaching gas mixtures, preionization is critical to obtaining stable, reproducible glow discharges. Photoionization from a separate corona discharge is one technique for preionization which triggers the subsequent electron avalanche between the main electrodes. Photoionization triggering of an ArF excimer laser sustained in multi-atmosphere Ne/Ar/F2/Xe gas mixtures has been investigated using a 2-dimensional plasma hydrodynamics model including radiation transport. Continuity equations for charged and neutral species, and Poisson's equation are solved coincident with the electron temperature with transport coefficients obtained from solutions of Boltzmann's equation. Photoionizing radiation is produced by a surface discharge which propagates along a corona-bar located adjacent to the discharge electrodes. The consequences of pulse power waveform, corona bar location, capacitance and gas mixture on uniformity, symmetry and gain of the avalanche discharge will be discussed.

  17. Cross-shaped photoluminescence of excimers in perylene crystals

    NASA Astrophysics Data System (ADS)

    Tanaka, Daichi; Numata, Yudai; Nakagawa, Kazuya; Kobayashi, Takayoshi; Tokunaga, Eiji

    2016-06-01

    Cross-shaped excimer (self-trapped exciton) luminescence from α- and β-perylene single crystals of 50-100 μm was found when they were excited at the center of the crystals with a continuous-wave (cw) laser resonant with the exciton absorption. The cross shape is formed by the two lines which intersect at the excited position and are perpendicular to the sides of the crystals of parallelogram shape. Luminescence is emitted from the excited spot and 4 side edges in the cross shape. The most striking feature is that the luminescence intensity at the edges was as high as or higher than at the excited spot. The possibility of the exciton propagation or the waveguide effect is rejected both experimentally and theoretically. This phenomenon can be reasonably explained only when the radiative transition probability of excimers is significantly enhanced at the crystals side edges than at the center due to the lower symmetry.

  18. Excimer laser interaction with dentin of the human tooth

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.; Gilliam, Ruth L.; Baker, George R.

    1989-01-01

    The use an excimer laser produced many unusual conical structures within the dentin of the inner part of the human tooth. By varying the frequency of the laser one can disperse the energy and cause more bleeding in laser surgery, but not destroy the cells associated with the incision. Therefore, the healing process will virtually be without scarring. Whereas, using the infrared laser the blood loss would be less, but the healing process would tend to be longer because cells are being destroyed due to the cauterization effect of the laser. The question is, are these structures produced as an interaction with the laser or are they an intrinsic part of the structure. The effects of the laser interaction upon dentin was studied, and in using electron microscopy the interaction of the excimer laser upon the tooth dentin and other various biological tissue is more clearly understood.

  19. Bandwidth Dependence of Laser Plasma Instabilities Driven by the Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S.; Serlin, V.; Schmitt, A. J.; Phillips, L.; Lehmberg, R. H.; McLean, E.; Manka, C.; Feldman, U.

    2011-10-01

    The Nike krypton-fluoride (KrF) laser at the Naval Research Laboratory operates in the deep UV (248 nm) and employs beam smoothing by induced spatial incoherence (ISI). In the first ISI studies at longer wavelengths (1054 nm and 527 nm) [Obenschain, PRL 62, 768(1989);Mostovych, PRL, 59, 1193(1987); Peyser, Phys. Fluids B 3, 1479(1991)], stimulated Raman scattering, stimulated Brillouin scattering, and the two plasmon decay instability were reduced when wide bandwidth ISI (δν / ν ~ 0.03-0.19%) pulses irradiated targets at moderate to high intensities (1014-1015W/cm2) . Recent Nike work showed that the threshold for quarter critical instabilities increased with the expected wavelength scaling, without accounting for the large bandwidth (δν ~ 1-3 THz). New experiments will compare laser plasma instabilities (LPI) driven by narrower bandwidth pulses to those observed with the standard operation. The bandwidth of KrF lasers can be reduced by adding narrow filters (etalons or gratings) in the initial stages of the laser. This talk will discuss the method used to narrow the output spectrum of Nike, the laser performance for this new operating mode, and target observations of LPI in planar CH targets. Work supported by DoE/NNSA.

  20. Measurements of low-level prepulse on Nike KrF laser

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Mostovych, A. N.; Lehmberg, R. H.; Chan, Y.; Weaver, J. L.; Obenschain, S. P.

    2005-09-01

    The krypton fluoride (KrF) laser is a leading candidate driver for inertial fusion energy. Some of the current fusion target designs call for targets with thin metallic coatings. These targets could be particularly susceptible to preheat by a low-level laser prepulse. Knowledge of the prepulse can be important in understanding and modeling the behavior of such targets. This paper presents measurements of low-level prepulse on target with the Nike KrF laser. Sources of prepulse are discussed and measurements are performed under several specific laser conditions in order to evaluate the relative contribution of these sources to the overall prepulse. Prepulse is found to be ˜2×10-7 from peak intensity for approximately 120ns prior to the main laser pulse. Prepulse energy density on target is ˜2J/cm2. The first laser amplifier in the time- and angle-multiplexed section of the laser is found to be the dominant source of prepulse.

  1. Conceptual design of a KrF scaling module. Final report

    SciTech Connect

    1980-10-01

    A conceptual design of an angular multiplexed 50 kJ KrF laser module for Inertial Confinement Fusion is presented. Optical designs for encoding, beam packing and beam transfer between amplifier stages are developed; emphasis is placed on reducing prepulse problems and achieving acceptable optical quality. An axisymmetric optical design is identified as optimum in terms of simplicity, optical quality, cost and alignment. A kinetic code model was developed for the KrF amplifier and was used to derive scaling maps for the 50 kJ module. Attention was given to reducing parasitics, achieving acceptable extraction efficiency and accounting for amplified spontaneous emission effects. The size of the module is constrained by parasitic suppression and damage thresholds; the power gain is constrained by demanding 40% extraction efficiency in a double pass extraction geometry; and, the run time is constrained by the pulsed power technology (PFN or PFL) and acceptable values of g/sub 0/L. The bounds imposed on the design by the pulsed power technology were examined. Both PFLs and PFNs were considered along with their associated diode, hibachi and guide field requirements. A base line design for a 50 kJ module including amplifier staging, layout and overall size is discussed. Cost analysis and scaling for optical components, pulsed power technology and the guide field are also presented.

  2. Novel routes toward sub-70-nm contact windows by using new KrF photoresist

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Soo; Koh, Cha-Won; Lee, Geunsu; Jung, Jae Chang; Shin, Ki-Soo

    2001-08-01

    To overcome C/H(contact holes) shrinkage limitation of Resist Flow Process (RFP), we investigated and analyzed the tendency of the shrink bias according to the baking temperature and other process factors. Based on this basic test, we found that the shrink bias for the baking temperature could be modeled on the simple linear function. And also we estimated new Hotplate to improve CD uniformity after the resist flow and evaluated newly developed photoresist (New Resist) for the stable C/H shrinkage. In this study, we could recognize that CD uniformity after the resist flow was very dependent on actual temperature uniformity of Hotplate. Actually New Hotplate, which was superior to normal Hotplate, showed good CD uniformity (16nm) at the strong brink bias(140nm). On the other hand, the C/H shrinkage of New Resist was more stable than those of normal KrF Resists and its C/H profiles could not be severely deformed at even high baking temperature to shrink Sub-70nm C/H from original C/H(200nm). Based on these results, the progressive Resist Flow Process in KrF lithography will be a very robust candidate at even high gigabit generation devices.

  3. 308-nm Excimer laser treatment of palmoplantar psoriasis.

    PubMed

    Goldberg, David J; Chwalek, Jennifer; Hussain, Mussarrat

    2011-04-01

    Psoriasis is a chronic inflammatory condition affecting 1-3% of the population. The incidence of palmoplantar involvement has been estimated to be between 2.8% and 40.9%. Significant psychosocial distress and difficulty performing activities of daily living can result. Treatment is often challenging. Traditional treatments include topical steroids, anthralin, calcipotriene, PUVA, methotrexate, cyclosporine, retinoids and biologics. In this case series, we report our success with the 308-nm excimer laser in the treatment of palmoplantar psoriasis. PMID:21401376

  4. Nebulae at keratoconus--the result after excimer laser removal.

    PubMed

    Fagerholm, P; Fitzsimmons, T; Ohman, L; Orndahl, M

    1993-12-01

    Ten patients underwent excimer laser ablation due to nebula formation at keratoconus. The nebulae interfered significantly with contact lens fit or wearing time. The mean follow-up time in these patients was 16.5 months. Following surgery all patients could be successfully fitted with a contact lens and thereby obtain good visual acuity. Furthermore, contact lens wearing time was 8 hours or more in all cases. In 2 patients the nebulae recurred but were successfully retreated. PMID:8154261

  5. Cleaning of large area by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Sentis, Marc L.; Delaporte, Philippe C.; Marine, Wladimir I.; Uteza, Olivier P.

    2000-01-01

    Surface removal technologies are being challenged from environmental and economic perspectives. This paper is concerned with laser ablation applied to large surface cleaning with an automatized excimer laser unit. The study focused on metallic surfaces that are oxidized and are representative of contaminated surfaces with radionuclides in a context of nuclear power plant maintenance. The whole system is described: laser, beam deliver, particle collection cell, real time control of cleaning processes. Results concerning surface laser interaction and substrate modifications are presented.

  6. Pulsed excimer laser processing for cost-effective solar cells

    NASA Technical Reports Server (NTRS)

    Wong, David C.

    1985-01-01

    The application of excimer laser in the fabrication of photovoltaic devices was investigated extensively. Processes included junction formation, laser assisted chemical vapor deposition metallization, and laser assisted chemical vapor deposition surface passivation. Results demonstrated that implementation of junction formation by laser annealing in production is feasible because of excellent control in junction depth and quality. Both metallization and surface passivation, however, were found impractical to be considered for manufacturing at this stage.

  7. Excimer laser ophthalmic surgery: evaluation of a new technology.

    PubMed Central

    Infeld, D. A.; O'Shea, J. G.

    1998-01-01

    The aim of this article is to provide information and an overview of the potential risks and benefits of excimer laser surgery, a new and promising technique in ophthalmic surgery. Although this review concentrates on the use of the laser for refractive purposes, novel therapeutic techniques are also discussed. It is hoped that this will enable general practitioners, optometrists and physicians to provide appropriate advice and counselling for patients. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10211324

  8. Excimer ablation of human intervertebral disc at 308 nanometers.

    PubMed

    Wolgin, M; Finkenberg, J; Papaioannou, T; Segil, C; Soma, C; Grundfest, W

    1989-01-01

    Excimer laser energy, which has been shown to photoablate tissue at a precisely controllable rate with minimal thermal damage, was applied to human intervertebral disc in an effort to develop a technique for percutaneous discectomy. Cadaveric samples of human disc were used. Excimer laser energy was produced by a XeCl, magnetically switched, long-pulse laser working at 308 nm, 20 Hz. Annulus tissue of approximately 1 mm thickness was placed in contact with the output tip of a 400 microns core diameter quartz fiber, and measurements of ablation rate were made at different radiant exposures. Ablation rates were found to vary linearly with radiant exposure, from 0.7 micron/pulse at 10 mJ/mm2 to 11.0 microns/pulse at 55 mJ/mm2, with a correlation coefficient of 0.984. Threshold radiant exposure, calculated by extrapolation, was found to be about 7 mJ/mm2. Histologic analysis showed a minimum of thermal damage in these specimens, and when ablated with modification to maintain constant fiber-tissue contact, thermal injury was nearly absent, as compared to samples ablated with Nd:YAG through a contact probe. Thermographic analysis, performed using the AGA 782 Digital Thermography system, showed increasing temperature with increasing radiant exposure, with a maximum temperature of 47.2 degrees C at 55 mJ/mm2. In that precise tissue ablation was demonstrated with minimal generated heat, and excimer energy at 308 nm is transmissible through fiber optics, excimer holds great promise for the development of a percutaneous discectomy technique. PMID:2716456

  9. Excimer emission from pulsed microhollow cathode discharges in xenon

    SciTech Connect

    Lee, B.-J.; Nam, S. H.; Rahaman, H.; Iberler, M.; Jacoby, J.; Frank, K.

    2013-12-15

    Direct current (dc) microhollow cathode discharge (MHCD) is an intense source for excimer radiation in vacuum ultraviolet at a wavelength of 172 nm in a high pressure xenon (Xe) gas. The concentration of precursors for the excimer formation, i.e., excited and ionized gas atoms, increases significantly by applying high voltage pulse onto the dc MHCD over the pulse duration range from 20 to 100 ns. The intensity of the excimer emission for the voltage pulse of 20 ns duration exceeds that of the emission intensity obtained from the same MHCD operated only in the dc mode, by one order of magnitude. In addition, the emission intensity increases by one order of magnitude over the pulse duration range from 20 to 100 ns. It can be assumed that the emission intensity of the MHCD source increases as long as the duration of the high voltage pulse is shorter than the electron relaxation time. For the high voltage pulse of 100 ns duration, the emission intensity has been found to be further enhanced by a factor of three when the gas pressure is increased from 200 to 800 mbar.

  10. Assessment of the Suitability of Excimer Lasers in Treating Onychomycosis

    NASA Astrophysics Data System (ADS)

    Kymplová, Jaroslava; Jelínek, Miroslav; Urzová, Jana; Mikšovský, Jan; Dušek, Karel; Bauerová, Lenka

    2014-04-01

    Since it is known that UV-C radiation kills fungus, we wanted to verify the hypothesis that the use of excimer laser could be an alternative method for treating onychomycosis - nail fungus. The aim of the first stage of this work was to determine the transmission, reflection and absorption of nails. In the following stage we focused on irradiation of fungi. Our final task is to assess whether it is possible to determine the parameters of radiation (a total dose,a dose per pulse frequency, a repetition rate, a number of pulses) for which the elimination of fungi would be the most effective but without damaging the nail and soft tissue underneath it. The results so far have showed that UV-C radiation does not pass through a fingernail to such an extent that it could damage the soft tissue beneath it. Fungi are destroyed by the application of only small doses of radiation using the excimer laser. Additional measurements will be required to determine the modulation parameters of the excimer laser radiation for the treatment of onychomycosis.

  11. Gain enhancement in a XeCl-pumped Raman amplifier

    SciTech Connect

    Rifkin, J.; Bernt, M.L.; MacPherson, D.C.; Carlsten, J.L.

    1988-08-01

    A comparison of the theoretical predictions of a multimode broadband model with the experimentally measured gain enhancement in a Raman amplifier is presented. The results show that the multimode theory with fixed and totally random phases is in agreement with the data obtained from an excimer-laser-pumped Raman amplifier. Additionally, this theory indicates that the correlated gain can be larger than the gain for a monochromatic laser, as might be expected for a model with amplitude modulation.

  12. 100 nm half-pitch double exposure KrF lithography using binary masks

    NASA Astrophysics Data System (ADS)

    Geisler, S.; Bauer, J.; Haak, U.; Stolarek, D.; Schulz, K.; Wolf, H.; Meier, W.; Trojahn, M.; Matthus, E.

    2008-03-01

    In this paper we investigate the process margin for the 100nm half - pitch double exposure KrF lithography using binary masks for different illumination settings. The application of Double Exposure Lithography (DEL) would enlarge the capability of 248 nm exposure technique to smaller pitch e.g. for the integration of dedicated layers into 0.13 μm BiCMOS with critical dimension (CD) requirements exceeding the standard 248 nm lithography specification. The DEL was carried out with a KrF Scanner (Nikon S207D, NA Lens = 0.82) for a critical dimension (CD) of 100nm half pitch. The chemical amplified positive resists SL4800 or UV2000 (Rohm & Haas) with a thickness of 325nm were coated on a 70 nm AR10L (Rohm & Haas) bottom anti-reflective coating (BARC). With a single exposure and using binary masks it is not possible to resolve 100nm lines with a pitch of 200 nm, due to the refraction and the resolution limit. First we investigated the effect of focus variation. It is shown that the focus difference of 1st and 2nd exposure is one critical parameter of the DEL. This requires a good focus repeatability of the scanner. The depth of focus (DOF) of 360 nm with the coherence parameter σ = 0.4 was achieved for DEL with SL4800 resist. The influence of the better resist resolution of UV2000 on the process window will be shown (DOF = 460 nm). If we change the focus of one of the exposures the CD and DOF performance of spaces is reduced with simultaneous line position changing. Second we investigated the effect of different illumination shapes and settings. The results for conventional illumination with different values for σ and annular illumination with σ inner = 0.57 and σ outer = 0.85 will be shown. In summary, the results show that DEL has the potential to be a practical lithography enhancement method for device fabrication using high NA KrF tool generation.

  13. PUMP CONSTRUCTION

    DOEpatents

    Strickland, G.; Horn, F.L.; White, H.T.

    1960-09-27

    A pump which utilizes the fluid being pumped through it as its lubricating fluid is described. This is achieved by means of an improved bearing construction in a pump of the enclosed or canned rotor type. At the outlet end of the pump, adjacent to an impeller mechanism, there is a bypass which conveys some of the pumped fluid to a chamber at the inlet end of the pump. After this chamber becomes full, the pumped fluid passes through fixed orifices in the top of the chamber and exerts a thrust on the inlet end of the pump rotor. Lubrication of the rotor shaft is accomplished by passing the pumped fluid through a bypass at the outlet end of the rotor shaft. This bypass conveys Pumped fluid to a cooling means and then to grooves on the surface of the rotor shait, thus lubricating the shaft.

  14. Aurora project: optical design for a kilojoule class KrF laser

    SciTech Connect

    Hanlon, J.; McLeod, J.; Sollid, J.E.; Horn, W. III; Carmichael, R.; Kortegaard, B.; Woodfin, G.; Rosocha, L..

    1985-01-01

    Aurora is a 248-nm, 10-kilojoule laser system being built at Los Alamos National Laboratory to demonstrate the feasibility of large KrF laser systems for laser fusion. It was designed as a test bed to demonstrate: (1) efficiet energy extraction at 248 nm; (2) an angularly multiplexed optical system that is scaleable to large system designs; (3) the control of parasitics and ASE (amplified spontaneous emission); (4) long path pulse propagation at uv wavelengths; (5) alignment systems for multibeam systems; and (6) new or novel approaches to optical hardware that can lead to cost reduction on large systems. In this paper only issues pertinent to the optical system are addressed. First, a description of the entire system is given. The design constraints on the optical system are explained, concurrent with a discussion of the final design. This is followed by a very brief discussion of coatings; in particular, the use of sol-gels for antireflection coatings is presented.

  15. Industrial Pumps

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A flow inducer is a device that increases the pump intake capacity of a Worthington Centrifugal pump. It lifts the suction pressure sufficiently for the rotating main impeller of the centrifugal pump to operate efficiently at higher fluid intake levels. The concept derives from 1960's NASA technology which was advanced by Worthington Pump Division. The pumps are used to recirculate wood molasses, a highly viscous substance.

  16. Possibilities for achieving x-ray lasing action by use of high-order multiphoton processes. [lambda = 10 nm

    SciTech Connect

    Clark, C.W.; Littman, M.G.; McIlrath, T.J.; Miles, R.; Skinner, C.H.; Suckewer, S.; Valeo, E.

    1985-12-01

    We consider some possible mechanisms for producing gain in the 10 nm spectral region. They involve the creation of a population inversion in a confined plasma column by selective excitation of multicharged ions via absorption of many (>10) ultraviolet photons. Specific treatment is made of Kr-like ions pumped by a KrF excimer laser. 27 refs., 5 figs.

  17. Pulse shaping and energy storage capabilities of angularly multiplexed KrF laser fusion drivers

    NASA Astrophysics Data System (ADS)

    Lehmberg, R. H.; Giuliani, J. L.; Schmitt, A. J.

    2009-07-01

    This paper describes a rep-rated multibeam KrF laser driver design for the 500kJ Inertial Fusion test Facility (FTF) recently proposed by NRL, then models its optical pulse shaping capabilities using the ORESTES laser kinetics code. It describes a stable and reliable iteration technique for calculating the required precompensated input pulse shape that will achieve the desired output shape, even when the amplifiers are heavily saturated. It also describes how this precompensation technique could be experimentally implemented in real time on a reprated laser system. The simulations show that this multibeam system can achieve a high fidelity pulse shaping capability, even for a high gain shock ignition pulse whose final spike requires output intensities much higher than the ˜4MW/cm2 saturation levels associated with quasi-cw operation; i.e., they show that KrF can act as a storage medium even for pulsewidths of ˜1ns. For the chosen pulse, which gives a predicted fusion energy gain of ˜120, the simulations predict the FTF can deliver a total on-target energy of 428kJ, a peak spike power of 385TW, and amplified spontaneous emission prepulse contrast ratios IASE/I<3×10-7 in intensity and FASE/F<1.5×10-5 in fluence. Finally, the paper proposes a front-end pulse shaping technique that combines an optical Kerr gate with cw 248nm light and a 1μm control beam shaped by advanced fiber optic technology, such as the one used in the National Ignition Facility (NIF) laser.

  18. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    PubMed Central

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-01-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided. Images PMID:8060928

  19. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    PubMed

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-06-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided. PMID:8060928

  20. Excimer laser photorefractive keratectomy with different ablation zones.

    PubMed

    Hassan, Z; Lampé, Z; Békési, L; Berta, A

    1997-01-01

    In this study we would like to introduce the excimer laser, and to demonstrate our results and complications by using different ablation zones during photorefractive keratectomy (PRK) in the correction of myopia and astigmatismus. In 1996 we performed photorefractive keratectomy on 100 myopic eyes of 52 patients (28 females, 24 males). Mean age was 26.21 years (ranged from 19 to 54 years). The preoperative refraction ranged from -1.0 D to -18.0 Diopters. The diameter of the ablation zones were between 5 and 6.5 mm. We evaluated the results and the complications of the surgeries of 100 eyes which were performed with Schwind keratom F excimer laser. After 2 days, 1 week, 1 month, 3 months, and 6 months postoperatively we tested the best uncorrected and corrected visual acuities, and performed intraocular pressure measurement, slit lamp examination as well as corneal topography. The postoperative refractions were between +/- 0.5 to +/- 1.0 Diopters. After six months postoperatively the slit lamp examination showed that 80% of the patients had no corneal haze while 20% had stage I (Hanna) corneal haze. The smaller the diameter of the ablation zone was, the more pronounced the corneal haze and the night-glare were. The photorefractive excimer laser keratectomy is judged to be a safe method, although it might have some side-effects. The different ablation zones of this treatment means an important modification, that not only allows the method to meet the individual requirements, but reduces the chance of the complications as well. Based on the authors' experiences PRK for moderate myopia with large diameter ablation zones appears more predictable than than with smaller ablation zone diameters. PMID:9408312

  1. Surface Structuring of CFRP by using Modern Excimer Laser Sources

    NASA Astrophysics Data System (ADS)

    Fischer, F.; Kreling, S.; Dilger, K.

    High demands for lightweight construction can be attained by the use of carbon fiber-reinforced plastics (CFRP) including one major challenge: the joining technology. Adhesive bonding may allow an increased utilization of the lightweight potential of CFRP. But this technology requires a surface pre-treatment because of residues of release agents. This paper describes surface pre-treatment of CFRP specimens by using modern excimer laser and the mechanical tests that compare the achieved strength to manually abraded ones. The laser process is suitable for achieving cohesive failure within the adhesive and bond strengths in the magnitude of the abraded specimen.

  2. Analytical Characterization of CFRP Laser Treated by Excimer Laser Radiation

    NASA Astrophysics Data System (ADS)

    Kreling, S.; Fischer, F.; Delmdahl, R.; Gäbler, F.; Dilger, K.

    Due to the increasing interest in lightweight structures, carbon-fiber reinforced plastics are increasingly applied, especially in the transportation industry. An interesting technology for joining these materials is adhesive bonding due to numerous advantages compared to conventional techniques like riveting. However, to achieve a strong and durable bond, surface pre-treatment is necessary to remove residues of release agents that are transferred to the surface during manufacturing. This paper describes analytical experiments, namely SEM and XPS, performed on CFRP surfaces pre-treated with 308 nm excimer laser radiation.

  3. Chemical surface modification of fluorocarbon polymers by excimer laser processing

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Yabe, Akira

    1996-04-01

    Surface of poly(tetrafluoroethylene) [PTFE] film was modified chemically by an ArF excimer laser-induced reaction in a hydrazine gas atmosphere. The polymer surface modified upon the irradiation of 1000 pulses at 27 mJ cm -2, which was a fairly lower fluence than the ablation threshold for usual polymer films, showed hydrophilicity (contact angle for water: 30°) enough to be metallized by chemical plating. The mechanism for chemical surface modification was investigated by FTIR, XPS, and SIMS analyses. The laser-treated PTFE film was metallized by a chemical plating process. These processes will be used to fabricate printed wiring boards for high frequency electronics.

  4. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    NASA Astrophysics Data System (ADS)

    Dowding, Colin; Lawrence, Jonathan

    2010-04-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm 2. This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over ' n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low

  5. Surface 3D Micro Free Forms: Multifunctional Microstructured Mesoporous α-Alumina by in Situ Slip Casting Using Excimer Laser Ablated Polycarbonate Molds.

    PubMed

    Rowthu, Sriharitha; Böhlen, Karl; Bowen, Paul; Hoffmann, Patrik

    2015-11-11

    Ceramic surface microstructuring is a rapidly growing field with a variety of applications in tribology, wetting, biology, and so on. However, there are limitations to large-area microstructuring and fabrication of three-dimensional (3D) micro free forms. Here, we present a route to obtain intricate surface structures through in situ slip casting using polydimethylsiloxane (PDMS) negative molds which are replicated from excimer laser ablated polycarbonate (PC) master molds. PC sheets are ablated with a nanosecond KrF (λ = 248 nm) excimer laser mask projection system to obtain micron-scale 3D surface features over a large area of up to 3 m(2). Complex surface structures that include 3D free forms such as 3D topography of Switzerland, shallow structures such as diffractive optical elements (60 nm step) and conical micropillars have been obtained. The samples are defect-free produced with thicknesses of up to 10 mm and 120 mm diameter. The drying process of the slip cast alumina slurry takes place as a one-dimensional process, through surface evaporation and water permeation through the PDMS membrane. This allows homogeneous one-dimensional shrinkage during the drying process, independent of the sample's lateral dimensions. A linear mass diffusion model has been proposed to predict and explain the drying process of these ceramic colloidal suspensions. The calculated drying time is linearly proportional to the height of the slurry and the thickness of the negatively structured PDMS and is validated by the experimental results. An experimentally observed optimum Sylgard PDMS thickness range of ∼400 μm to 1 mm has achieved the best quality microstructured green compacts. Further, the model predicts that the drying time is independent of the microstructured areas and was validated using experimental observations carried out with microstructured areas of 300 mm(2), 1200 mm(2), and 120 cm(2). Therefore, in principle, the structures can be further replicated in areas up

  6. Excimer laser annealing to fabricate low cost solar cells

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The objective is to show whether or not pulsed excimer laser annealing (PELA) of ion-implanted junctions is a cost effective replacement for diffused junctions in fabricating crystalline silicon solar cells. The preliminary economic analysis completed shows that the use of PELA to fabricate both the front junction and back surface field (BSF) would cost approximately 35 cents per peak watt (Wp), compared to a cost of 15 cents/Wp for diffusion, aluminum BSF and an extra cleaning step in the baseline process. The cost advantage of the PELA process depends on improving the average cell efficiency from 14% to 16%, which would lower the overall cost of the module by about 15 cents/Wp. An optimized PELA process compatible with commercial production is to be developed, and increased cell efficiency with sufficient product for adequate statistical analysis demonstrated. An excimer laser annealing station was set-up and made operational. The first experiment used 248 nm radiation to anneal phosphorus implants in polished and texture-etched silicon.

  7. Multifiber excimer laser catheter design strategies for various medical applications

    NASA Astrophysics Data System (ADS)

    Verdaasdonck, Rudolf M.; van Swol, Christiaan F. P.; van Leeuwen, Ton G. J. M.; Tulleken, Cees A. F.; Boon, Tom A.

    1994-07-01

    For the XeCl Excimer laser (308 nm, 115 ns), special design multifiber laser catheters were developed and theoretically as well as experimentally evaluated. Monte Carlo simulations showed that the penetration depth of 308 nm XeCl excimer light varied from 50 to 200 micrometers for fiber diameters from 50 to 550 micrometers and larger. Tissue ablation is expected to be restricted to this irradiated area. In order to ablate larger tissue areas, a flexible bundle of fibers is used introducing gaps in the irradiance distribution due to dead space in between the individual fibers. Multifiber catheters were developed for a unique neurosurgery bypass procedure and for urethra stricture surgery. Real-time, close-up, high speed video imaging showed that tissue ablation mechanism of these catheters is predominately governed by explosive short-life vapor bubbles fragmenting the tissue to small particles. In order to temper the ablation process, laser energy was delivered in 8 pulses divided over 8 sectors of a multifiber catheter (multiplexing), keeping the same fluence instead of one pulse addressing all the fibers at once.

  8. Three years of clinical experiences on excimer laser angioplasty

    NASA Astrophysics Data System (ADS)

    Viligiardi, Riccardo; Galiberti, Sandra; Pini, Roberto; Salimbeni, Renzo

    1992-03-01

    We report here the experience of our multidisciplinary group that has been working since 1986 on excimer laser angioplasty. After having selected the excimer laser between the available sources because of the negligible lesions left on the residual tissue, we had the purpose to develop a suitable laser and catheter system. Neglecting here all the preliminary studies, we outline only a typical phenomenon related to the energy delivery and useful for the comprehension of the recanalization process. The energy emitted by every single fiber determines, under a certain threshold, independent recanalized channels in the plaque with residual flaps. At a higher energy level the overposition of the lobes, due to the intrinsic divergence, up to the recanalization in a single large channel. In our opinion this condition is crucial in the design of the catheters to obtain an optical instead of a mechanical recanalization. The biological experimentation conducted during the preliminary tests on human hearts obtained from transplants or cadavers, convinced us that the correct goal to pursue was unique laser angioplasty without the need for further balloon dilation.

  9. Smartphone-enabled filterless fluorescence assay utilizing the pyrene excimer

    NASA Astrophysics Data System (ADS)

    Goertz, John P.; White, Ian M.

    2015-03-01

    Fluorescence microscopy offers a number of advantages for cell- and biomarker-based diagnostics with regards to ease of use and interpretation, sensitivity, and specificity. However, its use in low-resource settings is often hindered by the need for bulky microscopes with expensive excitation and filter setups. While many advances have been made towards utilizing smartphones as microscopes, there remains a reliance on complex attachments to facilitate fluorescence microscopy. Here, we report progress towards a filter-less fluorescent assay utilizing ultraviolet light, an unmodified smartphone, and pyrene-labeled aptamers. The pyrene monomer is excited at a wavelength of 350 nm and emits at approximately 390 nm; when two pyrene molecules are brought into close proximity, however, they form an excimer which emits at approximately 490 nm. We have engineered pyrene-conjugated DNA sequences such that the fluorophores, normally in monomeric configuration, are brought into proximity upon binding of the DNA to its target. The large Stokes shift between excitation and emission of the excimer allows us to detect such biorecognition events with an unfiltered smartphone camera, enabling the use of this assay in low-resource settings where portability and easeof- use are paramount.

  10. Pixel diamond detectors for excimer laser beam diagnostics

    NASA Astrophysics Data System (ADS)

    Girolami, M.; Allegrini, P.; Conte, G.; Salvatori, S.

    2011-05-01

    Laser beam profiling technology in the UV spectrum of light is evolving with the increase of excimer lasers and lamps applications, that span from lithography for VLSI circuits to eye surgery. The development of a beam-profiler, able to capture the excimer laser single pulse and process the acquired pixel current signals in the time period between each pulse, is mandatory for such applications. 1D and 2D array detectors have been realized on polycrystalline CVD diamond specimens. The fast diamond photoresponse, in the ns time regime, suggests the suitability of such devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics, also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The relatively high resistivity of diamond in the dark has allowed the fabrication of photoconductive vertical pixel-detectors. A semitransparent light-receiving back-side contact has been used for detector biasing. Each pixel signal has been conditioned by a multi-channel read-out electronics made up of a high-sensitive integrator and a Σ-Δ A/D converter. The 500 μs conversion time has allowed a data acquisition rate up to 2 kSPS (Sample Per Second).

  11. Oxygen pumps

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Special considerations to be given to the design, fabrication, and use of centrifugal pumps for liquid O2 to avoid conditions that lead to system failure are given. Emphasis was placed on turbine pumps for flight applications.

  12. Casing pump

    SciTech Connect

    Bass, H.E.; Bass, R.E.

    1987-09-29

    A natural gas operated pump is described for use in the casing of an oil well, comprising: a tubular pump body having an open lower end for admitting well fluids to the interior of the pump body and an open upper end, wherein a downwardly facing seating surface is formed on the inner periphery of the pump body adjacent the upper end thereof; means for forming a seal between the pump body and the casing of the well; a rod extending longitudinally through the seating surface formed in the pump body and protruding from the upper end of the pump body; a valve member mounted on the rod below the seating surface and shaped to mate with the seating surface; and means for vertically positioning the rod in proportion to fluid pressure within the pump body.

  13. Magnetocaloric pump

    NASA Technical Reports Server (NTRS)

    Brown, G. V.

    1973-01-01

    Very cold liquids and gases such as helium, neon, and nitrogen can be pumped by using magnetocaloric effect. Adiabatic magnetization and demagnetization are used to alternately heat and cool slug of pumped fluid contained in closed chamber.

  14. ELECTROMAGNETIC PUMP

    DOEpatents

    Pulley, O.O.

    1954-08-17

    This patent reiates to electromagnetic pumps for electricity-conducting fluids and, in particular, describes several modifications for a linear conduction type electromagnetic interaction pump. The invention resides in passing the return conductor for the current traversing the fiuid in the duct back through the gap in the iron circuit of the pump. Both the maximum allowable pressure and the efficiency of a linear conduction electromagnetic pump are increased by incorporation of the present invention.

  15. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Lehmberg, R. H.; Mclean, E.; Manka, C.

    2013-02-01

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ =248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ =351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×1015 W/cm2). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  16. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    SciTech Connect

    Weaver, J. L.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Oh, J.; Lehmberg, R. H.; Mclean, E.; Manka, C.; Phillips, L.; Afeyan, B.; Seely, J.; Feldman, U.

    2013-02-15

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength ({lambda}=248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers ({lambda}=351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns{<=}{tau}{<=}1.25 ns) and intensities (up to 2 Multiplication-Sign 10{sup 15} W/cm{sup 2}). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  17. Implementation of contact hole patterning performance with KrF resist flow process for 80nm DRAM application

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-ryeun; Park, DongHeok; Kim, HyeongSoo

    2005-05-01

    Currently, 193nm lithography including contact hole patterning is being integrated into manufacturable process at 80nm technology nodes. However, for 193nm contact hole patterning, many researchers have reported various troubles such as poor profiles, low exposure dose, and pattern edge roughness due to inherent flaws of ArF resist materials. Also, it is desirable to be extended the KrF lithography at a cost. Of course, the patterning of very small contact hole features for the 80nm DRAM device generation will be a difficult challenge for 248nm lithography. In this work, we study the potential for contact photoresist reflow to be used with 248nm photoresist to increase process windows of small contact dimensions at the 80nm DRAM device generation. In KrF 0.80NA scanner, resist flow process and layout optimization was carried out to achieve the contact hole patterning. The contact CD at best focus is 140nm and the amount of photoresist flow is approximately 52nm. For a contact hole with CDs of 88nm +/- 10%, Focus-Exposure windows over the wafer are 0.3um and 10%, respectively. In conclusion, we have successfully achieved the contact hole patterning with KrF resist flow process for 80nm DRAM device.

  18. OSCILLATORY PUMP

    DOEpatents

    Underwood, N.

    1958-09-23

    This patent relates to a pump suitable fur pumping highly corrosive gases wherein no lubricant is needed in the pumping chamber thus eliminating possible contamination sources. The chamber contains a gas inlet and outlet in each side, with a paddle like piston suspended by a sylphon seal between these pcrts. An external arrangement causes the paddle to oscillate rapidly between the ports, alternately compressing and exhausting the gas trapped on each side of the paddle. Since the paddle does nnt touch the chamber sides at any point, no lubricant is required. This pump is useful for pumping large quantities of uranium hexafluorine.

  19. Synthesis, structure, and excimer formation of vesicular assemblies carrying 1- or 2-naphthyl chromophores

    SciTech Connect

    Sisido, Masahiki; Sato, Yasuhiko; Sasaki, Hiroki; Imanishi, Yukio )

    1990-01-01

    New chromophoric amphiphiles consisting of optically active 1- or 2-naphthylalanines, each carrying two long alkyl chains and an ammonium ion, were synthesized. These amphiphiles were found to form vesicular structures in aqueous dispersion, and those having two octadecyl chains showed a gel-liquid crystalline transition around room temperature. UV and CD spectra showed exciton-type interactions for the 2-naphthyl amphiphiles in a high-energy excited state but no dimers or higher aggregates of the naphthyl groups in the ground state. Fluorescence spectra showed monomer and excimer emissions. The circularly polarized fluorescence spectra showed a positive signal at the excimer emission, indicating a chiral excimer configuration.

  20. Polyfluorophore Excimers and Exciplexes as FRET Donors in DNA

    PubMed Central

    Teo, Yin Nah; Kool, Eric T.

    2009-01-01

    We describe studies aimed at testing whether oligomeric exciplex- and excimer fluorophores conjugated to DNA have the potential to act as donors for energy transfer by the Förster mechanism. Oligodeoxyfluorosides (ODFs) are composed of stacked, electronically interacting fluorophores replacing the bases on a DNA scaffold. The monomer chromophores in the twenty tetramer-length ODFs studied here include pyrene (Y), benzopyrene (B), perylene (E), dimethylaminostilbene (D), and a nonfluorescent spacer (S); these are conjugated in varied combinations at the 3’ end of a 14mer DNA probe sequence. In the absence of an acceptor chromophore, many of the ODF-DNAs show broad, unstructured long-wavelength emission peaks characteristic of excimer and exciplex excited states, similar to what has been observed for unconjugated ODFs. Although such delocalized excited states have been widely studied, we know of no prior report of their use in FRET. We tested the ability of the twenty ODFs to donate energy to Cy5 and TAMRA dyes conjugated to a complementary strand of DNA, with these acceptors oriented either at the near or far end of the ODF-conjugated probes. Results showed that a number of the ODF fluorophores exhibited relatively efficient energy transfer characteristic of the Förster mechanism, as judged by drops in donor emission quantum yield and fluorescence lifetime, accompanied by increases in intensity of acceptor emission bands. Excimer/exciplex bands in the donors were selectively quenched while shorter-wavelength monomer emission stayed relatively constant, consistent with the notion that the delocalized excited states, rather than individual fluorophores, are the donors. Interestingly, only specific sequences of ODFs were able to act as donors, while others did not, even though their emission wavelengths were similar. The new FRET donors possess large Stokes shifts, which can be beneficial for multiple applications. In addition, all ODFs can be excited at a single

  1. Acceleration to High Velocities and Heating by Impact Using Nike KrF laser

    NASA Astrophysics Data System (ADS)

    Karasik, Max

    2009-11-01

    Shock ignition, impact ignition, as well as higher intensity conventional hot spot ignition designs reduce driver energy requirement by pushing the envelope in laser intensity and target implosion velocities. This talk will describe experiments that for the first time reach target velocities in the range of 700 -- 1000 km/s. The highly accelerated planar foils of deuterated polystyrene, some with bromine doping, are made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Target acceleration and collision are diagnosed using large field of view monochromatic x-ray imaging with backlighting as well as bremsstrahlung self-emission. The impact conditions are diagnosed using DD fusion neutron yield, with over 10^6 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2 -- 3 keV. The experiments are performed on the Nike facility, reconfigured specifically for high intensity operation. The short wavelength and high illumination uniformity of Nike KrF laser uniquely enable access to this new parameter regime. Intensities of (0.4 -- 1.2) x 10^15 W/cm^2 and pulse durations of 0.4 -- 2 ns were utilized. Modeling of the target acceleration, collision, and neutron production is performed using the FAST3D radiation hydrodynamics code with a non-LTE radiation model. Work is supported by US Department of Energy.

  2. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Obenschain, S. P.; McLean, E. A.; Lehmberg, R. H.

    2008-11-01

    With the short wavelength (248 nm), large bandwidth (1˜2 THz), and ISI beam smoothing, Nike KrF laser is expected to have higher LPI thresholds than observed at other laser facilities. Previous measurements using the Nike laser [J. L. Weaver et al, Phys. Plasmas 14, 056316 (2007)] showed no LPI evidence from CH targets up to I˜2x10^15 W/cm^2. For further experiments to detect LPI excitation, Nike capabilities have been extended to achieve higher laser intensities by tighter beam focusing and higher power pulses. This talk will present results of a recent LPI experiment with the extended Nike capabilities focusing on light emission data in spectral ranges relevant to the Raman (SRS) and Two-Plasmon Decay (TPD) instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. The measurements were conducted at laser intensities of 10^15˜10^16 W/cm^2 on planar targets of CH solids and RF foams.

  3. Boron distribution in silicon after multiple pulse excimer laser annealing

    SciTech Connect

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-08-22

    We have studied B redistribution in Si after excimer laser annealing (ELA) with multiple laser pulses. B was implanted with energies of 1 and 10 keV and doses of 1x10{sup 14} and 1x10{sup 15} cm{sup -2}. ELA with the number of pulses from 1 to 100 was performed at room temperature and 450 deg. C in vacuum. Irrespective of the implantation parameters and the ELA conditions used, a pile-up in the B concentration is observed near the maximum melting depth after ten pulses of ELA. Moreover, a detailed study has revealed that B accumulates at the maximum melt depth gradually with the number of ELA pulses. Besides, an increase in the carrier concentration is observed at the maximum melt depth, suggesting electrical activity of the accumulated B. Formation of Si-B complexes and vacancy accumulation during multiple ELA are discussed as possible mechanisms for the B build-up.

  4. Applications of the 308-nm excimer laser in dermatology

    NASA Astrophysics Data System (ADS)

    Farkas, A.; Kemeny, L.

    2006-05-01

    Excimer lasers contain a mixture of a noble inert gas and a halogen, which form excited dimers only in the activated state. High-energy current is used to produce these dimers, which have a very short lifetime, and after their fast dissociation they release the excitation energy through ultraviolet photons. The application of these lasers proved to be successful in medicine, including the field of ophthalmology, cardiology, angiology, dentistry, orthopaedics, and, in recent years, dermatology. For medical purposes, the 193-nm argon fluoride, the 248-nm krypton fluoride, the 351-nm xenon fluoride, and the 308-nm xenon chloride lasers are used. Recently, the 308-nm xenon chloride laser has gained much attention as a very effective treatment modality in dermatological disorders. It was successfully utilized in psoriasis; later, it proved to be useful in handling other lightsensitive skin disorders and even in the treatment of allergic rhinitis. This review summarizes the possible applications of this promising tool in dermatology.

  5. Histological study of excimer laser on carotid artery

    NASA Astrophysics Data System (ADS)

    Chavantes, Maria C.; Pasqualucci, C. A.; Zamorano, Lucia J.

    1992-06-01

    The employment of photoablative effect on coronary artery angioplasty has been a new exciting field as a treatment option. Guided by good results in the literature, our group decided to study the laser/tissue interaction on carotid arteries with the intent of a less invasive treatment of intracranial and extracranial obstructed disease in vascular neurosurgery. We studied human cartoid arteries from ten male autopsy specimens with an average age of 53 years (34 - 37 years old) which a total of 22 laser applications were performed. Using the same repetition rate and energy, 20 Hz and 30 mJ, we compared the effect of the laser energy on 'normal' and 'pathologic' areas of the carotid arteries. The pathologic specimens, presenting calcified and non-calcified plaques, the same as the macroscopical 'normal' specimens, were submitted to the energy of the Excimer Laser with 308 nm wavelength. The laser beam was delivered perpendicularly through continuous flushing of saline on the targeted artery wall varying from 200 to 400 pulses. Histological studies were done and statistical analysis was performed. The results showed that the depth of penetration varied from 113 micrometers to 1200 micrometers , with a width of the lesion ranging from 150 micrometers - 1500 micrometers . In our study we found that the range between non-effective and destructive effect caused by the laser was around 400 pulses. We encountered minimal degree of carbonization while lasering on calcified plaques. We concluded that Excimer laser is a feasible and secure tool to prevent thermical complications of laser treatment, which will allow neurosurgeons in the future athermic laser angioplasty. Progress in this field must rely on further in vitro and in vivo research, before it can be clinically applied as well as improvements in delivery systems.

  6. Stimulated Raman scattering in lead vapor heat pipe for tunable and narrow-linewidth XeCl excimer laser

    SciTech Connect

    Rieger, H.

    1989-05-01

    Narrow-linewidth and high-efficiency conversion of stimulated Raman scattering (SRS) in a lead vapor heat pipe was observed using a narrow-linewidth and injection-locked XeCl excimer laser system as the pump source. The XeCl laser was continuously tuned over its entire B-X gain curve, from the (0-0) transition to the (0-3) transition, giving it a range of 0.8 nm (307.65-308.45 nm). The laser linewidth was narrowed down to 0.002 A (0.02 cm/sup -1/). The output energy was 310 mJ/pulse, with a repetition rate up to 50 pps and good beam quality. A lead vapor heat pipe operating at 1225/sup 0/C was used as a single-pass stimulated Raman converter, shifting the radiation from 308 to 459 nm. Photon conversion efficiency as high as 80 percent was achieved, using a pump linewidth of 0.01 A.

  7. Investigations of Buffer-Gases Role in Xenon and Halogen Excimer Mixtures

    NASA Astrophysics Data System (ADS)

    Ciobotaru, L. C.; Porosnicu, C.

    2010-10-01

    Excimer- is an acronym in use for the excited dimmer, molecule which does not exist in the ground state but only in an excited state. This paper presents the role of the buffer-gas atoms (Ar, Ne, He), in the (Cl2/I2 Xe) excimer radiation emission mechanisms. The same buffer-gas produced a different effect on the excimer emission intensity: the neon and argon addition to xenon/chlorine/iodine had a negative effect while the helium and neon addition had a positive effect. The Penning reactions play an important role in the excimer radiation generation in connection with the gas-buffer addition and the halogen ionization potential value. The measurements are performed using a dielectric barrier discharge (DBD) at moderate pressure in a panel, respectively classic coaxial geometry.

  8. The Characteristics of Dielectric Barrier Discharge and its Influence on the Excimer XeCl* Emission

    NASA Astrophysics Data System (ADS)

    Xu, Jing-zhou; Liu, Wei; Liang, Rong-qing; Ren, Zhao-xing

    2001-12-01

    In this work, the influence of discharge modes on the excimer XeCl* emission (308 nm) has been studied by adding helium gas into the xenon and chlorine mixture. It is found that the transition from filament discharge to glow/filament-combined discharge leads to the decrease in excimer emission. We are the first one to use a flowing water film as an outer transparent electrode, and achieve a higher UV intensity, compared with the case by using a metal mesh as the outer electrode. The influence of the gas temperature both in the reactor Tg and in a discharge channel Tc on the excimer emission has been analyzed preliminarily. Finally, it has been expected that the replacement of chlorine gas Cl2 by another chlorine gas may reduce the heat generated in the discharge processes and give rise to the excimer XeCl* radiation.

  9. A Decade Of Excimer Laser Research And Development At Avco Research Laboratory

    NASA Astrophysics Data System (ADS)

    Boness, M. J. W.

    1987-01-01

    This paper presents a brief overview of excimer laser research and development performed at the Avco Research Laboratory during the past decade from 1975 to the present day. Progress and highlights are depicted against a backdrop of parallel developmental paths connecting the original search and discovery activities of the mid-seventies to the development of high power repetitively-pulsed Raman shifted excimer devices in progress today.

  10. Studies in fiber guided excimer laser surgery for cutting and drilling bone and meniscus.

    PubMed

    Dressel, M; Jahn, R; Neu, W; Jungbluth, K H

    1991-01-01

    Our experiments on transmitting high-power excimer laser pulses through optical fibers and our investigations on excimer laser ablation of hard tissue show the feasibility of using the excimer laser as an additional instrument in general and accident surgery involving minimal invasive surgery. By combining XeCl-excimer lasers and tapered fused silica fibers we obtained output fluences up to 32 J/cm2 and ablation rates of 3 microns/pulse of hard tissue. This enables us to cut bone and cartilage in a period of time which is suitable for clinical operations. Various experiments were carried out on cadavers in order to optimize the parameters of the excimer laser and fibers: e.g., wavelength, pulse duration, energy, repetition rate, fiber core diameter. The surfaces of the cut tissue are comparable to cuts with conventional instruments. No carbonisation was observed. The temperature increase is below 40 degrees C in the tissue surrounding the laser spot. The healing rate of an excimer laser cut is not slower than mechanical treatments; the quality is comparable. PMID:1661360

  11. Maximization of process window for low-k1 spacing using KrF lithography

    NASA Astrophysics Data System (ADS)

    Fu, Shih-Chi; Kuo, Ching-Sen; Shiu, Feng-Jia; Chen, Jieh-Jang; Tsia, Chia-Shiung; Ho, Chia-Tong; Wang, Chung

    2003-06-01

    The spaces between floating-gate poly-silicon are critical for the electrical properties of advanced non-volatile memory (NVM). However, the patterning of low-k1 semi-dense spaces in NVM cells is more challenging than the patterning of dense lines in DRAM cells as the former is of lower normalized image log slope (NILS) and optical contrast. Many experiments, including various NA/σ trials, binary intensity or attenuated phase-shift masks (AttPSM), application of various sizes of sub-resolution assist feature (SRAF), or even negative-type photoresist (N-PR) by clear-field patterning, are tested and compared for the 140nm spaces with L:S ratio of 3:1 using KrF lithography. Combined with aerial image simulations and a process window analyzer, the optimal process condition was found. The SRAF functions to mimic the environment of dense pattern and thereby extends the process latitude of the semi-dense spaces. But it damages the image pattern if the side-lobe intensity approaches the intensity threshold. The maximum allowable SRAF depends on mask type and field used. Generally speaking, the SRAF should be smaller in bright-field exposure using the negative-type photoresist (N-PR) than in dark-field exposure using the positive-type photoresist (P-PR) application. The N-PR, despite its intrinsic poorer pattern profile and larger line-edge-roughness as contributed from photoresist effect, was found to surpass the P-PR in process window. A trade-off among process window, mask error enhancement factor (MEEF), pattern profile and mask cost is unavoidable to the selection of mask type or mask bias, and is considered in this paper in the last.

  12. Axial Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George Arthur (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1997-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  13. Ferroelectric Pump

    NASA Technical Reports Server (NTRS)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    2000-01-01

    A ferroelectric pump has one or more variable volume pumping chambers internal to a housing. Each chamber has at least one wall comprising a dome shaped internally prestressed ferroelectric actuator having a curvature and a dome height that varies with an electric voltage applied between an inside and outside surface of the actuator. A pumped medium flows into and out of each pumping chamber in response to displacement of the ferroelectric actuator. The ferroelectric actuator is mounted within each wall and isolates each ferroelectric actuator from the pumped medium, supplies a path for voltage to be applied to each ferroelectric actuator, and provides for positive containment of each ferroelectric actuator while allowing displacement of the entirety of each ferroelectric actuator in response to the applied voltage.

  14. Evaluation of corneal ablation by an optical parametric oscillator (OPO) at 2.94 μm and an Er:YAG laser and comparison to ablation by a 193-nm excimer laser

    NASA Astrophysics Data System (ADS)

    Telfair, William B.; Hoffman, Hanna J.; Nordquist, Robert E.; Eiferman, Richard A.

    1998-06-01

    Purpose: This study first evaluated the corneal ablation characteristics of (1) an Nd:YAG pumped OPO (Optical Parametric Oscillator) at 2.94 microns and (2) a short pulse Er:YAG laser. Secondly, it compared the histopathology and surface quality of these ablations with (3) a 193 nm excimer laser. Finally, the healing characteristics over 4 months of cat eyes treated with the OPO were evaluated. Methods: Custom designed Nd:YAG/OPO and Er:YAG lasers were integrated with a new scanning delivery system to perform PRK myopic correction procedures. After initial ablation studies to determine ablation thresholds and rates, human cadaver eyes and in-vivo cat eyes were treated with (1) a 6.0 mm Dia, 30 micron deep PTK ablation and (2) a 6.0 mm Dia, -5.0 Diopter PRK ablation. Cadaver eyes were also treated with a 5.0 mm Dia, -5.0 Diopter LASIK ablation. Finally, cats were treated with the OPO in a 4 month healing study. Results: Ablation thresholds below 100 mJ/cm2 and ablation rates comparable to the excimer were demonstrated for both infrared systems. Light Microscopy (LM) showed no thermal damage for low fluence treatments, but noticeable thermal damage at higher fluences. SEM and TEM revealed morphologically similar surfaces for low fluence OPO and excimer samples with a smooth base and no evidence of collagen shrinkage. The Er:YAG and higher fluence OPO treated samples revealed more damage along with visible collagen coagulation and shrinkage in some cases. Healing was remarkably unremarkable. All eyes had a mild healing response with no stromal haze and showed topographic flattening. LM demonstrated nothing except a moderate increase in keratocyte activity in the upper third of the stroma. TEM confirmed this along with irregular basement membranes. Conclusions: A non- thermal ablation process called photospallation is demonstrated for the first time using short pulse infrared lasers yielding damage zones comparable to the excimer and healing which is also comparable to

  15. Effectiveness of a 308-nm excimer laser in treatment of vitiligo: a review.

    PubMed

    Alhowaish, Alauldin Khalef; Dietrich, Nathalie; Onder, Meltem; Fritz, Klaus

    2013-05-01

    Vitiligo is a relatively common acquired disorder, characterized by progressive loss of melanocytes from the epidermis and the epidermal appendages. The disease is associated with considerable morbidity because of a major impact on the quality of life. The treatment for vitiligo is generally unsatisfactory and challenging. There are a variety of therapeutic possibilities including topical corticosteroids, topical calcineurin inhibitors, as well as phototherapy with Psoralen plus UVA (PUVA), narrow-band UVB, and a 308-nm excimer laser and/or lamps. Furthermore, surgical methods encompass grafting and transplantation while depigmentation treatments and psychological support may also be considered. The objective is to assess the effect of the 380-nm excimer laser in the treatment of vitiligo based on the available studies and case series. We searched the relevant literature about vitiligo and excimer laser published between 1990 and 2012 using the MEDLINE database. We reviewed all relevant articles about 308-nm excimer laser and light sources assessing their efficacy in the management of vitiligo as well as their side effects. The value of combination treatment methods was also analyzed. The available studies provide strong evidence that the excimer laser represents the most effective approach to treat vitiligo compared to ordinary phototherapy. Excimer laser is relatively safe and effective for localized disease. UV-sensitive areas respond best as well as a short duration of the disease. More frequent treatments achieve better results. Compared to other treatment modalities, the excimer laser most likely constitutes the treatment of choice for localized vitiligo. Its efficacy can be further improved in combination with other therapies such as corticosteroids, pimecrolimus, or tacrolimus. PMID:22892613

  16. An excimer-based FAIMS detector for detection of ultra-low concentration of explosives

    NASA Astrophysics Data System (ADS)

    Chistyakov, Alexander A.; Kotkovskii, Gennadii E.; Sychev, Alexey V.; Perederiy, Anatoly N.; Budovich, V. L.; Budovich, D. V.

    2014-05-01

    A new method of explosives detection based on the field asymmetric ion mobility spectrometry (FAIMS) and ionization by an excimer emitter has been developed jointly with a portable detector. The excimer emitter differs from usual UVionizing lamps by mechanism of emitting, energy and spectral characteristics. The developed and applied Ar2-excimer emitter has the working volume of 1 cm3, consuming power 0.6 W, the energy of photons of about 10 eV (λ=126 nm), the FWHM radiation spectrum of 10 nm and emits more than 1016 photon per second that is two orders of magnitude higher than UV-lamp of the same working volume emits. This also exceeds by an order of magnitude the quantity of photons per second for 10-Hz solid state YAG:Nd3+ - laser of 1mJ pulse energy at λ=266 nm that is also used to ionize the analyte. The Ar2-excimer ionizes explosives by direct ionization mechanism and through ionization of organic impurities. The developed Ar2-excimer-based ion source does not require cooling due to low level discharge current of emitter and is able to work with no repair more than 10000 hrs. The developed excimer-based explosives detector can analyze both vapors and traces of explosives. The FAIMS spectra of the basic types of explosives like trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), dinitrotoluene (DNT), cyclotetramethylenetetranitramine (HMX), nitroglycerine (NG), pentaerythritol tetranitrate (PETN) under Ar2-excimer ionization are presented. The detection limit determined for TNT vapors equals 1x10-14 g/cm3, for TNT traces- 100 pg.

  17. Thermal activation in KrF laser ablation of CuCl

    NASA Astrophysics Data System (ADS)

    Kuper, S.; Brannon, J.

    1994-07-01

    248 nm excimer abaltion of carefully prepared CuCi samples is reported, and shown to occur by a predominantly thermal mechanism. Using a quartz-crystal microbalance (QCM) to monitor abaltion, a precise detailed plot of single-pulse mass removal versus incident fluence was obtained for fluences up to 150 mJ/sq cm. A two-parameter Arrhenius exponential function was found to fit the experimental abaltion data. Calculations of laser-induced surface heating were caried out by use of a finite-difference heating code, formulated in terms of enthalpy. Ablation was observed to commence at a fluence of 25 mJ/sq cm, where the calculated surface temperature is approximately 910 K-some 200 K above the melting point. Dynamic ablation was included in the finite-difference calculation by allowing the position of the CuCl surface Xi to vary in time. The best data fit is provided by the zeroth-order kinetic equation: d Xi/dt = (16 A/ns)exp(-38 kJ/mole)/RT(sub Xi) where T(sub Xi) is the surface temperature. A thermodynamic calculation shows the average heat of CuCl vaporization in the temperature range from 900 to 2000 K to be near the fit of value of 38 kJ/mole. From plots of the ablation depth versus time, the CuCl surface was estimated to recede during the ablation at rates up to 10 cm/s.

  18. Submersible pump

    SciTech Connect

    Todd, D. B.

    1985-08-27

    A method and apparatus for using a submersible pump to lift reservoir fluids in a well while having the tubing/casing annulus isolated from the produced fluids. The apparatus allows the submersible pump to be positioned above the annular packoff device. The apparatus comprises an outer shield that encloses the pump and can be attached to the production tubing. The lower end of the shield attaches to a short tubing section that seals with the annular packoff device or a receptacle above the annular packoff device.

  19. Excimer laser lead extraction catheter with increased laser parameters

    NASA Astrophysics Data System (ADS)

    Coe, M. Sean; Taylor, Kevin D.; Lippincott, Rebecca A.; Sorokoumov, Oleg; Papaioannou, Thanassis

    2001-05-01

    A fiber optic catheter connected to a pulsed excimer laser (308 nm) is currently used to extract chronically implanted pacemaker and defibrillator leads at Fluence of 60 mJ/mm2 and repetition rate of 40 Hz. The object of this study was to determine the effect of higher repetition rates (80 Hz) in the catheter's cutting performance. The penetration rate (micrometers /sec), and the associated mechanical and thermal effects were measured in soft (porcine myocardium) and hard tissue (bovine tendon) at 60 mJ/mm2-80 Hz, and were compared to the corresponding values at commercially available laser parameters (60 mJ/mm2-40 Hz). Ablation rates were measured with perforation experiments and the extent of thermal and mechanical damage was measured under polarized light microscopy. For hard (soft) tissue, the laser catheter demonstrated penetration speed of 106 +/- 32 (302 +/- 101) micrometers /sec at 40 Hz and 343 +/- 120 (830 +/- 364) micrometers /sec at 80 Hz. Maximum extent of thermal effects at 40 Hz and 80 Hz was 114 +/- 35 micrometers (72 +/- 18) and 233 +/- 63 micrometers (71 +/- 16) respectively. Maximum extent of mechanical effects at 40 Hz and 80 Hz was 188 +/- 63 micrometers (590 +/- 237) and 386 +/- 100 micrometers (767 +/- 160) respectively. In vitro testing of the laser catheter with 80 Hz laser parameters has demonstrated increased penetration speed in both soft and hard fibrous tissue, while maintaining associated thermal and mechanical effects within limited ranges.

  20. Fabrication of Fresnel microlens with excimer laser contour ablation

    NASA Astrophysics Data System (ADS)

    Wójcik, Michał R.; Antończak, Arkadiusz J.; Kozioł, Paweł E.; Łazarek, Łukasz K.; Stepak, Bogusz D.; Abramski, Krzysztof M.

    2014-08-01

    Laser micromachining systems based on excimer lasers are usually oriented to work with mask projection regime because of the low pulse repetition rate as well as large beam aperture of the laser source. In case of fabricating of the complex 3D structures, this approach introduces a number of limitations. Alternative solution might be usage of direct writing laser mode. Some examples of the so called contour ablation approach for fabricating microlenses with an absolutely monotonically changing cross-sectional profile are presented in the literature. Based on this idea and introducing new variables like automatic mask selection as well as optimizing process algorithms led us to obtain more versatile method for shape approximation. Hence, there were fabricated structures with cross-sectional profiles described as functions that are monotonic on specified intervals such as Fresnel microlenses. In this paper we describe approximation of process parameters for obtaining desired cross-sectional profiles and finally fabrication of few exemplary microlenses. All structures were characterized by a digital optical microscopy and compared to the given profiles. The accuracy of reproduction of the desired structures at the level of single microns was achieved.

  1. Microencapsulation of silicon cavities using a pulsed excimer laser

    NASA Astrophysics Data System (ADS)

    Sedky, S.; Tawfik, H.; Ashour, M.; Graham, A. B.; Provine, J.; Wang, Q.; Zhang, X. X.; Howe, R. T.

    2012-07-01

    This work presents a novel low thermal-budget technique for sealing micromachined cavities in silicon. Cavities are sealed without deposition, similar to the silicon surface-migration sealing process. In contrast to the 1100 °C furnace anneal required for the migration process, the proposed technique uses short excimer laser pulses (24 ns), focused onto an area of 23 mm2, to locally heat the top few microns of the substrate, while the bulk substrate remains near ambient temperature. The treatment can be applied to selected regions of the substrate, without the need for special surface treatments or a controlled environment. This work investigates the effect of varying the laser pulse energy from 400 mJ cm-2 to 800 mJ cm-2, the pulse rate from 1 Hz to 50 Hz and the pulse count from 200 to 3000 pulses on sealing microfabricated cavities in silicon. An analytical model for the effect of holes on the surface temperature distribution is derived, which shows that much higher temperatures can be achieved by increasing the hole density. A mechanism for sealing the cavities is proposed, which indicates how complete sealing is feasible.

  2. Blunt atrial transseptal puncture using excimer laser in swine

    PubMed Central

    Elagha, Abdalla A.; Kim, Ann H.; Kocaturk, Ozgur; Lederman, Robert J.

    2009-01-01

    Objectives We describe a new approach that may enhance safety of atrial transseptal puncture, using a commercially available laser catheter that is capable of perforation only when energized. We test this approach in swine. Background Despite wide application, conventional needle transseptal puncture continues to risk inadvertent non-target perforation and its consequences. Methods We used a commercial excimer laser catheter (0.9mm Clirpath, Spectranetics). Perforation force was compared in vitro with a conventional Brockenbrough needle. Eight swine underwent laser transseptal puncture under X-ray fluoroscopy steered using a variety of delivery catheters. Results The 0.9mm laser catheter traversed in vitro targets with reduced force compared with a Brockenbrough needle. In vitro, the laser catheter created holes that were 25–30% larger than the Brockenbrough needle. Laser puncture of the atrial septum was successful and accurate in all animals, evidenced by oximetry, pressure, angiography, and necropsy. The laser catheter was steered effectively using a modified Mullins introducer sheath and using two different deflectable guiding catheters. The mean procedure time was 15 ± 6 minutes, with an average 3.0 ± 0.8 seconds of laser activation. There were no adverse sequelae after prolonged observation. Necropsy revealed discrete 0.9mm holes in all septae. Conclusion Laser puncture of the interatrial septum is feasible and safe in swine, using a blunt laser catheter that perforates tissues in a controlled fashion. PMID:17896413

  3. Excimer Laser Beam Analyzer Based on CVD Diamond

    NASA Astrophysics Data System (ADS)

    Girolami, Marco; Salvatori, Stefano; Conte, Gennaro

    2010-11-01

    1-D and 2-D detector arrays have been realized on CVD-diamond. The relatively high resistivity of diamond in the dark allowed the fabrication of photoconductive "sandwich" strip (1D) or pixel (2D) detectors: a semitransparent light-receiving back-side contact was used for detector biasing. Cross-talk between pixels was limited by using intermediate guard contacts connected at the same ground potential of the pixels. Each pixel photocurrent was conditioned by a read-out electronics composed by a high sensitive integrator and a Σ-Δ ADC converter. The overall 500 μs conversion time allowed a data acquisition rate up to 2 kSPS. The measured fast photoresponse of the samples in the ns time regime suggests to use the proposed devices for fine tuning feedback of high-power pulsed-laser cavities, whereas solar-blindness guarantees high performance in UV beam diagnostics also under high intensity background illumination. Offering unique properties in terms of thermal conductivity and visible-light transparency, diamond represents one of the most suitable candidate for the detection of high-power UV laser emission. The technology of laser beam profiling is evolving with the increase of excimer lasers applications that span from laser-cutting to VLSI and MEMS technologies. Indeed, to improve emission performances, fine tuning of the laser cavity is required. In such a view, the development of a beam-profiler, able to work in real-time between each laser pulse, is mandatory.

  4. Laser plume dynamics during excimer laser nitriding of iron

    NASA Astrophysics Data System (ADS)

    Han, M.; Carpene, E.; Lieb, K. P.; Schaaf, Peter

    2003-11-01

    Laser nitriding of iron is an interesting phenomenon both in physics and industry. On the time scale of hundreds nanoseconds, high intensity (~108 W/cm2) pulsed excimer laser irradiation on iron in nitrogen atmosphere produced a thin iron nitride layer (thickness > 400 nm) with a mean nitrogen concentration exceeding 10 at which greatly improves the iron surface mechanical properties and the corrosion or erosion resistance. Laser plasma/plume plays a crucial role in the complicated interplay of the laser-plasma-metal system. Since the nitrogen pressure is one of the most important parameters determining the laser plume dynamics, a nitrogen pressure series ranging from 0.05 bar to 10 bar is conducted. The characteristic parameters of the nitrogen depth profile are extracted and their pressure dependence is qualitatively discussed. By isotopic experiments in 15N and natural nitrogen environment, the evolution of the nitrogen depth profile during laser nitriding process is successfully traced. Both of the experimental results suggested that a 1D laser supported combustion wave model is reasonable to describe the lasers plume dynamics.

  5. Excimer-laser-assisted deposition of diamondlike carbon hard coatings

    NASA Astrophysics Data System (ADS)

    Wei, Mao-Kuo; Popp, Angelika; Lang, Adolf; Schutte, Karsten; Bergmann, Hans W.

    1997-08-01

    Diamond-like carbon (DLC) films were deposited using the excimer laser assisted physical vapor deposition at room temperature. The films deposited at high vacuum (10-5 mbar) revealed more diamond-like character than under other atmospheres of argon and hydrogen. DLC- films can be deposited with a thickness more than 1 micrometers with the help of either an additional Ti-buffer layer or an in-situ laser treatment during the deposition. The adhesion of the films was qualitatively determined by using the indentation and bending tests. Additionally, the adhesion was found to be dependent on the power densities for the target ablation (IT) and for the in-situ laser treatment (IS), as well as, on the applied buffer layer. The roughness was found to be proportional to the film thickness at various surface morphologies of the substrate. The friction coefficient of DLC-films against steel (100Cr6) was found to be approximately 0.1 and the wear loss of the films was dependent on the properties of substrate material.

  6. ION PUMP

    DOEpatents

    Milleron, N.

    1961-01-01

    An ion pump and pumping method are given for low vacuum pressures in which gases introduced into a pumping cavity are ionized and thereafter directed and accelerated into a quantity of liquid gettering metal where they are absorbed. In the preferred embodiment the metal is disposed as a liquid pool upon one electrode of a Phillips ion gauge type pump. Means are provided for continuously and remotely withdrawing and degassing the gettering metal. The liquid gettering metal may be heated if desired, although various combinations of gallium, indium, tin, bismuth, and lead, the preferred metals, have very low melting points. A background pressure of evaporated gettering metal may be provided by means of a resistance heated refractory metal wick protruding from the surface of the pcol of gettering metal.

  7. Electrokinetic pump

    DOEpatents

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  8. Phasor Representation of Monomer-Excimer Kinetics: General Results and Application to Pyrene.

    PubMed

    Martelo, Liliana; Fedorov, Alexander; Berberan-Santos, Mário N

    2015-12-01

    Phasor plots of the fluorescence intensity decay (plots of the Fourier sine transform versus the Fourier cosine transform, for one or several angular frequencies) are being increasingly used in studies of homogeneous and heterogeneous systems. In this work, the phasor approach is applied to monomer-excimer kinetics. The results obtained allow a clear visualization of the information contained in the decays. The monomer phasor falls inside the universal circle, whereas the excimer phasor lies outside it, but within the double-exponential outer boundary curve. The monomer and excimer phasors, along with those corresponding to the two exponential components of the decays, fall on a common straight line and obey the generalized lever rule. The clockwise trajectories described by both phasors upon monomer concentration increase are identified. The phasor approach allows discussing in a single graphic not only the effect of concentration but also that of rate constants, including the evolution from irreversible kinetics to fast excited-state equilibrium upon a temperature increase. The obtained results are applied to the fluorescence decays of pyrene monomer and excimer in methylcyclohexane at room temperature. A straightforward method of monomer-excimer lifetime data analysis based on linear plots is also introduced. PMID:26549817

  9. Average power scaling of UV excimer lasers drives flat panel display and lidar applications

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer

    2012-03-01

    Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.

  10. Polycation-induced benzoperylene probe excimer formation and the ratiometric detection of heparin and heparinase.

    PubMed

    Yang, Meiding; Chen, Jian; Zhou, Huipeng; Li, Wenying; Wang, Yan; Li, Juanmin; Zhang, Cuiyun; Zhou, Chuibei; Yu, Cong

    2016-01-15

    A benzoperylene probe excimer emission in an aqueous buffer solution is observed for the first time, and a novel ratiometric fluorescence method based on the probe excimer emission for the sensitive detection of heparin and heparinase is demonstrated. A negatively charged benzoperylene derivative, 6-(benzo[ghi]perylene-1,2-dicarboxylic imide-yl)hexanoic acid (BPDI), was employed. A polycation, poly(diallyldimethylammonium) chloride (poly-DDA), could induce aggregation of BPDI through noncovalent interactions. A decrease of BPDI monomer emission and a simultaneous increase of BPDI excimer emission were observed. Upon the addition of heparin, the strong binding between heparin and poly-DDA caused release of BPDI monomer molecules, and an excimer-monomer emission signal transition was detected. However, after the enzymatic hydrolysis of heparin by heparinase, heparin was hydrolyzed into small fragments, which weakened the competitive binding of heparin to poly-DDA. Poly-DDA induced aggregation of BPDI, and a monomer-excimer emission signal transition was detected. Our assay is simple, rapid, inexpensive, sensitive and selective, which could facilitate the heparin and heparinase related biochemical and biomedical research. PMID:26344903

  11. New high repetition rate, high energy 308 nm excimer laser for material processing

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Klaft, Ingo; Schmidt, Kai; Bragin, Igor; Albrecht, Hans-Stephan

    2007-02-01

    High power excimer lasers are well established as work horses for various kinds of micro material processing. The applications are ranging from drilling holes, trench formation, thin film ablation to the crystallization of amorphous-Si into polycrystalline-Si. All applications use the high photon energy and large pulse power of the excimer technology. The increasing demand for micro scale products has let to the demand for UV lasers which support high throughput production. We report the performance parameters of a newly developed XeCl excimer laser with doubled repetition rate compared to available lasers. The developed laser system delivers up to 900 mJ stabilized pulse energy at 600 Hz repetition rate. The low jitter UV light source operates with excellent energy stability. The outstanding energy stability was reached by using a proprietary solid-state pulser discharge design.

  12. Excimer laser annealing: A gold process for CZ silicon junction formation

    NASA Technical Reports Server (NTRS)

    Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul

    1987-01-01

    A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.

  13. Laser dentistry: A new application of excimer laser in root canal therapy

    SciTech Connect

    Pini, R.; Salimbeni, R.; Vannini, M.; Barone, R.; Clauser, C.

    1989-01-01

    We report the first study of the application of excimer lasers in dentistry for the treatment of dental root canals. High-energy ultraviolet (UV) radiation emitted by an XeCl excimer laser (308 nm) and delivered through suitable optical fibers can be used to remove residual organic tissue from the canals. To this aim, UV ablation thresholds of dental tissues have been measured, showing a preferential etching of infiltrated dentin in respect to healthy dentin, at laser fluences of 0.5-1.5 J/cm{sup 2}. This technique has been tested on extracted tooth samples, simulating a clinical procedure. Fibers of decreasing core diameters have been used to treat different sections of the root canal down to its apical portion, resulting in an effective, easy, and fast cleaning action. Possible advantages of excimer laser clinical applications in respect to usual procedures are also discussed.

  14. Preparation and disinfection of root canals by 308-nm excimer laser light

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim; Folwaczny, Matthias; Lehn, Norbert

    1994-09-01

    Conventional root canal treatments often fail due to insufficient removal of root canal contents and due to ineffective reduction of bacterial growth. In vitro investigations on the 308 nm excimer laser root canal preparation showed excellent results concerning the preparation quality. The aim of the present study was to investigate the influence of 308 nm excimer laserlight on the growth of bacteria. Bacterial suspensions of Staph. aureus, E. coli, and Enterococcus faec. were irradiated with various energy densities and different time duration. In order to exclude thermal side effects the temperature rise inside the suspensions was registered during irradiation. It was able to demonstrate that 308 nm excimer laserlight effects a log reduction of germ concentration at energy densities of 0.5 - 2.4 J/cm2. Laserlight effects germ reduction even without tissue removal. The effectiveness is dependent on the type of bacteria, the energy density, and the time of irradiation. The antimicrobial effect is independent from temperature.

  15. Sn(II) induced concentration dependent dynamic to static excimer conversion of a conjugated naphthalene derivative.

    PubMed

    Adhikari, Susanta; Mandal, Sandip; Ghosh, Avijit; Guria, Subhajit; Das, Debasis

    2015-08-28

    The X-ray structurally characterized naphthalene appended diformyl-p-cresol derivative () selectively detects Sn(2+) by both colorimetric and fluorescence methods. In the presence of Sn(2+), exhibits a monomer emission at 420 nm along with a strong red excimer emission at 582 nm in acetonitrile. The excimer formation highly depends on Sn(2+) concentration. The dynamic excimer, observed with up to 2.5 equivalents of Sn(2+), gradually converts to a static form above 2.5 equivalents of Sn(2+). Moreover, in a different solvent media, viz. in aqueous methanol, can also detect Al(3+) through the generation of intense green fluorescence. The photophysical interactions are rationalized by (1)H NMR, mass spectra, steady state and lifetime fluorescence measurements. DFT studies support the experimental findings. PMID:26201049

  16. Negative tone imaging (NTI) with KrF: extension of 248nm IIP lithography to under sub-20nm logic device

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Hwan; Kim, Tae-Sun; Kim, Yura; Kim, Jahee; Heo, Sujeong; Youn, Bumjoon; Seo, Jaekyung; Yoon, Kwang-Sub; Choi, Byoung-il

    2013-03-01

    One of the most prospective alternative lithography ways prior to EUV implementation is the reverse imaging by means of a negative tone development (NTD) process with solvent-based developer. Contact and trench patterns can be printed in CAR (Chemically amplified resist) using a bright field mask through NTD development, and can give much better image contrast (NILS) than PTD process. Not only for contact or trench masks, but also pattering of IIP (Ion Implantation) layers whose mask opening ratio is less than 20% may get the benefit of NTD process, not only in the point of aerial imaging, but also in achievement of vertical resist profile, especially for post gate layers which have complex sub_topologies and nitride substrate. In this paper, we present applications for the NTD technique to IIP (Ion Implantation) layer lithography patterning, via KrF exposure, comparing the performance to that of the PTD process. Especially, to extend 248nm IIP litho to sub-20nm logic device, optimization of negative tone imaging (NTI) with KrF exposure is the main focus in this paper. With the special resin system designed for KrF NTD process, even sub 100nm half-pitch trench pattern can be defined with enough process margin and vertical resist profiles can be also obtained on the nitride substrate with KrF exposure.

  17. Advanced excimer laser technologies enable green semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  18. Excimer laser debridement of necrotic erosions of skin without collateral damage

    NASA Astrophysics Data System (ADS)

    Wynne, James J.; Felsenstein, Jerome M.; Trzcinski, Robert; Zupanski-Nielsen, Donna; Connors, Daniel P.

    2011-07-01

    Pulsed ArF excimer laser radiation at 6.4 eV, at fluence exceeding the ablation threshold, will debride burn eschar and other dry necrotic erosions of the skin. Debridement will cease when sufficiently moist viable tissue is exposed, due to absorption by aqueous chloride ions (Cl-) through the non-thermal process of electron photodetachment, thereby inhibiting collateral damage to the viable tissue. ArF excimer laser radiation debrides/ablates ~1 micron of tissue with each pulse. While this provides great precision in controlling the depth of debridement, the process is relatively time-consuming. In contrast, XeCl excimer laser radiation debrides ~8 microns of tissue with each pulse. However the 4.0 eV photon energy of the XeCl excimer laser is insufficient to photodetach an electron from a Cl- ion, so blood or saline will not inhibit debridement. Consequently, a practical laser debridement system should incorporate both lasers, used in sequence. First, the XeCl excimer laser would be used for accelerated debridement. When the necrotic tissue is thinned to a predetermined thickness, the ArF excimer laser would be used for very precise and well-controlled debridement, removing ultra-thin layers of material with each pulse. Clearly, the use of the ArF laser is very desirable when debriding very close to the interface between necrotic tissue and viable tissue, where the overall speed of debridement need not be so rapid and collateral damage to viable tissue is undesirable. Such tissue will be sterile and ready for further treatment, such as a wound dressing and/or a skin graft.

  19. A comparison of excimer laser, thermal probe, and mechanical devices for recanalizing occluded human arteries.

    PubMed

    Moriuchi, M; Tobis, J M; Mcrae, M; Mallery, J A; Macleay, L; Moussabeck, O; Berns, M; Henry, W L

    1991-06-01

    To evaluate the mechanism of excimer laser recanalization and compare the results with those of laser-assisted thermal probe recanalization and mechanical recanalization, a total of 42 human atherosclerotic totally occluded arterial segments (2-15 cm long) were recanalized by excimer laser with a 400-800 micron quartz fiber pulsed at 20 Hz with 50 mJ/mm2 of energy (n = 21), an Argon heated thermal probe at 10-12 watts (n = 11), a guidewire directed through a 6 Fr multipurpose catheter, or an angioplasty balloon catheter (n = 10). On histologic examination, the excimer laster created a single round lumen or multiple lumens ("Swiss-cheese" like appearance) with no evidence of thermal injury at the perimeter of the lumen. The incidence of perforation in vitro was less with an excimer laser catherter (8/21 or 38%) than with the thermal prove (10/11 or 91%) (p less than 0.01). However, serial histologic cross-sectional examination showed that the pathway of the devices were essentially the same in all recanalization procedures. The pathway of the device was located outside the atheroma but proximal to the internal elastic membrane in 13 arteries with the excimer laser (62%), in 10 arteries with the thermal probe (91%), and 8 arteries with mechanical devices (80%). These results indicate that although the eximer laser could recanalize human atherosclerotic arteries without thermal injury, the fiber frequently deflected around firm atherosclerotic plaque and advanced in a dissection plane between the plaque and media. A similar course was noted for the thermal probe or during mechanical recanalization with a guidewire and catheter. To insure the safety of an excimer fiber or a thermal probe to reopen complete occlusions, better guidance systems must be developed. PMID:1875527

  20. Ablation algorithms and corneal asphericity in myopic correction with excimer lasers

    NASA Astrophysics Data System (ADS)

    Iroshnikov, Nikita G.; Larichev, Andrey V.; Yablokov, Michail G.

    2007-06-01

    The purpose of this work is studying a corneal asphericity change after a myopic refractive correction by mean of excimer lasers. As the ablation profile shape plays a key role in the post-op corneal asphericity, ablation profiles of recent lasers should be studied. The other task of this research was to analyze operation (LASIK) outcomes of one of the lasers with generic spherical ablation profile and to compare an asphericity change with theoretical predictions. The several correction methods, like custom generated aspherical profiles, may be utilized for mitigation of unwanted effects of asphericity change. Here we also present preliminary results of such correction for one of the excimer lasers.

  1. Favorable response of reticular erythematous mucinosis to ultraviolet B irradiation using a 308-nm excimer lamp.

    PubMed

    Miyoshi, Ken; Miyajima, Osamu; Yokogawa, Maki; Sano, Shigetoshi

    2010-02-01

    Abstract Reticular erythematous mucinosis (REM) is a rare chronic mucinosis. Histologically, the presence of mucin in the upper dermis is the most specific feature. A 73-year-old woman presented to our outpatient clinic with a 4-year history of netlike macular erythema with slight edema on her left arm. She was diagnosed as having REM on the basis of the clinical picture and histological findings. She was treated with ultraviolet B irradiation using the VTRAC Excimer Lamp system with favorable response. This is the first reported case that was treated with a 308-nm excimer lamp. PMID:20175851

  2. Excimer lasers. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations of selected patents concerning the design and development of excimer laser devices, apparatus, and systems for use in industrial and medical applications. Citations discuss ablation and lithography technology, compact excimer lasers, laser gas purification and recycling, microwave and discharge excited lasers, and rare gas halides. Applications are considered, including metallization and patterning, manufacturing of ophthalmic lenses, profiling of optical surfaces, treatment of engine parts, prosthetic surgery, and corneal ablation. (Contains a minimum of 106 citations and includes a subject term index and title list.)

  3. Excimer lasers. (Latest citations from the US Patent Bibliographic file with exemplary claims). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations of selected patents concerning the design and development of excimer laser devices, apparatus, and systems for use in industrial and medical applications. Citations discuss ablation and lithography technology, compact excimer lasers, laser gas purification and recycling, microwave and discharge excited lasers, and rare gas halides. Applications are considered, including metallization and patterning, manufacturing of ophthalmic lenses, profiling of optical surfaces, treatment of engine parts, prosthetic surgery, and corneal ablation. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Insulin pumps.

    PubMed

    Pickup, J

    2011-02-01

    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (< 5%) in Spain, the UK, Finland and Portugal. There is much speculation on the factors responsible for this variation, and the possibilities include physician attitudes to CSII and knowledge about its benefits and indications for its use (and inappropriate beliefs about dangers), the availability of reimbursement from insurance companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing

  5. Electrokinetic pump

    DOEpatents

    Hencken, Kenneth R.; Sartor, George B.

    2004-08-03

    An electrokinetic pump in which the porous dielectric medium of conventional electrokinetic pumps is replaced by a patterned microstructure. The patterned microstructure is fabricated by lithographic patterning and etching of a substrate and is formed by features arranged so as to create an array of microchannels. The microchannels have dimensions on the order of the pore spacing in a conventional porous dielectric medium. Embedded unitary electrodes are vapor deposited on either end of the channel structure to provide the electric field necessary for electroosmotic flow.

  6. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  7. Photoluminescence excited by ArF and KrF lasers and optical absorption of stishovite mono-crystal

    NASA Astrophysics Data System (ADS)

    Trukhin, Anatoly N.; Dyuzheva, Tatyana I.; Lityagina, Ludmila M.; Bendeliani, Nikolai A.

    2008-04-01

    Two photoluminescence bands were found in a stishovite (silicon dioxide) mono-crystal sample under ArF (193 nm) and KrF (248 nm) excitation. The blue band is situated at 3.17 ± 0.02 eV in the case of ArF and at 3 ± 0.2 in the case of KrF. The UV band is at 4.55 ± 0.05 eV in the case of ArF and at 4.5 ± 0.05 eV in the case of KrF. The position of the UV emission band correlates with that excited by x rays. This position is 4.6 ± 0.05 eV with FWHM 0.8 ± 0.05 eV (Truhins et al 2003 Solid State Commun. 127 415). The blue band possesses slow decay kinetics with time constant 16 ± 2 µs and the UV band is fast on the level of 2 ± 0.5 ns, similarly for both lasers. Thermal quenching of both bands begins for T higher than 150 K. The activation energies are similar for intensity and time constant, and are equal to 0.23 ± 0.01 eV and 0.13 ± 0.01 eV for blue and UV bands, respectively, with equal values of frequency factor, 2 × 1011 s-1. Optical absorption contains bands at 4.5, 5.5, and 7 eV and a strong band starting from 7 eV adjacent to the intrinsic absorption threshold above 8.75 eV. Excitation at 7.86 eV (F2 laser) does not provide luminescence. The nature of the luminescence excited in the transparency range of stishovite is ascribed to a defect, presumably created by previous irradiation of the crystal. Similarity of the stishovite luminescence to that of oxygen-deficient silica glass and also to that induced by irradiation of α-quartz crystals allows us to conclude similar natures for the defect centers in these dissimilar materials.

  8. Impact of open de-ionized water thin film laminar immersion on the liquid-immersed ablation threshold and ablation rate of features machined by KrF excimer laser ablation of bisphenol A polycarbonate

    NASA Astrophysics Data System (ADS)

    Dowding, C. F.; Lawrence, J.

    2009-11-01

    Debris control and surface quality are potential major benefits of sample liquid immersion when laser micromachining; however, the use of an immersion technique potentially modifies the ablation mechanism when compared to an ambient air interaction. To investigate the machining characteristics, bisphenol A polycarbonate has been laser machined in air and under a controllable open liquid film. To provide quantitative analysis, ablation threshold, ablation rate and the attenuation coefficient of the immersing de-ionized (DI) water fluid were measured. In ambient air the threshold fluence was measured to be 37 mJ cm -2. Thin film immersion displayed two trends: threshold fluences of 58.6 and 83.9 mJ cm -2. The attenuation of DI water was found to be negligible; thus, the change in ablation rate resulted from increased confinement of the vapour plume by the liquid medium, generating higher Bremsstrahlung attenuation of the beam, lowering the laser etch rate. Simultaneously, splashing motivated by the confined ablation plume allowed release of plume pressure before plume etching commenced. This contributed to the loss of total etching efficiency. Two interaction scenarios were obsereved as a result of splashing: (i) intermediate threshold fluence, where splashing occured after every pulse in a mode that interrupted the flow entirely, leaving an ambient air interaction for the following pulse; (ii) high threshold fluence, where splashing occured for every pulse in a mode that allowed the flow to recommence over the image before the next pulse causing every pulse to experience Bremsstrahlung attenuation. Since attenuation of the immersion liquid was negligible, it is the action of the constrained ablation plume within a thin flowing immersion liquid, the resultant Bremsstrahlung attenuation and splashing events that are the critical mechanisms that modify the primary ablation characteristics.

  9. Foil Cooling for the Rep-Rated Electron Beam Pumped Electra Laser

    NASA Astrophysics Data System (ADS)

    Giuliani, J. L.; Hegeler, F.; Wolford, M. F.; Abdel-Khalik, S.

    2005-10-01

    The Electra program at the Naval Research Laboratory is developing the science and technologies for implementation of krypton-fluoride (KrF) lasers in inertial fusion energy. Large aperture KrF lasers are pumped by electron beams which transit a foil separating the gas target at >=1 atm pressure from the vacuum diode. A fraction of the beam energy is deposited in the foil and thus long term (>=10^8 shots), rep-rated (5 Hz) operation requires active cooling of the foil to prevent thermal yield relaxation and cycling fatigue. This paper will report on experimental data and theoretical analysis of two diverse approaches to foil thermal management: convective and conductive cooling. Convective turbulent cooling has been operational on the Electra main amp through the use of oscillating louvers within a gas recirculator containing the pumped lasing region. At 5 Hz the foil temperature (Tf) can be maintained at ˜400 ^oC for a 1 mil SS foil. Conduction cooling provides the simplest configuration with only the need for water channels in the ribs of the hibachi. For a 1 mil Al foil, Tf is predicted to be ˜140 ^oC at 5 Hz. Comparison of experimental and theoretical results and advanced foil materials will be discussed.

  10. Femtosecond Pump-Probe Microspectroscopy of Single Perylene Nanoparticles.

    PubMed

    Ishibashi, Yukihide; Asahi, Tsuyoshi

    2016-08-01

    We have developed a femtosecond pump-probe light scattering microspectroscopic system in which the output of a femtosecond Ti:sapphire oscillator (1 W, 82 MHz) was used as a light source; the pump light is the second harmonics (395 nm) of the laser output, and the probe light is a femtosecond white-light continuum (490-900 nm) generated with a photonic crystal fiber. Detection of the backscattered light from single nanoparticle on a glass substrate allowed us to obtain higher gain of the transient signals by ∼20 times in comparison with the conventional transmittance-mode experiment. This high-sensitivity of the backscattering detection makes it possible to examine ultrafast relaxation dynamics of excited states in organic nanoparticles, which, in general, are lower photodurability than the inorganic one. We applied the system to single nanocrystals of α-form perylene and then succeeded in direct observation of the excimer formation dynamics on a picosecond time scale. Single nanoparticle measurements for the perylene nanocrystals having a size range of 100 to 500 nm suggested that the excimer formation time became short from 2 ps to <0.3 ps for decreasing of the size. PMID:27420175

  11. Beyond k1=0.25 lithography: 70-nm L/S patterning using KrF scanners

    NASA Astrophysics Data System (ADS)

    Ebihara, Takeaki; Levenson, Marc D.; Liu, Wei; He, Jim; Yeh, Wendy; Ahn, Sang; Oga, Toshihiro; Shen, Meihua; M'saad, Hichem

    2003-12-01

    The extendibility of optical lithography using KrF and ArF exposure tools is still being investigated, even, being demanded strongly now, due to the unforeseen issues, high cost, and general difficulty of NGLs - including F2 and immersion lithography. In spite of these challenges Moore's Law requires continued shrinks and the ITRS roadmap still keeps its aggressive timetable. In order to follow the ITRS roadmap, the resolution must keep improving by increasing the lens NA for optical exposure tools. However, the conventional limit of optical resolution (kpitch=0.5) is very close for the current technologies, perhaps limiting progress unless NGL becomes available quickly. Therefore we need to find a way to overcome this seemingly fundamental limit of optical resolution. In this paper, we propose two practical two-mask /double-exposure schemes for doubling resolution in future lithography. One method uses a Si-containing bi-layer resist, and the other method uses Applied Materials' APF (a removable hard mask). The basic ideas of both methods are similar: The first exposure forms 1:3 ratio L/S patterns in one resist/hard mask layer, then the second exposure images another 1:3 ratio L/S pattern in-between the two lines (or two spaces) formed by the first exposure. The combination of these two exposures can form, in theory, kpitch=0.25 patterns. In this paper, we will demonstrate 70nm L/S pattern (140nm pitch) or smaller by using a NA0.68 KrF Scanner and a strong-RET reticle, which corresponds to kpitch = 0.38 (k1=0.19). We will also investigate the critical alignment and CD control issues for these two-mask/dual-exposure schemes.

  12. 18. Electrically driven pumps in Armory Street Pump House. Pumps ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Electrically driven pumps in Armory Street Pump House. Pumps in background formerly drew water from the clear well. They went out of service when use of the beds was discontinued. Pumps in the foreground provide high pressure water to Hamden. - Lake Whitney Water Filtration Plant, Armory Street Pumphouse, North side of Armory Street between Edgehill Road & Whitney Avenue, Hamden, New Haven County, CT

  13. Temperature sensitivity of an atmospheric Raman lidar system based on a XeF excimer laser

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Murphy, William F.; Walsh, Nita W.; Evans, Keith D.

    1993-01-01

    The temperature sensitivity of Raman backscattering from atmospheric nitrogen, oxygen, and water vapor is considered over the range of temperatures expected in the troposphere. These results are applied to the Raman spectrum induced by a XeF excimer laser, which produces three line groups centered at approximately 349, 351, and 353 nm. Bandpass filter characteristics are determined for this case.

  14. Successful use of the excimer laser for generalized psoriasis in an ustekinumab non-responder.

    PubMed

    Malakouti, Mona; Brown, Gabrielle Elena; Sorenson, Eric; Leon, Argentina; Koo, John; Levin, Ethan Charles

    2015-03-01

    Effective treatments for moderate to severe psoriasis are phototherapy and biologics. These treatments are similar in that they both decrease cutaneous immune system hyperactivity yet do so via different mechanisms. Our patient, a 63 year old Asian male had a rapid response to treatment with the high dose excimer laser, having previously failed treatment with 28 weeks of ustekinumab therapy. A pre-treatment biopsy of a psoriatic plaque was found to contain relatively low levels of IFN-γ (Th1) and IL-17 (Th17) secreting T cells. Following treatment with the excimer laser, the patient had a quick improvement in PASI that was reflected by a 3-fold reduction in the number of live T cells found in the post-treatment biopsy. Although ustekinumab and the excimer laser both result in decreased levels of these cytokines, the excimer laser directly causes apoptosis of T cells and induces DNA damage in antigen presenting cells. Thus, the broader effects of phototherapy on immune cells compared to the targeted inhibition of IL-12 and IL-23 by ustekinumab likely account for the superior response observed. PMID:25780961

  15. Initial experience in the extraction of chronically implanted pacemaker leads using the Excimer laser sheath

    PubMed Central

    Levy, T; Walker, S; Paul, V

    1999-01-01

    OBJECTIVE—To assess the safety and efficiency of the Excimer laser sheath in extracting chronically implanted pacemaker leads.
PATIENTS—Eight patients were studied (one female, mean age 62 years, range 34 to 77) with 17 pacemaker leads (five atrial, 10 ventricular, two implantable defibrillator). The mean implantation time was 65 months (range 23 to 188). The indications for lead extraction were chronic infection (7), superior vena cava obstruction (4), lead malfunction (4), and pain (2).
METHODS—A prospective analysis of the use of the Excimer laser sheath in extracting chronically implanted pacemaker leads. Laser sheath extraction was undertaken if conventional extraction techniques with simple traction or traction with a locking stylet had failed. If laser sheath extraction was unsuccessful, basket retrieval of the lead from the groin was performed.
RESULTS—Complete lead removal was achieved in 16 leads (94%). In one case the electrode tip was left behind without complication. Extraction was achieved with the laser sheath alone in 16 leads. Basket retrieval was required in one case after laser failure. There were no complications.
CONCLUSIONS—The Excimer laser sheath appears to be an effective and safe technique for extracting chronically implanted pacemaker leads. It can be used in combination with the currently available techniques for successful lead extraction.


Keywords: Excimer laser sheath; lead extraction; pacing PMID:10377320

  16. Excimer v. Nd:YAG: comparative analysis of initial ultrastructural alterations produced by two distinct lasers

    NASA Astrophysics Data System (ADS)

    Nevorotin, Alexey J.

    1990-09-01

    Fine structural alteratious produced iediate1y after irradiation with either XeC1 excimer or Nd:Y.AG laser have been studied in rat liver samples processed histochemically for glucose-6-phosphatase (GP) activity, a marker enzyme for the endoplasmic reticulum (ER) of hepatocytes. General vesiculation of ER along with moderate inactivation of GP was apparent following excimer lazing which contrasted with better structural but poorer enzymatic preservation of ER in the hepatocytes irradiated with Nd:YAG laser. c'i the basis of this and our recent study. (A. Nevorotin, M. Kul 1 . 1989. Arch. Pathol . v. 51, N 7, pp. 63'TO ) a conclus ion is drawn on a potential surgical advantage of excimer laser over its Nd:YAG counterpart due presumably to lesser extent of cellular and macromolecular damage implicative in the process of healing of laser-inflicted lesions. A mechanism of ER vesiculation is considered in the iignt of probable dynamic impact transferred to the ER membranes by excimer irradiation by analogy with other nign energy mechanical forces (e.g. nign gravitation or ultrasonication) known to interfere with membrane structural organization.

  17. Primary success and one-year followup of percutaneous peripheral excimer laser angioplasty

    NASA Astrophysics Data System (ADS)

    Visona, Adriana; Liessi, Guido; Miserocchi, Luigi; Bonanome, Andrea; Lusiani, Luigi; Breggion, Giovanni; Pagnan, Antonio

    1992-08-01

    Excimer laser angioplasty was performed in 59 patients (44 males and 17 females, mean age 63 +/- 9 years, range 39 - 77) affected by peripheral vascular disease. Fifty patients had a total occlusion of the superficial femoral artery, three of the iliac artery, and one of the popliteal artery; seven patients showed a subocclusive stenosis of the superficial femoral artery. A commercial excimer laser (Technolas Max-10) was used at the Xenon-Chloride wavelength of 308 nm. The laser operated at 120 ns pulse length and at 20 Hz repetition rate. Applied energy fluence was 20 mJ/pulse. The energy was delivered through a multifiber catheter, which combines 12 (7F) or 18 (9F) fibers (260 micron diameter each), concentrically arranged. Balloon dilatation was associated in 51 patients. Successful recanalization was obtained in 59 out of 61 patients (97%). Failure to recanalize the occluded arteries occurred in two cases, and was due to dissection. Early thrombosis and reocclusion (within 48 hours) was observed in five patients. The cumulative patency rate was 56% at one year. On the basis of these results, excimer laser assisted angioplasty seems a feasible and safe procedure. However, this technique did not solve the restenosis problem. A wide application of excimer laser as a stand alone approach can be foreseen for treatment of peripheral vascular disease.

  18. Mechanism of injurious effect of excimer (308 nm) laser on the cell

    NASA Astrophysics Data System (ADS)

    Nevorotin, Alexey J.; Kallikorm, A. P.; Zeltzer, Gregory L.; Kull, Mart M.; Mihkelsoo, Virgo T.

    1991-06-01

    A Lameta 22710 excimer laser operating at 70 mJ/mm2 per pulse, with pulse duration of 70 nsec, and pulse repetition rate of 10 Hz, equipped with a quartz filament as energy conductor was used to make incisions on rat liver. 2 to 5 sec after irradiation the specimens were fixed and further processed for electron microscopy and histochemical visualization of the endoplasmic reticulum (ER) marker enzyme glucose-6- phosphatase at the ultrastructural level. The additional series were: fixation before irradiation-(A); lasing with Nd:YAG laser (1064 nm, continuous wave mode, 40 J/mm2)-(B); incision with a white-hot steel needle-(C); and incision with an Esto-Rex ultrasound scalpel (66 kHz, 6 Wt, vibration amplitude of 15 micrometers )-(D). The results showed that unlike Series C and B, in which high temperature caused severe damage to all cellular organellae, the excimer action was much more specific. It caused vesiculation of ER without significant injuries to other cellular structures. The analogous effect was noted after US scalpel cutting, thereby allowing a conclusion that a kind of dynamic rather than thermal factor is responsible for the observed phenomenon of vesiculation. The time schedule of vesicle formation and molecular background of membrane transformation is considered in the light of the data of Series A and D, and also on the basis of available information of membrane behavior. Photoablative effect of pulsed excimer laser is thought to be based on chemical decomposition of organic molecules and their ejection from the tissue to the action of high energy photons. Pressure waves (either acoustic or shock) are presumably generated powerful enough to cause tissue and cell damage beyond the site of ablation. Some thermal and fluorescence events are also implicative in biological targets irradiated with excimer lasers. In our previous studies electron histochemistry was employed for the analysis of cellular alterations caused with a continuous wave mode

  19. Nuclear-driven flashlamp pumping of the atomic iodine laser

    SciTech Connect

    Miley, G.H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear- excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor investigated the fluorescence of the excimer XeBr under nuclear pumping with {sup 10}B and {sup 3}He, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1%. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes, a TRIGA pulse, a fast burst reactor pulse, and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10%) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C{sub 3}F{sub 7}I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  20. The mechanism of the surface morphology transformation for the carbon nanotube thin film irradiated via excimer laser

    SciTech Connect

    Chien, Yun-Shan; Lee, I-Che; Yang, Po-Yu; Wang, Chao-Lung; Tsai, Wan-Lin; Wang, Kuang-Yu; Chou, Chia-Hsin; Cheng, Huang-Chung

    2013-05-06

    In this paper, the surface morphology transformation of the sprayed carbon nanotube (CNT) thin film irradiated with the excimer laser has been systematically investigated. Under the excimer-laser irradiation, two phenomena, including the annealing and ablation effects, were found to be dependent on the incident laser energy and overlapping ratios. Moreover, the extremely high protrusions would be produced in the interface between the annealing and ablation regions. The mechanism of the CNT thin film under the excimer laser irradiation was, therefore, proposed to derive the surface morphology modifications and the further reinforced crystallinity with proper laser energy densities and overlapping ratios.

  1. A comparative study of corneal incisions induced by diamond and steel knives and two ultraviolet radiations from an excimer laser.

    PubMed Central

    Marshall, J; Trokel, S; Rothery, S; Krueger, R R

    1986-01-01

    This paper reviews the potential role of excimer lasers in corneal surgery. The morphology of incisions induced by two wavelengths of excimer laser radiation, 193 nm and 248 nm, are compared with the morphology of incisions produced by diamond and steel knives. Analysis suggests that ablation induced by excimer laser results from highly localised photochemical reactions and that 193 nm is the optimal wavelength for surgery. The only significant complication of laser surgery is loss of endothelial cells when incisions are within 40 micron of Descemet's membrane. Images PMID:3013283

  2. Early and late healing responses of normal canine artery to excimer laser irradiation.

    PubMed

    Prevosti, L G; Leon, M B; Smith, P D; Dodd, J T; Bonner, R F; Robinowitz, M; Clark, R E; Virmani, R

    1988-07-01

    Acute in vitro histologic studies have shown that the pulsed xenon chloride excimer laser causes precise microablation without the surrounding thermal tissue injury associated with frequently used continuous-wave lasers such as the argon, carbon dioxide, and neodymium:yttrium aluminum garnet lasers. However, the in vivo healing response of artery wall to excimer laser injury is not known. Accordingly, a xenon chloride excimer laser (308 nm, 40 nsec pulse width, 39 mJ/mm2/pulse) was transmitted via a 600 micron fused silica fiber to create 420 craters of varying depths (30 to 270 micron) in 21 normal canine femoral and carotid arteries. At 2 hours, 2 days, 10 days, and 42 days after excimer laser ablation, the artery segments were perfusion fixed in situ and analyzed by light, scanning, and transmission electron microscopy. At 2 hours, craters were covered by a carpet of platelets and entrapped red blood cells. Fibrin and exposed collagen fibers were seen at the crater base. There was a sharp demarcation of the crater-artery wall interface without lateral laser tissue injury. At 2 days, adherent platelets persisted with thrombus covering the base of the craters. Early healing responses were present, consisting of polymorphonucleated leukocytes and new endothelial cells, which extended over the crater rims. At 10 days, no thrombi were seen, and healing continued with almost complete reendothelialization. Macrophages, fibroblasts, fibrin, and entrapped red blood cells were present below the reendothelialized surface. At 42 days, healing was complete with obliteration of the craters by fibrointimal ingrowth. The surface was completely covered by a smooth monolayer of axially aligned endothelial cells. There were no aneurysms or surface hyperplastic responses. These favorable healing responses in normal canine arteries suggest that pulsed lasers with high tissue absorption coefficients, such as the xenon chloride excimer laser, may be suitable energy sources for

  3. Mechanisms for plasma formation during high power pumping of XPAL

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Zatsarinny, Oleg; Bartschat, Klaus; Kushner, Mark J.

    2014-02-01

    During operation of the excimer pumped alkali laser, XPAL, large densities of alkali excited states are produced. Through superelastic electron collisional relaxation of these states, any pre-existing electrons will be heated, leading to additional ionization. The end result is plasma formation. A first principles global model has been developed for the Ar/Cs XPAL system to investigate the possible formation of plasma during high repetition rate, high power pumping; and the consequences on laser performance. Four- and five-level pumping schemes were used to enable assessment of XPAL operating on the Cs(62P3/2) → Cs(62S1/2) (852 nm) and Cs(62P1/2) → Cs(62S1/2) (894 nm) transitions. The model was parameterized as a function of pump power, excitation frequency, cell temperature (Cs vapor pressure) and collision mixing agent (N2) mole fraction. We found that at sufficiently high operating temperature, pump power and repetition rate, plasma formation in excess of 1014-1016 cm-3 occurs, which potentially reduces laser output power by electron collisional mixing of the upper and lower laser levels.

  4. Impact of Xe partial pressure on the production of excimer vacuum ultraviolet emission for plasma display panels

    SciTech Connect

    Zhu Di; Zhang Xiong; Kajiyama, Hiroshi

    2012-08-01

    In this work, the effect of the Xe partial pressure on the excimer vacuum ultraviolet (VUV) emission intensity of the plasma display panels is investigated, both by measuring the spectral emission directly and by two-dimensional simulations. Experimentally, we find that at the high Xe partial pressure levels, there is an supra-linear increase of excimer VUV radiation and that determines the strong increase of luminance at the high pressures and high voltage. Due to the increase of the luminance and the almost unchanged discharge current, the luminous efficacy strongly increases with the Xe partial pressure. In addition, we also investigated the dynamics of the VUV generation, by measuring the decay time of the excimer VUV light as a function of the gas pressure. It is found that the decay time decreases with the increase of gas pressure. The spatial characteristics of the excimer VUV emission are also discussed. Different from the Ne and near-infrared emission, the excimer VUV emission is generated near the surface of the electrodes and increases uniformly on both sides of the anode and cathode (i.e., the bulk plasma region). Most importantly, it is found that the VUV production occurs during the afterglow period, while it is almost zero at the moment of the discharge itself. From the simulations, it can be seen that the Xe{sub 2}*({sup 3}{Sigma}{sub u}{sup +}) excimer species, which are generated from Xe*(1s{sub 5}), play a dominant role in the excimer VUV emission output at the high Xe partial pressure. The two-dimensional simulations also show that the strong increase of Xe excimer excitation states in the case of high pressure is mainly the result of the high conversion efficiency of the Xe excimer states, especially in the afterglow period. Due to the high conversion efficiency of Xe excitation species to Xe excimer species by the high collision rate in the case of high pressure, there is a strong increase of excimer VUV production, especially from the cathode.

  5. Well pump

    DOEpatents

    Ames, Kenneth R.; Doesburg, James M.

    1987-01-01

    A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.

  6. 300 W XeCl excimer laser annealing and sequential lateral solidification in low temperature poly silicon technology

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Kahlert, Hans-Juergen; Fechner, Burkhard; Rebhan, Ulrich; Osmanow, Rustem

    2003-05-01

    Industrial production of low temperature p-Si back plates for LCDs by high power excimer laser annealing was introduced several years ago. Regarding the economy of the process, one of the major advantages of excimer laser annealing is the opportunity to make use of low cost glass substrates due to the low temperature of the annealing process. The Lambda Physik high power excimer laser series are operated with the MicroLas 370 mm line beam optics, integrated by Japan Steel Works into industrial systems. The MicroLas line beam optics for conventional excimer laser annealing (ELA) process converts the raw laser beam profile into a stable and homogeneous rectangular illumination field with high aspect ratio. The excimer laser light source, the LAMBDA STEEL 1000, delivers stabilized pulse energies up to 1 Joule at repetition rates up to 300Hz. The crystallization using excimer lasers allows to produce films with electron mobility of 100-150 cm2/Vsec with the Line beam technique. The new SLS-method, which is currently under industrial investigation, even allows to obtain electron mobility between 200-400 cm2/Vsec.

  7. A ratiometric fluorescent probe for hyaluronidase detection via hyaluronan-induced formation of red-light emitting excimers.

    PubMed

    Hu, Qinghua; Zeng, Fang; Wu, Shuizhu

    2016-05-15

    Hyaluronidase (HAase), which is involved in various physiological and pathological processes, can selectively degrade hyaluronan (HA) into small fragments, and it has been reported as a diagnostic and prognostic biomarker for bladder cancer. Herein, a facile ratiometric fluorescent sensing system for HAase has been developed, which is based on hyaluronan-induced formation of red-light emitting excimers and can realize sensitive detection of HAase with a detection limit of 0.007 U/mL. A positively-charged pyrene analog (N-Py) has been synthesized and then mixed with the negatively-charged HA, due to electrostatic interaction between the two components, aggregation along with the N-Py excimers readily form which emits red light. While in the presence of HAase, the enzyme catalyzes the hydrolysis of HA into small fragments, which in turn triggers disassembly of excimers; consequently the N-Py excimer emission turns into monomer emission. The emission ratio resulted from the excimer-monomer transition can be used as the sensing signal for detecting HAase. The probe features visible-light excitation and red light emission (excimer), which is conducive to reducing possible interference from autofluorescence of biological samples. Furthermore, the assay system can be successfully used to determine HAase in human urine samples with satisfactory accuracy. This strategy may provide a suitable sensitive and accurate assay for HAase as well as an effective approach for developing fluorescent ratiometric assays for other enzymes. PMID:26774093

  8. Ion-molecule processes in lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.

    1979-01-01

    Three classes of molecular electronic transition lasers produced by hybrid pumping of high pressure rate gas mixtures are discussed. These are (1) rare gas dimer lasers (such as excited Ar2, Kr2, and Xe2) lasing in the VUV, (2) rare gas halide lasers or excimer lasers (such as KrF, ArF, and XeCl excimers) lasing in the UV, and (3) the charge transfer molecular ion laser (such as N2/+/) lasing in the visible range. Laser excitation methods and kinetic sequences are examined for these lasers.

  9. Raman-shifting an ArF excimer laser to generate new lines for obtaining optical diagnostic based information in flow fields

    NASA Technical Reports Server (NTRS)

    Koker, Edmond B.

    1994-01-01

    The application of tunable excimer lasers in combustion and flow diagnostics is almost routine nowadays. The properties of this laser system that enable density and temperature measurements in supersonic and hypersonic flow fields to be conducted are its high power, high repetition rate, and high spectral brightness. The limitation imposed by this system on these measurements is the paucity of lines in the wavelength region, the vacuum-ultraviolet, where species of interest, such as OH, N2, O2, H2, H2O, CO, NO, etc., are susceptible to electronic excitation to high-lying states. To circumvent this problem one normally resorts to nonlinear optical techniques such as frequency conversion via stimulated Raman scattering (SRS), more commonly known as Raman shifting or Raman mixing, to extend these nonintrusive and nonperturbing techniques to the shorter wavelengths in the VUV region and, for that matter, to longer wavelengths in the infrared region, if the need arises. The theoretical basis of SRS and its application are well documented in the literature. In essence, the Raman shift is a consequence of the inelastic scattering of the incident radiation by the sample. Most of the scattered radiation from the molecules of the sample is unchanged in frequency. However, a small fraction of the incident radiation is changed in frequency. This shift is a result of the fact that some of the incident photons on colliding with the molecules of the sample give up some of their energy and emerge with a lower energy resulting in the lower-frequency Stokes radiation. Other incident photons may increase their energy by colliding with the vibrationally excited molecules of the medium and emerge as higher-frequency antistokes radiation. The generation of the latter is the main objective of this project. The process, however, depends on several factors, including the beam quality of the pump laser, the cross-section of the gaseous medium, the gas pressure, and the ambient temperature

  10. High efficiency fluorescent excimer lamps: an alternative to mercury based UVC lamps.

    PubMed

    Masoud, N M; Murnick, D E

    2013-12-01

    A high efficiency xenon excimer lamp radiating at 172 nm, with an internal phosphor coating shifting to UVC has been demonstrated, showing the feasibility of a cost effective alternative to UVC mercury lamps. Fluorescent lamps so designed can be fabricated in various geometries with high efficiency. Unlike other xenon excimer lamps based on dielectric barrier discharges this new system is highly compatible with existing and proposed phosphors as it operates in an inert gas environment at modest temperature and is subject only to 172 nm primary radiation. Using a lamp coated with a UVC phosphor we have demonstrated the feasibility of germicidal and curing lamps with 40% energy conversion efficiency and high power density. These lamps are rapidly switchable, have long projected lifetimes and are compatible with dimmers. PMID:24387421

  11. Detection of lead in soil with excimer laser fragmentation fluorescence spectroscopy (ELFFS)

    SciTech Connect

    Choi, J.H.; Damm, C.J.; O'Donovan, N.J.; Sawyer, R.F.; Koshland, C.P.; Lucas, D.

    2004-03-01

    Excimer laser fragmentation fluorescence spectroscopy (ELFFS) is used to monitor lead in soil sample and investigate laser-solid interactions. Pure lead nitrate salt and soil doped with lead nitrate are photolyzed with 193 nm light from an ArF excimer at fluences from 0.4 to 4 J/cm{sup 2}. Lead emission is observed at 357.2, 364.0, 368.3, 373.9 and 405.8 nm. Time-resolved data show the decay time of the lead emission at 405.8 nm grows with increasing fluence, and a plasma is formed above fluences of 2 J/cm{sup 2}, where a strong continuum emission interferes with the analyte signal. Fluences below this threshold allow us to achieve a detection limit of approximately 200 ppm in soil.

  12. Measurement and evaluation methods for beam characterization of commercial excimer lasers

    NASA Astrophysics Data System (ADS)

    Albrecht, Hans Stephen; Rebhan, Ulrich; Mann, Klaus R.; Ohlenbusch, J.

    1996-11-01

    This paper describes the specific requirements for measurement of excimer laser beam profiles for standardized characterization 'of commercial excimer lasers. A corresponding measurement system is presented which allows a simultaneous characterization of energy density distribution in the near field as well as in the focal plane of a lens (far field). Specially adapted UV-cameras make possible sings pulse diagnostic. Beam widths are calculated from the digitized camera data by different methods corresponding to the proposals of ISO 11146 (second moment, moving knife edge, and moving slit) and the results are compared. In particular, the influence of background signals as well as the typical shape of energy density distribution in the near field to the determined beam widths are analyzed.

  13. High efficiency fluorescent excimer lamps: An alternative to mercury based UVC lamps

    SciTech Connect

    Masoud, N. M.; Murnick, D. E.

    2013-12-15

    A high efficiency xenon excimer lamp radiating at 172 nm, with an internal phosphor coating shifting to UVC has been demonstrated, showing the feasibility of a cost effective alternative to UVC mercury lamps. Fluorescent lamps so designed can be fabricated in various geometries with high efficiency. Unlike other xenon excimer lamps based on dielectric barrier discharges this new system is highly compatible with existing and proposed phosphors as it operates in an inert gas environment at modest temperature and is subject only to 172 nm primary radiation. Using a lamp coated with a UVC phosphor we have demonstrated the feasibility of germicidal and curing lamps with 40% energy conversion efficiency and high power density. These lamps are rapidly switchable, have long projected lifetimes and are compatible with dimmers.

  14. Bound-bound transitions in the emission spectra of Ba+-He excimer

    NASA Astrophysics Data System (ADS)

    Moroshkin, P.; Kono, K.

    2016-05-01

    We present an experimental and theoretical study of the emission and absorption spectra of the Ba+ ions and Ba+*He excimer quasimolecules in the cryogenic Ba-He plasma. We observe several spectral features in the emission spectrum, which we assign to the electronic transitions between bound states of the excimer correlating to the 6 2P3 /2 and 5 2D3 /2 ,5 /2 states of Ba+. The resulting Ba+(5 2DJ) He is a metastable electronically excited complex with orbital angular momentum L =2 , thus expanding the family of known metal-helium quasimolecules. It might be suitable for high-resolution spectroscopic studies and for the search for new polyatomic exciplex structures.

  15. Excimer laser sclerostomy: the in vitro development of a modified open mask delivery system.

    PubMed

    Allan, B D; van Saarloos, P P; Russo, A V; Cooper, R L; Constable, I J

    1993-01-01

    The argon fluoride (ArF) excimer laser at 193 nm ablates the ocular tissues with a new order of precision and virtually no adjacent damage. A glaucoma filtration operation has been designed in which small-bore sclerostomies are created using the ArF excimer laser delivered through an open mask. The mask plicates the conjunctiva at the limbus prior to ablation. Removing the mask at the end of the procedure allows the conjunctiva to relax back to its original position, separating the conjunctival and scleral wounds. Formal conjunctival dissection is thus avoided. Feasibility studies in cadaver pig eyes, using a fluence per pulse of 400 mJ/cm2 and a pulse repetition rate of 20 Hz, indicate that sclerostomies of 300 microns diameter can be reliably formed if an en-face air jet is built into the mask to raise the pressure in the target area, preventing aqueous flooding. PMID:8325423

  16. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  17. Analyte-directed formation of emissive excimers for the selective detection of polyamines.

    PubMed

    Kim, Tae-Il; Kim, Youngmi

    2016-08-23

    A convenient and selective method for the sensing of polyamines, which are important biomarkers for cancers, has been developed. The fluorescence light-up mechanism utilizes the analyte-induced formation of emissive excimers of a sulfonated probe. Detection is achieved in aqueous media and artificial urine samples, as indicated by an excellent fluorescence turn-on signal with a large spectral shift. PMID:27501825

  18. Improved model for the angular dependence of excimer laser ablation rates in polymer materials

    SciTech Connect

    Pedder, J. E. A.; Holmes, A. S.; Dyer, P. E.

    2009-10-26

    Measurements of the angle-dependent ablation rates of polymers that have applications in microdevice fabrication are reported. A simple model based on Beer's law, including plume absorption, is shown to give good agreement with the experimental findings for polycarbonate and SU8, ablated using the 193 and 248 nm excimer lasers, respectively. The modeling forms a useful tool for designing masks needed to fabricate complex surface relief by ablation.

  19. Holographic Generation Of Gratings With Periodicities Below 150 nm With An Excimer Laser

    NASA Astrophysics Data System (ADS)

    Ahlhorn, T.; Pohlmann, Hauke; Kotthaus, Jorg P.

    1989-04-01

    Holographic generation of gratings with periodicities down to 140nm in thin polymethyl methacrylate (PMMA) layers on Si-substrates using a narrow band KrF-excimer laser (λ=248 nm) is reported. At low single pulse energy densities (<3OmJ/cm2) the gratings are prepared by conventional photolithography. At higher single pulse energy densities (>70mJ/cm2) we directly write gratings in the PMMA by photoetching (ablation).

  20. Excimer laser photochemistry of silane-ammonia mixtures at 193 nm

    SciTech Connect

    Beach, D.B.; Jasinski, J.M. )

    1990-04-05

    The ArF excimer laser induced photochemistry of silane-ammonia mixtures has been studied with molecular beam sampling mass spectrometry. The observed products include disilane, trisilane, and all possible aminosilanes, SiH{sub x}(NH{sub 2}){sub 4-x}, x = 0-3. These products are formed under steady-state photolysis conditions and under single-laser-pulse conditions. A mechanism for the formation of these species is proposed and quantitatively evaluated.

  1. [Percutaneous coronary Excimer laser angioplasty in patients with coronary heart disease].

    PubMed

    Karsch, K R; Haase, K K; Mauser, M; Ickrath, O; Voelker, W; Baumbach, A; Seipel, L

    1990-07-01

    To verify the efficacy and safety of percutaneous coronary excimer laser angioplasty in patients with coronary artery disease a prospective study was conducted in 60 patients. The application of laser light was possible in 55 of the 60 patients. A novel 1.4-mm diameter catheter with 20 quartz fibers of 100-microns diameter, each arranged concentrically around a central lumen suitable for an 0.014-inch flexible guide wire was used. The light source was a commercial excimer laser emitting energy at a wavelength of 308 nm, with a pulse duration of 60 ns. The laser was operated at 20 Hz; mean energy transmission was 30 +/- 5 mJ/mm2. In 23 of the 55 patients treated with excimer laser energy the qualitative angiographic results were sufficient. In 32 patients additional balloon angioplasty was necessary, either because of an insufficient result or due to vessel closure after laser ablation. In 47 of the 55 patients control angiography was performed within the 6-month follow-up period. Rate of restenosis was higher in patients treated with laser ablation and subsequent balloon angioplasty (16 of 28) than in patients treated with laser ablation alone (6 of 19). Results of the 6-month observation period suggest that 1) coronary excimer laser angioplasty in combination with subsequent balloon angioplasty results in a considerable increase of the restenosis rate; 2) the exclusive use of laser ablation also results in a restenosis rate comparable to balloon angioplasty alone; and 3) the impact of this new method using improved application systems and higher energy transmission has to be determined in further studies. PMID:2399764

  2. Time-resolved diagnostics of excimer laser-generated ablation plasmas used for pulsed laser deposition

    SciTech Connect

    Geohegan, D.B.

    1994-09-01

    Characteristics of laser plasmas used for pulsed laser deposition (PLD) of thin films are examined with four in situ diagnostic techniques: Optical emission spectroscopy, optical absorption spectroscopy, ion probe studies, and gated ICCD (intensified charge-coupled-device array) fast photography. These four techniques are complementary and permit simultaneous views of the transport of ions, excited states, ground state neutrals and ions, and hot particulates following KrF laser ablation of YBCO, BN, graphite and Si in vacuum and background gases. The implementation and advantages of the four techniques are first described in order to introduce the key features of laser plasmas for pulsed laser deposition. Aspects of the interaction of the ablation plume with background gases (i.e., thermalization, attenuation, shock formation) and the collision of the plasma plume with the substrate heater are then summarized. The techniques of fast ICCD photography and gated photon counting are then applied to investigate the temperature, velocity, and spatial distribution of hot particles generated during KrF ablation of YBCO, BN, Si and graphite. Finally, key features of fast imaging of the laser ablation of graphite into high pressure rare gases are presented in order to elucidate internal reflected shocks within the plume, redeposition of material on a surface, and formation of hot nanoparticles within the plume.

  3. On couplings and excimers: lessons from studies of singlet fission in covalently linked tetracene dimers.

    PubMed

    Feng, Xintian; Krylov, Anna I

    2016-03-21

    Electronic factors controlling singlet fission (SF) rates are investigated in covalently linked dimers of tetracene. Using covalent linkers, relative orientation of the individual chromophores can be controlled, maximizing the rates of SF. Structures with coplanar and staggered arrangements of tetracene moieties are considered. The electronic structure calculations and three-state kinetic model for SF rates provide explanations for experimentally observed low SF yields in coplanar dimers and efficient SF in staggered dimers. The calculations illuminate the role of the excimer formation in SF process. The structural relaxation in the S1 state leads to the increased rate of the multi-exciton (ME) state formation, but impedes the second step, separation of the ME state into independent triplets. The slower second step reduces SF yield by allowing other processes, such as radiationless relaxation, to compete with triplet generation. The calculations of electronic couplings also suggest an increased rate of radiationless relaxation at the excimer geometries. Thus, the excimer serves as a trap of the ME state. The effect of covalent linkers on the electronic factors and SF rates is investigated. In all considered structures, the presence of the linker leads to larger couplings, however, the effect on the overall rate is less straightforward, since the linkers generally result in less favorable energetics. This complex behavior once again illustrates the importance of integrative approaches that evaluate the overall rate, rather than focusing on specific electronic factors such as energies or couplings. PMID:26910414

  4. Expression of Epidermal c-Kit+ of Vitiligo Lesions Is Related to Responses to Excimer Laser

    PubMed Central

    Park, Oun Jae; Han, Ji Su; Lee, Sang Hyung; Park, Chan-Sik; Won, Chong Hyun; Lee, Mi Woo; Choi, Jee Ho

    2016-01-01

    Background The survival and growth of melanocytes are controlled by the binding of stem cell factor to its cell surface receptor c-kit+ (CD117). We have observed that c-kit+ melanocytes existed in some lesions of vitiligo, while Melan A+ cells were absent. Objective To verify possible relation between c-kit+ expression and treatment response in non-segmental vitiligo lesions Methods Skin biopsies were done from the center of the 47 lesions from the 47 patients with non-segmental vitiligo. Expression of c-kit+ and Melan A, and amounts of melanin in the epidermis were assessed in each lesion, and treatment responses to excimer laser were evaluated. Results Thirty-five of the 47 lesions (74.5%) had c-kit+ phenotypes. There was significant difference of c-kit staining value between good responders in 3 months of excimer laser treatment (average of 24 sessions) and the others. Conclusion c-Kit expression in vitiliginous epidermis may be related to better treatment responses to excimer laser. PMID:27489428

  5. Microsurgery of the retina with a needle-guided 193-nm excimer laser.

    PubMed

    Lewis, A; Palanker, D; Hemo, I; Pe'er, J; Zauberman, H

    1992-07-01

    This article presents a method used to guide the beam from an argon fluoride excimer laser to make it suitable for microsurgical purposes and confine it to areas that can be varied in dimension from 1 micron to tens or hundreds of microns. This approach guides the excimer laser beam with an articulated mechanical arm and confines it with variable-diameter tapered tubes, possibly allowing the use of this laser in in vitro retinal surgery with endolaser techniques. Currently, because of the lack of a delivery and focusing system for the 193-nm argon fluoride beam and its absorption by biologic liquids, this laser is used exclusively in ophthalmology for topical applications, such as corneal sculpting. This new method resolves these problems in a unique way with impressive results. Specifically, it was shown that, with this needle-guided excimer laser, it is possible to remove retinal tissue accurately without detectable damage to surrounding cells. Applications of this new technique in retinal surgery are discussed. PMID:1634334

  6. 193 nm excimer laser sclerostomy in pseudophakic patients with advanced open angle glaucoma.

    PubMed Central

    Allan, B D; van Saarloos, P P; Cooper, R L; Constable, I J

    1994-01-01

    A modified open mask system incorporating an en face air jet to dry the target area during ablation and a conjunctival plication mechanism, which allows ab externo delivery of the 193 nm excimer laser without prior conjunctival dissection, has been developed to form small bore sclerostomies accurately and atraumatically. Full thickness sclerostomies, and sclerostomies guarded by a smaller internal ostium can be created. A pilot therapeutic trial was conducted in pseudophakic patients with advanced open angle glaucoma. Six full thickness sclerostomies (200 microns and 400 microns diameter) and three guarded sclerostomies were created in nine patients by 193 nm excimer laser ablation (fluence per pulse 400 mJ/cm2, pulse rate 16 Hz, air jet pressure intraocular pressure +25 mm Hg). After 6 months' follow up, intraocular pressure was controlled (< or = 16 mm Hg) in eight of the nine patients (6/9 without medication). Early postoperative complications included hyphaema (trace--2.5 mm) (6/9), temporary fibrinous sclerostomy occlusion (4/9), profound early hypotony (all patients without fibrinous occlusion), and suprachoroidal haemorrhage in one case. Conjunctival laser wounds were self sealing. Small bore laser sclerostomy procedures are functionally equivalent to conventional full thickness procedures, producing early postoperative hypotony, with an increased risk of suprachoroidal haemorrhage in association with this. Further research is required to improve control over internal guarding in excimer laser sclerostomy before clinical trials of this technique can safely proceed. Images PMID:8148335

  7. Nd:YAG laser cleaning of ablation debris from excimer-laser-ablated polyimide

    NASA Astrophysics Data System (ADS)

    Gu, Jianhui; Low, Jason; Lim, Puay K.; Lim, Pean

    2001-10-01

    In the processing of excimer laser ablation of nozzles on polyimide in air, both gases like CO2, CO and HCN and solid debris including C2 approximately C12 are produced in laser ablation area. In this paper, we reported for the first time a Nd:YAG laser cleaning of ablation debris generated in excimer laser ablation of polyimide. It demonstrated effective cleaning with the advantages of shortening cleaning cycle time and simplifying cleaning process. The laser used for the cleaning was a Q-switched and frequency doubled Nd:YAG laser with wavelength of 532 nm and repetition rate of 10 Hz. The laser cleaning effect was compared with conventional plasma ashing. AFM measurement showed that the Nd:YAG laser cleaning had no damage to the substrate. XPS results indicated that the polyimide surface cleaned with laser beam had a lower oxygen/carbon ratio than that of plasma ashing. The study shows that frequency doubled Nd:YAG laser cleaning is effective in ablation debris removal from excimer laser ablated polyimide.

  8. Elaboration of excimer lasers dosimetry for bone and meniscus cutting and drilling using optical fibers

    NASA Astrophysics Data System (ADS)

    Jahn, Renate; Dressel, Martin; Neu, Walter; Jungbluth, Karl-Heinz

    1991-05-01

    In order to optimize bone and cartilage ablation, various excimer laser systems at 308 nm wavelength (pulse width 28 ns, 60 ns, 300 ns) and tapered fibers (core diameter 400 micrometers , 600 micrometers , 1000 micrometers ) were combined. By varying the major parameters such as fluence, pulselength, repetition rate, fiber diameter, medium, manner of application (drilling, cutting); analysis was made of the interaction of the excimer laser beam with different organic material (meniscus, bone tissue). More than 300 cuts and drillings have been realized with different parameters. The ablation rate mainly depends on fluence, repetition rate and pulse duration. The achieved ablation rate was 3 micrometers /pulse in bone. The drilling speed of the meniscus was 6 mm/s. The samples showed no carbonization at all, when being cut or drilled in liquid medium. This might be a breakthrough in fiber guided excimer laser surgery. From these and further experiments the authors obtained the dosimetry, which will be the basis for the elaboration of necessary operation guidelines for accident surgery.

  9. Simulation of excimer laser micromachined 3D surface using a CAD solid modeling package

    NASA Astrophysics Data System (ADS)

    Hume, Richard G.; Iovenitti, Pio G.; Hayes, Jason P.; Harvey, Erol C.

    2002-11-01

    This paper describes the research on the development of a visualisation tool to generate 3D solid models of structures produced by micromachining using an excimer laser system. Currently, the development of part programs to achieve a desired microstructure is by a trial and error approach. This simulation tool assists designers and excimer machine programmers to produce microstructures using the excimer laser. Users can develop their microstructures and part programs with the assistance of digital prototypes rather than designing products using expensive laser micromachining equipment. The methods to simulate micromachining using the solid modelling package, SolidWorks, are described, and simulation and actual machined examples are reported. A basic knowledge of the solid modelling package is required to develop the simulations, and complex models take time to prepare, however, the development time can be minimised by working from previous simulations. The models developed can be parameterised so that families of designs can be investigated for little additional effort to optimise the design before committing to laser micromachining.

  10. Photoacoustic injury and bone healing following 193nm excimer laser ablation.

    PubMed

    Lustmann, J; Ulmansky, M; Fuxbrunner, A; Lewis, A

    1992-01-01

    The argon-fluoride excimer laser was investigated as a cutting-ablating tool for bone surgery. A total of 52 rats were divided into two experimental groups and two control groups. In one experimental group cortical bone defects were made; in another experimental group defects penetrating into the medullary space were performed. In the two control groups similar defects were achieved using water-cooled carbide burs. The rats were sacrificed on each of the 3, 7, 10, 20, 30, and 40 postoperative day. The cortical bone, the medullary space, and the extrabony tissue were examined by means of light microscopy. In both experimental groups, bone damage, represented by osteocyte destruction, extended to 1,050-1,450 microns ahead from the irradiated site, and bone healing was very much impaired. In the control groups no histological changes could be identified and bone healing appeared to be within normal limits. We believe this extensive bone damage, following 193 nm irradiation, to be a result of photoacoustic waves propagating in the bone following each pulse. In view of our results we feel that excimer lasers presently in use are not suitable for bone surgery. This problem of photoacoustic damage can be overcome in one of two ways: by designing a CW excimer laser or by reducing the pulse width to the picosecond regime. PMID:1495367

  11. Competitive Excimer Formation and Energy Transfer in Zr-Based Heterolinker Metal-Organic Frameworks.

    PubMed

    Gutiérrez, Mario; Sánchez, Félix; Douhal, Abderrazzak

    2016-09-01

    The spectroscopy and dynamics of a series of Zr-based MOFs in dichloromethane suspension are reported. These Zr-NADC MOFs were constructed by using different mixtures of 2,6-naphthalenedicarboxylate (NDC) and 4-amino-2,6-naphthalenedicarboxylate (NADC) as organic linkers. The fraction of NADC relative to NDC in these heterolinker MOFs ranges from 2 to 35 %. The results indicate two competitive photoprocesses: NDC excimer formation and an energy transfer (ET) from excited NDC linkers to NADC linkers. Increasing the fraction of NADC linkers in the Zr-NADC nanostructure decreases the mean time constant of NDC excimer formation, while the NADC emission intensity experiences a drop at the highest fraction of this linker in the MOF. The first observation is explained by an increase in the energy-transfer probability between the two linkers, and the second by emission quenching in the NADC linkers due to ultrafast charge transfer assisted by the amino group. Femtosecond time-resolved emission studies showed that the ET process (recorded as decaying and rising components) from excited NDC to NADC takes place in 1.2 ps. Direct excitation of the NADC linkers (at 410 nm) shows a decaying, but not rising, component of 250-480 fs, which could reflect the formation of a nonemissive charge-separation state. The results show that by using MOFs having heterolinkers it is possible to trigger and tune excimer formation and ET processes. PMID:27404091

  12. Excimer laser absorption on PMMA plate and on cornea: a practical approach using volume luminance

    NASA Astrophysics Data System (ADS)

    Digulescu, Petre P.; Carstocea, Benone D.; Sterian, Livia

    2001-04-01

    Excimer laser refractive surgery used in Ophthalmology in order to treat the human eye refraction problems has been performed over 10 years around the world. However a systematic approach of the physical phenomena and especially of the absorption on the cornea during the laser treatment is missing in the literature and the doctors are usually using empiric nomograms in order to achieve good results. The theoretical approach is difficult because of the complexity of the phenomena interconnected each to the others. The UV excimer laser beam used to controllably ablate the cornea is highly absorbed in the air and also is supplementary absorbed in the plume generated almost instantaneous as consequence of the ablation on the cornea. Because of this non-linear proces the energy of the laser beam delivered to the eye must be calibrated before each intervention on a patient. The purpose of the present work is to develop a mathematical model of the excimer laser absorption on PMMA and on human cornea based on a new physical notion, the Volume Luminance. The Volume Luminance is defined as volume density of the intensity of laser radiation. A brief theory of the Volume Luminance is also presented.

  13. Bioactive glass surface for fiber reinforced composite implants via surface etching by Excimer laser.

    PubMed

    Kulkova, Julia; Moritz, Niko; Huhtinen, Hannu; Mattila, Riina; Donati, Ivan; Marsich, Eleonora; Paoletti, Sergio; Vallittu, Pekka K

    2016-07-01

    Biostable fiber-reinforced composites (FRC) prepared from bisphenol-A-glycidyldimethacrylate (BisGMA)-based thermosets reinforced with E-glass fibers are promising alternatives to metallic implants due to the excellent fatigue resistance and the mechanical properties matching those of bone. Bioactive glass (BG) granules can be incorporated within the polymer matrix to improve the osteointegration of the FRC implants. However, the creation of a viable surface layer using BG granules is technically challenging. In this study, we investigated the potential of Excimer laser ablation to achieve the selective removal of the matrix to expose the surface of BG granules. A UV-vis spectroscopic study was carried out to investigate the differences in the penetration of light in the thermoset matrix and BG. Thereafter, optimal Excimer laser ablation parameters were established. The formation of a calcium phosphate (CaP) layer on the surface of the laser-ablated specimens was verified in simulated body fluid (SBF). In addition, the proliferation of MG63 cells on the surfaces of the laser-ablated specimens was investigated. For the laser-ablated specimens, the pattern of proliferation of MG63 cells was comparable to that in the positive control group (Ti6Al4V). We concluded that Excimer laser ablation has potential for the creation of a bioactive surface on FRC-implants. PMID:27134152

  14. Excimer ablation of ITO on flexible substrates for large format display applications

    NASA Astrophysics Data System (ADS)

    Ghandour, Osman A.; Constantinide, Dan; Sheets, Ronald E.

    2002-06-01

    Excimer-based ablative patterning of Indium Tin Oxide (ITO) thin film on flexible substrates has been evaluated for large format display applications. In display package manufacturing, excimer-based ITO ablation can provide a great advantage over conventional photolithographic processing. It can eliminate many steps from the manufacturing cycle, resulting in significant cost reduction. Flexible substrate display packaging is desirable for at least two reasons. It allows roll-to-roll low cost, large volume manufacturing. Its low weight provides for an easy scale up to larger format displays. An XeCl excimer, 1x, amplitude mask pattern projection, scan-and-repeat system was utilized in the evaluation work. The mask pattern had line groupings of line-widths varying from 8 to 30 micrometers with line length of 44 mm. Lines from all the groupings were simultaneously ablated in 150 nm-thick ITO layer on a flexible 100 micrometers thick Polyethylene terephtalate (PET) substrate using scanning with optimized dwell duration of 10 pulses and optimized fluence level of 350 mJ/cm2. Lines ablated with mask line groupings of line-width greater than or equal to 11 micrometers showed complete electrical isolation indicating complete ITO removal. Scanning electron Microscopy (SEM) showed the presence of a slight curling effect at ablated line edges. The effect was studied as a function of wavelength and imaging resolution. A CO2 cleaning method was evaluated for removing the extruding curled material.

  15. Application of optical tweezers and excimer laser to study protoplast fusion

    NASA Astrophysics Data System (ADS)

    Kantawang, Titirat; Samipak, Sompid; Limtrakul, Jumras; Chattham, Nattaporn

    2015-07-01

    Protoplast fusion is a physical phenomenon that two protoplasts come in contact and fuse together. Doing so, it is possible to combine specific genes from one protoplast to another during fusion such as drought resistance and disease resistance. There are a few possible methods to induce protoplast fusion, for example, electrofusion and chemical fusion. In this study, chemical fusion was performed with laser applied as an external force to enhance rate of fusion and observed under a microscope. Optical tweezers (1064 nm with 100X objective N.A. 1.3) and excimer laser (308 nm LMU-40X-UVB objective) were set with a Nikon Ti-U inverted microscope. Samples were prepared by soaking in hypertonic solution in order to induce cell plasmolysis. Elodea Canadensis and Allium cepa plasmolysed leaves were cut and observed under microscope. Concentration of solution was varied to induce difference turgor pressures on protoplasts pushing at cell wall. Free protoplasts in solution were trapped by optical tweezers to study the effect of Polyethylene glycol (PEG) solution. PEG was diluted by Ca+ solution during the process to induced protoplast cell contact and fusion. Possibility of protoplast fusion by excimer laser was investigated and found possible. Here we report a novel tool for plant cell fusion using excimer laser. Plant growth after cell fusion is currently conducted.

  16. Measurement of Laser Plasma Instability (LPI) Driven Light Scattering from Plasmas Produced by Nike KrF Laser

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Phillips, L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Serlin, V.; Lehmberg, R. H.; McLean, E. A.; Manka, C. K.

    2010-11-01

    With short wavelength (248 nm), large bandwidth (1˜3 THz), and ISI beam smoothing, Nike KrF laser provides unique research opportunities and potential for direct-drive inertial confinement fusion. Previous Nike experiments observed two plasmon decay (TPD) driven signals from CH plasmas at the laser intensities above ˜2x10^15 W/cm^2 with total laser energies up to 1 kJ of ˜350 ps FWHM pulses. We have performed a further experiment with longer laser pulses (0.5˜4.0 ns FWHM) and will present combined results of the experiments focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. Time- or space-resolved spectral features of TPD were detected at different viewing angles and the absolute intensity calibrated spectra of thermal background were used to obtain blackbody temperatures in the plasma corona. The wave vector distribution in k-space of the participating TPD plasmons will be also discussed. These results show promise for the proposed direct-drive designs.

  17. Measurements of Electron Density Profiles of Plasmas Produced by Nike KrF Laser for Laser Plasma Instability (LPI) Research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Obenschain, S. P.; Schmitt, A. J.; Kehne, D. M.; Karasik, M.; Chan, L.-Y.; Serlin, V.; Phillips, L.

    2013-10-01

    Knowing spatial profiles of electron density (ne) in the underdense coronal region (n KrF laser with total energies up to 1 kJ of 0.5 ~ 1 nsec FWHM pulses. The GIR resolved ne up to 3 ×1021 /cm3 in space taking 2D snapshot images of probe laser (λ = 263 nm, Δt = 10 ps) beamlets (50 μm spacing) refracted by the plasma at a selected time during the laser illumination. The individual beamlet transmittances were also measured for Te estimation. Time-resolved spectrometers with an absolute-intensity-calibrated photodiode array and a streak camera simultaneously detected light emission from the plasma in spectral ranges relevant to Raman (SRS) and two plasmon decay instabilities. The measured spatial profiles are compared with simulation results from the FAST3D radiation hydrocode and their effects on the LPI observations are investigated. Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  18. Laser Plasma Instability (LPI) Driven Light Scattering Measurements with 44 beam-lines of Nike KrF Laser^*

    NASA Astrophysics Data System (ADS)

    Oh, J.; Weaver, J. L.; Kehne, D. M.; Phillips, L. S.; Obenschain, S. P.; Serlin, V.; McLean, E. A.; Lehmberg, R. H.; Manka, C. K.

    2009-11-01

    With short wavelength (248 nm), large bandwidth (˜1 THz), and ISI beam smoothing, Nike KrF laser provides unique opportunities of LPI research for direct-drive inertial confinement fusion. Previous experiments at intensities (10^15˜10^16 W/cm^2) exceeded two-plasmon decay (TPD) instability threshold using 12 beam-lines of Nike laser.^a,b For further experiments to study LPI excitation in bigger plasma volumes, 44 Nike main beams have been used to produce plasmas with total laser energies up to 1 kJ of ˜350 psec FWHM pulses. This talk will present results of the recent LPI experiment focusing on light emission data in spectral ranges relevant to the Raman (SRS) and TPD instabilities. The primary diagnostics were time-resolved spectrometers with an absolute-intensity-calibrated photodiode array in (0.4˜0.8)φ0 and a streak camera near 0.5φ0. Blackbody temperature and expansion speed measurements of the plasmas were also made. The experiment was conducted at laser intensities of (1˜4)x10^15 W/cm^2 on solid planar CH targets. ^a J. L. Weaver, et al, NO4.14, APS DPP (2008) ^b J. Oh, et al, NO4.15, APS DPP (2008) * Work supported by DoE/NNSA and performed at Naval Research Laboratory.

  19. Target designs for inertial confinement fusion using approximately 1 MJ of direct KrF laser light

    NASA Astrophysics Data System (ADS)

    Bates, Jason; Schmitt, Andrew; Fyfe, David; Obenschain, Steve; Zalesak, Steve

    2008-11-01

    We report on recent numerical simulations with the FAST radiation hydro-code of direct-drive target implosions. Our discussion focuses on both conventional and ``shock-ignited'' target designs that utilize about 1 MJ of KrF laser light. Each class of designs has its own advantages, but it appears that shock-ignited targets may be superior in that gains of approximately 200 can be achieved with only 862 kJ of laser energy, according to one-dimensional simulations. This represents a significant improvement over the conventional ``central-hot-spot'' approach to laser fusion energy. In this presentation, we examine the two-dimensional stability of both types of targets by analyzing their performance in the presence of realistic inner- and outer-surface perturbations. Other important design issues, such as the susceptibility of the targets to laser-plasma instabilities and beam power misalignment, are also briefly addressed. R. Betti, C.D. Zhou, K.S. Anderson, et al., Phys. Rev. Lett. 98, 155001 (2007).

  20. LMFBR with booster pump in pumping loop

    DOEpatents

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  1. Winding for linear pump

    DOEpatents

    Kliman, Gerald B.; Brynsvold, Glen V.; Jahns, Thomas M.

    1989-01-01

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  2. Winding for linear pump

    DOEpatents

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  3. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  4. A study of structure formation on PET, PBT, and PS surfaces by excimer laser ablation

    NASA Astrophysics Data System (ADS)

    Kim, Jongdae

    Usually polymer surface treatment is performed to modify surface layers by inserting some functional group and/or by inducing roughness on surfaces to improve their wettability, printability, and adhesion to other polymers or metals. In this work, different polymer surfaces were treated using an excimer laser (LPX 240i, Lambda Physik). Polystyrene, polyethylene terephtalate, and polybutylene terephtalate were chosen as model materials for this study. Films were made by cast film processing and stretched with biaxial stretching machine. With excimer laser treatment on polymer surfaces, it was found that we could produce 1--2 micron size structures depending on material properties and film processing conditions. Materials with lower UV absorption coefficient produced double digit micron size structures, while those with higher UV absorption coefficients produced single digit micron size structures. In all these cases the structures formed only on stretched films. In addition to those microstructure developments, the determination of ablation threshold fluence was of interest mainly for understanding fundamentals of ablation behavior and technical applications. In this study, ablation thresholds were measured by various methods including ablation depth, ablation weight, and ablation sound level measurements. Among these methods, we confirmed that the measurement by ablation sound level gives the most reliable results, because this method is based on single pulse ablation. To understand the ablation phenomenon, and how microstructures can be developed during ablation, different material processing and excimer laser conditions were chosen for experimentation. During our experiments, we observed incubation phenomenon during laser ablation and showed that this incubation was significant for materials with low UV absorption coefficients. Based on UV absorption value change after excimer laser irradiation, we proposed a mechanism to explain the ablation of PS films. From

  5. Valacyclovir for the prevention of recurrent herpes simplex virus eye disease after excimer laser photokeratectomy.

    PubMed Central

    Asbell, P A

    2000-01-01

    PURPOSE: A variety of factors have been reported as inducing the reactivation of latent herpes simplex virus (HSV), among them stress, trauma, and UV radiation. Excimer laser photorefractive keratectomy (PRK) is a surgical procedure utilizing a 193 nm ultraviolet light to alter the curvature of the cornea and hence correct vision. Reactivation of ocular herpes simplex keratitis following such excimer laser PRK has been reported. All published cases of HSV reactivation following excimer laser treatment in humans are reviewed. The present study evaluates whether stress, trauma of the corneal de-epithelialization prior to the laser, or the excimer laser treatment itself to the stromal bed induces this ocular reactivation of the latent HSV, and whether a systemic antiviral agent, valacyclovir, would prevent such laser PRK-induced reactivation of the HSV. METHODS: Forty-three normal 1.5- to 2.5-kg New Zealand white rabbits were infected on the surface of the cornea with HSV-1, strain RE. The animals were monitored until resolution, and then all animals were divided into 5 treatment groups: (1) de-epithelialization only, intraperitoneal (i.p.) saline for 14 days; (2) de-epithelialization plus laser, i.p. saline for 14 days; (3) de-epithelialization plus laser, valacyclovir 50 mg/kg per day i.p. for 14 days; (4) de-epithelialization plus laser, valacyclovir 100 mg/kg per day i.p. for 14 days; (5) de-epithelialization plus laser, valacyclovir 150 mg/kg per day i.p. for 14 days. Animals were evaluated in a masked fashion by clinical examination biweekly and viral cultures biweekly through day 28. RESULTS: The reactivation rates were as follows: group 1, 0%; group 2, 67%; group 3, 50%; group 4, 17%; and group 5, 0%. Viral titers were negative in animals that had no reactivation but persistently positive in those that had reactivation (day 6 through day 28). CONCLUSIONS: Excimer laser (193 nm) treatment can trigger reactivation of ocular herpes disease (67%) and viral

  6. Multiple pump housing

    DOEpatents

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  7. Plasma conditions generated by interaction of a high brightness, prepulse free Raman amplified KrF laser pulse with solid targets

    SciTech Connect

    Riley, D.; Gizzi, L.A.; Khattak, F.Y.; Mackinnon, A.J.; Viana, S.M.; Willi, O. )

    1992-12-28

    A high brightness, Raman amplified KrF laser has been used to irradiate solid targets with 12 ps laser pulses at intensities above 10[sup 15] W/cm[sup 2] without the presence of a preformed plasma caused by low level amplified spontaneous emission prepulse. Time-resolved x-ray spectroscopy of the [ital K]-shell emission from aluminum was used to infer electron densities in excess of 10[sup 23] cm[sup [minus]3] at temperatures of several hundred electronvolts.

  8. Raman Shifting a Tunable ArF Excimer Laser to Wavelengths of 190 to 240 nm With a Forced Convection Raman Cell

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Tunable radiation, at ultraviolet wavelengths, is produced by Raman shifting a modified 285-mJ ArF excimer laser. Multiple Stokes outputs are observed in H2, CH4, D2, N2, SF6, and CF4 (20, 22, 53, 21, 2.1, and 0.35 percent, respectively). Numbers in parentheses are the first Stokes energy conversion efficiencies. We can access 70 percent of the frequency range 42000-52000 cm (exp -1) (190-240 nm) with Stokes energies that vary from 0.2 microJoule to 58 mJ inside the Raman cell. By using 110 mJ of pump energy and D 2 , the tunable first Stokes energy varies over the 29-58 mJ range as the wavelength is tuned over the 204-206 nm range. Dependence on input energy, gas pressure, He mixture fraction, and circulation of the gas in the forced convection Raman cell is discussed; Stokes conversion is also discussed for laser repetition rates from 1 to 100 Hz. An empirical equation is given to determine whether forced convection can improve outputs for a given repetition rate.

  9. Effect of hydrogen bonding on far-ultraviolet water absorption and potential implications for 193-nm ArF excimer laser-tissue interaction

    NASA Astrophysics Data System (ADS)

    Walsh, Joseph T., Jr.; Staveteig, Paul T.

    1995-05-01

    The mechanisms causing transient 193-nm optical absorption of collagen during ablative-fluence ArF excimer pulses are poorly understood. The preponderance of hypotheses proposed to explain this phenomenon, such as ultrafast secondary-structure denaturation of proteins and transient free radical formation, focus on the protein matrix and ignore potential contributions from other tissue components such as water. A substantial body of spectroscopic literature places 193 nm adjacent to a steep absorption edge of water that rises to 60,000 cm-1 at 163 nm; other evidence shows that this absorption edge shifts toward 193 nm upon hydrogen-bond breakage. In this paper we show that heating of water from 20-100°C increases the liquid's absorption coefficient. Further investigations using an infrared pump laser show a significant increase in absorption by water of a 193-nm probe beam. Based on this evidence, we speculate that 193-nm laser ablation of tissue may contain a photothermal component related to dynamic absorption of incident radiation by water.

  10. XeCl excimer laser with new prism resonator configurations and its performance characteristics

    SciTech Connect

    Benerji, N. S. E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.; Singh, Bijendra E-mail: bsingh@rrcat.gov.in

    2015-07-15

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.

  11. Composition of the excimer laser-induced plume produced during LASIK refractive surgery

    NASA Astrophysics Data System (ADS)

    Glickman, Randolph D.; Liu, Yun; Mayo, George L.; Baribeau, Alan D.; Starck, Tomy; Bankhead, Tom

    2003-07-01

    Because of concerns about potential hazards to surgical personnel of the plume associated with laser refractive surgery, this study was performed to characterize the composition of such plumes. Filter elements were removed from the smoke evacuator of a VISX S3 excimer laser (filter pore size ~0.3 microns) and from a Mastel Clean Room ( filter pore size ~0.2 microns) used with a LADARVISION excimer laser. The filters from both laser systems captured the laser-induced plumes from multiple, routine, LASIK patient procedures. Some filters were processed for scanning electron microscopy, while others were extracted with methanol and chloroform for biochemical analysis. Both the VISX "Final Air" filter and the Mastel "Clean Room" filter captured material that was not observed in filters that had clean operating room air only passed through them. In the VISX system, air flows through the filter unit parallel to the filter matrix. SEM analysis showed these filters captured discrete particles of 0.3 to 3.0 microns in size. In the Mastel Clean Room unit, air flows orthogonally through the filter, and the filter matrix was heavily layered with captured debris so that individual particles were not readily distinguished. Amino acid analysis and gel electrophoresis of extracted material revealed proteinaceous molecules as large as 5000 molecular weight. Such large molecules in the laser plume are not predicted by the existing theory of photochemical ablation. The presence of relatively large biomolecules may constitute a risk of allergenic reactions in personnel exposed to the plume, and also calls into question the precise mechanism of excimer laser photochemical ablation. Supported by the RMG Research Endowment, and Research to Prevent Blindness

  12. XeCl excimer laser with new prism resonator configurations and its performance characteristics.

    PubMed

    Benerji, N S; Singh, A; Varshnay, N; Singh, Bijendra

    2015-07-01

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications. PMID:26233361

  13. Dipyrenylphosphatidylcholines as membrane fluidity probes. Pressure and temperature dependence of the intramolecular excimer formation rate.

    PubMed Central

    Sassaroli, M; Vauhkonen, M; Somerharju, P; Scarlata, S

    1993-01-01

    We have measured the pressure dependence of the intramolecular excimer formation rate, K(p), for di-(1'-pyrenedecanoyl)-phosphatidylcholine (dipy10PC) probes in single-component lipid multilamellar vesicles (MLV) as a function of temperature. Apparent volumes of activation (V(a)) for intramolecular excimer formation are obtained from the slopes of plots of log K(p) versus P. For liquid-crystalline saturated lipid MLV (DMPC and DPPC), these plots are linear and yield a unique V(a) at each temperature, whereas for unsaturated lipids (POPC and DOPC) they are curvilinear and V(a) appears to decrease with pressure. The isothermal pressure induced phase transition is marked by an abrupt drop in the values of K(p). The pressure to temperature equivalence values, dPm/dT, estimated from the midpoint of the transitions, are 47.0, 43.5, and 52.5 bar degree C-1 for DMPC, DPPC, and POPC, respectively. In liquid-crystalline DMPC, V(a) decreases linearly as a function of temperature, with a coefficient -dVa/dT = 0.65 +/- 0.11 ml degree C-1 mol-1. Using a modified free volume model of diffusion, we show that this value corresponds to the thermal expansivity of DMPC. Both the apparent energy and entropy of activation, Ea and delta Sa, increase with pressure in DMPC, whereas both decrease in POPC and DOPC. This difference is attributed to the sensitivity of the dynamics and/or packing of the dipy10PC probes to the location of the cis-double bonds in the chains of the unsaturated host phospholipids. Finally, the atmospheric pressure values of Ea and delta Sa for the four host MLV examined are shown to be linearly related. The relevance of this finding with respect to the structure of the excimers formed by the dipy10PC probes is briefly discussed. PMID:8431538

  14. Excimer laser coronary angioplasty: experience with a prototype multifibre catheter in patients with stable angina pectoris.

    PubMed

    Kochs, M; Haerer, W; Eggeling, T; Hoeher, M; Schmidt, A; Hombach, V

    1992-03-01

    Percutaneous excimer laser coronary angioplasty (ELCA) was performed in a first group of 20 patients with stable angina pectoris caused by significant coronary stenosis, and long-term follow-up was evaluated. Prototype 4 to 5.5 French multifibre catheters with 18-20 quartz fibres of 100 microns diameter, concentrically arranged around a central lumen for taking up a guide wire, were coupled to a commercial XeCl excimer laser. Energy was delivered at a wavelength of 308 nm with a pulse duration of 60 or 120 ns. Operating at a repetition rate of 20 Hz, mean energy transmission was 13.4 +/- 6.8 mJ per pulse. In all but one patient the lesion could be passed by the catheter. Percent diameter stenosis decreased from 77.1 +/- 10.8% to 53.1 +/- 11.8% after ELCA. Complications were frequently observed, intracoronary thrombus formation in eight instances, dissection in six patients and spasm in five cases, causing total vessel occlusion in five procedures. All complications could be managed efficaciously by thrombolytic and vasodilating drugs and/or balloon angioplasty. Subsequent PTCA was performed in case of complication or insufficient stenosis reduction after ELCA in 18 patients with adequate results (residual stenosis, 28.5 +/- 10.2%). Long-term follow-up angiography, which could be performed in 16 of 19 laser treatments, demonstrated significant restenosis in only three patients. Our preliminary results suggest that, using ELCA, ablation of atherosclerotic lesions is feasible in most cases. However, compared with PTCA, stenosis reduction is significantly less, and the acute complication rate is much higher. Thus, further improvements of the catheter system are necessary in order to realize the advantages of excimer laser ablation, which can be demonstrated by experimental studies. PMID:1597220

  15. Basic Performance of VUV Exposure Systems Using Head-on Type Ar2* and Kr2* DBD Excimer Lamps

    NASA Astrophysics Data System (ADS)

    Hirose, Kenichi; Sugahara, Hiroshi; Matsuno, Hiromitsu

    As an application of dielectric barrier discharge(DBD) lamps, vacuum-ultraviolet(VUV) exposure systems of both Ar2* and Kr2* excimers have been developed and their basic performance has been evaluated. Each system comprises a 20-W DBD excimer lamp, a sinusoidal wave high-voltage power supply, and a cylindrical lamp holder. A high-voltage transformer and a lamp are designed to be set as close together as possible in the holder. The inside of the holder is purged and filled with nitrogen gas when it is in use. The excimer lamp has an MgF2 window at the lamp end and is a “head-on type” lamp. The head-on type Ar2* excimer VUV system produced monochromatic light at 127 nm (with a 9.8-nm FWHM). It’s irradiance had an almost homogeneous distribution within a 15-mm diameter planar circle at 50 mm from the output window and was about 0.4 mW/cm2. The head-on type Kr2* excimer VUV system produced monochromatic light at 147 nm (with a 13.2-nm FWHM). It’s irradiance had an almost homogeneous distribution within a 15-mm diameter planar circle at 50 mm from the output window and was about 1.4 mW/cm2. The lifetime of the lamps in these system is defined as the time point at which irradiance drops to 50% of its initial value. It was 500 and 1500 h, respectively, for the Ar2* and Kr2* excimer lamps.

  16. Effects of xenon gas on generation and propagation of shock waves in the cavity of excimer laser

    NASA Astrophysics Data System (ADS)

    Kosugi, Shinichiroh; Maeno, Kazuo; Honma, Hiroki

    1993-05-01

    High repetition rate excimer lasers are expected for wide industrial application. The power of excimer laser, however, decreases rapidly in a higher repetition rate operation. Shock or acoustic waves, which are caused by the periodic pulse discharge, may limit the repetition rate of an excimer laser up to 2.5 kHz. Such waves cause inhomogeneity of gas density in the discharge region of the excimer laser. In high repetition rate operation this inhomogeneity remains at the next discharge. Arcing may be generated by this inhomogeneity and the homogeneous excitation of the laser gas is obstructed. Although these phenomena have been reported, the research for the effects of shock waves has remained insufficient. And the relation between these shock waves and discharge phenomena has not been clarified. To resolve this problem, we developed a scaling model chamber of a UV preionized excimer laser cavity with windows for flow visualization. We report the first result by using this model and Schlieren technique in a pure helium gas case. In our experiment three types of shock waves are found in the discharge cavity. Those shock waves are generated from the boundary of the main discharge area, from sparking pin gaps, and from the main electrode surfaces. In this study we focus on the effect of xenon gas on the generation and the propagation of shock waves. Components of the Xe-Cl excimer laser gas are helium, xenon, and hydrogen chloride. In those gases xenon has the largest molecular weight of 131.29. So we conclude xenon plays an important role in the shock wave propagation and in discharge phenomenon.

  17. Cyclic up-regulation fluorescence of pyrene excimer for studying polynucleotide kinase activity based on dual amplification.

    PubMed

    Xu, Jing; Gao, Yanfang; Li, Baoxin; Jin, Yan

    2016-06-15

    Due to its important biological and clinical roles of polynucleotide kinase (PNK), accurate monitoring of PNK activity and inhibition is highly desirable. Herein, a homogeneous and sensitive fluorescence assay has been proposed for the detection of PNK activity by integrating target recycling signal amplification of DNA toehold strand displacement reaction (TSDR) with gamma-cyclodextrin (γ-CD) enhancement of pyrene excimer. A label-free hairpin DNA1 (H1) and two singly pyrene-labelled DNA, H2 and H3, are designed. Accompanying the occurrence of the efficient enzyme reactions, namely phosphorylation-actuated λ exonuclease reaction, a single-stranded DNA as a trigger DNA (tDNA) of TSDR can be released from H1. Then, tDNA drives circulatory interactions between H2 and H3 to continuously form H2/H3 duplex, resulting in formation of pyrene excimer and a "turn on" fluorescence signal of pyrene excimer. Furthermore, the fluorescence of pyrene excimer is further amplified by introducing gamma-cyclodextrin (γ-CD), which can regulate the space proximity of two pyrene molecules. Thus, TSDR-induced cyclic formation of pyrene excimer and γ-CD enhancement can specifically up-regulate the fluorescence of pyrene excimer for detection of PNK activity, the detection limit is 9.3×10(-5)UmL(-1), which is superior to those of most existing approaches. Moreover, the proposed strategy can also be successfully utilized to study inhibition efficiency of different PNK inhibitors as well. Therefore, a dual amplification approach is provided for nucleic acid phosphorylation related researches. PMID:26807522

  18. Effect of monochromatic excimer light on palmoplantar pustulosis: a clinical study performed in a private clinic by a dermatological specialist.

    PubMed

    Fumimori, Takeaki; Tsuruta, Daisuke; Kawakami, Tamihiro; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi

    2013-12-01

    Palmoplantar pustulosis (PPP) is currently treated with various modalities, including excimer light, a form of ultraviolet lamp. This study reports effect of excimer light treatment in 34 Japanese PPP patients treated at a private clinic by one doctor, who was certified as a dermatological specialist by the Japanese Dermatological Association. The statistical analyses were performed upon a collaborative basis with faculties in universities. Disease response scores were determined by response to excimer light treatment. Scores of 1, 2, 3 or 4 were assigned to patients whose palmoplantar pustular psoriasis area and severity index (PPPASI) decreased to 25% or less, 25.1-50%, 50.1-75% or more than 75.1% of pretreatment PPPASI, respectively. In this study, 44.1% PPP cases had scores of 1 or 2, and considered good responders to excimer light treatment. There were no statistical differences between males and females, and between older (≥40 years) and younger groups (≤39 years) in terms of disease response score. Disease duration did not show any significant difference among these scores. Treatment times, total amount of ultraviolet and total treatment duration showed significant differences between score 1 and score 4 groups (P = 0.0164, =0.0137 and =0.0267, respectively). Particular interest was paid to smoking habits. Smoking in male patients was significantly higher than that in female patients (P = 0.0169). There was no statistical difference between smokers and non-smokers in terms of response to excimer light. In conclusion, this study suggested that excimer light is useful for both initial regimen and suppression of exacerbation in treatments of PPP. PMID:24303875

  19. Sample temperature profile during the excimer laser annealing of silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Caninenberg, M.; Verheyen, E.; Kiesler, D.; Stoib, B.; Brandt, M. S.; Benson, N.; Schmechel, R.

    2015-11-01

    Based on the heat diffusion equation we describe the temperature profile of a silicon nanoparticle thin film on silicon during excimer laser annealing using COMSOL Multiphysics. For this purpose system specific material parameters are determined such as the silicon nanoparticle melting point at 1683 K, the surface reflectivity at 248 nm of 20% and the nanoparticle thermal conductivity between 0.3 and 1.2 W/m K. To validate our model, the simulation results are compared to experimental data obtained by Raman spectroscopy, SEM microscopy and electrochemical capacitance-voltage measurements (ECV). The experimental data are in good agreement with our theoretical findings and support the validity of the model.

  20. [PKP for Keratoconus - From Hand/Motor Trephine to Excimer Laser and Back to Femtosecond Laser].

    PubMed

    Seitz, B; Szentmáry, N; Langenbucher, A; Hager, T; Viestenz, A; Janunts, E; El-Husseiny, M

    2016-06-01

    For patients with keratoconus, rigid gas-permeable contact lenses are the first line correction method and allow good visual acuity for quite some time. In severe stages of the disease with major cone-shaped protrusion of the cornea, even specially designed keratoconus contact lenses are no longer tolerated. If there are contraindications for intrastromal ring segments, corneal transplantation typically has a very good prognosis. In patients with advanced keratoconus - especially after corneal hydrops due to rupture of Descemet's membrane - penetrating keratoplasty (PKP) is still the first line surgical method. Non-contact excimer laser trephination seems to be especially beneficial for eyes with iatrogenic keratectasia after LASIK and for patients with repeat grafts due to "keratoconus recurrences" due to small grafts with thin host cornea. For donor trephination from the epithelial side, an artificial chamber is used. Wound closure is achieved with a double running cross-stitch suture according to Hoffmann. Graft size is adapted individually, depending on corneal size ("as large as possible - as small as necessary"). Limbal centration is preferred intraoperatively, due to optical displacement of the pupil. During the last 10 years, femtosecond laser trephination has been introduced from the USA as a potentially advantageous approach. Prospective clinical studies have shown that the technique of non-contact excimer laser PKP improves donor and recipient centration, reduces "vertical tilt" and "horizontal torsion" of the graft in the recipient bed, and thus results in significantly less "all-sutures-out" keratometric astigmatism (2.8 vs. 5.7 D), more regular topography (surface regularity index [SRI] 0.80 vs. 1.0) and better visual acuity (0.80 vs. 0.60), in comparison to the motor trephine. The stage of the disease does not influence functional outcome after excimer laser PKP. However, the refractive outcome of femtosecond laser keratoplasty resembles that with

  1. Photochemical and thermal changes in tissue autofluorescence during excimer laser irradiation

    NASA Astrophysics Data System (ADS)

    McAuliffe, Daniel J., Sr.; Jacques, Steven L.; Hayes, Amy S.

    1990-06-01

    A striking consequence of 248-nm excimer laser irradiation of skin is a stable vivid blue fluorescence easily visualized under UVA illumination. Its spectral properties (excitation maximum at "335 nm; emission maximum at ''43O nm) are somewhat similar to those of the fluorescent pigments associated with aging of tissue and peroxidation of lipids, and the fluorescent pigments formed during exposure to high temperatures. This study explores the spectral properties, magnitude, dose response, and laser pulse intensity dependence of this phenomenon in both isolated stratum corneum and epidermal cell suspensions from human skin.

  2. Surface modification and metallization of fluorocarbon polymers by excimer laser processing

    NASA Astrophysics Data System (ADS)

    Niino, Hiroyuki; Yabe, Akira

    1993-12-01

    The surface chemical modification of poly(tetrafluoroethylene) and poly(tetrafluoroethylene- co-hexafluoropropylene) films was carried out in hydrazine gas photolyzed with ArF excimer laser irradiation. The contact angle of the modified surfaces with water changed from 130° to 30° due to the reaction with hydrazine. Nitrogen on the surface was detected with x-ray photoelectron spectroscopy, suggesting that amino groups were introduced onto the surface. In addition, on the basis of hydrophilic behavior, we succeeded in selective-area electroless plating of nickel metal on the chemically modified surface.

  3. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, T.H.; Call, W.R.

    Apparatus for continuous pumping using cycling cryopumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels that alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independant pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  4. Continuously pumping and reactivating gas pump

    DOEpatents

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  5. Alternative backing up pump for turbomolecular pumps

    DOEpatents

    Myneni, Ganapati Rao

    2003-04-22

    As an alternative to the use of a mechanical backing pump in the application of wide range turbomolecular pumps in ultra-high and extra high vacuum applications, palladium oxide is used to convert hydrogen present in the evacuation stream and related volumes to water with the water then being cryo-pumped to a low pressure of below about 1.e.sup.-3 Torr at 150.degree. K. Cryo-pumping is achieved using a low cost Kleemenco cycle cryocooler, a somewhat more expensive thermoelectric cooler, a Venturi cooler or a similar device to achieve the required minimization of hydrogen partial pressure.

  6. Pyrene-labeled cardiac troponin C. Effect of Ca2+ on monomer and excimer fluorescence in solution and in myofibrils.

    PubMed Central

    Liou, Y M; Fuchs, F

    1992-01-01

    The two cysteine residues (Cys-35 and Cys-84) of bovine cardiac troponin C (cTnC) were labeled with the pyrene-containing SH-reactive compounds, N-(1-pyrene) maleimide, and N-(1-pyrene)iodoacetamide in order to study conformational changes in the regulatory domain of cTnC associated with cation binding and cross-bridge attachment. The labeled cTnC exhibits the characteristic fluorescence spectrum of pyrene with two sharp monomer fluorescence peaks and one broad excimer fluorescence peak. The excimer fluorescence results from dimerization of adjacent pyrene groups. With metal binding (Mg2+ or Ca2+) to the high affinity sites of cTnC (sites III and IV), there is a small decrease in monomer fluorescence but no effect on excimer fluorescence. In contrast, Ca2+ binding to the low affinity regulatory (site II) site elicits an increase in monomer fluorescence and a reduction in excimer fluorescence. These results can be accounted for by assuming that the pyrene attached to Cys-84 is drawn into a hydrophobic pocket formed by the binding of Ca2+ to site II. When the labeled cTnC is incorporated into the troponin complex or substituted into cardiac myofibrils the monomer fluorescence is enhanced while the excimer fluorescence is reduced. This suggests that the association with other regulatory components in the thin filament might influence the proximity (or mobility) of the two pyrene groups in a way similar to that of Ca2+ binding. With the binding of Ca2+ to site II the excimer fluorescence is further reduced while the monomer fluorescence is not changed significantly. In myofibrils, cross-bridge detachment (5 mM MgATP, pCa 8.0) causes a reduction in monomer fluorescence but has no effect on excimer fluorescence. However, saturation of the cTnC with Ca2+ reduces excimer fluorescence but causes no further change in monomer fluorescence. Thus, the pyrene fluorescence spectra define the different conformations of cTnC associated with weak-binding, cycling, and rigor cross

  7. Finite element simulation for ultraviolet excimer laser processing of patterned Si/SiGe/Si(100) heterostructures

    SciTech Connect

    Conde, J. C.; Chiussi, S.; Gontad, F.; Gonzalez, P.; Martin, E.; Serra, C.

    2010-07-05

    Ultraviolet (UV) Excimer laser assisted processing is an alternative strategy for producing patterned silicon germanium heterostructures. We numerically analyzed the effects caused by pulsed 193 Excimer laser radiation impinging on patterned amorphous hydrogenated silicon (a-Si:H) and germanium (a-Ge:H) bilayers deposited on a crystalline silicon substrate [Si(100)]. The proposed two dimensional axisymmetric numerical model allowed us to estimate the temperature and concentration gradients caused by the laser induced rapid melting and solidification processes. Energy density dependence of maximum melting depth and melting time evolution as well as three dimensional temperature and element distribution have been simulated and compared with experimentally obtained results.

  8. Highly selective and simple method for determination of polythiols based on liquid chromatography with postcolumn excimer fluorescence derivatization.

    PubMed

    Yoshida, Hideyuki; Sudo, Maki; Todoroki, Kenichiro; Nohta, Hitoshi; Yamaguchi, Masatoshi

    2009-06-01

    An LC postcolumn derivatization method for determination of polythiols has been developed. This method involves separation using reversed-phase LC, postcolumn derivatization with N-(1-pyrenyl)maleimide, and excimer fluorescence detection. Analytes with a polythiol structure were converted into corresponding polypyrene-labeled derivatives, and the derivatives exhibited intramolecular excimer fluorescence (440-520 nm). In this study, dimercaprol and dithiothreitol were used as model polythiols. This polythiol analysis method is simple; it is also highly selective and sensitive and yields good calibration curves. PMID:19531896

  9. Gastrostomy feeding tube - pump - child

    MedlinePlus

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Gather supplies: Feeding pump (electronic or battery powered) Feeding set that matches the feeding pump (includes a feeding bag, drip chamber, roller clamp, ...

  10. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, J.L.

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  11. Gas pump with movable gas pumping panels

    DOEpatents

    Osher, John E.

    1984-01-01

    Apparatus for pumping gas continuously a plurality of articulated panels of getter material, each of which absorbs gases on one side while another of its sides is simultaneously reactivated in a zone isolated by the panels themselves from a working space being pumped.

  12. Ablation of bone and polymethylmethacrylate by an XeCl (308 nm) excimer laser

    SciTech Connect

    Yow, L.; Nelson, J.S.; Berns, M.W.

    1989-01-01

    One of the main problems in orthopaedics is the surgical removal of hard substances, such as bone and polymethylmethacrylate (PMMA). Such materials are often very difficult to remove without mechanical trauma to the remaining tissue. This study investigated the feasibility of the ultraviolet 308 nm excimer laser in the ablation of these materials. The beam was delivered through a 1 mm-diameter fiber optic at 40 Hz with energy densities at the target surface of 20-80 J/cm2 per pulse. The goal of the study was to establish the ideal dosimetry for removing bone and PMMA with minimum trauma to the adjacent tissue. Histology revealed that the 308 nm laser effectively removed bone leaving a thermal damage zone of only 2-3 microns in the remaining tissue. Increasing the energy per pulse gave correspondingly larger and deeper cuts with increasing zones of thermal damage. The excimer laser was also effective in the ablation of PMMA, creating craters in the substrate with a thermal damage zone of 10-40 microns. The debris from both substrates was evaluated.

  13. Modeling Argon Plasma Excimer Characteristics near a Dielectric Surface in Miniaturized Volumes

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf; Ramadan, Emad

    2014-10-01

    We computationally model plasma -neutral gas dynamics in a miniaturized microthruster encloses Ar and contains a dielectric material sandwiched between two metal plates using a two dimensional plasma model. Spatial and temporal plasma properties are investigated by solving the Poisson equation with the conservation equations of charged and excited neutral plasma species. We find the microthruster properties to depend on small changes in the secondary electron emission coefficient that could result from dielectric erosion and aging. The changes also affect the electrohydrodynamic force produced when we use the microthruster to generate thrust for small spacecrafts. The electrohydrodynamic force is calculated and found to be significant in the sheath area near the dielectric layer and is found to affect gas flow dynamics including the Ar excimer formation and density. The plasma-neutral gas momentum exchange is significant in affecting gas flow dynamics and in the formation of excimer species in addition to affecting the UV and visible emission characteristics of the device. The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at the King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through Project No. IN111026.

  14. Mesoscale Laser Processing using Excimer and Short-Pulse Ti: Sapphire Lasers

    SciTech Connect

    Shirk, M D; Rubenchik, A M; Gilmer, G H; Stuart, B C; Armstrong, J P; Oberhelman, S K; Baker, S L; Nikitin, A J; Mariella, R P

    2003-07-28

    Targets to study high-energy density physics and inertial confinement fusion processes have very specific and precise tolerances that are pushing the state-of-the-art in mesoscale microsculpting technology. A significant effort is required in order to advance the capabilities to make these targets with very challenging geometries. Ultrashort pulsed (USP) Ti:Sapphire lasers and excimer lasers are proving to be very effective tools in the fabrication of the very small pieces that make up these targets. A brief description of the dimensional and structural requirements of these pieces will be presented, along with theoretical and experimental results that demonstrate to what extent these lasers are achieving the desired results, which include sub-{mu}m precision and RMS surface values well below 100 nm. This work indicates that excimer lasers are best at sculpting the polymer pieces and that the USP lasers work quite well on metal and aerogel surfaces, especially for those geometries that cannot be produced using diamond machining and where material removal amounts are too great to do with focused ion beam milling in a cost effective manner. In addition, the USP laser may be used as part of the procedure to fill target capsules with fusion fuel, a mixture of deuterium and tritium, without causing large perturbations on the surface of the target by keeping holes drilled through 125 {micro}m of beryllium below 5 {micro}m in diameter.

  15. Vessel wall perforation mechanism of the excimer laser-assisted non-occlusive anastomosis technique.

    PubMed

    Bremmer, Jochem; van Doormaal, Tristan P C; Verweij, Bon H; van der Zwan, Albert; Tulleken, Cornelius A F; Verdaasdonk, Rudolf

    2016-08-01

    The excimer laser assisted non-occlusive anastomosis (ELANA) technique is used to make anastomoses on intracerebral arteries. This end-to-side anastomosis is created without temporary occlusion of the recipient artery using a 308-nm excimer laser with a ring-shaped multi-fiber catheter to punch an opening in the arterial wall. Over 500 patients have received an ELANA bypass. However, the vessel wall perforation mechanism of the laser catheter is not known exactly and not 100 % successful. In this study, we aimed to understand the mechanism of ELANA vessel perforation using specialized imaging techniques to ultimately improve its effectiveness. High-speed imaging, high-contrast imaging, and high-sensitivity thermal imaging were used to study the laser wall perforation mechanism and reveal the mechanical and thermal effects involved. In vitro, rabbit arteries were exposed with the special designed laser catheter in a setup representative for the clinical setting, in which blood was replaced with a transparent UV absorbing liquid for visualization. We observed that laser vessel wall perforation was caused by explosive vapor bubbles tearing through the vessel wall, mostly within the first 20 of the total 200 pulses. Thermal effects were minimal. Unsymmetrical tension in the vessel wall inducing migration of the flap during laser exposure was observed in case of unsuccessful wall perforations. The laser wall perforation mechanism in the ELANA technique is primarily mechanical. Symmetric tension in the recipient vessel wall is essential and should be trained by neurosurgeons. PMID:27220531

  16. New excimer laser technique for the correction of strabismus and diplopia

    NASA Astrophysics Data System (ADS)

    Azar, Dimitri T.

    1994-06-01

    We used the ArF excimer laser to determine the feasibility of performing prismatic photoablations in model eyes (plastic spheres simulating the eye), and in rabbit corneas. This would correct diplopia and small angles of deviation, and result in minimal refractive alterations. We modified excimer laser delivery system that achieved the desired corneal contour of prismatic ablations. 193-nm argon fluoride laser was used at fluence of 160 mJ/cm2 and ablation rate 5 Hz. 5.0-mm diameter, 40 um corneal epithelial ablation were followed by 5.0- mm diameter, prismatic photokeratectomy (PPK). We were able to achieve prismatic photoablation of PMMA blocks and lenses. No other refractive changes accompanied the prismatic photoablation of PMMA blocks and lenses. No other refractive changes accompanied the prismatic effect. In rabbits re-epithelialization of the 5-mm ablations was complete by day 3, and corneal haze was not observed by gross examination. Epithelial hyperplasia and subepithelial scarring were noted at the deep edges. PPK holds important therapeutic potential for fine-tuning results of conventional strabismus surgery, and for patients with stable diplopia following nerve palsy and ocular surgery.

  17. Towards excimer-laser-based stereolithography: a rapid process to fabricate rigid biodegradable photopolymer scaffolds.

    PubMed

    Beke, S; Anjum, F; Tsushima, H; Ceseracciu, L; Chieregatti, E; Diaspro, A; Athanassiou, A; Brandi, F

    2012-11-01

    We demonstrate high-resolution photocross-linking of biodegradable poly(propylene fumarate) (PPF) and diethyl fumarate (DEF) using UV excimer laser photocuring at 308 nm. The curing depth can be tuned in a micrometre range by adjusting the total energy dose (total fluence). Young's moduli of the scaffolds are found to be a few gigapascal, high enough to support bone formation. The results presented here demonstrate that the proposed technique is an excellent tool for the fabrication of stiff and biocompatible structures on a micrometre scale with defined patterns of high resolution in all three spatial dimensions. Using UV laser photocuring at 308 nm will significantly improve the speed of rapid prototyping of biocompatible and biodegradable polymer scaffolds and enables its production in a few seconds, providing high lateral and horizontal resolution. This short timescale is indeed a tremendous asset that will enable a more efficient translation of technology to clinical applications. Preliminary cell tests proved that PPF : DEF scaffolds produced by excimer laser photocuring are biocompatible and, therefore, are promising candidates to be applied in tissue engineering and regenerative medicine. PMID:22696484

  18. Temporal Fluctuations in Excimer-Like Interactions between π-Conjugated Chromophores.

    PubMed

    Stangl, Thomas; Wilhelm, Philipp; Schmitz, Daniela; Remmerssen, Klaas; Henzel, Sebastian; Jester, Stefan-S; Höger, Sigurd; Vogelsang, Jan; Lupton, John M

    2015-04-16

    Inter- or intramolecular coupling processes between chromophores such as excimer formation or H- and J-aggregation are crucial to describing the photophysics of closely packed films of conjugated polymers. Such coupling is highly distance dependent and should be sensitive to both fluctuations in the spacing between chromophores as well as the actual position on the chromophore where the exciton localizes. Single-molecule spectroscopy reveals these intrinsic fluctuations in well-defined bichromophoric model systems of cofacial oligomers. Signatures of interchromophoric interactions in the excited state--spectral red shifting and broadening and a slowing of photoluminescence decay--correlate with each other but scatter strongly between single molecules, implying an extraordinary distribution in coupling strengths. Furthermore, these excimer-like spectral fingerprints vary with time, revealing intrinsic dynamics in the coupling strength within one single dimer molecule, which constitutes the starting point for describing a molecular solid. Such spectral sensitivity to sub-Ångström molecular dynamics could prove complementary to conventional FRET-based molecular rulers. PMID:26263130

  19. Precision drilling of fused silica with 157-nm excimer laser radiation

    NASA Astrophysics Data System (ADS)

    Temme, Thorsten; Ostendorf, Andreas; Kulik, Christian; Meyer, Klaus

    2003-07-01

    μFor drilling fused silica, mechanical techniques like with diamond drills, ultrasonic machining, sand blasting or water jet machining are used. Also chemical techniques like laser assisted wet etching or thermal drilling with CO2-lasers are established. As an extension of these technologies, the drilling of micro-holes in fused silica with VUV laser radiation is presented here. The high absorption of the 157 nm radiation emitted by the F2 excimer laser and the short pulse duration lead to a material ablation with minimised impact on the surrounding material. Contrary to CO2-laser drilling, a molten and solidified phase around the bore can thus be avoided. The high photon energy of 7.9 eV requires either high purity nitrogen flushing or operation in vacuum, which also effects the processing results. Depending on the required precision, the laser can be used for percussion drilling as well as for excimer laser trepanning, by applying rotating masks. Rotating masks are especially used for high aspect ratio drilling with well defined edges and minimised debris. The technology is suitable particularly for holes with a diameter below 200 μm down to some microns in substrates with less than 200 μm thickness, that can not be achieved with mechanical methods. Drilling times in 200 μm fused silica substrates are in the range of ten seconds, which is sufficient to compete with conventional methods while providing similar or even better accuracy.

  20. Custom specific fabrication of integrated optical devices by excimer laser ablation of polymers

    NASA Astrophysics Data System (ADS)

    Klotzbuecher, Thomas; Popp, Martin; Braune, Torsten; Haase, Jens; Gaudron, Anne; Smaglinski, Ingo; Paatzsch, Thomas; Bauer, Hans-Dieter; Ehrfeld, Wolfgang

    2000-06-01

    Excimer laser ablation was used for direct writing of multimode waveguide structures with passive fiber alignment grooves in polymers. First, integrated optical multimode components were simulated by the method of beam propagation to optimize the optical performance of the design. Then the CNC codes for laser machining were created directly from the corresponding CAD data. ArF Excimer laser radiation of wavelength (lambda) equals 193 nm was used for ablation of adjacent grooves with a cross sectional area of 50 X 50 micrometers 2 and lengths in the order of several mm. The laser-written grooves were filled with a liquid pre-polymer which after UV-curing served as the waveguiding structures. The smoothest surfaces during laser ablation were achieved by applying several ablation scans with reduced material removal rates but higher feedrates. Debris formation, also influencing the surface roughness, was suppressed or minimized by making use of capable polymers. With the method of laser ablation linear waveguides of length 1 equals 10 mm with insertion losses Li in the rang of 1.3 to 1.9 dB have been realized for (lambda) equals 1310 nm, depending on the polymer used. By means of 1 X 2-splitters, 4 X 4 as well as 4 X 16 starcouplers it was shown that laser ablation is a well suited tool for rapid prototyping of integrated optical multimode elements.

  1. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  2. Insulin pump (image)

    MedlinePlus

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  3. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  4. Sizing pumps for slurries

    SciTech Connect

    Akhtar, S.Z.

    1996-11-01

    Slurry characteristics have a significant impact on centrifugal pump performance. For instance, as particle size increases or the percent solids concentration increases, pump head and efficiency decrease. Therefore, before a slurry pump is selected, it is important to define the slurry characteristics as accurately as possible. The effect of the slurry characteristics on the head and efficiency of the centrifugal pump will be emphasized (the effect on flowrate is less significant). The effect of slurry characteristics is more predominant in smaller pumps (with smaller diameter impellers) than in larger pumps. The data and relationship between the various slurry parameters have been developed from correlations and nomographs published by pump vendors from their field data and test results. The information helps to avoid specifying an undersized pump/motor assembly for slurry service.

  5. Excimer fluorescence compared to depolarization in the flow cytometric characterization of lateral membrane mobility in platelets

    NASA Astrophysics Data System (ADS)

    Rothe, Gregor; Schaefer, Buerk; Wimmer, Martin S.; Schmitz, Gerd

    1998-04-01

    An altered cellular membrane fluidity secondary to changes of cholesterol metabolism is a potentially important mechanism in the pathogenesis of atherosclerosis. Especially in blood platelets an increased sensitivity for stimulation dependent aggregation which is a risk factor for thrombosis has been experimentally linked to disorders of lipid and lipoprotein metabolism. The goal of this study was the development of a flow cytometric assay for the direct analysis of cellular membrane microviscosity in correlation to activation associated phenotypic changes of platelets in vitro. The analysis of fluorescence polarization following the staining of hydrophobic lipid regions of cell membranes with the fluorescent dye 1,6-diphenyl-1,3,5-hexatriene (DPH) is a well established method for the analysis of membrane fluidity. The extent of fluorescence anisotropy dependent on the rotational mobility of this fluorochrome is indirectly proportional to the microviscosity of the stained membrane subcompartment. In this study, an alternative and more simple method based on the diffusion dependent excimer formation of pyrenedecanoic acid (PDA) (J. Immunol. Methods 96:225-31, 1987) was characterized in comparison to the DPH method as a reference. Human platelets showed a rapid uptake of both DPH and PDA resulting in the staining primarily of the plasma membrane after up to 30 min of incubation. Staining analyzed at 351 nm excitation resulted in a saturation of the depolarization coefficient of DPH at 20 (mu) M but an increase of the excimer to monomer ratio of PDA with increasing dye concentration. A 'membrane fluidity coefficient' which saturated at 5 (mu) M PDA was calculated as the excimer fluorescence divided through the square of monomer fluorescence thereby correcting for the influence of dye concentration on excimer formation. The temperature dependent changes of membrane viscosity were further used as a model for the comparison of both methods. Cells analyzed at temperatures

  6. Photovoltaic pump systems

    NASA Astrophysics Data System (ADS)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  7. Intravenous smart pumps.

    PubMed

    Harding, Andrew D

    2013-01-01

    Intravenous (IV) smart pumps provide substantial safety features during infusion. However, nurses need to understand the requisite education necessary to fully benefit from and improve IV smart pump use and clinical integration. Failure to use IV smart pumps places the nurse and patient at increased risk. PMID:23558918

  8. Multiwell pumping device

    SciTech Connect

    Dysarz, E.D.

    1987-06-30

    This patent describes a balanced pumping apparatus for pumping two laterally spaced wells comprising: a left conductor on a left well; a right conductor on a right the well; a left pump casing inside the well conductor; a right pump casing inside the right well conductor; a left sucker rod inside the left pump casing; a right sucker rod inside the right pump casing; flexible linkage means for attachment to the top ends of the right sucker rod and left sucker rod; a drive motor with a rotating shaft; a drive sprocket rotatably engaging the flexible linkage means; a separate pump casing flange attached to the upper section of each well conductors; a separate upper flange attached to the upper section of each pump casing and positioned at an axial location above the point attached to the pump casing; a separate transition piece attached to the top of each pump casing flange; a separate pump support attached to the top of each transition piece; a plate-like structural support means placed in a vertical plane above the well conductors and supporting the drive motor, the drive sprocket, the flexible linkage means, and the sucker rods; a structural load transfer means connecting the plate-like structural support means to the well conductors; a motor control unit for supporting itself and controlling the drive motor; and a separate shaft extending across each pump support.

  9. Rotary magnetic heat pump

    DOEpatents

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  10. Green pumped Alexandrite lasers

    NASA Astrophysics Data System (ADS)

    Kuper, Jerry W.; Brown, David C.

    2005-04-01

    Initial experiments with pulsed and CW pumping an alexandrite laser rod at 532 nm are presented. This pumping architecture holds promise for the production of scalable diode-pumped, tunable alexandrite laser systems operating in the near infrared (750 nm), and the ultraviolet (375 and 250 nm) spectral regions.

  11. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  12. Types of Breast Pumps

    MedlinePlus

    ... uses batteries or a cord plugged into an electrical outlet to power a small motorized pump that creates suction to ... pumping. Because these breast pumps rely on a power source, women who use ... situations when electricity or extra batteries may not be available. If ...

  13. Rotary magnetic heat pump

    DOEpatents

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  14. Performance Optimization of a High-Repetition-Rate KrF Laser Plasma X-Ray Source for Microlithography.

    PubMed

    Bukerk, F; Louis, E; Turcu, E C; Tallents, G J; Batani, D

    1992-01-01

    In order to develop a high-intensity laser plasma x-ray source appropriate for industrial application of x-ray lithography, experiments have been carried out using a high-repetition-rate (up to 40 Hz) excimer laser (249 nm, 300 mJ) with a power density of 2 × 1013 W/ cm2 in the laser focus. In this study emphasis is given to remedying specific problems inherent in operating the laser plasma x-ray source at high repetition rates and in its prolonged operation. Two different methods of minimizing the production of target debris are investigated. First, the use of helium as a quenching gas results in a reduction of the amount of atomic debris particles by more than two orders of magnitude with negligible x-ray absorption. Second, a tape target as opposed to a solid target reduces the production of larger debris particles by a further factor of 100. Remaining debris is stopped by an aluminized plastic or beryllium filter used to avoid exposure of the resist by plasma ultraviolet radiation. The x-ray source has been used to image x-ray transmission mask structures down to 0.3 μm onto general purpose x-ray photo-resist. Results have been analyzed with SEM. The x-ray emission spectrum of the repetitive laser plasmas created from an iron target has been recorded and the conversion efficiency of the laser light into x-rays that contribute to exposure of the resist was measured to be 0.3% over 2π sr. PMID:21307442

  15. CO2 laser cleaning of black deposits formed during the excimer laser etching of polyimide in air

    NASA Astrophysics Data System (ADS)

    Koren, G.; Donelon, J. J.

    1988-01-01

    Pulsed CO2 laser cleaning of black debris formed during the excimer laser ablation of polyimide in air is demonstrated. The 10.6 μm CO2 laser radiation is strongly absorbed in the debris but only weakly absorbed in polyimide thus enabling the clean removal of the debris without damaging the polyimide.

  16. Singlet Fission via an Excimer-Like Intermediate in 3,6-Bis(thiophen-2-yl)diketopyrrolopyrrole Derivatives.

    PubMed

    Mauck, Catherine M; Hartnett, Patrick E; Margulies, Eric A; Ma, Lin; Miller, Claire E; Schatz, George C; Marks, Tobin J; Wasielewski, Michael R

    2016-09-14

    Singlet fission (SF) in polycrystalline thin films of four 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole (TDPP) chromophores with methyl (Me), n-hexyl (C6), triethylene glycol (TEG), and 2-ethylhexyl (EH) substituents at the 2,5-positions is found to involve an intermediate excimer-like state. The four different substituents yield four distinct intermolecular packing geometries, resulting in variable intermolecular charge transfer (CT) interactions in the solid. SF from the excimer state of Me, C6, TEG, and EH takes place in τSF = 22, 336, 195, and 1200 ps, respectively, to give triplet yields of 200%, 110%, 110%, and 70%, respectively. The transient spectra of the excimer-like state and its energetic proximity to the lowest excited singlet state in these derivatives suggests that this state may be the multiexciton (1)(T1T1) state that precedes formation of the uncorrelated triplet excitons. The excimer decay rates correlate well with the SF efficiencies and the degree of intermolecular donor-acceptor interactions resulting from π-stacking of the thiophene donor of one molecule with the DPP core acceptor in another molecule as observed in the crystal structures. Such interactions are found to also increase with the SF coupling energies, as calculated for each derivative. These structural and spectroscopic studies afford a better understanding of the electronic interactions that enhance SF in chromophores having strong intra- and intermolecular CT character. PMID:27547986

  17. The excimer lamp induces cutaneous nerve degeneration and reduces scratching in a dry-skin mouse model.

    PubMed

    Kamo, Atsuko; Tominaga, Mitsutoshi; Kamata, Yayoi; Kaneda, Kazuyuki; Ko, Kyi C; Matsuda, Hironori; Kimura, Utako; Ogawa, Hideoki; Takamori, Kenji

    2014-12-01

    Epidermal hyperinnervation, which is thought to underlie intractable pruritus, has been observed in patients with atopic dermatitis (AD). The epidermal expression of axonal guidance molecules has been reported to regulate epidermal hyperinnervation. Previously, we showed that the excimer lamp has antihyperinnervative effects in nonpruritic dry-skin model mice, although epidermal expression of axonal guidance molecules was unchanged. Therefore, we investigated the antipruritic effects of excimer lamp irradiation and its mechanism of action. A single irradiation of AD model mice significantly inhibited itch-related behavior 1 day later, following improvement in the dermatitis score. In addition, irradiation of nerve fibers formed by cultured dorsal root ganglion neurons increased bleb formation and decreased nerve fiber expression of nicotinamide mononucleotide adenylyl transferase 2, suggesting degenerative changes in these fibers. We also analyzed whether attaching a cutoff excimer filter (COF) to the lamp, thus decreasing cytotoxic wavelengths, altered hyperinnervation and the production of cyclobutane pyrimidine dimer (CPD), a DNA damage marker, in dry-skin model mice. Irradiation with COF decreased CPD production in keratinocytes, as well as having an antihyperinnervative effect, indicating that the antipruritic effects of excimer lamp irradiation with COF are due to induction of epidermal nerve degeneration and reduced DNA damage. PMID:24940652

  18. Large area electron beam pumped krypton fluoride laser amplifier

    SciTech Connect

    Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A.; Webster, W.; Deniz, A.V.; Lehecka, T.; McGeoch, M.W.; Altes, R.A.; Corcoran, P.A.; Smith, I.D.; Barr, O.C.

    1997-06-01

    Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm {times} 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high {times} 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. {copyright} {ital 1997 American Institute of Physics.}

  19. Nuclear-driven flashlamp pumping of the atomic iodine laser. Final report

    SciTech Connect

    Miley, G.H.

    1992-03-01

    This report is a study of the atomic iodine laser pumped with nuclear- excited XeBr fluorescence. Preliminary experiments, conducted in the TRIGA reactor investigated the fluorescence of the excimer XeBr under nuclear pumping with {sup 10}B and {sup 3}He, for use as a flashlamp gas to stimulate the laser. These measurements included a determination of the fluorescence efficiency (light emitted in the wavelength region of interest, divided by energy deposited in the gas) of XeBr under nuclear pumping, with varying excimer mixtures. Maximum fluorescence efficiencies were approximately 1%. In order to better understand XeBr under nuclear excitation, a kinetics model of the system was prepared. The model generated the time-dependant concentrations of 20 reaction species for three pulse sizes, a TRIGA pulse, a fast burst reactor pulse, and an e-beam pulse. The modeling results predicted fluorescence efficiencies significantly higher (peak efficiencies of approximately 10%) than recorded in the fluorescence experiments. The cause of this discrepancy was not fully determined. A ray tracing computer model was also prepared to evaluate the efficiency with which nuclear-induced fluorescence generated in one cavity of a laser could be coupled into another cavity containing an iodine lasant. Finally, an experimental laser cell was constructed to verify that nuclear-induced XeBr fluorescence could be used to stimulate a laser. Lasing was achieved at 1.31 micron in the TRIGA using C{sub 3}F{sub 7}I, a common iodine lasant. Peak laser powers were approximately 20 mW. Measured flashlamp pump powers at threshold agreed well with literature values, as did lasant pressure dependency on laser operation.

  20. Jet pump assisted artery

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  1. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  2. Use of fluorescent probes that form intramolecular excimers to monitor structural changes in model and biological membranes.

    PubMed Central

    Melnick, R L; Haspel, H C; Goldenberg, M; Greenbaum, L M; Weinstein, S

    1981-01-01

    1,3-dipyrenylpropane (PC3P) and bis(4-biphenylmethyl)ether, two molecules that form intramolecular excimers, were embedded in phospholipid vesicles and biological membranes to monitor dynamic properties of membrane lipids. Excimer formation was evaluated from determinations of excimer to monomer emission intensity ratios (ID/IM). ID/IM values of PC3P and bis(4-biphenylmethyl)ether were reduced when cholesterol was added to egg lecithin vesicles. PC3P was sensitive to the temperature-induced crystalline to liquid-crystalline phase transition in dimyristoyl phosphatidylcholine vesicles. For studies of cellular membranes, membranes, PC3P was used exclusively, because of the fluorescence of tryptophan residues of membrane proteins interferes with the responses bis(4-biphenylmethyl)ether. Microviscosities of membrane interiors were calculated from standard curves of IM/ID plotted against solvent viscosity. Microviscosity values of egg lecithin vesicles and biological membranes, especially those obtained with PC3P, were more than an order of magnitude lower than values obtained by other techniques. We concluded that the intramolecular process leading to the formation of the excimer is influenced differently in isotropic solvents than in anisotropic environments, such as lipid bilayers. Although distinguishable ID/IM ratios can be obtained for different biological membranes (mitochondrial, microsomal, and plasma membranes were studied), this parameter may be phenomenological and not simply related to membrane microviscosity. As such, fluorescent probes that form intramolecular excimers are of value in making qualitative comparisons of different membranes and in studying the relative effects of physical changes and chemical agents on membrane structure. These probes may also be valuable for studying structural anisotropy of biological membranes. PMID:7248471

  3. Particle Generation by Pulsed Excimer Laser Ablation in Liquid: Hollow Structures and Laser-Induced Reactions

    NASA Astrophysics Data System (ADS)

    Yan, Zijie

    2011-12-01

    Pulsed laser ablation of solid targets in liquid media is a powerful method to fabricate micro-/nanoparticles, which has attracted much interest in the past decade. It represents a combinatorial library of constituents and interactions, and one can explore disparate regions of parameter space with outcomes that are impossible to envision a priori. In this work, a pulsed excimer laser (wavelength 248 nm, pulse width 30 ns) has been used to ablate targets in liquid media with varying laser fluences, frequencies, ablation times and surfactants. It is observed that hollow particles could be fabricated by excimer laser ablation of Al, Pt, Zn, Mg, Ag, Si, TiO2, and Nb2O5 in water or aqueous solutions. The hollow particles, with sizes from tens of nanometers to micrometers, may have smooth and continuous shells or have morphologies demonstrating that they were assembled from nanoparticles. A new mechanism has been proposed to explain the formation of these novel particle geometries. They were formed on laser-produced bubbles through bubble interface pinning by laser-produced solid species. Considering the bubble dynamics, thermodynamic and kinetic requirements have been discussed in the mechanism that can explain some phenomena associated with the formation of hollow particles, especially (1) larger particles are more likely to be hollow particles; (2) Mg and Al targets have stronger tendency to generate hollow particles; and (3) the 248 nm excimer laser is more beneficial to fabricate hollow particles in water than other lasers with longer wavelengths. The work has also demonstrated the possiblities to fabricate novel nanostructures through laser-induced reactions. Zn(OH)2/dodecyl sulfate flower-like nanostructures, AgCl cubes, and Ag2O cubes, pyramids, triangular plates, pentagonal rods and bars have been obtained via reactions between laser-produced species with water, electrolyes, or surfactant molecules. The underlying mechanisms of forming these structures have been

  4. Microlens Array Fabricated by Excimer Laser Micromachining with Gray-tone Photolithography

    NASA Astrophysics Data System (ADS)

    Tien, Chung-Hao; Chien, Yeh-En; Chiu, Yi; Shieh, Han-Ping D.

    2003-03-01

    We demonstrate the fabrication of a refractive microlens array by using 248 nm excimer laser micromachining with coded gray-tone mask photolithography. With pre-corrections to the nonlinear exposure process, the maximum deviation from the designed shape was below 5%. The fabricated hemispherical lens of 30 μm radius was used as a solid immersion lens (SIL) and combined with a 0.54 numerical aperture (NA) objective to achieve a 0.87 effective NA through the knife-edge scanning test. The experimental results agreed with those of the simulation. Unlike the methods such as the thermal melting process, this one-step optical exposure method with a coded mask provides a relatively fast and cost-effective way to realize a microlens array in optical data storage, information processing, and optical interconnection applications.

  5. Coloring linens with excimer lasers to simulate the body image of the Turin Shroud.

    PubMed

    Baldacchini, Giuseppe; Di Lazzaro, Paolo; Murra, Daniele; Fanti, Giulio

    2008-03-20

    The body image of the Turin Shroud has not yet been explained by traditional science; so a great interest in a possible mechanism of image formation still exists. We present preliminary results of excimer laser irradiation (wavelength of 308 nm) of a raw linen fabric and of a linen cloth. The permanent coloration of both linens is a threshold effect of the laser beam intensity, and it can be achieved only in a narrow range of irradiation parameters, which are strongly dependent on the pulse width and time sequence of laser shots. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after laser irradiation that at first did not generate a clear image. The results are compared with the characteristics of the Turin Shroud, reflecting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image. PMID:18709075

  6. Behavior of 157 nm excimer-laser-induced refractive index changes in silica

    SciTech Connect

    Smith, Charlene M.; Borrelli, Nicholas F.

    2006-09-15

    This study describes the observation of large induced refractive index changes produced by 157 nm excimer laser exposure in high-purity synthetic silica glasses. With 157 nm exposure, large induced changes are observed within a few hundred thousand pulses of exposure. Similar to 193 nm exposures, exposure with polarized 157 nm light yields polarization-induced birefringence (PIB). However, the 157 nm exposure also exhibits a behavior not observed with 193 nm exposures; namely, the initial response of the glass is a decrease in refractive index, followed by an increase with continued exposure. An explanation of the behaviors for both wavelength results is proposed where the induced refractive index is considered to arise from two different concurrent phenomena. One produces a decreased refractive index and also accounts for the PIB. The other, which accounts for the increased refractive index, is associated with an isotropic laser-induced volume change.

  7. Modulation of corneal wound healing after excimer laser keratomileusis using topical mitomycin C and steroids

    SciTech Connect

    Talamo, J.H.; Gollamudi, S.; Green, W.R.; De La Cruz, Z.; Filatov, V.; Stark, W.J. )

    1991-08-01

    A 193-nm excimer laser system was used to create deep stromal ablations in seven New Zealand white rabbits and shallow ablations in three. Eyes were randomized for treatment with topical mitomycin C, steroids, and erythromycin; topical steroids and erythromycin; or topical erythromycin only. All treatment regimens were instituted twice daily for 14 days. All eyes reepithelialized normally within 3 to 5 days. During 10 weeks of follow-up, all eyes developed moderate reticular subepithelial haze without significant differences among treatment groups. Results of light, fluorescence, and electron microscopic examination showed anterior stromal scarring and markedly reduced new subepithelial collagen formation in the group treated with mitomycin C, corticosteroids, and erythromycin. Focal abnormalities of Descemet's membrane and endothelial abnormalities were present in all treatment groups. Combination therapy with topical steroids, mitomycin C, and erythromycin to control the corneal wound healing response after refractive laser surgery appears promising and warrants further study.

  8. The effect of excimer laser pretreatment on diffusion and activation of boron implanted in silicon

    SciTech Connect

    Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.; La Magna, A.; Italia, M.; Privitera, V.; Fortunato, G.; Cuscuna, M.; Mariucci, L.

    2005-11-07

    We have investigated the effect of excimer laser annealing (ELA) on transient enhanced diffusion (TED) and activation of boron implanted in Si during subsequent rapid thermal annealing (RTA). It is observed that ELA with partial melting of the implanted region causes reduction of TED in the region that remains solid during ELA, where the diffusion length of boron is reduced by a factor of {approx}4 as compared to the as-implanted sample. This is attributed to several mechanisms such as liquid-state annealing of a fraction of the implantation induced defects, introduction of excess vacancies during ELA, and solid-state annealing of the defects beyond the maximum melting depth by the heat wave propagating into the Si wafer. The ELA pretreatment provides a substantially improved electrical activation of boron during subsequent RTA.

  9. Laser-induced fluorescence of fused silica irradiated by ArF excimer laser

    SciTech Connect

    Zhang Haibo; Yuan Zhijun; Zhou Jun; Dong Jingxing; Wei Yunrong; Lou Qihong

    2011-07-01

    Laser-induced fluorescence (LIF) of high-purity fused silica irradiated by ArF excimer laser is studied experimentally. LIF bands of the fused silica centered at 281 nm, 478 nm, and 650 nm are observed simultaneously. Furthermore, the angular distribution of the three fluorescence peaks is examined. Microscopic image of the laser modified fused silica indicates that scattering of the generated fluorescence by laser-induced damage sites is the main reason for the angular distribution of LIF signals. Finally, the dependence of LIF signals intensities of the fused silica on laser power densities is presented. LIF signals show a squared power density dependence, which indicates that laser-induced defects are formed mainly via two-photon absorption processes.

  10. AlGaAs growth by OMCVD using an excimer laser

    SciTech Connect

    Warner, J.D.; Wilt, D.M.; Pouch, J.J.; Aron, P.R.

    1986-12-01

    AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H/sub 2/, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.

  11. AlGaAs growth by OMCVD using an excimer laser

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.

    1986-01-01

    AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H2, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.

  12. The influence of torsion on excimer formation in bipolar host materials for blue phosphorescent OLEDs

    NASA Astrophysics Data System (ADS)

    Rudnick, Alexander A.; Bagnich, Sergey; Wagner, Daniel; Athanasopoulos, Stavros; Strohriegl, Peter; Köhler, Anna

    2016-06-01

    We present a combined detailed spectroscopic and quantum chemical study on the bipolar host materials BPTRZ and MBPTRZ in solution and in neat film. In the two compounds, the hole transporting carbazole is separated from the electron transporting triazine moiety by a fully aromatic but non-conjugated meta-linked biphenyl unit. The two materials differ by an additional steric twist at the biphenyl in MBPTRZ, which is achieved by methyl-substitution in 2- and 2'-position of the biphenyl. We find that while the twist shifts the triplet state in MBPTRZ to higher energies (3.0 eV in solution) compared to BPTRZ (2.8 eV in solution), this also localizes electron density on the carbazole moiety, leading to excimer formation in neat films.

  13. Studies of Preionization Processes of High Pressure Gases for Excimer Laser Discharges

    NASA Astrophysics Data System (ADS)

    Kataoka, N.; Uchino, K.; Muraoka, K.; Okada, T.; Maeda, M.; Sunaka, E.; Enami, T.; Mizoguchi, H.

    1998-10-01

    The aim of this research is to understand and control the preionization process in high pressure discharges used for excimer lasers. For this purpose, a test chamber with a spark light source was designed and fabricated, to achieve ultra high vacuum and to control the base pressure. Photocharge signals produced by the spark light source were collected by pairs of plate electrodes placed inside the test chamber. In order to study the effect of gaseous impurities on the preionization process, measurements were performed for different base pressure conditions. The results showed that the photocharge signal was linearly correlated with the base pressure. Also, the possibility of actively controlling the preionization by adding small amount of Xe gas to the gas mixture was examined. The maximum signal at the Xe partial pressure of 0.1 Torr was 10 times higher than the signal for the Ne and Kr mixture without Xe, suggesting that active control may be possible.

  14. Automated generation of NC part programs for excimer laser ablation micromachining from known 3D surfaces

    NASA Astrophysics Data System (ADS)

    Mutapcic, Emir; Iovenitti, Pio G.; Hayes, Jason P.

    2002-11-01

    The purpose of this research project is to improve the capability of the laser micromachinning process, so that any desired 3D surface can be produced by taking the 3D information from a CAD system and automatically generating the NC part programs. In addition, surface quality should be able to be controlled by specifying optimised parameters. This paper presents the algorithms and a software system, which processes 3D geometry in an STL file format from a CAD system and produces the NC part program to mill the surface using the Excimer laser ablation process. Simple structures are used to demonstrate the prototype system's part programming capabilities, and an actual surface is machined.

  15. White-Light Emission from Silicone Rubber Modified by 193 nm ArF Excimer Laser

    NASA Astrophysics Data System (ADS)

    Okoshi, Masayuki; Sekine, Daisuke; Inoue, Narumi; Yamashita, Tsugito

    2007-04-01

    The photochemical surface modification of silicone ([SiO(CH3)2]n) rubber has been successfully demonstrated using a 193 nm ArF excimer laser, and white light of strong intensity was emitted upon exposure to a 325 nm He-Cd laser. The photoluminescence spectra of the modified silicone showed broad peaks centered at 410, 550, and 750 nm wavelengths. The modified surface was carbon-free silicon oxide, and the chemical composition ratio of O/Si was approximately 2. However, the surface was not silica glass (SiO2), as clarified by IR spectroscopy. Instead, nanometer-size particles of silicon oxide were formed on the surface of the modified silicone rubber.

  16. Excimer laser texturing of natural composite polymer surfaces for studying cell-to-substrate specific response

    NASA Astrophysics Data System (ADS)

    Dinca, V.; Alloncle, P.; Delaporte, P.; Ion, V.; Rusen, L.; Filipescu, M.; Mustaciosu, C.; Luculescu, C.; Dinescu, M.

    2015-10-01

    Surface modifications of biocompatible materials are among the main factors used for enhancing and promoting specific cellular activities (e.g. spreading, adhesion, migration, and differentiation) for various types of medical applications such as implants, microfluidic devices, or tissue engineering scaffolds. In this work an excimer laser at 193 nm was used to fabricate chitosan-collagen roughness gradients. The roughness gradients were obtained in one step by applying single laser pulses and sample tilting. Fourier transform infrared spectroscopy measurements, atomic force microscopy (AFM), scanning electron microscopy (SEM), and spectro-ellipsometry (SE) were used for sample characterization. The goal is to determine the optimal morpho-chemical characteristics of these structures for in vitro tailoring of protein adsorption and cell behavior. The response induced by the roughness gradient onto various cell lines (i.e. L 929 fibroblasts, HEP G2 hepatocytes, OLN 93 oligodendrocytes, M63 osteoblasts) and bovine serum albumin (BSA) protein absorption was investigated.

  17. Helically Assembled Pyrene Arrays on an RNA Duplex That Exhibit Circularly Polarized Luminescence with Excimer Formation.

    PubMed

    Nakamura, Mitsunobu; Suzuki, Junpei; Ota, Fuyuki; Takada, Tadao; Akagi, Kazuo; Yamana, Kazushige

    2016-06-27

    Circularly polarized luminescence (CPL) was observed in pyrene zipper arrays helically arranged on an RNA duplex. Hybridization of complementary RNA strands having multiple (two to five) 2'-O-pyrenylmethyl modified nucleosides affords an RNA duplex with normal thermal stability. The pyrene fluorophores are assembled like a zipper in a well-defined helical manner along the axis of RNA duplex, which, upon 350 nm UV illumination, resulted in CPL emission with pyrene excimer formation. CPL (glum ) levels observed for the pyrene arrays in dilute aqueous solution were +2×10(-2) -+3.5×10(-2) , which are comparable with |glum | for chiral organic molecules and related systems. The positive CPL signals are consistent with a right-handed helical structure. Temperature dependence on CPL emission indicates that the stable rigid RNA structure is responsible for the strong CPL signals. The single pyrene-modified RNA duplex did not show any CPL signal. PMID:27150679

  18. Formation of nickel silicides by excimer laser CVD of Ni(CO)4

    NASA Astrophysics Data System (ADS)

    Borsella, E.; Kompa, Karl L.; Reiner, H.; Schroeder, Hartmut

    1990-08-01

    Nickel silicides have been grown on single crystal silicon sub- strates. A XeCl excimer laser was used for all process steps: substrate cleaning, nickel deposition , silicide formation and annealing. The nickel films were grown by photodecoxnposition of Ni(CO)4 adsorbate layers with an excess of CO to prevent homogeneous nucleation and hence the formation of dust. The samples were analysed by X-ray fluorescence, SIMS and RBS. The results indicate that epitaxial silicide layers with a thickness of 50 ma can be obtained after careful choice of laser fluence and Ni film thickness. In an alternative approach we used a molecular beam of Ni(CO)4, part of which is laser excited prior to impinging on the substrate. This allows the combination of CVD and conventional MBE techniques. In this experiment we also investigate the interaction of photofragments with substrate surfaces and other processes responsible for material deposition.

  19. The influence of torsion on excimer formation in bipolar host materials for blue phosphorescent OLEDs.

    PubMed

    Rudnick, Alexander A; Bagnich, Sergey; Wagner, Daniel; Athanasopolous, Stavros; Strohriegl, Peter; Köhler, Anna

    2016-06-01

    We present a combined detailed spectroscopic and quantum chemical study on the bipolar host materials BPTRZ and MBPTRZ in solution and in neat film. In the two compounds, the hole transporting carbazole is separated from the electron transporting triazine moiety by a fully aromatic but non-conjugated meta-linked biphenyl unit. The two materials differ by an additional steric twist at the biphenyl in MBPTRZ, which is achieved by methyl-substitution in 2- and 2'-position of the biphenyl. We find that while the twist shifts the triplet state in MBPTRZ to higher energies (3.0 eV in solution) compared to BPTRZ (2.8 eV in solution), this also localizes electron density on the carbazole moiety, leading to excimer formation in neat films. PMID:27276969

  20. A Macrocyclic Fluorophore Dimer with Flexible Linkers: Bright Excimer Emission with a Long Fluorescence Lifetime.

    PubMed

    Osaki, Hiroshi; Chou, Chih-Ming; Taki, Masayasu; Welke, Kai; Yokogawa, Daisuke; Irle, Stephan; Sato, Yoshikatsu; Higashiyama, Tetsuya; Saito, Shohei; Fukazawa, Aiko; Yamaguchi, Shigehiro

    2016-06-13

    Bright fluorescent molecules with long fluorescence lifetimes are important for the development of lifetime-based fluorescence imaging techniques. Herein, a molecular design is described for simultaneously attaining long fluorescence lifetime (τ) and high brightness (ΦF ×ɛ) in a system that features macrocyclic dimerization of fluorescent π-conjugated skeletons with flexible linkers. An alkylene-linked macrocyclic dimer of bis(thienylethynyl)anthracene was found to show excimer emission with a long fluorescence lifetime (τ≈19 ns) in solution, while maintaining high brightness. A comparison with various relevant derivatives revealed that the macrocyclic structure and the length of the alkylene chains play crucial roles in attaining these properties. In vitro time-gated imaging experiments were conducted as a proof-of-principle for the superiority of this macrocyclic fluorophore relative to the commercial fluorescent dye Alexa Fluor 488. PMID:27121201

  1. 193 nm Excimer laser processing of Si/Ge/Si(100) micropatterns

    NASA Astrophysics Data System (ADS)

    Gontad, F.; Conde, J. C.; Chiussi, S.; Serra, C.; González, P.

    2016-01-01

    193 nm Excimer laser assisted growth and crystallization of amorphous Si/Ge bilayer patterns with circular structures of 3 μm diameter and around 25 nm total thickness, is presented. Amorphous patterns were grown by Laser induced Chemical Vapor Deposition, using nanostencils as shadow masks and then irradiated with the same laser to induce structural and compositional modifications for producing crystalline SiGe alloys through fast melting/solidification cycles. Compositional and structural analyses demonstrated that pulses of 240 mJ/cm2 lead to graded SiGe alloys with Si rich discs of 2 μm diameter on top, a buried Ge layer, and Ge rich SiGe rings surrounding each feature, as predicted by previous numerical simulation.

  2. High frequency excitation waveform for efficient operation of a xenon excimer dielectric barrier discharge lamp

    NASA Astrophysics Data System (ADS)

    Beleznai, Sz; Mihajlik, G.; Maros, I.; Balázs, L.; Richter, P.

    2010-01-01

    The application of a high frequency (~2.5 MHz) burst (amplitude-modulated sinusoidal) excitation voltage waveform is investigated for driving a fluorescent dielectric barrier discharge (DBD) light source. The excitation waveform presents a novel method for generating spatially stable homogeneous Xe DBD possessing a high conversion efficiency from electrical energy to VUV Xe_{2}^{\\ast} excimer radiation (~172 nm), even at a significantly higher electrical energy deposition than realized by pulsed excitation. Simulation and experimental results predict discharge efficiencies around 60%. Lamp efficacy above 74 lm W-1 has been achieved. VUV emission and loss mechanisms are investigated extensively and the performance of burst and pulsed waveforms is compared both theoretically and experimentally.

  3. Interaction of 308-nm excimer laser light with temporomandibular joint related structures

    NASA Astrophysics Data System (ADS)

    Liesenhoff, Tim; Funk, Armin

    1994-02-01

    Arthroscopy of TMJ has become a clinically important and more and more accepted method for diagnosis and treatment of TMJ alteration. This minimal invasive method is clearly limited by the anatomical dimensions of the TMJ. A 308 nm excimer laserlight has already found clinical applications in angioplasty, ophthalmology, and dentistry. The aim of the presented study was to find out if it is possible to ablate TMJ related structures under arthroscopic conditions. It also aims to evaluate the energy-threshold for ablation and the maximal possible rate of ablation. Contrary to other laser systems it offers a unique combination of minimal tissue alteration, precise tissue ablation guidability through optical fibers, and a good transmission through water.

  4. Application Of The Excimer Laser To Area Recontouring Of The Cornea

    NASA Astrophysics Data System (ADS)

    Yoder, Paul R.; Telfair, William B.; Warner, John W.; Martin, Clifford A.; L'Esperance, Francis A.

    1989-04-01

    Excimer lasers operating at 193 nm are being used experimentally in a special type of materials processing wherein the central portion of the anterior surface of the human cornea is selectively ablated so as to change its refractive power and, hopefully, improve impaired vision. Research to date has demonstrated recontouring as a potential means for reducing myopia and hyperopia of cadaver eyes while studies of ablations on the corneas of living monkeys and of blind human volunteers show promise of prompt and successful healing. The procedure has also shown merit in removing superficial scars from the corneal surface. In this paper, we describe the electro-optical system used to deliver the UV laser beam in these experiments and report some preliminary results of the ablation studies.

  5. Colouring fabrics with excimer lasers to simulate encoded images: the case of the Shroud of Turin

    NASA Astrophysics Data System (ADS)

    Di Lazzaro, P.; Baldacchini, G.; Fanti, G.; Murra, D.; Santoni, A.

    2008-10-01

    The faint body image embedded into the Turin Shroud has not yet explained by traditional science. We present experimental results of excimer laser irradiation (wavelengths 308 nm and 193 nm) of a raw linen fabric and of a linen cloth, seeking for a possible mechanism of image formation. The permanent coloration of both linens is a threshold effect on the laser beam intensity and it can be achieved only in a surprisingly narrow range of irradiation parameters: the shorter the wavelength, the narrower the range. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after a laser irradiation that at first did not generate a clear image. The results are compared to the characteristics of the Turin Shroud, commenting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  6. Coloring linens with excimer lasers to simulate the body image of the Turin Shroud

    NASA Astrophysics Data System (ADS)

    Baldacchini, Giuseppe; di Lazzaro, Paolo; Murra, Daniele; Fanti, Giulio

    2008-03-01

    The body image of the Turin Shroud has not yet been explained by traditional science; so a great interest in a possible mechanism of image formation still exists. We present preliminary results of excimer laser irradiation (wavelength of 308 nm) of a raw linen fabric and of a linen cloth. The permanent coloration of both linens is a threshold effect of the laser beam intensity, and it can be achieved only in a narrow range of irradiation parameters, which are strongly dependent on the pulse width and time sequence of laser shots. We also obtained the first direct evidence of latent images impressed on linen that appear in a relatively long period (one year) after laser irradiation that at first did not generate a clear image. The results are compared with the characteristics of the Turin Shroud, reflecting the possibility that a burst of directional ultraviolet radiation may have played a role in the formation of the Shroud image.

  7. Tribology and hardness of excimer-laser-processed titanium layers on cubic zirconia

    SciTech Connect

    Zaleski, M.A.; Jervis, T.R. . Dept. of Materials Science and Engineering Los Alamos National Lab., NM ); Mayer, J.W. . Dept. of Materials Science and Engineering)

    1993-02-01

    The authors have examined the wear and friction and surface hardness of excimer-laser-processed Ti layers on cubic zirconia substrates. The film exhibits a complex array of cracking following processing that is related to the crystallographic orientation of the substrate. The friction between the laser-processed layers and both steel and ruby pins is reduced by approximately one-third relative to that of untreated zirconia. In the untreated case, wear is characterized by pin wear and debris, whereas the laser-processed layer wears by film transfer to the pin. The surface hardness of the processed layer is lower than that of both the untreated zirconia and the deposited Ti film. Indentation tests indicate that the surface is brittle following processing.

  8. Application of a high-power KrF laser for the study of supersonic gas flows and the development of hydrodynamic instabilities in layered media

    SciTech Connect

    Zvorykin, V D; Lebo, I G

    2000-06-30

    The design of a miniature laser shock tube for the study of a wide range of hydrodynamic phenomena in liquids at pressures greater than 10 kbar and in supersonic flows with large Mach numbers (greater than 10) is discussed. A substance filling a chamber of quadratic cross section, with a characteristic size of several centimetres, is compressed and accelerated due to local absorption of 100 ns, 100 J KrF laser pulses near the entrance window. It is proposed to focus a laser beam by a prism raster, which provides a uniform intensity distribution over the tube cross section. The system can be used to study the hypersonic flow past objects of complex shape and the development of hydrodynamic instabilities in the case of a passage of a shock wave or a compression wave through the interfaces between different media. (laser applications and other topics in quantum electronics)

  9. KrF resists for implant layers patterning extreme high-aspect ratio structures with a double focal plane exposure technique

    NASA Astrophysics Data System (ADS)

    Rafaelli, Giorgio; Ferri, Fabio; Volpi, Stefano; Hong, Chisun

    2012-03-01

    The design rules for advanced image sensor applications are requiring continuous CD shrinkage, and increasing aspect ratios which resulting in major challenges associated with using KrF technology. For the implant photo layers in particular, the need to block high-energy boron implants (well above 2 MeV) with extremely localized implant profiles requires an aspect ratio of deep well structures greater than 10:1. Other desirable attributes of a good photoresist for such demanding applications are high transparency, a steep wall profile consistent throughout the entire film, good adhesion with no structure collapse, and a wide process window. In this paper, we will discuss the role of a chemically amplified, ESCAP-type of resist in meeting these design criteria using a double focal plane exposure technique.

  10. Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes

    NASA Astrophysics Data System (ADS)

    Mosquera, Samuel Arba; Verma, Shwetabh

    2015-07-01

    The objective is to characterize the impact of different ablation parameters on the thermal load during corneal refractive surgery by means of excimer laser ablation on porcine eyes. One hundred eleven ablations were performed in 105 porcine eyes. Each ablation was recorded using infrared thermography and analyzed mainly based on the two tested local frequencies (40 Hz, clinical local frequency; 1000 Hz, no local frequency). The change in peak corneal temperature was analyzed with respect to varying ablation parameters [local frequency, system repetition rate, pulse energy, optical zone (OZ) size, and refractive correction]. Transepithelial ablations were also compared to intrastromal ablations. The average of the baseline temperature across all eyes was 20.5°C±1.1 (17.7°C to 22.2°C). Average of the change in peak corneal temperature for all clinical local frequency ablations was 5.8°C±0.8 (p=3.3E-53 to baseline), whereas the average was 9.0°C±1.5 for all no local frequency ablations (p=1.8E-35 to baseline, 1.6E-16 to clinical local frequency ablations). A logarithmic relationship was observed between the changes in peak corneal temperature with increasing local frequency. For clinical local frequency, change in peak corneal temperature was comparatively flat (r2=0.68 with a range of 1.5°C) with increasing system repetition rate and increased linearly with increasing OZ size (r2=0.95 with a range of 2.4°C). Local frequency controls help maintain safe corneal temperature increase during excimer laser ablations. Transepithelial ablations induce higher thermal load compared to intrastromal ablations, indicating a need for stronger thermal controls in transepithelial refractive procedures.

  11. Noble gas excimer scintillation following neutron capture in boron thin films

    SciTech Connect

    McComb, Jacob C.; Al-Sheikhly, Mohamad; Coplan, Michael A.; Thompson, Alan K.; Vest, Robert E.; Clark, Charles W.

    2014-04-14

    Far-ultraviolet scintillation signals have been measured in heavy noble gases (argon, krypton, xenon) following boron-neutron capture ({sup 10}B(n,α){sup 7}Li) in {sup 10}B thin films. The observed scintillation yields are comparable to the yields from some liquid and solid neutron scintillators. At noble gas pressures of 107 kPa, the number of photons produced per neutron absorbed following irradiation of a 1200 nm thick {sup 10}B film was 14 000 for xenon, 11 000 for krypton, and 6000 for argon. The absolute scintillation yields from the experimental configuration were calculated using data from (1) experimental irradiations, (2) thin-film characterizations, (3) photomultiplier tube calibrations, and (4) photon collection modeling. Both the boron films and the photomultiplier tube were characterized at the National Institute of Standards and Technology. Monte Carlo modeling of the reaction cell provided estimates of the photon collection efficiency and the transport behavior of {sup 10}B(n,α){sup 7}Li reaction products escaping the thin films. Scintillation yields increased with gas pressure due to increased ionization and excitation densities of the gases from the {sup 10}B(n,α){sup 7}Li reaction products, increased frequency of three-body, excimer-forming collisions, and reduced photon emission volumes (i.e., larger solid angle) at higher pressures. Yields decreased for thicker {sup 10}B thin films due to higher average energy loss of the {sup 10}B(n,α){sup 7}Li reaction products escaping the films. The relative standard uncertainties in the measurements were determined to lie between 14% and 16%. The observed scintillation signal demonstrates that noble gas excimer scintillation is promising for use in practical neutron detectors.

  12. [Is there a future for the Excimer laser in refractive surgery?].

    PubMed

    Pouliquen, Y; Hanna, K; Waring, G; Savoldelli, M

    1990-02-01

    The refractive surgery concerns all the surgical procedures implicated in the refractive power change of the cornea. Its clinical results are just known, and a new physical procedure is becoming capable to replace surgery: the Excimer laser. Without any instrumental contact with the corneal surface, the laser beam is able to remodel the corneal tissue, and to treat astigmatism, myopia, hypermetropia. Millions of people could be treated by such a laser, and could leave their glasses. Biological effects on rabbit and monkeys are presented. An argon fluoride excimer laser (193 nm) with a moving slit delivery system was used to perform anterior myopic keratomileusis in both eyes of 37 rabbits and 15 monkeys. Histological analysis of the corneas was made after ablation and at intervals up to 20 months. By slit examination at the longer follow up time, 60% of treated rabbits and 40% of treated monkeys keep a clear cornea, but the others had central spotty subepithelial haze. Light and electron microscopy documented corneal healing. In the clear corneas a good reconstitution of the epithelium, its basal lamina was observed, and anterior stromal corneas contained few active fibrocytes with a good preservation of the connective lamellar structure. On the contrary, in the cornea with opacification focal areas of 20 microns thick subepithelial scarring were present and the interface between epithelial cells and anterior stroma remained disturbed by incomplete, disrupted or duplicated basal lamina. Differences between the responses of monkeys, rabbits corneas to the same photoablation procedure remain unclear.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2115392

  13. Noble gas excimer scintillation following neutron capture in boron thin films

    NASA Astrophysics Data System (ADS)

    McComb, Jacob C.; Coplan, Michael A.; Al-Sheikhly, Mohamad; Thompson, Alan K.; Vest, Robert E.; Clark, Charles W.

    2014-04-01

    Far-ultraviolet scintillation signals have been measured in heavy noble gases (argon, krypton, xenon) following boron-neutron capture (10B(n,α)7Li) in 10B thin films. The observed scintillation yields are comparable to the yields from some liquid and solid neutron scintillators. At noble gas pressures of 107 kPa, the number of photons produced per neutron absorbed following irradiation of a 1200 nm thick 10B film was 14 000 for xenon, 11 000 for krypton, and 6000 for argon. The absolute scintillation yields from the experimental configuration were calculated using data from (1) experimental irradiations, (2) thin-film characterizations, (3) photomultiplier tube calibrations, and (4) photon collection modeling. Both the boron films and the photomultiplier tube were characterized at the National Institute of Standards and Technology. Monte Carlo modeling of the reaction cell provided estimates of the photon collection efficiency and the transport behavior of 10B(n,α)7Li reaction products escaping the thin films. Scintillation yields increased with gas pressure due to increased ionization and excitation densities of the gases from the 10B(n,α)7Li reaction products, increased frequency of three-body, excimer-forming collisions, and reduced photon emission volumes (i.e., larger solid angle) at higher pressures. Yields decreased for thicker 10B thin films due to higher average energy loss of the 10B(n,α)7Li reaction products escaping the films. The relative standard uncertainties in the measurements were determined to lie between 14% and 16%. The observed scintillation signal demonstrates that noble gas excimer scintillation is promising for use in practical neutron detectors.

  14. Percutaneous peripheral excimer laser angioplasty: immediate success rate and short-term outcome

    NASA Astrophysics Data System (ADS)

    Visona, Adriana; Liessi, Guido; Bonanome, Andrea; Lusiani, Luigi; Miserocchi, Luigi; Pagnan, Antonio

    1991-05-01

    Excimer Laser Angioplasty was attempted in 47 patients (36 males, 11 females, mean age 62+/- 7 years, range 39-77 years), affected by peripheral vascular disease. Thirty-seven patients had a total occlusion of the superficial femoral artery, 3 of the iliac artery and 1 of the popliteal artery; 6 patients showed a subocclusive stenosis of the superficial femoral artery. Occlusions and subocclusive stenoses were classified by length: < 10 cm (28 cases), > 10 cm (19 cases). A commercial excimer laser (Technolas Max-10) was used at the Xenon- Chloride wavelength of 308 nm. The laser operated at 60 ns pulse length and at 20-40 Hz repetition rate. Applied energy fluence was 20 mJ/pulse. The energy was delivered through a multifiber catheter, which combines 12 (7F) or 18 (9F) fibers (260 micron diameter each), concentrically arranged. Balloon dilatation was associated to complete the procedure in 38 cases. The treated arteries were successfully recanalized in 41 out of 47 patients (87%). Hemodynamic improvement was confirmed by a significant increase of ankle/brachial systolic pressure index (from 0.60+/- 0.17 to 0.79+/- 0.20, p < 0.005). Failure to recanalize arterial occlusion occurred in 6 cases, and was due to dissection in 3 patients and inability to cross the final segment of a long occlusion in 3 patients. The success rate was higher for lesions < 10 cm in length. Early reocclusion was observed in 7 patients and was associated with poor run-off. The cumulative patency rate at 1 month was 90.7%. Preliminary results are encouraging. More suitable catheters and better selection of patients should improve the efficacy of laser angioplasty and should allow to perform laser procedures without combining balloon angioplasty.

  15. Glare sensitivity and visual acuity after excimer laser photorefractive keratectomy for myopia

    PubMed Central

    Niesen, U.; Businger, U.; Hartmann, P.; Senn, P.; Schipper, I.

    1997-01-01

    BACKGROUND—Following excimer laser photorefractive keratectomy (PRK), an increase in glare sensitivity and a reduction in contrast sensitivity can occur owing to changes in the cornea (structure and topography). In this study, an attempt was made to quantify and document objectively a change in those subjective perceptual factors.
METHODS—Snellen visual acuity and disability glare were measured with the Berkeley glare test preoperatively as well as 1, 3, 6, 9, and 12 months postoperatively, after excimer laser photorefractive keratectomy (PRK) on 32 myopic patients (46 eyes). During the postoperative progress checks, haze was graded and contrast sensitivity was measured with the Vistech chart. All the data were statistically analysed by multiple regression.
RESULTS—One year after PRK, a reduction in visual acuity (VA) measured with the low acuity contrast chart (10%) with and without glare could still be found, despite the fact that acuity measurements with a high contrast Snellen chart showed the same VA 6 months postoperatively as well as before the treatment. The lowest VA could be measured 1 month postoperatively; thereafter, the acuity increased despite the increase in haze that occurred during the first 3 months.
CONCLUSION—Disability glare and a reduction in contrast sensitivity could be observed in most patients after PRK treatment with the Meditec laser system with its scanning slit. The future will show if new technology and a broader flattening area of 6 to 7 mm can minimise these postoperative complications.

 PMID:9059248

  16. Removal of dust particles from metal-mirror surfaces by excimer-laser radiation

    NASA Astrophysics Data System (ADS)

    Mann, Klaus R.; Wolff-Rottke, B.; Mueller, F.

    1995-07-01

    The effect of particle desorption from Al mirror surfaces by the influence of pulsed UV laser radiation has been studied. The investigations are closely related to the demands of astronomers, who are looking for a more effective way of cleaning the Al coatings of future very large telescope mirrors. A systematic parameter study has been performed in order to determine the irradiation conditions which yield the highest dust removal efficiency (i.e. reflectivity increase) on contaminated samples, taking particularly into account laser-induced damage and degradation effects of coating and substrate. The particle removal rate increases with increasing laser fluence, being limited however by the damage threshold of the coating. Therefore, parameters influencing the damage threshold of metal coatings like wavelength, pulse width, and number of pulses have been studied in detail. Data indicate that on Al coated BK7 and Zerodur samples KrF laser radiation yields the optimum result, with cleaning efficiencies comparable to polymer film stripping. The initial reflectivity of the clean coating can nearly be reinstalled, in particular when an additional solvent film on the sample surface is applied. Hence, laser desorption seems to be a viable method of cleaning large Al mirrors for telescopes.

  17. Multisectional KrF laser with a pulse repetition rate of 4 kHz and inductive-capacitive discharge stabilisation

    SciTech Connect

    Andramanov, A V; Kabaev, S A; Lazhintsev, B V; Nor-Arevyan, V A; Pisetskaya, A V; Selemir, Victor D

    2006-02-28

    An electric-discharge KrF laser with an inductive-capacitive discharge stabilisation and a pulse repetition rate up to 4 kHz is developed. The multisectional discharge gap with a total length of 25 cm is formed by 25 pairs of anode-cathode plates. A discharge width of no more than 1 mm is realised. Ne and He are used as the buffer gases, and F{sub 2} serves as the fluorine donor. The maximum output pulse energy is {approx}6 mJ for the Ne-Kr-F{sub 2} mixture at a total pressure of 1.6-3.2 atm. The maximum efficiency of the laser is {approx}1.4%. An original optical technique is worked out for measuring the gas velocity in the working gap. The maximum gas velocity in the gap between the electrodes is found to be 19 ms{sup -1} in the experiments. The average output power of the laser for a pulse repetition rate of 3-4 kHz is {approx}12 W, while the relative rms deviation of the laser pulse energy lies in the range 2%-3.8%. It is shown that the refractive index gradient of the active medium, which is related to the free electron concentration in the discharge plasma, plays a significant role in the formation of laser radiation field in the resonator. The characteristic value of the refractive index gradient is found to be no less than 10{sup -5} cm{sup -1} for the KrF laser wavelength. (lasers)

  18. Intramolecular Excimer Formation Dynamics of 1,3-Bis-(1-pyrenyl)propane within 1-Butyl-3-methylimidazolium Hexafluorophosphate and Its Polyethylene Glycol Mixtures.

    PubMed

    Yadav, Anita; Kurur, Narayanan D; Pandey, Siddharth

    2015-10-22

    Mixtures of ionic liquid with polyethylene glycol (PEG) have shown interesting features as solubilizing media. Intramolecular excimer formation dynamics of 1,3-bis-(1-pyrenyl)propane [1Py(3)1Py] is investigated within mixtures of a common and popular ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) with PEGs of average molecular weight (MW) 200 (PEG200), average MW 400 (PEG400), number-average MW Mn 570-630 (PEG600), and number-average MW Mn 950-1050 (PEG1000) over the complete composition range at a 10° interval in the temperature range 10-90 °C. Irrespective of the composition of the medium and the temperature, excited-state intensity decay of the excimer fluorescence best fits to a three-exponential decay function, suggesting the presence of one excited-state monomer and two kinetically distinguishable excimers where both excimers are populated simultaneously by the excited monomer with no interconversion between the two excimers. In neat PEGs for temperatures ≤ 50 °C, intensity decay data of monomer fluorescence best fits to a single-exponential decay function, which implies the dissociation of both excimers back to the monomer to be insignificant. As the temperature is increased, the fits become closer to a double-exponential decay function, implying dissociation of one of the excimers to become significant. In neat [bmim][PF6], while a double-exponential decay function is required to fit the monomer excited-state intensity decay data at lower temperatures, three exponentials are required to satisfactorily fit the data at higher temperatures, suggesting both excimers significantly dissociate back to the monomer at higher temperatures within the ionic liquid. Within long-chain PEG-containing ([bmim][PF6] + PEG) mixtures, PEG as opposed to [bmim][PF6] controls the excimer formation dynamics by supposedly wrapping around the excimer, thus hindering dissociation back to the monomer. The overall rate constant of the excimer formation

  19. Rotary blood pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor); Akkerman, James W. (Inventor); Aber, Greg S. (Inventor); Vandamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1993-01-01

    A rotary blood pump is presented. The pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial, and radial clearances of the blades associated with the flow straightener, inducer portion, impeller portion, and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with crosslinked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  20. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  1. Electrokinetic pumps and actuators

    SciTech Connect

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  2. Pump isolation valve

    DOEpatents

    Kinney, Calvin L.; Wetherill, Todd M.

    1983-08-02

    The pump isolation valve provides a means by which the pump may be selectively isolated from the remainder of the coolant system while being compatible with the internal hydraulic arrangement of the pump during normal operation of the pump. The valve comprises a valve cylinder disposed around the pump and adjacent to the last pump diffuser with a turning vane attached to the lower end of the valve cylinder in a manner so as to hydraulically match with the discharge diffuser. The valve cylinder is connected to a drive means for sliding the valve cylinder relative to the diffuser support cylinder so as to block flow in either direction through the discharge diffuser when the valve is in the closed position and to aid in the flow of the coolant from the discharge diffuser by means of the turning vane when the valve is in the open position.

  3. A compact cryogenic pump

    NASA Astrophysics Data System (ADS)

    Li, Gang; Caldwell, Shane; Clark, Jason A.; Gulick, Sidney; Hecht, Adam; Lascar, Daniel D.; Levand, Tony; Morgan, Graeme; Orford, Rodney; Savard, Guy; Sharma, Kumar S.; Van Schelt, Jonathon

    2016-04-01

    A centrifugal cryogenic pump has been designed at Argonne National Laboratory to circulate liquid nitrogen (LN2) in a closed circuit allowing the recovery of excess fluid. The pump can circulate LN2 at rates of 2-10 L/min, into a head of 0.5-3 m. Over four years of laboratory use the pump has proven capable of operating continuously for 50-100 days without maintenance.

  4. Detection of pump degradation

    SciTech Connect

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  5. Fakir fuel pump

    NASA Technical Reports Server (NTRS)

    1922-01-01

    In designing the Fakir fuel pump, the fundamental idea was to obtain a simple and reliable method of conveying the fuel from a low tank to the carburetor, with the avoidance of the faults of all former methods and the simultaneous warming of the fuel by means of the heat of compression generated. The principle of the Fakir fuel pump rests on the well-known principle of the diaphragm pump, which must be suitably adapted to the present purpose.

  6. Self-control study of combination treatment of 308 nm excimer laser and calcipotriene ointment on stable psoriasis vulgaris

    PubMed Central

    Tang, Ya-Juan; Xu, Wan-Wen; Liu, Xiao-Ming; Zhang, Ru-Zhi; Xu, Chun-Xing; Xu, Bin; Cheng, Sai; Liu, Qi

    2014-01-01

    Objective: This study aims to compare the differences of clinical efficacy and safety of treatment of stable psoriasis vulgaris with calcipotriene ointment in combination with 308 nm excimer laser to 308 nm excimer laser alone. Methods: Randomized, open and self-control trial was conducted in 36 selected patients. The skin lesions from these patients with stable psoriasis vulgaris were divided into two sides along the midline of torso, one side was treated with 308 nm excimer laser, 2 times/week, at meantime Calcipotriene was applied externally, 2 times/day (treatment group); the other side was given 308 nm excimer laser alone, 2 times/week, the treatment period was 6 weeks (control group). Skin lesion area, PASI scores and cumulative doses of 308 nm excimer laser in patients with psoriasis were assessed before treatment and on weeks 2, 4 and 6 after treatment. Results: 32 of 36 patients with stable psoriasis vulgaris completed study, effective rates in two groups were better on week 6 (84.37%, 56.25%) than on week 4 (53.12%, 37.5%) and on week 2 (31.25%, 18.75%) (P < 0.05). Effective rate on week 6 in control group (56.25%) was lower than treatment group (84.37%) (P < 0.05). The two groups showed that PASI scores on weeks 2 and 4 after treatment were significantly lower than before treatments (P < 0.05), and PASI scores on week 6 in treatment group was significantly lower than control group (P < 0.05). The average cumulative laser doses in treatment group at the end of trial was 4.69 (2.03) J/cm2, which was significantly lower than in control group 8.41 (2.42) J/cm (P < 0.05). Treatment efficacies in the head, folds, back, abdomen and limbs were similar and no serious adverse effects, however the number of treatment and irradiation doses in the head and folds were significantly less than in back, abdomen and limbs (P < 0.05). Conclusions: Treatment of psoriasis vulgaris with 308 nm excimer laser in combination with external application of Calcipotriene ointment

  7. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1995-04-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  8. Champagne Heat Pump

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  9. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  10. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  11. Liquid pump for astronaut cooling

    NASA Technical Reports Server (NTRS)

    Carson, M. A.

    1972-01-01

    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  12. Well-pump alignment system

    DOEpatents

    Drumheller, Douglas S.

    1998-01-01

    An improved well-pump for geothermal wells, an alignment system for a well-pump, and to a method for aligning a rotor and stator within a well-pump, wherein the well-pump has a whistle assembly formed at a bottom portion thereof, such that variations in the frequency of the whistle, indicating misalignment, may be monitored during pumping.

  13. 98. VIEW OF PUMPS FROM NORTH. MILL SOLUTION PUMP No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. VIEW OF PUMPS FROM NORTH. MILL SOLUTION PUMP No. 2 IN FOREGROUND, ABANDONED BARREN SOLUTION PUMP BEYOND. AGITATOR No. 1 IN BACKGROUND. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  14. 32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLANT AND LOCATION OF PROPOSED ADDITIONS, JULY 1898 SHEET NO. 1. Aperture card 4966-1 - Deer Island Pumping Station, Boston, Suffolk County, MA

  15. Looking south at boiler feedwater pumps (steam turbine pump on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking south at boiler feedwater pumps (steam turbine pump on left, electric motor pump on right). - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA

  16. 33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. PLAN OF DEER ISLAND PUMPING STATION SHOWING EXISTING PUMPING PLAN AND LOCATION OF PROPOSED ADDITIONS, METROPOLITAN WATER AND SEWERAGE BOARD, METROPOLITAN SEWERAGE WORKS, JULY 1908. Aperture card 6417. - Deer Island Pumping Station, Boston, Suffolk County, MA

  17. Time-resolved spectroscopy and fluorescence resonance energy transfer in the study of excimer laser damage of chromatin

    NASA Astrophysics Data System (ADS)

    Radu, L.; Mihailescu, I.; Radu, S.; Gazdaru, D.

    2007-09-01

    The analysis of chromatin damage produced by a 248 nm excimer laser radiation, for doses of 0.3-3 MJ/m 2 was carried out by time-resolved spectroscopy and fluorescence resonance energy transfer (FRET). The chromatin was extracted from a normal and a tumoral tissue of Wistar rats. The decrease with laser dose of the relative contribution of the excited state lifetimes of ethidium bromide (EtBr) bounded to chromatin constitutes an evidence of the reduction of chromatin deoxyribonucleic acid (DNA) double-strand structure. FRET was performed from dansyl chloride to acridine orange, both coupled to chromatin. The increase of the average distance between these ligands, under the action of laser radiation, reflects a loosening of the chromatin structure. The radiosensitivity of tumor tissue chromatin is higher than that of a normal tissue. The determination of the chromatin structure modification in an excimer laser field can be of interest in laser therapy.

  18. [Analysis of images in the prophylaxis and treatment of complications after kerato-refractive excimer laser surgeries].

    PubMed

    Makarov, I A

    2003-01-01

    A total of 236 eyes of patients with myopia and hypermetropia of different severity degrees after photorefractive keratectomy (PRK) and laser in situ keratomileusis (LASIK) were observed. The densitometry and planimetry analysis of corneal images, obtained through storing them in the computer memory, was used to evaluate postoperatively the corneal condition. Planimetry was used to forecast the time of epithelization and to assess the efficiency of drug therapy. The optic density was found to increase, after excimer-laser surgeries, in all patients and it depended on a type of refraction and its degree. The optic-density dynamics of corneal images also depended on a degree and type of refraction as well as on a type of drug therapy. Hence, densitometry and planimetry, as objective methods used to follow up the patients after keratorefractive excimer-laser surgeries, make it possible to diagnose early enough the presence of complications related with disorders in transparency and healing of the cornea. PMID:12698885

  19. Time and wavelength resolved measurements of the VUV excimer emission generated in a windowless dielectric barrier discharge (DBD) in argon

    NASA Astrophysics Data System (ADS)

    Ganesan, Rajesh; Kane, Deborah; Carman, Robert

    2011-10-01

    Temporal analysis of the VUV emission from a windowless dielectric barrier discharge in pure argon from 50-800 mbar were carried out to gain insight into the underlying kinetic processes relating to the first and second continuum emission bands of the Ar2* excimer. Pulsed excitation using bi-polar voltage pulses with 2% duty-cycle and 32kHz repetition frequency were employed to achieve a uniform discharge with well-controlled electrical breakdown characteristics. By comprehensively measuring the rising and decay time constants for ~50 individual wavelengths within the first and second continuum of argon covering the range λ = 107nm-140nm, the dominant collisional and radiative rates relating to Ar2* excimer production and loss have been obtained. The variation of time constants as a function of wavelength and gas pressure has been determined. The VUV emission curves at the transition phase between the first and second continuum have been analyzed in detail.

  20. Dye laser studies using zig-zag optical cavity

    SciTech Connect

    Klimek, D.E.; Mandl, A.E.; Willman, B. )

    1994-06-01

    The authors report a substantial advance in dye laser performance using a zig-zag optical cavity. This configuration drastically reduces the effects of intrapulse medium disturbances due to acoustics and thermal lensing on pulse duration, beam quality, and extraction efficiency. Laser outputs of up to 2 J were observed from Coumarin-498 dye pumped by a KrF excimer laser. The dye laser output faithfully replicates the flat-top KrF laser pump pulse over the entire 1.7-[mu]s pulse duration. An intrinsic laser photon conversion efficiency (Photons[sub in]/Photons[sub absorbed]) of 44% was measured. When unstable resonator optics were used, beam qualities of about 2 XDL were measured.

  1. Micromachined peristaltic pumps

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1999-01-01

    Micromachined pumps including a channel formed between a first membrane and a substrate or between first and second flexible membranes. A series of electrically conductive strips is applied to a surface of the substrate or one of the membranes. Application of a sequential voltage to the series of strips causes a region of closure to progress down the channel to achieve a pumping action.

  2. Detection of pump degradation

    SciTech Connect

    Casada, D.

    1994-12-31

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  3. A Shocking New Pump

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Hydro Dynamics, Inc. received a technical helping hand from NASA that made their Hydrosonic Pump (HPump) a reality. Marshall engineers resolved a bearing problem in the rotor of the pump and recommended new bearings, housings and mounting hardware as a solution. The resulting HPump is able to heat liquids with greater energy efficiency using shock waves to generate heat.

  4. NEUTRONIC REACTOR FUEL PUMP

    DOEpatents

    Cobb, W.G.

    1959-06-01

    A reactor fuel pump is described which offers long life, low susceptibility to radiation damage, and gaseous fission product removal. An inert-gas lubricated bearing supports a journal on one end of the drive shsft. The other end has an impeller and expansion chamber which effect pumping and gas- liquid separation. (T.R.H.)

  5. Water Treatment Technology - Pumps.

    ERIC Educational Resources Information Center

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  6. Pump apparatus including deconsolidator

    DOEpatents

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  7. The investigation of selective pre-pattern free self-assembled Ge nano-dot formed by excimer laser annealing

    PubMed Central

    2012-01-01

    Localized Ge nano-dot formation by laser treatment was investigated and discussed in terms of strain distribution. The advantage of this technique is patterning localization of nano-dots without selective epitaxial growth, reducing costs and improving throughput. Self-assembled Ge nano-dots produced by excimer laser annealing statistically distributed dot density and size dependent on laser energy. Improvement in the crystallization quality of the dots was also studied, and a strain analysis was undertaken. PMID:22709630

  8. Cyclodextrin supramolecular inclusion-enhanced pyrene excimer switching for time-resolved fluorescence detection of biothiols in serum.

    PubMed

    Zhang, Qier; Deng, Ting; Li, Jishan; Xu, Weijian; Shen, Guoli; Yu, Ruqin

    2015-06-15

    We report here an efficient pyrene excimer signaling-based time-resolved fluorescent sensor for the measurement of biothiols (cysteine (Cys), homocysteine (Hcy), glutathione (GSH)) in human serum based on thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry and the inclusion interaction of cyclodextrin. The sensing mechanism of the approach is based on the competitive ligation of Hg(2+) ions by Hcy/Cys/GSH and T-T mismatches in a bis-pyrene-labeled DNA strand with the self-complementary 5' and 3' ends. The introduction of γ-cyclodextrin can provide cooperation for the molecular level space proximity of the two labeled pyrene molecules, moreover the hydrophobic cavity of γ-cyclodextrin can also offer protection for the pyrene dimer's emission from the quenching effect of environmental conditions and enhance the fluorescence intensity of the pyrene excimer. When the biothiols are not presented, the sensing ensemble is in the "off" state due to the long distance between the two labeled pyrene molecules resulted from the formation of a more stable T-Hg(2+)-T structure. While in the presence of biothiols, Hg(2+) interacts very strongly with thiol groups and the T-Hg(2+)-T structure is dehybridized, and then the pyrene excimer will be formed due to the self-complementary 5' and 3' ends of the DNA probe and the cooperation interaction of γ-cyclodextrin to pyrene dimer, thus resulting in switching the sensing ensemble to the "on" state. In the optimum conditions described, the linear concentration range of 1.0-100 μM with the limit of detection (LOD) of 0.36 μM for GSH was obtained. Moreover, due to the much longer lifetime of the pyrene excimer fluorescence than those of the ubiquitous endogenous fluorescent components, the time-resolved fluorescence technique has been successfully used for application in complicated biological samples. PMID:25590970

  9. Photon-controlled fabrication of amorphous superlattice structures using ArF (193 nm) excimer laser photolysis

    SciTech Connect

    Lowndes, D.H.; Geohegan, D.B.; Eres, D.; Pennycook, S.J.; Mashburn, D.N.; Jellison G.E. Jr.

    1988-05-30

    Pulsed ArF (193 nm) excimer laser photolysis of disilane, germane, and disilane-ammonia mixtures has been used to deposit amorphous superlattices containing silicon, germanium, and silicon nitride layers. Transmission electron microscope cross-section views demonstrate that structures having thin (5--25 nm) layers and sharp interlayer boundaries can be deposited at substrate temperatures below the pyrolytic threshold, entirely under laser photolytic control.

  10. Normetex Pump Alternatives Study

    SciTech Connect

    Clark, Elliot A.

    2013-04-25

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying

  11. Rotary Blood Pump

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor); Akkerman, James W. (Inventor); Aber, Gregory S. (Inventor); VanDamm, George A. (Inventor); Bacak, James W. (Inventor); Svejkovsky, Paul A. (Inventor); Benkowski, Robert J. (Inventor)

    1996-01-01

    A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.

  12. Deep well solar pump

    SciTech Connect

    Vanek, J.

    1990-02-06

    This patent describes, in a pump having a source of gas under pressure, and a gas operated pump, a mechanism periodically injecting gas from the source of gas into the gas operated pump. It comprises: a long period pendulum turning towards a first position by gravity, an injection valve connected between the source of gas under pressure and the gas operated pump, a linkage between the pendulum and the injection valve. The linkage opening the injection valve when the pendulum is in the first position, an impulse tube connected between the injection valve and the gas operated pump, a member having a surface adjacent to the first position of the pendulum, and an elastic impulse bladder connected to the impulse tube adjacent to the surface so that inflation of the impulse bladder on the opening of the injection valve forces the impulse bladder against the pendulum urging the pendulum against the force of gravity toward a second position.

  13. 193-nm excimer laser sclerostomy using a modified open mask delivery system in rhesus monkeys with experimental glaucoma.

    PubMed

    Allan, B D; van Saarloos, P P; Cooper, R L; Keogh, E J; Constable, I J

    1993-11-01

    Excimer laser sclerostomy is a new glaucoma filtration procedure in which the argon fluoride excimer laser at 193 nm is delivered ab externo through a modified open mask system incorporating an en-face air jet to dry the target area and preserve hemostasis during ablation and a conjunctival plication mechanism, which allows the conjunctival and scleral wounds created by through-and-through ablation to separate once the mask is removed. No preparatory dissection of the conjunctiva is required. Five 200-microns and five 500-microns sclerostomies were formed by ablation at a pulse repetition rate of 20 Hz and a fluence per pulse of 400 mJ/cm2 in fellow eyes of five rhesus monkeys with experimental glaucoma. Overall, seven of the ten eyes attained a functional result, with intraocular pressures remaining below 21 mmHg for 6 +/- 1 days and rising to the pre-operative level after 10 +/- 3 days without adjunctive antifibroblast medication. The duration of filtration for 200-microns and 500-microns sclerostomies was similar, and parallels that previously observed for posterior lip sclerectomy in the same animal model. The three eyes with no functional result all had incorrectly positioned sclerostomies. Choroidal detachment and significant shallowing of the anterior chamber did not occur. Excimer laser sclerostomy appears to be a viable technique for filtration, provided that mask placement is accurate. PMID:8258402

  14. First Experimental Evidence for the Diverse Requirements of Excimer vs Hole Stabilization in π-Stacked Assemblies.

    PubMed

    Reilly, Neil; Ivanov, Maxim; Uhler, Brandon; Talipov, Marat; Rathore, Rajendra; Reid, Scott A

    2016-08-01

    Exciton formation and charge separation and transport are key dynamical events in a variety of functional polymeric materials and biological systems, including DNA. Beyond the necessary cofacial approach of a pair of aromatic molecules at van der Waals contact, the extent of overlap and necessary geometrical reorganization for optimal stabilization of an excimer vs dimer cation radical remain unresolved. Here, we compare experimentally the dynamics of excimer formation (via emission) and charge stabilization (via threshold ionization) of a novel covalently linked, cofacially stacked fluorene dimer (F2) with the unlinked van der Waals dimer of fluorene, that is, (F)2. Although the measured ionization potentials are identical, the excimeric state is stabilized by up to ∼30 kJ/mol in covalently linked F2. Supported by theory, this work demonstrates for the first time experimentally that optimal stabilization of an excimer requires a perfect sandwich-like geometry with maximal overlap, whereas hole stabilization in π-stacked aggregates is less geometrically restrictive. PMID:27447947

  15. Automated superficial lamellar keratectomy augmented by excimer laser masked PTK in the management of severe superficial corneal opacities

    PubMed Central

    Alio, J L; Javaloy, J; Merayo, J; Galal, A

    2004-01-01

    Aim: To assess superficial lamellar keratectomy augmented by excimer laser smoothening with sodium hyaluronate 0.25%, for the management of superficial corneal opacities. Methods: Consecutive procedure performed in 14 eyes (13 patients) with an automated microkeratome and excimer laser phototherapeutic keratectomy (PTK) smoothening using sodium hyaluronate 0.25%. Main outcome measures: UCVA, BCVA, pachymetry, degree of haze, ray tracing analysis, and complications. Mean follow up was 12 (SD 1.6) months. Results: Mean preoperative haze from previous corneal refractive surgeries was 3.5 (SD 0.5) (11/14 cases). In one case, opacity was caused by ocular trauma and in two by infectious keratitis. The mean preoperative UCVA was 0.7 logMAR (0.2 (SD 0.13) decimal value). BCVA was 0.4 logMAR (0.4 (SD 0.17) decimal value). Mean preoperative corneal pachymetry was 508 (SD 62.5) µm and mean opacity depth measured by corneal confocal microscopy was 115.2 (SD 49.4) µm. At 6 months, 71.4% of the eyes with previous corneal refractive surgery showed grade I haze or less. Mean postoperative corneal pachymetry at 6 months was 352.36 (SD 49.05) µm. Conclusions: Automated superficial lamellar keratectomy combined with excimer laser PTK smoothening assisted by sodium hyaluronate 0.25% induces a significant improvement of corneal transparency and visual acuity in cases of corneal opacity caused by previous refractive surgery, ocular trauma, and keratitis. PMID:15377553

  16. a Theoretical Study of the Kinetic Processes in a High-Power Xenon Chloride Excimer Laser Oscillator Driven by a Long Transmission Line Pulse Forming Network.

    NASA Astrophysics Data System (ADS)

    Wang, Yuh-Shuh

    1982-03-01

    The avalanche/self-sustained discharge rare gas halide (RGH) excimer lasers driven by a transmission line type pulse forming network (PFN) belong to a novel class of discharge pumped gas lasers operating in the visible and ultraviolet wavelengths efficiently. The kinetics in this class of lasers, however, has not yet been fully understood. Therefore, it seems essential at this point to study the characteristics of the discharge plasma in such a device and determine the major energy flow paths in the active media before one attempts to optimize the operating conditions or deduce the scaling rules. The work presented here is the theoretical modeling of the discharge pumped XeCl laser driven by a long transmission line (two way transit time, 200 nsec). The mathematical formulation consisting of the rate equations, the temperature equation, the circuit equation, and the Boltzmann equation governing the velocity and energy distributions of the free electrons is developed under the assumptions that the applied electric field strength is spatially uniform and the number densities of all important chemical species are spatially homogeneous in the discharge volume. These coupled non-linear differential equations are solved numerically by using the GBS extrapolation method simultaneously with the time evolution of the electron mole fraction during the transient discharge. The time-dependent electron velocity and energy distribution functions are obtained from the numerical solutions of the Boltzmann equation, with all elastic (including electron-electron), inelastic, attachment, recombination, and ionization collisions included, by a self-consistent iteration technique. The kinetic reactions involved in the XeCl laser using Ne/Xe/HCl and He/Xe/HCl mixtures are comprehensively examined. The results of this study reveal that the new processes. e + XeCl('*) (--->) Xe('*) + Cl('-),. e + XeCl (--->) Xe + Cl('-) or Xe + Cl + e,. are important and have to be included in the model

  17. Excimer laser produced plasmas in copper wire targets and water droplets

    NASA Technical Reports Server (NTRS)

    Song, Kyo-Dong; Alexander, D. R.

    1994-01-01

    Elastically scattered incident radiation (ESIR) from a copper wire target illuminated by a KrF laser pulse at lambda = 248 nm shows a dinstinct two-peak structure which is dependent on the incident energy. The time required to reach the critical electron density (n(sub c) approximately = 1.8 x 10(exp 22) electrons/cu cm) is estimated at 11 ns based on experimental results. Detailed ESIR characteristics for water have been reported previously by the authors. Initiation of the broadband emission for copper plasma begins at 6.5 +/- 1.45 ns after the arrival of the laser pulse. However, the broadband emission occurs at 11 +/- 0.36 ns for water. For a diatomic substance such as water, the electron energy rapidly dissipates due to dissociation of water molecules, which is absent in a monatomic species such as copper. When the energy falls below the excitation energy of the lowest electron state for water, it becomes a subexcitation electron. Lifetimes of the subexcited electrons to the vibrational states are estimated to be of the order of 10(exp -9) s. In addition, the ionization potential of copper (440-530 nm) is approximately 6 eV, which is about two times smaller than the 13 eV ionization potential reported for water. The higher ionization potential contributes to the longer observed delay time for plasma formation in water. After initiation, a longer time is required for copper plasma to reach its peak value. This time delay in reaching the maximum intensity is attributed to the energy loss during the interband transition in copper.

  18. Apparatus for Pumping a Fluid

    NASA Technical Reports Server (NTRS)

    Boeyen, Robert Van; Reeh, Jonathan

    2013-01-01

    A fluid pump has been developed for mechanically pumped fluid loops for spacecraft thermal control. Lynntech's technology utilizes a proprietary electrochemically driven pumping mechanism. Conventional rotodynamic and displacement pumps typically do not meet the stringent power and operational reliability requirements of space applications. Lynntech's developmental pump is a highly efficient solid-state pump with essentially no rotating or moving components (apart from metal bellows).

  19. High Spatial Resolution Analysis of Carbonates by In Situ Excimer Laser Ablation MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Shuttleworth, S.; Lloyd, N.; Douthitt, C.

    2012-12-01

    Speleothems are important climate archives. The time resolution of the paleochlimate proxies depends on the growth rates and the precision limitation of the analytical instrumentation [1]. As a consequence, for speleothems, better analytical precision combined with better spatial resolution will always be the goal, driven by a need to probe the timing and duration of climate events [1]. The Thermo Scientific NEPTUNE Plus with Jet Interface option offers unparalleled MC-ICP-MS sensitivity for heavy elements. An ion yield of >3 % has previously been reported for uranium solutions introduced by desolvating nebulizer[2]. For laser ablation Hf, the Jet Interface with N2 addition significantly improved sensitivity, which allowed precise and accurate 176Hf/177Hf ratios to be calculated using a spot size of just 25 μm diameter [3]. A Thermo Scientific NEPTUNE Plus with Jet Interface option was coupled with a Photon Machines excimer laser ablation system. This system features a short pulse width (4ns) 193 nm excimer laser and the HELEX 2 volume sample cell. The 193nm wavelength has been shown to reduce the particle size distribution of the aerosol produced by the laser ablation process [4] and this in turn has been shown to help minimize the effects of fractionation by ensuring that particles are in a size range so as to avoid incomplete vaporization and ionization in the plasma [5]. In this work we investigate U-Th dating of carbonates. Accurate LA U-Th isotope measurements on carbonates with U concentrations smaller than 1 μg/g are difficult due to small ion beams [1]. Hoffman et. al. [1] noted individual LA U-Th ratio precisions of about 2% (2 sigma) on a 134 ka sample with 134 μg/g U concentration. In this work we apply a combination of the high sampling efficiency two volume cell plus mixed gas plasmas to further enhance the capability. [1] Hoffman, D.L., et al. (2009). Chemical Geology. 259 253-261 [2] Bouman, C., et al. (2009). Geochim. Cosmochim. Acta. 73

  20. Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation.

    PubMed

    Magri, Andrea; Friederich, Pascal; Schäfer, Bernhard; Fattori, Valeria; Sun, Xiangnan; Strunk, Timo; Meded, Velimir; Hueso, Luis E; Wenzel, Wolfgang; Ruben, Mario

    2015-01-01

    We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olate)aluminium(III) (Al(Op)3) both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be -5.93 and -3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op)3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10(-6) and 2.1 × 10(-6) cm(2)·V(-1)·s(-1) was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10(-6) cm(2)·V(-1)·s(-1) and a hole mobility of 1.4 × 10(-4) cm(2)·V(-1)·s(-1). The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement. PMID:26171287

  1. Charge carrier mobility and electronic properties of Al(Op)3: impact of excimer formation

    PubMed Central

    Friederich, Pascal; Schäfer, Bernhard; Fattori, Valeria; Sun, Xiangnan; Strunk, Timo; Meded, Velimir; Hueso, Luis E; Wenzel, Wolfgang; Ruben, Mario

    2015-01-01

    Summary We have studied the electronic properties and the charge carrier mobility of the organic semiconductor tris(1-oxo-1H-phenalen-9-olate)aluminium(III) (Al(Op)3) both experimentally and theoretically. We experimentally estimated the HOMO and LUMO energy levels to be −5.93 and −3.26 eV, respectively, which were close to the corresponding calculated values. Al(Op)3 was successfully evaporated onto quartz substrates and was clearly identified in the absorption spectra of both the solution and the thin film. A structured steady state fluorescence emission was detected in solution, whereas a broad, red-shifted emission was observed in the thin film. This indicates the formation of excimers in the solid state, which is crucial for the transport properties. The incorporation of Al(Op)3 into organic thin film transistors (TFTs) was performed in order to measure the charge carrier mobility. The experimental setup detected no electron mobility, while a hole mobility between 0.6 × 10−6 and 2.1 × 10−6 cm2·V−1·s−1 was measured. Theoretical simulations, on the other hand, predicted an electron mobility of 9.5 × 10−6 cm2·V−1·s−1 and a hole mobility of 1.4 × 10−4 cm2·V−1·s−1. The theoretical simulation for the hole mobility predicted an approximately one order of magnitude higher hole mobility than was observed in the experiment, which is considered to be in good agreement. The result for the electron mobility was, on the other hand, unexpected, as both the calculated electron mobility and chemical common sense (based on the capability of extended aromatic structures to efficiently accept and delocalize additional electrons) suggest more robust electron charge transport properties. This discrepancy is explained by the excimer formation, whose inclusion in the multiscale simulation workflow is expected to bring the theoretical simulation and experiment into agreement. PMID:26171287

  2. Low-power photolytically pumped lasers: Final technical report

    SciTech Connect

    Messing, I.; Lorents, D.C.; Eckstrom, D.J.

    1987-08-01

    We have carried out an extensive series of measurements of the time-resolved Xe/sub 2/* emission spectra following optical pumping by a short-pulse F/sub 2/ laser at 157.6 nm. Most measurements were performed using a gated Optical Multichannel Analyzer detector; we also made measurements using a scanning monochromator fitted with a photomultiplier and using a boxcar integrator for time resolution. The two sets of results agree well and show that both the singlet and triplet emission bands are broader than expected and have center wavelengths closer together than expected. Measurements were performed both at room temperature and at elevated (140/sup 0/C) and reduced (-27/sup 0/C) temperatures. The broad bandwidth of the individual spectral bands was unexpected and conflicted with a previous spectral measurement using optical pumping by the Xe* resonance line from a microwave discharge lamp. Therefore, we also performed a series of spectral measurements using this type of optical pumping. We achieved good agreement with some previous results in the literature, but not with the result in question. We conclude that the present results are reliable. The results presented in this report provide the first definitive measurement of the individual excimer emissions from each of the Xe/sub 2/(0/sub u//sup +/) and Xe/sub 2/(1/sub u/) states. From these measurements and the known ground state potential, we derived a 1/sub u/ potential that reproduces the emission band very well. However, the 1/sub u/ potential is in substantial disagreement with the recent 1/sub u/ potential derived by the Toronto group. 13 refs., 32 figs., 3 tabs.

  3. Microfluidic reflow pumps.

    PubMed

    Haslam, Bryan; Tsai, Long-Fang; Anderson, Ryan R; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P

    2015-07-01

    A new microfluidic pump, termed a reflow pump, is designed to operate with a sub-μl sample volume and transport it back and forth between two pneumatically actuated reservoirs through a flow channel typically containing one or more sensor surfaces. The ultimate motivation is to efficiently use the small sample volume in conjunction with convection to maximize analyte flux to the sensor surface(s) in order to minimize sensor response time. In this paper, we focus on the operational properties of the pumps themselves (rather than the sensor surfaces), and demonstrate both two-layer and three-layer polydimethylsiloxane reflow pumps. For the three-layer pump, we examine the effects of reservoir actuation pressure and actuation period, and demonstrate average volumetric flow rates as high as 500 μl/min. We also show that the two-layer design can pump up to 93% of the sample volume during each half period and demonstrate integration of a reflow pump with a single-chip microcantilever array to measure maximum flow rate. PMID:26221199

  4. Pressure charged airlift pump

    DOEpatents

    Campbell, Gene K.

    1983-01-01

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  5. Pressure charged airlift pump

    SciTech Connect

    Campbell, G.K.

    1980-08-15

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum. A compressed air-driven pump is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  6. Pressure charged airlift pump

    SciTech Connect

    Campbell, G.K.

    1983-02-15

    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum. A compressed air-driven pump is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  7. Performance of mosquito's pump

    NASA Astrophysics Data System (ADS)

    Kikuchi, Kenji

    2005-11-01

    The flow of human blood in Mosquito's proboscis on Hagen-Poiseuille flow is investigated by using micro PIV system to apply mosquito's sucking system for micro-TAS devises. We want to know how high the power of Mosquito's pump is and how small the resistance in a proboscis is, a structure of Mosquito's sucking pump, and its characteristics as mechanical pump. We made the mosquito suck blood of our arm to obtain the average value, made many slices of a mosquito with 2μm thickness after fixed by wax. We anatomized the mosquito's head and picked up the sucking pump under the microscope to know its volume. Mosquito's pump shows high performance compared with the artificial pumps. The surfaces of proboscis were taken by using SEM, AFM because it is important factor for interaction between flow and its wall. Visualization of the blood flows near the tip of and inside proboscis are taken by micro PIV system to know the flow rate. We estimate the power of pump and the friction drag of proboscis by using these data.

  8. Microfluidic reflow pumps

    PubMed Central

    Haslam, Bryan; Tsai, Long-Fang; Anderson, Ryan R.; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P.

    2015-01-01

    A new microfluidic pump, termed a reflow pump, is designed to operate with a sub-μl sample volume and transport it back and forth between two pneumatically actuated reservoirs through a flow channel typically containing one or more sensor surfaces. The ultimate motivation is to efficiently use the small sample volume in conjunction with convection to maximize analyte flux to the sensor surface(s) in order to minimize sensor response time. In this paper, we focus on the operational properties of the pumps themselves (rather than the sensor surfaces), and demonstrate both two-layer and three-layer polydimethylsiloxane reflow pumps. For the three-layer pump, we examine the effects of reservoir actuation pressure and actuation period, and demonstrate average volumetric flow rates as high as 500 μl/min. We also show that the two-layer design can pump up to 93% of the sample volume during each half period and demonstrate integration of a reflow pump with a single-chip microcantilever array to measure maximum flow rate. PMID:26221199

  9. Evaluation of a Novel Laser-assisted Coronary Anastomotic Connector - the Trinity Clip - in a Porcine Off-pump Bypass Model

    PubMed Central

    Stecher, David; Bronkers, Glenn; Noest, Jappe O.T.; Tulleken, Cornelis A.F.; Hoefer, Imo E.; van Herwerden, Lex A.; Pasterkamp, Gerard; Buijsrogge, Marc P.

    2014-01-01

    To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated. PMID:25490000

  10. RENEWABLE LIQUID GETTERING PUMP

    DOEpatents

    Batzer, T.H.

    1962-08-21

    A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

  11. CAD/CAM interface design of excimer laser micro-processing system

    NASA Astrophysics Data System (ADS)

    Jing, Liang; Chen, Tao; Zuo, Tiechuan

    2005-12-01

    Recently CAD/CAM technology has been gradually used in the field of laser processing. The excimer laser micro-processing system just identified G instruction before CAD/CAM interface was designed. However the course of designing a part with G instruction for users is too hard. The efficiency is low and probability of making errors is high. By secondary development technology of AutoCAD with Visual Basic, an application was developed to pick-up each entity's information in graph and convert them to each entity's processing parameters. Also an additional function was added into former controlling software to identify these processing parameters of each entity and realize continue processing of graphic. Based on the above CAD/CAM interface, Users can design a part in AutoCAD instead of using G instruction. The period of designing a part is sharply shortened. This new way of design greatly guarantees the processing parameters of the part is right and exclusive. The processing of complex novel bio-chip has been realized by this new function.

  12. Pure, single crystal Ge nanodots formed using a sandwich structure via pulsed UV excimer laser annealing.

    PubMed

    Liao, Ting-Wei; Chen, Hung-Ming; Shen, Kuan-Yuan; Kuan, Chieh-Hsiung

    2015-04-24

    In this paper, a sandwich structure comprising a SiO2 capping layer, amorphous Germanium (a-Ge) nanodots (NDs), and a pit-patterned Silicon (Si) substrate is developed, which is then annealed by utilizing a pulsed ultraviolet excimer laser in order to fabricate an array of pure, single crystal Ge NDs at room temperature. A wide bandgap SiO2 capping layer is used as a transparent thermally isolated layer to prevent thermal loss and Si-Ge intermixing. The two-dimensional pit-patterned Si substrate is designed to confine the absorbed laser energy, reduce the melting point, and block the surface migration of the Ge. After optimizing the laser radiation parameters such that the laser energy density is 200 mJ cm(-2), the laser annealing period is 10 s, and the number of laser shots is 10, pure, single crystal Ge NDs that have both a regular arrangement and a uniform size distribution are obtained in the pits of the Si substrates. The Raman spectrum shows a highly symmetric Ge transversal optical peak with a full width at half maximum of 4.2 cm(-1) at 300.7 cm(-1), which is close to that of the original Ge wafer. In addition, the high-resolution transmission electron microscopy image for the Ge NDs and the corresponding selected area electron diffraction pattern shows a clear single crystalline structure without any impurities. PMID:25815515

  13. Pure, single crystal Ge nanodots formed using a sandwich structure via pulsed UV excimer laser annealing

    NASA Astrophysics Data System (ADS)

    Liao, Ting-Wei; Chen, Hung-Ming; Shen, Kuan-Yuan; Kuan, Chieh-Hsiung

    2015-04-01

    In this paper, a sandwich structure comprising a SiO2 capping layer, amorphous Germanium (a-Ge) nanodots (NDs), and a pit-patterned Silicon (Si) substrate is developed, which is then annealed by utilizing a pulsed ultraviolet excimer laser in order to fabricate an array of pure, single crystal Ge NDs at room temperature. A wide bandgap SiO2 capping layer is used as a transparent thermally isolated layer to prevent thermal loss and Si-Ge intermixing. The two-dimensional pit-patterned Si substrate is designed to confine the absorbed laser energy, reduce the melting point, and block the surface migration of the Ge. After optimizing the laser radiation parameters such that the laser energy density is 200 mJ cm-2, the laser annealing period is 10 s, and the number of laser shots is 10, pure, single crystal Ge NDs that have both a regular arrangement and a uniform size distribution are obtained in the pits of the Si substrates. The Raman spectrum shows a highly symmetric Ge transversal optical peak with a full width at half maximum of 4.2 cm-1 at 300.7 cm-1, which is close to that of the original Ge wafer. In addition, the high-resolution transmission electron microscopy image for the Ge NDs and the corresponding selected area electron diffraction pattern shows a clear single crystalline structure without any impurities.

  14. Identical Excimer Laser PTK Treatments in Rabbits Result in Two Distinct Haze Responses

    PubMed Central

    McCally, Russell L.; Connolly, Patrick J.; Stark, Walter J.; Jain, Sandeep; Azar, Dimitri T.

    2006-01-01

    Purpose. To obtain objective light-scattering measurements to test a hypothesis that identical PTK treatments cause distinct low- and high-level light-scattering responses in rabbit corneas. Methods. An excimer laser was used to produce identical 6-mm diameter phototherapeutic keratectomy treatments (PTK) in 32 pigmented rabbits. Eyes were treated by performing a 40-μm epithelial ablation, followed by a 100-μm stromal PTK. Objective scattering measurements were made before treatment, weekly up to 5 weeks, and then biweekly to 9 weeks. Confocal microscopy was performed on several corneas at 4 and 7 weeks. Results. Mean scattering levels split into distinct low- and high-scattering groups 2 weeks after treatment and remained distinct until week 7 (P < 0.003). Scattering in the low group reached a broad peak that lasted from weeks 2 to 4 at approximately 3 times the pretreatment level. Scattering in the high group peaked at 3 weeks at approximately 12 times the pretreatment level. Scattering levels diminished after reaching their peaks. Confocal images showed a band of highly reflective material in the anterior stroma that extended much deeper in corneas from the high group. The reflective band in the highly scattering corneas obscured the posterior stroma from view for up to 5 weeks. Conclusions. Quantitative scattering data obtained with the scatterometer suggest that identical PTK treatments indeed result in distinct low- and high-level light-scattering responses in rabbits. PMID:17003417

  15. N-type doping of Ge by As implantation and excimer laser annealing

    SciTech Connect

    Milazzo, R.; Napolitani, E. De Salvador, D.; Mastromatteo, M.; Carnera, A.; Impellizzeri, G.; Boninelli, S.; Priolo, F.; Privitera, V.; Fisicaro, G.; Italia, M.; La Magna, A.; Cuscunà, M.; Fortunato, G.

    2014-02-07

    The diffusion and activation of arsenic implanted into germanium at 40 keV with maximum concentrations below and above the solid solubility (8 × 10{sup 19} cm{sup −3}) have been studied, both experimentally and theoretically, after excimer laser annealing (λ = 308 nm) in the melting regime with different laser energy densities and single or multiple pulses. Arsenic is observed to diffuse similarly for different fluences with no out-diffusion and no formation of pile-up at the maximum melt depth. The diffusion profiles have been satisfactorily simulated by assuming two diffusivity states of As in the molten Ge and a non-equilibrium segregation at the maximum melt depth. The electrical activation is partial and decreases with increasing the chemical concentration with a saturation of the active concentration at 1 × 10{sup 20} cm{sup −3}, which represents a new record for the As-doped Ge system.

  16. Adhesion strength measurements of excimer-laser-treated PTFE surfaces using liquid photoreagents

    NASA Astrophysics Data System (ADS)

    Hopp, Bela; Smausz, Tomi; Kresz, Norbert; Ignacz, Ferenc

    2003-04-01

    The most known feature of polytetrafluoroethylene (PTFE) is its adhesion behavior: it is hydrophobic and oleophobic at the same time. This can cause serious problems and obstacles during the surface treatment and fixing of PTFE objects. During our experiments Teflon films were irradiated by an ArF excimer laser beam in presence of liquid photoreagents containing amine groups (aminoethanol, 1,2-diaminoethane, triethylene-tetramine). In consequence of the treatment the adhesion of the modified surfaces significantly increased, the samples could be glued and moistened. The adhesion strength of the glued surfaces was measured in the function of the applied laser fluence. The adhesion strength increased drastically between 0 - 1 mJ/cm2 and showed saturation above 1 mJ/cm2 at approximately 5 - 9 MPa values depending on the applied photoreagents. On the basis of our experiments it was found that the treatment with triethylene-tetramine was the most effective. The surface chemical modifications of the treated Teflon samples can be due to the incorporation of amine groups into the surface layer.

  17. Electrical activation phenomena induced by excimer laser annealing in B-implanted silicon

    SciTech Connect

    Fortunato, G.; Mariucci, L.; La Magna, A.; Alippi, P.; Italia, M.; Privitera, V.; Svensson, B.; Monakhov, E.

    2004-09-20

    The activation process induced by excimer laser annealing (ELA) has been investigated in 10 keV B-implanted samples. It is found that for energy densities inducing melt depths of the order or larger of the implanted region the junction depth is controlled by the melt depth, with activation approaching 100% and box-shaped carrier density distributions with abrupt junction profile. For energy densities inducing a melting shallower than the implanted region, two different activation mechanisms have been identified: the first occurring in the molten region and leading to complete B activation; the second occurring in the region immediately below the molten zone and leading to thermal activation of B, induced by the heat wave propagating into the Si wafer. This last process is characterized by an activation energy of 5 eV and is not accompanied by B diffusion. As a consequence, a deep tail of active B is produced, preventing the possibility to form abrupt and ultrashallow junctions. These results suggest that for the formation of ultrashallow junctions it is essential to combine ELA with ultralow energy ion implantation.

  18. Focused excimer laser initiated and radio frequency sustained plasma formation in high pressure air

    NASA Astrophysics Data System (ADS)

    Giar, Ryan

    A doctoral thesis project was performed to experimentally investigate the feasibility of focused excimer laser initiation of air plasmas for radio frequency sustainment. A 193 nm, 15 MW, 300 mJ laser was focused with a 18 cm focal length lens to form a small, high density (ne ~ 10 14 cm--3) seed plasma. These laser plasmas were produced inside a borosilicate glass tube around which was wrapped a 5 turn helical antenna. This antenna was powered with 5 kW of 13.56 MHz of radiation for 1.5 s. This was accomplished at a pressure of 22 Torr, resulting in a large volume (300 cm3) air plasma. Diagnostic measurements of this air plasma determined an electron density of 5E10 cm-3 and an electron temperature 1.3 eV with a neutral temperature of 3500 K. The collision frequency was measured to be 9E10 Hz which resulted in a plasma-loaded antenna resistance of 6 O with a voltage reflection coefficient of 0.7.

  19. Production excimer drilling process for producing micron exit holes in polyimide

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd; Ohar, Orest

    2006-02-01

    Producing micron level exit holes or vias interconnects for applications involving critical drug delivery and microelectronic packaging is no easy task. The design of excimer beam delivery optics, the physical system configuration, construction materials used and laser material interaction play significant roles in the ultimate process results. As a result of higher density microelectronic package designs and the critical nature of drug delivery, these processes need to be robust and repeatable to a 3σ level. Many companies who look to source new laser systems to meet these new demands come face to face with the reality of this dilemma. Matching laser process to material selection sets the stage for a successful integration, of most concern is the materials ability to resolve the features desired and the ease of cleaning the debris once the features are formed. This paper will present application specific laser beam delivery methods, focus/image stability techniques, beam shaping and inline inspection technology to stabilize such processes and present statistical and quality data on a process that was developed to form (1) one micron exit holes through 25 micron thick polyimide for a critical drug delivery application. The data will cover a 31 day period of processing.

  20. High-performance thin-film transistors fabricated using excimer laser processing and grain engineering

    SciTech Connect

    Giust, G.K.; Sigmon, T.W.

    1998-04-01

    High-performance polysilicon thin-film transistors (TFT`s) are fabricated using an excimer laser to recrystallize the undoped channel and dope the source-drain regions. Using a technique the authors call grain engineering they are able to control grain microstructure using laser parameters. Resulting polysilicon films are obtained with average grain sizes of {approximately}4--9 {micro}m in sub-100 nm thick polysilicon films without substrate heating during the laser recrystallization process. Using a simple four-mask self-aligned aluminum top-gate structure, they fabricate TFT`s in these films. By combining the grain-engineered channel polysilicon regions with laser-doped source-drain regions, TFT`s are fabricated with electron mobilities up to 260 cm{sup 2}/Vs and on/off current ratios greater than 10{sup 7} To their knowledge, these devices represent the highest performance laser-processed TFT`s reported to date fabricated without substrate heating or hydrogenation.

  1. Morphological and structural effects of excimer laser treatment of amorphous silicon

    PubMed

    Loreti; della Sala D; Garozzo

    2000-06-01

    The excimer laser irradiation of thin film amorphous silicon (a-Si) precursors on glass is a suitable method for obtaining high-performance polycrystalline silicon (p-Si) active layers for devices and circuits. By changing the experimental conditions, the recrystallization method generates a variety of microstructures that have direct impact on the material performance. An additional reason for microstructural characterization is introduced by the methods for spatially locating the recrystallization nuclei, used in more ergonomic concepts of device fabrication. Metal and SiO2 strip overlayers have been applied here, on a-Si to fix the position of the solidification seeds after laser melting. The control of many aspects of the thin film microstructure can be achieved with a collection of a few inspection techniques like AFM, SEM, EC contrast, TEM, X-ray diffraction (XRD), some of which require preliminary grain decoration treatment, and some do not. The results of different irradiation experiments, are herein illustrated, enlightened by the above characterization techniques, for providing information on surface morphology, grain arrangement, preferred orientation. PMID:10702980

  2. Beam pen lithography based on focused laser diode beam with single microlens fabricated by excimer laser.

    PubMed

    Hasan, Md Nazmul; Lee, Yung-Chun

    2015-02-23

    A method is proposed to minimize the focused spot size of an elliptically-diverging laser diode beam by means of a circular aperture and a single plano-convex aspherical microlens. The proposed microlens is fabricated using an excimer laser dragging method and has two different profiles in the x- and y-axis directions. The focused spot size of the beam is examined both numerically and experimentally. The feasibility of the proposed approach for beam pen lithography applications is demonstrated by patterning dotted, straight-line and spiral features on a photo resist layer followed by thin gold layer deposition and metal lift-off. The minimum feature size for dotted pattern is around 2.57 μm, while the minimum line-widths for straight-line and spiral pattern are 3.05 μm and 4.35 μm, respectively. Thus, the technique can be applied to write any arbitrary pattern for high-resolution lithography. PMID:25836486

  3. Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps

    SciTech Connect

    Belasri, A.; Harrache, Z.

    2010-12-15

    A pulsed dielectric-barrier discharge in xenon has been simulated for operating conditions typical to excimer lamps, in which the discharge is considered spatially homogeneous. The computer model developed is based on the xenon plasma chemistry, the circuit, and the Boltzmann equations. First, the validity of the physical model was checked and compared to experimental and theoretical works, and then the model is applied in the case of a sinusoidal voltage at period frequencies in the range of 50 kHz-2 MHz. The results obtained with the present description are in good agreement with experimental measurements and one-dimensional fluid prediction in terms of electrical characteristics and vacuum ultraviolet (vuv) emission. The effect of operation voltage, power source frequency, dielectric capacitance, as well as gas pressure on the discharge efficiency and the 172, 150, and 147 nm photon generation, under the typical experimental operating conditions and for the case of a sinusoidal applied voltage, have been investigated and discussed. Calculations suggest that the overall conversion efficiency from electrical energy to vuv emission in the lamp is greater than 38%, and it will be very affected at high power source frequency and high gas pressure with a significant dependence on the dielectric capacitance.

  4. Excimer versus Femtosecond Laser Assisted Penetrating Keratoplasty in Keratoconus and Fuchs Dystrophy: Intraoperative Pitfalls

    PubMed Central

    El-Husseiny, Moatasem; Seitz, Berthold; Langenbucher, Achim; Akhmedova, Elena; Szentmary, Nora; Hager, Tobias; Tsintarakis, Themistoklis; Janunts, Edgar

    2015-01-01

    Purpose. To assess the intraoperative results comparing two non-mechanical laser assisted penetrating keratoplasty approaches in keratoconus and Fuchs dystrophy. Patients and Methods. 68 patients (age 18 to 87 years) with keratoconus or Fuchs dystrophy were randomly distributed to 4 groups. 35 eyes with keratoconus and 33 eyes with Fuchs dystrophy were treated with either excimer laser ([Exc] groups I and II) or femtosecond laser-assisted ([FLAK] groups III and IV) penetrating keratoplasty. Main intraoperative outcome measures included intraoperative decentration, need for additional interrupted sutures, alignment of orientation markers, and intraocular positive pressure (vis a tergo). Results. Intraoperative recipient decentration occurred in 4 eyes of groups III/IV but in none of groups I/II. Additional interrupted sutures were not necessary in groups I/II but in 5 eyes of groups III/IV. Orientation markers were all aligned in groups I/II but were partly misaligned in 8 eyes of groups III/IV. Intraocular positive pressure grade was recognized in 12 eyes of groups I/II and in 19 eyes of groups III/IV. In particular, in group III, severe vis a tergo occurred in 8 eyes. Conclusions. Intraoperative decentration, misalignment of the donor in the recipient bed, and need for additional interrupted sutures as well as high percentage of severe intraocular positive pressure were predominantly present in the femtosecond laser in keratoconus eyes. PMID:26483974

  5. Post-growth annealing of germanium-tin alloys using pulsed excimer laser

    SciTech Connect

    Wang, Lanxiang; Wang, Wei; Zhou, Qian; Yeo, Yee-Chia; Pan, Jisheng; Zhang, Zheng; Tok, Eng Soon

    2015-07-14

    We investigate the impact of pulsed excimer laser anneal on fully strained germanium-tin alloys (Ge{sub 1−x}Sn{sub x}) epitaxially grown on Ge substrate by molecular beam epitaxy. Using atomic force microscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy, the morphological and compositional evolution of Ge{sub 1−x}Sn{sub x} with Sn content up to 17% after annealing using various conditions is studied. Ge{sub 0.83}Sn{sub 0.17} samples annealed at 80 mJ/cm{sup 2} or 150 mJ/cm{sup 2} have no observable changes with respect to the as-grown sample. However, Ge{sub 0.83}Sn{sub 0.17} samples annealed at 250 mJ/cm{sup 2} or 300 mJ/cm{sup 2} have Sn-rich islands on the surface, which is due to Sn segregation in the compressively strained epitaxial film. For Ge{sub 0.89}Sn{sub 0.11}, significant Sn redistribution occurs only when annealed at 300 mJ/cm{sup 2}, indicating that it has better thermal stability than Ge{sub 0.83}Sn{sub 0.17}. A mechanism is proposed to explain the formation of Sn-rich islands and Sn-depleted regions.

  6. Pulsed laser deposition of polyhydroxybutyrate biodegradable polymer thin films using ArF excimer laser

    NASA Astrophysics Data System (ADS)

    Kecskemeti, G.; Smausz, T.; Kresz, N.; Tóth, Zs.; Hopp, B.; Chrisey, D.; Berkesi, O.

    2006-11-01

    We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF ( λ = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm -2. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm -2), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence ( λ ˜ 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.

  7. Modeling of multi filament discharges in dielectric barrier discharge excimer lamp

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Oda, Akinori; Sakai, Yosuke

    2004-09-01

    Filamental discharges in Dielectric Barrier Discharge(DBD) excimer lamp has been simulated using two dimensional fluid model. 300Torr Xe gas was used and the gap length of 1cm, the thickness of 0.2cm dielectric barriers, radial length of 1cm and 200kHz driving frequency are used. And periodical boundary condition is taken for the radial direction boundary. A small electron-ion density cluster is provided in the middle of the gap for initial condition. At the beginning, the discharge starts from one filament, then the number of filaments becomes three. These filaments are formed self-consistently, and found to be stable in the present condition. In this discharge, there are two discharge modes in the filament discharge development, streamer discharge and surface discharge. In the streamer discharge period, the filaments are formed in the bulk region. And the streamer heads reached at the cathode at the same time. Then, the discharge expands toward radially by the surface discharge. The surface discharge stops expanding by colliding with other surface discharges of other filaments. This surface discharge influence on the current waveform significantly and this makes flat part in the discharge current.

  8. Irradiation planning for automated treatment of psoriasis with a high-power excimer laser

    NASA Astrophysics Data System (ADS)

    Klämpfl, Florian; Schmidt, Michael; Hagenah, Hinnerk; Görtler, Andreas; Wolfsgruber, Frank; Lampalzer, Ralf; Kaudewitz, Peter

    2006-02-01

    American and European statistics have shown that 1-2 per cent of the human population is affected by the skin disease psoriasis. Recent research reports promising treatment results when irradiating skin areas affected by psoriasis with high powered excimer lasers with a wavelength of 308 nm. In order to apply the necessary high energy dose without hurting healthy parts of the skin new approaches regarding the system technology must be considered. The aim of the current research project is the development of a sensor-based, automated laser treatment system for psoriasis. In this paper we present the algorithms used to cope with the diffculties of irradiating irregularly shaped areas on curved surfaces with a predefined energy level using a pulsed laser. Patients prefer the treatment to take as little time as possible. This also helps to reduce costs. Thus the distribution of laser pulses on the surface to achieve the given energy level on every point of the surface has to be calculated within a limited time frame. The remainder of the paper will describe in detail an efficient method to plan and optimize the laser pulse distribution. Towards the end, some first results will be presented.

  9. Characteristics of excitation discharge of an excimer laser in gas density depletion

    NASA Astrophysics Data System (ADS)

    Imada, Go; Masuda, Wataru; Yatsui, Kiyoshi

    1998-12-01

    The influences of gas density depletion on the highly- repetitive, high-pressure, pulsed glow discharge for excitation of excimer laser have been investigated eliminating the other instabilities, such as shock waves, residual ions, discharge products and electrode heating. The gas density depletion is simulated by utilizing a subsonic flow between the curved electrodes. The comparison has been made on the discharge occurred in the presence of the gas density depletion with the second discharge on the double-pulse experiment. We have found that the big gas density non uniformity, (Delta) (rho) /(rho) 0 approximately 3.6% corresponding to a pulse repetition rate (PRR) of approximately 20 Hz, tends to cause the arc discharge without the shocks, ions, discharge products and electrode heating. On the other hand, the second discharge on the double-pulse experiment becomes arc discharge in much smaller non uniformity ((Delta) (rho) /(rho) 0 approximately 1.2% corresponding to PRR approximately 3 Hz). The arc discharge in the double-pulse experiment might be driven by the residual ions and/or discharge products other than gas density depletion except for PRR greater than 20 Hz.

  10. Keeping Hearts Pumping

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A collaboration between NASA, Dr. Michael DeBakey, Dr. George Noon, and MicroMed Technology, Inc., resulted in a life-saving heart pump for patients awaiting heart transplants. The MicroMed DeBakey VAD functions as a "bridge to heart transplant" by pumping blood throughout the body to keep critically ill patients alive until a donor heart is available. Weighing less than 4 ounces and measuring 1 inch by 3 inches, the pump is approximately one-tenth the size of other currently marketed pulsatile VADs. This makes it less invasive and ideal for smaller adults and children. Because of the pump's small size, less than 5 percent of the patients implanted developed device-related infections. It can operate up to 8 hours on batteries, giving patients the mobility to do normal, everyday activities.The MicroMed DeBakey VAD is a registered trademark of MicroMed Technology, Inc.

  11. Pressurized Vessel Slurry Pumping

    SciTech Connect

    Pound, C.R.

    2001-09-17

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air.

  12. GAS METERING PUMP

    DOEpatents

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  13. Direct nuclear pumped laser

    DOEpatents

    Miley, George H.; Wells, William E.; DeYoung, Russell J.

    1978-01-01

    There is provided a direct nuclear pumped gas laser in which the lasing mechanism is collisional radiated recombination of ions. The gas laser active medium is a mixture of the gases, with one example being neon and nitrogen.

  14. Tribology of hydraulic pumps

    SciTech Connect

    Yamaguchi, A.

    1997-12-31

    To obtain much higher performance than that of alternative power transmission systems, hydraulic systems have been continuously evolving to use high-pressure. Adoption of positive displacement pumps and motors is based on this reason. Therefore, tribology is a key terminology for hydraulic pumps and motors to obtain excellent performance and durability. In this paper the following topics are investigated: (1) the special feature of tribology of hydraulic pumps and motors; (2) indication of the important bearing/sealing parts in piston pumps and effects of the frictional force and leakage flow to performance; (3) the methods to break through the tribological limitation of hydraulic equipment; and (4) optimum design of the bearing/sealing parts used in the fluid to mixed lubrication regions.

  15. An artificial molecular pump.

    PubMed

    Cheng, Chuyang; McGonigal, Paul R; Schneebeli, Severin T; Li, Hao; Vermeulen, Nicolaas A; Ke, Chenfeng; Stoddart, J Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration. PMID:25984834

  16. Absorption heat pump system

    DOEpatents

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Underground pumped hydroelectric storage

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Kannberg, L. D.

    1984-07-01

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-velocity requirements of a greater metropolitan area with population of 1 million or more.

  18. An artificial molecular pump

    NASA Astrophysics Data System (ADS)

    Cheng, Chuyang; McGonigal, Paul R.; Schneebeli, Severin T.; Li, Hao; Vermeulen, Nicolaas A.; Ke, Chenfeng; Stoddart, J. Fraser

    2015-06-01

    Carrier proteins consume fuel in order to pump ions or molecules across cell membranes, creating concentration gradients. Their control over diffusion pathways, effected entirely through noncovalent bonding interactions, has inspired chemists to devise artificial systems that mimic their function. Here, we report a wholly artificial compound that acts on small molecules to create a gradient in their local concentration. It does so by using redox energy and precisely organized noncovalent bonding interactions to pump positively charged rings from solution and ensnare them around an oligomethylene chain, as part of a kinetically trapped entanglement. A redox-active viologen unit at the heart of a dumbbell-shaped molecular pump plays a dual role, first attracting and then repelling the rings during redox cycling, thereby enacting a flashing energy ratchet mechanism with a minimalistic design. Our artificial molecular pump performs work repetitively for two cycles of operation and drives rings away from equilibrium toward a higher local concentration.

  19. Advanced heat pump

    NASA Astrophysics Data System (ADS)

    Ashley, Joseph L.; Matthews, John D.

    1989-09-01

    This patent application discloses a heat pump which includes a first packed bed of liquid desiccant for removing moisture from outside air in the heating mode of operation, and a pump for transferring the moisture laden desiccant to a second packed bed which humidifies condenser heated inside air by adding water vapor to the air. The first packed bed, by removing moisture from the outside air before it passes through the heat pump's evaporator coils, prevents frost from forming on the coils. In the cooling mode of operation the second packed bed of liquid desiccant removes water vapor from the air inside of the building. The moisture laden desiccant is then transferred to the first packed bed by a second pump where condenser heat transfers the moisture from the desiccant to outside air.

  20. Using a Breast Pump

    MedlinePlus

    ... check the outside of the box for a customer service line you can call to request a ... your pump continues to leak, call the manufacturer’s customer service line for help. When you have finished ...