Science.gov

Sample records for pumped polarized jet

  1. Jet pump assisted artery

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  2. Jet pump with labyrinth seal

    SciTech Connect

    Chi, L.L.; Kudirka, A.A.

    1981-08-25

    In a jet pump for a nuclear reactor a slip joint is provided between the mixer and diffuser sections thereof to facilitate jet pump maintenance and to allow thermal expansion. To limit leakage flow through the slip joint to a rate below that which causes unacceptable flow induced vibration of the pump, there is provided a labyrinth seal for the slip joint in the form of a series of flow expansion chambers formed by a series of spaced grooves in the annulus of the slip joint.

  3. Experiment on performance of adjustable jet pump

    NASA Astrophysics Data System (ADS)

    Zhu, J. M.; Long, X. P.; Zhang, S. B.; Lu, X.

    2012-11-01

    When the water level of upper or lower reaches of hydraulic power station changes, the adjustable jet pump which is different from traditional fixed jet pump can maintain stable pressure and flow rate for the system of technical water supply of hydraulic power plant. The model test indicates that the efficiency of the adjustable jet pump is slightly lower than fixed jet pump near rating operation point. With the decrease of opening degree, both efficiencies are more and more close to each other. The fundamental performance of I-type adjustable jet pump is better than II-type and the cavitation performance of I-type adjustable jet pump is worse than II-type. Test data also indicate that the performance of adjustable jet pump is very different from fixed jet pump, so the theory of fixed jet pump is not able to be copied to adjustable jet pump. It is necessary to farther study on the performance of the adjustable jet pump. This paper has reference value for analogous design of system of circulation water supply to turbine units in hydraulic power station.

  4. Left ventricular assist using a jet pump.

    PubMed

    Rhee, K; Blackshear, P L

    1990-01-01

    A simple, effective, cardiac assist device was developed using a jet pump, a device that performs pumping by energy transfer from a high speed jet to low speed surrounding fluids. This jet pump is inserted retrograde through the aorta and placed in the left ventricle transvalvularly. The jet of oxygenated venous blood entrains blood inside the left ventricle and pumps into the aorta through the aortic valve. Jet velocity is kept below the hemolytic threshold of 1000 cm/sec. The device was placed in a mock circulatory system that stimulates the left ventricle and vascular system by generating a pressure wave (120/75 mmHg) with a 4 L/min cardiac output (CO). A bypass loop (from the venous reservoir to aorta using a Biomedicus pump, Biomedicus Inc., Eden Prairie, MN) was set up, and the jet pump was installed. When the jet pump is turned on, bypass flow rate (BF) is 2.5 L/min, entrainment pumping 1.5 L/min, and peak ventricular pressure (VP) falls below aortic pressure (AP), while maintaining the mean AP. Time tension index (TTI) is decreased 31%. This result, when compared with simple bypass at differing BF, shows more than a 20% reduction in TTI. This simple jet pump provided significant unloading of the left ventricle and may be potentially useful as a left ventricular assist device. PMID:2252738

  5. Solar-thermal jet pumping for irrigation

    NASA Astrophysics Data System (ADS)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  6. Jet pump assisted arterial heat pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1978-01-01

    This paper discusses the concept of an arterial heat pipe with a capillary driven jet pump. The jet pump generates a suction which pumps vapor and noncondensible gas from the artery. The suction also forces liquid into the artery and maintains it in a primed condition. A theoretical model was developed which predicts the existence of two stable ranges. Up to a certain tilt the artery will prime by itself once a heat load is applied to the heat pipe. At higher tilts, the jet pump can maintain the artery in a primed condition but self-priming is not possible. A prototype heat pipe was tested which self-primed up to a tilt of 1.9 cm, with a heat load of 500 watts. The heat pipe continued to prime reliably when operated as a VCHP, i.e., after a large amount of noncondensible gas was introduced.

  7. Collisional pumping in polarized sodium vapor

    SciTech Connect

    Kaplan, S.N.; pyle, R.V.; Ruby, L.; Schlachter, A.S.; Stearns, J.W.; Anderson, L.W.

    1986-01-01

    Collisional pumping has been proposed as a mechanism for efficient transfer of spin from an electron-spin-polarized target to the nuclei of a fast atom or ion beam. Collisional pumping takes place in low magnetic fields, can give polarization transfer approaching 100%, and offers the potential for producing polarized beams orders of magnitude more intense than presently achieved. Recently reported calculations of electronic spin-exchange cross sections at useful ion-source energies suggest significantly greater rates of pumping than first estimated, and give cause for increased optimism about sucessful implementation. Collisional pumping is described, and beam characteristics are given for prototype polarized source parameters.

  8. An acoustic streaming instability in thermoacoustic devices utilizing jet pumps.

    PubMed

    Backhaus, S; Swift, G W

    2003-03-01

    Thermoacoustic-Stirling hybrid engines and feedback pulse tube refrigerators can utilize jet pumps to suppress streaming that would otherwise cause large heat leaks and reduced efficiency. It is desirable to use jet pumps to suppress streaming because they do not introduce moving parts such as bellows or membranes. In most cases, this form of streaming suppression works reliably. However, in some cases, the streaming suppression has been found to be unstable. Using a simple model of the acoustics in the regenerators and jet pumps of these devices, a stability criterion is derived that predicts when jet pumps can reliably suppress streaming. PMID:12656366

  9. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, James R. (Inventor)

    1987-01-01

    The invention does away with the necessity of moving parts such as a check valve in a nuclear reactor cooling system. Instead, a jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A main flow exists for a reactor coolant. A point of withdrawal is provided for a secondary flow. A TEMP, responsive to the heat from said coolant in the secondary flow path, automatically pumps said withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature where the heat is no longer a problem. At this lower temperature, the TEMP/jet pump combination ceases its circulation boosting operation. When the nuclear reactor is restarted and the coolant again exceeds the lower temperature setting, the TEMP/jet pump automatically resumes operation. The TEMP/jet pump combination is thus automatic, self-regulating and provides an emergency pumping system free of moving parts.

  10. Gluon Polarization and Jet Production at STAR

    SciTech Connect

    Djawotho, Pibero

    2009-12-17

    I will discuss the most recent measurements of the inclusive jet longitudinal spin asymmetry A{sub LL} in polarized proton-proton collisions. STAR collected its largest data sample thus far, 4.7 pb{sup -1} of integrated luminosity at an average beam polarization of {approx}57%, during the 2006 run at a center-of-mass energy of 200 GeV. I will also present previous STAR inclusive jet A{sub LL} and cross section measurements. The results are compared with theoretical calculations of A{sub LL} based on polarized distribution functions in the nucleon with a range of different contributions from the gluon polarization, {delta}G. The STAR data place significant constraints on {delta}G for 0.02

  11. Flow Analysis for Single and Multi-Nozzle Jet Pump

    NASA Astrophysics Data System (ADS)

    Narabayashi, Tadashi; Yamazaki, Yukitaka; Kobayashi, Hidetoshi; Shakouchi, Toshihiko

    Jet pumps, driven by a Primary-Loop Recirculation (PLR) Pump, have been widely used in Boiling Water Reactor (BWR) plants to recirculate the reactor core coolant. A jet pump consists of a driving nozzle, a bell-mouth, a throat and a diffuser. The improvement of the jet pump efficiency for BWR plants brings an economic advantage because it reduces the operating power cost of the PLR pump. In order to improve the efficiency of the BWR jet pump, a 1/5 scale jet pump test loop for BWR plant was used and intensive tests were conducted focusing on the types of driving nozzles and shapes of the throat. These test data were used for CFD flow analysis code verification. The analytical data showed good agreement with the test results. After the analytical model verification, improvement of jet pump efficiency was conducted. It was shown by the CFD analysis that the peak efficiency of the improved jet pump will be 36% with the tapered throat.

  12. Characteristics of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  13. Liquid jet pumps for two-phase flows

    SciTech Connect

    Cunningham, R.G.

    1995-06-01

    Isothermal compression of a bubbly secondary fluid in a mixing-throat and diffuser is described by a one-dimensional flow model of a liquid-jet pump. Friction-loss coefficients used in the four equations may be determined experimentally, or taken from the literature. The model reduces to the liquid-jet gas compressor case if the secondary liquid is zero. Conversely, a zero secondary-gas flow reduces the liquid-jet gas and liquid (LJGL) model to that of the familiar liquid-jet liquid pump. A ``jet loss`` occurs in liquid-jet pumps if the nozzle tip is withdrawn from the entrance plane of the throat, and jet loss is included in the efficiency equations. Comparisons are made with published test data for liquid-jet liquid pumps and for liquid-jet gas compressors. The LJGL model is used to explore jet pump responses to two-phase secondary flows, nozzle-to-throat area ratio, and primary-jet velocity. The results are shown in terms of performance curves versus flow ratios. Predicted peak efficiencies are approximately 50 percent. Under sever operating conditions, LJGL pump performance curves exhibit maximum-flow ratios or cut-offs. Cut-offs occurs when two-phase secondary-flow steams attain sonic values at the entry of the mixing throat. A dimensionless number correlates flow-ratio cut-offs with pump geometry and operating conditions. Throat-entry choking of the secondary flow can be predicted, hence avoided, in designing jet pumps to hand two-phase fluids.

  14. Jet pump-drive system for heat removal

    NASA Technical Reports Server (NTRS)

    French, J. R. (Inventor)

    1985-01-01

    A jet pump, in combination with a TEMP, is employed to assure safe cooling of a nuclear reactor after shutdown. A TEMP, responsive to the heat from the coolant in the secondary flow path, automatically pumps the withdrawn coolant to a higher pressure and thus higher velocity compared to the main flow. The high velocity coolant is applied as a driver flow for the jet pump which has a main flow chamber located in the main flow circulation pump. Upon nuclear shutdown and loss of power for the main reactor pumping system, the TEMP/jet pump combination continues to boost the coolant flow in the direction it is already circulating. During the decay time for the nuclear reactor, the jet pump keeps running until the coolant temperature drops to a lower and safe temperature. At this lower temperature, the TEMP/jet jump combination ceases its circulation boosting operation. The TEMP/jet pump combination is automatic, self-regulating and provides an emergency pumping system free of moving parts.

  15. Jet Boost Pumps For The Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Meng, Sen Y.

    1991-01-01

    Brief report proposes use of jet boost pumps in conjunction with main pumps supplying liquid hydrogen and liquid oxygen to main engine of Space Shuttle. Main part of pump has no moving parts. Benefits include increased reliability, simplified ducts, and decreased weight.

  16. Development of a jet pump-assisted arterial heat pipe

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.; Ducao, A. S.; Trimmer, D. S.

    1977-01-01

    The development of a jet pump assisted arterial heat pipe is described. The concept utilizes a built-in capillary driven jet pump to remove vapor and gas from the artery and to prime it. The continuous pumping action also prevents depriming during operation of the heat pipe. The concept is applicable to fixed conductance and gas loaded variable conductance heat pipes. A theoretical model for the jet pump assisted arterial heat pipe is presented. The model was used to design a prototype for laboratory demonstration. The 1.2 m long heat pipe was designed to transport 500 watts and to prime at an adverse elevation of up to 1.3 cm. The test results were in good agreement with the theoretical predictions. The heat pipe carried as much as 540 watts and was able to prime up to 1.9 cm. Introduction of a considerable amount of noncondensible gas had no adverse effect on the priming capability.

  17. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J. Warren; Kaplan, Selig N.; Pyle, Robert V.; Anderson, L. Wilmer; Ruby, Lawrence; Schlachter, Alfred S.

    1988-01-01

    Method and apparatus for highly polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and also generating a thick electron-spin-polarized medium positioned as a target for the beam. The target is made sufficiently thick to allow the beam to interact with the medium to produce collisional pumping whereby the beam becomes highly polarized.

  18. Oscillatory flow in jet pumps: nonlinear effects and minor losses.

    PubMed

    Petculescu, A; Wilen, L A

    2003-03-01

    A nonresonant, lumped-element technique is used to investigate the behavior of tapered cylindrical flow constrictions (jet pumps) in the nonlinear oscillatory flow regime. The array of samples studied spans a wide range of inlet curvature radii and taper angles. By measuring the rectified steady pressure component developed across a jet pump as well as the acoustic impedance, the minor loss coefficients for flow into and out of the narrow end of the jet pump are determined. These coefficients are found to be relatively insensitive to all but the smallest curvature radii (i.e., sharp edges). For fixed radius of curvature, the inflow minor loss coefficient increases with increasing taper angle while the outflow coefficient remains relatively constant. For all of the samples, the steady flow minor loss coefficients are also measured and compared to their oscillatory flow counterparts. The agreement is good, confirming the so-called Iguchi hypothesis. PMID:12656363

  19. Experimental studies on an air-air jet exhaust pump

    SciTech Connect

    Chou, S.K.

    1986-01-01

    Industrial ventilation employing an air-air jet exhaust pump connected to a compressed-air line was investigated. The motive air supply pressure was maintained between 2 and 3 bar. A unique ejector housing was constructed to receive both the convergent-divergent primary nozzle and the mixing chamber. The entire unit adapts readily to any existing compressed-air system. The mixing chamber was so constructed that the length of its cylindrical section may be changed. Pressure variations along the mixing chamber were recorded, and this offered a valuable appreciation of the effects of the length-to-diameter ratios. Results indicate the influence of the supply air pressure and pressure ratio on the jet entrainment capacity and efficiency. It has also been shown that the present design is capable of achieving the maximum reported jet-pump efficiency of around 25% corresponding to a nozzle-to-mixing chamber area ratio of 0.15.

  20. Polarization of fast particle beams by collisional pumping

    DOEpatents

    Stearns, J.W.; Kaplan, S.N.; Pyle, R.V.; Anderson, L.W.; Schlachter, A.S.; Ruby, L.

    1984-10-19

    The invention relates to method and apparatus for polarizing a fast beam of particles by collisional pumping, including generating a fast beam of particles, and generating a thick electron-spin-polarized medium positioned as a target for said beam, said medium being sufficiently thick to allow said beam to interact with said medium to produce collisional pumping whereby said particle beam becomes highly polarized.

  1. Retrieval Pump Flexible Suction Hose Dynamic Response Induced by Impact of a Mixer Pump Jet

    SciTech Connect

    Enderlin, C.W.; Terrones, G.; Bamberger, J.A.; White, M.; Combs, W.H.

    1999-10-07

    Experiments were conducted to investigate whether it may be feasible to simultaneously mix and retrieve radioactive waste slurries that are stored in million-gallon, double-shell tanks at the Hanford Site in Richland, Washington. Oscillating mixer pumps, located near the floor of these tanks, are used to mobilize and mix the slurry prior to retrieval. Operational scenarios that may be beneficial for retrieval may require simultaneous operation of a decant/transfer pump and the jet mixer pumps. The effects of jet-induced agitation and jet impingement upon the decant/transfer pump's flexible suction hose have not previously been experimentally evaluated. Possible effects of the jet impacting the hose include hose fatigue, hose collision or entanglement with other structures, and induced static and dynamic loads on the decant/transfer pump equipment. The objective of this work was to create operating conditions in a test tank that produce a dynamic response (in the flexible suction hose upon impingement from an above-floor jet) that is similar to that anticipated in the actual tank. A scaling analysis was conducted to define the interactions between the jet, the tank floor and the suction hose. The complexity of scaling the multi-layer flexible hose (matching its hydroelastic parameters at full and 1/4-scale) led to an alternate approach, that of matching the expected full-scale forces on the full-scale hose in the scaled tank. Two types of tests were conducted: characterization of the jet velocity profile in the test tank at two axial locations from the nozzle and observation of the motion induced in the flexible retrieval hose from impact by the jet. The velocity profile of the jet in the test tank was measured to compare the measured profiles with profile predictions for an above-floor jet. These data were used to obtain a refined estimate of the velocity profile and therefore, the force acting upon the test article at a particular location in the tank. The hose

  2. POLARIZED HYDROGEN JET TARGET FOR MEASUREMENT OF RHIC PROTON BEAM POLARIZATION.

    SciTech Connect

    MAKDISI,Y.; WISE,T.; CHAPMAN,M.; GRAHAM,D.; KPONOU,A.; MAHLER,G.; MENG,W.; NASS,A.; RITTER,J.

    2005-01-28

    The performance and unique features of the RHIC polarized jet target and our solutions to the important design constraints imposed on the jet by the RHIC environment are described. The target polarization and thickness were measured to be 0.924 {+-} 2% and 1.3 {+-} 0.2 x 10{sup 12} atoms/cm{sup 2} respectively.

  3. Jet mixer pump testing in Hanford Tank 241-SY-101

    SciTech Connect

    Stewart, C.W.

    1994-11-01

    A mixer pump was found effective in controlling and possibly eliminating large episodic flammable gas releases from Hanford Tank 241-SY-101. A gas release event (GRE) is initiated when the gas-bearing sludge layer accumulates sufficient gas to become buoyant. The buoyant sludge pulls free from the surrounding material and rises through the surface crust releasing the trapped gas to the dome space. Mixer pump operation is intended to keep enough of the gas-generating material in suspension so that it releases gas continuously instead of periodically in large, potentially dangerous GREs. A mixer pump was installed in the tank on July 3, 1993, seven days after a typical GRE that met the safety criteria for pump installation. Because nozzle plugging did occur, bump speed and duration were increased, eventually arriving at the accepted five-minute period at 1000 rpm on July 26. There has been no nozzle plugging since. Bumping was initially performed twice daily through mid-August and once daily until the start of Phase B testing. By the end of Phase B, thrice-weekly bumping during non-testing periods became the rule. The jets were aimed into previously undisturbed material and gas release induced by the pump increased immediately. In November, the pump was indexed progressively around the entire tank in 30{degrees} steps. This steadily released a large quantity of retained gas at each position and reduced the waste level to 400 inches, the minimum level in many years. By December, the jets had apparently excavated most of the gas-bearing sludge within reach, because only modest gas releases and essentially no level change occurred after pump operation. For the rest of Phase B testing, there were no large gas releases that would suggest a large volume of unmixed waste. The two thermocouple trees showed a uniform vertical temperature profile. In the month following Phase B, minimal pump operation apparently maintained most of the mixing achieved during testing.

  4. Modeling polarization reversal in optically pumped rubidium vapors

    NASA Astrophysics Data System (ADS)

    Dreiling, J. M.; Norrgard, E.; Gay, T. J.

    2010-03-01

    Rubidium atoms can be polarized by optical pumping with a resonant circularly polarized laser beam. Using Faraday rotation polarimetry [1], we have observed a flip in the sign of the Rb electron polarization when the wavelength of the pump laser is varied over the D1 absorption spectrum. This could occur if F < (I + J) states with MF = F are predominantly populated at specific pump frequencies resulting in different spin polarizations. We have used a simple rate equation model to estimate the final electron polarization under the assumption that we are able to pump only one F transition at a time. The results of these calculations will be presented. [4pt] [1] H. Batelaan, A.S. Green, B.A. Hitt, and T.J. Gay, Phys. Rev. Lett. 82, 4216 (1999).

  5. Polarization insensitive all-optical wavelength conversion of polarization multiplexed signals using co-polarized pumps.

    PubMed

    Anthur, Aravind P; Zhou, Rui; O'Duill, Sean; Walsh, Anthony J; Martin, Eamonn; Venkitesh, Deepa; Barry, Liam P

    2016-05-30

    We study and experimentally validate the vector theory of four-wave mixing (FWM) in semiconductor optical amplifiers (SOA). We use the vector theory of FWM to design a polarization insensitive all-optical wavelength converter, suitable for advanced modulation formats, using non-degenerate FWM in SOAs and parallelly polarized pumps. We demonstrate the wavelength conversion of polarization-multiplexed (PM)-QPSK, PM-16QAM and a Nyquist WDM super-channel modulated with PM-QPSK signals at a baud rate of 12.5 GBaud, with total data rates of 50 Gbps, 100 Gbps and 200 Gbps respectively. PMID:27410100

  6. Jet Pump Design Optimization by Multi-Surrogate Modeling

    NASA Astrophysics Data System (ADS)

    Mohan, S.; Samad, A.

    2015-01-01

    A basic approach to reduce the design and optimization time via surrogate modeling is to select a right type of surrogate model for a particular problem, where the model should have better accuracy and prediction capability. A multi-surrogate approach can protect a designer to select a wrong surrogate having high uncertainty in the optimal zone of the design space. Numerical analysis and optimization of a jet pump via multi-surrogate modeling have been reported in this work. Design variables including area ratio, mixing tube length to diameter ratio and setback ratio were introduced to increase the hydraulic efficiency of the jet pump. Reynolds-averaged Navier-Stokes equations were solved and responses were computed. Among different surrogate models, Sheppard function based surrogate shows better accuracy in data fitting while the radial basis neural network produced highest enhanced efficiency. The efficiency enhancement was due to the reduction of losses in the flow passage.

  7. A Study of Radio Polarization in Protostellar Jets

    NASA Astrophysics Data System (ADS)

    Cécere, Mariana; Velázquez, Pablo F.; Araudo, Anabella T.; De Colle, Fabio; Esquivel, Alejandro; Carrasco-González, Carlos; Rodríguez, Luis F.

    2016-01-01

    Synchrotron radiation is commonly observed in connection with shocks of different velocities, ranging from relativistic shocks associated with active galactic nuclei, gamma-ray bursts, or microquasars, to weakly or non-relativistic flows such as those observed in supernova remnants. Recent observations of synchrotron emission in protostellar jets are important not only because they extend the range over which the acceleration process works, but also because they allow us to determine the jet and/or interstellar magnetic field structure, thus giving insights into the jet ejection and collimation mechanisms. In this paper, we compute for the first time polarized (synchrotron) and non-polarized (thermal X-ray) synthetic emission maps from axisymmetrical simulations of magnetized protostellar jets. We consider models with different jet velocities and variability, as well as a toroidal or helical magnetic field. Our simulations show that variable, low-density jets with velocities of ˜1000 km s-1 and ˜10 times lighter than the environment can produce internal knots with significant synchrotron emission and thermal X-rays in the shocked region of the leading bow shock moving in a dense medium. While models with a purely toroidal magnetic field show a very large degree of polarization, models with a helical magnetic field show lower values and a decrease of the degree of polarization, in agreement with observations of protostellar jets.

  8. Numerical Simulation of Cavitation Characteristics for Pump-jet Propeller

    NASA Astrophysics Data System (ADS)

    Shi, Yao; Pan, Guang; Huang, Qiaogao; Du, Xiaoxu

    2015-09-01

    With k — ε turbulent model, non-cavitating performance of a pump-jet propeller was obtained by calculating RANS equations. The comparison between calculation results and experiment data shown that the numerical model and method was reliable. The cavitating hydrodynamic performance of it was calculated and analyzed with mixture homogeneous flow cavitation model based on Rayleigh-Plesset equations and sliding mesh. The effects of different inlet velocity ratio, cavitation number and flow velocity on cavitation characteristics of pump-jet were studied. When the cavitation occurred on the blades, the propeller thrust and torque decreased significantly, thereby causing open water efficiency reduced 15%. For the same cavitation number, as the inlet velocity ratio decreased, the pump-jet propeller blade cavitation phenomenon was more obvious. While for the same ratio, the smaller the number of cavitation, cavitation phenomenon was more remarkable. The more significant was that while the cavitation number was greater than a certain value, the blade cavitation phenomenon disappeared.

  9. TOWARDS 100% POLARIZATION IN THE OPTICALLY-PUMPED POLARIZED ION SOURCE.

    SciTech Connect

    ZELENSKI,A.; ALESSI, J.; KOKHANOVSKI, S.; KPONOU, A.; RITTER, B.J.; ZUBETS, V.

    2007-06-25

    The depolarization factors in the multi-step spin-transfer polarization technique and basic limitations on maximum polarization in the OPPIS (Optically-Pumped Polarized H{sup -} Ion Source) are discussed. Detailed studies of polarization losses in the RHIC OPPIS and the source parameters optimization resulted in the OPPIS polarization increase to 86-90%. This contributed to increasing polarization in the AGS and RHIC to 65-70%.

  10. UV and Soft X-ray Polar Coronal Jets

    NASA Astrophysics Data System (ADS)

    Dobrzycka, D.; Raymond, J. C.; Cranmer, S. R.; Li, J.

    2002-01-01

    Coronal jets are spectacular dynamic events originating from different structures in the solar corona. Jetlike phenomena were observed by various instruments aboard SOHO, and the X--ray jets were discovered by Yohkoh's soft X--ray telescope (SXT). The relation among the different types of jets is still not yet clear. We present ultraviolet spectroscopy of polar coronal jets obtained by the Ultraviolet Coronagraph Spectrometer (UVCS/SOHO) at heights in the corona ranging from 1.5 Rodot to 2.5 Rodot. The jets appear to originate near flaring ultraviolet bright points within polar coronal holes and were recorded by UVCS as a significant enhancement in the integrated intensities of the strongest coronal emission lines: mainly H I Ly alpha and O VI lambda lambda 1032,1037. A number of the detected jets are correlated with EIT Fe XII 195Å and LASCO C2 white-light events. Our modeling of the jet's observable properties provided estimates of the jet plasma conditions, as well as the initial electron temperature and heating rate required to reproduce the observed O VI ionization state. We discuss possible relationship between the polar ultraviolet and X--ray jets based on the results of coordinated SXT and UVCS observations in December 1996. We compare their properties and consider the magnetic reconnection models, developed for X--ray jets, as a model for UV jet formation. This work is supported by the National Aeronautics and Space Administration under grant NAG5--10093 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the ESA PRODEX program (Swiss contribution).

  11. Practical Electrode System for EHD Liquid Jet Generation and Properties of Liquid Pumping

    NASA Astrophysics Data System (ADS)

    Hanaoka, Ryoichi; Hosodani, Naoki; Takahashi, Ichiro; Takata, Shinzo; Fukami, Tadashi

    The coaxial cone to rod electrode system was devised to generate a powerful electrohydrodynamic (EHD) liquid jet and the performance as a liquid pump was investigated using an isothermal weakly conducting liquid, HFC43-10. When a positive dc voltage was applied to the rod electrode, the liquid spouted forcibly from the glass tube outlet installed in the top of grounded conical electrode. The properties of liquid jet: pumping pressure, flow velocity and flow pattern were examined for the electrode systems with various cone angles (θ =40°∼90°) of the conical electrode. The potential distribution in the electrode gap and the conduction current also were measured as a function of applied voltage. In this paper, it is shown that the pumping pressure is almost independent of the cone angle of electrode systems as well as the flow velocity, but is raised effectively by a partial insulating coating of rod electrode surface and the current is reduced by a coating. The potential distribution in the gap revealed the existence of heterocharge layer in the vicinity of the electrode surfaces. It is considered that the EHD pumping in this study is attributed to a space charge layer with single ionic polarity near the rod electrode, which is formed by a non-uniform electric field.

  12. An experimental study on the airlift pump with air jet nozzle and booster pump.

    PubMed

    Cho, Nam-Cheol; Hwang, In-Ju; Lee, Chae-Moon; Park, Jung-Won

    2009-01-01

    The experiments for high head airlifting performance with vertical tube were examined for wastewater treatment. Comparing with the centrifugal pump and other pumps, the airlift pump has some problems and limited applications. However, an advantage of an airlift pump is in its geometrical simplicity, not having any moving parts, so it is suitable in lifting fluids including tiny pieces of metal or grit. In this study, for the purpose of high lifting head, an air jet nozzle was used. We have performed experimentally according to various characteristics of the airlift pump system such as the change of submerged depth, lifting head of liquid-air mixture (total head) and air flow rate. This work has verified through experiments that airlift pump shows lifting ability for 3 m (Sr = 0.3) in comparison with conventional height, 2 m (Sr = 0.4). Also, we suggested that the new airlift pump system with the air booster pump be used to improve the higher lifting head performance. PMID:25084423

  13. Bulk nuclear polarization enhanced at room temperature by optical pumping.

    PubMed

    Fischer, Ran; Bretschneider, Christian O; London, Paz; Budker, Dmitry; Gershoni, David; Frydman, Lucio

    2013-08-01

    Bulk (13)C polarization can be strongly enhanced in diamond at room temperature based on the optical pumping of nitrogen-vacancy color centers. This effect was confirmed by irradiating single crystals at a ~50 mT field promoting anticrossings between electronic excited-state levels, followed by shuttling of the sample into an NMR setup and by subsequent (13)C detection. A nuclear polarization of ~0.5%--equivalent to the (13)C polarization achievable by thermal polarization at room temperature at fields of ~2000 T--was measured, and its bulk nature determined based on line shape and relaxation measurements. Positive and negative enhanced polarizations were obtained, with a generally complex but predictable dependence on the magnetic field during optical pumping. Owing to its simplicity, this (13)C room temperature polarizing strategy provides a promising new addition to existing nuclear hyperpolarization techniques. PMID:23952444

  14. Characterization and reduction of flow separation in jet pumps for laminar oscillatory flows.

    PubMed

    Timmer, Michael A G; Oosterhuis, Joris P; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H

    2016-01-01

    A computational fluid dynamics model is used to predict the oscillatory flow through tapered cylindrical tube sections (jet pumps). The asymmetric shape of jet pumps results in a time-averaged pressure drop that can be used to suppress Gedeon streaming in closed-loop thermoacoustic devices. However, previous work has shown that flow separation in the diverging flow direction counteracts the time-averaged pressure drop. In this work, the characteristics of flow separation in jet pumps are identified and coupled with the observed jet pump performance. Furthermore, it is shown that the onset of flow separation can be shifted to larger displacement amplitudes by designs that have a smoother transition between the small opening and the tapered surface of the jet pump. These design alterations also reduce the duration of separated flow, resulting in more effective and robust jet pumps. To make the proposed jet pump designs more compact without reducing their performance, the minimum big opening radius that can be implemented before the local minor losses have an influence on the jet pump performance is investigated. To validate the numerical results, they are compared with experimental results for one of the proposed jet pump designs. PMID:26827017

  15. Characterization and reduction of flow separation in jet pumps for laminar oscillatory flows

    NASA Astrophysics Data System (ADS)

    Timmer, Michael A. G.; Oosterhuis, Joris P.; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H.

    2016-01-01

    A computational fluid dynamics model is used to predict the oscillatory flow through tapered cylindrical tube sections (jet pumps). The asymmetric shape of jet pumps results in a time-averaged pressure drop that can be used to suppress Gedeon streaming in closed-loop thermoacoustic devices. However, previous work has shown that flow separation in the diverging flow direction counteracts the time-averaged pressure drop. In this work, the characteristics of flow separation in jet pumps are identified and coupled with the observed jet pump performance. Furthermore, it is shown that the onset of flow separation can be shifted to larger displacement amplitudes by designs that have a smoother transition between the small opening and the tapered surface of the jet pump. These design alterations also reduce the duration of separated flow, resulting in more effective and robust jet pumps. To make the proposed jet pump designs more compact without reducing their performance, the minimum big opening radius that can be implemented before the local minor losses have an influence on the jet pump performance is investigated. To validate the numerical results, they are compared with experimental results for one of the proposed jet pump designs.

  16. Michigan ultra-cold polarized atomic hydrogen jet target

    NASA Astrophysics Data System (ADS)

    Blinov, B. B.; Gladycheva, S. E.; Kageya, T.; Kantsyrev, D. Yu.; Krisch, A. D.; Luppov, V. G.; Morozov, V. S.; Murray, J. R.; Raymond, R. S.; Borisov, N. S.; Fimushkin, V. V.; Grishin, V. N.; Mysnik, A. I.; Kleppner, D.

    2001-06-01

    To study spin effects in high energy collisions, we are developing an ultra-cold high-density jet target of proton-spin-polarized hydrogen atoms. The target uses a 12 Tesla magnetic field and a 0.3 K separation cell coated with superfluid helium-4 to produce a slow monochromatic electron-spin-polarized atomic hydrogen beam, which is then focused by a superconducting sextupole into the interaction region. In recent tests, we studied a polarized beam of hydrogen atoms focused by the superconducting sextupole into a compression tube detector, which measured the polarized atoms' intensity. The Jet produced, at the detector, a spin-polarized atomic hydrogen beam with a measured intensity of about 2.8.1015 H s-1 and a FWHM area of less than 0.13 cm2. This intensity corresponds to a free jet density of about 1.1012 H cm-3 with a proton polarization of about 50%. When the transition RF unit is installed, we expect a proton polarization higher than 90%. .

  17. Stimulated emission pumping spectroscopy of jet-cooled C3

    NASA Astrophysics Data System (ADS)

    Rohlfing, Eric A.; Goldsmith, J. E. M.

    1989-06-01

    We report a dispersed fluorescence spectrum obtained for excitation of a ∑+u-∑+g vibronic band of C3 at 33 588 cm-1, part of a newly discovered electronic system. Rotationally resolved stimulated-emission-pumping spectra of jet-cooled C3 using this ∑+u intermediate state are presented for dumping to the 0v121 (1≤v2≤13) and 6v121 (1≤v2≤5) levels in the 1Σ+g ground state. Vibrational term energies, rotational constants, and l-type doubling parameters are determined for each level.

  18. Design method of water jet pump towards high cavitation performances

    NASA Astrophysics Data System (ADS)

    Cao, L. L.; Che, B. X.; Hu, L. J.; Wu, D. Z.

    2016-05-01

    As one of the crucial components for power supply, the propulsion system is of great significance to the advance speed, noise performances, stabilities and other associated critical performances of underwater vehicles. Developing towards much higher advance speed, the underwater vehicles make more critical demands on the performances of the propulsion system. Basically, the increased advance speed requires the significantly raised rotation speed of the propulsion system, which would result in the deteriorated cavitation performances and consequently limit the thrust and efficiency of the whole system. Compared with the traditional propeller, the water jet pump offers more favourite cavitation, propulsion efficiency and other associated performances. The present research focuses on the cavitation performances of the waterjet pump blade profile in expectation of enlarging its advantages in high-speed vehicle propulsion. Based on the specifications of a certain underwater vehicle, the design method of the waterjet blade with high cavitation performances was investigated in terms of numerical simulation.

  19. Polarization and adiabatic pumping in inhomogeneous crystals.

    PubMed

    Xiao, Di; Shi, Junren; Clougherty, Dennis P; Niu, Qian

    2009-02-27

    We develop a general theory of electric polarization in crystals with inhomogeneous order. We show that the inhomogeneity-induced polarization can be classified into two parts: a perturbative contribution stemming from a correction to the basis functions and a topological contribution described in terms of the Chern-Simons form of the Berry gauge fields. The latter is determined up to an uncertainty quantum, which is the second Chern number in appropriate units. Our theory provides an exhaustive link between microscopic models and the macroscopic polarization. PMID:19257787

  20. Polarization and Adiabatic Pumping in Inhomogeneous Crystals

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Shi, Junren; Clougherty, Dennis P.; Niu, Qian

    2009-02-01

    We develop a general theory of electric polarization in crystals with inhomogeneous order. We show that the inhomogeneity-induced polarization can be classified into two parts: a perturbative contribution stemming from a correction to the basis functions and a topological contribution described in terms of the Chern-Simons form of the Berry gauge fields. The latter is determined up to an uncertainty quantum, which is the second Chern number in appropriate units. Our theory provides an exhaustive link between microscopic models and the macroscopic polarization.

  1. Jet substructures of boosted polarized hadronic top quarks

    NASA Astrophysics Data System (ADS)

    Kitadono, Yoshio; Li, Hsiang-nan

    2016-03-01

    We study jet substructures of a boosted polarized top quark, which undergoes the hadronic decay t →b u d ¯, in the perturbative QCD framework, focusing on the energy profile and the differential energy profile. These substructures are factorized into the convolution of a hard top-quark decay kernel with a bottom-quark jet function and a W -boson jet function, where the latter is further factorized into the convolution of a hard W -boson decay kernel with two light-quark jet functions. Computing the hard kernels to leading order in QCD and including the resummation effect in the jet functions, we show that the differential jet energy profile is a useful observable for differentiating the helicity of a boosted hadronic top quark: a right-handed top jet exhibits quick descent of the differential energy profile with the inner test cone radius r , which is attributed to the V -A structure of weak interaction and the dead-cone effect associated with the W -boson jet. The above helicity differentiation may help reveal the chiral structure of physics beyond the standard model at high energies.

  2. Jet-Front Speed and the Origin of Jets in Polar Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Cirtain, Jonathan; Suess, Steve; Sterling, Alphonse

    2008-01-01

    The area-average strength of the open magnetic field in the polar coronal holes can be estimated from the radial component of the magnetic field measured by Ulysses in the solar wind, the fraction of the solar sphere covered by the polar coronal holes, and the fraction of the heliosphere filled by the fast solar wind from the polar coronal holes. For the present minimum phase of the solar cycle, the estimated strength is approximately 10 G. Using this strength for the ambient open field in the standard reconnection model for jets in coronal holes, we obtain for any given jet-front speed a lower bound on the initial temperature of the expanding jet-front plasma, and an upper bound on the ambient plasma density at the reconnection site. These two bounds indicate the following. For jet-front speeds of approximately 1000 km/s, (1) the reconnection site has to be in the low corona or upper transition region (n(e) is less than 10(exp 9) cm(exp -3)), not in the lower transition region or chromosphere, (2) the jet-front plasma is initially heated to T greater than approximately 10(exp 7) K, and (3) hence a compact X-ray flare is produced at the base of the jet. For jet-front speeds less than approximately 100 km/s, (1) the jet can be produced by reconnection in the lower transition region (approximately 10(exp 9) less than n(e) less than approximately 10(exp 10) cm(exp-3)) or upper chromosphere (approximately 10(exp 10) less than n(e) less than approximately 10(exp 12) cm-3), (2) the initial temperature of the jet-front plasma can be less than 10(exp 6) K, and (3) hence some EUV and H(alpha) jet-type macrospicules may be produced with no detectable X-ray emission.

  3. Analyses of Simulated Reconnection-Driven Solar Polar Jets

    NASA Astrophysics Data System (ADS)

    Roberts, M. A.; Uritsky, V. M.; Karpen, J. T.; DeVore, C. R.

    2014-12-01

    Solar polar jets are observed to originate in regions within the open field of solar coronal holes. These so called "anemone" regions are generally accepted to be regions of opposite polarity, and are associated with an embedded dipole topology, consisting of a fan-separatrix and a spine line emanating from a null point occurring at the top of the dome shaped fan surface. Previous analysis of these jets (Pariat et al. 2009,2010) modeled using the Adaptively Refined Magnetohydrodynamics Solver (ARMS) has supported the claim that magnetic reconnection across current sheets formed at the null point between the highly twisted closed field of the dipole and open field lines surrounding it releases the energy necessary to drive these jets. However, these initial simulations assumed a "static" environment for the jets, neglecting effects due to gravity, solar wind and the expanding spherical geometry. A new set of ARMS simulations taking into account these additional physical processes was recently performed. Initial results are qualitatively consistent with the earlier Cartesian studies, demonstrating the robustness of the underlying ideal and resistive mechanisms. We focus on density and velocity fluctuations within a narrow radial slit aligned with the direction of the spine of the jet, as well as other physical properties, in order to identify and refine their signatures in the lower heliosphere. These refined signatures can be used as parameters by which plasma processes initiated by these jets may be identified in situ by future missions such as Solar Orbiter and Solar Probe Plus.

  4. Spatial Polarization Profile in an Optically Pumped Alkali Vapor

    NASA Astrophysics Data System (ADS)

    Olsen, Ben; Patton, Brian; Jau, Yuan-Yu; Happer, Will

    2009-05-01

    Spin-Exchange Optical Pumping (SEOP) is a technique used to polarize nuclei in gases, and more recently in solids, in excess of their equilibrium limit. SEOP is achieved by optically pumping an alkali vapor which subsequently transfers angular momentum to the nuclei of interest. The efficiency of SEOP is governed by optical pumping and relaxation of the alkali atoms, relaxation of the target nuclei, and interactions between the alkali and target substance. In this work we investigate the relationship between optical pumping and relaxation in cesium vapor with absorption spectroscopy at high magnetic field (2.7 T). Cesium vapor within a cylindrical glass vapor cell is optically pumped with a strong laser resonant with a D2 transition. The ground-state population of the vapor is measured at various positions along a diameter of the cell with a small, weak D1 laser beam which translates mechanically. The resulting polarization profile elucidates the interplay between optical pumping, diffusion in the buffer gas, and relaxation at the walls of the vapor cell. We report measurements of the spatial polarization profile in vapor cells with bare Pyrex walls and cells coated with paraffin (an anti-relaxation coating) or CsH salt (a target substance for SEOP), and compare them to numerical simulations. Further investigation might yield a new method for characterizing surface relaxation in vapor cells.

  5. On the performance and flow characteristics of jet pumps with multiple orifices.

    PubMed

    Oosterhuis, Joris P; Timmer, Michael A G; Bühler, Simon; van der Meer, Theo H; Wilcox, Douglas

    2016-05-01

    The design of compact thermoacoustic devices requires compact jet pump geometries, which can be realized by employing jet pumps with multiple orifices. The oscillatory flow through the orifice(s) of a jet pump generates asymmetric hydrodynamic end effects, which result in a time-averaged pressure drop that can counteract Gedeon streaming in traveling wave thermoacoustic devices. In this study, the performance of jet pumps having 1-16 orifices is characterized experimentally in terms of the time-averaged pressure drop and acoustic power dissipation. Upon increasing the number of orifices, a significant decay in the jet pump performance is observed. Further analysis shows a relation between this performance decay and the diameter of the individual holes. Possible causes of this phenomenon are discussed. Flow visualization is used to study the differences in vortex ring interaction from adjacent jet pump orifices. The mutual orifice spacing is varied and the corresponding jet pump performance is measured. The orifice spacing is shown to have less effect on the jet pump performance compared to increasing the number of orifices. PMID:27250166

  6. The influence of Reynolds numbers on resistance properties of jet pumps

    SciTech Connect

    Geng, Q.; Zhou, G.; Li, Q.

    2014-01-29

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  7. Jet pumps for thermoacoustic applications: Design guidelines based on a numerical parameter study.

    PubMed

    Oosterhuis, Joris P; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H

    2015-10-01

    The oscillatory flow through tapered cylindrical tube sections (jet pumps) is characterized by a numerical parameter study. The shape of a jet pump results in asymmetric hydrodynamic end effects which cause a time-averaged pressure drop to occur under oscillatory flow conditions. Hence, jet pumps are used as streaming suppressors in closed-loop thermoacoustic devices. A two-dimensional axisymmetric computational fluid dynamics model is used to calculate the performance of a large number of conical jet pump geometries in terms of time-averaged pressure drop and acoustic power dissipation. The investigated geometrical parameters include the jet pump length, taper angle, waist diameter, and waist curvature. In correspondence with previous work, four flow regimes are observed which characterize the jet pump performance and dimensionless parameters are introduced to scale the performance of the various jet pump geometries. The simulation results are compared to an existing quasi-steady theory and it is shown that this theory is only applicable in a small operation region. Based on the scaling parameters, an optimum operation region is defined and design guidelines are proposed which can be directly used for future jet pump design. PMID:26520283

  8. The influence of Reynolds numbers on resistance properties of jet pumps

    NASA Astrophysics Data System (ADS)

    Geng, Q.; Zhou, G.; Li, Q.

    2014-01-01

    Jet pumps are widely used in thermoacoustic Stirling heat engines and pulse tube cryocoolers to eliminate the effect of Gedeon streaming. The resistance properties of jet pumps are principally influenced by their structures and flow regimes which are always characterized by Reynolds numbers. In this paper, the jet pump of which cross section contracts abruptly is selected as our research subject. Based on linear thermoacoustic theory, a CFD model is built and the oscillating flow of the working gas is simulated and analyzed with different Reynolds numbers in the jet pump. According to the calculations, the influence of different structures and Reynolds numbers on the resistance properties of the jet pump are analyzed and presented. The results show that Reynolds numbers have a great influence on the resistance properties of jet pumps and some empirical formulas which are widely used are unsuitable for oscillating flow with small Reynolds numbers. This paper provides a more comprehensive understanding on resistance properties of jet pumps with oscillating flow and is significant for the design of jet pumps in practical thermoacoustic engines and refrigerators.

  9. Jet pumps for thermoacoustic applications: Design guidelines based on a numerical parameter study

    NASA Astrophysics Data System (ADS)

    Oosterhuis, Joris P.; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H.

    2015-10-01

    The oscillatory flow through tapered cylindrical tube sections (jet pumps) is characterized by a numerical parameter study. The shape of a jet pump results in asymmetric hydrodynamic end effects which cause a time-averaged pressure drop to occur under oscillatory flow conditions. Hence, jet pumps are used as streaming suppressors in closed-loop thermoacoustic devices. A two-dimensional axisymmetric computational fluid dynamics model is used to calculate the performance of a large number of conical jet pump geometries in terms of time-averaged pressure drop and acoustic power dissipation. The investigated geometrical parameters include the jet pump length, taper angle, waist diameter and waist curvature. In correspondence with previous work, four flow regimes are observed which characterize the jet pump performance and dimensionless parameters are introduced to scale the performance of the various jet pump geometries. The simulation results are compared to an existing quasi-steady theory and it is shown that this theory is only applicable in a small operation region. Based on the scaling parameters, an optimum operation region is defined and design guidelines are proposed which can be directly used for future jet pump design.

  10. Solar Polar Jets Driven by Magnetic Reconnection, Gravity, and Wind

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.

    2014-06-01

    Polar jets are dynamic, narrow, radially extended structures observed in solar EUV emission near the limb. They originate within the open field of coronal holes in “anemone” regions, which are intrusions of opposite magnetic polarity. The key topological feature is a magnetic null point atop a dome-shaped fan surface of field lines. Applied stresses readily distort the null into a current patch, eventually inducing interchange reconnection between the closed and open fields inside and outside the fan surface (Antiochos 1996). Previously, we demonstrated that magnetic free energy stored on twisted closed field lines inside the fan surface is released explosively by the onset of fast reconnection across the current patch (Pariat et al. 2009, 2010). A dense jet comprised of a nonlinear, torsional Alfvén wave is ejected into the outer corona along the newly reconnected open field lines. Now we are extending those exploratory simulations by including the effects of solar gravity, solar wind, and expanding spherical geometry. We find that the model remains robust in the resulting more complex setting, with explosive energy release and dense jet formation occurring in the low corona due to the onset of a kink-like instability, as found in the earlier Cartesian, gravity-free, static-atmosphere cases. The spherical-geometry jet including gravity and wind propagates far more rapidly into the outer corona and inner heliosphere than a comparison jet simulation that excludes those effects. We report detailed analyses of our new results, compare them with previous work, and discuss the implications for understanding remote and in-situ observations of solar polar jets.This work was supported by NASA’s LWS TR&T program.

  11. Spectral and polarization properties of photospheric emission from stratified jets

    SciTech Connect

    Ito, Hirotaka; Nagataki, Shigehiro; Matsumoto, Jin; Lee, Shiu-Hang; Tolstov, Alexey; Mao, Jirong; Dainotti, Maria; Mizuta, Akira

    2014-07-10

    We explore the spectral and polarization properties of photospheric emissions from stratified jets in which multiple components, separated by sharp velocity shear regions, are distributed in lateral directions. Propagation of thermal photons injected at a high optical depth region are calculated until they escape from the photosphere. It is found that the presence of the lateral structure within the jet leads to the nonthermal feature of the spectra and significant polarization signal in the resulting emission. The deviation from thermal spectra, as well as the polarization degree, tends to be enhanced as the velocity gradient in the shear region increases. In particular, we show that emissions from multicomponent jet can reproduce the typical observed spectra of gamma-ray bursts irrespective of the position of the observer when a velocity shear region is closely spaced in various lateral (θ) positions. The degree of polarization associated with the emission is significant (>few percent) at a wide range of observer angles and can be higher than 30%.

  12. Ferrohydrodynamic pumping of a ferrofluid or electrohydrodynamic pumping of a polar liquid through a circular tube

    NASA Astrophysics Data System (ADS)

    Felderhof, B. U.

    2011-09-01

    Ferrohydrodynamic pumping of a ferrofluid through a circular tube by means of a running magnetic wave is studied in the framework of magnetostatics. The theory for electrohydrodynamic pumping of a polar liquid by means of a running electric wave is shown to be nearly identical. For given fluid parameters, the net flow rate can be optimized by suitable choice of wavenumber and frequency of the running wave.

  13. Electroosmotic pump performance is affected by concentration polarizations of both electrodes and pump

    PubMed Central

    Suss, Matthew E.; Mani, Ali; Zangle, Thomas A.; Santiago, Juan G.

    2010-01-01

    Current methods of optimizing electroosmotic (EO) pump performance include reducing pore diameter and reducing ionic strength of the pumped electrolyte. However, these approaches each increase the fraction of total ionic current carried by diffuse electric double layer (EDL) counterions. When this fraction becomes significant, concentration polarization (CP) effects become important, and traditional EO pump models are no longer valid. We here report on the first simultaneous concentration field measurements, pH visualizations, flow rate, and voltage measurements on such systems. Together, these measurements elucidate key parameters affecting EO pump performance in the CP dominated regime. Concentration field visualizations show propagating CP enrichment and depletion fronts sourced by our pump substrate and traveling at order mm/min velocities through millimeter-scale channels connected serially to our pump. The observed propagation in millimeter-scale channels is not explained by current propagating CP models. Additionally, visualizations show that CP fronts are sourced by and propagate from the electrodes of our system, and then interact with the EO pump-generated CP zones. With pH visualizations, we directly detect that electrolyte properties vary sharply across the anode enrichment front interface. Our observations lead us to hypothesize possible mechanisms for the propagation of both pump- and electrode-sourced CP zones. Lastly, our experiments show the dynamics associated with the interaction of electrode and membrane CP fronts, and we describe the effect of these phenomena on EO pump flow rates and applied voltages under galvanostatic conditions. PMID:21516230

  14. Optically-pumped spin-exchange polarized electron source

    NASA Astrophysics Data System (ADS)

    Pirbhai, Munir Hussein

    Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free, unpolarized electrons and oriented rubidium atoms in the presence of a quenching gas. This system has less stringent vacuum requirements than those of GaAs sources, and is capable of operating in background pressures of ~1mTorr. Beams with ~24% polarization and 4μA of current have been recorded, which is comparable to the performance obtained with the earlier version built in our lab. The present system is however not as unstable as in the previous work, and has the potential to be developed into a "turn-key" source of polarized electron beams. It has also allowed us to undertake a study to find factors which affect the beam polarization in this scheme of producing polarized electrons. Such knowledge will help us to design better optically-pumped spin-exchange polarized electron sources.

  15. Development of an optically pumped polarized deuterium target

    SciTech Connect

    Young, L.; Holt, R.J.; Green, M.C.; Kowalczyk, R.

    1987-01-01

    The development of a polarized deuterium target for internal use at an electron storage ring is of great interest for fundamental studies in nuclear physics. In order to achieve the maximum allowable target thickness, 10/sup 14/ nuclei/cm/sup 2/, consistent with various constraints imposed by the storage ring environment, a flux of 4 x 10/sup 17/ polarized atom/s must be provided. This flux exceeds the capability of conventional atomic beam sources by an order of magnitude. We have been developing an alternative source based upon the spin-exchange optical pumping method in which the flux is limited only by laser power. 7 refs., 1 fig.

  16. Optical Polarization and Spectral Variability in the M87 Jet

    NASA Astrophysics Data System (ADS)

    Perlman, Eric S.; Adams, Steven C.; Cara, Mihai; Bourque, Matthew; Harris, D. E.; Madrid, Juan P.; Simons, Raymond C.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz; Georganopoulos, Markos; Sparks, William B.; Biretta, John A.

    2011-12-01

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability has also been seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from ~20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard (αUV-O ~ 0.5, F νvpropν-α), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2σ upper limits of 0.5δ pc and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet position angle (P.A.) makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and "looping" in the (I, P) plane. The nucleus has a much steeper spectrum (αUV-O ~ 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  17. Optical Polarization and Spectral Variability in the M87 Jet

    NASA Technical Reports Server (NTRS)

    Perlman, Eric S.; Adams, Steven C.; Cara, Mihai; Bourque, Matthew; Harris, D. E.; Madrid, Juan P.; Simons, Raymond C.; Clausen-Brown, Eric; Cheung, C. C.; Stawarz, Lukasz; Georganopoulos, Markos; Sparks, William B.; Biretta, John A.

    2011-01-01

    During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability was also seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST -1 shows a highly significant correlation between flux and polarization, with P increasing from approx 20% at minimum to > 40% at maximum, while the orientation of its electric vector stayed constant. HST-l's optical-UV spectrum is very hard (alpha(sub uv-0) approx. 0.5, F(sub v) varies as (v(exp -alpha)), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2alpha upper limits of 0.5 delta parsecs and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet PA, makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and 'looping' in the (I, P) plane. The nucleus has a much steeper spectrum ((alpha(sub uv-0) approx. 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

  18. Polarized quantum dot emission in electrohydrodynamic jet printed photonic crystals

    SciTech Connect

    See, Gloria G.; Xu, Lu; Nuzzo, Ralph G.; Sutanto, Erick; Alleyne, Andrew G.; Cunningham, Brian T.

    2015-08-03

    Tailored optical output, such as color purity and efficient optical intensity, are critical considerations for displays, particularly in mobile applications. To this end, we demonstrate a replica molded photonic crystal structure with embedded quantum dots. Electrohydrodynamic jet printing is used to control the position of the quantum dots within the device structure. This results in significantly less waste of the quantum dot material than application through drop-casting or spin coating. In addition, the targeted placement of the quantum dots minimizes any emission outside of the resonant enhancement field, which enables an 8× output enhancement and highly polarized emission from the photonic crystal structure.

  19. Tank 241-AZ-101 criticality assessment resulting from pump jet mixing: Sludge mixing simulation

    SciTech Connect

    Onishi, Y.; Recknagle, K.

    1997-04-01

    Tank 241-AZ-101 (AZ-101) is one of 28 double-shell tanks located in the AZ farm in the Hanford Site`s 200 East Area. The tank contains a significant quantity of fissile materials, including an estimated 9.782 kg of plutonium. Before beginning jet pump mixing for mitigative purposes, the operations must be evaluated to demonstrate that they will be subcritical under both normal and credible abnormal conditions. The main objective of this study was to address a concern about whether two 300-hp pumps with four rotating 18.3-m/s (60-ft/s) jets can concentrate plutonium in their pump housings during mixer pump operation and cause a criticality. The three-dimensional simulation was performed with the time-varying TEMPEST code to determine how much the pump jet mixing of Tank AZ-101 will concentrate plutonium in the pump housing. The AZ-101 model predicted that the total amount of plutonium within the pump housing peaks at 75 g at 10 simulation seconds and decreases to less than 10 g at four minutes. The plutonium concentration in the entire pump housing peaks at 0.60 g/L at 10 simulation seconds and is reduced to below 0.1 g/L after four minutes. Since the minimum critical concentration of plutonium is 2.6 g/L, and the minimum critical plutonium mass under idealized plutonium-water conditions is 520 g, these predicted maximums in the pump housing are much lower than the minimum plutonium conditions needed to reach a criticality level. The initial plutonium maximum of 1.88 g/L still results in safety factor of 4.3 in the pump housing during the pump jet mixing operation.

  20. Flow-induced vibration characteristics of the BWR/5-201 jet pump

    SciTech Connect

    LaCroix, L.V.

    1982-09-01

    A General Electric boiling water reactor BWR/5-201 jet pump was tested for flow-induced vibration (FIV) characteristics in the Large Steam Water Test Facility at Moss Landing, CA, during the period June-July 1978. High level periodic FIV were observed at reactor operating conditions (1027 psia, 532/sup 0/F and prototypical flow rates) for the specific single jet pump assembly tested. High level FIV of similar amplitude and character have been shown capable of damaging jet pump components and associated support hardware if allowed to continue unchecked. High level FIV were effectively suppressed in two special cases tested: (1) lateral load (>500 lb) at the mixer to diffuser slip joint; and (2) a labyrinth seal (5 small, circumferential grooves) on the mixer at the slip joint. Stability criteria for the particular jet pump tested were developed from test data. A cause-effect relationship between the dynamic pressure within the slip joint and the jet pump vibration was established.

  1. Spin pump for boosting spin polarization of superfluid He3 A1 phase

    NASA Astrophysics Data System (ADS)

    Yamaguchi, A.; Aoki, Y.; Murakawa, S.; Ishimoto, H.; Kojima, H.

    2009-08-01

    Mechanical pumping and filtering of spin-polarized condensate were realized in the superfluid He3 A1 phase by the pneumatic pumping action of an electrostatically actuated diaphragm. Spin pumping increased the net spin polarization by 20-50% as measured by the induced pressure change during spin pumping. The observed spin relaxation time was consistent with the increased spin polarization. These observations demonstrate the feasibility of using spin pumping to substantially increase the effective magnetic field to which the A1 phase is exposed.

  2. ATOMIC BEAM POLARIZATION MEASUREMENT OF THE RHIC POLARIZED H-JET TARGET.

    SciTech Connect

    MAKDISI,Y.; NASS,A.; GRAHAM,D.; KPONOU,A.; MAHLER,G.; MENG,W.; RITTER,J.; ET AL.

    2005-01-28

    The RHIC polarized H-Jet measures the polarization of the RHIC proton beam via elastic scattering off a nuclear polarized atomic hydrogen beam. The atomic beam is produced by a dissociator, a beam forming system and sextupole magnets. Nuclear polarization is achieved by exchanging occupation numbers of hyperfine states using high frequency transitions. The polarization was measured using a modified form of a Breit-Rabi polarimeter including focusing magnets and another set of high frequency transitions. The sampling of a large part of the beam and low noise electronics made it possible to measure the polarization to a high degree of accuracy in a very short time period (1 min). Using this system, we measured no depolarization of the atomic beam due to the RF fields of the bunched proton beam. Time-of-Flight measurements were done using a fast chopper and a QMA at the position of the RHIC interaction point to determine the areal density of the atomic beam seen by the RHIC beam.

  3. Discussion paper: Partial ring current and polarization jet

    NASA Astrophysics Data System (ADS)

    Trakhtengerts, V. Y.; Demekhov, A. G.

    2005-06-01

    We analyze the asymmetric part of the ring current (RC), which appears during the main phase of a magnetic storm and is due to strong precipitation of RC ions into the ionosphere. The precipitation is caused by the pitch angle scattering by ion cyclotron waves and is localized in the evening sector inside the storm time plasmaspheric bulge. The asymmetric (partial) RC together with the precipitation decreases the electric shielding of the inner magnetosphere by the region 2 current system and forms an additional three-dimensional current system at subauroral latitudes. Using a simplified analytical model, we show that such a current system can be a good candidate for explaining the origin of the polarization jet (subauroral ion drift, PJ/SAID), In particular, spatial-temporal characteristics, ionospheric ion velocities, and electric field values for this current system correspond to those in the PJ.

  4. Vehicle-scale investigation of a fluorine jet-pump liquid hydrogen tank pressurization system

    NASA Technical Reports Server (NTRS)

    Cady, E. C.; Kendle, D. W.

    1972-01-01

    A comprehensive analytical and experimental program was performed to evaluate the performance of a fluorine-hydrogen jet-pump injector for main tank injection (MTI) pressurization of a liquid hydrogen (LH2) tank. The injector performance during pressurization and LH2 expulsion was determined by a series of seven tests of a full-scale injector and MTI pressure control system in a 28.3 cu m (1000 cu ft) flight-weight LH2 tank. Although the injector did not effectively jet-pump LH2 continuously, it showed improved pressurization performance compared to straight-pipe injectors tested under the same conditions in a previous program. The MTI computer code was modified to allow performance prediction for the jet-pump injector.

  5. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion.

    PubMed

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2016-01-01

    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels. PMID:27174100

  6. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2016-05-01

    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels.

  7. Effects of polarization mode dispersion on polarization-entangled photons generated via broadband pumped spontaneous parametric down-conversion

    PubMed Central

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2016-01-01

    An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels. PMID:27174100

  8. Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes

    NASA Technical Reports Server (NTRS)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.

  9. PUMPS

    DOEpatents

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  10. A numerical investigation on the vortex formation and flow separation of the oscillatory flow in jet pumps.

    PubMed

    Oosterhuis, Joris P; Bühler, Simon; van der Meer, Theo H; Wilcox, Douglas

    2015-04-01

    A two-dimensional computational fluid dynamics model is used to predict the oscillatory flow through a tapered cylindrical tube section (jet pump) placed in a larger outer tube. Due to the shape of the jet pump, an asymmetry in the hydrodynamic end effects will exist which will cause a time-averaged pressure drop to occur that can be used to cancel Gedeon streaming in a closed-loop thermoacoustic device. The performance of two jet pump geometries with different taper angles is investigated. A specific time-domain impedance boundary condition is implemented in order to simulate traveling acoustic wave conditions. It is shown that by scaling the acoustic displacement amplitude to the jet pump dimensions, similar minor losses are observed independent of the jet pump geometry. Four different flow regimes are distinguished and the observed flow phenomena are related to the jet pump performance. The simulated jet pump performance is compared to an existing quasi-steady approximation which is shown to only be valid for small displacement amplitudes compared to the jet pump length. PMID:25920825

  11. A numerical investigation on the vortex formation and flow separation of the oscillatory flow in jet pumps

    NASA Astrophysics Data System (ADS)

    Oosterhuis, Joris P.; Bühler, Simon; van der Meer, Theo H.; Wilcox, Douglas

    2015-04-01

    A two-dimensional computational fluid dynamics model is used to predict the oscillatory flow through a tapered cylindrical tube section (jet pump) placed in a larger outer tube. Due to the shape of the jet pump, there will exist an asymmetry in the hydrodynamic end effects which will cause a time-averaged pressure drop to occur that can be used to cancel Gedeon streaming in a closed-loop thermoacoustic device. The performance of two jet pump geometries with different taper angles is investigated. A specific time-domain impedance boundary condition is implemented in order to simulate traveling acoustic wave conditions. It is shown that by scaling the acoustic displacement amplitude to the jet pump dimensions, similar minor losses are observed independent of the jet pump geometry. Four different flow regimes are distinguished and the observed flow phenomena are related to the jet pump performance. The simulated jet pump performance is compared to an existing quasi-steady approximation which is shown to only be valid for small displacement amplitudes compared to the jet pump length.

  12. Fabrication and Basic Characterization of a Piezoelectric Valveless Micro Jet Pump

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsuhiko; Thanh Dau, Van; Sakamoto, Ryohei; Dinh, Thien Xuan; Viet Dao, Dzung; Sugiyama, Susumu

    2008-11-01

    A piezoelectric-driven valveless micro jet pump with a novel channel structure has been designed and fabricated. The simple structure micro jet pump consists of a lead zirconate titanate (PZT) diaphragm and flow channels. The design of the flow channels focuses on a cross junction formed by the neck of the pump chamber and one outlet and two opposite inlet channels. This structure allows differences in fluidic resistance and fluidic momentum inside the channels during each pump vibration cycle. To confirm the pump operation, a prototype was fabricated using polymethyl methacrylate as a base plate and a conventional machining technique. Two types of pump with nozzle depths of 0.5 and 0.2 mm were prepared, and the depth effect on the flow rate was investigated. The pump chamber has an 11.8 mm diameter, a 0.5 mm depth, and a volume of 0.055 cm3. The maximum flow rate of 17 ml/min at 400 Pa was obtained when the pump was driven at a resonant frequency of approximately 6 kHz by a sinusoidal voltage of 30 Vp-p.

  13. Jet mixer pump testing in Hanford tank 241-SY-101

    SciTech Connect

    Stewart, C.W.

    1994-12-31

    A mixer pump was found effective in controlling and possibly eliminating large flammable gas releases from Hanford Tank 241-SY-101. A gas release event (GRE) is initiated when gas-bearing sludge accumulates sufficient gas to become buoyant. The buoyant sludge pulls free from the surrounding material and rises to the surface releasing the trapped gas. Mixer pump operation is intended to keep gas-generating material in suspension so that it releases gas continuously instead of periodically in large, potentially dangerous GREs. A mixer pump was installed July 3, 1993, 7 days after a typical GRE. The initial pump operation in phase-A testing was extremely gentle, beginning with a series of daily pump {open_quotes}bumps{close_quotes} intended to keep the pump nozzles clear. Because nozzle plugging did occur, bump speed and duration were increased, eventually arriving at the accepted 5-min period at 1000 rpm on July 26. There has been no nozzle plugging since. Bumping was initially performed twice daily through mid-August and once daily until the start of phase-B testing. By the end of phase B, thrice-weekly bumping became the rule.

  14. Theoretical description of transverse measurements of polarization in optically-pumped Rb vapor cells

    NASA Astrophysics Data System (ADS)

    Dreiling, Joan; Tupa, Dale; Norrgard, Eric; Gay, Timothy

    2012-06-01

    In optical pumping of alkali-metal vapors, the polarization of the atoms is typically determined by probing along the entire length of the pumping beam, resulting in an averaged value of polarization over the length of the cell. Such measurements do not give any information about spatial variations of the polarization along the pump beam axis. Using a D1 probe beam oriented perpendicular to the pumping beam, we have demonstrated a heuristic method for determining the polarization along the pump beam's axis. Adapting a previously developed theory [1], we provide an analysis of the experiment which explains why this method works. The model includes the effects of Rb density, buffer gas pressure, and pump detuning. [4pt] [1] E.B. Norrgard, D. Tupa, J.M. Dreiling, and T.J. Gay, Phys. Rev. A 82, 033408 (2010).

  15. Development of a laser optically pumped polarized target for use in heavy-ion physics. [/sup 151/ /sup 153/Eu

    SciTech Connect

    Shivakumar, B.; Beene, J.R.; Bemis, C.E. Jr.; Erb, K.A.; Ford, J.L.C. Jr.; Shapira, D.

    1982-01-01

    Important micro- and macroscopic details of heavy-ion reactions may be explicitly determined when nuclear spin aligned (polarized) targets are used. For deformed nuclei, the orientation of the symmetry axis of the nuclear density distribution is determined by the nuclear spin orientation. Polarized targets would thus allow experiments to be performed as a function of the orientation of the symmetry axis of the nuclear density distribution. A polarized target of /sup 151/ /sup 153/Eu is being developed at Oak Ridge and is based on laser depopulation optical pumping. A spatially defined target is provided by a supersonic gas jet and consists of Eu atoms seeded into an inert carrier gas. Detailed time-dependent optical-pumping calculations predict approx. = 90% nuclear spin polarization in a Eu target with an expected thickness in excess of 10/sup 15/ atoms/cm/sup 2/. We present some of the effects that will be observable in heavy-ion reactions when deformed polarized targets are used.

  16. Jet Engines as High-Capacity Vacuum Pumps

    NASA Technical Reports Server (NTRS)

    Wojciechowski, C. J.

    1983-01-01

    Large diffuser operations envelope and long run times possible. Jet engine driven ejector/diffuser system combines two turbojet engines and variable-area-ratio ejector in two stages. Applications in such industrial proesses as handling corrosive fumes, evaporation of milk and fruit juices, petroleum distillation, and dehydration of blood plasma and penicillin.

  17. Plasma jets subject to adjustable current polarities and external magnetic fields

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Schrafel, Peter; Gourdain, Pierre; Seyler, Charles; Kusse, Bruce

    2014-12-01

    In the present research, collimated plasma jets form from ablation of a radial foil (Al 20 μm thin disk) using a pulsed power generator (COBRA) with 1 MA peak current and 100 ns rise time. Plasma dynamics of the jet are diagnosed with and without an applied uniform axial magnetic field (1 T) and under a change of current polarities, which correspond to current moving either radially outward or inward from the foil's central axis. Experimental results are compared with numerical simulations (PERSEUS). The influence of the Hall effect on the jet development is observed under opposite current polarities. Additionally, the magnetic field compression within the jet is examined. Further studies will compare the laboratory-generated plasma jets and astrophysical jets with embedded magnetic fields.

  18. Plasma Jets Subject to Adjustable Current Polarities and External Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Schrafel, Peter; Gourdain, Pierre; Seyler, Charles; Kusse, Bruce

    2014-10-01

    In the present research, collimated plasma jets form from ablation of a radial foil (Al 20 μm thin disk) using a pulsed power generator (COBRA) with 1 MA peak current and 100 ns rise time. Plasma dynamics of the jet are diagnosed with and without an applied uniform external field (1-1.5 T) and under a change of current polarities, which correspond to current moving either radially outward or inward from the foil's central axis. Experimental results are compared with numerical simulations (PERSEUS). The influence of the Hall effect on the jet development is observed under opposite current polarities. Additionally, the magnetic field compression within the jet is examined. Further studies will compare the laboratory-generated plasma jets and astrophysical jets with embedded magnetic fields.

  19. NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BU

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NASA LEWIS RESEARCH CENTER WATER JET PUMP TEST FACILITY IN TEST CELL SE-12 IN THE ENGINE RESEARCH BUILDING ERB - ALKALI METAL LOW PRESSURE PUMP FACILITY AND ALKALI METAL HIGH PRESSURE PUMP FACILITY IN CELL W-6 OF THE COMPRESSOR & TURBINE WING C&T

  20. Status on the Michigan-MIT ultra-cold polarized hydrogen jet target

    NASA Astrophysics Data System (ADS)

    Luppov, V. G.; Blinov, B. B.; Bywater, J. A.; Chin, S.; Churakov, V. V.; Court, G. R.; Kaufman, W. A.; Kleppner, D.; Krisch, A. D.; Melnik, Yu. M.; Muldavin, J. B.; Nurushev, T. S.; Price, J. S.; Prudkoglyad, A. F.; Raymond, R. S.; Shutov, V. B.; Stewart, J. A.

    1995-07-01

    Progress on the Mark-II ultra-cold polarized atomic hydrogen gas Jet target for the experiments NEPTUN-A and NEPTUN at UNK is presented. We describe the performance and the present status of different components of the jet.

  1. Status of the ultra-cold polarized jet for NEPTUN and NETPUN-A at UNK

    NASA Astrophysics Data System (ADS)

    Raymond, R. S.

    1993-12-01

    After tests of the prototype ultra-cold polarized jet, the jet assembly for use in the experiment NEPTUN-A at UNK is being designed, built, and tested at the University of Michigan. Planned improvements include a more powerful refrigerator, a 12 T high-gradient solenoid, and a superconducting focusing sextupole. In this talk the design and present status are described.

  2. Analysis and Modeling of a Two-Phase Jet Pump of a Thermal Management System for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.

    1998-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.

  3. Fabrication of a gas flow device consisting of micro-jet pump and flow sensor

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsuhiko; Dau, Van T.; Otake, Tomonori; Dinh, Thien X.; Sugiyama, Susumu

    2008-12-01

    A gas-flow device consisting of a valveless micro jet pump and flow sensor has been designed and fabricated using a Si micromachining process. The valveless micro pump is composed of a piezoelectric lead zirconate titanate (PZT) diaphragm actuator and flow channels. The design of the valvless pump focuses on a crosss junction formed by the neck of the pump chamber and one outlet and two opposite inlet channnels. The structure allows differences in the fluidic resistance and fluidic momentum inside the channels during each pump vibration cycle, which leads to the gas flow being rectified without valves. Before the Si micro-pump was developed, a prototype of it was fabricated using polymethyl methacrylate (PMMA) and a conventional machining techinique, and experiments on it confirmed the working principles underlying the pump. The Si micro-pump was designed and fabricated based on these working principles. The Si pump was composed of a Si flow channel plate and top and botom covers of PMMA. The flow channels were easily fabricated by using a silicon etching process. To investigate the effects of the step nozzle structure on the gas flow rate, two types of pumps with different channel depths (2D- and 3D-nozzle structures) were designed, and flow simulations were done using ANSYS-Fluent software. The simulations and excperimental data revealed that the 3D-nozzle structure is more advantageous than the 2D-nozzle structure. A flow rate of 4.3 ml/min was obtained for the pump with 3D-nozzle structure when the pump was driven at a resonant frequency of 7.9 kHz by a sinusoidal voltage of 40Vpp. A hot wire was fabricated as a gas-flow sensor near the outlet port on the Si wafer.

  4. Polarization electric field in subalfvenic plasma jet under condition of field- aligned currents generation

    NASA Astrophysics Data System (ADS)

    Sobyanin, D.; Gavrilov, B.; Podgorny, I.

    The subalfvenic magnetized plasma jet propagating across the geomagnetic field generates field-aligned currents in the ionospheric plasma. As a result the transverse polarization electric field Ep =-VxB/c in the jet should be reduced (plasma jet depolarization). These phenomena are investigated in the laboratory experiment. It was revealed that the depolarization is accompanied by the appearing of the electric field E along the plasma velocity vector. The value of E is comparable with theaa transverse electric field. It results in the plasma jet deflection. The possibility of manifestation of these effects in the NORTH STAR Russian-American active rocket experiment is discussed.

  5. Partial extensions of jets and the polar distribution on Grassmannians of non-maximal integral elements

    NASA Astrophysics Data System (ADS)

    Bächtold, Michael

    2016-02-01

    We study an intrinsic distribution, called polar, on the space of l-dimensional integral elements of the higher order contact structure on jet spaces. The main result establishes that this exterior differential system is the prolongation of a natural system of PDEs, named pasting conditions, on sections of the bundle of partial jet extensions. Informally, a partial jet extension is a kth order jet with additional (k + 1)st order information along l of the n possible directions. A choice of partial extensions of a jet into all possible l-directions satisfies the pasting conditions if the extensions coincide along pairwise intersecting l-directions. We further show that prolonging the polar distribution once more yields the space of (l , n)-dimensional integral flags with its double fibration distribution. When l > 1 the exterior differential system is holonomic, stabilizing after one further prolongation. The proof starts form the space of integral flags, constructing the tower of prolongations by reduction.

  6. Cladding-pumped ytterbium-doped fiber laser with radially polarized output.

    PubMed

    Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A

    2014-09-15

    A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1. PMID:26466271

  7. Polarization/Spatial Combining of Laser-Diode Pump Beams

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan

    2008-01-01

    A breadboard version of an optical beam combiner is depicted which make it possible to use the outputs of any or all of four multimode laser diodes to pump a non-planar ring oscillator (NPRO) laser. The output of each laser diode has a single-mode profile in the meridional plane containing an axis denoted the 'fast' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis and a narrower multimode profile in the orthogonal meridional plane, which contains an axis denoted the 'slow' axis. One of the purposes served by the beam-combining optics is to reduce the fast-axis numerical aperture (NA) of the laser-diode output to match the NA of the optical fiber. Along the slow axis, the unmodified laser-diode NA is already well matched to the fiber optic NA, so no further slow-axis beam shaping is needed. In this beam combiner, the laser-diode outputs are collimated by aspherical lenses, then half-wave plates and polarizing beam splitters are used to combine the four collimated beams into two beams. Spatial combination of the two beams and coupling into the optical fiber is effected by use of anamorphic prisms, mirrors, and a focusing lens. The anamorphic prisms are critical elements in the NA-matching scheme, in that they reduce the fast-axis beam width to 1/6 of its original values. Inasmuch as no slow-axis beam shaping is needed, the collimating and focusing lenses are matched for 1:1 iumaging. Because these lenses are well corrected for infinite conjugates the combiner offers diffraction-limited performance along both the fast and slow axes.

  8. Jet Pump for Liquid Helium Circulation Through the Fast Cycling Magnets of Nuclotron

    NASA Astrophysics Data System (ADS)

    Agapov, Nikolay; Emelianov, Nikita; Mitrofanova, Julia; Nikiforov, Dmitry

    Nuclotron is the first fast cycling superconducting synchrotron intended for the acceleration of high-energy nuclei and heavy ions. Its cryogenic system includes two helium refrigerators with a total capacity of 4000 W at 4.5 K. The 251.5 m long accelerator ring consists of 144 superconducting dipole and quadruple magnets. The magnets connected in parallel are refrigerated by a two-phase flow of boiling helium. In order to increase liquid helium flow directed to the superconducting magnets, jet pumps are used. We explain theoretical and experimental results that allow one to determinate main technical specifications and optimal geometric dimensions of the jet pumps. The experience of using this device and corresponding flow diagrams are described.

  9. EVIDENCE FOR POLAR X-RAY JETS AS SOURCES OF MICROSTREAM PEAKS IN THE SOLAR WIND

    SciTech Connect

    Neugebauer, Marcia

    2012-05-01

    It is proposed that the interplanetary manifestations of X-ray jets observed in solar polar coronal holes during periods of low solar activity are the peaks of the so-called microstreams observed in the fast polar solar wind. These microstreams exhibit velocity fluctuations of {+-}35 km s{sup -1}, higher kinetic temperatures, slightly higher proton fluxes, and slightly higher abundances of the low-first-ionization-potential element iron relative to oxygen ions than the average polar wind. Those properties can all be explained if the fast microstreams result from the magnetic reconnection of bright-point loops, which leads to X-ray jets which, in turn, result in solar polar plumes. Because most of the microstream peaks are bounded by discontinuities of solar origin, jets are favored over plumes for the majority of the microstream peaks.

  10. Investigation of Turbulent Tip Leakage Vortex in an Axial Water Jet Pump with Large Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Katz, Joseph

    2012-01-01

    Detailed steady and unsteady numerical studies were performed to investigate tip clearance flow in an axial water jet pump. The primary objective is to understand physics of unsteady tip clearance flow, unsteady tip leakage vortex, and cavitation inception in an axial water jet pump. Steady pressure field and resulting steady tip leakage vortex from a steady flow analysis do not seem to explain measured cavitation inception correctly. The measured flow field near the tip is unsteady and measured cavitation inception is highly transient. Flow visualization with cavitation bubbles shows that the leakage vortex is oscillating significantly and many intermittent vortex ropes are present between the suction side of the blade and the tip leakage core vortex. Although the flow field is highly transient, the overall flow structure is stable and a characteristic frequency seems to exist. To capture relevant flow physics as much as possible, a Reynolds-averaged Navier-Stokes (RANS) calculation and a Large Eddy Simulation (LES) were applied for the current investigation. The present study reveals that several vortices from the tip leakage vortex system cross the tip gap of the adjacent blade periodically. Sudden changes in local pressure field inside tip gap due to these vortices create vortex ropes. The instantaneous pressure filed inside the tip gap is drastically different from that of the steady flow simulation. Unsteady flow simulation which can calculate unsteady vortex motion is necessary to calculate cavitation inception accurately even at design flow condition in such a water jet pump.

  11. Prediction and analysis of jet pump cavitation using Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Zi, Hai; Zhou, Lingjiu; Meng, Long

    2015-12-01

    3D LES numerical simulations were performed to investigate cavitation performance inside a jet pump. The results were found to match the test data most closely. The cavitation characteristics of the jet pump were then analyzed using changes in the inlet and outlet pressure to isolate its effect on cavitation. Both results shows that the increase of the inlet pressure generally increases the Renolds number but decrease the cavitation number, thus aggravate cavitation. The closing of the outlet valve increase the outlet pressure but decrease the flowrate ratio, resulting in the increase of velocity difference and vorticity in the mixing layer. So the cavitation first declines and then grows. The cavities appear slender and extended longer in the throat with high flowrate ratio. Conversely, the cavities look short and located in the front part of the throat with low flowrate ratio. Flow analysis indicated that the turbulence behavior in the shear layer and the overall mean pressure has great influence on the local pressure in jet pump, which reveal the reason of different cavitation shape observed in experiment.

  12. Photospheric Abundances of Polar Jets on the Sun Observed by Hinode

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung-Sun; Brooks, David H.; Imada, Shinsuke

    2015-08-01

    Many jets are detected at X-ray wavelengths in the Sun's polar regions, and the ejected plasma along the jets has been suggested to contribute mass to the fast solar wind. From in situ measurements in the magnetosphere, it has been found that the fast solar wind has photospheric abundances while the slow solar wind has coronal abundances. Therefore, we investigated the abundances of polar jets to determine whether they are the same as that of the fast solar wind. For this study, we selected 22 jets in the polar region observed by Hinode/EUV Imaging Spectroscopy (EIS) and X-ray Telescope (XRT) simultaneously on 2007 November 1-3. We calculated the First Ionization Potential (FIP) bias factor from the ratio of the intensity between high (S) and low (Si, Fe) FIP elements using the EIS spectra. The values of the FIP bias factors for the polar jets are around 0.7-1.9, and 75% of the values are in the range of 0.7-1.5, which indicates that they have photospheric abundances similar to the fast solar wind. The results are consistent with the reconnection jet model where photospheric plasma emerges and is rapidly ejected into the fast wind.

  13. Polarized Atomic Hydrogen Beam Tests in the Michigan Ultra-Cold Jet Target

    NASA Astrophysics Data System (ADS)

    Kageya, T.; Blinov, B. B.; Denbow, J. M.; Kandes, M. C.; Krisch, A. D.; Kulkarni, D. A.; Lehman, M. A.; Luppov, V. G.; Morozov, V. S.; Murray, J. R.; Peters, C. C.; Raymond, R. S.; Ross, M. R.; Yonehara, K.; Borisov, N. S.; Fimushkin, V. V.; Kleppner, D.; Grishin, V. N.; Mysnik, A. L.

    2001-04-01

    To study spin effects in high energy collisions, we are developing an ultra-cold high-density jet target of proton-spin-polarized hydrogen atoms (Michigan Jet Target). The target uses a 12 Tesla magnetic field and a 0.3 K separation cell coated with superfluid helium-4 to produce a slow monochromatic electron-spin-polarized atomic hydrogen beam; an rf transition unit then converts this into a proton-spin-polarized beam, which is focused by a superconducting sextupole into the interaction region. The Jet produced, at the detector, a spin-polarized atomic hydrogen beam with a measured intensity of about 1.7 10^15 H s-1 and a FWHM area of less than 0.13 cm^2. This intensity corresponds to a free jet density of about 1.3 10^12 H cm-3 with a proton polarization of about 50%. When the transition RF unit is installed, we expect a proton polarization higher than 90%.

  14. Viscous pumping and the spin-down of thermospheric gyres and jets

    NASA Technical Reports Server (NTRS)

    Walterscheid, R. L.; Schubert, G.

    1986-01-01

    Strong gyres and jets can be generated at auroral latitudes in the thermosphere by enhanced electric fields during geomagnetic substorms. Typical height profiles of ion density suggest that the ion drag force should generate large curvature in the vertical profile of the winds in the highly viscous region of the thermosphere above about 200 km. It is proposed that the poststorm spin-down of these gyres and jets proceeds via Ekman circulations driven by the curvatures in the height profiles of the winds. Analytic and numerical calculations of the ageostrophic winds forced by curvature in model geostrophic wind profiles show that the ageostrophic wind speeds and directions depend mainly on the kinematic viscosity in the region of curvature and the total change in shear in the geostrophic wind. Ageostrophic wind speeds for typical thermospheric jets can exceed 200 m/s (about 50 percent of the jet winds). Spin-down times of thermospheric jets and cyclonic gyres by the Ekman pumping mechanism are estimated at less than about 6 hours.

  15. Collisional pumping for the production of intense spin-polarized neutral beams: target considerations. Revision

    SciTech Connect

    Stearns, J.W.; Burrell, C.F.; Kaplan, S.N.; Pyle, R.V.; Ruby, L.; Schlachter, A.S.

    1985-04-01

    Polarized beams at intensity levels heretofore not considered feasible have recently been proposed for heating and fueling fusion plasmas. Polarized-beam fueling could increase fusion rates by 50% as well as allow control of the directionality of the fusion products. A process which we have recently described, and called collisional pumping, promises to produce beams of polarized ions vastly more intense than producible by current methods.

  16. Simulated In Situ Measurements and Structural Analysis of Reconnection-Driven Solar Polar Jets

    NASA Astrophysics Data System (ADS)

    Roberts, Merrill A.; Uritsky, Vadim M.; Karpen, Judith T.; DeVore, C. R.

    2015-04-01

    Solar polar jets are observed to originate in regions within the open field of solar coronal holes. These so called “anemone” regions are associated with an embedded dipole topology, consisting of a fan-separatrix and a spine line emanating from a null point occurring at the top of the dome shaped fan surface (Antiochos 1998). In this study, we analyze simulations using the Adaptively Refined MHD Solver (ARMS) that take into account gravity, solar wind, and spherical geometry to generate polar jets by reconnection between a twisted embedded bipole and the surrounding open field (Karpen et al. 2015). These new simulations confirm and extend previous Cartesian studies of polar jets based on this mechanism (Pariat et al. 2009, 2010, 2015). Focusing on the plasma density, velocity, and magnetic field, we interpolate the adaptively gridded simulation data onto a regular grid, and analyze the signatures that the jet produces as it propagates outward from the solar surface. The trans-Alfvénic nature of the jet front is confirmed by temporally differencing the plasma mass density and comparing the result with the local Alfvén speed. We perform a preliminary analysis of the magnetized plasma turbulence, and examine how the turbulence affects the overall structure of the jet. We also conduct simulated spacecraft fly-throughs of the jet, illustrating the signatures that spacecraft such as Solar Probe Plus may encounter in situ as the jet propagates into the heliosphere. These fly-throughs are performed in several different velocity regimes to better model the changing velocity of Solar Probe Plus relative to the Sun and its jets over the course of the mission.This research was supported by NASA grant NNG11PL10A 670.036 to CUA/IACS (M.A.R. and V.M.U.) and the Living With a Star Targeted Research and Technology (J.T.K. and C.R.D.) program.

  17. Rapidity correlations and {Delta}G from prompt photon plus jet production in polarized pp collisions

    SciTech Connect

    Sanghyeon Chang; Claudio Coriano; L. E. Gordon

    1997-09-01

    A study of prompt photon plus associated jet production is performed at next-to-leading order (O({alpha}{alpha}{sub s}{sup 2})) in QCD at {radical}S=200--500 GeV, appropriate for the RHIC polarized {rvec p}{rvec p} collider experiment. Momentum correlations between the jet and photon are examined and the utility of the process as a method for constraining the size and shape of the polarized gluon density of the proton {Delta}G is examined.

  18. Magnetic Untwisting in Solar Jets that Go into the Outer Corona in Polar Coronal Holes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Sterling, Alphonse C.; Falconer, David A.

    2014-01-01

    We present results from 14 exceptionally high-reaching large solar jets observed in the polar coronal holes. EUV movies from SDO/AIA show that each jet is similar to many other similar-size and smaller jets that erupt in coronal holes, but each is exceptional in that it goes higher than most other jets, so high that it is observed in the outer corona beyond 2.2 R(sub Sun) in images from the SOHO/LASCO/C2 coronagraph. For these high-reaching jets, we find: (1) the front of the jet transits the corona below 2.2 R(sub Sun) at a speed typically several times the sound speed; (2) each jet displays an exceptionally large amount of spin as it erupts; (3) in the outer corona, most jets display oscillatory swaying having an amplitude of a few degrees and a period of order 1 hour. We conclude that these jets are magnetically driven, propose that the driver is a magnetic-untwisting wave that is grossly a large-amplitude (i.e., nonlinear) torsional Alfven wave that is put into the reconnected open magnetic field in the jet by interchange reconnection as the jet erupts, and estimate from the measured spinning and swaying that the magnetic-untwisting wave loses most of its energy in the inner corona below 2.2 R(sub Sun). From these results for these big jets, we reason that the torsional magnetic waves observed in Type-II spicules should dissipate in the corona in the same way and could thereby power much of the coronal heating in coronal holes.

  19. Electrically pumped semiconductor laser with monolithic control of circular polarization

    PubMed Central

    Rauter, Patrick; Lin, Jiao; Genevet, Patrice; Khanna, Suraj P.; Lachab, Mohammad; Giles Davies, A.; Linfield, Edmund H.; Capasso, Federico

    2014-01-01

    We demonstrate surface emission of terahertz (THz) frequency radiation from a monolithic quantum cascade laser with built-in control over the degree of circular polarization by “fishbone” gratings composed of orthogonally oriented aperture antennas. Different grating concepts for circularly polarized emission are introduced along with the presentation of simulations and experimental results. Fifth-order gratings achieve a degree of circular polarization of up to 86% within a 12°-wide core region of their emission lobes in the far field. For devices based on an alternative transverse grating design, degrees of circular polarization as high as 98% are demonstrated for selected far-field regions of the outcoupled THz radiation and within a collection half-angle of about 6°. Potential and limitations of integrated antenna gratings for polarization-controlled emission are discussed. PMID:25512515

  20. Electrically pumped semiconductor laser with monolithic control of circular polarization.

    PubMed

    Rauter, Patrick; Lin, Jiao; Genevet, Patrice; Khanna, Suraj P; Lachab, Mohammad; Giles Davies, A; Linfield, Edmund H; Capasso, Federico

    2014-12-30

    We demonstrate surface emission of terahertz (THz) frequency radiation from a monolithic quantum cascade laser with built-in control over the degree of circular polarization by "fishbone" gratings composed of orthogonally oriented aperture antennas. Different grating concepts for circularly polarized emission are introduced along with the presentation of simulations and experimental results. Fifth-order gratings achieve a degree of circular polarization of up to 86% within a 12°-wide core region of their emission lobes in the far field. For devices based on an alternative transverse grating design, degrees of circular polarization as high as 98% are demonstrated for selected far-field regions of the outcoupled THz radiation and within a collection half-angle of about 6°. Potential and limitations of integrated antenna gratings for polarization-controlled emission are discussed. PMID:25512515

  1. Parsec-Scale Kinematic and Polarization Properties of MOJAVE AGN Jets

    NASA Astrophysics Data System (ADS)

    Lister, Matthew L.

    2013-12-01

    We describe the parsec-scale kinematics and statistical polarization properties of 200 AGN jets based on 15 GHz VLBA data obtained between 1994 Aug 31 and 2011 May 1. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12 to 16 year interval, ranging from 10° to 150° on the sky, corresponding to intrinsic variations of ~ 0.5° to ~ 2°. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5 to 12 y), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section, and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. The moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (< 0.1 mas per y), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. Orientation variations within the jet cannot fully account for the dispersion, implying that the features have a range of Lorentz factor and/or pattern speed. Very slow pattern speed features are rare, comprising

  2. Modeling Reconnection-driven Polar Jets from the Sun to the Heliosphere

    NASA Astrophysics Data System (ADS)

    Karpen, Judith T.; DeVore, C. R.; Antiochos, Spiro K.

    2015-04-01

    Jets from coronal holes on the Sun have been observed in EUV and white-light emissions since the launch of SOHO, but the physical mechanism responsible for these events remains elusive. An important clue about their origin lies in their association with small intrusions of minority polarity within the large-scale open magnetic field, strongly suggesting that these jets are powered by interchange reconnection between embedded bipoles (closed flux) and the surrounding open flux (Antiochos 1999). We have explored this model for polar jets through a series of computational investigations of the embedded-bipole paradigm. The results demonstrate that energetic, collimated, Alfvénic flows can be driven by explosive reconnection between twisted closed flux of the minority polarity and the unstressed external field (e.g., Pariat et al. 2009, 2010, 2015). Our previous studies were focused on the dynamics and energetics of this process close to the solar surface, utilizing Cartesian geometry without gravity or wind. In the present study, we compare new simulations of reconnection-driven polar jets in spherical geometry and an isothermal solar wind with Cartesian, gravity- and wind-free simulations. Our new, more realistic simulations strongly support the interchange reconnection model as the explanation for observed polar jets. We pay particular attention to identifying observable signatures and measuring the evolving mass, wave, and energy fluxes as the jet extends toward heights comparable to the perihelion of Solar Probe Plus.This research was supported by NASA's Living With a Star Targeted Research and Technology program.

  3. Spectroscopic observations and modelling of impulsive Alfvén waves along a polar coronal jet

    NASA Astrophysics Data System (ADS)

    Jelínek, P.; Srivastava, A. K.; Murawski, K.; Kayshap, P.; Dwivedi, B. N.

    2015-09-01

    Context. The magnetic reconnection in the solar corona results in impulsively generated Alfvén waves, which drive a polar jet. Aims: Using the Hinode/EIS 2'' spectroscopic observations, we study the intensity, velocity, and full width at half maximum (FWHM) variations of the strongest Fe XII 195.12 Å line along the jet to find the signature of Alfvén waves. We numerically simulate the impulsively generated Alfvén waves within the vertical Harris current sheet, forming the jet plasma flows, and mimicking their observational signatures. Methods: Using the FLASH code and an atmospheric model with an embedded, weakly expanding magnetic field configuration within a vertical Harris current sheet, we solve the 2.5-dimensional (2.5D) ideal magnetohydrodynamic (MHD) equations to study the evolution of Alfvén waves and vertical flows forming the plasma jet. Results: At a height of ~5 Mm from the base of the jet, the red-shifted velocity component of Fe XII 195.12 Å line attains its maximum (5 km s-1), which converts into a blue-shifted velocity component between the altitude of 5-10 Mm. The spectral intensity continuously increases up to 10 Mm, while the FWHM still exhibits low values with an almost constant trend. This indicates that the reconnection point within the jet's magnetic field topology lies in the corona 5-10 Mm from its footpoint anchored in the Sun's surface. Beyond this height, the FWHM shows a growing trend. This may be the signature of Alfvén waves that impulsively evolve, due to reconnection, and propagate along the jet. From our numerical data, we evaluate space- and time- averaged Alfvén waves velocity amplitudes at different heights in the jet's current sheet, which contribute to the non-thermal motions and spectral line broadening. The synthetic width of Fe XII 195.12 Å line exhibits a similar trend of increment as in the observational data, possibly proving the existence of Alfvén waves, impulsively generated by reconnection, that propagate

  4. Nozzle optimization for water jet propulsion with a positive displacement pump

    NASA Astrophysics Data System (ADS)

    Yang, You-sheng; Xie, Ying-chun; Nie, Song-lin

    2014-06-01

    In the water jet propulsion system with a positive displacement (PD) pump, the nozzle, which converts pressure energy into kinetic energy, is one of the key parts exerting great influence on the reactive thrust and the efficiency of the system due to its high working pressure and easily occurring cavitation characteristics. Based on the previous studies of the energy loss and the pressure distribution of different nozzles, a model of water jet reactive thrust, which fully takes the energy loss and the nozzle parameters into consideration, is developed to optimize the nozzle design. Experiments and simulations are carried out to investigate the reactive thrust and the conversion efficiency of cylindrical nozzles, conical nozzles and optimized nozzles. The results show that the optimized nozzles have the largest reactive thrust and the highest energy conversion efficiency under the same inlet conditions. The related methods and conclusions are extended to the study of other applications of the water jet, such as water jet cutting, water mist fire suppression, water injection molding.

  5. DOE/GRI development and testing of a downhole pump for jet-assist drilling

    SciTech Connect

    1995-07-01

    The objective of this project is to accelerate development and commercialization of a high pressure downhole pump (DHP{trademark}) to be used for ultra-high pressure, jet-assisted drilling. The purpose of jet-assisted drilling is to increase the rate of penetration (ROP) in the drilling of deeper gas and oil wells where the rocks become harder and more difficult to drill. As a means to accomplishing this objective, a second generation commercial prototype of a DHP is to be designed, fabricated, tested in the laboratory, and eventually tested in the field. The design of the DOE commercial prototype DHP is current in progress. The layout of the complete DHP is expected to be completed by mid-April. Fabrication and laboratory experimentation is expected to be completed in September. Pending successful completion of the laboratory testing phase, the DOE commercial DHP should be ready for testing in the field by the end of the calendar year.

  6. Polarized {sup 3}He gas compression system using metastability-exchange optical pumping

    SciTech Connect

    Hussey, D.S.; Rich, D.R.; Belov, A.S.; Tong, X.; Yang, H.; Bailey, C.; Keith, C.D.; Hartfield, J.; Hall, G.D.R.; Black, T.C.; Snow, W.M.; Gentile, T.R.; Chen, W.C.; Jones, G.L.; Wildman, E.

    2005-05-15

    Dense samples (10-100 bar cm) of nuclear spin polarized {sup 3}He are utilized in high energy physics, neutron scattering, atomic physics, and magnetic resonance imaging. Metastability exchange optical pumping can rapidly produce high {sup 3}He polarizations ({approx_equal}80%) at low pressures (few mbar). We describe a polarized {sup 3}He gas compressor system which accepts 0.26 bar l h{sup -1} of {sup 3}He gas polarized to 70% by a 4 W neodymium doped lanthanum magnesium hexaluminate (Nd:LMA) laser and compresses it into a 5 bar cm target with final polarization of 55%. The spin relaxation rates of the system's components have been measured using nuclear magnetic resonance and a model of the {sup 3}He polarization loss based on the measured relaxation rates and the gas flow is in agreement with a {sup 3}He polarization measurement using neutron transmission.

  7. Polarized 3He gas compression system using metastability-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Hussey, D. S.; Rich, D. R.; Belov, A. S.; Tong, X.; Yang, H.; Bailey, C.; Keith, C. D.; Hartfield, J.; Hall, G. D. R.; Black, T. C.; Snow, W. M.; Gentile, T. R.; Chen, W. C.; Jones, G. L.; Wildman, E.

    2005-05-01

    Dense samples (10-100barcm) of nuclear spin polarized He3 are utilized in high energy physics, neutron scattering, atomic physics, and magnetic resonance imaging. Metastability exchange optical pumping can rapidly produce high He3 polarizations (≈80%) at low pressures (few mbar). We describe a polarized He3 gas compressor system which accepts 0.26barlh-1 of He3 gas polarized to 70% by a 4W neodymium doped lanthanum magnesium hexaluminate (Nd:LMA) laser and compresses it into a 5barcm target with final polarization of 55%. The spin relaxation rates of the system's components have been measured using nuclear magnetic resonance and a model of the He3 polarization loss based on the measured relaxation rates and the gas flow is in agreement with a He3 polarization measurement using neutron transmission.

  8. Polarized three-photon-pumped laser in a single MOF microcrystal

    NASA Astrophysics Data System (ADS)

    He, Huajun; Ma, En; Cui, Yuanjing; Yu, Jiancan; Yang, Yu; Song, Tao; Wu, Chuan-De; Chen, Xueyuan; Chen, Banglin; Qian, Guodong

    2016-03-01

    Higher order multiphoton-pumped polarized lasers have fundamental technological importance. Although they can be used to in vivo imaging, their application has yet to be realized. Here we show the first polarized three-photon-pumped (3PP) microcavity laser in a single host-guest composite metal-organic framework (MOF) crystal, via a controllable in situ self-assembly strategy. The highly oriented assembly of dye molecules within the MOF provides an opportunity to achieve 3PP lasing with a low lasing threshold and a very high-quality factor on excitation. Furthermore, the 3PP lasing generated from composite MOF is perfectly polarized. These findings may eventually open up a new route to the exploitation of multiphoton-pumped solid-state laser in single MOF microcrystal (or nanocrystal) for future optoelectronic and biomedical applications.

  9. Polarized three-photon-pumped laser in a single MOF microcrystal

    PubMed Central

    He, Huajun; Ma, En; Cui, Yuanjing; Yu, Jiancan; Yang, Yu; Song, Tao; Wu, Chuan-De; Chen, Xueyuan; Chen, Banglin; Qian, Guodong

    2016-01-01

    Higher order multiphoton-pumped polarized lasers have fundamental technological importance. Although they can be used to in vivo imaging, their application has yet to be realized. Here we show the first polarized three-photon-pumped (3PP) microcavity laser in a single host–guest composite metal–organic framework (MOF) crystal, via a controllable in situ self-assembly strategy. The highly oriented assembly of dye molecules within the MOF provides an opportunity to achieve 3PP lasing with a low lasing threshold and a very high-quality factor on excitation. Furthermore, the 3PP lasing generated from composite MOF is perfectly polarized. These findings may eventually open up a new route to the exploitation of multiphoton-pumped solid-state laser in single MOF microcrystal (or nanocrystal) for future optoelectronic and biomedical applications. PMID:26983592

  10. Intrinsic upper bound on two-qubit polarization entanglement predetermined by pump polarization correlations in parametric down-conversion

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Subrahmanyam, V.; Jha, Anand K.

    2016-06-01

    We study how one-particle correlations transfer to manifest as two-particle correlations in the context of parametric down-conversion (PDC), a process in which a pump photon is annihilated to produce two entangled photons. We work in the polarization degree of freedom and show that for any two-qubit generation process that is both trace-preserving and entropy-nondecreasing, the concurrence C (ρ ) of the generated two-qubit state ρ follows an intrinsic upper bound with C (ρ )≤(1 +P )/2 , where P is the degree of polarization of the pump photon. We also find that for the class of two-qubit states that is restricted to have only two nonzero diagonal elements such that the effective dimensionality of the two-qubit state is the same as the dimensionality of the pump polarization state, the upper bound on concurrence is the degree of polarization itself, that is, C (ρ )≤P . Our work shows that the maximum manifestation of two-particle correlations as entanglement is dictated by one-particle correlations. The formalism developed in this work can be extended to include multiparticle systems and can thus have important implications towards deducing the upper bounds on multiparticle entanglement, for which no universally accepted measure exists.

  11. RF detection with and electron polarization in an optically pumped multi-pass magnetometer

    NASA Astrophysics Data System (ADS)

    Sauer, Karen; Prescott, David; Dural, Nezih; Romalis, Michael

    2015-04-01

    A magnetometer is constructed using optically pumped 87 Rb in a crossed pump-probe configuration. To increase the signal size while maintaining a small volumetric footprint the off-resonant probe beam is passed back and forth through the cell 50 times within an active volume < 0 . 3 cm3. A small magnetic field tunes the magnetometer to radio-frequency (RF) signals on the order of a MHz and a sensitivity of 2 fT/√{ Hz} is achieved. A pulsed pump beam is used to recover from a saturating RF pulse as might be used in magnetic resonance experiments and results in high atomic polarization, > 90 %. We measure this polarization through different means and compare their results:(i) The number density, spin-destruction rate, and light narrowing is measured by varying the delay between the pump light pulse and a weak RF pulse used to create free induction decay signals. With these constants polarization is determined. (ii) The response after a 90° pulse exhibits multiple rotations in the Faraday rotation. The number of zero crossings serves as a metric of polarization independent of signal size or linewidth.(iii) The Faraday rotation observed when applying a relatively small DC magnetic field along the probe direction serves as another metric of polarization. This work was supported by NIITEK Inc. and DARPA Contract No. HR0011-13-C-0058.

  12. Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.

    1998-01-01

    One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the

  13. Polarized Atomic Hydrogen Beam Tests in the Mark-II Ultra-Cold Jet Target.

    NASA Astrophysics Data System (ADS)

    Luppov, V. G.; Blinov, B. B.; Gladycheva, S. E.; Kageya, T.; Kantsyrev, D. Yu.; Krisch, A. D.; Murray, J. R.; Neumann, J. J.; Raymond, R. S.; Borisov, N. S.; Kleppner, D.; Davidenko, A. M.; Grishin, V. N.

    2000-04-01

    To study spin effects in high energy collisions, we are developing an ultra-cold high-density jet target of proton-spin-polarized hydrogen atoms (Mark-II). The target uses a 12 Tesla magnetic field and a 0.3 K separation cell coated with superfluid helium-4 to produce a slow monochromatic electron-spin-polarized atomic hydrogen beam; an rf transition unit then converts this into a proton-spin-polarized beam, which is focused by a superconducting sextupole into the interaction region. Recently, the Jet produced a measured electron-spin-polarized atomic hydrogen beam of about 10^15 H s-1 into a 0.3 cm^2 area at the detector. This intensity corresponds to the free jet density of about 10^11 H cm-3 with a proton polarization of about 50%. So far, the intensity is limited by the high insulation vacuum pressure due to the evaporation of the separation cell's helium film. The beam's angular and radial distributions were measured. A test of a new superfluid-^4He-coated parabolic mirror, attached to the separation cell, appeared to increase the beam intensity by a factor of about 3, as expected.

  14. Polarization of 3He by Spin Exchange with Optically Pumped Rb and K Vapors

    NASA Astrophysics Data System (ADS)

    Ben-Amar Baranga, A.; Appelt, S.; Romalis, M. V.; Erickson, C. J.; Young, A. R.; Cates, G. D.; Happer, W.

    1998-03-01

    We report on extensive experimental measurements of the key rates that determine the efficiency for polarizing the nuclei of 3He by spin exchange with optically pumped Rb vapor. In agreement with recent theoretical predictions, we find a strong temperature dependence of the electron-spin loss rates due to 3HeRb collisions. We also find that the maximum possible efficiency for spin-exchange polarization of 3He by K is 10 times greater than for Rb.

  15. Gamma-Ray Polarization of the Synchrotron Self-compton Process from a Highly Relativistic Jet

    NASA Astrophysics Data System (ADS)

    Chang, Zhe; Lin, Hai-Nan

    2014-11-01

    The high polarization observed in the prompt phase of some gamma-ray bursts invites extensive study of the emission mechanism. In this paper, we investigate the polarization properties of the synchrotron self-Compton (SSC) process from a highly relativistic jet. A magnetic-dominated, baryon-loaded jet ejected from the central engine travels with a large Lorentz factor. Shells with slightly different velocities collide with each other and produce shocks. The shocks accelerate electrons to a power-law distribution and, at the same time, magnify the magnetic field. Electrons move in the magnetic field and produce synchrotron photons. Synchrotron photons suffer from the Compton scattering (CS) process and then are detected by an observer located slightly off-axis. We analytically derive the formulae of photon polarization in the SSC process in two magnetic configurations: a magnetic field in the shock plane and perpendicular to the shock plane. We show that photons induced by the SSC process can be highly polarized, with the maximum polarization Π ~ 24% in the energy band [0.5, 5] MeV. The polarization depends on the viewing angles, peaking in the plane perpendicular to the magnetic field. In the energy band [0.05, 0.5] MeV, in which most γ-ray polarimeters are active, the polarization is about twice that in the Thomson limit, reaching Π ~ 20%. This implies that the Klein-Nishina effect, which is often neglected in the literature, should be carefully considered.

  16. Gamma-ray polarization of the synchrotron self-compton process from a highly relativistic jet

    SciTech Connect

    Chang, Zhe; Lin, Hai-Nan

    2014-11-01

    The high polarization observed in the prompt phase of some gamma-ray bursts invites extensive study of the emission mechanism. In this paper, we investigate the polarization properties of the synchrotron self-Compton (SSC) process from a highly relativistic jet. A magnetic-dominated, baryon-loaded jet ejected from the central engine travels with a large Lorentz factor. Shells with slightly different velocities collide with each other and produce shocks. The shocks accelerate electrons to a power-law distribution and, at the same time, magnify the magnetic field. Electrons move in the magnetic field and produce synchrotron photons. Synchrotron photons suffer from the Compton scattering (CS) process and then are detected by an observer located slightly off-axis. We analytically derive the formulae of photon polarization in the SSC process in two magnetic configurations: a magnetic field in the shock plane and perpendicular to the shock plane. We show that photons induced by the SSC process can be highly polarized, with the maximum polarization Π ∼ 24% in the energy band [0.5, 5] MeV. The polarization depends on the viewing angles, peaking in the plane perpendicular to the magnetic field. In the energy band [0.05, 0.5] MeV, in which most γ-ray polarimeters are active, the polarization is about twice that in the Thomson limit, reaching Π ∼ 20%. This implies that the Klein-Nishina effect, which is often neglected in the literature, should be carefully considered.

  17. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  18. Development of a Dual-Pump CARS System for Measurements in a Supersonic Combusting Free Jet

    NASA Technical Reports Server (NTRS)

    Magnotti, Gaetano; Cutler, Andrew D.; Danehy, Paul

    2012-01-01

    This work describes the development of a dual-pump CARS system for simultaneous measurements of temperature and absolute mole fraction of N2, O2 and H2 in a laboratory scale supersonic combusting free jet. Changes to the experimental set-up and the data analysis to improve the quality of the measurements in this turbulent, high-temperature reacting flow are described. The accuracy and precision of the instrument have been determined using data collected in a Hencken burner flame. For temperature above 800 K, errors in absolute mole fraction are within 1.5, 0.5, and 1% of the total composition for N2, O2 and H2, respectively. Estimated standard deviations based on 500 single shots are between 10 and 65 K for the temperature, between 0.5 and 1.7% of the total composition for O2, and between 1.5 and 3.4% for N2. The standard deviation of H2 is 10% of the average measured mole fraction. Results obtained in the jet with and without combustion are illustrated, and the capabilities and limitations of the dual-pump CARS instrument discussed.

  19. Numerical investigation on the jet pump performance based on different turbulence models

    NASA Astrophysics Data System (ADS)

    Yang, X. L.; Long, X. P.

    2012-11-01

    This paper aims to figure out the influence of turbulence model and wall boundary condition on the simulation of performance and flow field of jet pumps. And then try to find out one combination of turbulence model and wall treatment method that gives out more accurate performance prediction and reasonable internal flow details. Six turbulence models, (namely the three k-epsilon, the standard and SST k-omega, and Reynolds stress models) and two wall treatment methods (standard wall functions and enhanced wall treatment) were involved. A jet pump model used in an experiment was chosen as the simulation prototype. The static pressure distribution along the wall and the performance data from the experiment were used as the reference data for validating with those from the simulation results. It is found that all the ten combinations agree well with the experiment data when the volumetric flow ratio is low, however, none of them could give a performance prediction with errors less than 10% under the lager flow ratio work conditions. The errors between predicted results by several combinations and the experiment data were lowered to be less than 5% under all the working conditions by adjusting the model constants.

  20. Structure optimization of an annular jet pump using design of experiment method and CFD

    NASA Astrophysics Data System (ADS)

    Long, X. P.; Zeng, Q. L.; Yang, X. L.; Xiao, L.

    2012-11-01

    This paper adopts DOE (the design of experiment method) to find out the optimum structure combination of an annular jet pump for maximum efficiency. The annular jet pump (AJP) model used by previous researcher, which area ratio is 1.75, was chosen as the simulation prototype. The performance data from the experiment were used to validate the simulation results. Then four important factors namely the flow ratio, the relative throat length and the included angles of the diffuser and the suction chamber were selected for the structure optimization by DOE. The most desirable combination is obtained, namely suction angle of 15 degree, throat length of 2.45 times of throat diameter, diffuser angle of 4 degree. The flow ratio corresponding to the most desirable combination is 0.6. The maximum efficiency predicted by the design method is 36.3% close to that of the CFD results 35.8%. The flow ratio has prevailing influence on the AJP efficiency. In the three construction parameters, the relative throat length has greater influence on the AJP performance than the diffuser angle and the suction angle. With proper experimental design method, effort to experiment could be greatly saved and analysis of experiment results could be more logical.

  1. Pressure optimization of high harmonic generation in a differentially pumped Ar or H2 gas jet

    NASA Astrophysics Data System (ADS)

    Sayrac, M.; Kolomenskii, A. A.; Anumula, S.; Boran, Y.; Hart, N. A.; Kaya, N.; Strohaber, J.; Schuessler, H. A.

    2015-04-01

    We experimentally studied the dependence of high harmonic generation in argon and molecular hydrogen on pressure changes in a gas jet that cause variations of the phase matching conditions and absorption. The study was performed at a peak laser intensity of ˜1.5 × 1014 W/cm2. To enable measurements over a wide range of pressures, we employed differential pumping with an additional cell (˜20 cm3 volume) enclosing the gas jet. By increasing the pressure in the gas jet up to a maximum of 1.5 bars with argon or 0.5 bars with hydrogen, we observed an increase in the high harmonic (HH) yield until an optimum pressure of 0.2 bars was reached for Ar, beyond which the output began decreasing. For H2, we observed an increase of the HH output up to the maximum pressure of 0.5 bars. This pressure-dependence study allowed us to achieve a tenfold enhancement in the high harmonic yield at the optimum pressure.

  2. A 17 June 2011 polar jet and its presence in the background solar wind

    NASA Astrophysics Data System (ADS)

    Yu, H.-S.; Jackson, B. V.; Yang, Y.-H.; Chen, N.-H.; Buffington, A.; Hick, P. P.

    2016-06-01

    High-speed jet responses in the polar solar wind are enigmatic. Here we measure a jet response that emanates from the southern polar coronal hole on 17 June 2011 at the extreme speed of over 1200 km/s. This response was recorded from the Sun-Earth line in Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) and Large Angle and Spectrometric Coronagraph/C2 and both Solar TErrestrial RElations Observatory Extreme Ultraviolet Imager and COR2 coronagraphs when the three spacecraft were situated ~90° from one another. These certify the coronal 3-D location of the response that is associated with an existing solar plume structure and show its high speed to distances of over 14 RS. This jetting is associated with magnetic flux changes in the polar region as measured by the SDO/Helioseismic and Magnetic Imager instrumentation over a period of several hours. The fastest coronal response observed can be tracked to a time near the period of greatest flux changes and to the onset of the brightest flaring in AIA. This high-speed response can be tracked directly as a small patch of outward moving brightness in coronal images as in Yu et al. (2014) where three slower events were followed from the perspective of Earth. This accumulated jet response has the largest mass and energy we have yet seen in 3-D reconstructions from Solar Mass Ejection Imager observations, and its outward motion is certified for the first time using interplanetary scintillation observations. This jet response is surrounded by similar high-speed patches, but these are smoothed out in Ulysses polar measurements, we speculate about how these dynamic activities relate to solar wind acceleration.

  3. A polarized internal sup 3 He target using optical pumping of metastable atoms

    SciTech Connect

    McKeown, R.D.; Milner, R.G.; Woodward, C.E. )

    1989-05-05

    The design of a polarized internal {sup 3}He target for use in storage rings based on optical pumping of metastables is discussed. The target employs an infrared laser to polarize {sup 3}He atoms in a pyrex cell which is connected by a capillary to a windowless cell through which the stored beam passes. Using this technique it should be possible construct targets of 50% polarized {sup 3}He targets of thickness 10{sup 16} cm{sup {minus}2}. Small holding fields ({similar to}10 gauss) and resistance to beam-induced depolarization are desirable features of this target in a storage ring environment.

  4. Precision measurement of the nuclear polarization in laser-cooled, optically pumped 37K

    NASA Astrophysics Data System (ADS)

    Fenker, B.; Behr, J. A.; Melconian, D.; Anderson, R. M. A.; Anholm, M.; Ashery, D.; Behling, R. S.; Cohen, I.; Craiciu, I.; Donohue, J. M.; Farfan, C.; Friesen, D.; Gorelov, A.; McNeil, J.; Mehlman, M.; Norton, H.; Olchanski, K.; Smale, S.; Thériault, O.; Vantyghem, A. N.; Warner, C. L.

    2016-07-01

    We report a measurement of the nuclear polarization of laser-cooled, optically pumped 37K atoms which will allow us to precisely measure angular correlation parameters in the {β }+-decay of the same atoms. These results will be used to test the V ‑ A framework of the weak interaction at high precision. At the Triumf neutral atom trap (Trinat), a magneto-optical trap confines and cools neutral 37K atoms and optical pumping spin-polarizes them. We monitor the nuclear polarization of the same atoms that are decaying in situ by photoionizing a small fraction of the partially polarized atoms and then use the standard optical Bloch equations to model their population distribution. We obtain an average nuclear polarization of \\bar{P}=0.9913+/- 0.0009, which is significantly more precise than previous measurements with this technique. Since our current measurement of the β-asymmetry has 0.2 % statistical uncertainty, the polarization measurement reported here will not limit its overall uncertainty. This result also demonstrates the capability to measure the polarization to \\lt 0.1 % , allowing for a measurement of angular correlation parameters to this level of precision, which would be competitive in searches for new physics.

  5. Compressing Spin-Polarized 3He With a Modified Diaphragm Pump

    PubMed Central

    Gentile, T. R.; Rich, D. R.; Thompson, A. K.; Snow, W. M.; Jones, G. L.

    2001-01-01

    Nuclear spin-polarized 3He gas at pressures on the order of 100 kPa (1 bar) are required for several applications, such as neutron spin filters and magnetic resonance imaging. The metastability-exchange optical pumping (MEOP) method for polarizing 3He gas can rapidly produce highly polarized gas, but the best results are obtained at much lower pressure (~0.1 kPa). We describe a compact compression apparatus for polarized gas that is based on a modified commercial diaphragm pump. The gas is polarized by MEOP at a typical pressure of 0.25 kPa (2.5 mbar), and compressed into a storage cell at a typical pressure of 100 kPa. In the storage cell, we have obtained 20 % to 35 % 3He polarization using pure 3He gas and 35 % to 50 % 3He polarization using 3He-4He mixtures. By maintaining the storage cell at liquid nitrogen temperature during compression, the density has been increased by a factor of four. PMID:27500044

  6. Pump Jet Mixing and Pipeline Transfer Assessment for High-Activity Radioactive Wastes in Hanford Tank 241-AZ-102

    SciTech Connect

    Y Onishi; KP Recknagle; BE Wells

    2000-08-09

    The authors evaluated how well two 300-hp mixer pumps would mix solid and liquid radioactive wastes stored in Hanford double-shell Tank 241-AZ-102 (AZ-102) and confirmed the adequacy of a three-inch (7.6-cm) pipeline system to transfer the resulting mixed waste slurry to the AP Tank Farm and a planned waste treatment (vitrification) plant on the Hanford Site. Tank AZ-102 contains 854,000 gallons (3,230 m{sup 3}) of supernatant liquid and 95,000 gallons (360 m{sup 3}) of sludge made up of aging waste (or neutralized current acid waste). The study comprises three assessments: waste chemistry, pump jet mixing, and pipeline transfer. The waste chemical modeling assessment indicates that the sludge, consisting of the solids and interstitial solution, and the supernatant liquid are basically in an equilibrium condition. Thus, pump jet mixing would not cause much solids precipitation and dissolution, only 1.5% or less of the total AZ-102 sludge. The pump jet mixing modeling indicates that two 300-hp mixer pumps would mobilize up to about 23 ft (7.0 m) of the sludge nearest the pump but would not erode the waste within seven inches (0.18 m) of the tank bottom. This results in about half of the sludge being uniformly mixed in the tank and the other half being unmixed (not eroded) at the tank bottom.

  7. Gravitomagnetic acceleration of accretion disk matter to polar jets

    NASA Astrophysics Data System (ADS)

    Poirier, John; Mathews, Grant

    2016-03-01

    The motion of the masses of an accretion disk around a black hole creates a general relativistic, gravitomagnetic field (GEM) from the moving matter (be it charged or uncharged) of the accretion disk. This GEM field accelerates moving masses (neutral or charged) near the accretion disk vertically upward and away from the disk, and then inward toward the axis of the disk. As the accelerated material nears the axis with approximately vertical angles, a frame dragging effect contributes to the formation of narrow jets emanating from the poles. This GEM effect is numerically evaluated in the first post Newtonian (1PN) approximation from observable quantities like the mass and velocity of the disk. This GEM force is linear in the total mass of the accretion disk matter and quadratic in the velocity of matter near to the disk with approximately the same velocity. Since these masses and velocities can be quite high in astrophysical contexts, the GEM force, which in other contexts is weak, is quite significant. This GEM effect is compared to the ordinary electromagnetic effects applied to this problem in the past.

  8. {sup 3}He polarization via optical pumping in a birefringent cell

    SciTech Connect

    Masuda, Y.; Ino, T.; Skoy, V.R.; Jones, G.L.

    2005-08-01

    A sapphire cell was used to obtain a high {sup 3}He nuclear polarization by means of spin-exchange optical pumping. The phase-shift difference between ordinary and extraordinary rays is well controlled using the thickness of the birefringent sapphire window so that a high circular polarization is obtained in the cell. Neutron transmission through the polarized {sup 3}He gas was measured as a function of neutron energy. A large {sup 3}He polarization of 63{+-}1% was obtained at a {sup 3}He pressure of 3.1 atm. Neutron polarizations of 97 and 90 % were obtained with transmission rates of 15 and 22 % at 10 and 20 meV, respectively.

  9. Hybrid K-Rb Spin Exchange Optical Pumping Cells for the Polarization of ^3He

    NASA Astrophysics Data System (ADS)

    Couture, Alex; Daniels, Tim; Arnold, Charles; Clegg, Tom

    2006-11-01

    We are transitioning from polarizing ^3He using optical pumping cells charged with pure Rb to using a mixture of Rb and K, lean in Rb. The reason for this is the spin exchange efficiency between K and ^3He is an order of magnitude greater than that of Rb and ^3He. Also the spin exchange cross section between Rb and K is very large, which leads to a very fast rate of polarization transfer from Rb to K. Thus by optically pumping using a standard 795 nm Rb laser on a hybrid K-Rb cell, we can obtain significant improvements in spin-up time as well as improvements in overall polarization.[1] We produce hybrid pumping cells at TUNL using a filling station consisting of an oven and a turbo pumping station to bake out and pump away any impurities in the cells. The alkali metals are introduced into the pumping cells from a Y-shaped manifold with a separate retort for each alkali. We are able to determine the ratio of K to Rb in the vapor using white light absorption spectroscopy. Light from a halogen light bulb is incident upon the heated cell and enters a spectrometer beyond. We examine the relative sizes of the D1 and D2 absorption lines for the two alkali metals. We will have data comparing hybrid cells to pure Rb cells, GE-180 cells to Pyrex, and are working to obtain comparative performance data for spectrally unnarrowed and narrowed lasers. Our latest results will be reported. [1] E. Babcock, et al. (2003) Phys. Rev. Letter Vol. 91, Num.12, 123003

  10. Laboratory modeling of multiple zonal jets on the polar beta-plane

    NASA Astrophysics Data System (ADS)

    Afanasyev, Y.

    2011-12-01

    Zonal jets observed in the oceans and atmospheres of planets are studied in a laboratory rotating tank. The fluid layer in the rotating tank has parabolic free surface and dynamically simulates the polar beta-plane where the Coriolis parameter varies quadratically with distance from the pole. Velocity and surface elevation fields are measured with an optical altimetry method (Afanasyev et al., Exps Fluids 2009). The flows are induced by a localized buoyancy source along radial direction. The baroclinic flow consisting of a field of eddies propagates away from the source due West and forms zonal jets (Fig. 1). Barotropic jets ahead of the baroclinic flow are formed by radiation of beta plumes. Inside the baroclinic flow the jets flow between the chains of eddies. Experimental evidence of so-called noodles (baroclinic instability mode with motions in the radial, North-South direction) theoretically predicted by Berloff et al. (JFM, JPO 2009) was found in our experiments. Beta plume radiation mechanism and the mechanism associated with the instability of noodles are likely to contribute to formation of jets in the baroclinic flow.

  11. Effect of pulse polarity on the temporal and spatial emission of an atmospheric pressure helium plasma jet

    NASA Astrophysics Data System (ADS)

    Wang, Ruixue; Zhang, Kai; Shen, Yuan; Zhang, Cheng; Zhu, Weidong; Shao, Tao

    2016-02-01

    A single needle-electrode plasma jet driven by a home-made microsecond pulse power supply is studied. The electrical characteristics and optical emissions of the plasma jets driven by positive- and negative-polarity pulses are compared. With the same magnitude of applied voltage, the plasma jet driven by positive pulses shows a higher discharge current, a higher optical emission intensity and travels to a longer distance. The temporal-spatially resolved He (706.5 nm), N2 (337.1 nm) and \\text{N}2+ (391.4 nm) emissions behave differently in the plasma jets driven by different polarity pulses: They appear to be discrete emission packets in the positive plasma jet, but continuous emission in the negative plasma jet (under the time resolution in this study). The emission front propagates at a faster speed in the positive plasma jet than in the negative plasma jet. The different behavior of the plasma jets is attributed to the electric field distribution under different polarity pulses.

  12. North-south asymmetry in the magnetic deflection of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Zimbardo, G.; Patsourakos, S.; Bothmer, V.; Nakariakov, V. M.

    2015-11-01

    Context. Measurements of the sunspots area, of the magnetic field in the interplanetary medium, and of the heliospheric current sheet (HCS) position, reveal a possible north-south (N-S) asymmetry in the magnetic field of the Sun. This asymmetry could cause the bending of the HCS of the order of 5-10 deg in the southward direction, and it appears to be a recurrent characteristic of the Sun during the minima of solar activity. Aims: We study the N-S asymmetry as inferred from measurements of the deflection of polar coronal hole jets when they propagate throughout the corona. Methods: Since the corona is an environment where the magnetic pressure is greater than the kinetic pressure (β ≪ 1), we can assume that the magnetic field controls the dynamics of plasma. On average, jets follow magnetic field lines during their propagation, highlighting their local direction. We measured the position angles at 1 R⊙ and at 2 R⊙ of 79 jets, based on the Solar TErrestrial RElations Observatory (STEREO) ultraviolet and white-light coronagraph observations during the solar minimum period March 2007-April 2008. The average jet deflection is studied both in the plane perpendicular to the line of sight and, for a reduced number of jets, in 3D space. The observed jet deflection is studied in terms of an axisymmetric magnetic field model comprising dipole (g1), quadrupole (g2), and esapole (g3) moments. Results: We found that the propagation of the jets is not radial, which is in agreement with the deflection due to magnetic field lines. Moreover, the amount of the deflection is different between jets over the north and those from the south pole. A comparison of jet deflections and field line tracing shows that a ratio g2/g1 ≃ -0.5 for the quadrupole and a ratio g3/g1 ≃ 1.6-2.0 for the esapole can describe the field. The presence of a non-negligible quadrupole moment confirms the N-S asymmetry of the solar magnetic field for the considered period. Conclusions: We find that the

  13. Modeling Reconnection-Driven Solar Polar Jets with Gravity and Wind

    NASA Astrophysics Data System (ADS)

    Karpen, Judith T.; DeVore, C. R.; Antiochos, S. K.

    2013-07-01

    Solar polar jets are dynamic, narrow, radially extended structures observed in EUV emission. They have been found to originate within the open magnetic field of coronal holes in “anemone” regions, which are generally accepted to be intrusions of opposite polarity. The associated embedded-dipole topology consists of a spine line emanating from a null point atop a dome-shaped fan surface. Previous work (Pariat et al. 2009, 2010) has validated the idea that magnetic free energy stored on twisted closed field lines within the fan surface can be released explosively by the onset of fast reconnection between the highly stressed closed field inside the null and the unstressed open field outside (Antiochos 1996). The simulations showed that a dense jet comprising a nonlinear, torsional Alfven wave is ejected into the outer corona on the newly reconnected open field lines. While proving the principle of the basic model, those simulations neglected the important effects of gravity, the solar wind, and an expanding spherical geometry. We introduce those additional physical processes in new simulations of reconnection-driven jets, to determine whether the model remains robust in the resulting more realistic setting, and to begin establishing the signatures of the jets in the inner heliosphere for comparison with observations. Initial results demonstrate explosive energy release and a jet in the low corona very much like that in the earlier Cartesian, gravity-free, static-atmosphere runs. We report our analysis of the results, their comparison with previous work, and their implications for observations. This work was supported by NASA’s LWS TR&T program.Abstract (2,250 Maximum Characters): Solar polar jets are dynamic, narrow, radially extended structures observed in EUV emission. They have been found to originate within the open magnetic field of coronal holes in “anemone” regions, which are generally accepted to be intrusions of opposite polarity. The associated

  14. Generation of waves by jet-stream instabilities in winter polar stratosphere/mesosphere

    NASA Astrophysics Data System (ADS)

    Shpynev, B. G.; Churilov, S. M.; Chernigovskaya, M. A.

    2015-12-01

    In the paper we investigate the manifestation of large-scale and middle-scale atmospheric irregularities observed on stratosphere/mesosphere heights. We consider typical patterns of circulation in stratosphere and lower mesosphere which are formed due to a difference of air potential energy between equatorial and polar latitudes, especially in polar night conditions. On the base of ECMWF Era Interim reanalysis data we consider the dynamics of midlatitude winter jet-streams which transfer heat from low latitudes to polar region and which develop due to equator/pole baroclinic instabilities. We consider typical patterns of general circulation in stratosphere/lower mesosphere and reasons for creation of flaky structure of polar stratosphere. Also we analyze conditions that are favorable for splitting of winter circumpolar vortex during sudden stratosphere warming events and role of phase difference tides in this process. The analysis of vertical structure of the stratosphere wind shows the presence of regions with significant shear of horizontal velocity which favors for inducing of shear-layer instability that appears as gravity wave on boundary surface. During powerful sudden stratosphere warming events the main jet-stream can amplify these gravity waves to very high amplitudes that causes wave overturning and releasing of wave energy into the heat due to the cascade breakdown and turbulence. For the dynamics observed in reanalysis data we consider physical mechanisms responsible for observed phenomena.

  15. A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples

    NASA Astrophysics Data System (ADS)

    Picchiotti, Alessandra; Prokhorenko, Valentyn I.; Miller, R. J. Dwayne

    2015-09-01

    We describe the design and provide the results of the full characterization of a closed-loop pump-driven wire-guided flow jet system. The jet has excellent optical quality with a wide range of liquids spanning from alcohol to water based solutions, including phosphate buffers used for biological samples. The thickness of the jet film varies depending on the flow rate between 90 μm and 370 μm. The liquid film is very stable, and its thickness varies only by 0.76% under optimal conditions. Measured transmitted signal reveals a long term optical stability (hours) with a RMS of 0.8%, less than the overall noise of the spectroscopy setup used in our experiments. The closed loop nature of the overall jet design has been optimized for the study of precious biological samples, in limited volumes, to remove window contributions from spectroscopic observables. This feature is particularly important for femtosecond studies in the UV range.

  16. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen

    2015-11-01

    A polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum swapping, quantum computation and high precision quantum metrology. Here, we report on the generation of a continuous-wave pumped degenerated 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II phase-matched periodically poled KTiOPO4 crystal in a Sagnac interferometer. Hong-Ou-Mandel-type interference measurement shows the photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The wavelength of photons can be tuned over a broad range by changing the temperature of crystal or pump power without losing the quality of entanglement. This source will be useful for building up long-distance quantum networks.

  17. Status of the Michigan ultra-cold spin-polarized hydrogen jet target

    NASA Astrophysics Data System (ADS)

    Kageya, T.; Anferov, V. A.; Arnold, J. D.; Blinov, B. B.; Celik, M.; Centurion, M.; Gladycheva, S. E.; Krisch, A. D.; Lin, A. M. T.; Luppov, V. G.; Raymond, R. S.; Sourkont, K. V.; Wu, Y.-W.; Youssof, S. S.; Chuiko, B. V.; Grishin, V. N.; Khodyrev, V. Yu.; Mochalov, V. V.; Prudkoglyad, A. F.; Semenov, P. A.; Yakutin, A. E.; Bychkov, M. A.; Fimushkin, V. V.

    1998-04-01

    We are developing a high density ultra-cold jet target of proton-spin-polarized hydrogen atoms in order to study spin effects in high energy p-p collisions. The target uses a 12 T magnetic field, an ultra-cold separation cell whose 0.3 K surface is coated with superfluid ^4He, and a radio-frequency (rf) transition unit. The 12 T field and 0.3 K temperature produce an electron-spin-polarized atomic hydrogen beam; the rf unit then transforms it into a proton-spin-polarized beam. Recent progress on the dilution refrigerator and atomic hydrogen beam line will be discussed. The rf transition unit and maser polarimeter will be discussed by another speaker.

  18. Polarized pump--probe spectroscopy of electronic excitation transport in photosynthetic antennas

    SciTech Connect

    Struve, W.S. )

    1990-08-01

    Polarized pump--probe spectroscopy was performed with 1.5--2 psec resolution on the bacteriochlorophyll a protein antenna complex from the green sulfur bacterium Prosthecochloris aestuarii and on native and enriched photosystem I particles from spinach. The resulting photobleaching profiles reflect the details of singlet electronic-excitation transport in these photosynthetic antennas, in which the pigments are complexed by proteins into clusters of five or more chromophores.

  19. Modelling Optically Pumped NMR and Spin Polarization in AlGaAs/GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Saha, Dipta; Stanton, Chris; Wood, R.; Bowers, C. R.; Sesti, E.; Hayes, S. E.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.

    2014-03-01

    Optically Pumped NMR (OPNMR) is a combination of the optical pumping of semiconductors to create spin-polarized electrons and the direct detection of an enhanced NMR signal as the electron spin polarization is transferred to the nucleus. We present theoretical calculations for the average electron spin polarization at different photon energies for different values of external magnetic field in both unstrained and strained Alx Ga1 - x As / GaAs quantum wells. Comparison is made with the experimental OPNMR signal intensity. We identify the Landau level transitions which are responsible for the peaks in the OPNMR signal intensity. Our calculations are based on the 8-band Pidgeon-Brown model generalized to include the effects of the confinement potential as well as strain. In strained wells, the strain is calculated using a relation that associates the experimental value of the nuclear quadrupole splitting with the strain along a given axis. Optical properties are calculated using Fermi's Golden rule. Results show that the strength and sign the OPNMR signal is related to the average electron spin polarization. Supported by NSF through grants DMR-1105437, DMR-1206447 and the NHMFL In-House Science Program (DMR-1157490).

  20. Analysis and Modeling of a Two-Phase Jet Pump of a Flow Boiling Test Facility for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Sherif, S. A.; Steadham, Justin M.

    1996-01-01

    Jet pumps are devices capable of pumping fluids to a higher pressure employing a nozzle/diffuser/mixing chamber combination. A primary fluid is usually allowed to pass through a converging-diverging nozzle where it can accelerate to supersonic speeds at the nozzle exit. The relatively high kinetic energy that the primary fluid possesses at the nozzle exit is accompanied by a low pressure region in order to satisfy Bernoulli's equation. The low pressure region downstream of the nozzle exit permits a secondary fluid to be entrained into and mixed with the primary fluid in a mixing chamber located downstream of the nozzle. Several combinations may exist in terms of the nature of the primary and secondary fluids in so far as whether they are single or two-phase fluids. Depending on this, the jet pump may be classified as gas/gas, gas/liquid, liquid/liquid, two-phase/liquid, or similar combinations. The mixing chamber serves to create a homogeneous single-phase or two-phase mixture which enters a diffuser where the high kinetic energy of the fluid is converted into pressure energy. If the fluid mixture entering the diffuser is in the supersonic flow regime, a normal shock wave usually develops inside the diffuser. If the fluid mixture is one that can easily change phase, a condensation shock would normally develop. Because of the overall rise in pressure in the diffuser as well as the additional rise in pressure across the shock layer, condensation becomes more likely. Associated with the pressure rise across the shock is a velocity reduction from the supersonic to the subsonic range. If the two-phase flow entering the diffuser is predominantly gaseous with liquid droplets suspended in it, it will transform into a predominantly liquid flow containing gaseous bubbles (bubbly flow) somewhere in the diffuser. While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no

  1. The TRIUMF optically-pumped polarized H{sup {minus}} ion source

    SciTech Connect

    Levy, C.D.P.; Jayamanna, K.; McDonald, M.

    1995-09-01

    The TRIUMF dc optically-pumped polarized H{sup {minus}} ion source (OPPIS) produces 200 {micro}A dc H{sup {minus}} current at 85% polarization within a normalized emittance (90%) of 0.8 {pi} mm mrad, for operations at the TRIUMF cyclotron. As a result of development of the ECR primary proton source, 1.6 mA dc polarized H{sup {minus}} current is produced within a normalized emittance of 2 {pi} mm mrad, suitable for high energy accelerators. The OPPIS has also been developed for use in a parity non-conservation experiment which has very severe limits on permissible helicity-correlated changes in beam current and energy.

  2. Alkali-metal-atom polarization imaging in high-pressure optical-pumping cells

    NASA Astrophysics Data System (ADS)

    Baranga, A. Ben-Amar; Appelt, S.; Erickson, C. J.; Young, A. R.; Happer, W.

    1998-09-01

    We present a detailed experimental analysis of Rb-polarization imaging in high-pressure gas cells. The Rb vapor in these cells is optically pumped by high-power diode-laser arrays. We present images for high (35 G) and low (4 G) magnetic fields and for different He and Xe buffer-gas mixtures. We demonstrate that high-field imaging provides an absolute measurement of the Rb-polarization distribution in the cell, based on the fact that a spin-temperature distribution of the hyperfine magnetic sublevels is established in high-pressure buffer gases. A survey of various mechanisms that broaden the Rb magnetic-resonance lines is presented. These broadening mechanisms determine the limits of the spatial resolution achievable for images of the Rb-polarization distribution.

  3. Switch-on Shock and Nonlinear Kink Alfvén Waves in Solar Polar Jets

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.; Uritsky, Vadim

    2016-05-01

    It is widely accepted that solar polar jets are produced by fast magnetic reconnection in the low corona, whether driven directly by flux emergence from below or indirectly by instability onset above the photosphere. In either scenario, twisted flux on closed magnetic field lines reconnects with untwisted flux on nearby open field lines. Part of the twist is inherited by the newly reconnected open flux, which rapidly relaxes due to magnetic tension forces that transmit the twist impulsively into the outer corona and heliosphere. We propose that this transfer of twist launches switch-on MHD shock waves, which propagate parallel to the ambient coronal magnetic field ahead of the shock and convect a perpendicular component of magnetic field behind the shock. In the frame moving with the shock front, the post-shock flow is precisely Alfvénic in all three directions, whereas the pre-shock flow is super-Alfvénic along the ambient magnetic field, yielding a density enhancement at the shock front. Nonlinear kink Alfvén waves are exact solutions of the time-dependent MHD equations in the post-shock region when the ambient corona is uniform and the magnetic field is straight. We have performed and analyzed 3D Cartesian and spherical simulations of polar jets driven by instability onset in the corona. The results of both simulations are consistent with the generation of MHD switch-on shocks trailed predominantly by incompressible kink Alfvén waves. It is noteworthy that the kink waves are irrotational, in sharp contrast to the vorticity-bearing torsional waves reported from previous numerical studies. We will discuss the implications of the results for understanding solar polar jets and predicting their heliospheric signatures. Our research was supported by NASA’s LWS TR&T and H-SR programs.

  4. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Yao, Jinping; Xie, Hongqiang; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-08-01

    We experimentally demonstrate ultrafast dynamic of generation of a strong 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the excited and ground states of N2 for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation.

  5. Gain dynamics of a free-space nitrogen laser pumped by circularly polarized femtosecond laser pulses.

    PubMed

    Yao, Jinping; Xie, Hongqiang; Zeng, Bin; Chu, Wei; Li, Guihua; Ni, Jielei; Zhang, Haisu; Jing, Chenrui; Zhang, Chaojin; Xu, Huailiang; Cheng, Ya; Xu, Zhizhan

    2014-08-11

    We experimentally demonstrate ultrafast dynamic of generation of the 337-nm nitrogen laser by injecting an external seed pulse into a femtosecond laser filament pumped by a circularly polarized laser pulse. In the pump-probe scheme, it is revealed that the population inversion between the C(3)Π(u) and B(3)Π(g) states of N(2) for the free-space 337-nm laser is firstly built up on the timescale of several picoseconds, followed by a relatively slow decay on the timescale of tens of picoseconds, depending on the nitrogen gas pressure. By measuring the intensities of 337-nm signal from nitrogen gas mixed with different concentrations of oxygen gas, it is also found that oxygen molecules have a significant quenching effect on the nitrogen laser signal. Our experimental observations agree with the picture of electron-impact excitation. PMID:25320986

  6. The Evolving Polarized Jet of Black Hole Candidate Swift J1745-26

    NASA Technical Reports Server (NTRS)

    Curran, P. A.; Coriat, M.; Miller-Jones, J. C. A.; Armstrong, R. P.; Edwards, P. G.; Sivakoff, G. R.; Woudt, P.; Altamirano, D.; Belloni, T. M.; Corbel, S.; Krimm, Hans A.

    2013-01-01

    Swift J1745-26 is an X-ray binary towards the Galactic Centre that was detected when it went into outburst in September 2012. This source is thought to be one of a growing number of sources that display "failed outbursts", in which the self-absorbed radio jets of the transient source are never fully quenched and the thermal emission from the geometrically-thin inner accretion disk never fully dominates the X-ray flux. We present multifrequency data from the Very Large Array, Australia Telescope Compact Array and Karoo Array Telescope (KAT- 7) radio arrays, spanning the entire period of the outburst. Our rich data set exposes radio emission that displays a high level of large scale variability compared to the X-ray emission and deviations from the standard radio-X-ray correlation that are indicative of an unstable jet and confirm the outburst's transition from the canonical hard state to an intermediate state. We also observe steepening of the spectral index and an increase of the linear polarization to a large fraction (is approx. equal to 50%) of the total flux, as well as a rotation of the electric vector position angle. These are consistent with a transformation from a self-absorbed compact jet to optically-thin ejecta - the first time such a discrete ejection has been observed in a failed outburst - and may imply a complex magnetic field geometry.

  7. First Measurement of the T-Odd Correlation between the Z0 Spin and the Three-Jet Plane Orientation in Polarized Z0 Decays into Three Jets

    NASA Astrophysics Data System (ADS)

    Abe, K.; Abt, I.; Ahn, C. J.; Akagi, T.; Allen, N. J.; Ash, W. W.; Aston, D.; Baird, K. G.; Baltay, C.; Band, H. R.; Barakat, M. B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A. O.; Ben-David, R.; Benvenuti, A. C.; Bienz, T.; Bilei, G. M.; Bisello, D.; Blaylock, G.; Bogart, J. R.; Bolton, T.; Bower, G. R.; Brau, J. E.; Breidenbach, M.; Bugg, W. M.; Burke, D.; Burnett, T. H.; Burrows, P. N.; Busza, W.; Calcaterra, A.; Caldwell, D. O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H. O.; Coller, J. A.; Cook, V.; Cotton, R.; Cowan, R. F.; Coyne, D. G.; D'oliveira, A.; Damerell, C. J.; Daoudi, M.; de Sangro, R.; de Simone, P.; dell'orso, R.; Dima, M.; Du, P. Y.; Dubois, R.; Eisenstein, B. I.; Elia, R.; Falciai, D.; Fero, M. J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G. D.; Hart, E. L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S. S.; Hildreth, M. D.; Huber, J.; Huffer, M. E.; Hughes, E. W.; Hwang, H.; Iwasaki, Y.; Jackson, D. J.; Jacques, P.; Jaros, J.; Johnson, A. S.; Johnson, J. R.; Johnson, R. A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H. J.; Karliner, I.; Kawahara, H.; Kendall, H. W.; Kim, Y.; King, M. E.; King, R.; Kofler, R. R.; Krishna, N. M.; Kroeger, R. S.; Labs, J. F.; Langston, M.; Lath, A.; Lauber, J. A.; Leith, D. W.; Liu, M. X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H. L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T. W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mattison, T. S.; Mazzucato, E.; McKemey, A. K.; Meadows, B. T.; Messner, R.; Mockett, P. M.; Moffeit, K. C.; Mours, B.; Müller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L. S.; Panvini, R. S.; Park, H.; Pavel, T. J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K. T.; Plano, R. J.; Prepost, R.; Prescott, C. Y.; Punkar, G. D.; Quigley, J.; Ratcliff, B. N.; Reeves, T. W.; Reidy, J.; Rensing, P. E.; Rochester, L. S.; Rothberg, J. E.; Rowson, P. C.; Russell, J. J.; Saxton, O. H.; Schaffner, S. F.; Schalk, T.; Schindler, R. H.; Schneekloth, U.; Schumm, B. A.; Seiden, A.; Sen, S.; Serbo, V. V.; Shaevitz, M. H.; Shank, J. T.; Shapiro, G.; Shapiro, S. L.; Sherden, D. J.; Shmakov, K. D.; Simopoulos, C.; Sinev, N. B.; Smith, S. R.; Snyder, J. A.; Stamer, P.; Steiner, H.; Steiner, R.; Strauss, M. G.; Su, D.; Suekane, F.; Sugiyama, A.; Suzuki, S.; Swartz, M.; Szumilo, A.; Takahashi, T.; Taylor, F. E.; Torrence, E.; Turk, J. D.; Usher, T.; Va'vra, J.; Vannini, C.; Vella, E.; Venuti, J. P.; Verdier, R.; Verdini, P. G.; Wagner, S. R.; Waite, A. P.; Watts, S. J.; Weidemann, A. W.; Weiss, E. R.; Whitaker, J. S.; White, S. L.; Wickens, F. J.; Williams, D. A.; Williams, D. C.; Williams, S. H.; Willocq, S.; Wilson, R. J.; Wisniewski, W. J.; Woods, M.; Word, G. B.; Wyss, J.; Yamamoto, R. K.; Yamartino, J. M.; Yang, X.; Yellin, S. J.; Young, C. C.; Yuta, H.; Zapalac, G.; Zdarko, R. W.; Zeitlin, C.; Zhang, Z.; Zhou, J.

    1995-12-01

    We present the first measurement of the correlation between the Z0 spin and the event-plane orientation in polarized Z0 decays into three jets in the SLAC Linear Collider Large Detector experiment at SLAC utilizing a longitudinally polarized electron beam. The CP-even and T-odd triple product S-->Z.(k-->1×k-->2), formed from the two fastest jet momenta k-->1 and k-->2 and the Z0 polarization vector S-->Z, is sensitive to physics beyond the standard model. We measure the expectation value of this quantity to be consistent with zero and set 95% C.L. limits of -0.022<β<0.039 on the correlation.

  8. The Structure and Linear Polarization of the Kiloparsec-scale Jet of the Quasar 3C 345

    NASA Astrophysics Data System (ADS)

    Roberts, David H.; Wardle, John F. C.; Marchenko, Valerie V.

    2013-02-01

    Deep Very Large Array imaging of the quasar 3C 345 at 4.86 and 8.44 GHz has been used to study the structure and linear polarization of its radio jet on scales ranging from 2 to 30 kpc. There is a 7-8 Jy unresolved core with spectral index α ~= -0.24 (I νvpropνα). The jet (typical intensity 15 mJy beam-1) consists of a 2.''5 straight section containing two knots, and two additional non-co-linear knots at the end. The jet's total projected length is about 27 kpc. The spectral index of the jet varies over -1.1 <~ α <~ -0.5. The jet diverges with a semi-opening angle of about 9°, and is nearly constant in integrated brightness over its length. A faint feature northeast of the core does not appear to be a true counter-jet, but rather an extended lobe of this FR-II radio source seen in projection. The absence of a counter-jet is sufficient to place modest constraints on the speed of the jet on these scales, requiring β >~ 0.5. Despite the indication of jet precession in the total intensity structure, the polarization images suggest instead a jet re-directed at least twice by collisions with the external medium. Surprisingly, the electric vector position angles in the main body of the jet are neither longitudinal nor transverse, but make an angle of about 55° with the jet axis in the middle while along the edges the vectors are transverse, suggesting a helical magnetic field. There is no significant Faraday rotation in the source, so that is not the cause of the twist. The fractional polarization in the jet averages 25% and is higher at the edges. In a companion paper, Roberts & Wardle show that differential Doppler boosting in a diverging relativistic velocity field can explain the electric vector pattern in the jet.

  9. THE STRUCTURE AND LINEAR POLARIZATION OF THE KILOPARSEC-SCALE JET OF THE QUASAR 3C 345

    SciTech Connect

    Roberts, David H.; Wardle, John F. C.; Marchenko, Valerie V.

    2013-02-01

    Deep Very Large Array imaging of the quasar 3C 345 at 4.86 and 8.44 GHz has been used to study the structure and linear polarization of its radio jet on scales ranging from 2 to 30 kpc. There is a 7-8 Jy unresolved core with spectral index {alpha} {approx_equal} -0.24 (I{sub {nu}}{proportional_to}{nu}{sup {alpha}}). The jet (typical intensity 15 mJy beam{sup -1}) consists of a 2.''5 straight section containing two knots, and two additional non-co-linear knots at the end. The jet's total projected length is about 27 kpc. The spectral index of the jet varies over -1.1 {approx}< {alpha} {approx}< -0.5. The jet diverges with a semi-opening angle of about 9 Degree-Sign , and is nearly constant in integrated brightness over its length. A faint feature northeast of the core does not appear to be a true counter-jet, but rather an extended lobe of this FR-II radio source seen in projection. The absence of a counter-jet is sufficient to place modest constraints on the speed of the jet on these scales, requiring {beta} {approx}> 0.5. Despite the indication of jet precession in the total intensity structure, the polarization images suggest instead a jet re-directed at least twice by collisions with the external medium. Surprisingly, the electric vector position angles in the main body of the jet are neither longitudinal nor transverse, but make an angle of about 55 Degree-Sign with the jet axis in the middle while along the edges the vectors are transverse, suggesting a helical magnetic field. There is no significant Faraday rotation in the source, so that is not the cause of the twist. The fractional polarization in the jet averages 25% and is higher at the edges. In a companion paper, Roberts and Wardle show that differential Doppler boosting in a diverging relativistic velocity field can explain the electric vector pattern in the jet.

  10. First measurement of the triple-product correlation in polarized Z{sup 0} decays to three jets

    SciTech Connect

    1995-07-01

    We present the first measurement of the triple-product correlation in polarized Z{sup o} decays to three jets using the SLD detector at SLAC and utilizing a longitudinally polarized electron beam. The CP-even and T-odd triple product {rvec S}{sub z} {center_dot} ({rvec k}{sub 1} x {rvec k}{sub 2}) formed from the two fastest jet momenta {rvec k}{sub 1} and {rvec k}{sub 2} and the Z{sup o} polarization vector {rvec S}{sub z} is sensitive to physics beyond the Standard Model. We measure the expectation value of this quantity to be consistent with zero and set an upper limit on correlations between the Z{sup 0}-spin and the three-jet plane orientation.

  11. The role of the interaction between polar and subtropical jet in a case of depression rejuvenation over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Prezerakos, N. G.; Flocas, H. A.; Brikas, D.

    2006-02-01

    In this paper, an attempt is made to investigate the synoptic-scale atmospheric conditions and dynamic processes leading to the rejuvenation of depressions or cyclogenesis over the Eastern Mediterranean during the cold period of the year. A case study analysis is carried out when the Polar Front Jet (PFJ) is positioned to the south of its normal seasonal position and interacts with the Subtropical Jet Stream (SJS), which is positioned to the north of its normal seasonal position. It was found that the vigorous rejuvenation of a northeastwards moving Atlas mountains depression on 15 March 1998 over Cyprus region is associated with an increase of the hydrodynamic instability due to the juxtaposition of a polar front jet streak to the subtropical jet stream. Furthermore, the rejuvenation is related to the combined effect of the direct and indirect cross vertical circulations appearing on the right side of the entrance of a polar jet streak and the left side of a subtropical jet streak exit, respectively.

  12. NMR spectroscopy of hyperpolarized ^129Xe at high fields: Maintaining spin polarization after optical pumping.

    NASA Astrophysics Data System (ADS)

    Patton, Brian; Kuzma, Nicholas N.; Lisitza, Natalia V.; Happer, William

    2003-05-01

    Spin-polarized ^129Xe has become an invaluable tool in nuclear magnetic resonance research, with applications ranging from medical imaging to high-resolution spectroscopy. High-field NMR studies using hyperpolarized xenon as a spectroscopic probe benefit from the high signal-to-noise ratios and large chemical shifts typical of optically-pumped noble gases. The experimental sensitivity is ultimately determined by the absolute polarization of the xenon in the sample, which can be substantially decreased during purification and transfer. NMR of xenon at high fields (9.4 Tesla) will be discussed, and potential mechanisms of spin relaxation during the distillation, storage(N. N. Kuzma, B. Patton, K. Raman, and W. Happer, Phys. Rev. Lett. 88), 147602 (2002)., and delivery of hyperpolarized xenon will be analyzed.

  13. Polarization maintaining, high-power and high-efficiency (6+1)×1 pump/signal combiner

    NASA Astrophysics Data System (ADS)

    Kopp, Victor I.; Park, Jongchul; Wlodawski, Mitchell; Singer, Jonathan; Neugroschl, Dan

    2014-03-01

    We have developed an all-glass, fusion spliceable polarization maintaining (6+1)× 1 pump/signal combiner for fiber lasers and amplifiers. We utilize an enhanced tapered fiber bundle technology for multimode pump channels and a vanishing core fiber for the single mode polarization maintaining large mode area (PLMA) signal channel. The signal channel of the combiner is optimized to match a double-clad PLMA fiber with 20 micron core and 400 micron glass cladding with 0.065 numerical aperture (NA). The multimode pump channels have 200 micron core and 240 micron cladding with NA of 0.22 designed to deliver high power 980 nm pump light. The same double-clad PLMA fiber is used as both the signal input channel and the combined output for the device. Polarization axes of the input and output PLMA fibers are aligned during the fusion splices to achieve polarization crosstalk below -20 dB. Utilizing this approach, we have achieved coupling loss of ~0.4 dB for the signal channel as measured from the input PLMA to the output PLMA at a wavelength of 1060 nm and coupling loss below 0.01 dB for all pump channels as determined from the measured temperature rise of the combiner package temperature as the optical pump power at 974 nm is increased up to 45 W. Low signal and pump losses result in high efficiency lasing or amplification at over a kW of pump power for high power applications where a single mode, high polarization extinction ratio output is required.

  14. CW-pumped telecom band polarization entangled photon pair generation in a Sagnac interferometer.

    PubMed

    Li, Yan; Zhou, Zhi-Yuan; Ding, Dong-Sheng; Shi, Bao-Sen

    2015-11-01

    Polarization entangled photon pair source is widely used in many quantum information processing applications such as teleportation, quantum communications, quantum computation and high precision quantum metrology. We report on the generation of a continuous-wave pumped 1550 nm polarization entangled photon pair source at telecom wavelength using a type-II periodically poled KTiOPO(4) (PPKTP) crystal in a Sagnac interferometer. Hong-Ou-Mandel (HOM) interference measurement yields signal and idler photon bandwidth of 2.4 nm. High quality of entanglement is verified by various kinds of measurements, for example two-photon interference fringes, Bell inequality and quantum states tomography. The source can be tuned over a broad range against temperature or pump power without loss of visibilities. This source will be used in our future experiments such as generation of orbital angular momentum entangled source at telecom wavelength for quantum frequency up-conversion, entanglement based quantum key distributions and many other quantum optics experiments at telecom wavelengths. PMID:26561148

  15. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores

    NASA Astrophysics Data System (ADS)

    Yeh, Hung-Chun; Chang, Chih-Chang; Yang, Ruey-Jen

    2015-06-01

    A numerical investigation is performed into the characteristics of an electro-osmotic pump consisting of a negatively charged conical nanopore. It is shown that the dependence of the flow rectification effect on the bias direction is the reverse of that of the ion current rectification effect. Moreover, the nozzle mode (i.e., the bias is applied from the base side of the nanopore to the tip side) has a higher flow rate compared to the diffuser mode (i.e., the bias is applied from the tip side of the nanopore to the base side). The results showed that the ion-concentration polarization effect occurred inside the conical nanopore, resulting in surface conduction dominating in the ionic current. The ions inside the nanopore are depleted and enriched under the nozzle mode and the diffuser mode, respectively. As a result, the electro-osmotic pump yields a greater pumping pressure, flow rate, and energy conversion efficiency when operating in the nozzle mode. In addition, we also investigated the flow rate rectification behavior for the conical nanopore. The best flow rate rectification factor in this work is 2.06 for an electrolyte concentration of 10-3M .

  16. A Optically Pumped Polarized Lithium Ion Source and AN Investigation of CARBON-12

    NASA Astrophysics Data System (ADS)

    Mendez, Anthony James, II

    A source of vector and tensor polarized ^{6,7}Li ions has been constructed and tested. The ion source uses laser optical pumping of an atomic beam of lithium, followed by adiabatic radiofrequency transitions, selectively populating a single magnetic substate of the neutral atom. The atomic beam is formed by vaporizing lithium metal in an oven and extracting the beam through a heated nozzle/collimator assembly. The atomic beam is irradiated transversely in a weak holding magnetic field by electro-optically modulated, circularly polarized light of wavelength 670.8 nm, obtained from a ring dye laser pumped by an Ar^+ laser. Optical pumping produces a nearly pure m_{F } = F population distribution. Adiabatic rf transitions can then be used to transfer the population to any of the other desired magnetic substates. The polarized atomic beam is ionized positively on an electrically heated tungsten strip and charge exchanged to Li^ - in a cesium vapor. A Wien filter is used to produce the desired spin axis orientation, and then the beam is injected into a tandem Van de Graaff-superconducting linac for acceleration up to 9 MeV/nucleon. A helium gas polarimeter has been calibrated for use in rapid on-line monitoring of the polarization on target. Cross section angular distributions and a complete set of analyzing powers T_{kq}( theta) for the ^{12} C(^6vec{rm Li} , alpha)^{14 }N reaction have been measured at 33 MeV. Full finite range DWBA calculations have been performed to analyze the data for states up to E_{x} = 9.70 MeV in ^{14}N. Nilsson model wavefunctions for the ^{14} N states were used to calculate deuteron cluster transfer spectroscopic amplitudes. Although the calculations did not produce a satisfactory description of the entire data set, they showed clear evidence of L-mixing effects and a sensitivity to the ^6Li D state. The deduced D state-S state ratio in ^6 Li is in agreement with earlier work, and the uncertainty as to the relative sign of the ^6Li = alpha

  17. Performance evaluation of rotating pump jet mixing of radioactive wastes in Hanford Tanks 241-AP-102 and -104

    SciTech Connect

    Onishi, Y.; Recknagle, K.P.

    1998-07-01

    The purpose of this study was to confirm the adequacy of a single mixer pump to fully mix the wastes that will be stored in Tanks 241-AP-102 and -104. These Hanford double-shell tanks (DSTs) will be used as staging tanks to receive low-activity wastes from other Hanford storage tanks and, in turn, will supply the wastes to private waste vitrification facilities for eventual solidification. The TEMPEST computer code was applied to Tanks AP-102 and -104 to simulate waste mixing generated by the 60-ft/s rotating jets and to determine the effectiveness of the single rotating pump to mix the waste. TEMPEST simulates flow and mass/heat transport and chemical reactions (equilibrium and kinetic reactions) coupled together. Section 2 describes the pump jet mixing conditions the authors evaluated, the modeling cases, and their parameters. Section 3 reports model applications and assessment results. The summary and conclusions are presented in Section 4, and cited references are listed in Section 5.

  18. High efficiency, linearly polarized, directly diode-pumped Er:YAG laser at 1617  nm.

    PubMed

    Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao

    2014-12-01

    An efficient, directly diode-pumped Er:YAG laser at 1617 nm was demonstrated. A folding mirror with high reflectivity for the s-polarized light at the laser wavelength was used to achieve a linearly polarized laser. A maximum continuous-wave output power of 7.73 W was yielded under incident pump power of 50.57 W, and the optical conversion efficiency with respect to incident pump power was ∼15.28%, which was the highest optical conversion efficiency with directly diode-pumped Er:YAG lasers up to now; in Q-switched operation, the maximum pulse energy of 7.82 mJ was generated with pulse duration of about 80 ns at a pulse repetition frequency of 500 Hz. PMID:25607959

  19. A closed-loop pump-driven wire-guided flow jet for ultrafast spectroscopy of liquid samples.

    PubMed

    Picchiotti, Alessandra; Prokhorenko, Valentyn I; Miller, R J Dwayne

    2015-09-01

    We describe the design and provide the results of the full characterization of a closed-loop pump-driven wire-guided flow jet system. The jet has excellent optical quality with a wide range of liquids spanning from alcohol to water based solutions, including phosphate buffers used for biological samples. The thickness of the jet film varies depending on the flow rate between 90 μm and 370 μm. The liquid film is very stable, and its thickness varies only by 0.76% under optimal conditions. Measured transmitted signal reveals a long term optical stability (hours) with a RMS of 0.8%, less than the overall noise of the spectroscopy setup used in our experiments. The closed loop nature of the overall jet design has been optimized for the study of precious biological samples, in limited volumes, to remove window contributions from spectroscopic observables. This feature is particularly important for femtosecond studies in the UV range. PMID:26429427

  20. The role and production of polar/subtropical jet superpositions in two high-impact weather events over North America

    NASA Astrophysics Data System (ADS)

    Winters, Andrew C.

    Careful observational work has demonstrated that the tropopause is typically characterized by a three-step pole-to-equator structure, with each break between steps in the tropopause height associated with a jet stream. While the two jet streams, the polar and subtropical jets, typically occupy different latitude bands, their separation can occasionally vanish, resulting in a vertical superposition of the two jets. A cursory examination of a number of historical and recent high-impact weather events over North America and the North Atlantic indicates that superposed jets can be an important component of their evolution. Consequently, this dissertation examines two recent jet superposition cases, the 18--20 December 2009 Mid-Atlantic Blizzard and the 1--3 May 2010 Nashville Flood, in an effort (1) to determine the specific influence that a superposed jet can have on the development of a high-impact weather event and (2) to illuminate the processes that facilitated the production of a superposition in each case. An examination of these cases from a basic-state variable and PV inversion perspective demonstrates that elements of both the remote and local synoptic environment are important to consider while diagnosing the development of a jet superposition. Specifically, the process of jet superposition begins with the remote production of a cyclonic (anticyclonic) tropopause disturbance at high (low) latitudes. The cyclonic circulation typically originates at polar latitudes, while organized tropical convection can encourage the development of an anticyclonic circulation anomaly within the tropical upper-troposphere. The concurrent advection of both anomalies towards middle latitudes subsequently allows their individual circulations to laterally displace the location of the individual tropopause breaks. Once the two circulation anomalies position the polar and subtropical tropopause breaks in close proximity to one another, elements within the local environment, such as

  1. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    NASA Astrophysics Data System (ADS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-08-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 23 S→23 P0,1,2 (D0, D1, and D2) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D2 line.

  2. Development and testing of a high-pressure downhole pump for jet-assist drilling. Final report

    SciTech Connect

    1996-07-01

    The goal of jet-assist drilling is to increase the rate of penetration (ROP) in deeper gas and oil wells, where the rocks become harder and more difficult to drill. Increasing the ROP can result in fewer drilling days, and therefore, less drilling cost. In late 1993, FlowDril and the Gas Research Institute (GRI) began a three-year development of a down hole pump (DHP{trademark}) capable of producing 30,000 psi out pressure to provide the high-pressure flow for high-pressure jet-assist of the drill bit. The US Department of Energy (DOE) through its Morgantown, WV (DOE-Morgantown) field office, joined with GRI and FlowDril to develop and test a second prototype designed for drilling in 7-7/8 inch holes. This project, `Development and Testing of a High-Pressure Down Hole Pump for Jet-Assist Drilling,` is for the development and testing of the second prototype. It was planned in two phases. Phase I included an update of a market analysis, a design, fabrication, and an initial laboratory test of the second prototype. Phase II is continued iterative laboratory and field developmental testing. This report summarizes the results of Phase I. The project was originally proposed to extend the DHP and jet-assist drilling technology to drilling slimholes. Results of the market analysis for DHP jet-assisted slimhole drilling indicated that the slimhole market would be small (about 1/20th) compared to 7-7/8 inch hole size. The best U.S. land market locations for use of the DHP were identified as East Texas RR District 3, Oklahoma, and East Texas RR District 6. For gas drilling alone, areas with the largest market potential were East Texas RR District 6, Oklahoma and Wyoming. As a consequence of the market size for 7-7/8 inch holes, associated savings to the industry, and a desire to promote earlier commercialization of the DHP jet-assisted drilling technology, this project was re-directed from slimhole applications to development of a second prototype DHP for 7-7/8 inch hole size.

  3. Reconnection-Driven Solar Polar Jets to be Encountered by Solar Probe Plus: Simulated In Situ Measurements and Data Analysis

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Roberts, M. A.; Karpen, J. T.; DeVore, C. R.

    2015-12-01

    Solar polar jets are observed to originate in regions within the open field of solar coronal holes. These so called "anemone" regions are associated with an embedded dipole topology, consisting of a fan-separatrix and a spine line emanating from a null point occurring at the top of the dome shaped fan surface (Antiochos 1996). In this study, we analyze simulations using the Adaptively Refined MHD Solver (ARMS) that take into account gravity, solar wind, and spherical geometry to generate polar jets by reconnection between a twisted embedded bipole and the surrounding open field (Karpen et al. 2015). These simulations confirm and extend previous Cartesian studies of polar jets based on this mechanism (Pariat et al. 2009, 2010, 2015), as well as extending the analyses from our previous work (Roberts et al. 2014,2015) out to radial distances that will be sampled by Solar Probe Plus. Focusing on the plasma density, velocity, magnetic field, and current density, we interpolate the adaptively gridded simulation data onto a regular grid, and analyze the signatures that the jet produces as it propagates outward from the solar surface into the inner heliosphere. We also conduct simulated spacecraft fly-throughs of the jet in several different velocity regimes, illustrating the signatures that Solar Probe Plus may encounter in situ as the jet propagates into the heliosphere. The trans-Alfvénic nature of the jet front is confirmed by temporally differencing the plasma mass density and comparing the result with the local Alfvén speed. Our analysis confirms the presence of a reconnection driven magnetic turbulence in the simulated plasma jet, finding spatial correlations of magnetic fluctuations inside the jet to be in agreement with the scaling model of MHD turbulence. The turbulence cascade is supported by multiscale current sheets combined with filamentary structures representing fluid vorticies. The spatial orientation of these current sheets, combined with the anisotropy

  4. Monitoring the Coherent Vibrational Control of Electronic Excitation Transfer Using Ultrafast Pump-Probe Polarization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Biggs, Jason; Cina, Jeffrey

    2010-03-01

    The interplay between nuclear and electronic degrees of freedom in molecular energy-transfer complexes is a subject of current interest. We have proposed a method to use coherent nuclear motion to control the transfer of electronic excitation energy between donor and acceptor moieties in electronically coupled dimers. The underlying electronic and nuclear motion at the level of quantum mechanical amplitudes can be observed using nonlinear wave-packet interferometry(nl-WPI), a form of fluorescence-detected multidimensional electronic spectroscopy. In our control scheme, coherent nuclear motion is induced in the acceptor chromophore prior to direct electronic excitation of the donor. This nuclear motion affects the instantaneous resonance conditions between donor and acceptor moieties and thus affects subsequent energy transfer dynamics. We have developed the framework to simulate four-pulse nl-WPI experiments, and the pump-probe limit thereof, on energy-transfer systems after interaction with a control pulse that induces nuclear motion. We present simulations in the pump-probe limit from model energy-transfer systems subjected to prior impulsive vibrational excitation, and show how pulse polarization can be used to infer electronic dynamics from isotropically oriented dimers.

  5. KINEMATICS AND FINE STRUCTURE OF AN UNWINDING POLAR JET OBSERVED BY THE SOLAR DYNAMIC OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Shen Yuandeng; Liu Yu; Ibrahim, Ahmed

    2011-07-10

    We present an observational study of the kinematics and fine structure of an unwinding polar jet, with high temporal and spatial observations taken by the Atmospheric Imaging Assembly on board the Solar Dynamic Observatory and the Solar Magnetic Activity Research Telescope. During the rising period, the shape of the jet resembled a cylinder with helical structures on the surface, while the mass of the jet was mainly distributed on the cylinder's shell. In the radial direction, the jet expanded successively at its western side and underwent three distinct phases: the gradually expanding phase, the fast expanding phase, and the steady phase. Each phase lasted for about 12 minutes. The angular speed of the unwinding motion of the jet and the twist transferred into the outer corona during the eruption are estimated to be 11.1 x 10{sup -3} rad s{sup -1} (period = 564 s) and 1.17-2.55 turns (or 2.34-5.1{pi}), respectively. On the other hand, by calculating the azimuthal component of the magnetic field in the jet and comparing the free energy stored in the non-potential magnetic field with the jet's total energy, we find that the non-potential magnetic field in the jet is enough to supply the energy for the ejection. These new observational results strongly support the scenario that the jets are driven by the magnetic twist, which is stored in the twisted closed field of a small bipole, and released through magnetic reconnection between the bipole and its ambient open field.

  6. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light.

    PubMed

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  7. Sensitive determination of the spin polarization of optically pumped alkali-metal atoms using near-resonant light

    PubMed Central

    Ding, Zhichao; Long, Xingwu; Yuan, Jie; Fan, Zhenfang; Luo, Hui

    2016-01-01

    A new method to measure the spin polarization of optically pumped alkali-metal atoms is demonstrated. Unlike the conventional method using far-detuned probe light, the near-resonant light with two specific frequencies was chosen. Because the Faraday rotation angle of this approach can be two orders of magnitude greater than that with the conventional method, this approach is more sensitive to the spin polarization. Based on the results of the experimental scheme, the spin polarization measurements are found to be in good agreement with the theoretical predictions, thereby demonstrating the feasibility of this approach. PMID:27595707

  8. Wear analysis of diesel-engine fuel-injection pumps from military ground equipment fueled with Jet A-1. Interim report Jan-May 91

    SciTech Connect

    Lacey, P.I.

    1991-05-01

    The U.S. Department of Defense has adopted the single fuel for the battlefield concept. During Operation Desert Shield/Storm, Jet A-1 replaced diesel in many applications. A simultaneous increase in fuel injection pump failures was observed during that operation. Prior to its introduction, a number of studies had indicated that JP-8 is compatible with the current fleet of ground equipment. This report forms part of an ongoing study to define the fuel lubricity requirements of ground equipment. The report also details the wear and failure mechanisms observed from used pumps. The results indicate that, although Jet A-1 does increase wear, many other failure mechanisms are also prevalent.

  9. Spin-exchange optically pumped polarized 3He target for low-energy charged particle scattering experiments

    NASA Astrophysics Data System (ADS)

    Katabuchi, T.; Buscemi, S.; Cesaratto, J. M.; Clegg, T. B.; Daniels, T. V.; Fassler, M.; Neufeld, R. B.; Kadlecek, S.

    2005-03-01

    We have constructed, tested, and calibrated a polarized He3 target system which facilitates p-He3 elastic scattering at proton energies as low as 2MeV. This system consists of a target cell placed in a uniform B field inside a scattering chamber and an external optical pumping station utilizing Rb spin exchange. Computer-controlled valves allow polarized He3 gas to be transferred quickly between the optical pumping station and the spherical Pyrex target cell, which has Kapton film covering apertures for the passing beam and the scattering particles. The magnetic field required to maintain He3 polarization in the target cell is created with a compact, shielded sine-theta coil. Target gas polarimetry is accomplished using nuclear magnetic resonance and calibrated using the known analyzing power of α-He3 scattering.

  10. Optical beam profile monitor and residual gas fluorescence at the relativistic heavy ion collider polarized hydrogen jet.

    PubMed

    Tsang, T; Bellavia, S; Connolly, R; Gassner, D; Makdisi, Y; Russo, T; Thieberger, P; Trbojevic, D; Zelenski, A

    2008-10-01

    A gas fluorescence beam profile monitor has been implemented at the relativistic heavy ion collider (RHIC) using the polarized atomic hydrogen gas jet, which is part of the polarized proton polarimeter. RHIC proton beam profiles in the vertical plane of the accelerator are obtained as well as measurements of the width of the gas jet in the beam direction. For gold ion beams, the fluorescence cross section is sufficiently large so that profiles can be obtained from the residual gas alone, albeit with long light integration times. We estimate the fluorescence cross sections that were not known in this ultrarelativistic regime and calculate the beam emittance to provide an independent measurement of the RHIC beam. This optical beam diagnostic technique, utilizing the beam induced fluorescence from injected or residual gas, offers a noninvasive particle beam characterization and provides visual observation of proton and heavy ion beams. PMID:19044742

  11. Development of Two-Photon Pump Polarization Spectroscopy Probe Technique Tpp-Psp for Measurements of Atomic Hydrogen .

    NASA Astrophysics Data System (ADS)

    Satija, Aman; Lucht, Robert P.

    2015-06-01

    Atomic hydrogen (H) is a key radical in combustion and plasmas. Accurate knowledge of its concentration can be used to better understand transient phenomenon such as ignition and extinction in combustion environments. Laser induced polarization spectroscopy is a spatially resolved absorption technique which we have adapted for quantitative measurements of H atom. This adaptation is called two-photon pump, polarization spectroscopy probe technique (TPP-PSP) and it has been implemented using two different laser excitation schemes. The first scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-3P levels using a circularly polarized 656-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 656 nm. As a result, the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. The laser beams were created by optical parametric generation followed by multiple pulse dye amplification stages. This resulted in narrow linewidth beams which could be scanned in frequency domain and varied in energy. This allowed us to systematically investigate saturation and Stark effect in 2S-3P transitions with the goal of developing a quantitative H atom measurement technique. The second scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-4P transitions using a circularly polarized 486-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 486 nm. As a result the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. A dye laser was pumped by third harmonic of a Nd:YAG laser to create a laser beam

  12. The concurrent variability of East Asian subtropical and polar-front jets and its implication for the winter climate anomaly in China

    NASA Astrophysics Data System (ADS)

    Xiao, Chuliang; Zhang, Yaocun; Lofgren, Brent M.; Nie, Yu

    2016-06-01

    The variability of East Asian upper level westerly jets in winter is studied with regard to the concurrent existence of subtropical jet (East Asian subtropical jet (EASJ)) and polar-front jet (East Asian polar-front jet (EAPJ)) using the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis. In the distribution of jet occurrence revealed in 6-hourly data, two jet branches along 30°N and 55°N, corresponding to locations of EASJ and EAPJ, respectively, are separated over the Tibetan Plateau. The leading two modes of zonal-mean zonal wind in East Asia extracted from a mass-weighted empirical orthogonal function analysis are characterized by the intensity changes and location displacements of two jets. The key regions for EASJ and EAPJ are then defined to represent variabilities of these two jets. Correlation analysis indicates that the subseasonal variation of EAPJ precedes EASJ by around 5 days, which can be interpreted as wave-mean flow interactions via synoptic-scale transient eddy activities. Based on the pentad intensity indices of two jets, the concurrent variabilities of EASJ and EAPJ are investigated with typical temperature and precipitation anomalies in China. The results suggest that by taking account of the two jets, we are able to get a more comprehensive understanding of the winter climate.

  13. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip.

    PubMed

    Reimer, Christian; Kues, Michael; Caspani, Lucia; Wetzel, Benjamin; Roztocki, Piotr; Clerici, Matteo; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2015-01-01

    Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics. PMID:26364999

  14. Cross-polarized photon-pair generation and bi-chromatically pumped optical parametric oscillation on a chip

    PubMed Central

    Reimer, Christian; Kues, Michael; Caspani, Lucia; Wetzel, Benjamin; Roztocki, Piotr; Clerici, Matteo; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Little, Brent E.; Chu, Sai T.; Moss, David J.; Morandotti, Roberto

    2015-01-01

    Nonlinear optical processes are one of the most important tools in modern optics with a broad spectrum of applications in, for example, frequency conversion, spectroscopy, signal processing and quantum optics. For practical and ultimately widespread implementation, on-chip devices compatible with electronic integrated circuit technology offer great advantages in terms of low cost, small footprint, high performance and low energy consumption. While many on-chip key components have been realized, to date polarization has not been fully exploited as a degree of freedom for integrated nonlinear devices. In particular, frequency conversion based on orthogonally polarized beams has not yet been demonstrated on chip. Here we show frequency mixing between orthogonal polarization modes in a compact integrated microring resonator and demonstrate a bi-chromatically pumped optical parametric oscillator. Operating the device above and below threshold, we directly generate orthogonally polarized beams, as well as photon pairs, respectively, that can find applications, for example, in optical communication and quantum optics. PMID:26364999

  15. Polarization insensitive all-optical up-conversion for ROF systems based on parallel pump FWM in a SOA.

    PubMed

    Lu, Jia; Dong, Ze; Cao, Zizheng; Chen, Lin; Wen, Shuangchun; Yu, Jianguo

    2009-04-27

    We have proposed and experimentally investigated polarization insensitive all-optical up-conversion for ROF system based on FWM in a semiconductor optical amplifier (SOA). The parallel pump is generated based on odd-order optical sidebands and carrier suppression using an external intensity modulator and a cascaded optical filter. Therefore, the two pumps are always parallel and phase locked, which makes system polarization insensitive. After FWM in a SOA and optical filtering, similar to single sideband (SSB) 40 GHz optical millimeter-wave is generated only using 10 GHz RF as local oscillator (LO). The receiver sensitivity at a BER of 10(-9) for the up-converted signals is -28.4 dBm. The power penalty for the up-converted downstream signals is smaller than 1 dBm after 20 km SSMF-28 transmission. PMID:19399069

  16. The Effect of Tropospheric Jet Latitude on Rossby Wave Breaking and on Coupling between the Stratospheric Polar Vortex and the Troposphere

    NASA Astrophysics Data System (ADS)

    Garfinkel, Chaim; Waugh, Darryn; Gerber, Edwin

    2014-05-01

    A dry General Circulation Model is used to investigate how the latitude of the tropospheric jet affects (1) coupling between the stratospheric polar vortex and the extratropical tropospheric circulation, and (2) Rossby wave breaking. The tropospheric response to an identical stratospheric vortex configuration is shown to be strongest for a jet centered near 40° and weaker for jets near either 30° or 50° by more than a factor of three. Stratosphere-focused mechanisms based on stratospheric potential vorticity inversion, eddy phase speed, and planetary wave reflection, as well as arguments based on tropospheric eddy heat flux and zonal length scale, appear to be incapable of explaining the differences in the magnitude of the jet shift. In contrast, arguments based purely on tropospheric variability involving the strength of eddy-zonal mean flow feedbacks and jet persistence, and related changes in the synoptic eddy momentum flux, appear to explain this effect. The dependence of coupling between the stratospheric polar vortex and the troposphere on tropospheric jet latitude found here is consistent with (1) the observed variability in the North Atlantic and the North Pacific, and (2) the trend in the Southern Hemisphere as projected by comprehensive models. The shift in wavebreaking per degree latitude of jet shift is then compared for three different sources of jet movement: the baroclinic forcing imposed by the equator-to-pole temperature gradient, the imposition of a stratospheric polar vortex, and the internal variability of the mid-latitude eddy driven jet. It is demonstrated that all three sources of jet movement produce a similar change in Rossby wave breaking frequency per degree of jet shift. Hence, it is difficult (if not impossible) to isolate the ultimate cause behind the shift in Rossby wave breaking in response to the two external forcings.

  17. Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4 laser at 1062, 1064 and 1066 nm

    NASA Astrophysics Data System (ADS)

    Lin, Zhi; Wang, Yi; Xu, Bin; Xu, Huiying; Cai, Zhiping

    2016-01-01

    We report on a diode-end-pumped simultaneous multiple wavelength Nd:YVO4 laser. Dual-wavelength laser is achieved at a π-polarized 1064 nm emission line and a σ-polarized 1066 nm emission line with total maximum output power of 1.38 W. Moreover, tri-wavelength laser emission at the π-polarized 1064 nm emission line and σ-polarized 1062 and 1066 nm emission lines can also be obtained with total maximum output power of about 1.23 W, for the first time to our knowledge. The operation of such simultaneous dual- and tri-wavelength lasers is only realized by employing a simple glass etalon to modulate the intracavity losses for these potential lasing wavelengths inside of an intracavity polarizer, which therefore makes a very compact two-mirror linear cavity and simultaneous orthogonal lasing possible. Such orthogonal linearly polarized multi-wavelength laser sources could be especially promising in THz wave generation and in efficient nonlinear frequency conversion to visible lasers.

  18. High performance wire grid polarizers using jet and flashTM imprint lithography

    NASA Astrophysics Data System (ADS)

    Ahn, Sean; Yang, Jack; Miller, Mike; Ganapathisubramanian, Maha; Menezes, Marlon; Choi, Jin; Xu, Frank; Resnick, Douglas J.; Sreenivasan, S. V.

    2013-03-01

    The ability to pattern materials at the nanoscale can enable a variety of applications ranging from high density data storage, displays, photonic devices and CMOS integrated circuits to emerging applications in the biomedical and energy sectors. These applications require varying levels of pattern control, short and long range order, and have varying cost tolerances. Extremely large area roll to roll (R2R) manufacturing on flexible substrates is ubiquitous for applications such as paper and plastic processing. It combines the benefits of high speed and inexpensive substrates to deliver a commodity product at low cost. The challenge is to extend this approach to the realm of nanopatterning and realize similar benefits. The cost of manufacturing is typically driven by speed (or throughput), tool complexity, cost of consumables (materials used, mold or master cost, etc.), substrate cost, and the downstream processing required (annealing, deposition, etching, etc.). In order to achieve low cost nanopatterning, it is imperative to move towards high speed imprinting, less complex tools, near zero waste of consumables and low cost substrates. The Jet and Flash Imprint Lithography (J-FILTM) process uses drop dispensing of UV curable resists to assist high resolution patterning for subsequent dry etch pattern transfer. The technology is actively being used to develop solutions for memory markets including Flash memory and patterned media for hard disk drives. In this paper we have developed a roll based J-FIL process and applied it to technology demonstrator tool, the LithoFlex 100, to fabricate large area flexible bilayer wire grid polarizers (WGP) and high performance WGPs on rigid glass substrates. Extinction ratios of better than 10000 were obtained for the glass-based WGPs. Two simulation packages were also employed to understand the effects of pitch, aluminum thickness and pattern defectivity on the optical performance of the WGP devices. It was determined that the

  19. The prostatic urethra as a Venturi effect urine-jet pump to drain prostatic fluid.

    PubMed

    Zaichick, Vladimir

    2014-07-01

    Several experiments show that prostatic fluid is continuously produced and it is drained from the prostate during urination and ejaculation. The mechanism which causes prostatic fluid to drain from the prostatic acini during urination is currently unclear. Also in current opinion such structures of the prostatic urethra as the urethral crest and the colliculus seminalis have no apparent functional significance. This article describes a mechanism for the draining of the prostatic acini that involves these prostatic urethral structures. It is hypothesized that the prostatic urethra works as a pump using the Venturi effect, in which urine is the carrying or motive liquid during voiding, in order to drain prostatic fluid (the carried liquid) from the acini. The urethral crest and the colliculus seminalis take part in controlling flow rates and liquid pressures for this pump to be effective. The calculated estimation of a pressure drop in the region of the colliculus seminalis during micturition was obtained using morphometric and uroflowmetric data and was used to confirm this hypothesis of prostatic acini drainage. As a consequence of this, a previously unknown function for these intra-prostatic urethral structures is described. PMID:24767941

  20. Quantum Nuclear Dynamics Pumped and Probed by Ultrafast Polarization Controlled Steering of a Coherent Electronic State in LiH.

    PubMed

    Nikodem, Astrid; Levine, R D; Remacle, F

    2016-05-19

    The quantum wave packet dynamics following a coherent electronic excitation of LiH by an ultrashort, polarized, strong one-cycle infrared optical pulse is computed on several electronic states using a grid method. The coupling to the strong field of the pump and the probe pulses is included in the Hamiltonian used to solve the time-dependent Schrodinger equation. The polarization of the pump pulse allows us to control the localization in time and in space of the nonequilibrium coherent electronic motion and the subsequent nuclear dynamics. We show that transient absorption, resulting from the interaction of the total molecular dipole with the electric fields of the pump and the probe, is a very versatile probe of the different time scales of the vibronic dynamics. It allows probing both the ultrashort, femtosecond time scale of the electronic coherences as well as the longer dozens of femtoseconds time scales of the nuclear motion on the excited electronic states. The ultrafast beatings of the electronic coherences in space and in time are shown to be modulated by the different periods of the nuclear motion. PMID:26928262

  1. Spin exchange optical pumping based polarized {sup 3}He filling station for the Hybrid Spectrometer at the Spallation Neutron Source

    SciTech Connect

    Jiang, C. Y.; Tong, X.; Brown, D. R.; Culbertson, H.; Kadron, B.; Robertson, J. L.; Graves-Brook, M. K.; Hagen, M. E.; Lee, W. T.; Winn, B.

    2013-06-15

    The Hybrid Spectrometer (HYSPEC) is a new direct geometry spectrometer at the Spallation Neutron Source at the Oak Ridge National Laboratory. This instrument is equipped with polarization analysis capability with 60 Degree-Sign horizontal and 15 Degree-Sign vertical detector coverages. In order to provide wide angle polarization analysis for this instrument, we have designed and built a novel polarized {sup 3}He filling station based on the spin exchange optical pumping method. It is designed to supply polarized {sup 3}He gas to HYSPEC as a neutron polarization analyzer. In addition, the station can optimize the {sup 3}He pressure with respect to the scattered neutron energies. The depolarized {sup 3}He gas in the analyzer can be transferred back to the station to be repolarized. We have constructed the prototype filling station. Preliminary tests have been carried out demonstrating the feasibility of the filling station. Here, we report on the design, construction, and the preliminary results of the prototype filling station.

  2. BRIEF COMMUNICATIONS: Dye-jet laser pumped by the second harmonic of a Q-switched and mode-locked YAG:Nd3+ laser

    NASA Astrophysics Data System (ADS)

    Golubev, V. A.; Goncharov, A. N.; Maĭorov, A. P.; Makukha, V. K.; Smirnov, Vitalii A.; Tarasov, V. M.

    1981-05-01

    A report is given of the operating parameters of a dye jet laser pumped by the second harmonic of a cw Q-switched mode-locked YAG:Nd3+ laser. The dye laser emitted a continuous train of 250 nsec pulses at a repetition frequency of 25 kHz or a sequence of ultrashort pulse trains. A Lyot filter was used to tune the emission wavelength in the range 560-630 nm.

  3. Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb:YAG thin-disk laser.

    PubMed

    Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou

    2015-10-01

    We present experimental investigations on the generation of radially polarized laser beams excited by a ring-shaped pump intensity distribution in combination with polarizing grating waveguide mirrors in an Yb:YAG thin-disk laser resonator. Hollow optical fiber components were implemented in the pump beam path to transform the commonly used flattop pumping distribution into a ring-shaped distribution. The investigation was focused on finding the optimum mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian (LG(01)) doughnut mode. The power, efficiency and polarization state of the emitted laser beam as well as the thermal behavior of the disk was compared to that obtained with a standard flattop pumping distribution. A maximum output power of 107 W with a high optical efficiency of 41.2% was achieved by implementing a 300 mm long specially manufactured hollow fiber into the pump beam path. Additionally it was found that at a pump power of 280 W the maximum temperature increase is about 21% below the one observed with standard homogeneous pumping. PMID:26480177

  4. Generation of polarized 4He ion beam by optical pumping using circularly and linearly polarized radiation tuned to D0 line (He metastables 2S1→2P0)

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Yamauchi, Y.

    2007-06-01

    It is demonstrated that simultaneous optical pumping (OP) by circularly and linearly polarized 1083 nm radiation tuned to the D0 line (He metastables 23S1→23P0 transition) substantially improves the polarization of the He+ ion beam, compared with conventional OP by the circularly polarized D1 ( 23S1→23P1) or D2 ( 23S1→23P2) line.

  5. Intrinsic Differences in the Inner Jets of High and Low Optically Polarized Radio Quasars

    NASA Technical Reports Server (NTRS)

    Lister, M.; Smith, P.

    2000-01-01

    We have conducted a high-resolution polarization study with the VLBA at 22 and 43 GHz to look for differences in the parsec-scale magnetic field structures of 18 high- and low-optically polarized, compact radio-loud quasars (HPQs and LPRQs, respectively).

  6. MAGNETIC STRUCTURES IN GAMMA-RAY BURST JETS PROBED BY GAMMA-RAY POLARIZATION

    SciTech Connect

    Yonetoku, Daisuke; Murakami, Toshio; Morihara, Yoshiyuki; Takahashi, Takuya; Wakashima, Yudai; Yonemochi, Hajime; Sakashita, Tomonori; Fujimoto, Hirofumi; Kodama, Yoshiki; Gunji, Shuichi; Toukairin, Noriyuki; Mihara, Tatehiro; Toma, Kenji

    2012-10-10

    We report polarization measurements in two prompt emissions of gamma-ray bursts, GRB 110301A and GRB 110721A, observed with the gamma-ray burst polarimeter (GAP) on borad the IKAROS solar sail mission. We detected linear polarization signals from each burst with polarization degree of {Pi} = 70 {+-} 22% with statistical significance of 3.7{sigma} for GRB 110301A, and {Pi} = 84{sup +16}{sub -28}% with 3.3{sigma} confidence level for GRB 110721A. We did not detect any significant change of polarization angle. These two events had shorter durations and dimmer brightness compared with GRB 100826A, which showed a significant change of polarization angle, as reported in Yonetoku et al. Synchrotron emission model can be consistent with the data of the three GRBs, while the photospheric quasi-thermal emission model is not favored. We suggest that magnetic field structures in the emission region are globally ordered fields advected from the central engine.

  7. Pump polarization dependent ultrafast carrier dynamics and two-photon absorption in an a-plane ZnO epitaxial film

    NASA Astrophysics Data System (ADS)

    Lin, Ja-Hon; Su, Hsing-Jung; Lu, Chia-Hui; Chang, Chun-peng; Liu, Wei-Rein; Hsieh, Wen-Feng

    2015-10-01

    The ultrafast carrier dynamics of non-polar a-plane ZnO epi-film, with the energy difference between the A- and C-valence bands of about 23 meV, grown on r-plane sapphire were investigated using the reflection type pump-probe technique under two perpendicular polarized pumps. By exciting the electron from A-valence band through pump polarization perpendicular to the c-axis of a-ZnO ( E p u ⊥ c ), the TDR trace revealed two photon absorption (TPA), band filling (BF) and bandgap renormalization (BGR) effects that can be reasonably explained by the electron dynamics in the conduction band. By exciting the electron from C-valence band through parallel pump polarization ( E p u ∥ c ), only the BF effect was observed in the TDR trace owing to the hole dynamics in the valence bands. The occurrence of TPA was determined by the pump efficiency depending on the energy difference between the pump photon and the intermediate exciton resonance state.

  8. X-RAY AND GAMMA-RAY POLARIZATION IN LEPTONIC AND HADRONIC JET MODELS OF BLAZARS

    SciTech Connect

    Zhang, H.; Boettcher, M.

    2013-09-01

    We present a theoretical analysis of the expected X-ray and {gamma}-ray polarization signatures resulting from synchrotron self-Compton emission in leptonic models compared to the polarization signatures from proton synchrotron and cascade synchrotron emission in hadronic models for blazars. Source parameters resulting from detailed spectral-energy-distribution modeling are used to calculate photon-energy-dependent upper limits on the degree of polarization, assuming a perfectly organized mono-directional magnetic field. In low-synchrotron-peaked blazars, hadronic models exhibit substantially higher maximum degrees of X-ray and gamma-ray polarization than leptonic models, which may be within reach of existing X-ray and {gamma}-ray polarimeters. In high-synchrotron-peaked blazars (with electron-synchrotron-dominated X-ray emission), leptonic and hadronic models predict the same degree of X-ray polarization but substantially higher maximum {gamma}-ray polarization in hadronic models than leptonic ones. These predictions are particularly relevant in view of the new generation of balloon-borne X-ray polarimeters (and possibly GEMS, if revived), and the ability of Fermi-LAT to measure {gamma}-ray polarization at <200 MeV. We suggest observational strategies combining optical, X-ray, and {gamma}-ray polarimetry to determine the degree of ordering of the magnetic field and to distinguish between leptonic and hadronic high-energy emissions.

  9. Composite and case study analyses of the large-scale environments associated with West Pacific Polar and subtropical vertical jet superposition events

    NASA Astrophysics Data System (ADS)

    Handlos, Zachary J.

    Though considerable research attention has been devoted to examination of the Northern Hemispheric polar and subtropical jet streams, relatively little has been directed toward understanding the circumstances that conspire to produce the relatively rare vertical superposition of these usually separate features. This dissertation investigates the structure and evolution of large-scale environments associated with jet superposition events in the northwest Pacific. An objective identification scheme, using NCEP/NCAR Reanalysis 1 data, is employed to identify all jet superpositions in the west Pacific (30-40°N, 135-175°E) for boreal winters (DJF) between 1979/80 - 2009/10. The analysis reveals that environments conducive to west Pacific jet superposition share several large-scale features usually associated with East Asian Winter Monsoon (EAWM) northerly cold surges, including the presence of an enhanced Hadley Cell-like circulation within the jet entrance region. It is further demonstrated that several EAWM indices are statistically significantly correlated with jet superposition frequency in the west Pacific. The life cycle of EAWM cold surges promotes interaction between tropical convection and internal jet dynamics. Low potential vorticity (PV), high theta e tropical boundary layer air, exhausted by anomalous convection in the west Pacific lower latitudes, is advected poleward towards the equatorward side of the jet in upper tropospheric isentropic layers resulting in anomalous anticyclonic wind shear that accelerates the jet. This, along with geostrophic cold air advection in the left jet entrance region that drives the polar tropopause downward through the jet core, promotes the development of the deep, vertical PV wall characteristic of superposed jets. West Pacific jet superpositions preferentially form within an environment favoring the aforementioned characteristics regardless of EAWM seasonal strength. Post-superposition, it is shown that the west Pacific

  10. Strongly polarizing weakly coupled 13C nuclear spins with optically pumped nitrogen-vacancy center

    PubMed Central

    Wang, Ping; Liu, Bao; Yang, Wen

    2015-01-01

    Enhancing the polarization of nuclear spins surrounding the nitrogen-vacancy (NV) center in diamond has recently attracted widespread attention due to its various applications. Here we present an analytical formula that not only provides a clear physical picture for the recently observed polarization reversal of strongly coupled13C nuclei over a narrow range of magnetic field [H. J. Wang et al., Nat. Commun. 4, 1940 (2013)], but also demonstrates the possibility to strongly polarize weakly coupled13C nuclei. This allows sensitive magnetic field control of the 13C nuclear spin polarization for NMR applications and significant suppression of the 13C nuclear spin noise to prolong the NV spin coherence time. PMID:26521962

  11. Generation of spin-polarized currents via cross-relaxation with dynamically pumped paramagnetic impurities

    SciTech Connect

    Meriles, Carlos A.; Doherty, Marcus W.

    2014-07-14

    Key to future spintronics and spin-based information processing technologies is the generation, manipulation, and detection of spin polarization in a solid state platform. Here, we theoretically explore an alternative route to spin injection via the use of dynamically polarized nitrogen-vacancy (NV) centers in diamond. We focus on the geometry where carriers and NV centers are confined to proximate, parallel layers and use a “trap-and-release” model to calculate the spin cross-relaxation probabilities between the charge carriers and neighboring NV centers. We identify near-unity regimes of carrier polarization depending on the NV spin state, applied magnetic field, and carrier g-factor. In particular, we find that unlike holes, electron spins are distinctively robust against spin-lattice relaxation by other, unpolarized paramagnetic centers. Further, the polarization process is only weakly dependent on the carrier hopping dynamics, which makes this approach potentially applicable over a broad range of temperatures.

  12. First Measurement of the T-Odd Correlation Between the {Zeta}{sup 0} Spin and the Three-Jet Plane Orientation in Polarized {Zeta}{sup 0} Decays to Three Jets

    SciTech Connect

    Baird, Kenneth G.; SLD Collaboration

    1996-08-01

    We present the first measurement of the correlation between the Z{sup 0} spin and the event plane orientation in polarized Z{sup 0} decays into three jets in the SLD experiment at SLAC utilizing a longitudinally polarized electron beam. The CP even and T odd triple product {rvec S}{sub Z}{center_dot} ({rvec k}{sub 1} x {rvec k}{sub 2}) formed from the two fastest jet momenta, {rvec k}{sub 1} and {rvec k}{sub 2}, and the Z{sup 0} polarization vector {rvec S}{sub Z}, is sensitive to physics beyond the Standard Model. We measure the expectation value of this quantity to be consistent with zero and Set 95% C.L. limits of -0.022{lt} {beta} {lt}0.039 on the correlation.

  13. Phase regeneration for polarization-division multiplexed signals based on vector dual-pump nondegenerate phase sensitive amplification.

    PubMed

    Yang, Weili; Yu, Yu; Ye, Mengyuan; Chen, Guanyu; Zhang, Chi; Zhang, Xinliang

    2015-02-01

    The polarization-division multiplexing (PDM) technology is a practical method to double the transmission capacity, and the corresponding phase regeneration (PR) for PDM signals is meaningful and necessary to extend the transmission distance and increase the transparency for the phase-encoded PDM system. Those reported PDM PR schemes either utilized polarization-diversity technique or required special PDM format. In order to overcome these issues, the PR for the PDM phase-modulated signals is proposed and theoretically demonstrated in this paper, based on the vector dual-pump nondegenerate phase sensitive amplification (PSA). The theoretical model is established and the detailed characteristics are investigated to optimize the PR performance. Results show an obvious phase squeezing for the degraded 80 Gbit/s PDM differential phase-shift keying (DPSK) signals, and the error vector magnitude (EVM) of the regenerated signals on dual polarization states can be improved from 22.58% and 21.39% to 4.57% and 4.63%, respectively. Furthermore, the applicability of the proposed scheme for PDM quaternary-phase shift keying (QPSK) signals is investigated. The proposed scheme can be useful and promising in current PDM based coherent fiber-optic communication. PMID:25836072

  14. Wavelength conversion of 544-Gbit/s dual-carrier PDM-16QAM signal based on the co-polarized dual-pump scheme.

    PubMed

    Li, Xinying; Yu, Jianjun; Dong, Ze; Chi, Nan

    2012-09-10

    Due to its relative low baud rate as well as simple and cost-efficient implementation, dual-carrier polarization-division-multiplexing 16-ary quadrature amplitude modulation (PDM-16QAM) is a promising candidate for the next generation optical systems and networks at 400Gb/s per channel. The co-polarized dual-pump scheme, based on four-wave mixing (FWM) in a 1-km high nonlinear fiber (HNLF), can realize the all-optical wavelength conversion (AOWC) of the dual-carrier PDM-16QAM signal with spectral non-inversion and polarization insensitivity. We first experimentally demonstrated AOWC of the 544-Gbit/s dual-carrier PDM-16QAM signal based on the co-polarized dual-pump scheme. We investigated the conversion efficiency (CE) and optical signal-to-noise ratio (OSNR) of the converted signal at different pump spacing and pump power. We measured that the OSNR penalty is 0.6 dB due to AOWC when the bit-error ratio (BER) and pump spacing is 2 x 10-2 and 200 GHz, respectively. PMID:23037255

  15. The three-dimensional analysis of hinode polar jets using images from LASCO C2, the STEREO COR2 coronagraphs, and SMEI

    SciTech Connect

    Yu, H.-S.; Jackson, B. V.; Buffington, A.; Hick, P. P.; Shimojo, M.; Sako, N.

    2014-04-01

    Images recorded by the X-ray Telescope on board the Hinode spacecraft are used to provide high-cadence observations of solar jetting activity. A selection of the brightest of these polar jets shows a positive correlation with high-speed responses traced into the interplanetary medium. LASCO C2 and STEREO COR2 coronagraph images measure the coronal response to some of the largest jets, and also the nearby background solar wind velocity, thereby giving a determination of their speeds that we compare with Hinode observations. When using the full Solar Mass Ejection Imager (SMEI) data set, we track these same high-speed solar jet responses into the inner heliosphere and from these analyses determine their mass, flow energies, and the extent to which they retain their identity at large solar distances.

  16. Longitudinal Double-Spin Asymmetry and Cross Section for Inclusive Jet Production in Polarized Proton Collisions at {radical}(s)=200 GeV

    SciTech Connect

    Abelev, B. I.; Bielcik, J.; Bielcikova, J.; Caines, H.; Catu, O.; Chikanian, A.; Du, F.; Finch, E.; Harris, J. W.; Heinz, M.; Lamont, M. A. C.; Lin, G.; Majka, R.; Nattrass, C.; Salur, S.; Sandweiss, J.; Smirnov, N.; Witt, R.; Aggarwal, M. M.; Bhati, A. K.

    2006-12-22

    We report a measurement of the longitudinal double-spin asymmetry A{sub LL} and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at {radical}(s)=200 GeV. The cross section data cover transverse momenta 5polarization in the polarized nucleon.

  17. Longitudinal Double-Spin Asymmetry and Cross Section for Inclusive Jet Production in Polarized Proton Collisions at s=200GeV

    NASA Astrophysics Data System (ADS)

    Abelev, B. I.; Aggarwal, M. M.; Ahammed, Z.; Amonett, J.; Anderson, B. D.; Anderson, M.; Arkhipkin, D.; Averichev, G. S.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Blyth, S.-L.; Bonner, B. E.; Botje, M.; Bouchet, J.; Brandin, A. V.; Bravar, A.; Burton, T. P.; Bystersky, M.; Cadman, R. V.; Cai, X. Z.; Caines, H.; Sánchez, M. Calderón De La Barca; Castillo, J.; Catu, O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cosentino, M. R.; Cramer, J. G.; Crawford, H. J.; Das, D.; Das, S.; Dash, S.; Daugherity, M.; de Moura, M. M.; Dedovich, T. G.; Dephillips, M.; Derevschikov, A. A.; Didenko, L.; Dietel, T.; Djawotho, P.; Dogra, S. M.; Dong, W. J.; Dong, X.; Draper, J. E.; Du, F.; Dunin, V. B.; Dunlop, J. C.; Mazumdar, M. R. Dutta; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C. A.; Gaillard, L.; Ganti, M. S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J. E.; Gorbunov, Y. G.; Gos, H.; Grebenyuk, O.; Grosnick, D.; Guertin, S. M.; Guimaraes, K. S. F. F.; Gupta, N.; Gutierrez, T. D.; Haag, B.; Hallman, T. J.; Hamed, A.; Harris, J. W.; He, W.; Heinz, M.; Henry, T. W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffman, A. M.; Hoffmann, G. W.; Horner, M. J.; Huang, H. Z.; Huang, S. L.; Hughes, E. W.; Humanic, T. J.; Igo, G.; Jacobs, P.; Jacobs, W. W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P. G.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V. Yu.; Kim, B. C.; Kiryluk, J.; Kisiel, A.; Kislov, E. M.; Klein, S. R.; Kocoloski, A.; Koetke, D. D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kouchpil, V.; Kowalik, K. L.; Kramer, M.; Kravtsov, P.; Kravtsov, V. I.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kumar, A.; Kuznetsov, A. A.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lapointe, S.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, C.-H.; Lehocka, S.; Levine, M. J.; Li, C.; Li, Q.; Li, Y.; Lin, G.; Lin, X.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, H.; Liu, J.; Liu, L.; Liu, Z.; Ljubicic, T.; Llope, W. J.; Long, H.; Longacre, R. S.; Love, W. A.; Lu, Y.; Ludlam, T.; Lynn, D.; Ma, G. L.; Ma, J. G.; Ma, Y. G.; Magestro, D.; Mahapatra, D. P.; Majka, R.; Mangotra, L. K.; Manweiler, R.; Margetis, S.; Markert, C.; Martin, L.; Matis, H. S.; Matulenko, Yu. A.; McClain, C. J.; McShane, T. S.; Melnick, Yu.; Meschanin, A.; Millane, J.; Miller, M. L.; Minaev, N. G.; Mioduszewski, S.; Mironov, C.; Mischke, A.; Mishra, D. K.; Mitchell, J.; Mohanty, B.; Molnar, L.; Moore, C. F.; Morozov, D. A.; Munhoz, M. G.; Nandi, B. K.; Nattrass, C.; Nayak, T. K.; Nelson, J. M.; Netrakanti, P. K.; Nogach, L. V.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Pachr, M.; Pal, S. K.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Peitzmann, T.; Perevoztchikov, V.; Perkins, C.; Peryt, W.; Phatak, S. C.; Picha, R.; Planinic, M.; Pluta, J.; Poljak, N.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potekhin, M.; Potrebenikova, E.; Potukuchi, B. V. K. S.; Prindle, D.; Pruneau, C.; Putschke, J.; Rakness, G.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Razin, S. V.; Reinnarth, J.; Relyea, D.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Rose, A.; Roy, C.; Ruan, L.; Russcher, M. J.; Sahoo, R.; Sakuma, T.; Salur, S.; Sandweiss, J.; Sarsour, M.; Sazhin, P. S.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Seger, J.; Selyuzhenkov, I.; Seyboth, P.; Shabetai, A.; Shahaliev, E.; Shao, M.; Sharma, M.; Shen, W. Q.; Shimanskiy, S. S.; Sichtermann, E. P.; Simon, F.; Singaraju, R. N.; Smirnov, N.; Snellings, R.; Sood, G.; Sorensen, P.; Sowinski, J.; Speltz, J.; Spinka, H. M.; Srivastava, B.; Stadnik, A.; Stanislaus, T. D. S.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Sugarbaker, E.; Sumbera, M.; Sun, Z.; Surrow, B.; Swanger, M.; Symons, T. J. M.; de Toledo, A. Szanto; Tai, A.; Takahashi, J.; Tang, A. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Timmins, A. R.; Timoshenko, S.; Tokarev, M.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Tsai, O. D.; Ulery, J.; Ullrich, T.; Underwood, D. G.; Buren, G. Van; van der Kolk, N.; van Leeuwen, M.; Molen, A. M. Vander; Varma, R.; Vasilevski, I. M.; Vasiliev, A. N.; Vernet, R.; Vigdor, S. E.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Waggoner, W. T.; Wang, F.; Wang, G.; Wang, J. S.; Wang, X. L.; Wang, Y.; Watson, J. W.; Webb, J. C.; Westfall, G. D.; Wetzler, A.; Whitten, C., Jr.; Wieman, H.; Wissink, S. W.; Witt, R.; Wood, J.; Wu, J.; Xu, N.; Xu, Q. H.; Xu, Z.; Yepes, P.; Yoo, I.-K.; Yurevich, V. I.; Zhan, W.; Zhang, H.; Zhang, W. M.; Zhang, Y.; Zhang, Z. P.; Zhao, Y.; Zhong, C.; Zoulkarneev, R.; Zoulkarneeva, Y.; Zubarev, A. N.; Zuo, J. X.

    2006-12-01

    We report a measurement of the longitudinal double-spin asymmetry ALL and the differential cross section for inclusive midrapidity jet production in polarized proton collisions at s=200GeV. The cross section data cover transverse momenta 5polarization in the polarized nucleon.

  18. Precision measurement of the longitudinal double-spin asymmetry for inclusive jet production in polarized proton collisions at √s = 200 GeV

    DOE PAGESBeta

    Adamczyk, L.

    2015-08-26

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, ALL, in polarized pp collisions at center-of-mass energy √s = 200 GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. Lastly, the measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x > 0.05 .

  19. Precision measurement of the longitudinal double-spin asymmetry for inclusive jet production in polarized proton collisions at √s = 200 GeV

    SciTech Connect

    Adamczyk, L.

    2015-08-26

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, ALL, in polarized pp collisions at center-of-mass energy √s = 200 GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. Lastly, the measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x > 0.05 .

  20. Precision Measurement of the Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at √{s }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C. D.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Beavis, D. R.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chwastowski, J.; Codrington, M. J. M.; Contin, G.; Cramer, J. G.; Crawford, H. J.; Cudd, A. B.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Derradi de Souza, R.; Dhamija, S.; di Ruzza, B.; Didenko, L.; Dilks, C.; Ding, F.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Engle, K. S.; Eppley, G.; Eun, L.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Gagliardi, C. A.; Gangadharan, D. R.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Gliske, S.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Haag, B.; Hamed, A.; Han, L.-X.; Haque, R.; Harris, J. W.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; LeVine, M. J.; Li, C.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Olvitt, D. L.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szelezniak, M. A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, X. L.; Wang, Y.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y.; Xu, Z.; Yan, W.; Yang, C.; Yang, Y.; Yang, Y.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zawisza, Y.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, J. L.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-08-01

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, AL L, in polarized p p collisions at center-of-mass energy √{s }=200 GeV . The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC p p data. The measured asymmetries provide evidence at the 3 σ level for positive gluon polarization in the Bjorken-x region x >0.05 .

  1. Precision Measurement of the Longitudinal Double-Spin Asymmetry for Inclusive Jet Production in Polarized Proton Collisions at sqrt[s]=200  GeV.

    PubMed

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Anson, C D; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Beavis, D R; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Brandin, A V; Brovko, S G; Bültmann, S; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chwastowski, J; Codrington, M J M; Contin, G; Cramer, J G; Crawford, H J; Cudd, A B; Cui, X; Das, S; Davila Leyva, A; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; Derradi de Souza, R; Dhamija, S; di Ruzza, B; Didenko, L; Dilks, C; Ding, F; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Engle, K S; Eppley, G; Eun, L; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Fedorisin, J; Filip, P; Finch, E; Fisyak, Y; Flores, C E; Gagliardi, C A; Gangadharan, D R; Garand, D; Geurts, F; Gibson, A; Girard, M; Gliske, S; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hamed, A; Han, L-X; Haque, R; Harris, J W; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, B; Huang, H Z; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kesich, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; LeVine, M J; Li, C; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, Y G; Madagodagettige Don, D M M D; Mahapatra, D P; Majka, R; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nelson, J M; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Olvitt, D L; Pachr, M; Page, B S; Pal, S K; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlak, T; Pawlik, B; Pei, H; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Poskanzer, A M; Pruthi, N K; Przybycien, M; Pujahari, P R; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Riley, C K; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ross, J F; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Singaraju, R N; Skoby, M J; Smirnov, D; Smirnov, N; Solanki, D; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Sun, X; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; Szelezniak, M A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Turnau, J; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Vossen, A; Wada, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, X L; Wang, Y; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, H; Xu, J; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yan, W; Yang, C; Yang, Y; Yang, Y; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zawisza, Y; Zbroszczyk, H; Zha, W; Zhang, J B; Zhang, J L; Zhang, S; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y; Zyzak, M

    2015-08-28

    We report a new measurement of the midrapidity inclusive jet longitudinal double-spin asymmetry, A_{LL}, in polarized pp collisions at center-of-mass energy sqrt[s]=200  GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep-inelastic scattering (DIS), semi-inclusive DIS, and RHIC pp data. The measured asymmetries provide evidence at the 3σ level for positive gluon polarization in the Bjorken-x region x>0.05. PMID:26371644

  2. CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap

    USGS Publications Warehouse

    Kieffer, H.H.; Christensen, P.R.; Titus, T.N.

    2006-01-01

    The martian polar caps are among the most dynamic regions on Mars, growing substantially in winter as a significant fraction of the atmosphere freezes out in the form of CO2 ice. Unusual dark spots, fans and blotches form as the south-polar seasonal CO2 ice cap retreats during spring and summer. Small radial channel networks are often associated with the location of spots once the ice disappears. The spots have been proposed to be simply bare, defrosted ground; the formation of the channels has remained uncertain. Here we report infrared and visible observations that show that the spots and fans remain at CO2 ice temperatures well into summer, and must be granular materials that have been brought up to the surface of the ice, requiring a complex suite of processes to get them there. We propose that the seasonal ice cap forms an impermeable, translucent slab of CO2 ice that sublimates from the base, building up high-pressure gas beneath the slab. This gas levitates the ice, which eventually ruptures, producing high-velocity CO 2 vents that erupt sand-sized grains in jets to form the spots and erode the channels. These processes are unlike any observed on Earth. ?? 2006 Nature Publishing Group.

  3. CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap.

    PubMed

    Kieffer, Hugh H; Christensen, Philip R; Titus, Timothy N

    2006-08-17

    The martian polar caps are among the most dynamic regions on Mars, growing substantially in winter as a significant fraction of the atmosphere freezes out in the form of CO2 ice. Unusual dark spots, fans and blotches form as the south-polar seasonal CO2 ice cap retreats during spring and summer. Small radial channel networks are often associated with the location of spots once the ice disappears. The spots have been proposed to be simply bare, defrosted ground; the formation of the channels has remained uncertain. Here we report infrared and visible observations that show that the spots and fans remain at CO2 ice temperatures well into summer, and must be granular materials that have been brought up to the surface of the ice, requiring a complex suite of processes to get them there. We propose that the seasonal ice cap forms an impermeable, translucent slab of CO2 ice that sublimates from the base, building up high-pressure gas beneath the slab. This gas levitates the ice, which eventually ruptures, producing high-velocity CO2 vents that erupt sand-sized grains in jets to form the spots and erode the channels. These processes are unlike any observed on Earth. PMID:16915284

  4. Highly efficient tabletop x-ray laser at {lambda}=41.8 nm in Pd-like xenon pumped by optical-field ionization in a cluster jet

    SciTech Connect

    Ivanova, E. P.

    2011-10-15

    The atomic-kinetic calculations of gain at 41.8 nm in Pd-like xenon are performed. The interpretation of known experiments has proved that x-ray laser in Pd-like xenon is feasible in the extremely wide range of atomic densities: 10{sup 17}{<=}[Xe{sup 8+}]{<=} 3 x 10{sup 19} cm{sup -3}. This result is due to the large cross sections (and rates) of level excitations in Pd-like xenon by electron impact. We propose a highly efficient tabletop x-ray laser pumped by optical-field ionization in a xenon cluster jet. The efficiency of {approx}0.5% is possible with a pump laser pulse energy of {>=}0.001 J and an intensity of {approx}10{sup 16} W/cm{sup 2}.

  5. Test of the Linearity of Quantum Mechanics Using ARGON-37 Polarized by Spin-Exchange Optical Pumping.

    NASA Astrophysics Data System (ADS)

    Pitt, Mark Louis

    1992-01-01

    Recently, Steven Weinberg has formulated a general framework for introducing nonlinear corrections to quantum mechanics. This thesis describes the use of polarized ^{37}Ar nuclei in a search for evidence of such nonlinear terms in the Schrodinger equation. The ^{37}Ar nuclei are polarized by the method of spin exchange with optically -pumped potassium atoms. This is the first application of this method to an argon isotope, so we have made measurements of nuclear polarization relaxation rates and nuclear magnetic resonance frequency shifts due to the K-^ {37}Ar interaction. From these data we determine that, at 62 torr nitrogen pressure, 59 +/- 21% of the spin-exchange rate is due to spin exchange in van der Waals molecules with the remainder due to binary collisions. The polarization of the ^{37}Ar nuclei is determined by measuring the parity-violating asymmetry in the angular distribution of the internal bremsstrahlung that accompanies the electron capture decay of ^{37 }Ar. Our maximum observed nuclear polarization is 56%. The nonlinear quantum mechanics test is performed by doing a transient nuclear magnetic resonance experiment on the polarized ^{37}Ar. The nuclei interact with the magnetic field and electric field gradients at the cell wall. This leads to a signal that is the superposition of three exponentially decaying sinusoids with a transverse relaxation time of 1 hour, allowing for very precise frequency measurements. We search for a dependence of the precession frequencies on the initial projection of the nuclear spins along the magnetic field axis. In this way we set a 1sigma confidence level upper limit of {|varepsilon |over h}<3.9 mu{rm Hz} on Weinberg's nonlinearity parameter varepsilon. This limit implies that the fraction of the binding energy per ^ {37}Ar nucleon that could be due to nonlinear corrections to quantum mechanics is <2.0 times 10^{-27 }.. We also measure the magnetic moment of ^{37}Ar to be 1.146(1) mu_{N}, a factor of 200 more

  6. Polarized proton beams in RHIC

    SciTech Connect

    Zelenski, A.

    2010-10-04

    The polarized beam for RHIC is produced in the optically-pumped polarized H{sup -} ion source and then accelerated in Linac to 200 MeV for strip-injection to Booster and further accelerated 24.3 GeV in AGS for injection in RHIC. In 2009 Run polarized protons was successfully accelerated to 250 GeV beam energy. The beam polarization of about 60% at 100 GeV beam energy and 36-42% at 250 GeV beam energy was measured with the H-jet and p-Carbon CNI polarimeters. The gluon contribution to the proton spin was studied in collisions of longitudinally polarized proton beams at 100 x 100 GeV. At 250 x 250 GeV an intermediate boson W production with the longitudinally polarized beams was studied for the first time.

  7. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  8. Failure analysis of fuel-injection pumps from generator sets fueled with Jet A-1. Interim report, Nov 90-Jan 91

    SciTech Connect

    Lacey, P.I.; Lestz, S.J.

    1991-01-01

    The U.S. Department of Defense (DOD) has adopted the single fuel for the battlefield concept. Diesel fuel will be replaced by JP-8/Jet A-1 in compression ignition engines, thereby lowering the fuel logistics burden. These fuels have successfully undergone extensive testing in both the laboratory and in field trials. However, increased failure rates are being reported on a number of fuel-sensitive components during Operation Desert Shield in Saudi Arabia. Five failed Stanadyne rotary fuel injection pumps were returned to the Belvoir Fuels and Lubricants Research Facility (BFLRF) at Southwest Research Institute (SwRI) for disassembly and post-failure analysis. Particular attention was given to the possible effects of low-lubricity fuel. The results of the investigation indicate that most of the failures may be attributed to causes other than poor fuel lubricity. The reason for failure of specific components in two of the pumps could not be conclusively determines. However, it is believed that they would not have occurred as a result of short-term operation with Jet A-1.

  9. Resolving the Bright HCN(1-0) Emission toward the Seyfert 2 Nucleus of M51: Shock Enhancement by Radio Jets and Weak Masing by Infrared Pumping?

    NASA Astrophysics Data System (ADS)

    Matsushita, Satoki; Trung, Dinh-V.-; Boone, Frédéric; Krips, Melanie; Lim, Jeremy; Muller, Sebastien

    2015-01-01

    We present high angular resolution observations of the HCN(1-0) emission (at ~1'' or ~34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ~1'' (~34 pc) resolution, and consistent with the Seyfert 2 classification picture.

  10. Carbonate deposition, Pyramid Lake subbasin, Nevada: 2. Lake levels and polar jet stream positions reconstructed from radiocarbon ages and elevations of carbonates (tufas) deposited in the Lahontan basin

    USGS Publications Warehouse

    Benson, L.; Kashgarian, Michaele; Rubin, M.

    1995-01-01

    Most of the tufas in the Pyramid Lake subbasin were deposited within the last 35 000 yr, including most of the mound tufas that border the existing lake. Many of the older tufas (>21 000 yr BP) contained in the mounds were formed in association with groundwater discharge. Lake Lahontan experienced large and abrupt rises in level that are believed to indicate the passage of the polar jet stream over the Lahontan basin. During expansion of the Laurentide Ice Sheet, the jet stream moved south across the basin, and during the contraction of the Ice Sheet, the jet stream moved north across the basin. The bulk of the carbonate contained in the mound tufas was deposited during the last major lake cycle (~23 500-12 000 yr BP), indicating that ground- and surface-water discharges increased at ~23 500 and decreased at ~ 12 000 yr BP. -from Authors

  11. Formation of A Polarization Jet During The Injection of Ions Into The Inner Magnetosphere: Modelling and Comparisons With Measurements

    NASA Astrophysics Data System (ADS)

    Buzulukova, N. Yu.; Khalipov, V. L.; Galperin, Yu. I.; Vovchenko, V. V.; Stepanov, A. E.; Bondar, E. D.

    Polarization Jet (PJ) - a narrow strip of fast westward convection in the evening sec- tor of inner magnetosphere/ionosphere (often just inside the plasmapause location) - is associated with substorm particle injections, but its origin is still not fully ex- plained. Strong PJ electric field sharply changes drift motion of magnetospheric and ionospheric particles. Combination of ExB and gradient drift in the energy range of several tens of keV is supposed to be responsible for the PJ formation . But none of the existing convection models includes PJ electric field, and so does not allow its mod- elling. We describe a simple model of PJ electric field based on recent measurements, and investigate drifts of injected particles within PJ. Obtained model parameters of PJ are compared with available recent observations from low- and high-altitude satellites and ground-based measurements. One of the model predictions concerns formation of so-called "nose structures" - deep penetrations into the inner magnetosphere of ions with energies 20-50 keV with a characteristic dispersion. We attempt to clarify rela- tions between PJ events and "nose structures" using model results and observations.

  12. Designing optically pumped InGaN quantum wells with long wavelength emission for a phosphor-free device with polarized white-light emission

    NASA Astrophysics Data System (ADS)

    Kowsz, Stacy J.; Pynn, Christopher D.; Wu, Feng; Farrell, Robert M.; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji

    2016-02-01

    We report a semipolar III-nitride device in which an electrically injected blue light emitting diode optically pumps monolithic long wavelength emitting quantum wells (QWs) to create polarized white light. We have demonstrated an initial device with emission peaks at 440 nm and 560 nm from the electrically injected and optically pumped QWs, respectively. By tuning the ratio of blue to yellow, white light was measured with a polarization ratio of 0.40. High indium content InGaN is required for long wavelength emission but is difficult to achieve because it requires low growth temperatures and has a large lattice mismatch with GaN. This device design incorporates optically pumped QWs for long wavelength emission because they offer advantages over using electrically injected QWs. Optically pumped QWs do not have to be confined within a p-n junction, and carrier transport is not a concern. Thus, thick GaN barriers can be incorporated between multiple InGaN QWs to manage stress. Optically pumping long wavelength emitting QWs also eliminates high temperature steps that degrade high indium content InGaN but are required when growing p-GaN for an LED structure. Additionally, by eliminating electrical injection, the doping profile can instead be engineered to affect the emission wavelength. We discuss ongoing work focused on improving polarized white light emission by optimizing the optically pumped QWs. We consider the effects of growth conditions, including: trimethylindium (TMI) flow rate, InGaN growth rate, and growth temperature. We also examine the effects of epitaxial design, including: QW width, number of QWs, and doping.

  13. Prewhirl Jet Model

    NASA Technical Reports Server (NTRS)

    Meng, S. Y.; Jensen, M.; Jackson, E. D.

    1985-01-01

    Simple accurate model of centrifugal or rocket engine pumps provides information necessary to design inducer backflow deflector, backflow eliminator and prewhirl jet in jet mixing zones. Jet design based on this model shows improvement in inducer suction performance and reduced cavitation damage.

  14. Spin-polarized /sup 3/He nuclear targets and metastable /sup 4/He atoms by optical pumping with a tunable, Nd:YAP laser

    SciTech Connect

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-04-15

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2/sup 3/S-2/sup 3/P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable /sup 4/He and /sup 3/He 2/sup 3/S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a /sup 3/He cell the polarization is transferred to the nuclear spin system. A /sup 3/He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics.

  15. Analysis of the contrast in normal-incidence surface plasmon photoemission microscopy in a pump-probe experiment with adjustable polarization

    NASA Astrophysics Data System (ADS)

    Podbiel, Daniel; Kahl, Philip; Meyer zu Heringdorf, Frank-J.

    2016-04-01

    We investigate the fringe contrast in surface plasmon polariton-based two-photon photoemission microscopy in a normal-incidence geometry. In a pump-probe experiment with freely adjustable polarization of the probe pulse, we find a maximum contrast whenever the probe pulse polarization is parallel (or anti-parallel) to the propagation direction of the surface plasmon polariton wave packet. The experimental observation is compared to a wave simulation based on the known TM solution for surface plasmon polaritons. We estimate that at the Au/vacuum interface the in-plane component of the electric field of the surface plasmon polariton inside the metal is about five times larger than its out-of-plane component. We conclude that the locations of maximum plasmon-related nonlinear photoemission yield in a pump-probe experiment are the ones where the in-plane component of the electric field of the surface plasmon polariton is maximal.

  16. Redefining deuterium excess in ice cores: Antarctic-wide evidence for ITCZ and polar jet variability during abrupt climate change

    NASA Astrophysics Data System (ADS)

    Markle, B. R.; Steig, E. J.; Schoenemann, S. W.; Sowers, T. A.; Buizert, C.; Ding, Q.; Fudge, T. J.; White, J. W.

    2013-12-01

    We examine a new, high-resolution ice core record of water isotopes (δ18O and deuterium excess) and atmospheric methane from West Antarctica, focusing on the millennial events of the most recent glacial period. High temporal resolution and a small gas-age/ice-age difference enable unprecedented precision in the analysis of phasing between these records. Our analysis reveals large amplitude millennial variability in the deuterium excess, a proxy for moisture source conditions and atmospheric circulation, which is out of phase with local site temperatures. On the other hand, this variability is in phase with atmospheric methane, which likely records changes in tropical hydrology and co-varies with Greenland temperatures during abrupt millennial Dansgaard-Oeschger (DO) events. Using a logarithmic definition of the deuterium excess, we show that these changes were probably near symmetric around Antarctica; the historical (linear) definition of the parameter appears to misrepresent millennial to multi-millennial variability at high East Antarctic ice core sites. Modeling experiments show that asymmetric warming of the hemispheres, a defining characteristic of these millennial events, should shift the position of the Inter Tropical Convergence Zone (ITCZ) and in turn the Southern sub-polar jet. Postulated ITCZ shifts can, in principle, help to explain the rapid rise in methane that accompanies abrupt Northern Hemisphere warming events by varying tropical rainfall patterns. Our observations are the first to show that these tropical changes may have directly influenced moisture sources and atmospheric circulation in the high southern latitudes, as recorded by the deuterium excess. We support these paleoclimate observations with isotope tracing atmospheric modeling experiments.

  17. The kinematics of an untwisting solar jet in a polar coronal hole observed by SDO/AIA

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Dong; Zhang, Jun; Ma, Su-Li

    2012-05-01

    Using the multi-wavelength data from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) spacecraft, we study a jet occurring in a coronal hole near the northern pole of the Sun. The jet presented distinct upward helical motion during ejection. By tracking six identified moving features (MFs) in the jet, we found that the plasma moved at an approximately constant speed along the jet's axis. Meanwhile, the MFs made a circular motion in the plane transverse to the axis. Inferred from linear and trigonometric fittings to the axial and transverse heights of the six tracks, the mean values of the axial velocities, transverse velocities, angular speeds, rotation periods, and rotation radii of the jet are 114 km s-1, 136 km s-1, 0.81° s-1, 452 s and 9.8 × 103 km respectively. As the MFs rose, the jet width at the corresponding height increased. For the first time, we derived the height variation of the longitudinal magnetic field strength in the jet from the assumption of magnetic flux conservation. Our results indicate that at heights of 1 × 104 ~ 7 × 104 km from the base of the jet, the flux density in the jet decreases from about 15 to 3 G as a function of B = 0.5(R/Rodot - 1)-0.84 (G). A comparison was made with other results in previous studies.

  18. First Measurement of the {ital T}-Odd Correlation between the {ital Z}{sup 0} Spin and the Three-Jet Plane Orientation in Polarized {ital Z}{sup 0} Decays into Three Jets

    SciTech Connect

    Abe, K.; Abt, I.; Ahn, C.J.; Akagi, T.; Allen, N.J.; Ash, W.W.; Aston, D.; Baird, K.G.; Baltay, C.; Band, H.R.; Barakat, M.B.; Baranko, G.; Bardon, O.; Barklow, T.; Bazarko, A.O.; Ben-David, R.; Benvenuti, A.C.; Bienz, T.; Bilei, G.M.; Bisello, D.; Blaylock, G.; Bogart, J.R.; Bolton, T.; Bower, G.R.; Brau, J.E.; Breidenbach, M.; Bugg, W.M.; Burke, D.; Burnett, T.H.; Burrows, P.N.; Busza, W.; Calcaterra, A.; Caldwell, D.O.; Calloway, D.; Camanzi, B.; Carpinelli, M.; Cassell, R.; Castaldi, R.; Castro, A.; Cavalli-Sforza, M.; Church, E.; Cohn, H.O.; Coller, J.A.; Cook, V.; Cotton, R.; Cowan, R.F.; Coyne, D.G.; D`Oliveira, A.; Damerell, C.J.S.; Daoudi, M.; De Sangro, R.; De Simone, P.; Dell`Orso, R.; Dima, M.; Du, P.Y.C.; Dubois, R.; Eisenstein, B.I.; Elia, R.; Falciai, D.; Fero, M.J.; Frey, R.; Furuno, K.; Gillman, T.; Gladding, G.; Gonzalez, S.; Hallewell, G.D.; Hart, E.L.; Hasegawa, Y.; Hedges, S.; Hertzbach, S.S.; Hildreth, M.D.; Huber, J.; Huffer, M.E.; Hughes, E.W.; Hwang, H.; Iwasaki, Y.; Jackson, D.J.; Jacques, P.; Jaros, J.; Johnson, A.S.; Johnson, J.R.; Johnson, R.A.; Junk, T.; Kajikawa, R.; Kalelkar, M.; Kang, H.J.; Karliner, I.; Kawahara, H.; Kendall, H.W.; Kim, Y.; King, M.E.; King, R.; Kofler, R.R.; Krishna, N.M.; Kroeger, R.S.; Labs, J.F.; Langston, M.; Lath, A.; Lauber, J.A.; Leith, D.W.G.; Liu, M.X.; Liu, X.; Loreti, M.; Lu, A.; Lynch, H.L.; Ma, J.; Mancinelli, G.; Manly, S.; Mantovani, G.; Markiewicz, T.W.; Maruyama, T.; Massetti, R.; Masuda, H.; Mattison, T.S.; Mazzucato, E.; McKemey, A.K.; Meadows, B.T.; Messner, R.; Mockett, P.M.; Moffeit, K.C.; Mours, B.; Mueller, G.; Muller, D.; Nagamine, T.; Nauenberg, U.; Neal, H.; Nussbaum, M.; Ohnishi, Y.; Osborne, L.S.; Panvini, R.S.; Park, H.; Pavel, T.J.; Peruzzi, I.; Piccolo, M.; Piemontese, L.; Pieroni, E.; Pitts, K.T.; Plano, R.J.; Prepost, R.; Prescott, C.Y.; Punkar, G.D.; Quigley, J.; Ratcliff, B.N.; Reeves, T.W.; Reidy, J.; Rensing, P.E.; Rochester, L.S.; Rothberg, J.E.; Rowson, P.C.; (SLD Collabor...

    1995-12-04

    We present the first measurement of the correlation between the {ital Z}{sup 0} spin and the event-plane orientation in polarized {ital Z}{sup 0} decays into three jets in the SLAC Linear Collider Large Detector experiment at SLAC utilizing a longitudinally polarized electron beam. The {ital CP}-even and {ital T}-odd triple product {ital {rvec S}}{sub {ital Z}}{center_dot}({ital {rvec k}}{sub 1}{times}{ital {rvec k}}{sub 2}), formed from the two fastest jet momenta {ital {rvec k}}{sub 1} and {ital {rvec k}}{sub 2} and the {ital Z}{sup 0} polarization vector {ital {rvec S}}{sub {ital Z}}, is sensitive to physics beyond the standard model. We measure the expectation value of this quantity to be consistent with zero and set 95% C.L. limits of {minus}0.022{lt}{beta}{lt}0.039 on the correlation. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  19. Event structure and double helicity asymmetry in jet production from polarized p+p collisions at (sq rt) s = 200 GeV

    SciTech Connect

    Adare, A.; PHENIX Collaboration

    2011-08-01

    We report on the event structure and double helicity asymmetry (A{sub LL}) of jet production in longitudinally polarized p+p collisions at {radical}s = 200 GeV. Photons and charged particles were measured by the PHENIX experiment at midrapidity |{eta}| < 0.35 with the requirement of a high-momentum (> 2 GeV/c) photon in the event. Event structure, such as multiplicity, p{sub T} density and thrust in the PHENIX acceptance, were measured and compared with the results from the pythia event generator and the geant detector simulation. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet ALL, photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster p{sub T} sum (p{sub T}{sup reco}). The effect of detector response and the underlying events on p{sub T}{sup reco} was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the next-to-leading-order and perturbative quantum chromodynamics jet production cross section. For 4 < p{sub T}{sup reco} < 12 GeV/c with an average beam polarization of

    = 49% we measured A{sub LL} = -0.0014 {+-} 0.0037{sup stat} at the lowest p{sub T}{sup reco} bin (4-5 GeV/c) and -0.0181 {+-} 0.0282{sup stat} at the highest p{sub T}{sup reco} bin (10-12 GeV/c) with a beam polarization scale error of 9.4% and a p{sub T} scale error of 10%. Jets in the measured p{sub T}{sup reco} range arise primarily from hard-scattered gluons with momentum fraction 0.02 < x < 0.3 according to pythia. The measured A{sub LL} is compared with predictions that assume various {Delta}G(x) distributions based on the Gluck-Reya-Stratmann-Vogelsang parameterization. The present result imposes the limit -1.1 < {integral}{sub 0.02}{sup 0.3}dx{Delta}G(x,{mu}{sup 2} = 1 GeV{sup 2}) < 0.4 at 95% confidence level or {integral}{sub 0.02}{sup 0.3}dx{Delta}G(x,{mu}2 = 1 GeV{sup 2}) < 0.5 at 99% confidence level.

  20. Event structure and double helicity asymmetry in jet production from polarized p+p collisions at s=200GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Al-Bataineh, H.; Alexander, J.; Aoki, K.; Aphecetche, L.; Armendariz, R.; Aronson, S. H.; Asai, J.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Baksay, G.; Baksay, L.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Bazilevsky, A.; Belikov, S.; Bennett, R.; Berdnikov, Y.; Bickley, A. A.; Boissevain, J. G.; Borel, H.; Boyle, K.; Brooks, M. L.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Campbell, S.; Chang, B. S.; Charvet, J.-L.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Chujo, T.; Chung, P.; Churyn, A.; Cianciolo, V.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Das, K.; David, G.; Deaton, M. B.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Dion, A.; Donadelli, M.; Drapier, O.; Drees, A.; Dubey, A. K.; Durum, A.; Dzhordzhadze, V.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Enokizono, A.; En'Yo, H.; Esumi, S.; Eyser, K. O.; Fields, D. E.; Finger, M.; Finger, M., Jr.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Garishvili, I.; Glenn, A.; Gong, H.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gunji, T.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hamagaki, H.; Han, R.; Harada, H.; Hartouni, E. P.; Haruna, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hornback, D.; Ichihara, T.; Iinuma, H.; Imai, K.; Inaba, M.; Inoue, Y.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Jacak, B. V.; Jia, J.; Jin, J.; Jinnouchi, O.; Johnson, B. M.; Joo, K. S.; Jouan, D.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kaneta, M.; Kang, J. H.; Kanou, H.; Kawall, D.; Kazantsev, A. V.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, E.; Kinney, E.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klay, J.; Klein-Boesing, C.; Kochenda, L.; Kochetkov, V.; Komkov, B.; Konno, M.; Kotchetkov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, M. K.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Lenzi, B.; Li, X.; Liška, T.; Litvinenko, A.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Malik, M. D.; Manko, V. I.; Mao, Y.; Mašek, L.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; Miake, Y.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Morreale, A.; Morrison, D. P.; Moukhanova, T. V.; Mukhopadhyay, D.; Murata, J.; Nagamiya, S.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nakagawa, I.; Nakamiya, Y.; Nakamura, T.; Nakano, K.; Newby, J.; Nguyen, M.; Norman, B. E.; Nouicer, R.; Nyanin, A. S.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, J.; Park, W. J.; Pate, S. F.; Pei, H.; Peng, J.-C.; Pereira, H.; Peresedov, V.; Peressounko, D. Yu.; Pinkenburg, C.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosendahl, S. S. E.; Rosnet, P.; Rukoyatkin, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakata, H.; Samsonov, V.; Sato, S.; Sawada, S.; Seele, J.; Seidl, R.; Semenov, V.; Seto, R.; Sharma, D.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Taketani, A.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Taranenko, A.; Tarján, P.; Thomas, T. L.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Torii, H.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; Valle, H.; van Hecke, H. W.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, Y.; Wessels, J.; White, S. N.; Winter, D.; Woody, C. L.; Wysocki, M.; Xie, W.; Yamaguchi, Y. L.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Young, G. R.; Younus, I.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zhang, C.; Zhou, S.; Zimányi, J.; Zolin, L.

    2011-07-01

    We report on the event structure and double helicity asymmetry (ALL) of jet production in longitudinally polarized p+p collisions at s=200GeV. Photons and charged particles were measured by the PHENIX experiment at midrapidity |η|<0.35 with the requirement of a high-momentum (>2GeV/c) photon in the event. Event structure, such as multiplicity, pT density and thrust in the PHENIX acceptance, were measured and compared with the results from the pythia event generator and the geant detector simulation. The shape of jets and the underlying event were well reproduced at this collision energy. For the measurement of jet ALL, photons and charged particles were clustered with a seed-cone algorithm to obtain the cluster pT sum (pTreco). The effect of detector response and the underlying events on pTreco was evaluated with the simulation. The production rate of reconstructed jets is satisfactorily reproduced with the next-to-leading-order and perturbative quantum chromodynamics jet production cross section. For 4polarization of ⟨P⟩=49% we measured ALL=-0.0014±0.0037stat at the lowest pTreco bin (4-5GeV/c) and -0.0181±0.0282stat at the highest pTreco bin (10-12GeV/c) with a beam polarization scale error of 9.4% and a pT scale error of 10%. Jets in the measured pTreco range arise primarily from hard-scattered gluons with momentum fraction 0.02

  1. RESOLVING THE BRIGHT HCN(1–0) EMISSION TOWARD THE SEYFERT 2 NUCLEUS OF M51: SHOCK ENHANCEMENT BY RADIO JETS AND WEAK MASING BY INFRARED PUMPING?

    SciTech Connect

    Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric; Krips, Melanie; Lim, Jeremy; Muller, Sebastien

    2015-01-20

    We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.

  2. Optimal densities of alkali metal atoms in an optically pumped K-Rb hybrid atomic magnetometer considering the spatial distribution of spin polarization.

    PubMed

    Ito, Yosuke; Sato, Daichi; Kamada, Keigo; Kobayashi, Tetsuo

    2016-07-11

    An optically pumped K-Rb hybrid atomic magnetometer can be a useful tool for biomagnetic measurements due to the high spatial homogeneity of its sensor property inside a cell. However, because the property varies depending on the densities of potassium and rubidium atoms, optimization of the densities is essential. In this study, by using the Bloch equations of K and Rb and considering the spatial distribution of the spin polarization, we confirmed that the calculation results of spin polarization behavior are in good agreement with the experimental data. Using our model, we calculated the spatial distribution of the spin polarization and found that the optimal density of K atoms is 3 × 1019 m-3 and the optimal density ratio is nK/nRb ~ 400 to maximize the output signal and enhance spatial homogeneity of the sensor property. PMID:27410815

  3. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    SciTech Connect

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.; Falconer, David A.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  4. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  5. No Evidence of Intrinsic Optical/Near-infrared Linear Polarization for V404 Cygni during Its Bright Outburst in 2015: Broadband Modeling and Constraint on Jet Parameters

    NASA Astrophysics Data System (ADS)

    Tanaka, Y. T.; Itoh, R.; Uemura, M.; Inoue, Y.; Cheung, C. C.; Watanabe, M.; Kawabata, K. S.; Fukazawa, Y.; Yatsu, Y.; Yoshii, T.; Tachibana, Y.; Fujiwara, T.; Saito, Y.; Kawai, N.; Kimura, M.; Isogai, K.; Kato, T.; Akitaya, H.; Kawabata, M.; Nakaoka, T.; Shiki, K.; Takaki, K.; Yoshida, M.; Imai, M.; Gouda, S.; Gouda, Y.; Akimoto, H.; Honda, S.; Hosoya, K.; Ikebe, A.; Morihana, K.; Ohshima, T.; Takagi, Y.; Takahashi, J.; Watanabe, K.; Kuroda, D.; Morokuma, T.; Murata, K.; Nagayama, T.; Nogami, D.; Oasa, Y.; Sekiguchi, K.

    2016-05-01

    We present simultaneous optical and near-infrared (NIR) polarimetric results for the black hole binary V404 Cyg spanning the duration of its seven-day-long optically brightest phase of its 2015 June outburst. The simultaneous R- and K s -band light curves showed almost the same temporal variation except for the isolated (∼30-minute duration) orphan K s -band flare observed at MJD 57193.54. We did not find any significant temporal variation of polarization degree (PD) and position angle (PA) in both R and K s bands throughout our observations, including the duration of the orphan NIR flare. We show that the observed PD and PA are predominantly interstellar in origin by comparing the V404 Cyg polarimetric results with those of the surrounding sources within the 7‧ × 7‧ field of view. The low intrinsic PD (less than a few percent) implies that the optical and NIR emissions are dominated by either disk or optically thick synchrotron emission, or both. We also present the broadband spectra of V404 Cyg during the orphan NIR flare and a relatively faint and steady state by including quasi-simultaneous Swift/XRT and INTEGRAL fluxes. By adopting a single-zone synchrotron plus inverse-Compton model as widely used in modeling of blazars, we constrained the parameters of a putative jet. Because the jet synchrotron component cannot exceed the Swift/XRT disk/corona flux, the cutoff Lorentz factor in the electron energy distribution is constrained to be <102, suggesting that particle acceleration is less efficient in this microquasar jet outburst compared to active galactic nucleus jets. We also suggest that the loading of the baryon component inside the jet is inevitable based on energetic arguments.

  6. No Evidence of Intrinsic Optical/Near-infrared Linear Polarization for V404 Cygni during Its Bright Outburst in 2015: Broadband Modeling and Constraint on Jet Parameters

    NASA Astrophysics Data System (ADS)

    Tanaka, Y. T.; Itoh, R.; Uemura, M.; Inoue, Y.; Cheung, C. C.; Watanabe, M.; Kawabata, K. S.; Fukazawa, Y.; Yatsu, Y.; Yoshii, T.; Tachibana, Y.; Fujiwara, T.; Saito, Y.; Kawai, N.; Kimura, M.; Isogai, K.; Kato, T.; Akitaya, H.; Kawabata, M.; Nakaoka, T.; Shiki, K.; Takaki, K.; Yoshida, M.; Imai, M.; Gouda, S.; Gouda, Y.; Akimoto, H.; Honda, S.; Hosoya, K.; Ikebe, A.; Morihana, K.; Ohshima, T.; Takagi, Y.; Takahashi, J.; Watanabe, K.; Kuroda, D.; Morokuma, T.; Murata, K.; Nagayama, T.; Nogami, D.; Oasa, Y.; Sekiguchi, K.

    2016-05-01

    We present simultaneous optical and near-infrared (NIR) polarimetric results for the black hole binary V404 Cyg spanning the duration of its seven-day-long optically brightest phase of its 2015 June outburst. The simultaneous R- and K s -band light curves showed almost the same temporal variation except for the isolated (˜30-minute duration) orphan K s -band flare observed at MJD 57193.54. We did not find any significant temporal variation of polarization degree (PD) and position angle (PA) in both R and K s bands throughout our observations, including the duration of the orphan NIR flare. We show that the observed PD and PA are predominantly interstellar in origin by comparing the V404 Cyg polarimetric results with those of the surrounding sources within the 7‧ × 7‧ field of view. The low intrinsic PD (less than a few percent) implies that the optical and NIR emissions are dominated by either disk or optically thick synchrotron emission, or both. We also present the broadband spectra of V404 Cyg during the orphan NIR flare and a relatively faint and steady state by including quasi-simultaneous Swift/XRT and INTEGRAL fluxes. By adopting a single-zone synchrotron plus inverse-Compton model as widely used in modeling of blazars, we constrained the parameters of a putative jet. Because the jet synchrotron component cannot exceed the Swift/XRT disk/corona flux, the cutoff Lorentz factor in the electron energy distribution is constrained to be <102, suggesting that particle acceleration is less efficient in this microquasar jet outburst compared to active galactic nucleus jets. We also suggest that the loading of the baryon component inside the jet is inevitable based on energetic arguments.

  7. Experimental investigation of vortex control with an axial jet in the draft tube of a model pump-turbine

    NASA Astrophysics Data System (ADS)

    Kirschner, O.; Schmidt, H.; Ruprecht, A.; Mader, R.; Meusburger, P.

    2010-08-01

    The operation of hydropower plants, especially of pump-storage plants, changes since the deregulation of the energy market. They are increasingly operating at off-design conditions in order to follow the demand in the electrical grid. Therefore the ability of hydropower plants handling the operation in a wide range of off-design conditions has become more important. In this context one problem is the vortex rope in the draft tube, especially for Francis turbines and pump-turbines running in part load. An experimental investigation in mitigation of the vortex rope phenomenon by injecting water axially in the centre of the draft tube on a pump-turbine model was carried out. Also the mitigation by additionally injected air in the centre of the draft tube was analysed. The results of the experimental investigation are focused on the reduction of the pressure fluctuations in the draft tube. In this paper two different part-load operating points were investigated. One of these operating points is a high part load operating point where a vortex rope exists. The other one is a low part load operating point, where the pressure fluctuation is not caused by a vortex rope. The results of the investigation show, that the injection of stabilizing water can mitigate the pressure fluctuation caused by a vortex rope. But the investigation of operating points where the pressure fluctuation is not caused by a vortex rope shows, that there is no significant reduction in the pressure fluctuation by this method. In these operating points the method of injecting additionally air reduces the pressure fluctuation better.

  8. A Metastability-Exchange Optical Pumping and Compression System using Polarized 3 He for a Proposed Laboratory Search for Neutron Monopole-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Smith, Erick; Ariadne Collaboration

    2015-04-01

    3 He nuclei polarized using the metastability-exchange optical pumping (MEOP) method have been used for scientific applications such as magnetometry in space, neutron polarization and analysis, and medical imaging. In this talk we explain how this technique is also well-suited for a proposed experiment to search for possible monopole-dipole interactions of polarized 3 He nuclei with matter. The P-odd and T-odd monopole-dipole potential proposed by Moody and Wilczek is proportional to s-> . r-> where s-> is the 3 He spin and r-> is the separation between the particles. It can be induced by axions, and ARIADNE proposes to perform NMR on a polarized 3 He ensemble at 4K with a radially-slotted tungsten disk spinning at a multiple of the 3 He Larmour frequency to induce a resonant monopole-dipole perturbation. The radial slot length variations are chosen to maximize sensitivity to a monopole-dipole interaction range corresponding to the axion window. We describe the advantages that MEOP presents for this experiment and describe the MEOP-based polarized 3 He gas compression system at Indiana University.

  9. Polarization-insensitive all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK using cross-phase modulation in a birefringent nonlinear PCF.

    PubMed

    Mahmood, T; Cannon, B M; Astar, W; Carter, G M

    2014-12-29

    Polarization-insensitive (PI) all-optical dual pump-phase transmultiplexing from 2 × 10-GBd OOKs to 10-GBd RZ-QPSK was successfully demonstrated in a birefringent nonlinear photonic crystal fiber (PCF), by utilizing cross-phase modulation (XPM) and the inherent birefringence of the device, for the first time. PI operation was achieved by launching the probe and one pump off-axis while the state of polarization (SOP) of the other pump was randomized. Optimum pump-probe detuning, all within the C-Band, was also utilized to reduce the polarization-induced power fluctuation. Receiver sensitivity penalty at 10-9 bit-error-rate was < 5.5 dB in PI operation, relative to the FPGA-precoded RZ-DQPSK baseline. PMID:25607146

  10. High power, diffraction limited picosecond oscillator based on Nd:GdVO4 bulk crystal with σ polarized in-band pumping.

    PubMed

    Lin, Hua; Guo, Jie; Gao, Peng; Yu, Hai; Liang, Xiaoyan

    2016-06-27

    We report on a high power passively mode-locked picosecond oscillator based on Nd:GdVO4 crystal with σ polarized in-band pumping. Thermal gradient and thermal aberration was greatly decreased with proposed configuration. Maximum output power of 37 W at 81 MHz repetition rate with 19.3 ps pulse duration was achieved directly from Nd:GdVO4 oscillator, corresponding to 51% optical efficiency. The oscillator maintained diffraction limited beam quality of M2 < 1.05 at different output coupling with pulse duration between 11.2 ps to 19.3 ps. PMID:27410558

  11. Marine Jet

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The marine turbine pump pictured is the Jacuzzi 12YJ, a jet propulsion system for pleasure or commercial boating. Its development was aided by a NASA computer program made available by the Computer Software Management and Information Center (COSMIC) at the University of Georgia. The manufacturer, Jacuzzi Brothers, Incorporated, Little Rock, Arkansas, used COSMIC'S Computer Program for Predicting Turbopump Inducer Loading, which enabled substantial savings in development time and money through reduction of repetitive testing.

  12. A high-field 3He metastability exchange optical pumping polarizer operating in a 1.5 T medical scanner for lung magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Collier, G.; Pałasz, T.; Wojna, A.; Głowacz, B.; Suchanek, M.; Olejniczak, Z.; Dohnalik, T.

    2013-05-01

    After being hyperpolarized using the technique of Metastability Exchange Optical Pumping (MEOP), 3He can be used as a contrast agent for lung magnetic resonance imaging (MRI). MEOP is usually performed at low magnetic field (˜1 mT) and low pressure (˜1 mbar), which results in a low magnetization production rate. Polarization preserving compression with a compression ratio of order 1000 is also required. It was demonstrated in sealed cells that high nuclear polarization values can be obtained at higher pressures with MEOP, if performed at high magnetic field (non-standard conditions). In this work, the feasibility of building a high-field polarizer that operates within a commercial 1.5 T scanner was evaluated. Preliminary measurements of nuclear polarization with sealed cells filled at different 3He gas pressures (1.33 to 267 mbar) were performed. The use of an annular shape for the laser beam increased by 25% the achievable nuclear polarization equilibrium value (Meq) at 32 and 67 mbar as compared to a Gaussian beam shape. Meq values of 66.4% and 31% were obtained at 32 and 267 mbar, respectively, and the magnetization production rate was increased by a factor of 10 compared to the best results obtained under standard conditions. To study the reproducibility of the method in a polarizing system, the same experiments were performed with small cells connected to a gas handling system. Despite careful cleaning procedure, the purity of the 3He gas could not be matched to that of the sealed cells. Consequently, the polarization build-up times were approximately 3 times longer in the 20-30 mbar range of pressure than those obtained for the 32 mbar sealed cell. However, reasonable Meq values of 40%-60% were achieved in a 90 ml open cell. Based on these findings, a novel compact polarizing system was designed and built. Its typical output is a 3He gas flow rate of 15 sccm with a polarization of 33%. In-vivo lung MRI ventilation images (Signal to Noise Ratio (SNR) of

  13. REVIEW ARTICLE: Optical pumping-induced spatio-temporal modifications to propagation, polarization and intensity of laser beams in sodium vapour

    NASA Astrophysics Data System (ADS)

    Holzner, R.; Dangel, S.

    1998-02-01

    Circularly polarized laser beams propagating through sodium vapour and tuned to the buffer-gas-broadened atomic 1355-5111/10/1/003/img1 transition can optically pump sodium atoms into a non-absorbing ground state. This causes an intensity-dependent refractive index gradient along as well as transverse to the laser beam propagation direction, giving rise to a number of nonlinear spatio-temporal intensity and polarization pattern creating processes. In the case of a single circularly polarized laser beam we have observed self-focusing and defocusing, the transformation of the incident Gaussian beam intensity profiles into ring profiles, a large shift of about 5 GHz of the maximum of the absorption profile when suitable magnetic fields are applied and the deflection of a beam by the inhomogeneous transverse magnetic field of a current-carrying wire. When two beams of opposite circular polarization are superimposed, astonishing effects such as the mutual deflection of both beams (beam bouncing), the mutual extinction of both beams (beam switching), the separation of initially overlapping beams (beam splitting) and the mutual attraction of both beams (beam attraction) can be observed. While most of the effects can be well described for the stationary state by a 1355-5111/10/1/003/img2 to 1355-5111/10/1/003/img3 atomic transition model, the correct description of the dynamics requires the consideration of all hyperfine states.

  14. Interpretation of extragalactic jets

    SciTech Connect

    Norman, M.L.

    1985-01-01

    The nature of extragalatic radio jets is modeled. The basic hypothesis of these models is that extragalatic jets are outflows of matter which can be described within the framework of fluid dynamics and that the outflows are essentially continuous. The discussion is limited to the interpretation of large-scale (i.e., kiloparsec-scale) jets. The central problem is to infer the physical parameters of the jets from observed distributions of total and polarized intensity and angle of polarization as a function of frequency. 60 refs., 6 figs.

  15. Estimates of rates and errors for measurements of direct-. gamma. and direct-. gamma. + jet production by polarized protons at RHIC

    SciTech Connect

    Beddo, M.E.; Spinka, H.; Underwood, D.G.

    1992-08-14

    Studies of inclusive direct-{gamma} production by pp interactions at RHIC energies were performed. Rates and the associated uncertainties on spin-spin observables for this process were computed for the planned PHENIX and STAR detectors at energies between {radical}s = 50 and 500 GeV. Also, rates were computed for direct-{gamma} + jet production for the STAR detector. The goal was to study the gluon spin distribution functions with such measurements. Recommendations concerning the electromagnetic calorimeter design and the need for an endcap calorimeter for STAR are made.

  16. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of..., and a means of propelling the fluid through the tubing, such as an electric roller pump....

  17. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of..., and a means of propelling the fluid through the tubing, such as an electric roller pump....

  18. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of..., and a means of propelling the fluid through the tubing, such as an electric roller pump....

  19. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of..., and a means of propelling the fluid through the tubing, such as an electric roller pump....

  20. 21 CFR 880.5475 - Jet lavage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Jet lavage. 880.5475 Section 880.5475 Food and... Jet lavage. (a) Identification. A jet lavage is a device used to clean a wound by a pulsatile jet of..., and a means of propelling the fluid through the tubing, such as an electric roller pump....

  1. Transverse Single Spin Asymmetries of Forward π0 and Jet-like Events in s = 500 GeV Polarized Proton Collisions at STAR

    NASA Astrophysics Data System (ADS)

    Pan, Yuxi

    2016-02-01

    The large transverse single spin asymmetries (SSA) of high xF inclusive hadrons produced in polarized proton collisions are usually explained by means of collinear twist-3 multi-parton correlations. In this picture these asymmetries can originate from initial-state twist-3 parton distributions in the polarized proton and/or through the coupling between proton transversity and twist-3 fragmentation functions. The measurement of SSA for forward inclusive hadrons produced in pp collisions out to high transverse momentum helps to examine the validity and interplay of these initial- and final-state models. These models can be further explored by investigating the dependence of the SSA on event topologies. We present our latest status on the measurement of SSA for forward inclusive π0 detected within 2.8 < η < 4.0 in s = 500 GeV pp collisions as well as its dependence on event topologies. We will also present our analysis of Sivers and Collins asymmetries for forward jet-like events consisting of multi-photon final states. The measurements are based on the data taken in 2011 with integrated luminosity ˜ 22 pb‑1.

  2. Development of a polarization resolved spectroscopic diagnostic for measurements of the magnetic field in the Caltech coaxial magnetized plasma jet experiment

    NASA Astrophysics Data System (ADS)

    Shikama, Taiichi; Bellan, Paul M.

    2011-11-01

    Measurements of the magnetic field strength in current-carrying magnetically confined plasmas are necessary for understanding the underlying physics governing the dynamical behavior. Such a measurement would be particularly useful in the Caltech coaxial magnetized plasma gun, an experiment used for fundamental studies relevant to spheromak formation, astrophysical jet formation/propagation, solar coronal physics, and the general behavior of twisted magnetic flux tubes that intercept a boundary. In order to measure the field strength in the Caltech experiment, a non-perturbing spectroscopic method is being implemented to observe the Zeeman splitting in the emission spectra. The method is based on polarization-resolving spectroscopy of the Zeeman-split σ components, a technique previously used in both solar and laboratory plasmas. We have designed and constructed an optical system that can simultaneously detect left- and right-circularly polarized emission with both high throughput and small extinction ratio. The system will be used on the 489.5 nm NII line, chosen because of its simple Zeeman structure and minimal Stark broadening.

  3. Ultra-low phase-noise microwave generation using a diode-pumped solid-state laser based frequency comb and a polarization-maintaining pulse interleaver.

    PubMed

    Portuondo-Campa, Erwin; Buchs, Gilles; Kundermann, Stefan; Balet, Laurent; Lecomte, Steve

    2015-12-14

    We report ultra-low phase-noise microwave generation at a 9.6 GHz carrier frequency from optical frequency combs based on diode-pumped solid-state lasers emitting at telecom wavelength and referenced to a common cavity-stabilized continuous-wave laser. Using a novel fibered polarization-maintaining pulse interleaver, a single-oscillator phase-noise floor of -171 dBc/Hz at 10 MHz offset frequency has been measured with commercial PIN InGaAs photodiodes, constituting a record for this type of detector. Also, a direct optical measurement of the stabilized frequency combs' timing jitter was performed using a balanced optical cross correlator, allowing for an identification of the origin of the phase-noise limitations in the system. PMID:26699033

  4. Reply to “Comment on ‘Optically pumped spin-exchange polarized-electron source’ ”

    SciTech Connect

    Pirbhai, M.; Knepper, J.; Litaker, E. T.; Tupa, D.; Gay, T. J.

    2015-05-26

    In the proceeding Comment [1] on our recent report of a Rb spin-exchange polarized-electron source [2], Williams et al. contend: (a) that our source is poorly characterized compared with modern GaAs sources, (b) that we have overstated the difficulties of using GaAs photoemission sources, and (c) that our explanation of various physics issues related to the source's operating principles are not cogent.

  5. Reply to “Comment on ‘Optically pumped spin-exchange polarized-electron source’ ”

    DOE PAGESBeta

    Pirbhai, M.; Knepper, J.; Litaker, E. T.; Tupa, D.; Gay, T. J.

    2015-05-26

    In the proceeding Comment [1] on our recent report of a Rb spin-exchange polarized-electron source [2], Williams et al. contend: (a) that our source is poorly characterized compared with modern GaAs sources, (b) that we have overstated the difficulties of using GaAs photoemission sources, and (c) that our explanation of various physics issues related to the source's operating principles are not cogent.

  6. The Design of Jet Pumps

    NASA Technical Reports Server (NTRS)

    Flugel, Gustav

    1941-01-01

    This report shows that by applying both energy and impulse theorems the optimum throat dimension of the mixing nozzle and the best shape of intake can be predicted approximately in a relatively simple manner. The necessary length of the mixing nozzle follows from Prandtl's turbulent mixing theory. The calculations are carried out for the mixing of similar and dissimilar fluids.

  7. The intra-hour variable quasar J1819+3845: 13-year evolution, jet polarization structure, and interstellar scattering screen properties

    NASA Astrophysics Data System (ADS)

    de Bruyn, A. G.; Macquart, J.-P.

    2015-02-01

    We examine the long-term evolution of the intra-hour variable quasar, J1819+3845, whose variations have been attributed to interstellar scintillation by extremely local turbulent plasma, located only 1-3 pc from Earth. The variations in this source ceased some time in the period between June 2006 and February 2007. The evolution of the source spectrum and the long-term lightcurve, and the persistent compactness of the source VLBI structure indicate that the cessation of rapid variability was associated with the passage of the scattering material out of the line of sight to the quasar. We present an extensive analysis of the linear polarization variations and their relation to total intensity variations. The proper motion of polarized features in the quasar jet is found to be subluminal. Systematic time delays between Stokes I, Q, and U, in combination with the structure of the source obtained from 8.4 GHz VLBI data confirm the estimate of the screen distance: 1-2 pc, making the screen one of the nearest objects to the solar system. We determine the physical properties of this scattering material. The electron density in the scattering region is extremely high with respect to the warm ionized ISM, with an estimated density of ne ~ 97 l01/3 ΔL 100-1/2 cm -3, where l0 is the outer scale of the turbulence in AU and ΔL = 100 ΔL100 AU is the depth of the scattering region. If this plasma is in pressure balance with the local magnetic field, one expects a ~2 rad m-2 rotation measure (RM) change associated with the passage of this material past the quasar. To that end, we examine the RMs of sources and the diffuse polarized emission in the surrounding region. We place a limit of 10 rad m-2 on the RM change based upon 21 cm polarization observations. The variability of sources near J1819+3845 is examined to deduce limits on the transverse extent of the screen, and we find that no other sources exhibit variations on comparable timescales and that the screen must therefore

  8. Measurement of the Polarization of W Bosons with Large Transverse Momenta in W+Jets Events at the LHC

    SciTech Connect

    Chatrchyan, S.; et al.,

    2011-07-01

    A first measurement of the polarization of W bosons with large transverse momenta in pp collisions is presented. The measurement is based on 36 inverse picobarns of data recorded at sqrt(s) = 7 TeV by the CMS detector at the LHC. The left-handed, right-handed and longitudinal polarization fractions (f_L, f_R, f_0) of W bosons with transverse momenta larger than 50 GeV are determined using decays to both electrons and muons. The muon final state yields the most precise measurement, (f_L - f_R) = 0.240 +/- 0.036 (stat.) +/- 0.031 (syst.) and f_0 = 0.183 +/- 0.087 (stat.) +/- 0.123 (syst.) for negatively charged W bosons, and (f_L - f_R) = 0.310 +/- 0.036 (stat.) +/- 0.017 (syst.) and f_0 = 0.171 +/- 0.085 (stat.) +/- 0.099 (syst.) for positively charged W bosons. This establishes, for the first time, that W bosons produced in pp collisions with large transverse momenta are predominantly left-handed, as expected in the standard model.

  9. Measurement of the polarization of W bosons with large transverse momenta in W + jets events at the LHC.

    PubMed

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; De Wolf, E A; Janssen, X; Maes, J; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; Mccartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H

    2011-07-01

    A first measurement of the polarization of W bosons with large transverse momenta in pp collisions is presented. The measurement is based on 36 pb⁻¹ of data recorded at √s = 7 TeV by the CMS detector at the LHC. The left-handed, right-handed, and longitudinal polarization fractions (f(L), f(R), and f₀, respectively) of W bosons with transverse momenta larger than 50 GeV are determined by using decays to both electrons and muons. The muon final state yields the most precise measurement: (f(L) - f(R))⁻ = 0.240 ± 0.036(stat) ± 0.031(syst) and f₀⁻ = 0.183 ± 0.087(stat) ± 0.123(syst) for negatively charged W bosons and (f(L) - f(R))⁺ = 0.310 ± 0.036(stat) ± 0.017(syst) and f₀⁺ = 0.171 ± 0.085(stat) ± 0.099(syst) for positively charged W bosons. This establishes, for the first time, that W bosons produced in pp collisions with large transverse momenta are predominantly left-handed, as expected in the standard model. PMID:21797595

  10. Linearly polarized fiber amplifier

    DOEpatents

    Kliner, Dahv A.; Koplow, Jeffery P.

    2004-11-30

    Optically pumped rare-earth-doped polarizing fibers exhibit significantly higher gain for one linear polarization state than for the orthogonal state. Such a fiber can be used to construct a single-polarization fiber laser, amplifier, or amplified-spontaneous-emission (ASE) source without the need for additional optical components to obtain stable, linearly polarized operation.