Sample records for putative host protease

  1. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. colimore » α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.« less

  2. Midgut serine proteases and alternative host plant utilization in Pieris brassicae L.

    PubMed Central

    Kumar, Rakesh; Bhardwaj, Usha; Kumar, Pawan; Mazumdar-Leighton, Sudeshna

    2015-01-01

    Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors. PMID:25873901

  3. Novel IgG-Degrading Enzymes of the IgdE Protease Family Link Substrate Specificity to Host Tropism of Streptococcus Species

    PubMed Central

    Spoerry, Christian; Hessle, Pontus; Lewis, Melanie J.; Paton, Lois; Woof, Jenny M.

    2016-01-01

    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use. PMID:27749921

  4. Serine protease inhibitors of parasitic helminths.

    PubMed

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships.

  5. Serine Proteases of Parasitic Helminths

    PubMed Central

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-01-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  6. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases.

    PubMed

    Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro

    2017-01-01

    Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus , a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.

  7. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases

    PubMed Central

    Pietrocola, Giampiero; Nobile, Giulia; Rindi, Simonetta; Speziale, Pietro

    2017-01-01

    Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases. PMID:28529927

  8. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells

    PubMed Central

    Riestra, Angelica M.; Gandhi, Shiv; Sweredoski, Michael J.; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J.

    2015-01-01

    Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. PMID:26684303

  9. MOLECULAR IDENTIFICATION OF CYSTEINE AND TRYPSIN PROTEASE, EFFECT OF DIFFERENT HOSTS ON PROTEASE EXPRESSION, AND RNAI MEDIATED SILENCING OF CYSTEINE PROTEASE GENE IN THE SUNN PEST.

    PubMed

    Amiri, Azam; Bandani, Ali Reza; Alizadeh, Houshang

    2016-04-01

    Sunn pest, Eurygaster integriceps, is a serious pest of cereals in the wide area of the globe from Near and Middle East to East and South Europe and North Africa. This study described for the first time, identification of E. integriceps trypsin serine protease and cathepsin-L cysteine, transcripts involved in digestion, which might serve as targets for pest control management. A total of 478 and 500 base pair long putative trypsin and cysteine gene sequences were characterized and named Tryp and Cys, respectively. In addition, the tissue-specific relative gene expression levels of these genes as well as gluten hydrolase (Gl) were determined under different host kernels feeding conditions. Result showed that mRNA expression of Cys, Tryp, and Gl was significantly affected after feeding on various host plant species. Transcript levels of these genes were most abundant in the wheat-fed E. integriceps larvae compared to other hosts. The Cys transcript was detected exclusively in the gut, whereas the Gl and Tryp transcripts were detectable in both salivary glands and gut. Also possibility of Sunn pest gene silencing was studied by topical application of cysteine double-stranded RNA (dsRNA). The results indicated that topically applied dsRNA on fifth nymphal stage can penetrate the cuticle of the insect and induce RNA interference. The Cys gene mRNA transcript in the gut was reduced to 83.8% 2 days posttreatment. Also, it was found that dsRNA of Cys gene affected fifth nymphal stage development suggesting the involvement of this protease in the insect growth, development, and molting. © 2015 Wiley Periodicals, Inc.

  10. Proteases of Sporothrix schenckii: Cytopathological effects on a host-cell model.

    PubMed

    Sabanero López, Myrna; Flores Villavicencio, Lérida L; Soto Arredondo, Karla; Barbosa Sabanero, Gloria; Villagómez-Castro, Julio César; Cruz Jiménez, Gustavo; Sandoval Bernal, Gerardo; Torres Guerrero, Haydee

    Sporotrichosis is a fungal infection caused by the Sporothrix schenckii complex. The adhesion of the fungus to the host tissue has been considered the key step in the colonization and invasion, but little is known about the early events in the host-parasite interaction. To evaluate the proteolytic activity of S. schenckii on epithelial cells. The proteolytic system (at pH 5 and 7) was evaluated using azocoll and zymograms. The host-parasite interaction and epithelial cell response were also analyzed by examining the microfilament cytoskeleton using phalloidin-FITC and transmission electron microscopy. Finally, the metabolic activity was determined using an XTT assay. The zymograms showed that S. schenckii yeast cells possess high intracellular and extracellular proteolytic activities (Mr≥200, 116, 97, and 70kDa) that are pH dependent and are inhibited by PMSF and E64, which act on serine and cysteine-type proteases. During the epithelial cell-protease interaction, the cells showed alterations in the microfilament distribution, as well as in the plasma membrane structure. Moreover, the metabolic activity of the epithelial cells decreased 60% without a protease inhibitor. Our data demonstrate the complexity of the cellular responses during the infection process. This process is somehow counteracted by the action of proteases inhibitors. Furthermore, the results provide critical information for understanding the nature of host-fungus interactions and for searching a new effective antifungal therapy, which includes protease inhibitors. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Lectin Activation in Giardia lamblia by Host Protease: A Novel Host-Parasite Interaction

    NASA Astrophysics Data System (ADS)

    Lev, Boaz; Ward, Honorine; Keusch, Gerald T.; Pereira, Miercio E. A.

    1986-04-01

    A lectin in Giardia lamblia was activated by secretions from the human duodenum, the environment where the parasite lives. Incubation of the secretions with trypsin inhibitors prevented the appearance of lectin activity, implicating proteases as the activating agent. Accordingly, lectin activation was also produced by crystalline trypsin and Pronase; other proteases tested were ineffective. When activated, the lectin agglutinated intestinal cells to which the parasite adheres in vivo. The lectin was most specific to mannose-6-phosphate and apparently was bound to the plasma membrane. Activation of a parasite lectin by a host protease represents a novel mechanism of hostparasite interaction and may contribute to the affinity of Giardia lamblia to the infection site.

  12. Activation of Influenza A Viruses by Host Proteases from Swine Airway Epithelium

    PubMed Central

    Peitsch, Catharina; Klenk, Hans-Dieter; Garten, Wolfgang

    2014-01-01

    Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways. PMID:24155384

  13. The C-terminal sequence of several human serine proteases encodes host defense functions.

    PubMed

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Walse, Björn; Svensson, Bo; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2011-01-01

    Serine proteases of the S1 family have maintained a common structure over an evolutionary span of more than one billion years, and evolved a variety of substrate specificities and diverse biological roles, involving digestion and degradation, blood clotting, fibrinolysis and epithelial homeostasis. We here show that a wide range of C-terminal peptide sequences of serine proteases, particularly from the coagulation and kallikrein systems, share characteristics common with classical antimicrobial peptides of innate immunity. Under physiological conditions, these peptides exert antimicrobial effects as well as immunomodulatory functions by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, selected peptides are protective against lipopolysaccharide-induced shock. Moreover, these S1-derived host defense peptides exhibit helical structures upon binding to lipopolysaccharide and also permeabilize liposomes. The results uncover new and fundamental aspects on host defense functions of serine proteases present particularly in blood and epithelia, and provide tools for the identification of host defense molecules of therapeutic interest. Copyright © 2011 S. Karger AG, Basel.

  14. Putative Serine Protease Effectors of Clavibacter michiganensis Induce a Hypersensitive Response in the Apoplast of Nicotiana Species.

    PubMed

    Lu, You; Hatsugai, Noriyuki; Katagiri, Fumiaki; Ishimaru, Carol A; Glazebrook, Jane

    2015-11-01

    Clavibacter michiganensis subspp. michiganensis and sepedonicus cause diseases on solanaceous crops. The genomes of both subspecies encode members of the pat-1 family of putative serine proteases known to function in virulence on host plants and induction of hypersensitive responses (HR) on nonhosts. One gene of this family in C. michiganensis subsp. sepedonicus, chp-7, is required for triggering HR in Nicotiana tabacum. Here, further investigation revealed that mutation of the putative catalytic serine residue at position 232 to threonine abolished the HR induction activity of Chp-7, suggesting that enzymatic activity is required. Purified Chp-7 triggered an HR in N. tabacum leaves in the absence of the pathogen, indicating Chp-7 itself is the HR elicitor from C. michiganensis subsp. sepedonicus. Ectopic expression of chp-7 constructs in N. tabacum leaves revealed that Chp-7 targeted to the apoplast triggered an HR while cytoplasmic Chp-7 did not, indicating that Chp-7 induces the HR in the apoplast of N. tabacum leaves. Chp-7 also induced HR in N. sylvestris, a progenitor of N. tabacum, but not in other Nicotiana species tested. ChpG, a related protein from C. michiganensis subsp. michiganensis, also triggered HR in N. tabacum and N. sylvestris. Unlike Chp-7, ChpG triggered HR in N. clevelandii and N. glutinosa.

  15. Regulation of cuticle-degrading subtilisin proteases from the entomopathogenic fungi, Lecanicillium spp: implications for host specificity.

    PubMed

    Bye, Natasha J; Charnley, A Keith

    2008-01-01

    The ability to produce cuticle-degrading proteases to facilitate host penetration does not distinguish per se entomopathogenic fungi from saprophytes. However, adapted pathogens may produce host-protein specific enzymes in response to cues. This possibility prompted an investigation of the regulation of isoforms of the subtilisin Pr1-like proteases from five aphid-pathogenic isolates of Lecanicillium spp. Significant differences were found in substrate specificity and regulation of Pr1-like proteases between isoforms of the same isolate and between different isolates. For example, the pI 8.6 isoform from KV71 was considerably more active against aphid than locust cuticle and was induced specifically by N-acetylglucosamine (NAG). Isoform pI 9.1 from the same isolate was only produced on insect cuticle while most other isoforms were more prominent on chitin containing substrates but not induced by NAG. The ability to regulate isoforms independently may allow production at critical points in host penetration. Appearance of proteases (not subtilisins) with pI 4.2 and 4.4 only on aphid cuticle was a possible link with host specificity of KV71. The absence of C or N metabolite repression in subtilisins from KV42 is unusual for pathogen proteases and may help to account for differences in virulence strategy between aphid-pathogenic isolates of Lecanicillium longisporum (unpublished data).

  16. A Maize Cystatin Suppresses Host Immunity by Inhibiting Apoplastic Cysteine Proteases[C][W

    PubMed Central

    van der Linde, Karina; Hemetsberger, Christoph; Kastner, Christine; Kaschani, Farnusch; van der Hoorn, Renier A.L.; Kumlehn, Jochen; Doehlemann, Gunther

    2012-01-01

    Ustilago maydis is a biotrophic pathogen causing maize (Zea mays) smut disease. Transcriptome profiling of infected maize plants indicated that a gene encoding a putative cystatin (CC9) is induced upon penetration by U. maydis wild type. By contrast, cc9 is not induced after infection with the U. maydis effector mutant Δpep1, which elicits massive plant defenses. Silencing of cc9 resulted in a strongly induced maize defense gene expression and a hypersensitive response to U. maydis wild-type infection. Consequently, fungal colonization was strongly reduced in cc9-silenced plants, while recombinant CC9 prevented salicylic acid (SA)–induced defenses. Protease activity profiling revealed a strong induction of maize Cys proteases in SA-treated leaves, which could be inhibited by addition of CC9. Transgenic maize plants overexpressing cc9-mCherry showed an apoplastic localization of CC9. The transgenic plants showed a block in Cys protease activity and SA-dependent gene expression. Moreover, activated apoplastic Cys proteases induced SA-associated defense gene expression in naïve plants, which could be suppressed by CC9. We show that apoplastic Cys proteases play a pivotal role in maize defense signaling. Moreover, we identified cystatin CC9 as a novel compatibility factor that suppresses Cys protease activity to allow biotrophic interaction of maize with the fungal pathogen U. maydis. PMID:22454455

  17. The putative serine protease inhibitor Api m 6 from Apis mellifera venom: recombinant and structural evaluation.

    PubMed

    Michel, Y; McIntyre, M; Ginglinger, H; Ollert, M; Cifuentes, L; Blank, S; Spillner, E

    2012-01-01

    Immunoglobulin (Ig) E-mediated reactions to honeybee venom can cause severe anaphylaxis, sometimes with fatal consequences. Detailed knowledge of the allergic potential of all venom components is necessary to ensure proper diagnosis and treatment of allergy and to gain a better understanding of the allergological mechanisms of insect venoms. Our objective was to undertake an immunochemical and structural evaluation of the putative low-molecular-weight serine protease inhibitor Api m 6, a component of honeybee venom. We recombinantly produced Api m 6 as a soluble protein in Escherichia coli and in Spodoptera frugiperda (Sf9) insect cells.We also assessed specific IgE reactivity of venom-sensitized patients with 2 prokaryotically produced Api m 6 variants using enzyme-linked immunosorbent assay. Moreover, we built a structural model ofApi m 6 and compared it with other protease inhibitor structures to gain insights into the function of Api m 6. In a population of 31 honeybee venom-allergic patients, 26% showed specific IgE reactivity with prokaryotically produced Api m 6, showing it to be a minor but relevant allergen. Molecular modeling of Api m 6 revealed a typical fold of canonical protease inhibitors, supporting the putative function of this venom allergen. Although Api m 6 has a highly variant surface charge, its epitope distribution appears to be similar to that of related proteins. Api m 6 is a honeybee venom component with IgE-sensitizing potential in a fraction of venom-allergic patients. Recombinant Api m 6 can help elucidate individual component-resolved reactivity profiles and increase our understanding of immune responses to low-molecular-weight allergens

  18. Understanding serine proteases implications on Leishmania spp lifecycle.

    PubMed

    Alves, Carlos Roberto; Souza, Raquel Santos de; Charret, Karen Dos Santos; Côrtes, Luzia Monteiro de Castro; Sá-Silva, Matheus Pereira de; Barral-Veloso, Laura; Oliveira, Luiz Filipe Gonçalves; da Silva, Franklin Souza

    2018-01-01

    Serine proteases have significant functions over a broad range of relevant biological processes to the Leishmania spp lifecycle. Data gathered here present an update on the Leishmania spp serine proteases and the status of these enzymes as part of the parasite degradome. The serine protease genes (n = 26 to 28) in Leishmania spp, which encode proteins with a wide range of molecular masses (35 kDa-115 kDa), are described along with their degrees of chromosomal and allelic synteny. Amid 17 putative Leishmania spp serine proteases, only ∼18% were experimentally demonstrated, as: signal peptidases that remove the signal peptide from secretory pre-proteins, maturases of other proteins and with metacaspase-like activity. These enzymes include those of clans SB, SC and SF. Classical inhibitors of serine proteases are used as tools for the characterization and investigation of Leishmania spp. Endogenous serine protease inhibitors, which are ecotin-like, can act modulating host actions. However, crude or synthetic based-natural serine protease inhibitors, such as potato tuber extract, Stichodactyla helianthus protease inhibitor I, fukugetin and epoxy-α-lapachone act on parasitic serine proteases and are promising leishmanicidal agents. The functional interrelationship between serine proteases and other Leishmania spp proteins demonstrate essential functions of these enzymes in parasite physiology and therefore their value as targets for leishmaniasis treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. An Aspartic Protease of the Scabies Mite Sarcoptes scabiei Is Involved in the Digestion of Host Skin and Blood Macromolecules

    PubMed Central

    Mahmood, Wajahat; Viberg, Linda T.; Fischer, Katja; Walton, Shelley F.; Holt, Deborah C.

    2013-01-01

    Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. PMID:24244770

  20. Proteases and phosphatases during Leishmania-macrophage interaction: paving the road for pathogenesis.

    PubMed

    Gómez, María Adelaida; Olivier, Martin

    2010-01-01

    The outcome of Leishmania infection depends both on host and pathogen factors. Macrophages, the specialized host cells for uptake and intracellular development of Leishmania, play a central role in the control of infection. Leishmania has evolved strategies to downregulate host cell functions, largely mediated by the parasite-induced activation of macrophage protein tyrosine phosphatases (PTPs). We have recently identified PTP1B and TCPTP as two additional PTPs engaged upon Leishmania infection and have unraveled an intimate interaction between the Leishmania surface protease GP63 and host PTPs, which mediates a mechanism of cleavage-dependent PTP activation. Here we discuss new perspectives for GP63-mediated parasite virulence and propose putative mechanisms of GP63 internalization into host macrophages and access to intracellular substrates.

  1. Fundamental Roles of the Golgi-Associated Toxoplasma Aspartyl Protease, ASP5, at the Host-Parasite Interface

    PubMed Central

    Hammoudi, Pierre-Mehdi; Jacot, Damien; Mueller, Christina; Di Cristina, Manlio; Dogga, Sunil Kumar; Marq, Jean-Baptiste; Romano, Julia; Tosetti, Nicolò; Dubrot, Juan; Emre, Yalin; Lunghi, Matteo; Coppens, Isabelle; Yamamoto, Masahiro; Sojka, Daniel; Pino, Paco; Soldati-Favre, Dominique

    2015-01-01

    Toxoplasma gondii possesses sets of dense granule proteins (GRAs) that either assemble at, or cross the parasitophorous vacuole membrane (PVM) and exhibit motifs resembling the HT/PEXEL previously identified in a repertoire of exported Plasmodium proteins. Within Plasmodium spp., cleavage of the HT/PEXEL motif by the endoplasmic reticulum-resident protease Plasmepsin V precedes trafficking to and export across the PVM of proteins involved in pathogenicity and host cell remodelling. Here, we have functionally characterized the T. gondii aspartyl protease 5 (ASP5), a Golgi-resident protease that is phylogenetically related to Plasmepsin V. We show that deletion of ASP5 causes a significant loss in parasite fitness in vitro and an altered virulence in vivo. Furthermore, we reveal that ASP5 is necessary for the cleavage of GRA16, GRA19 and GRA20 at the PEXEL-like motif. In the absence of ASP5, the intravacuolar nanotubular network disappears and several GRAs fail to localize to the PVM, while GRA16 and GRA24, both known to be targeted to the host cell nucleus, are retained within the vacuolar space. Additionally, hypermigration of dendritic cells and bradyzoite cyst wall formation are impaired, critically impacting on parasite dissemination and persistence. Overall, the absence of ASP5 dramatically compromises the parasite’s ability to modulate host signalling pathways and immune responses. PMID:26473595

  2. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions.

    PubMed

    Bleischwitz, Marc; Albert, Markus; Fuchsbauer, Hans-Lothar; Kaldenhoff, Ralf

    2010-10-22

    Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. The study provides new information about molecular events during the parasitic plant--host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants.

  3. Characterization of the Mamestra configurata (Lepidoptera: Noctuidae) larval midgut protease complement and adaptation to feeding on artificial diet, Brassica species, and protease inhibitor.

    PubMed

    Erlandson, Martin A; Hegedus, Dwayne D; Baldwin, Douglas; Noakes, Amy; Toprak, Umut

    2010-10-01

    The midgut protease profiles from 5th instar Mamestra configurata larvae fed various diets (standard artificial diet, low protein diet, low protein diet with soybean trypsin inhibitor [SBTI], or Brassica napus) were characterized by one-dimensional enzymography in gelatin gels. The gut protease profile of larvae fed B. napus possessed protease activities of molecular masses of approximately 33 and 55 kDa, which were not present in the guts of larvae fed artificial diet. Similarly, larvae fed artificial diet had protease activities of molecular masses of approximately 21, 30, and 100 kDa that were absent in larvae fed B. napus. Protease profiles changed within 12 to 24 h after switching larvae from artificial diet to plant diet and vice versa. The gut protease profiles from larvae fed various other brassicaceous species and lines having different secondary metabolite profiles did not differ despite significant differences in larval growth rates on the different host plants. Genes encoding putative digestive proteolytic enzymes, including four carboxypeptidases, five aminopeptidases, and 48 serine proteases, were identified in cDNA libraries from 4th instar M. configurata midgut tissue. Many of the protease-encoding genes were expressed at similar levels on all diets; however, three chymoptrypsin-like genes (McSP23, McSP27, and McSP37) were expressed at much higher levels on standard artificial diet and diet containing SBTI as was the trypsin-like gene McSP34. The expression of the trypsin-like gene McSP50 was highest on B. napus. The adaptation of M. configurata digestive biochemistry to different diets is discussed in the context of the flexibility of polyphagous insects to changing diet sources.

  4. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    PubMed Central

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-01-01

    Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Conclusion Under thermal

  5. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms.

    PubMed

    Vidal-Dupiol, Jeremie; Adjeroud, Mehdi; Roger, Emmanuel; Foure, Laurent; Duval, David; Mone, Yves; Ferrier-Pages, Christine; Tambutte, Eric; Tambutte, Sylvie; Zoccola, Didier; Allemand, Denis; Mitta, Guillaume

    2009-08-04

    Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28 degrees C to 32 degrees C over 15 days. A second control set kept at constant temperature (28 degrees C). The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching) and the non stressed states (control) were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function) were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin) contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich). Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress. Under thermal stress

  6. Significance of Cuscutain, a cysteine protease from Cuscuta reflexa, in host-parasite interactions

    PubMed Central

    2010-01-01

    Background Plant infestation with parasitic weeds like Cuscuta reflexa induces morphological as well as biochemical changes in the host and the parasite. These modifications could be caused by a change in protein or gene activity. Using a comparative macroarray approach Cuscuta genes specifically upregulated at the host attachment site were identified. Results One of the infestation specific Cuscuta genes encodes a cysteine protease. The protein and its intrinsic inhibitory peptide were heterologously expressed, purified and biochemically characterized. The haustoria specific enzyme was named cuscutain in accordance with similar proteins from other plants, e.g. papaya. The role of cuscutain and its inhibitor during the host parasite interaction was studied by external application of an inhibitor suspension, which induced a significant reduction of successful infection events. Conclusions The study provides new information about molecular events during the parasitic plant - host interaction. Inhibition of cuscutain cysteine proteinase could provide means for antagonizing parasitic plants. PMID:20964874

  7. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    USDA-ARS?s Scientific Manuscript database

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  8. Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors

    PubMed Central

    Bam, Rujuta A.; Willkom, Madeleine; Frey, Christian R.; Tsai, Luong; Stray, Kirsten M.; Yant, Stephen R.; Cihlar, Tomas

    2015-01-01

    Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 μM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4+ T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF. PMID:26503655

  9. Respiratory syncytial virus (RSV) entry is inhibited by serine protease inhibitor AEBSF when present during an early stage of infection.

    PubMed

    Van der Gucht, Winke; Leemans, Annelies; De Schryver, Marjorie; Heykers, Annick; Caljon, Guy; Maes, Louis; Cos, Paul; Delputte, Peter L

    2017-08-17

    Host proteases have been shown to play important roles in many viral activities such as entry, uncoating, viral protein production and disease induction. Therefore, these cellular proteases are putative targets for the development of antivirals that inhibit their activity. Host proteases have been described to play essential roles in Ebola, HCV, HIV and influenza, such that specific protease inhibitors are able to reduce infection. RSV utilizes a host protease in its replication cycle but its potential as antiviral target is unknown. Therefore, we evaluated the effect of protease inhibitors on RSV infection. To measure the sensitivity of RSV infection to protease inhibitors, cells were infected with RSV and incubated for 18 h in the presence or absence of the inhibitors. Cells were fixed, stained and studied using fluorescence microscopy. Several protease inhibitors, representing different classes of proteases (AEBSF, Pepstatin A, E-64, TPCK, PMSF and aprotinin), were tested for inhibitory effects on an RSV A2 infection of HEp-2 cells. Different treatment durations, ranging from 1 h prior to inoculation and continuing for 18 h during the assay, were evaluated. Of all the inhibitors tested, AEBSF and TPCK significantly decreased RSV infection. To ascertain that the observed effect of AEBSF was not a specific feature related to HEp-2 cells, A549 and BEAS-2B cells were also used. Similar to HEp-2, an almost complete block in the number of RSV infected cells after 18 h of incubation was observed and the effect was dose-dependent. To gain insight into the mechanism of this inhibition, AEBSF treatment was applied during different phases of an infection cycle (pre-, peri- and post-inoculation treatment). The results from these experiments indicate that AEBSF is mainly active during the early entry phase of RSV. The inhibitory effect was also observed with other RSV isolates A1998/3-2 and A2000/3-4, suggesting that this is a general feature of RSV. RSV infection can be

  10. Insecticide resistance and intracellular proteases.

    PubMed

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Functional and structural characterization of a novel putative cysteine protease cell wall-modifying multi-domain enzyme selected from a microbial metagenome.

    PubMed

    Faheem, Muhammad; Martins-de-Sa, Diogo; Vidal, Julia F D; Álvares, Alice C M; Brandão-Neto, José; Bird, Louise E; Tully, Mark D; von Delft, Frank; Souto, Betulia M; Quirino, Betania F; Freitas, Sonia M; Barbosa, João Alexandre R G

    2016-12-09

    A current metagenomics focus is to interpret and transform collected genomic data into biological information. By combining structural, functional and genomic data we have assessed a novel bacterial protein selected from a carbohydrate-related activity screen in a microbial metagenomic library from Capra hircus (domestic goat) gut. This uncharacterized protein was predicted as a bacterial cell wall-modifying enzyme (CWME) and shown to contain four domains: an N-terminal, a cysteine protease, a peptidoglycan-binding and an SH3 bacterial domain. We successfully cloned, expressed and purified this putative cysteine protease (PCP), which presented autoproteolytic activity and inhibition by protease inhibitors. We observed cell wall hydrolytic activity and ampicillin binding capacity, a characteristic of most bacterial CWME. Fluorimetric binding analysis yielded a K b of 1.8 × 10 5  M -1 for ampicillin. Small-angle X-ray scattering (SAXS) showed a maximum particle dimension of 95 Å with a real-space R g of 28.35 Å. The elongated molecular envelope corroborates the dynamic light scattering (DLS) estimated size. Furthermore, homology modeling and SAXS allowed the construction of a model that explains the stability and secondary structural changes observed by circular dichroism (CD). In short, we report a novel cell wall-modifying autoproteolytic PCP with insight into its biochemical, biophysical and structural features.

  12. Degradation of recombinant proteins by CHO host cell proteases is prevented by Matriptase-1 knock-out.

    PubMed

    Laux, Holger; Romand, Sandrine; Nuciforo, Sandro; Farady, Christopher J; Tapparel, Joel; Buechmann-Moeller, Stine; Sommer, Benjamin; Oakeley, Edward J; Bodendorf, Ursula

    2018-05-19

    An increasing number of non-antibody format proteins are entering the clinical development. However, one of the major hurdles for the production of non-antibody glycoproteins is host cell-related proteolytic degradation, which can drastically impact developability and timelines of pipeline projects. Chinese hamster ovary (CHO) cells are the preferred production host for recombinant therapeutic proteins. Using protease inhibitors, transcriptomics and genetic knockdowns we have identified, out of the more than 700 known proteases in rodents, Matriptase-1 as the major protease involved in degradation of recombinant proteins expressed in CHO-K1 cells. Subsequently Matriptase-1 was deleted in CHO-K1 cells using "Transcription Activator-Like Effector Nucleases" (TALENs) as well as zinc-finger nucleases (ZFNs). This resulted in a superior CHO-K1 matriptase knockout (KO) cell line with strongly reduced or no proteolytic degradation activity towards a panel of recombinantly-expressed proteins. The matriptase KO cell line was evaluated in spike-in experiments, and showed little or no degradation of proteins incubated in culture supernatant derived from the KO cells. This effect was confirmed when the same proteins were recombinantly expressed in the KO cell line. In summary, the combination of novel cell line engineering tools, next generation sequencing screening methods and the recently published Chinese hamster genome has enabled the development of this novel matriptase KO CHO cell line capable of improving expression yields of intact therapeutic proteins. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Identification of a Novel Host-Specific IgM Protease in Streptococcus suis

    PubMed Central

    Seele, Jana; Singpiel, Alena; Spoerry, Christian; von Pawel-Rammingen, Ulrich; Valentin-Weigand, Peter

    2013-01-01

    Streptococcus suis serotype 2 is a highly invasive, extracellular pathogen in pigs with the capacity to cause severe infections in humans. This study was initiated by the finding that IgM degradation products are released after opsonization of S. suis. The objective of this work was to identify the bacterial factor responsible for IgM degradation. The results of this study showed that a member of the IdeS family, designated IdeSsuis (Immunoglobulin M-degrading enzyme of S. suis), is responsible and sufficient for IgM cleavage. Recombinant IdeSsuis was found to degrade only IgM but neither IgG nor IgA. Interestingly, Western blot analysis revealed that IdeSsuis is host specific, as it exclusively cleaves porcine IgM but not IgM from six other species, including a closely related member of the Suidae family. As demonstrated by flow cytometry and immunofluorescence microscopy, IdeSsuis modulates binding of IgM to the bacterial surface. IdeSsuis is the first prokaryotic IgM-specific protease described, indicating that this enzyme is involved in a so-far-unknown mechanism of host-pathogen interaction at an early stage of the host immune response. Furthermore, cleavage of porcine IgM by IdeSsuis is the first identified phenotype reflecting functional adaptation of S. suis to pigs as the main host. PMID:23243300

  14. Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors*

    PubMed Central

    Pinheiro, Patricia V.; Ghanim, Murad; Rebelo, Ana Rita; Santos, Rogerio S.; Orsburn, Benjamin C.; Gray, Stewart

    2017-01-01

    The green peach aphid, Myzus persicae, is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. PMID:27932519

  15. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2

    PubMed Central

    Reinke, Lennart Michel; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael

    2017-01-01

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated. PMID:28636671

  16. Different residues in the SARS-CoV spike protein determine cleavage and activation by the host cell protease TMPRSS2.

    PubMed

    Reinke, Lennart Michel; Spiegel, Martin; Plegge, Teresa; Hartleib, Anika; Nehlmeier, Inga; Gierer, Stefanie; Hoffmann, Markus; Hofmann-Winkler, Heike; Winkler, Michael; Pöhlmann, Stefan

    2017-01-01

    The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) mediates viral entry into target cells. Cleavage and activation of SARS S by a host cell protease is essential for infectious viral entry and the responsible enzymes are potential targets for antiviral intervention. The type II transmembrane serine protease TMPRSS2 cleaves and activates SARS S in cell culture and potentially also in the infected host. Here, we investigated which determinants in SARS S control cleavage and activation by TMPRSS2. We found that SARS S residue R667, a previously identified trypsin cleavage site, is also required for S protein cleavage by TMPRSS2. The cleavage fragments produced by trypsin and TMPRSS2 differed in their decoration with N-glycans, suggesting that these proteases cleave different SARS S glycoforms. Although R667 was required for SARS S cleavage by TMPRSS2, this residue was dispensable for TMPRSS2-mediated S protein activation. Conversely, residue R797, previously reported to be required for SARS S activation by trypsin, was dispensable for S protein cleavage but required for S protein activation by TMPRSS2. Collectively, these results show that different residues in SARS S control cleavage and activation by TMPRSS2, suggesting that these processes are more complex than initially appreciated.

  17. Targeting host calpain proteases decreases influenza A virus infection.

    PubMed

    Blanc, Fany; Furio, Laetitia; Moisy, Dorothée; Yen, Hui-Ling; Chignard, Michel; Letavernier, Emmanuel; Naffakh, Nadia; Mok, Chris Ka Pun; Si-Tahar, Mustapha

    2016-04-01

    Influenza A viruses (IAV) trigger contagious acute respiratory diseases. A better understanding of the molecular mechanisms of IAV pathogenesis and host immune responses is required for the development of more efficient treatments of severe influenza. Calpains are intracellular proteases that participate in diverse cellular responses, including inflammation. Here, we used in vitro and in vivo approaches to investigate the role of calpain signaling in IAV pathogenesis. Calpain expression and activity were found altered in IAV-infected bronchial epithelial cells. With the use of small-interfering RNA (siRNA) gene silencing, specific synthetic inhibitors of calpains, and mice overexpressing calpastatin, we found that calpain inhibition dampens IAV replication and IAV-triggered secretion of proinflammatory mediators and leukocyte infiltration. Remarkably, calpain inhibition has a protective impact in IAV infection, since it significantly reduced mortality of mice challenged not only by seasonal H3N2- but also by hypervirulent H5N1 IAV strains. Hence, our study suggests that calpains are promising therapeutic targets for treating IAV acute pneumonia. Copyright © 2016 the American Physiological Society.

  18. Host Plants Indirectly Influence Plant Virus Transmission by Altering Gut Cysteine Protease Activity of Aphid Vectors.

    PubMed

    Pinheiro, Patricia V; Ghanim, Murad; Alexander, Mariko; Rebelo, Ana Rita; Santos, Rogerio S; Orsburn, Benjamin C; Gray, Stewart; Cilia, Michelle

    2017-04-01

    The green peach aphid, Myzus persicae , is a vector of the Potato leafroll virus (PLRV, Luteoviridae), transmitted exclusively by aphids in a circulative manner. PLRV transmission efficiency was significantly reduced when a clonal lineage of M. persicae was reared on turnip as compared with the weed physalis, and this was a transient effect caused by a host-switch response. A trend of higher PLRV titer in physalis-reared aphids as compared with turnip-reared aphids was observed at 24 h and 72 h after virus acquisition. The major difference in the proteomes of these aphids was the up-regulation of predicted lysosomal enzymes, in particular the cysteine protease cathepsin B (cathB), in aphids reared on turnip. The aphid midgut is the site of PLRV acquisition, and cathB and PLRV localization were starkly different in midguts of the aphids reared on the two host plants. In viruliferous aphids that were reared on turnip, there was near complete colocalization of cathB and PLRV at the cell membranes, which was not observed in physalis-reared aphids. Chemical inhibition of cathB restored the ability of aphids reared on turnip to transmit PLRV in a dose-dependent manner, showing that the increased activity of cathB and other cysteine proteases at the cell membrane indirectly decreased virus transmission by aphids. Understanding how the host plant influences virus transmission by aphids is critical for growers to manage the spread of virus among field crops. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Identification and Characterization of IgdE, a Novel IgG-degrading Protease of Streptococcus suis with Unique Specificity for Porcine IgG*

    PubMed Central

    Spoerry, Christian; Seele, Jana; Valentin-Weigand, Peter; Baums, Christoph G.; von Pawel-Rammingen, Ulrich

    2016-01-01

    Streptococcus suis is a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. Zoonotic S. suis infections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease of S. suis that exclusively cleaves porcine IgM and represents the first virulence factor described, linking S. suis to pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease of S. suis that exclusively targets porcine IgG. This enzyme, designated IgdE for immunoglobulin G-degrading enzyme of S. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that all S. suis strains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressed in vivo during infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target. PMID:26861873

  20. Identification and Characterization of IgdE, a Novel IgG-degrading Protease of Streptococcus suis with Unique Specificity for Porcine IgG.

    PubMed

    Spoerry, Christian; Seele, Jana; Valentin-Weigand, Peter; Baums, Christoph G; von Pawel-Rammingen, Ulrich

    2016-04-08

    Streptococcus suisis a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. ZoonoticS. suisinfections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease ofS. suisthat exclusively cleaves porcine IgM and represents the first virulence factor described, linkingS. suisto pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease ofS. suisthat exclusively targets porcine IgG. This enzyme, designated IgdE forimmunoglobulinG-degradingenzyme ofS. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that allS. suisstrains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressedin vivoduring infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. The Pla Protease of Yersinia pestis Degrades Fas Ligand to Manipulate Host Cell Death and Inflammation

    PubMed Central

    Caulfield, Adam J.; Walker, Margaret E.; Gielda, Lindsay M.; Lathem, Wyndham W.

    2014-01-01

    SUMMARY Pneumonic plague is a deadly respiratory disease caused by Yersinia pestis. The bacterial protease Pla contributes to disease progression and manipulation of host immunity, but the mechanisms by which this occurs are largely unknown. Here we show that Pla degrades the apoptotic signaling molecule Fas ligand (FasL) to prevent host cell apoptosis and inflammation. Wild-type Y. pestis, but not a Pla mutant (Δpla), degrades FasL, which results in decreased downstream caspase-3/7 activation and reduced apoptosis. Similarly, lungs of mice challenged with wild-type Y. pestis show reduced levels of FasL and activated caspase-3/7 compared to Δpla infection. Consistent with a role for FasL in regulating immune responses, Δpla infection results in aberrant pro-inflammatory cytokine levels. The loss of FasL or inhibition of caspase activity alters host inflammatory responses and enables enhanced Y. pestis outgrowth in the lungs. Thus, by degrading FasL, Y. pestis manipulates host cell death pathways to facilitate infection. PMID:24721571

  2. A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.

    PubMed Central

    Ohkawa, T; Majima, K; Maeda, S

    1994-01-01

    Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997

  3. Communities of Putative Ericoid Mycorrhizal Fungi Isolated from Alpine Dwarf Shrubs in Japan: Effects of Host Identity and Microhabitat.

    PubMed

    Koizumi, Takahiko; Nara, Kazuhide

    2017-06-24

    Dwarf shrubs of the family Ericaceae are common in arctic and alpine regions. Many of these plants are associated with ericoid mycorrhizal (ERM) fungi, which allow them to take nutrients and water from the soil under harsh environmental conditions and, thus, affect host plant survival. Despite the importance of ERM fungi to alpine plant communities, limited information is available on the effects of microhabitat and host identity on ERM fungal communities. We investigated the communities of putative ERM fungi isolated from five dwarf shrub species (Arcterica nana, Diapensia lapponica, Empetrum nigrum, Loiseleuria procumbens, and Vaccinium vitis-idaea) that co-occur in an alpine region of Japan, with reference to distinct microhabitats provided by large stone pine (Pinus pumila) shrubs (i.e. bare ground, the edge of stone pine shrubs, and the inside of stone pine shrubs). We obtained 703 fungal isolates from 222 individual plants. These isolates were classified into 55 operational taxonomic units (OTUs) based on the sequencing of internal transcribed spacer regions in ribosomal DNA. These putative ERM fungal communities were dominated by Helotiales fungi for all host species. Cistella and Trimmatostroma species, which have rarely been detected in ERM roots in previous studies, were abundant. ERM fungal communities were significantly different among microhabitats (R 2 =0.28), while the host effect explained less variance in the fungal communities after excluding the microhabitat effect (R 2 =0.17). Our results suggest that the host effect on ERM fungal communities is minor and the distributions of hosts and fungal communities may be assessed based on microhabitat conditions.

  4. Communities of Putative Ericoid Mycorrhizal Fungi Isolated from Alpine Dwarf Shrubs in Japan: Effects of Host Identity and Microhabitat

    PubMed Central

    Koizumi, Takahiko; Nara, Kazuhide

    2017-01-01

    Dwarf shrubs of the family Ericaceae are common in arctic and alpine regions. Many of these plants are associated with ericoid mycorrhizal (ERM) fungi, which allow them to take nutrients and water from the soil under harsh environmental conditions and, thus, affect host plant survival. Despite the importance of ERM fungi to alpine plant communities, limited information is available on the effects of microhabitat and host identity on ERM fungal communities. We investigated the communities of putative ERM fungi isolated from five dwarf shrub species (Arcterica nana, Diapensia lapponica, Empetrum nigrum, Loiseleuria procumbens, and Vaccinium vitis-idaea) that co-occur in an alpine region of Japan, with reference to distinct microhabitats provided by large stone pine (Pinus pumila) shrubs (i.e. bare ground, the edge of stone pine shrubs, and the inside of stone pine shrubs). We obtained 703 fungal isolates from 222 individual plants. These isolates were classified into 55 operational taxonomic units (OTUs) based on the sequencing of internal transcribed spacer regions in ribosomal DNA. These putative ERM fungal communities were dominated by Helotiales fungi for all host species. Cistella and Trimmatostroma species, which have rarely been detected in ERM roots in previous studies, were abundant. ERM fungal communities were significantly different among microhabitats (R2=0.28), while the host effect explained less variance in the fungal communities after excluding the microhabitat effect (R2=0.17). Our results suggest that the host effect on ERM fungal communities is minor and the distributions of hosts and fungal communities may be assessed based on microhabitat conditions. PMID:28529264

  5. Eotaxin-3 (CCL26) exerts innate host defense activities that are modulated by mast cell proteases.

    PubMed

    Gela, A; Kasetty, G; Jovic, S; Ekoff, M; Nilsson, G; Mörgelin, M; Kjellström, S; Pease, J E; Schmidtchen, A; Egesten, A

    2015-02-01

    During bacterial infections of the airways, a Th1-profiled inflammation promotes the production of several host defense proteins and peptides with antibacterial activities including β-defensins, ELR-negative CXC chemokines, and the cathelicidin LL-37. These are downregulated by Th2 cytokines of the allergic response. Instead, the eosinophil-recruiting chemokines eotaxin-1/CCL11, eotaxin-2/CCL24, and eotaxin-3/CCL26 are expressed. This study set out to investigate whether these chemokines could serve as innate host defense molecules during allergic inflammation. Antibacterial activities of the eotaxins were investigated using viable count assays, electron microscopy, and methods assessing bacterial permeabilization. Fragments generated by mast cell proteases were characterized, and their potential antibacterial, receptor-activating, and lipopolysaccharide-neutralizing activities were investigated. CCL11, CCL24, and CCL26 all showed potent bactericidal activity, mediated through membrane disruption, against the airway pathogens Streptococcus pneumoniae, Staphylococcus aureus, Nontypeable Haemophilus influenzae, and Pseudomonas aeruginosa. CCL26 retained bactericidal activity in the presence of salt at physiologic concentrations, and the region holding the highest bactericidal activity was the cationic and amphipathic COOH-terminus. Proteolysis of CCL26 by chymase and tryptase, respectively, released distinct fragments of the COOH- and NH2 -terminal regions. The COOH-terminal fragment retained antibacterial activity while the NH2 -terminal had potent LPS-neutralizing properties in the order of CCL26 full-length protein. An identical fragment to NH2 -terminal fragment generated by tryptase was obtained after incubation with supernatants from activated mast cells. None of the fragments activated the CCR3-receptor. Taken together, the findings show that the eotaxins can contribute to host defense against common airway pathogens and that their activities are modulated by

  6. Co-evolution of insect proteases and plant protease inhibitors.

    PubMed

    Jongsma, Maarten A; Beekwilder, Jules

    2011-08-01

    Plants are at the basis of the food chain, but there is no such thing as a "free lunch" for herbivores. To promote reproductive success, plants evolved multi-layered defensive tactics to avoid or discourage herbivory. To the detriment of plants, herbivores, in turn, evolved intricate strategies to find, eat, and successfully digest essential plant parts to raise their own offspring. In this battle the digestive tract is the arena determining final victory or defeat as measured by growth or starvation of the herbivore. Earlier, specific molecular opponents were identified as proteases and inhibitors: digestive proteases of herbivores evolved structural motifs to occlude plant protease inhibitors, or alternatively, the insects evolved proteases capable of specifically degrading the host plant inhibitors. In response plant inhibitors evolved hyper-variable and novel protein folds to remain active against potential herbivores. At the level of protease regulation in herbivorous insects, it was shown that inhibition-insensitive digestive proteases are up-regulated when sensitive proteases are inhibited. The way this regulation operates in mammals is known as negative feedback by gut-luminal factors, so-called 'monitor peptides' that are sensitive to the concentration of active enzymes. We propose that regulation of gut enzymes by endogenous luminal factors has been an open invitation to plants to "hijack" this regulation by evolving receptor antagonists, although yet these plant factors have not been identified. In future research the question of the co-evolution of insect proteases and plant inhibitors should, therefore, be better approached from a systems level keeping in mind that evolution is fundamentally opportunistic and that the plant's fitness is primarily improved by lowering the availability of essential amino acids to an herbivore by any available mechanism.

  7. Mesenchymal stem cells express serine protease inhibitor to evade the host immune response

    PubMed Central

    El Haddad, Najib; Heathcote, Dean; Moore, Robert; Yang, Sunmi; Azzi, Jamil; Mfarrej, Bechara; Atkinson, Mark; Sayegh, Mohamed H.; Lee, Jeng-Shin; Ashton-Rickardt, Philip G.

    2011-01-01

    Clinical trials using mesenchymal stem cells (MSCs) have been initiated worldwide. An improved understanding of the mechanisms by which allogeneic MSCs evade host immune responses is paramount to regulating their survival after administration. This study has focused on the novel role of serine protease inhibitor (SPI) in the escape of MSCs from host immunosurveillance through the inhibition of granzyme B (GrB). Our data indicate bone marrow–derived murine MSCs express SPI6 constitutively. MSCs from mice deficient for SPI6 (SPI6−/−) exhibited a 4-fold higher death rate by primed allogeneic cytotoxic T cells than did wild-type MSCs. A GrB inhibitor rescued SPI6−/− MSCs from cytotoxic T-cell killing. Transduction of wild-type MSCs with MigR1-SPI6 also protected MSCs from cytotoxic T cell–mediated death in vitro. In addition, SPI6−/− MSCs displayed a shorter lifespan than wild-type MSCs when injected into an allogeneic host. We conclude that SPI6 protects MSCs from GrB-mediated killing and plays a pivotal role in their survival in vivo. Our data could serve as a basis for future SPI-based strategies to regulate the survival and function of MSCs after administration and to enhance the efficacy of MSC-based therapy for diseases. PMID:21076046

  8. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  9. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    PubMed

    Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J

    2013-01-01

    Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.

  10. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host

    PubMed Central

    Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai

    2017-01-01

    Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane–bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo. PMID:28107409

  11. Targeted Deletion of a Plasmodium Site-2 Protease Impairs Life Cycle Progression in the Mammalian Host.

    PubMed

    Koussis, Konstantinos; Goulielmaki, Evi; Chalari, Anna; Withers-Martinez, Chrislaine; Siden-Kiamos, Inga; Matuschewski, Kai; Loukeris, Thanasis G

    2017-01-01

    Site-2 proteases (S2P) belong to the M50 family of metalloproteases, which typically perform essential roles by mediating activation of membrane-bound transcription factors through regulated intramembrane proteolysis (RIP). Protease-dependent liberation of dormant transcription factors triggers diverse cellular responses, such as sterol regulation, Notch signalling and the unfolded protein response. Plasmodium parasites rely on regulated proteolysis for controlling essential pathways throughout the life cycle. In this study we examine the Plasmodium-encoded S2P in a murine malaria model and show that it is expressed in all stages of Plasmodium development. Localisation studies by endogenous gene tagging revealed that in all invasive stages the protein is in close proximity to the nucleus. Ablation of PbS2P by reverse genetics leads to reduced growth rates during liver and blood infection and, hence, virulence attenuation. Strikingly, absence of PbS2P was compatible with parasite life cycle progression in the mosquito and mammalian hosts under physiological conditions, suggesting redundant or dispensable roles in vivo.

  12. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  13. The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses.

    PubMed

    Sakai, Kouji; Ami, Yasushi; Tahara, Maino; Kubota, Toru; Anraku, Masaki; Abe, Masako; Nakajima, Noriko; Sekizuka, Tsuyoshi; Shirato, Kazuya; Suzaki, Yuriko; Ainai, Akira; Nakatsu, Yuichiro; Kanou, Kazuhiko; Nakamura, Kazuya; Suzuki, Tadaki; Komase, Katsuhiro; Nobusawa, Eri; Maenaka, Katsumi; Kuroda, Makoto; Hasegawa, Hideki; Kawaoka, Yoshihiro; Tashiro, Masato; Takeda, Makoto

    2014-05-01

    Proteolytic cleavage of the hemagglutinin (HA) protein is essential for influenza A virus (IAV) to acquire infectivity. This process is mediated by a host cell protease(s) in vivo. The type II transmembrane serine protease TMPRSS2 is expressed in the respiratory tract and is capable of activating a variety of respiratory viruses, including low-pathogenic (LP) IAVs possessing a single arginine residue at the cleavage site. Here we show that TMPRSS2 plays an essential role in the proteolytic activation of LP IAVs, including a recently emerged H7N9 subtype, in vivo. We generated TMPRSS2 knockout (KO) mice. The TMPRSS2 KO mice showed normal reproduction, development, and growth phenotypes. In TMPRSS2 KO mice infected with LP IAVs, cleavage of HA was severely impaired, and consequently, the majority of LP IAV progeny particles failed to gain infectivity, while the viruses were fully activated proteolytically in TMPRSS2+/+ wild-type (WT) mice. Accordingly, in contrast to WT mice, TMPRSS2 KO mice were highly tolerant of challenge infection by LP IAVs (H1N1, H3N2, and H7N9) with ≥1,000 50% lethal doses (LD50) for WT mice. On the other hand, a high-pathogenic H5N1 subtype IAV possessing a multibasic cleavage site was successfully activated in the lungs of TMPRSS2 KO mice and killed these mice, as observed for WT mice. Our results demonstrate that recently emerged H7N9 as well as seasonal IAVs mainly use the specific protease TMPRSS2 for HA cleavage in vivo and, thus, that TMPRSS2 expression is essential for IAV replication in vivo. Influenza A virus (IAV) is a leading pathogen that infects and kills many humans every year. We clarified that the infectivity and pathogenicity of IAVs, including a recently emerged H7N9 subtype, are determined primarily by a host protease, TMPRSS2. Our data showed that TMPRSS2 is the key host protease that activates IAVs in vivo through proteolytic cleavage of their HA proteins. Hence, TMPRSS2 is a good target for the development of anti

  14. Entamoeba histolytica cathepsin-like enzymes : interactions with the host gut.

    PubMed

    Kissoon-Singh, Vanessa; Mortimer, Leanne; Chadee, Kris

    2011-01-01

    Cysteine proteases of the protozoan parasite Entamoeba histolytica are key virulence factors involved in overcoming host defences. These proteases are cathepsin-like enzymes with a cathepsin-L like structure, but cathepsin-B substrate specificity. In the host intestine, amoeba cysteine proteases cleave colonic mucins and degrade secretory immunoglobulin (Ig) A and IgG rendering them ineffective. They also act on epithelial tight junctions and degrade the extracellular matrix to promote Cell death. They are involved in the destruction of red blood cells and the evasion of neutrophils and macrophages and they activate pro-inflammatory cytokines IL- 1β and IL-18. In short, amoeba cysteine proteases manipulate and destroy host defences to facilitate nutrient acquisition, parasite colonization and/or invasion. Strategies to inhibit the activity of amoeba cysteine proteases could contribute significantly to host protection against E. histolytica.

  15. Aspartyl proteases in Candida glabrata are required for suppression of the host innate immune response.

    PubMed

    Rasheed, Mubashshir; Battu, Anamika; Kaur, Rupinder

    2018-04-27

    A family of 11 cell surface-associated aspartyl proteases (CgYps1-11), also referred as yapsins, is a key virulence factor in the pathogenic yeast Candida glabrata However, the mechanism by which CgYapsins modulate immune response and facilitate survival in the mammalian host remains to be identified. Here, using RNA-Seq analysis, we report that genes involved in cell wall metabolism are differentially regulated in the Cgyps1-11 Δ mutant. Consistently, the mutant contained lower β-glucan and mannan levels and exhibited increased chitin content in the cell wall. As cell wall components are known to regulate the innate immune response, we next determined the macrophage transcriptional response to C. glabrata infection and observed differential expression of genes implicated in inflammation, chemotaxis, ion transport, and the tumor necrosis factor signaling cascade. Importantly, the Cgyps1-11 Δ mutant evoked a different immune response, resulting in an enhanced release of the pro-inflammatory cytokine IL-1β in THP-1 macrophages. Further, Cgyps1-11 Δ-induced IL-1β production adversely affected intracellular proliferation of co-infected WT cells and depended on activation of spleen tyrosine kinase (Syk) signaling in the host cells. Accordingly, the Syk inhibitor R406 augmented intracellular survival of the Cgyps1-11 Δ mutant. Finally, we demonstrate that C. glabrata infection triggers elevated IL-1β production in mouse organs and that the CgYPS genes are required for organ colonization and dissemination in the murine model of systemic infection. Altogether, our results uncover the basis for macrophage-mediated killing of Cgyps1-11 Δ cells and provide the first evidence that aspartyl proteases in C. glabrata are required for suppression of IL-1β production in macrophages. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Aspartyl proteases in Candida glabrata are required for suppression of the host innate immune response

    PubMed Central

    Rasheed, Mubashshir; Battu, Anamika; Kaur, Rupinder

    2018-01-01

    A family of 11 cell surface-associated aspartyl proteases (CgYps1–11), also referred as yapsins, is a key virulence factor in the pathogenic yeast Candida glabrata. However, the mechanism by which CgYapsins modulate immune response and facilitate survival in the mammalian host remains to be identified. Here, using RNA-Seq analysis, we report that genes involved in cell wall metabolism are differentially regulated in the Cgyps1–11Δ mutant. Consistently, the mutant contained lower β-glucan and mannan levels and exhibited increased chitin content in the cell wall. As cell wall components are known to regulate the innate immune response, we next determined the macrophage transcriptional response to C. glabrata infection and observed differential expression of genes implicated in inflammation, chemotaxis, ion transport, and the tumor necrosis factor signaling cascade. Importantly, the Cgyps1–11Δ mutant evoked a different immune response, resulting in an enhanced release of the pro-inflammatory cytokine IL-1β in THP-1 macrophages. Further, Cgyps1–11Δ–induced IL-1β production adversely affected intracellular proliferation of co-infected WT cells and depended on activation of spleen tyrosine kinase (Syk) signaling in the host cells. Accordingly, the Syk inhibitor R406 augmented intracellular survival of the Cgyps1–11Δ mutant. Finally, we demonstrate that C. glabrata infection triggers elevated IL-1β production in mouse organs and that the CgYPS genes are required for organ colonization and dissemination in the murine model of systemic infection. Altogether, our results uncover the basis for macrophage-mediated killing of Cgyps1–11Δ cells and provide the first evidence that aspartyl proteases in C. glabrata are required for suppression of IL-1β production in macrophages. PMID:29491142

  17. Host-pathogen interactions: A cholera surveillance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Aaron T.

    2016-02-22

    Bacterial pathogen-secreted proteases may play a key role in inhibiting a potentially widespread host-pathogen interaction. Activity-based protein profiling enabled the identification of a major Vibrio cholerae serine protease that limits the ability of a host-derived intestinal lectin to bind to the bacterial pathogen in vivo.

  18. DNA-sensing inflammasomes: regulation of bacterial host defense and the gut microbiota.

    PubMed

    Man, Si Ming; Karki, Rajendra; Kanneganti, Thirumala-Devi

    2016-06-01

    DNA sensors are formidable immune guardians of the host. At least 14 cytoplasmic DNA sensors have been identified in recent years, each with specialized roles in driving inflammation and/or cell death. Of these, AIM2 is a sensor of dsDNA, and forms an inflammasome complex to activate the cysteine protease caspase-1, mediates the release of the proinflammatory cytokines IL-1β and IL-18, and induces pyroptosis. The inflammasome sensor NLRP3 can also respond to DNA in the forms of oxidized mitochondrial DNA and the DNA derivative RNA:DNA hybrids produced by bacteria, whereas the putative inflammasome sensor IFI16 responds to viral DNA in the nucleus. Although inflammasomes provoke inflammation for anti-microbial host defense, they must also maintain homeostasis with commensal microbiota. Here, we outline recent advances highlighting the complex relationship between DNA-sensing inflammasomes, bacterial host defense and the gut microbiota. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA).

    PubMed

    Kihara, A; Akiyama, Y; Ito, K

    1997-05-27

    The cII gene product of bacteriophage lambda is unstable and required for the establishment of lysogenization. Its intracellular amount is important for the decision between lytic growth and lysogenization. Two genetic loci of Escherichia coli are crucial for these commitments of infecting lambda genome. One of them, hflA encodes the HflKC membrane protein complex, which has been believed to be a protease degrading the cII protein. However, both its absence and overproduction stabilized cII in vivo and the proposed serine protease-like sequence motif in HflC was dispensable for the lysogenization control. Moreover, the HflKC protein was found to reside on the periplasmic side of the plasma membrane. In contrast, the other host gene, ftsH (hflB) encoding an integral membrane ATPase/protease, is positively required for degradation of cII, since loss of its function stabilized cII and its overexpression accelerated the cII degradation. In vitro, purified FtsH catalyzed ATP-dependent proteolysis of cII and HflKC antagonized the FtsH action. These results, together with our previous finding that FtsH and HflKC form a complex, suggest that FtsH is the cII degrading protease and HflKC is a modulator of the FtsH function. We propose that this transmembrane modulation differentiates the FtsH actions to different substrate proteins such as the membrane-bound SecY protein and the cytosolic cII protein. This study necessitates a revision of the prevailing view about the host control over lambda lysogenic decision.

  20. A New Method for the Characterization of Strain-Specific Conformational Stability of Protease-Sensitive and Protease-Resistant PrPSc

    PubMed Central

    Pirisinu, Laura; Di Bari, Michele; Marcon, Stefano; Vaccari, Gabriele; D'Agostino, Claudia; Fazzi, Paola; Esposito, Elena; Galeno, Roberta; Langeveld, Jan; Agrimi, Umberto; Nonno, Romolo

    2010-01-01

    Although proteinacious in nature, prions exist as strains with specific self-perpetuating biological properties. Prion strains are thought to be associated with different conformers of PrPSc, a disease-associated isoform of the host-encoded cellular protein (PrPC). Molecular strain typing approaches have been developed which rely on the characterization of protease-resistant PrPSc. However, PrPSc is composed not only of protease-resistant but also of protease-sensitive isoforms. The aim of this work was to develop a protocol for the molecular characterization of both, protease-resistant and protease-sensitive PrPSc aggregates. We first set up experimental conditions which allowed the most advantageous separation of PrPC and PrPSc by means of differential centrifugation. The conformational solubility and stability assay (CSSA) was then developed by measuring PrPSc solubility as a function of increased exposure to GdnHCl. Brain homogenates from voles infected with human and sheep prion isolates were analysed by CSSA and showed strain-specific conformational stabilities, with mean [GdnHCl]1/2 values ranging from 1.6 M for MM2 sCJD to 2.1 for scrapie and to 2.8 M for MM1/MV1 sCJD and E200K gCJD. Interestingly, the rank order of [GdnHCl]1/2 values observed in the human and sheep isolates used as inocula closely matched those found following transmission in voles, being MM1 sCJD the most resistant (3.3 M), followed by sheep scrapie (2.2 M) and by MM2 sCJD (1.6 M). In order to test the ability of CSSA to characterise protease-sensitive PrPSc, we analysed sheep isolates of Nor98 and compared them to classical scrapie isolates. In Nor98, insoluble PrPSc aggregates were mainly protease-sensitive and showed a conformational stability much lower than in classical scrapie. Our results show that CSSA is able to reveal strain-specified PrPSc conformational stabilities of protease-resistant and protease-sensitive PrPSc and that it is a valuable tool for strain typing in natural

  1. Metal-Mediated Modulation of Streptococcal Cysteine Protease Activity and Its Biological Implications

    PubMed Central

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.

    2014-01-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  2. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.).

    PubMed

    Lin, Hailan; Xia, Xiaofeng; Yu, Liying; Vasseur, Liette; Gurr, Geoff M; Yao, Fengluan; Yang, Guang; You, Minsheng

    2015-12-10

    Serine proteases (SPs) are crucial proteolytic enzymes responsible for digestion and other processes including signal transduction and immune responses in insects. Serine protease homologs (SPHs) lack catalytic activity but are involved in innate immunity. This study presents a genome-wide investigation of SPs and SPHs in the diamondback moth, Plutella xylostella (L.), a globally-distributed destructive pest of cruciferous crops. A total of 120 putative SPs and 101 putative SPHs were identified in the P. xylostella genome by bioinformatics analysis. Based on the features of trypsin, 38 SPs were putatively designated as trypsin genes. The distribution, transcription orientation, exon-intron structure and sequence alignments suggested that the majority of trypsin genes evolved from tandem duplications. Among the 221 SP/SPH genes, ten SP and three SPH genes with one or more clip domains were predicted and designated as PxCLIPs. Phylogenetic analysis of CLIPs in P. xylostella, two other Lepidoptera species (Bombyx mori and Manduca sexta), and two more distantly related insects (Drosophila melanogaster and Apis mellifera) showed that seven of the 13 PxCLIPs were clustered with homologs of the Lepidoptera rather than other species. Expression profiling of the P. xylostella SP and SPH genes in different developmental stages and tissues showed diverse expression patterns, suggesting high functional diversity with roles in digestion and development. This is the first genome-wide investigation on the SP and SPH genes in P. xylostella. The characterized features and profiled expression patterns of the P. xylostella SPs and SPHs suggest their involvement in digestion, development and immunity of this species. Our findings provide a foundation for further research on the functions of this gene family in P. xylostella, and a better understanding of its capacity to rapidly adapt to a wide range of environmental variables including host plants and insecticides.

  3. Two mannose-binding lectin homologues and an MBL-associated serine protease are expressed in the gut epithelia of the urochordate species Ciona intestinalis.

    PubMed

    Skjoedt, Mikkel-Ole; Palarasah, Yaseelan; Rasmussen, Karina; Vitved, Lars; Salomonsen, Jan; Kliem, Anette; Hansen, Soren; Koch, Claus; Skjodt, Karsten

    2010-01-01

    The lectin complement pathway has important functions in vertebrate host defence and accumulating evidence of primordial complement components trace its emergence to invertebrate phyla. We introduce two putative mannose-binding lectin homologues (CioMBLs) from the urochordate species Ciona intestinalis. The CioMBLs display similarities with vertebrate MBLs and comprise a collagen-like region, alpha-helical coiled-coils and a carbohydrate recognition domain (CRD) with conserved residues involved in calcium and carbohydrate binding. Structural analysis revealed an oligomerization through interchain disulphide bridges between N-terminal cysteine residues and cysteines located between the neck region and the CRD. RT-PCR showed a tissue specific expression of CioMBL in the gut and by immunohistochemistry analysis we also demonstrated that CioMBL co-localize with an MBL-associated serine protease in the epithelia cells lining the stomach and intestine. In conclusion we present two urochordate MBLs and identify an associated serine protease, which support the concept of an evolutionary ancient origin of the lectin complement pathway.

  4. Anti-fibrinolytic and anti-microbial activities of a serine protease inhibitor from honeybee (Apis cerana) venom.

    PubMed

    Yang, Jie; Lee, Kwang Sik; Kim, Bo Yeon; Choi, Yong Soo; Yoon, Hyung Joo; Jia, Jingming; Jin, Byung Rae

    2017-10-01

    Bee venom contains a variety of peptide constituents, including low-molecular-weight protease inhibitors. While the putative low-molecular-weight serine protease inhibitor Api m 6 containing a trypsin inhibitor-like cysteine-rich domain was identified from honeybee (Apis mellifera) venom, no anti-fibrinolytic or anti-microbial roles for this inhibitor have been elucidated. In this study, we identified an Asiatic honeybee (A. cerana) venom serine protease inhibitor (AcVSPI) that was shown to act as a microbial serine protease inhibitor and plasmin inhibitor. AcVSPI was found to consist of a trypsin inhibitor-like domain that displays ten cysteine residues. Interestingly, the AcVSPI peptide sequence exhibited high similarity to the putative low-molecular-weight serine protease inhibitor Api m 6, which suggests that AcVSPI is an allergen Api m 6-like peptide. Recombinant AcVSPI was expressed in baculovirus-infected insect cells, and it demonstrated inhibitory activity against trypsin, but not chymotrypsin. Additionally, AcVSPI has inhibitory effects against plasmin and microbial serine proteases; however, it does not have any detectable inhibitory effects on thrombin or elastase. Consistent with these inhibitory effects, AcVSPI inhibited the plasmin-mediated degradation of fibrin to fibrin degradation products. AcVSPI also bound to bacterial and fungal surfaces and exhibited anti-microbial activity against fungi as well as gram-positive and gram-negative bacteria. These findings demonstrate the anti-fibrinolytic and anti-microbial roles of AcVSPI as a serine protease inhibitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Analysis of Putative Apoplastic Effectors from the Nematode, Globodera rostochiensis, and Identification of an Expansin-Like Protein That Can Induce and Suppress Host Defenses

    PubMed Central

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses. PMID:25606855

  6. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    PubMed

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  7. Putative archaeal viruses from the mesopelagic ocean.

    PubMed

    Vik, Dean R; Roux, Simon; Brum, Jennifer R; Bolduc, Ben; Emerson, Joanne B; Padilla, Cory C; Stewart, Frank J; Sullivan, Matthew B

    2017-01-01

    Oceanic viruses that infect bacteria, or phages, are known to modulate host diversity, metabolisms, and biogeochemical cycling, while the viruses that infect marine Archaea remain understudied despite the critical ecosystem roles played by their hosts. Here we introduce "MArVD", for Metagenomic Archaeal Virus Detector, an annotation tool designed to identify putative archaeal virus contigs in metagenomic datasets. MArVD is made publicly available through the online iVirus analytical platform. Benchmarking analysis of MArVD showed it to be >99% accurate and 100% sensitive in identifying the 127 known archaeal viruses among the 12,499 viruses in the VirSorter curated dataset. Application of MArVD to 10 viral metagenomes from two depth profiles in the Eastern Tropical North Pacific (ETNP) oxygen minimum zone revealed 43 new putative archaeal virus genomes and large genome fragments ranging in size from 10 to 31 kb. Network-based classifications, which were consistent with marker gene phylogenies where available, suggested that these putative archaeal virus contigs represented six novel candidate genera. Ecological analyses, via fragment recruitment and ordination, revealed that the diversity and relative abundances of these putative archaeal viruses were correlated with oxygen concentration and temperature along two OMZ-spanning depth profiles, presumably due to structuring of the host Archaea community. Peak viral diversity and abundances were found in surface waters, where Thermoplasmata 16S rRNA genes are prevalent, suggesting these archaea as hosts in the surface habitats. Together these findings provide a baseline for identifying archaeal viruses in sequence datasets, and an initial picture of the ecology of such viruses in non-extreme environments.

  8. Potential elucidation of a novel CTL epitope in HIV-1 protease by the protease inhibitor resistance mutation L90M.

    PubMed

    Smidt, Werner

    2013-01-01

    The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1) infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS). Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89-97 and PR 90-99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease.

  9. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    NASA Astrophysics Data System (ADS)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  10. Serine protease activity contributes to control of Mycobacterium tuberculosis in hypoxic lung granulomas in mice

    PubMed Central

    Reece, Stephen T.; Loddenkemper, Christoph; Askew, David J.; Zedler, Ulrike; Schommer-Leitner, Sandra; Stein, Maik; Mir, Fayaz Ahmad; Dorhoi, Anca; Mollenkopf, Hans-Joachim; Silverman, Gary A.; Kaufmann, Stefan H.E.

    2010-01-01

    The hallmark of human Mycobacterium tuberculosis infection is the presence of lung granulomas. Lung granulomas can have different phenotypes, with caseous necrosis and hypoxia present within these structures during active tuberculosis. Production of NO by the inducible host enzyme NOS2 is a key antimycobacterial defense mechanism that requires oxygen as a substrate; it is therefore likely to perform inefficiently in hypoxic regions of granulomas in which M. tuberculosis persists. Here we have used Nos2–/– mice to investigate host-protective mechanisms within hypoxic granulomas and identified a role for host serine proteases in hypoxic granulomas in determining outcome of disease. Nos2–/– mice reproduced human-like granulomas in the lung when infected with M. tuberculosis in the ear dermis. The granulomas were hypoxic and contained large amounts of the serine protease cathepsin G and clade B serine protease inhibitors (serpins). Extrinsic inhibition of serine protease activity in vivo resulted in distorted granuloma structure, extensive hypoxia, and increased bacterial growth in this model. These data suggest that serine protease activity acts as a protective mechanism within hypoxic regions of lung granulomas and present a potential new strategy for the treatment of tuberculosis. PMID:20679732

  11. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum

    PubMed Central

    Kautto, Liisa; Nevalainen, Helena

    2017-01-01

    Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5–75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases. PMID:28060882

  12. Secretion of Proteases by an Opportunistic Fungal Pathogen Scedosporium aurantiacum.

    PubMed

    Han, Zhiping; Kautto, Liisa; Nevalainen, Helena

    2017-01-01

    Scedosporium aurantiacum is an opportunistic filamentous fungus increasingly isolated from the sputum of cystic fibrosis patients, and is especially prevalent in Australia. At the moment, very little is known about the infection mechanism of this fungus. Secreted proteases have been shown to contribute to fungal virulence in several studies with other fungi. Here we have compared the profiles of proteases secreted by a clinical isolate Scedosporium aurantiacum (WM 06.482) and an environmental strain (WM 10.136) grown on a synthetic cystic fibrosis sputum medium supplemented with casein or mucin. Protease activity was assessed using class-specific substrates and inhibitors. Subtilisin-like and trypsin-like serine protease activity was detected in all cultures. The greatest difference in the secretion of proteases between the two strains occurred in mucin-supplemented medium, where the activities of the elastase-like, trypsin-like and aspartic proteases were, overall, 2.5-75 fold higher in the clinical strain compared to the environmental strain. Proteases secreted by the two strains in the mucin-supplemented medium were further analyzed by mass spectrometry. Six homologs of fungal proteases were identified from the clinical strain and five from the environmental strain. Of these, three were common for both strains including a subtilisin peptidase, a putative leucine aminopeptidase and a PA-SaNapH-like protease. Trypsin-like protease was identified by mass spectrometry only in the clinical isolate even though trypsin-like activity was present in all cultures. In contrast, high elastase-like activity was measured in the culture supernatant of the clinical strain but could not be identified by mass spectrometry searching against other fungi in the NCBI database. Future availability of an annotated genome will help finalise identification of the S. aurantiacum proteases.

  13. Molecular characterization of two serine proteases expressed in gut tissue of the African trypanosome vector, Glossina morsitans morsitans.

    PubMed

    Yan, J; Cheng, Q; Li, C B; Aksoy, S

    2001-02-01

    Serine proteases are major insect gut enzymes involved in digestion of dietary proteins, and in addition they have been implicated in the process of pathogen establishment in several vector insects. The medically important vector, tsetse fly (Diptera:Glossinidiae), is involved in the transmission of African trypanosomes, which cause devastating diseases in animals and humans. Both the male and female tsetse can transmit trypanosomes and both are strict bloodfeeders throughout all stages of their development. Here, we describe the characterization of two putative serine protease-encoding genes, Glossina serine protease-1 (Gsp1) and Glossina serine protease-2 (Gsp2) from gut tissue. Both putative cDNA products represent prepro peptides with hydrophobic signal peptide sequences associated with their 5'-end terminus. The Gsp1 cDNA encodes a putative mature protein of 245 amino acids with a molecular mass of 26 428 Da, while the predicted size of the 228 amino acid mature peptide encoded by Gsp2 cDNA is 24 573 Da. Both deduced peptides contain the Asp/His/Ser catalytic triad and the conserved residues surrounding it which are characteristic of serine proteases. In addition, both proteins have the six-conserved cysteine residues to form the three-cysteine bonds typically present in invertebrate serine proteases. Based on the presence of substrate specific residues, the Gsp1 gene encodes a chymotrypsin-like protease while Gsp2 gene encodes for a protein with trypsin-like activity. Both proteins are encoded by few loci in tsetse genome, being present in one or two copies only. The mRNA expression levels for the genes do not vary extensively throughout the digestive cycle, and high levels of mRNAs can be readily detected in the gut tissue of newly emerged flies. The levels of trypsin and chymotrypsin activities in the gut lumen increase following blood feeding and change significantly in the gut cells throughout the digestion cycle. Hence, the regulation of expression for

  14. Functional analysis of rhomboid proteases during Toxoplasma invasion.

    PubMed

    Shen, Bang; Buguliskis, Jeffrey S; Lee, Tobie D; Sibley, L David

    2014-10-21

    Host cell invasion by Toxoplasma gondii and other apicomplexan parasites requires transmembrane adhesins that mediate binding to receptors on the substrate and host cell to facilitate motility and invasion. Rhomboid proteases (ROMs) are thought to cleave adhesins within their transmembrane segments, thus allowing the parasite to disengage from receptors and completely enter the host cell. To examine the specific roles of individual ROMs during invasion, we generated single, double, and triple knockouts for the three ROMs expressed in T. gondii tachyzoites. Analysis of these mutants demonstrated that ROM4 is the primary protease involved in adhesin processing and host cell invasion, whereas ROM1 or ROM5 plays negligible roles in these processes. Deletion of ROM4 blocked the shedding of adhesins such as MIC2 (microneme protein 2), causing them to accumulate on the surface of extracellular parasites. Increased surface adhesins led to nonproductive attachment, altered gliding motility, impaired moving junction formation, and reduced invasion efficiency. Despite the importance of ROM4 for efficient invasion, mutants lacking all three ROMs were viable and MIC2 was still efficiently removed from the surface of invaded mutant parasites, implying the existence of ROM-independent mechanisms for adhesin removal during invasion. Collectively, these results suggest that although ROM processing of adhesins is not absolutely essential, it is important for efficient host cell invasion by T. gondii. Importance: Apicomplexan parasites such as Toxoplasma gondii express surface proteins that bind host cell receptors to aid invasion. Many of these adhesins are subject to cleavage by rhomboid proteases (ROMs) within their transmembrane segments during invasion. Previous studies have demonstrated the importance of adhesin cleavage for parasite invasion and proposed that the ROMs responsible for processing would be essential for parasite survival. In T. gondii, ROM5 was thought to be the

  15. Two Membrane-Anchored Aspartic Proteases Contribute to Pollen and Ovule Development1[OPEN

    PubMed Central

    Gao, Hui; Zhang, Yinghui; Wang, Wanlei; Zhao, Keke; Liu, Chunmei; Bai, Lin; Li, Rui

    2017-01-01

    Aspartic proteases are a class of proteolytic enzymes with conserved aspartate residues, which are implicated in protein processing, maturation, and degradation. Compared with yeast and animals, plants possess a larger aspartic protease family. However, little is known about most of these enzymes. Here, we characterized two Arabidopsis (Arabidopsis thaliana) putative glycosylphosphatidylinositol (GPI)-anchored aspartic protease genes, A36 and A39, which are highly expressed in pollen and pollen tubes. a36 and a36 a39 mutants display significantly reduced pollen activity. Transmission electron microscopy and terminal-deoxynucleotidyl transferase-mediated nick end labeling assays further revealed that the unviable pollen in a36 a39 may undergo unanticipated apoptosis-like programmed cell death. The degeneration of female gametes also occurred in a36 a39. Aniline Blue staining, scanning electron microscopy, and semi in vitro guidance assays indicated that the micropylar guidance of pollen tubes is significantly compromised in a36 a39. A36 and A39 that were fused with green fluorescent protein are localized to the plasma membrane and display punctate cytosolic localization and colocalize with the GPI-anchored protein COBRA-LIKE10. Furthermore, in a36 a39, the abundance of highly methylesterified homogalacturonans and xyloglucans was increased significantly in the apical pollen tube wall. These results indicate that A36 and A39, two putative GPI-anchored aspartic proteases, play important roles in plant reproduction in Arabidopsis. PMID:27872247

  16. The cysteine-rich domain regulates ADAM protease function in vivo.

    PubMed

    Smith, Katherine M; Gaultier, Alban; Cousin, Helene; Alfandari, Dominique; White, Judith M; DeSimone, Douglas W

    2002-12-09

    ADAMs are membrane-anchored proteases that regulate cell behavior by proteolytically modifying the cell surface and ECM. Like other membrane-anchored proteases, ADAMs contain candidate "adhesive" domains downstream of their metalloprotease domains. The mechanism by which membrane-anchored cell surface proteases utilize these putative adhesive domains to regulate protease function in vivo is not well understood. We address this important question by analyzing the relative contributions of downstream extracellular domains (disintegrin, cysteine rich, and EGF-like repeat) of the ADAM13 metalloprotease during Xenopus laevis development. When expressed in embryos, ADAM13 induces hyperplasia of the cement gland, whereas ADAM10 does not. Using chimeric constructs, we find that the metalloprotease domain of ADAM10 can substitute for that of ADAM13, but that specificity for cement gland expansion requires a downstream extracellular domain of ADAM13. Analysis of finer resolution chimeras indicates an essential role for the cysteine-rich domain and a supporting role for the disintegrin domain. These and other results reveal that the cysteine-rich domain of ADAM13 cooperates intramolecularly with the ADAM13 metalloprotease domain to regulate its function in vivo. Our findings thus provide the first evidence that a downstream extracellular adhesive domain plays an active role in regulating ADAM protease function in vivo. These findings are likely relevant to other membrane-anchored cell surface proteases.

  17. Transcriptional Reprogramming of the Mycoparasitic Fungus Ampelomyces quisqualis During the Powdery Mildew Host-Induced Germination.

    PubMed

    Siozios, Stefanos; Tosi, Lorenzo; Ferrarini, Alberto; Ferrari, Alessandro; Tononi, Paola; Bellin, Diana; Maurhofer, Monika; Gessler, Cesare; Delledonne, Massimo; Pertot, Ilaria

    2015-02-01

    Ampelomyces quisqualis is a mycoparasite of a diverse range of phytopathogenic fungi associated with the powdery mildew disease. Among them are several Erysiphaceae species with great economic impact on high-value crops such as grape. Due to its ability to parasitize and prevent the spread of powdery mildews, A. quisqualis has received considerable attention for its biocontrol potential. However, and in sharp contrast to the extensively studied biocontrol species belonging to the genus Trichoderma, little is known about the biology of A. quisqualis at the molecular and genetic levels. We present the first genome-wide transcription profiling in A. quisqualis during host-induced germination. A total of 1,536 putative genes showed significant changes in transcription during the germination of A. quisqualis. This finding denotes an extensive transcriptional reprogramming of A. quisqualis induced by the presence of the host. Several upregulated genes were predicted to encode for putative mycoparasitism-related proteins such as secreted proteases, virulence factors, and proteins related to toxin biosynthesis. Our data provide the most comprehensive sequence resource currently available for A. quisqualis in addition to offering valuable insights into the biology of A. quisqualis and its mycoparasitic lifestyle. Eventually, this may improve the biocontrol capacity of this mycoparasite.

  18. Possible identity of IL-8 converting enzyme in human fibroblasts as a cysteine protease.

    PubMed

    Ohashi, Kensaku; Sano, Emiko; Nakaki, Toshio; Naruto, Masanobu

    2003-04-01

    A converting activity was characterized in human diploid fibroblasts, which secrete 72IL-8 and 77IL-8 in treatment with IFN-beta and poly I: poly C. 77IL-8 was significantly converted to 72IL-8 by a partially purified fraction of the culture supernatant of human diploid fibroblasts. The converting activity, which was temperature-dependent and optimal at pH 6, was completely inhibited by cysteine protease inhibitors, antipain dihydrochloride and E-64, but not by other types of protease inhibitors. These data clearly show that human diploid fibroblasts are capable of processing IL-8 to produce a mature IL-8 and that the putative converting enzyme appears to be a cysteine protease.

  19. Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens.

    PubMed

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N

    2016-09-01

    In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity.

  20. Structural and Functional Characterization of Cleavage and Inactivation of Human Serine Protease Inhibitors by the Bacterial SPATE Protease EspPα from Enterohemorrhagic E. coli

    PubMed Central

    Weiss, André; Joerss, Hanna; Brockmeyer, Jens

    2014-01-01

    EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition. PMID:25347319

  1. Endosymbiotic and Host Proteases in the Digestive Tract of the Invasive Snail Pomacea canaliculata: Diversity, Origin and Characterization

    PubMed Central

    Godoy, Martín S.; Castro-Vasquez, Alfredo; Vega, Israel A.

    2013-01-01

    Digestive proteases of the digestive tract of the apple snail Pomacea canaliculata were studied. Luminal protease activity was found in the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Several protease bands and their apparent molecular weights were identified in both tissue extracts and luminal contents by gel zymography: (1) a 125 kDa protease in salivary gland extracts and in the crop content; (2) a 30 kDa protease throughout all studied luminal contents and in extracts of the midgut gland and of the endosymbionts isolated from this gland; (3) two proteases of 145 and 198 kDa in the coiled gut content. All these proteases were inhibited by aprotinin, a serine-protease inhibitor, and showed maximum activity between 30°C and 35°C and pH between 8.5 and 9.5. Tissue L-alanine-N-aminopeptidase activity was determined in the wall of the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Our findings show that protein digestion in P. canaliculata is carried out through a battery of diverse proteases originated from the salivary glands and the endosymbionts lodged in the midgut gland and by proteases of uncertain origin that occur in the coiled gut lumen. PMID:23818959

  2. Heterologous expression of the plant cysteine protease bromelain and its inhibitor in Pichia pastoris.

    PubMed

    Luniak, Nora; Meiser, Peter; Burkart, Sonja; Müller, Rolf

    2017-01-01

    Expression of proteases in heterologous hosts remains an ambitious challenge due to severe problems associated with digestion of host proteins. On the other hand, proteases are broadly used in industrial applications and resemble promising drug candidates. Bromelain is an herbal drug that is medicinally used for treatment of oedematous swellings and inflammatory conditions and consists in large part of proteolytic enzymes. Even though various experiments underline the requirement of active cysteine proteases for biological activity, so far no investigation succeeded to clearly clarify the pharmacological mode of action of bromelain. The potential role of proteases themselves and other molecules of this multi-component extract currently remain largely unknown or ill defined. Here, we set out to express several bromelain cysteine proteases as well as a bromelain inhibitor molecule in order to gain defined molecular entities for subsequent studies. After cloning the genes from its natural source Ananas comosus (pineapple plant) into Pichia pastoris and subsequent fermentation and purification, we obtained active protease and inhibitor molecules which were subsequently biochemically characterized. Employing purified bromelain fractions paves the way for further elucidation of pharmacological activities of this natural product. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:54-65, 2017. © 2016 American Institute of Chemical Engineers.

  3. Truncation of a P1 leader proteinase facilitates potyvirus replication in a non-permissive host.

    PubMed

    Shan, Hongying; Pasin, Fabio; Tzanetakis, Ioannis E; Simón-Mateo, Carmen; García, Juan Antonio; Rodamilans, Bernardo

    2018-06-01

    The Potyviridae family is a major group of plant viruses that includes c. 200 species, most of which have narrow host ranges. The potyvirid P1 leader proteinase self-cleaves from the remainder of the viral polyprotein and shows large sequence variability linked to host adaptation. P1 proteins can be classified as Type A or Type B on the basis, amongst other things, of their dependence or not on a host factor to develop their protease activity. In this work, we studied Type A proteases from the Potyviridae family, characterizing their host factor requirements. Our in vitro cleavage analyses of potyvirid P1 proteases showed that the N-terminal domain is relevant for host factor interaction and suggested that the C-terminal domain is also involved. In the absence of plant factors, the N-terminal end of Plum pox virus P1 antagonizes protease self-processing. We performed extended deletion mutagenesis analysis to define the N-terminal antagonistic domain of P1. In viral infections, removal of the P1 protease antagonistic domain led to a gain-of-function phenotype, strongly increasing local infection in a non-permissive host. Altogether, our results shed new insights into the adaptation and evolution of potyvirids. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  4. Insect response to plant defensive protease inhibitors.

    PubMed

    Zhu-Salzman, Keyan; Zeng, Rensen

    2015-01-07

    Plant protease inhibitors (PIs) are natural plant defense proteins that inhibit proteases of invading insect herbivores. However, their anti-insect efficacy is determined not only by their potency toward a vulnerable insect system but also by the response of the insect to such a challenge. Through the long history of coevolution with their host plants, insects have developed sophisticated mechanisms to circumvent antinutritional effects of dietary challenges. Their response takes the form of changes in gene expression and the protein repertoire in cells lining the alimentary tract, the first line of defense. Research in insect digestive proteases has revealed the crucial roles they play in insect adaptation to plant PIs and has brought about a new appreciation of how phytophagous insects employ this group of molecules in both protein digestion and counterdefense. This review provides researchers in related fields an up-to-date summary of recent advances.

  5. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response.

    PubMed

    Rodríguez Pulido, Miguel; Sáiz, Margarita

    2017-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of an acute vesicular disease affecting pigs, cattle and other domestic, and wild animals worldwide. The aim of the host interferon (IFN) response is to limit viral replication and spread. Detection of the viral genome and products by specialized cellular sensors initiates a signaling cascade that leads to a rapid antiviral response involving the secretion of type I- and type III-IFNs and other antiviral cytokines with antiproliferative and immunomodulatory functions. During co-evolution with their hosts, viruses have acquired strategies to actively counteract host antiviral responses and the balance between innate response and viral antagonism may determine the outcome of disease and pathogenesis. FMDV proteases Lpro and 3C have been found to antagonize the host IFN response by a repertoire of mechanisms. Moreover, the putative role of other viral proteins in IFN antagonism is being recently unveiled, uncovering sophisticated immune evasion strategies different to those reported to date for other members of the Picornaviridae family. Here, we review the interplay between antiviral responses induced by FMDV infection and viral countermeasures to block them. Research on strategies used by viruses to modulate immunity will provide insights into the function of host pathways involved in defense against pathogens and will also lead to development of new therapeutic strategies to fight virus infections.

  6. Zika Virus Protease: An Antiviral Drug Target.

    PubMed

    Kang, CongBao; Keller, Thomas H; Luo, Dahai

    2017-10-01

    The recent outbreak of Zika virus (ZIKV) infection has caused global concern due to its link to severe damage to the brain development of foetuses and neuronal complications in adult patients. A worldwide research effort has been undertaken to identify effective and safe treatment and vaccination options. Among the proposed viral and host components, the viral NS2B-NS3 protease represents an attractive drug target due to its essential role in the virus life cycle. Here, we outline recent progress in studies on the Zika protease. Biochemical, biophysical, and structural studies on different protease constructs provide new insight into the structure and activity of the protease. The unlinked construct displays higher enzymatic activity and better mimics the native state of the enzyme and therefore is better suited for drug discovery. Furthermore, the structure of the free enzyme adopts a closed conformation and a preformed active site. The availability of a lead fragment hit and peptide inhibitors, as well as the attainability of soakable crystals, suggest that the unlinked construct is a promising tool for drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Serine protease-related proteins in the malaria mosquito, Anopheles gambiae.

    PubMed

    Cao, Xiaolong; Gulati, Mansi; Jiang, Haobo

    2017-09-01

    Insect serine proteases (SPs) and serine protease homologs (SPHs) participate in digestion, defense, development, and other physiological processes. In mosquitoes, some clip-domain SPs and SPHs (i.e. CLIPs) have been investigated for possible roles in antiparasitic responses. In a recent test aimed at improving quality of gene models in the Anopheles gambiae genome using RNA-seq data, we observed various discrepancies between gene models in AgamP4.5 and corresponding sequences selected from those modeled by Cufflinks, Trinity and Bridger. Here we report a comparative analysis of the 337 SP-related proteins in A. gambiae by examining their domain structures, sequence diversity, chromosomal locations, and expression patterns. One hundred and ten CLIPs contain 1 to 5 clip domains in addition to their protease domains (PDs) or non-catalytic, protease-like domains (PLDs). They are divided into five subgroups: CLIPAs (22) are clip 1-5 -PLD; CLIPBs (29), CLIPCs (12) and CLIPDs (14) are mainly clip-PD; most CLIPEs (33) have a domain structure of PD/PLD-PLD-clip-PLD 0-1 . While expression of the CLIP genes in group-1 is generally low and detected in various tissue- and stage-specific RNA-seq libraries, some putative GPs/GPHs (i.e. single domain gut SPs/SPHs) in group-2 are highly expressed in midgut, whole larva or whole adult libraries. In comparison, 46 SPs, 26 SPHs, and 37 multi-domain SPs/SPHs (i.e. PD/PLD-PLD ≥1 ) in group-3 do not seem to be specifically expressed in digestive tract. There are 16 SPs and 2 SPH containing other types of putative regulatory domains (e.g. LDLa, CUB, Gd). Of the 337 SP and SPH genes, 159 were sorted into 46 groups (2-8 members/group) based on similar phylogenetic tree position, chromosomal location, and expression profile. This information and analysis, including improved gene models and protein sequences, constitute a solid foundation for functional analysis of the SP-related proteins in A. gambiae. Copyright © 2017 Elsevier Ltd

  8. Molecular cloning and immunochemical characterization of a novel major Japanese cedar pollen allergen belonging to the aspartic protease family.

    PubMed

    Ibrahim, Ahmed Ragaa Nour; Kawamoto, Seiji; Aki, Tsunehiro; Shimada, Yayoi; Rikimaru, Satoshi; Onishi, Nobukazu; Babiker, Elfadil Elfadl; Oiso, Isao; Hashimoto, Kunihiko; Hayashi, Takaharu; Ono, Kazuhisa

    2010-01-01

    Japanese cedar (Cryptomeria japonica) pollen is a major cause of seasonal pollinosis in Japan. Protease activity in the pollen grains may trigger pro-allergic responses but no such proteases have yet been identified as pollen allergens. We report the molecular cloning and immunochemical characterization of a novel C. japonica pollen allergen belonging to the aspartic protease family. We focused on the C. japonica pollen allergen spot No. 63 (CPA63, 47.5% IgE binding frequency) on our 2-dimensional IgE immunoblot map. The internal amino acid sequences were determined using time-of-flight mass spectrometry. Full-length cpa63 cDNA was cloned by rapid amplification of cDNA ends (RACE)-PCR. Recombinant CPA63 (r-CPA63) was expressed using the baculovirus-insect cell culture system and its IgE binding capacity was analyzed by enzyme-linked immunosorbent assay (ELISA). The proteolytic activity of r-CPA63 was also assessed using a putative mature enzyme produced upon autolysis. cpa63 cDNA encoded a 472 amino acid polypeptide showing about 40% sequence identity to members of the plant atypical aspartic protease family. ELISA showed that r-CPA63 was recognized by IgE antibodies in the serum of 58% (18/31) of Japanese cedar pollinosis patients. We also demonstrated an aspartic protease-like enzyme activity of the putative mature r-CPA63. We have identified the first plant aspartic protease allergen from Japanese cedar pollen. The availability of the CPA63 sequence and its recombinant allergen production system are useful not only for pharmaceutical applications but also for further examination of the role of protease activity in the pathogenesis of cedar pollinosis. 2010 S. Karger AG, Basel.

  9. Protease Inhibitors of Parasitic Flukes: Emerging Roles in Parasite Survival and Immune Defence.

    PubMed

    Ranasinghe, Shiwanthi L; McManus, Donald P

    2017-05-01

    Protease inhibitors play crucial roles in parasite development and survival, counteracting the potentially damaging immune responses of their vertebrate hosts. However, limited information is currently available on protease inhibitors from schistosomes and food-borne trematodes. Future characterization of these molecules is important not only to expand knowledge on parasitic fluke biology but also to determine whether they represent novel vaccine and/or drug targets. Moreover, protease inhibitors from flukes may represent lead compounds for the development of a new range of therapeutic agents against inflammatory disorders and cancer. This review discusses already identified protease inhibitors of fluke origin, emphasizing their biological function and their possible future development as new intervention targets. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Production of foot-and-mouth disease virus capsid proteins by the TEV protease.

    PubMed

    Puckette, Michael; Smith, Justin D; Gabbert, Lindsay; Schutta, Christopher; Barrera, José; Clark, Benjamin A; Neilan, John G; Rasmussen, Max

    2018-06-10

    Protective immunity to viral pathogens often includes production of neutralizing antibodies to virus capsid proteins. Many viruses produce capsid proteins by expressing a precursor polyprotein and related protease from a single open reading frame. The foot-and-mouth disease virus (FMDV) expresses a 3C protease (3Cpro) that cleaves a P1 polyprotein intermediate into individual capsid proteins, but the FMDV 3Cpro also degrades many host cell proteins and reduces the viability of host cells, including subunit vaccine production cells. To overcome the limitations of using the a wild-type 3Cpro in FMDV subunit vaccine expression systems, we altered the protease restriction sequences within a FMDV P1 polyprotein to enable production of FMDV capsid proteins by the Tobacco Etch Virus NIa protease (TEVpro). Separate TEVpro and modified FMDV P1 proteins were produced from a single open reading frame by an intervening FMDV 2A sequence. The modified FMDV P1 polyprotein was successfully processed by the TEVpro in both mammalian and bacterial cells. More broadly, this method of polyprotein production and processing may be adapted to other recombinant expression systems, especially plant-based expression. Published by Elsevier B.V.

  11. Secreted proteases of Trypanosoma brucei gambiense: possible targets for sleeping sickness control?

    PubMed

    Bossard, Géraldine; Cuny, Gérard; Geiger, Anne

    2013-01-01

    Human African trypanosomiasis (HAT) is caused by trypanosomes of the species Trypanosoma brucei and belongs to the neglected tropical diseases. Presently, WHO has listed 36 countries as being endemic for sleeping sickness. No vaccine is available, and disease treatment is difficult and has life-threatening side effects. Therefore, there is a crucial need to search for new therapeutic targets against the parasite. Trypanosome excreted-secreted proteins could be promising targets, as the total secretome was shown to inhibit, in vitro, host dendritic cell maturation and their ability to induce lymphocytic allogenic responses. The secretome was found surprisingly rich in various proteins and unexpectedly rich in diverse peptidases, covering more than ten peptidase families or subfamilies. Given their abundance, one may speculate that they would play a genuine role not only in classical "housekeeping" tasks but also in pathogenesis. The paper reviews the deleterious role of proteases from trypanosomes, owing to their capacity to degrade host circulating or structural proteins, as well as proteic hormones, causing severe damage and preventing host immune response. In addition, proteases account for a number of drug targets, such drugs being used to treat severe diseases such AIDS. This review underlines the importance of secreted proteins and especially of secreted proteases as potential targets in HAT-fighting strategies. It points out the need to conduct further investigations on the specific role of each of these various proteases in order to identify those playing a central role in sleeping sickness and would be suitable for drug targeting. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  12. A putative lateral flagella of the cystic fibrosis pathogen Burkholderia dolosa regulates swimming motility and host cytokine production

    PubMed Central

    Clark, Bradley S.; Weatherholt, Molly; Renaud, Diane; Scott, David; LiPuma, John J.; Priebe, Gregory; Gerard, Craig

    2018-01-01

    Burkholderia dolosa caused an outbreak in the cystic fibrosis clinic at Boston Children’s Hospital and was associated with high mortality in these patients. This species is part of a larger complex of opportunistic pathogens known as the Burkholderia cepacia complex (Bcc). Compared to other species in the Bcc, B. dolosa is highly transmissible; thus understanding its virulence mechanisms is important for preventing future outbreaks. The genome of one of the outbreak strains, AU0158, revealed a homolog of the lafA gene encoding a putative lateral flagellin, which, in other non-Bcc species, is used for movement on solid surfaces, attachment to host cells, or movement inside host cells. Here, we analyzed the conservation of the lafA gene and protein sequences, which are distinct from those of the polar flagella, and found lafA homologs to be present in numerous β-proteobacteria but notably absent from most other Bcc species. A lafA deletion mutant in B. dolosa showed a greater swimming motility than wild-type due to an increase in the number of polar flagella, but did not appear to contribute to biofilm formation, host cell invasion, or murine lung colonization or persistence over time. However, the lafA gene was important for cytokine production in human peripheral blood mononuclear cells, suggesting it may have a role in recognition by the human immune response. PMID:29346379

  13. The Rubella Virus Nonstructural Protease Requires Divalent Cations for Activity and Functions in trans

    PubMed Central

    Liu, Xin; Ropp, Susan L.; Jackson, Richard J.; Frey, Teryl K.

    1998-01-01

    The rubella virus (RUB) nonstructural (NS) protease is a papain-like cysteine protease (PCP) located in the NS-protein open reading frame (NSP-ORF) that cleaves the NSP-ORF translation product at a single site to produce two products, P150 (the N-terminal product) and P90 (the C-terminal product). The RUB NS protease was found not to function following translation in vitro in a standard rabbit reticulocyte lysate system, although all of the other viral PCPs do so. However, in the presence of divalent cations such as Zn2+, Cd2+, and Co2+, the RUB NS protease functioned efficiently, indicating that these cations are required either as direct cofactors in catalytic activity or for correct acquisition of three-dimensional conformation of the protease. Since other viral and cell PCPs do not require cations for activity and the RUB NS protease contains a putative zinc binding motif, the latter possibility is more likely. Previous in vivo expression studies of the RUB NS protease failed to demonstrate trans cleavage activity (J.-P. Chen et al., J. Virol. 70:4707–4713, 1996). To study whether trans cleavage could be detected in vitro, a protease catalytic site mutant and a mutant in which the C-terminal 31 amino acids of P90 were deleted were independently introduced into plasmid constructs that express the complete NSP-ORF. Cotranslation of these mutants in vitro yielded both the native and the mutated forms of P90, indicating that the protease present in the mutated construct cleaved the catalytic-site mutant precursor. Thus, RUB NS protease can function in trans. PMID:9557742

  14. Regulation of intestinal permeability: The role of proteases

    PubMed Central

    Van Spaendonk, Hanne; Ceuleers, Hannah; Witters, Leonie; Patteet, Eveline; Joossens, Jurgen; Augustyns, Koen; Lambeir, Anne-Marie; De Meester, Ingrid; De Man, Joris G; De Winter, Benedicte Y

    2017-01-01

    The gastrointestinal barrier is - with approximately 400 m2 - the human body’s largest surface separating the external environment from the internal milieu. This barrier serves a dual function: permitting the absorption of nutrients, water and electrolytes on the one hand, while limiting host contact with noxious luminal antigens on the other hand. To maintain this selective barrier, junction protein complexes seal the intercellular space between adjacent epithelial cells and regulate the paracellular transport. Increased intestinal permeability is associated with and suggested as a player in the pathophysiology of various gastrointestinal and extra-intestinal diseases such as inflammatory bowel disease, celiac disease and type 1 diabetes. The gastrointestinal tract is exposed to high levels of endogenous and exogenous proteases, both in the lumen and in the mucosa. There is increasing evidence to suggest that a dysregulation of the protease/antiprotease balance in the gut contributes to epithelial damage and increased permeability. Excessive proteolysis leads to direct cleavage of intercellular junction proteins, or to opening of the junction proteins via activation of protease activated receptors. In addition, proteases regulate the activity and availability of cytokines and growth factors, which are also known modulators of intestinal permeability. This review aims at outlining the mechanisms by which proteases alter the intestinal permeability. More knowledge on the role of proteases in mucosal homeostasis and gastrointestinal barrier function will definitely contribute to the identification of new therapeutic targets for permeability-related diseases. PMID:28405139

  15. Increasing transcriptome response of serpins during the ontogenetic stages in the salmon louse Caligus rogercresseyi (Copepoda: Caligidae).

    PubMed

    Maldonado-Aguayo, W; Gallardo-Escárate, C

    2014-06-01

    Serine protease inhibitors, or serpins, target serine proteases, and are important regulators of intra- and extracellular proteolysis. For parasite survival, parasite-derived protease inhibitors have been suggested to play essential roles in evading the host's immune system and protecting against exogenous host proteases. The aim of this work was to identify serpins via high throughput transcriptome sequencing and elucidate their potential functions during the lifecycle of the salmon louse Caligus rogercresseyi. Eleven putative, partial serpin sequences in the C. rogercresseyi transcriptome were identified and denoted as Cr-serpins 1 to 11. Comparative analysis of the deduced serpin-like amino acid sequences revealed a highly conserved reactive center loop region. Interestingly, P1 residues suggest putative functions involved with the trypsin/subtilisin, elastase, or subtilisin inhibitors, which evidenced increasing gene expression profiles from the copepodid to adult stage in C. rogercresseyi. Concerning this, Cr-serpin 10 was mainly expressed in the copepodid stage, while Cr-serpins 3, 4, 5, and 11 were mostly expressed in chalimus and adult stages. These results suggest that serpins could be involved in evading the immune response of the host fish. The identification of these serpins furthers the understanding of the immune system in this important ectoparasite species. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Lon Protease of Azorhizobium caulinodans ORS571 Is Required for Suppression of reb Gene Expression

    PubMed Central

    Nakajima, Azusa; Tsukada, Shuhei; Siarot, Lowela; Ogawa, Tetsuhiro; Oyaizu, Hiroshi

    2012-01-01

    Bacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease of Azorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legume Sesbania rostrata. The nitrogen fixation activity of an A. caulinodans lon mutant in the free-living state was not significantly different from that of the wild-type strain. However, the stem nodules formed by the lon mutant showed little or no nitrogen fixation activity. By microscopic analyses, two kinds of host cells were observed in the stem nodules formed by the lon mutant. One type has shrunken host cells containing a high density of bacteria, and the other type has oval or elongated host cells containing a low density or no bacteria. This phenotype is similar to a praR mutant highly expressing the reb genes. Quantitative reverse transcription-PCR analyses revealed that reb genes were also highly expressed in the lon mutant. Furthermore, a lon reb double mutant formed stem nodules showing higher nitrogen fixation activity than the lon mutant, and shrunken host cells were not observed in these stem nodules. These results suggest that Lon protease is required to suppress the expression of the reb genes and that high expression of reb genes in part causes aberrance in the A. caulinodans-S. rostrata symbiosis. In addition to the suppression of reb genes, it was found that Lon protease was involved in the regulation of exopolysaccharide production and autoagglutination of bacterial cells. PMID:22752172

  17. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors

    PubMed Central

    Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo

    2013-01-01

    The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670

  18. VISLISI trial, a prospective clinical study allowing identification of a new metalloprotease and putative virulence factor from Staphylococcus lugdunensis.

    PubMed

    Argemi, X; Prévost, G; Riegel, P; Keller, D; Meyer, N; Baldeyrou, M; Douiri, N; Lefebvre, N; Meghit, K; Ronde Oustau, C; Christmann, D; Cianférani, S; Strub, J M; Hansmann, Y

    2017-05-01

    Staphylococcus lugdunensis is a coagulase-negative staphylococcus that displays an unusually high virulence rate close to that of Staphylococcus aureus. It also shares phenotypic properties with S. aureus and several studies found putative virulence factors. The objective of the study was to describe the clinical manifestations of S. lugdunensis infections and investigate putative virulence factors. We conducted a prospective study from November 2013 to March 2016 at the University Hospital of Strasbourg. Putative virulence factors were investigated by clumping factor detection, screening for proteolytic activity, and sequence analysis using tandem nano-liquid chromatography-mass spectrometry. In total, 347 positive samples for S. lugdunensis were collected, of which 129 (37.2%) were from confirmed cases of S. lugdunensis infection. Eighty-one of these 129 patients were included in the study. Bone and prosthetic joints (PJI) were the most frequent sites of infection (n=28; 34.6%) followed by skin and soft tissues (n=23; 28.4%). We identified and purified a novel protease secreted by 50 samples (61.7%), most frequently associated with samples from deep infections and PJI (pr 0.97 and pr 0.91, respectively). Protease peptide sequencing by nano-liquid chromatography-mass spectrometry revealed a novel protease bearing 62.42% identity with ShpI, a metalloprotease secreted by Staphylococcus hyicus. This study confirms the pathogenicity of S. lugdunensis, particularly in bone and PJI. We also identified a novel metalloprotease called lugdulysin that may contribute to virulence. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  19. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putativemore » nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.« less

  20. Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer.

    PubMed

    Küppers, Tobias; Steffen, Victoria; Hellmuth, Hendrik; O'Connell, Timothy; Bongaerts, Johannes; Maurer, Karl-Heinz; Wiechert, Wolfgang

    2014-03-24

    Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.To demonstrate this approach, Bacillus pumilus has been developed as an alternative expression platform for the production of alkaline enzymes in reference to the established industrial production host Bacillus licheniformis. To develop the selected B. pumilus as an alternative production host the suggested PSB strategy was applied proceeding in the following steps (dedicated product titers are scaled to the protease titer of Henkel's industrial production strain B. licheniformis at lab scale): Introduction of a protease production plasmid, adaptation of a protease production process (44%), process optimization (92%) and expression optimization (114%). To further evaluate the production capability of the developed B. pumilus platform, the target protease was substituted by an α-amylase. The expression performance was tested under the previously optimized protease process conditions and under subsequently adapted process conditions resulting in a maximum product titer of 65% in reference to B. licheniformis protease titer. In this contribution the applied PSB strategy performed very well for the development of B. pumilus as an alternative production strain. Thereby the engineered B. pumilus expression platform even exceeded the protease titer of the industrial production host B. licheniformis by 14%. This result exhibits a remarkable potential of B. pumilus to be the

  1. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Katja; Langendorf, Christopher G.; Irving, James A.

    2009-08-07

    The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalyticallymore » inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 {angstrom} and 2.0 {angstrom} resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical 'canonical' fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.« less

  2. Plant cysteine proteases that evoke itch activate protease-activated receptors

    PubMed Central

    Reddy, V.B.; Lerner, E.A.

    2013-01-01

    Background Bromelain, ficin and papain are cysteine proteases from plants that produce itch upon injection into skin. Their mechanism of action has not been considered previously. Objectives To determine the mechanism by which these proteases function. Methods The ability of these proteases to activate protease-activated receptors was determined by ratiometric calcium imaging. Results We show here that bromelain, ficin and papain activate protease-activated receptors 2 and 4. Conclusions Bromelain, ficin and papain function as signalling molecules and activate protease-activated receptors. Activation of these receptors is the likely mechanism by which these proteases evoke itch. PMID:20491769

  3. Lack of Host Specialization in Aspergillus flavus

    PubMed Central

    St. Leger, Raymond J.; Screen, Steven E.; Shams-Pirzadeh, Bijan

    2000-01-01

    Aspergillus spp. cause disease in a broad range of organisms, but it is unknown if strains are specialized for particular hosts. We evaluated isolates of Aspergillus flavus, Aspergillus fumigatus, and Aspergillus nidulans for their ability to infect bean leaves, corn kernels, and insects (Galleria mellonella). Strains of A. flavus did not affect nonwounded bean leaves, corn kernels, or insects at 22°C, but they killed insects following hemocoelic challenge and caused symptoms ranging from moderate to severe in corn kernels and bean leaves injured during inoculation. The pectinase P2c, implicated in aggressive colonization of cotton bolls, is produced by most A. flavus isolates, but its absence did not prevent colonization of bean leaves. Proteases have been implicated in colonization of animal hosts. All A. flavus strains produced very similar patterns of protease isozymes when cultured on horse lung polymers. Quantitative differences in protease levels did not correlate with the ability to colonize insects. In contrast to A. flavus, strains of A. nidulans and A. fumigatus could not invade living insect or plant tissues or resist digestion by insect hemocytes. Our results indicate that A. flavus has parasitic attributes that are lacking in A. fumigatus and A. nidulans but that individual strains of A. flavus are not specialized to particular hosts. PMID:10618242

  4. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 thatmore » forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.« less

  5. Genomic and exoproteomic analyses of cold- and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases.

    PubMed

    Lylloff, Jeanette E; Hansen, Lea B S; Jepsen, Morten; Sanggaard, Kristian W; Vester, Jan K; Enghild, Jan J; Sørensen, Søren J; Stougaard, Peter; Glaring, Mikkel A

    2016-03-01

    Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography-tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin-like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20 °C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Effects of different dietary conditions on the expression of trypsin- and chymotrypsin-like protease genes in the digestive system of the migratory locust, Locusta migratoria.

    PubMed

    Spit, Jornt; Zels, Sven; Dillen, Senne; Holtof, Michiel; Wynant, Niels; Vanden Broeck, Jozef

    2014-05-01

    While technological advancements have recently led to a steep increase in genomic and transcriptomic data, and large numbers of protease sequences are being discovered in diverse insect species, little information is available about the expression of digestive enzymes in Orthoptera. Here we describe the identification of Locusta migratoria serine protease transcripts (cDNAs) involved in digestion, which might serve as possible targets for pest control management. A total of 5 putative trypsin and 15 putative chymotrypsin gene sequences were characterized. Phylogenetic analysis revealed that these are distributed among 3 evolutionary conserved clusters. In addition, we have determined the relative gene expression levels of representative members in the gut under different feeding conditions. This study demonstrated that the transcript levels for all measured serine proteases were strongly reduced after starvation. On the other hand, larvae of L. migratoria displayed compensatory effects to the presence of Soybean Bowman Birk (SBBI) and Soybean Trypsin (SBTI) inhibitors in their diet by differential upregulation of multiple proteases. A rapid initial upregulation was observed for all tested serine protease transcripts, while only for members belonging to class I, the transcript levels remained elevated after prolonged exposure. In full agreement with these results, we also observed an increase in proteolytic activity in midgut secretions of locusts that were accustomed to the presence of protease inhibitors in their diet, while no change in sensitivity to these inhibitors was observed. Taken together, this paper is the first comprehensive study on dietary dependent transcript levels of proteolytic enzymes in Orthoptera. Our data suggest that compensatory response mechanisms to protease inhibitor ingestion may have appeared early in insect evolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Functional diversification upon leader protease domain duplication in the Citrus tristeza virus genome: Role of RNA sequences and the encoded proteins.

    PubMed

    Kang, Sung-Hwan; Atallah, Osama O; Sun, Yong-Duo; Folimonova, Svetlana Y

    2018-01-15

    Viruses from the family Closteroviridae show an example of intra-genome duplications of more than one gene. In addition to the hallmark coat protein gene duplication, several members possess a tandem duplication of papain-like leader proteases. In this study, we demonstrate that domains encoding the L1 and L2 proteases in the Citrus tristeza virus genome underwent a significant functional divergence at the RNA and protein levels. We show that the L1 protease is crucial for viral accumulation and establishment of initial infection, whereas its coding region is vital for virus transport. On the other hand, the second protease is indispensable for virus infection of its natural citrus host, suggesting that L2 has evolved an important adaptive function that mediates virus interaction with the woody host. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Structural Basis for Dual-Inhibition Mechanism of a Non-Classical Kazal-Type Serine Protease Inhibitor from Horseshoe Crab in Complex with Subtilisin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shenoy, Rajesh T.; Thangamani, Saravanan; Velazquez-Campoy, Adrian

    2011-04-26

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki=1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysicalmore » interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1:2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.« less

  9. Targeting cysteine proteases in trypanosomatid disease drug discovery.

    PubMed

    Ferreira, Leonardo G; Andricopulo, Adriano D

    2017-12-01

    Chagas disease and human African trypanosomiasis are endemic conditions in Latin America and Africa, respectively, for which no effective and safe therapy is available. Efforts in drug discovery have focused on several enzymes from these protozoans, among which cysteine proteases have been validated as molecular targets for pharmacological intervention. These enzymes are expressed during the entire life cycle of trypanosomatid parasites and are essential to many biological processes, including infectivity to the human host. As a result of advances in the knowledge of the structural aspects of cysteine proteases and their role in disease physiopathology, inhibition of these enzymes by small molecules has been demonstrated to be a worthwhile approach to trypanosomatid drug research. This review provides an update on drug discovery strategies targeting the cysteine peptidases cruzain from Trypanosoma cruzi and rhodesain and cathepsin B from Trypanosoma brucei. Given that current chemotherapy for Chagas disease and human African trypanosomiasis has several drawbacks, cysteine proteases will continue to be actively pursued as valuable molecular targets in trypanosomatid disease drug discovery efforts. Copyright © 2017. Published by Elsevier Inc.

  10. An Accessory Protease Inhibitor to Increase the Yield and Quality of a Tumour-Targeting mAb in Nicotiana benthamiana Leaves

    PubMed Central

    Jutras, Philippe V.; Marusic, Carla; Lonoce, Chiara; Deflers, Carole; Goulet, Marie-Claire; Benvenuto, Eugenio; Donini, Marcello

    2016-01-01

    The overall quality of recombinant IgG antibodies in plants is dramatically compromised by host endogenous proteases. Different approaches have been developed to reduce the impact of endogenous proteolysis on IgGs, notably involving site-directed mutagenesis to eliminate protease-susceptible sites or the in situ mitigation of host protease activities to minimize antibody processing in the cell secretory pathway. We here characterized the degradation profile of H10, a human tumour-targeting monoclonal IgG, in leaves of Nicotiana benthamiana also expressing the human serine protease inhibitor α1-antichymotrypsin or the cysteine protease inhibitor tomato cystatin SlCYS8. Leaf extracts revealed consistent fragmentation patterns for the recombinant antibody regardless of leaf age and a strong protective effect of SlCYS8 in specific regions of the heavy chain domains. As shown using an antigen-binding ELISA and LC-MS/MS analysis of antibody fragments, SlCYS8 had positive effects on both the amount of fully-assembled antibody purified from leaf tissue and the stability of biologically active antibody fragments containing the heavy chain Fc domain. Our data confirm the potential of Cys protease inhibitors as convenient antibody-stabilizing expression partners to increase the quality of therapeutic antibodies in plant protein biofactories. PMID:27893815

  11. Isolation, activity and immunological characterisation of a secreted aspartic protease, CtsD, from Aspergillus fumigatus.

    PubMed

    Vickers, Imelda; Reeves, Emer P; Kavanagh, Kevin A; Doyle, Sean

    2007-05-01

    Aspergillus fumigatus is an opportunistic fungal pathogen that infects immunocompromised patients. A putative aspartic protease gene (ctsD; 1425 bp; intron-free) was identified and cloned. CtsD is evolutionarily distinct from all previously identified A. fumigatus aspartic proteases. Recombinant CtsD was expressed in inclusion bodies in Escherichia coli (0.2mg/g cells) and subjected to extensive proteolysis in the baculovirus expression system. Activation studies performed on purified, refolded, recombinant CtsD resulted in protease activation with a pH(opt)4.0 and specific activity=10 U/mg. Pepstatin A also inhibited recombinant CtsD activity by up to 72% thereby confirming classification as an aspartic protease. Native CtsD was also immunologically identified in culture supernatants and purified from fungal cultures using pepstatin-agarose affinity chromatography (7.8 microg CtsD/g mycelia). In A. fumigatus, semi-quantitative RT-PCR analysis revealed expression of ctsD in minimal and proteinaceous media only. Expression of ctsD was absent under nutrient-rich conditions. Expression of ctsD was also detected, in vivo, in the Galleria mellonella virulence model following A. fumigatus infection.

  12. Proteases as therapeutics

    PubMed Central

    Craik, Charles S.; Page, Michael J.; Madison, Edwin L.

    2015-01-01

    Proteases are an expanding class of drugs that hold great promise. The U.S. FDA (Food and Drug Administration) has approved 12 protease therapies, and a number of next generation or completely new proteases are in clinical development. Although they are a well-recognized class of targets for inhibitors, proteases themselves have not typically been considered as a drug class despite their application in the clinic over the last several decades; initially as plasma fractions and later as purified products. Although the predominant use of proteases has been in treating cardiovascular disease, they are also emerging as useful agents in the treatment of sepsis, digestive disorders, inflammation, cystic fibrosis, retinal disorders, psoriasis and other diseases. In the present review, we outline the history of proteases as therapeutics, provide an overview of their current clinical application, and describe several approaches to improve and expand their clinical application. Undoubtedly, our ability to harness proteolysis for disease treatment will increase with our understanding of protease biology and the molecular mechanisms responsible. New technologies for rationally engineering proteases, as well as improved delivery options, will expand greatly the potential applications of these enzymes. The recognition that proteases are, in fact, an established class of safe and efficacious drugs will stimulate investigation of additional therapeutic applications for these enzymes. Proteases therefore have a bright future as a distinct therapeutic class with diverse clinical applications. PMID:21406063

  13. Cleavage of Poly(A)-Binding Protein by Enterovirus Proteases Concurrent with Inhibition of Translation In Vitro

    PubMed Central

    Joachims, Michelle; Van Breugel, Pieter C.; Lloyd, Richard E.

    1999-01-01

    Many enteroviruses, members of the family Picornaviridae, cause a rapid and drastic inhibition of host cell protein synthesis during infection, a process referred to as host cell shutoff. Poliovirus, one of the best-studied enteroviruses, causes marked inhibition of host cell translation while preferentially allowing translation of its own genomic mRNA. An abundance of experimental evidence has accumulated to indicate that cleavage of an essential translation initiation factor, eIF4G, during infection is responsible at least in part for this shutoff. However, evidence from inhibitors of viral replication suggests that an additional event is necessary for the complete translational shutoff observed during productive infection. This report examines the effect of poliovirus infection on a recently characterized 3′ end translational stimulatory protein, poly(A)-binding protein (PABP). PABP is involved in stimulating translation initiation in lower eukaryotes by its interaction with the poly(A) tail on mRNAs and has been proposed to facilitate 5′-end–3′-end interactions in the context of the closed-loop translational model. Here, we show that PABP is specifically degraded during poliovirus infection and that it is cleaved in vitro by both poliovirus 2A and 3C proteases and coxsackievirus B3 2A protease. Further, PABP cleavage by 2A protease is accompanied by concurrent loss of translational activity in an in vitro-translation assay. Similar loss of translational activity also occurs simultaneously with partial 3C protease-mediated cleavage of PABP in translation assays. Further, PABP is not degraded during infections in the presence of guanidine-HCl, which blocks the complete development of host translation shutoff. These results provide preliminary evidence that cleavage of PABP may contribute to inhibition of host translation in infected HeLa cells, and they are consistent with the hypothesis that PABP plays a role in facilitating translation initiation in

  14. Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web

    PubMed Central

    Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.

    2014-01-01

    Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and

  15. Serine protease inhibitors containing a Kunitz domain: their role in modulation of host inflammatory responses and parasite survival.

    PubMed

    de Magalhães, Mariana T Q; Mambelli, Fábio S; Santos, Bruno P O; Morais, Suellen B; Oliveira, Sergio C

    2018-03-31

    Proteins containing a Kunitz domain have the typical serine protease inhibition function ranging from sea anemone to man. Protease inhibitors play major roles in infection, inflammation disorders and cancer. This review discusses the role of serine proteases containing a Kunitz domain in immunomodulation induced by helminth parasites. Helminth parasites are associated with protection from inflammatory conditions. Therefore, interest has raised whether worm parasites or their products hold potential as drugs for treatment of immunological disorders. Finally, we also propose the use of recombinant SmKI-1 from Schistosoma mansoni as a potential therapeutic molecule to treat inflammatory diseases. Copyright © 2018 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants.

    PubMed

    Robert, Stéphanie; Jutras, Philippe V; Khalf, Moustafa; D'Aoust, Marc-André; Goulet, Marie-Claire; Sainsbury, Frank; Michaud, Dominique

    2016-01-01

    We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.

  17. Differential Disruption of Nucleocytoplasmic Trafficking Pathways by Rhinovirus 2A Proteases

    PubMed Central

    Watters, Kelly; Inankur, Bahar; Gardiner, Jaye C.; Warrick, Jay; Sherer, Nathan M.; Yin, John

    2017-01-01

    ABSTRACT The RNA rhinoviruses (RV) encode 2A proteases (2Apro) that contribute essential polyprotein processing and host cell shutoff functions during infection, including the cleavage of Phe/Gly-containing nucleoporin proteins (Nups) within nuclear pore complexes (NPC). Within the 3 RV species, multiple divergent genotypes encode diverse 2Apro sequences that act differentially on specific Nups. Since only subsets of Phe/Gly motifs, particularly those within Nup62, Nup98, and Nup153, are recognized by transport receptors (karyopherins) when trafficking large molecular cargos through the NPC, the processing preferences of individual 2Apro predict RV genotype-specific targeting of NPC pathways and cargos. To test this idea, transformed HeLa cell lines were created with fluorescent cargos (mCherry) for the importin α/β, transportin 1, and transportin 3 import pathways and the Crm1-mediated export pathway. Live-cell imaging of single cells expressing recombinant RV 2Apro (A16, A45, B04, B14, B52, C02, and C15) showed disruption of each pathway with measurably different efficiencies and reaction rates. The B04 and B52 proteases preferentially targeted Nups in the import pathways, while B04 and C15 proteases were more effective against the export pathway. Virus-type-specific trends were also observed during infection of cells with A16, B04, B14, and B52 viruses or their chimeras, as measured by NF-κB (p65/Rel) translocation into the nucleus and the rates of virus-associated cytopathic effects. This study provides new tools for evaluating the host cell response to RV infections in real time and suggests that differential 2Apro activities explain, in part, strain-dependent host responses and diverse RV disease phenotypes. IMPORTANCE Genetic variation among human rhinovirus types includes unexpected diversity in the genes encoding viral proteases (2Apro) that help these viruses achieve antihost responses. When the enzyme activities of 7 different 2Apro were measured

  18. The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage.

    PubMed

    Pettit, Steven C; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H

    2003-01-01

    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.

  19. The Dimer Interfaces of Protease and Extra-Protease Domains Influence the Activation of Protease and the Specificity of GagPol Cleavage

    PubMed Central

    Pettit, Steven C.; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H.

    2003-01-01

    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation. PMID:12477841

  20. Characterization of cDNAs encoding serine proteases and their transcriptional responses to Cry1Ab protoxin in the gut of Ostrinia nubilalis larvae

    USDA-ARS?s Scientific Manuscript database

    Serine proteases, such as trypsin and chymotrypsin, are the primary digestive enzymes in lepidopteran larvae, and are also involved in Bacillus thuringiensis (Bt) protoxin activation and protoxin/toxin degradation. We isolated and sequenced 34 cDNAs putatively encoding trypsins, chymotrypsins and th...

  1. Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination.

    PubMed

    Lu, Haibin; Chandrasekar, Balakumaran; Oeljeklaus, Julian; Misas-Villamil, Johana C; Wang, Zheming; Shindo, Takayuki; Bogyo, Matthew; Kaiser, Markus; van der Hoorn, Renier A L

    2015-08-01

    Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we introduce fluorescence activity-based probes that specifically target three distinct cysteine protease subfamilies: aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes. We applied protease activity profiling with these new probes on Arabidopsis (Arabidopsis thaliana) protease knockout lines and agroinfiltrated leaves to identify the probe targets and on other plant species to demonstrate their broad applicability. These probes revealed that most commercially available protease inhibitors target unexpected proteases in plants. When applied on germinating seeds, these probes reveal dynamic activities of aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes, coinciding with the remobilization of seed storage proteins. © 2015 American Society of Plant Biologists. All Rights Reserved.

  2. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans.

    PubMed

    Pannkuk, Evan L; Risch, Thomas S; Savary, Brett J

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction.

  3. Isolation and Identification of an Extracellular Subtilisin-Like Serine Protease Secreted by the Bat Pathogen Pseudogymnoascus destructans

    PubMed Central

    Pannkuk, Evan L.; Risch, Thomas S.; Savary, Brett J.

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  4. Reaching the Melting Point: Degradative Enzymes and Protease Inhibitors Involved in Baculovirus Infection and Dissemination

    PubMed Central

    Ishimwe, Egide; Hodgson, Jeffrey J.; Clem, Rollie J.; Passarelli, A. Lorena

    2015-01-01

    Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in “melting” or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process. PMID:25724418

  5. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors

    PubMed Central

    Lopez, David; Ribeiro, Sébastien; Label, Philippe; Fumanal, Boris; Venisse, Jean-Stéphane; Kohler, Annegret; de Oliveira, Ricardo R.; Labutti, Kurt; Lipzen, Anna; Lail, Kathleen; Bauer, Diane; Ohm, Robin A.; Barry, Kerrie W.; Spatafora, Joseph; Grigoriev, Igor V.; Martin, Francis M.; Pujade-Renaud, Valérie

    2018-01-01

    Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector-based classification

  6. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors.

    PubMed

    Lopez, David; Ribeiro, Sébastien; Label, Philippe; Fumanal, Boris; Venisse, Jean-Stéphane; Kohler, Annegret; de Oliveira, Ricardo R; Labutti, Kurt; Lipzen, Anna; Lail, Kathleen; Bauer, Diane; Ohm, Robin A; Barry, Kerrie W; Spatafora, Joseph; Grigoriev, Igor V; Martin, Francis M; Pujade-Renaud, Valérie

    2018-01-01

    Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species ( Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca , and Botrosphaeria dothidea ) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  7. Genome-wide analysis of regulatory proteases sequences identified through bioinformatics data mining in Taenia solium.

    PubMed

    Yan, Hong-Bin; Lou, Zhong-Zi; Li, Li; Brindley, Paul J; Zheng, Yadong; Luo, Xuenong; Hou, Junling; Guo, Aijiang; Jia, Wan-Zhong; Cai, Xuepeng

    2014-06-04

    . Phylogenetic analysis using Bayes approach provided support for inferring functional divergence among regulatory cysteine and serine proteases. Numerous putative proteases were identified for the first time in T. solium, and important regulatory proteases have been predicted. This comprehensive analysis not only complements the growing knowledge base of proteolytic enzymes, but also provides a platform from which to expand knowledge of cestode proteases and to explore their biochemistry and potential as intervention targets.

  8. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    NASA Astrophysics Data System (ADS)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  9. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

    PubMed

    Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R

    2015-10-01

    Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs.

  10. Protease and Protease-Activated Receptor-2 Signaling in the Pathogenesis of Atopic Dermatitis

    PubMed Central

    Lee, Sang Eun; Jeong, Se Kyoo

    2010-01-01

    Proteases in the skin are essential to epidermal permeability barrier homeostasis. In addition to their direct proteolytic effects, certain proteases signal to cells by activating protease-activated receptors (PARs), the G-protein-coupled receptors. The expression of functional PAR-2 on human skin and its role in inflammation, pruritus, and skin barrier homeostasis have been demonstrated. Atopic dermatitis (AD) is a multifactorial inflammatory skin disease characterized by genetic barrier defects and allergic inflammation, which is sustained by gene-environmental interactions. Recent studies have revealed aberrant expression and activation of serine proteases and PAR-2 in the lesional skin of AD patients. The imbalance between proteases and protease inhibitors associated with genetic defects in the protease/protease inhibitor encoding genes, increase in skin surface pH, and exposure to proteolytically active allergens contribute to this aberrant protease/PAR-2 signaling in AD. The increased protease activity in AD leads to abnormal desquamation, degradation of lipid-processing enzymes and antimicrobial peptides, and activation of primary cytokines, thereby leading to permeability barrier dysfunction, inflammation, and defects in the antimicrobial barrier. Moreover, up-regulated proteases stimulate PAR-2 in lesional skin of AD and lead to the production of cytokines and chemokines involved in inflammation and immune responses, itching sensation, and sustained epidermal barrier perturbation with easier allergen penetration. In addition, PAR-2 is an important sensor for exogenous danger molecules, such as exogenous proteases from various allergens, and plays an important role in AD pathogenesis. Together, these findings suggest that protease activity or PAR-2 may be a future target for therapeutic intervention for the treatment of AD. PMID:20879045

  11. Inherent dynamics within the Crimean-Congo Hemorrhagic fever virus protease are localized to the same region as substrate interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenmesser, Elan Z.; Capodagli, Glenn; Armstrong, Geoffrey S.

    Crimean-Congo Hemorrhagic fever virus (CCHFV) is one of several lethal viruses that encodes for a viral ovarian tumor domain (vOTU), which serves to cleave and remove multiple proteins involved in cellular signaling such as ubiquitin (Ub) and interferon stimulated gene produce 15 (ISG15). Such manipulation of the host cell machinery serves to downregulate the host response and, therefore, complete characterization of these proteases is important. While several structures of the CCHFV vOTU protease have been solved, both free and bound to Ub and ISG15, few structural differences have been found and little insight has been gained as to the dynamicmore » plasticity of this protease. Therefore, we have used NMR relaxation experiments to probe the dynamics of CCHV vOTU, both alone and in complex with Ub, thereby discovering a highly dynamic protease that exhibits conformational exchange within the same regions found to engage its Ub substrate. These experiments reveal a structural plasticity around the N-terminal regions of CCHV vOTU, which are unique to vOTUs, and provide a rationale for engaging multiple substrates with the same binding site.« less

  12. Membrane protease degradomics: proteomic identification and quantification of cell surface protease substrates.

    PubMed

    Butler, Georgina S; Dean, Richard A; Smith, Derek; Overall, Christopher M

    2009-01-01

    The modification of cell surface proteins by plasma membrane and soluble proteases is important for physiological and pathological processes. Methods to identify shed and soluble substrates are crucial to further define the substrate repertoire, termed the substrate degradome, of individual proteases. Identifying protease substrates is essential to elucidate protease function and involvement in different homeostatic and disease pathways. This characterisation is also crucial for drug target identification and validation, which would then allow the rational design of specific targeted inhibitors for therapeutic intervention. We describe two methods for identifying and quantifying shed cell surface protease targets in cultured cells utilising Isotope-Coded Affinity Tags (ICAT) and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). As a model system to develop these techniques, we chose a cell-membrane expressed matrix metalloproteinase, MMP-14, but the concepts can be applied to proteases of other classes. By over-expression, or conversely inhibition, of a particular protease with careful selection of control conditions (e.g. vector or inactive protease) and differential labelling, shed proteins can be identified and quantified by mass spectrometry (MS), MS/MS fragmentation and database searching.

  13. Cleavage and Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by Human Airway Trypsin-Like Protease

    PubMed Central

    Bertram, Stephanie; Glowacka, Ilona; Müller, Marcel A.; Lavender, Hayley; Gnirss, Kerstin; Nehlmeier, Inga; Niemeyer, Daniela; He, Yuxian; Simmons, Graham; Drosten, Christian; Soilleux, Elizabeth J.; Jahn, Olaf; Steffen, Imke; Pöhlmann, Stefan

    2011-01-01

    The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients. PMID:21994442

  14. Identification and Partial Characterization of Extracellular Aspartic Protease Genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384

    PubMed Central

    Reid, Vernita J.; Theron, Louwrens W.; du Toit, Maret

    2012-01-01

    The extracellular acid proteases of non-Saccharomyces wine yeasts may fulfill a number of roles in winemaking, which include increasing the available nitrogen sources for the growth of fermentative microbes, affecting the aroma profile of the wine, and potentially reducing protein haze formation. These proteases, however, remain poorly characterized, especially at genetic level. In this study, two extracellular aspartic protease-encoding genes were identified and sequenced, from two yeast species of enological origin: one gene from Metschnikowia pulcherrima IWBT Y1123, named MpAPr1, and the other gene from Candida apicola IWBT Y1384, named CaAPr1. In silico analysis of these two genes revealed a number of features peculiar to aspartic protease genes, and both the MpAPr1 and CaAPr1 putative proteins showed homology to proteases of yeast genera. Heterologous expression of MpAPr1 in Saccharomyces cerevisiae YHUM272 confirmed that it encodes an aspartic protease. MpAPr1 production, which was shown to be constitutive, and secretion were confirmed in the presence of bovine serum albumin (BSA), casein, and grape juice proteins. The MpAPr1 gene was found to be present in 12 other M. pulcherrima strains; however, plate assays revealed that the intensity of protease activity was strain dependent and unrelated to the gene sequence. PMID:22820332

  15. Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and In Vitro.

    PubMed

    Parrell, Daniel; Zhang, Yang; Olenic, Sandra; Kroos, Lee

    2017-10-01

    RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli , we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli , including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His 6 -MBP-RsiW(73-118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His 6 -MBP-FtsL(23-117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL. IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are

  16. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor

    NASA Astrophysics Data System (ADS)

    Sakata, Kotaro; Hara, Mitsuko; Terada, Takaho; Watanabe, Noriyuki; Takaya, Daisuke; Yaguchi, So-Ichi; Matsumoto, Takehisa; Matsuura, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamaguchi, Tokio; Miyazawa, Keiji; Aizaki, Hideki; Suzuki, Tetsuro; Wakita, Takaji; Imoto, Masaya; Kojima, Soichi

    2013-11-01

    Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-β and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-β2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-β type I receptor (TβRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TβRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TβRI blocked the TGF-β mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-β2 and functions, at least in part, via directly binding to and activating TβRI, thereby enhancing liver fibrosis.

  17. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach.

    PubMed

    Opalińska, Magdalena; Parys, Katarzyna; Jańska, Hanna

    2017-11-18

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i -AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4's in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4's physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  18. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    PubMed Central

    Parys, Katarzyna; Jańska, Hanna

    2017-01-01

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4’s physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome. PMID:29156584

  19. Protease-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.

    2003-12-01

    Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.

  20. Characterization of active-site residues of the NIa protease from tobacco vein mottling virus.

    PubMed

    Hwang, D C; Kim, D H; Lee, J S; Kang, B H; Han, J; Kim, W; Song, B D; Choi, K Y

    2000-10-31

    Nuclear inclusion a (NIa) protease of tobacco vein mottling virus is responsible for the processing of the viral polyprotein into functional proteins. In order to identify the active-site residues of the TVMV NIa protease, the putative active-site residues, His-46, Asp-81 and Cys-151, were mutated individually to generate H46R, H46A, D81E, D81N, C151S, and C151A, and their mutational effects on the proteolytic activities were examined. Proteolytic activity was completely abolished by the mutations of H46R, H46A, D81N, and C151A, suggesting that the three residues are crucial for catalysis. The mutation of D81E decreased kcat marginally by about 4.7-fold and increased Km by about 8-fold, suggesting that the aspartic acid at position 81 is important for substrate binding but can be substituted by glutamate without any significant decrease in catalysis. The replacement of Cys-151 by Ser to mimic the catalytic triad of chymotrypsin-like serine protease resulted in the drastic decrease in kcat by about 1,260-fold. This result might be due to the difference of the active-site geometry between the NIa protease and chymotrypsin. The protease exhibited a bell-shaped pH-dependent profile with a maximum activity approximately at pH 8.3 and with the abrupt changes at the respective pKa values of approximately 6.6 and 9.2, implying the involvement of a histidine residue in catalysis. Taken together, these results demonstrate that the three residues, His-46, Asp-81, and Cys-151, play a crucial role in catalysis of the TVMV NIa protease.

  1. Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Ivarsson, Magnus; Neubeck, Anna; Broman, Curt; Henkel, Herbert; Holm, Nils G.

    2010-07-01

    Impact-generated hydrothermal systems are commonly proposed as good candidates for hosting primitive life on early Earth and Mars. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is rarely reported in the literature. Here we present the occurrence of putative fossil microorganisms in a hydrothermal system of the 89 Ma Dellen impact structure, Sweden. We found the putative fossilized microorganisms hosted in a fine-grained matrix of hydrothermal alteration minerals set in interlinked fractures of an impact breccia. The putative fossils appear as semi-straight to twirled filaments, with a thickness of 1-2 μm, and a length between 10 and 100 μm. They have an internal structure with segmentation, and branching of filaments occurs frequently. Their composition varies between an outer and an inner layer of a filament, where the inner layer is more iron rich. Our results indicate that hydrothermal systems in impact craters could potentially be capable of supporting microbial life. This could have played an important role for the evolution of life on early Earth and Mars.

  2. Human eosinophils constitutively express a unique serine protease, PRSS33.

    PubMed

    Toyama, Sumika; Okada, Naoko; Matsuda, Akio; Morita, Hideaki; Saito, Hirohisa; Fujisawa, Takao; Nakae, Susumu; Karasuyama, Hajime; Matsumoto, Kenji

    2017-07-01

    Eosinophils play important roles in asthma, especially airway remodeling, by producing various granule proteins, chemical mediators, cytokines, chemokines and proteases. However, protease production by eosinophils is not fully understood. In the present study, we investigated the production of eosinophil-specific proteases/proteinases by transcriptome analysis. Human eosinophils and other cells were purified from peripheral blood by density gradient sedimentation and negative/positive selections using immunomagnetic beads. Protease/proteinase expression in eosinophils and release into the supernatant were evaluated by microarray analysis, qPCR, ELISA, flow cytometry and immunofluorescence staining before and after stimulation with eosinophil-activating cytokines and secretagogues. mRNAs for extracellular matrix proteins in human normal fibroblasts were measured by qPCR after exposure to recombinant protease serine 33 (PRSS33) protein (rPRSS33), created with a baculovirus system. Human eosinophils expressed relatively high levels of mRNA for metalloproteinase 25 (MMP25), a disintegrin and metalloprotease 8 (ADAM8), ADAM10, ADAM19 and PRSS33. Expression of PRSS33 was the highest and eosinophil-specific. PRSS33 mRNA expression was not affected by eosinophil-activating cytokines. Immunofluorescence staining showed that PRSS33 was co-localized with an eosinophil granule protein. PRSS33 was not detected in the culture supernatant of eosinophils even after stimulation with secretagogues, but its cell surface expression was increased. rPRSS33 stimulation of human fibroblasts increased expression of collagen and fibronectin mRNAs, at least in part via protease-activated receptor-2 activation. Activated eosinophils may induce fibroblast extracellular matrix protein synthesis via cell surface expression of PRSS33, which would at least partly explain eosinophils' role(s) in airway remodeling. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier

  3. Serine protease-mediated host invasion by the parasitic nematode Steinernema carpocapsae.

    PubMed

    Toubarro, Duarte; Lucena-Robles, Miguel; Nascimento, Gisela; Santos, Romana; Montiel, Rafael; Veríssimo, Paula; Pires, Euclides; Faro, Carlos; Coelho, Ana V; Simões, Nelson

    2010-10-01

    Steinernema carpocapsae is an insect parasitic nematode used in biological control, which infects insects penetrating by mouth and anus and invading the hemocoelium through the midgut wall. Invasion has been described as a key factor in nematode virulence and suggested to be mediated by proteases. A serine protease cDNA from the parasitic stage was sequenced (sc-sp-1); the recombinant protein was produced in an Escherichia coli system, and a native protein was purified from the secreted products. Both proteins were confirmed by mass spectrometry to be encoded by the sc-sp-1 gene. Sc-SP-1 has a pI of 8.7, a molecular mass of 27.3 kDa, a catalytic efficiency of 22.2 × 10(4) s(-1) m(-1) against N-succinyl-Ala-Ala-Pro-Phe-pNA, and is inhibited by chymostatin (IC 0.07) and PMSF (IC 0.73). Sc-SP-1 belongs to the chymotrypsin family, based on sequence and biochemical analysis. Only the nematode parasitic stage expressed sc-sp-1. These nematodes in the midgut lumen, prepared to invade the insect hemocoelium, expressed higher levels than those already in the hemocoelium. Moreover, parasitic nematode sense insect peritrophic membrane and hemolymph more quickly than they do other tissues, which initiates sc-sp-1 expression. Ex vivo, Sc-SP-1 was able to bind to insect midgut epithelium and to cause cell detachment from basal lamina. In vitro, Sc-SP-1 formed holes in an artificial membrane model (Matrigel), whereas Sc-SP-1 treated with PMSF did not, very likely because it hydrolyzes matrix glycoproteins. These findings highlight the S. carpocapsae-invasive process that is a key step in the parasitism thus opening new perspectives for improving nematode virulence to use in biological control.

  4. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases.

    PubMed

    Massberg, Steffen; Grahl, Lenka; von Bruehl, Marie-Luise; Manukyan, Davit; Pfeiler, Susanne; Goosmann, Christian; Brinkmann, Volker; Lorenz, Michael; Bidzhekov, Kiril; Khandagale, Avinash B; Konrad, Ildiko; Kennerknecht, Elisabeth; Reges, Katja; Holdenrieder, Stefan; Braun, Siegmund; Reinhardt, Christoph; Spannagl, Michael; Preissner, Klaus T; Engelmann, Bernd

    2010-08-01

    Blood neutrophils provide the first line of defense against pathogens but have also been implicated in thrombotic processes. This dual function of neutrophils could reflect an evolutionarily conserved association between blood coagulation and antimicrobial defense, although the molecular determinants and in vivo significance of this association remain unclear. Here we show that major microbicidal effectors of neutrophils, the serine proteases neutrophil elastase and cathepsin G, together with externalized nucleosomes, promote coagulation and intravascular thrombus growth in vivo. The serine proteases and extracellular nucleosomes enhance tissue factor- and factor XII-dependent coagulation in a process involving local proteolysis of the coagulation suppressor tissue factor pathway inhibitor. During systemic infection, activation of coagulation fosters compartmentalization of bacteria in liver microvessels and reduces bacterial invasion into tissue. In the absence of a pathogen challenge, neutrophil-derived serine proteases and nucleosomes can contribute to large-vessel thrombosis, the main trigger of myocardial infarction and stroke. The ability of coagulation to suppress pathogen dissemination indicates that microvessel thrombosis represents a physiological tool of host defense.

  5. Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri.

    PubMed

    Martínez-Castillo, Moisés; Ramírez-Rico, Gerardo; Serrano-Luna, Jesús; Shibayama, Mineko

    2015-01-01

    Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium) from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C) employing conditioned medium (CM) and total crude extracts (TCEs) of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system.

  6. Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri

    PubMed Central

    Ramírez-Rico, Gerardo; Serrano-Luna, Jesús; Shibayama, Mineko

    2015-01-01

    Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium) from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C) employing conditioned medium (CM) and total crude extracts (TCEs) of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system. PMID:26090408

  7. A Cysteine Protease Is Critical for Babesia spp. Transmission in Haemaphysalis Ticks

    PubMed Central

    Tsuji, Naotoshi; Miyoshi, Takeharu; Battsetseg, Badger; Matsuo, Tomohide; Xuan, Xuenan; Fujisaki, Kozo

    2008-01-01

    Vector ticks possess a unique system that enables them to digest large amounts of host blood and to transmit various animal and human pathogens, suggesting the existence of evolutionally acquired proteolytic mechanisms. We report here the molecular and reverse genetic characterization of a multifunctional cysteine protease, longipain, from the babesial parasite vector tick Haemaphysalis longicornis. Longipain shares structural similarity with papain-family cysteine proteases obtained from invertebrates and vertebrates. Endogenous longipain was mainly expressed in the midgut epithelium and was specifically localized at lysosomal vacuoles and possibly released into the lumen. Its expression was up-regulated by host blood feeding. Enzymatic functional assays using in vitro and in vivo substrates revealed that longipain hydrolysis occurs over a broad range of pH and temperature. Haemoparasiticidal assays showed that longipain dose-dependently killed tick-borne Babesia parasites, and its babesiacidal effect occurred via specific adherence to the parasite membranes. Disruption of endogenous longipain by RNA interference revealed that longipain is involved in the digestion of the host blood meal. In addition, the knockdown ticks contained an increased number of parasites, suggesting that longipain exerts a killing effect against the midgut-stage Babesia parasites in ticks. Our results suggest that longipain is essential for tick survival, and may have a role in controlling the transmission of tick-transmittable Babesia parasites. PMID:18483546

  8. Hepatitis C Virus NS3/4A Protease Inhibitors: A Light at the End of the Tunnel

    PubMed Central

    Chatel-Chaix, Laurent; Baril, Martin; Lamarre, Daniel

    2010-01-01

    Hepatitis C virus (HCV) infection is a serious and growing threat to human health. The current treatment provides limited efficacy and is poorly tolerated, highlighting the urgent medical need for novel therapeutics. The membrane-targeted NS3 protein in complex with the NS4A comprises a serine protease domain (NS3/4A protease) that is essential for viral polyprotein maturation and contributes to the evasion of the host innate antiviral immunity by HCV. Therefore, the NS3/4A protease represents an attractive target for drug discovery, which is tied in with the challenge to develop selective small-molecule inhibitors. A rational drug design approach, based on the discovery of N-terminus product inhibition, led to the identification of potent and orally bioavailable NS3 inhibitors that target the highly conserved protease active site. This review summarizes the NS3 protease inhibitors currently challenged in clinical trials as one of the most promising antiviral drug class, and possibly among the first anti-HCV agents to be approved for the treatment of HCV infection. PMID:21994705

  9. Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma antarctica PI12

    PubMed Central

    Ahmad Mazian, Mu'adz; Salleh, Abu Bakar; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abd.

    2014-01-01

    Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE) strategy with an open reading frame (ORF) of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity) and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX) promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml) was obtained from P. pastoris GS115 host (GpPro2) at 20°C after 72 hours of postinduction time with 0.5% (v/v) of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa. PMID:25093119

  10. Proteases and protease inhibitors of urinary extracellular vesicles in diabetic nephropathy.

    PubMed

    Musante, Luca; Tataruch, Dorota; Gu, Dongfeng; Liu, Xinyu; Forsblom, Carol; Groop, Per-Henrik; Holthofer, Harry

    2015-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM), leads to chronic kidney disease (CKD), and, ultimately, is the main cause for end-stage kidney disease (ESKD). Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs) have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL) in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes.

  11. Proteases and Protease Inhibitors of Urinary Extracellular Vesicles in Diabetic Nephropathy

    PubMed Central

    Tataruch, Dorota; Gu, Dongfeng; Liu, Xinyu; Forsblom, Carol; Groop, Per-Henrik; Holthofer, Harry

    2015-01-01

    Diabetic nephropathy (DN) is one of the major complications of diabetes mellitus (DM), leads to chronic kidney disease (CKD), and, ultimately, is the main cause for end-stage kidney disease (ESKD). Beyond urinary albumin, no reliable biomarkers are available for accurate early diagnostics. Urinary extracellular vesicles (UEVs) have recently emerged as an interesting source of diagnostic and prognostic disease biomarkers. Here we used a protease and respective protease inhibitor array to profile urines of type 1 diabetes patients at different stages of kidney involvement. Urine samples were divided into groups based on the level of albuminuria and UEVs isolated by hydrostatic dialysis and screened for relative changes of 34 different proteases and 32 protease inhibitors, respectively. Interestingly, myeloblastin and its natural inhibitor elafin showed an increase in the normo- and microalbuminuric groups. Similarly, a characteristic pattern was observed in the array of protease inhibitors, with a marked increase of cystatin B, natural inhibitor of cathepsins L, H, and B as well as of neutrophil gelatinase-associated Lipocalin (NGAL) in the normoalbuminuric group. This study shows for the first time the distinctive alterations in comprehensive protease profiles of UEVs in diabetic nephropathy and uncovers intriguing mechanistic, prognostic, and diagnostic features of kidney damage in diabetes. PMID:25874235

  12. Expression profiles of putative defence-related proteins in oil palm (Elaeis guineensis) colonized by Ganoderma boninense.

    PubMed

    Tan, Yung-Chie; Yeoh, Keat-Ai; Wong, Mui-Yun; Ho, Chai-Ling

    2013-11-01

    Basal stem rot (BSR) is a major disease of oil palm caused by a pathogenic fungus, Ganoderma boninense. However, the interaction between the host plant and its pathogen is not well characterized. To better understand the response of oil palm to G. boninense, transcript profiles of eleven putative defence-related genes from oil palm were measured by quantitative reverse-transcription (qRT)-PCR in the roots of oil palms treated with G. boninense from 3 to 12 weeks post infection (wpi). These transcripts encode putative Bowman-Birk serine protease inhibitors (EgBBI1 and 2), defensin (EgDFS), dehydrin (EgDHN), early methionine-labeled polypeptides (EgEMLP1 and 2), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), metallothionein-like protein (EgMT), pathogenesis-related-1 protein (EgPRP), and type 2 ribosome-inactivating protein (EgT2RIP). The transcript abundance of EgBBI2 increased in G. boninense-treated roots at 3 and 6wpi compared to those of controls; while the transcript abundance of EgBBI1, EgDFS, EgEMLP1, EgMT, and EgT2RIP increased in G. boninense-treated roots at 6 or 12wpi. Meanwhile, the gene expression of EgDHN was up-regulated at all three time points in G. boninense-treated roots. The expression profiles of the eleven transcripts were also studied in leaf samples upon inoculation of G. boninense and Trichoderma harzianum to identify potential biomarkers for early detection of BSR. Two candidate genes (EgEMLP1 and EgMT) that have different profiles in G. boninense-treated leaves compared to those infected by T. harzianum may have the potential to be developed as biomarkers for early detection of G. boninense infection. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. A serine protease inhibitor attenuates aldosterone-induced kidney injuries via the suppression of plasmin activity.

    PubMed

    Kakizoe, Yutaka; Miyasato, Yoshikazu; Onoue, Tomoaki; Nakagawa, Terumasa; Hayata, Manabu; Uchimura, Kohei; Morinaga, Jun; Mizumoto, Teruhiko; Adachi, Masataka; Miyoshi, Taku; Sakai, Yoshiki; Tomita, Kimio; Mukoyama, Masashi; Kitamura, Kenichiro

    2016-10-01

    Emerging evidence has suggested that aldosterone has direct deleterious effects on the kidney independently of its hemodynamic effects. However, the detailed mechanisms of these direct effects remain to be elucidated. We have previously reported that camostat mesilate (CM), a synthetic serine protease inhibitor, attenuated kidney injuries in Dahl salt-sensitive rats, remnant kidney rats, and unilateral ureteral obstruction rats, suggesting that some serine proteases would be involved in the pathogenesis of kidney injuries. The current study was conducted to investigate the roles of serine proteases and the beneficial effects of CM in aldosterone-related kidney injuries. We observed a serine protease that was activated by aldosterone/salt in rat kidney lysate, and identified it as plasmin with liquid chromatography-tandem mass spectrometry. Plasmin increased pro-fibrotic and inflammatory gene expressions in rat renal fibroblast cells. CM inhibited the protease activity of plasmin and suppressed cell injury markers induced by plasmin in the fibroblast cells. Furthermore, CM ameliorated glomerulosclerosis and interstitial fibrosis in the kidney of aldosterone/salt-treated rats. Our findings indicate that plasmin has important roles in kidney injuries that are induced by aldosterone/salt, and that serine protease inhibitor could provide a new strategy for the treatment of aldosterone-associated kidney diseases in humans. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. Identification of Proteases and Protease Inhibitors in Allergenic and Non-Allergenic Pollen.

    PubMed

    Höllbacher, Barbara; Schmitt, Armin O; Hofer, Heidi; Ferreira, Fatima; Lackner, Peter

    2017-06-05

    Pollen is one of the most common causes of allergy worldwide, making the study of their molecular composition crucial for the advancement of allergy research. Despite substantial efforts in this field, it is not yet clear why some plant pollens strongly provoke allergies while others do not. However, proteases and protease inhibitors from allergen sources are known to play an important role in the development of pollen allergies. In this study, we aim to uncover differences in the transcriptional pattern of proteases and protease inhibitors in Betula verrucosa and Pinus sylvestris pollen as models for high and low allergenic potential, respectively. We applied RNA sequencing to Betula verrucosa and Pinus sylvestris pollen. After de-novo assembly we derived general functional profiles of the protein coding transcripts. By utilization of domain based functional annotation we identified potential proteases and protease inhibitors and compared their expression in the two types of pollen. Functional profiles are highly similar between Betula verrucosa and Pinus sylvestris pollen. Both pollen contain proteases and inhibitors from 53 and 7 Pfam families, respectively. Some of the members comprised within those families are implicated in facilitating allergen entry, while others are known allergens themselves. Our work revealed several candidate proteins which, with further investigation, represent exciting new leads in elucidating the process behind allergic sensitization.

  15. The S-layer Associated Serine Protease Homolog PrtX Impacts Cell Surface-Mediated Microbe-Host Interactions of Lactobacillus acidophilus NCFM

    PubMed Central

    Johnson, Brant R.; O’Flaherty, Sarah; Goh, Yong Jun; Carroll, Ian; Barrangou, Rodolphe; Klaenhammer, Todd R.

    2017-01-01

    Health-promoting aspects attributed to probiotic microorganisms, including adhesion to intestinal epithelia and modulation of the host mucosal immune system, are mediated by proteins found on the bacterial cell surface. Notably, certain probiotic and commensal bacteria contain a surface (S-) layer as the outermost stratum of the cell wall. S-layers are non-covalently bound semi-porous, crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (SLPs). Recent evidence has shown that multiple proteins are non-covalently co-localized within the S-layer, designated S-layer associated proteins (SLAPs). In Lactobacillus acidophilus NCFM, SLP and SLAPs have been implicated in both mucosal immunomodulation and adhesion to the host intestinal epithelium. In this study, a S-layer associated serine protease homolog, PrtX (prtX, lba1578), was deleted from the chromosome of L. acidophilus NCFM. Compared to the parent strain, the PrtX-deficient strain (ΔprtX) demonstrated increased autoaggregation, an altered cellular morphology, and pleiotropic increases in adhesion to mucin and fibronectin, in vitro. Furthermore, ΔprtX demonstrated increased in vitro immune stimulation of IL-6, IL-12, and IL-10 compared to wild-type, when exposed to mouse dendritic cells. Finally, in vivo colonization of germ-free mice with ΔprtX led to an increase in epithelial barrier integrity. The absence of PrtX within the exoproteome of a ΔprtX strain caused morphological changes, resulting in a pleiotropic increase of the organisms’ immunomodulatory properties and interactions with some intestinal epithelial cell components. PMID:28713337

  16. Ebola virus host cell entry.

    PubMed

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  17. The SARS-Coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds

    PubMed Central

    Baez-Santos, Yahira M.; St. John, Sarah E.; Mesecar, Andrew D.

    2018-01-01

    Over ten years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8,500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series

  18. Efficient Cleavage of Ribosome-Associated Poly(A)-Binding Protein by Enterovirus 3C Protease

    PubMed Central

    Kuyumcu-Martinez, N. Muge; Joachims, Michelle; Lloyd, Richard E.

    2002-01-01

    Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2Apro) or 3C protease (3Cpro). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3Cpro is more efficient in cleaving PABP in ribosome-enriched fractions than 2Apro in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3Cpro-mediated cleavage and inhibits 2Apro-mediated cleavage. These results suggest that 3Cpro plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases. PMID:11836384

  19. Plasmepsin V licenses Plasmodium proteins for export into the host erythrocyte.

    PubMed

    Russo, Ilaria; Babbitt, Shalon; Muralidharan, Vasant; Butler, Tamira; Oksman, Anna; Goldberg, Daniel E

    2010-02-04

    During their intraerythrocytic development, malaria parasites export hundreds of proteins to remodel their host cell. Nutrient acquisition, cytoadherence and antigenic variation are among the key virulence functions effected by this erythrocyte takeover. Proteins destined for export are synthesized in the endoplasmic reticulum (ER) and cleaved at a conserved (PEXEL) motif, which allows translocation into the host cell via an ATP-driven translocon called the PTEX complex. We report that plasmepsin V, an ER aspartic protease with distant homology to the mammalian processing enzyme BACE, recognizes the PEXEL motif and cleaves it at the correct site. This enzyme is essential for parasite viability and ER residence is essential for its function. We propose that plasmepsin V is the PEXEL protease and is an attractive enzyme for antimalarial drug development.

  20. Protease expression by microorganisms and its relevance to crucial physiological/pathological events.

    PubMed

    Dos Santos, André Luis Souza

    2011-03-26

    The treatment of infections caused by fungi and trypanosomatids is difficult due to the eukaryotic nature of these microbial cells, which are similar in several biochemical and genetic aspects to host cells. Aggravating this scenario, very few antifungal and anti-trypanosomatidal agents are in clinical use and, therefore, therapy is limited by drug safety considerations and their narrow spectrum of activity, efficacy and resistance. The search for new bioactive agents against fungi and trypanosomatids has been expanded because progress in biochemistry and molecular biology has led to a better understanding of important and essential pathways in these microorganisms including nutrition, growth, proliferation, signaling, differentiation and death. In this context, proteolytic enzymes produced by these eukaryotic microorganisms are appointed and, in some cases, proven to be excellent targets for searching novel natural and/or synthetic pharmacological compounds, in order to cure or prevent invasive fungal/trypanosomatid diseases. With this task in mind, our research group and others have focused on aspartic-type proteases, since the activity of this class of hydrolytic enzymes is directly implicated in several facets of basic biological processes of both fungal and trypanosomatid cells as well as due to the participation in numerous events of interaction between these microorganisms and host structures. In the present paper, a concise revision of the beneficial effects of aspartic protease inhibitors, with emphasis on the aspartic protease inhibitors used in the anti-human immunodeficiency virus therapy, will be presented and discussed using our experience with the following microbial models: the yeast Candida albicans, the filamentous fungus Fonsecaea pedrosoi and the protozoan trypanosomatid Leishmania amazonensis.

  1. HupW Protease Specifically Required for Processing of the Catalytic Subunit of the Uptake Hydrogenase in the Cyanobacterium Nostoc sp. Strain PCC 7120

    PubMed Central

    Lindberg, Pia; Devine, Ellenor; Stensjö, Karin

    2012-01-01

    The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium. PMID:22020512

  2. Structure Determination of Mycobacterium tuberculosis Serine Protease Hip1 (Rv2224c).

    PubMed

    Naffin-Olivos, Jacqueline L; Daab, Andrew; White, Andre; Goldfarb, Nathan E; Milne, Amy C; Liu, Dali; Baikovitz, Jacqueline; Dunn, Ben M; Rengarajan, Jyothi; Petsko, Gregory A; Ringe, Dagmar

    2017-05-02

    The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serine protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity.

  3. Structural Evidence for Regulation and Specificity of Flaviviral Proteases and Evolution of the Flaviviridae Fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleshin,A.; Shiryaev, S.; Strongin, A.

    2007-01-01

    Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein precursor within the host cell, a process that is required for viral replication. Here, we report the crystal structure of WNV NS2B-NS3pro both in a substrate-free form and in complex with the trypsin inhibitor aprotinin/BPTI. We show that aprotinin binds in a substrate-mimetic fashion in which the productive conformation of the protease is fully formed, providing evidence for an 'induced fit' mechanism of catalysis andmore » allowing us to rationalize the distinct substrate specificities of WNV and DV proteases. We also show that the NS2B cofactor of WNV can adopt two very distinct conformations and that this is likely to be a general feature of flaviviral proteases, providing further opportunities for regulation. Finally, by comparing the flaviviral proteases with the more distantly related Hepatitis C virus, we provide insights into the evolution of the Flaviviridae fold. Our work should expedite the design of protease inhibitors to treat a range of flaviviral infections.« less

  4. Proteases in doping control analysis.

    PubMed

    Thevis, M; Maurer, J; Kohler, M; Geyer, H; Schänzer, W

    2007-07-01

    Urine manipulation in sports drug testing has become a serious problem for doping control laboratories, and recent scandals in elite endurance sports have revealed the problem of urine manipulation presumably using proteases, which will impede the detection of drugs such as erythropoietin (EPO) or other peptide hormones. Using commonly accepted analytical strategies, a protocol was developed enabling the determination of elevated protease activities in doping control specimens followed by the visualization of protein degradation and identification of proteases such as chymotrypsin, trypsin and papain. Therefore, protease detection kits based on fluorescein isothiocyanate-labeled casein were employed, and protease concentrations greater than 15 microg/mL of urine entailed subsequent 1-dimensional gel electrophoretic visualization of urinary proteins. The presence of 20 microg of proteases per mL of urine caused a complete degradation of proteins usually observed in urinary matrices ("trace of burning"), while respective proteases were still detected in spiked urine samples after 10 days of storage at + 4 and - 20 degrees C. Identification of target proteases at respective molecular weights was accomplished using bottom-up sequencing approaches based on in-gel digestion of separated enzymes followed by capillary liquid chromatography--Orbitrap tandem mass spectrometry.

  5. Transcriptional activation of a 37 kDa ethylene responsive cysteine protease gene, RbCP1, is associated with protein degradation during petal abscission in rose

    PubMed Central

    Tripathi, Siddharth Kaushal; Singh, Amar Pal; Sane, Aniruddha P.; Nath, Pravendra

    2009-01-01

    Cysteine proteases play an important role in several developmental processes in plants, particularly those related to senescence and cell death. A cysteine protease gene, RbCP1, has been identified that encodes a putative protein of 357 amino acids and is expressed in the abscission zone (AZ) of petals in rose. The gene was responsive to ethylene in petals, petal abscission zones, leaves, and thalamus. The expression of RbCP1 increased during both ethylene-induced as well as natural abscission and was inhibited by 1-MCP. Transcript accumulation of RbCP1 was accompanied by the appearance of a 37 kDa cysteine protease, a concomitant increase in protease activity and a substantial decrease in total protein content in the AZ of petals. Agro-injection of rose petals with a 2.0 kb region upstream of the RbCP1 gene could drive GUS expression in an abscission zone-specific manner and was blocked by 1-MCP. It is concluded that petal abscission is associated with a decrease in total protein content resulting from rapid transcription of RbCP1 and the expression of a 37 kDa protease. PMID:19346241

  6. A novel extracellular metallopeptidase domain shared by animal host-associated mutualistic and pathogenic microbes.

    PubMed

    Nakjang, Sirintra; Ndeh, Didier A; Wipat, Anil; Bolam, David N; Hirt, Robert P

    2012-01-01

    The mucosal microbiota is recognised as an important factor for our health, with many disease states linked to imbalances in the normal community structure. Hence, there is considerable interest in identifying the molecular basis of human-microbe interactions. In this work we investigated the capacity of microbes to thrive on mucosal surfaces, either as mutualists, commensals or pathogens, using comparative genomics to identify co-occurring molecular traits. We identified a novel domain we named M60-like/PF13402 (new Pfam entry PF13402), which was detected mainly among proteins from animal host mucosa-associated prokaryotic and eukaryotic microbes ranging from mutualists to pathogens. Lateral gene transfers between distantly related microbes explained their shared M60-like/PF13402 domain. The novel domain is characterised by a zinc-metallopeptidase-like motif and is distantly related to known viral enhancin zinc-metallopeptidases. Signal peptides and/or cell surface anchoring features were detected in most microbial M60-like/PF13402 domain-containing proteins, indicating that these proteins target an extracellular substrate. A significant subset of these putative peptidases was further characterised by the presence of associated domains belonging to carbohydrate-binding module family 5/12, 32 and 51 and other glycan-binding domains, suggesting that these novel proteases are targeted to complex glycoproteins such as mucins. An in vitro mucinase assay demonstrated degradation of mammalian mucins by a recombinant form of an M60-like/PF13402-containing protein from the gut mutualist Bacteroides thetaiotaomicron. This study reveals that M60-like domains are peptidases targeting host glycoproteins. These peptidases likely play an important role in successful colonisation of both vertebrate mucosal surfaces and the invertebrate digestive tract by both mutualistic and pathogenic microbes. Moreover, 141 entries across various peptidase families described in the MEROPS

  7. Transcriptional and proteomic analysis of the Aspergillus fumigatus ΔprtT protease-deficient mutant.

    PubMed

    Hagag, Shelly; Kubitschek-Barreira, Paula; Neves, Gabriela W P; Amar, David; Nierman, William; Shalit, Itamar; Shamir, Ron; Lopes-Bezerra, Leila; Osherov, Nir

    2012-01-01

    Aspergillus fumigatus is the most common opportunistic mold pathogen of humans, infecting immunocompromised patients. The fungus invades the lungs and other organs, causing severe damage. Penetration of the pulmonary epithelium is a key step in the infectious process. A. fumigatus produces extracellular proteases to degrade the host structural barriers. The A. fumigatus transcription factor PrtT controls the expression of multiple secreted proteases. PrtT shows similarity to the fungal Gal4-type Zn(2)-Cys(6) DNA-binding domain of several transcription factors. In this work, we further investigate the function of this transcription factor by performing a transcriptional and a proteomic analysis of the ΔprtT mutant. Unexpectedly, microarray analysis revealed that in addition to the expected decrease in protease expression, expression of genes involved in iron uptake and ergosterol synthesis was dramatically decreased in the ΔprtT mutant. A second finding of interest is that deletion of prtT resulted in the upregulation of four secondary metabolite clusters, including genes for the biosynthesis of toxic pseurotin A. Proteomic analysis identified reduced levels of three secreted proteases (ALP1 protease, TppA, AFUA_2G01250) and increased levels of three secreted polysaccharide-degrading enzymes in the ΔprtT mutant possibly in response to its inability to derive sufficient nourishment from protein breakdown. This report highlights the complexity of gene regulation by PrtT, and suggests a potential novel link between the regulation of protease secretion and the control of iron uptake, ergosterol biosynthesis and secondary metabolite production in A. fumigatus.

  8. Serine proteases SP1 and SP13 mediate the melanization response of Asian corn borer, Ostrinia furnacalis, against entomopathogenic fungus Beauveria bassiana.

    PubMed

    Chu, Yuan; Liu, Yang; Shen, Dongxu; Hong, Fang; Wang, Guirong; An, Chunju

    2015-06-01

    Exposure to entomopathogenic fungi is one approach for insect pest control. Little is known about the immune interactions between fungus and its insect host. Melanization is a prominent immune response in insects in defending against pathogens such as bacteria and fungi. Clip domain serine proteases in insect plasma have been implicated in the activation of prophenoloxidase, a key enzyme in the melanization. The relationship between host melanization and the infection by a fungus needs to be established. We report here that the injection of entomopathogenic fungus Beauveria bassiana induced both melanin synthesis and phenoloxidase activity in its host insect, the Asian corn borer, Ostrinia furnacalis (Guenée). qRT-PCR analysis showed several distinct patterns of expression of 13 clip-domain serine proteases in response to the challenge of fungi, with seven increased, two decreased, and four unchanged. Of special interest among these clip-domain serine protease genes are SP1 and SP13, the orthologs of Manduca sexta HP6 and PAP1 which are involved in the prophenoloxidase activation pathway. Recombinant O. furnacalis SP1 was found to activate proSP13 and induce the phenoloxidase activity in corn borer plasma. Additionally, SP13 was determined to directly cleave prophenoloxidase and therefore act as the prophenoloxidase activating protease. Our work thus reveals a biochemical mechanism in the melanization in corn borer associated with the challenge by B. bassiana injection. These insights could provide valuable information for better understanding the immune responses of Asian corn borer against B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Benko, Zsigmond; Elder, Robert T; Li, Ge; Liang, Dong; Zhao, Richard Y

    2016-01-01

    HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.

  10. Multiple roles of the coagulation protease cascade during virus infection.

    PubMed

    Antoniak, Silvio; Mackman, Nigel

    2014-04-24

    The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.

  11. Detection of protease and protease activity using a single nanoscrescent SERS probe

    DOEpatents

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2013-01-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  12. Detection of protease and protease activity using a single nanocrescent SERS probe

    DOEpatents

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2015-09-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  13. Heterologous expression of an aspartic protease gene from biocontrol fungus Trichoderma asperellum in Pichia pastoris.

    PubMed

    Yang, Xiaoxue; Cong, Hua; Song, Jinzhu; Zhang, Junzheng

    2013-11-01

    Trichoderma asperellum parasitizes a large variety of phytopathogenic fungi. The mycoparasitic activity of T. asperellum depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall and proteases which are a group of enzymes capable of degrading proteins from host. In this study, a full-length cDNA clone of aspartic protease gene, TaAsp, from T. asperellum was obtained and sequenced. The 1,185 bp long cDNA sequence was predicted to encode a 395 amino acid polypeptide with molecular mass of 42.3 kDa. The cDNA of TaAsp was inserted into the pPIC9K vector and transformed into yeast Pichia pastoris GS115 for heterologous expression. A clearly visible band with molecular mass about 42 kDa in the SDS-PAGE gel indicated that the transformant harboring the gene TaAsp had been successfully translated in P. pastoris and produced a recombinant protein. Enzyme characterization test showed that the optimum fermentation time for P. pastoris GS115 transformant was 72 h. Enzyme activity of the recombinant aspartic proteinase remained relatively stable at 25-60 °C and pH 3.0-9.0, which indicated its good prospect of application in biocontrol. The optimal pH value and temperature of the enzyme activity were pH 4.0 and 40 °C, and under this condition, with casein as the substrate, the recombinant protease activity was 18.5 U mL(-1). In order to evaluate antagonistic activity of the recombinant protease against pathogenic fungi, five pathogenic fungi, Fusarium oxysporum, Alternaria alternata, Cytospora chrysosperma, Sclerotinia sclerotiorum and Rhizoctonia solani, were applied to the test of in vitro inhibition of their mycelial growth by culture supernatant of P. pastoris GS115 transformant.

  14. Structure Determination of Mycobacterium tuberculosis Serine Protease Hip1 (Rv2224c)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naffin-Olivos, Jacqueline L.; Daab, Andrew; White, Andre

    The Mycobacterium tuberculosis (Mtb) serine protease Hip1 (hydrolase important for pathogenesis; Rv2224c) promotes tuberculosis (TB) pathogenesis by impairing host immune responses through proteolysis of a protein substrate, Mtb GroEL2. The cell surface localization of Hip1 and its immunomodulatory functions make Hip1 a good drug target for new adjunctive immune therapies for TB. Here, we report the crystal structure of Hip1 to a resolution of 2.6 Å and the kinetic studies of the enzyme against model substrates and the protein GroEL2. The structure shows a two-domain protein, one of which contains the catalytic residues that are the signature of a serinemore » protease. Surprisingly, a threonine is located within the active site close enough to hydrogen bond with the catalytic residues Asp463 and His490. Mutation of this residue, Thr466, to alanine established its importance for function. Our studies provide insights into the structure of a member of a novel family of proteases. Knowledge of the Hip1 structure will aid in designing inhibitors that could block Hip1 activity« less

  15. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    PubMed

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  16. The purification and characterization of an 88-kDa Porphyromonas endodontalis 35406 protease.

    PubMed

    Rosen, G; Shoshani, M; Naor, R; Sela, M N

    2001-12-01

    A Porphyromonas endodontalis ATCC 35406 protease was purified from Triton X-114 cell extracts by preparative SDS-PAGE followed by electroelution. The purified enzyme exhibits a molecular size of 88 kDa and was dissociated into two polypeptides of 43 and 41 kDa upon heating in the presence of sodium dodecyl sulfate with or without a reducing agent. The protease (pH optimum 7.5-8.0) degraded the extracellular matrix proteins fibrinogen and fibronectin. Collagen IV was also degraded at 37 degrees C but not at 28 degrees C. The protease also cleaved the bioactive peptide angiotensin at amino acid residue phenylalanine-8 and tyrosine-4 but failed to hydrolyze bradykinin, vasopressin and synthetic chromogenic substrates with phenylalanine or tyrosine at the P1 position. In addition, two peptidases were detected in P. endodontalis cells: a proline aminopeptidase that remained associated with the cell pellet after detergent extraction and peptidase/s that partitioned into the Triton X-114 phase after phase separation and degraded the bioactive peptides bradykinin and vasopressin. These P. endodontalis peptidases and proteases may play an important role in both the nutrition and pathogenicity of these assacharolytic microorganisms. The inactivation of bioactive peptides and degradation of extracellular matrix proteins by bacterial enzymes may contribute to the damage of host tissues accompanied with endodontic infections.

  17. Novel Bioinformatics-Based Approach for Proteomic Biomarkers Prediction of Calpain-2 & Caspase-3 Protease Fragmentation: Application to βII-Spectrin Protein

    NASA Astrophysics Data System (ADS)

    El-Assaad, Atlal; Dawy, Zaher; Nemer, Georges; Kobeissy, Firas

    2017-01-01

    The crucial biological role of proteases has been visible with the development of degradomics discipline involved in the determination of the proteases/substrates resulting in breakdown-products (BDPs) that can be utilized as putative biomarkers associated with different biological-clinical significance. In the field of cancer biology, matrix metalloproteinases (MMPs) have shown to result in MMPs-generated protein BDPs that are indicative of malignant growth in cancer, while in the field of neural injury, calpain-2 and caspase-3 proteases generate BDPs fragments that are indicative of different neural cell death mechanisms in different injury scenarios. Advanced proteomic techniques have shown a remarkable progress in identifying these BDPs experimentally. In this work, we present a bioinformatics-based prediction method that identifies protease-associated BDPs with high precision and efficiency. The method utilizes state-of-the-art sequence matching and alignment algorithms. It starts by locating consensus sequence occurrences and their variants in any set of protein substrates, generating all fragments resulting from cleavage. The complexity exists in space O(mn) as well as in O(Nmn) time, where N, m, and n are the number of protein sequences, length of the consensus sequence, and length per protein sequence, respectively. Finally, the proposed methodology is validated against βII-spectrin protein, a brain injury validated biomarker.

  18. Cleavage Entropy as Quantitative Measure of Protease Specificity

    PubMed Central

    Fuchs, Julian E.; von Grafenstein, Susanne; Huber, Roland G.; Margreiter, Michael A.; Spitzer, Gudrun M.; Wallnoefer, Hannes G.; Liedl, Klaus R.

    2013-01-01

    A purely information theory-guided approach to quantitatively characterize protease specificity is established. We calculate an entropy value for each protease subpocket based on sequences of cleaved substrates extracted from the MEROPS database. We compare our results with known subpocket specificity profiles for individual proteases and protease groups (e.g. serine proteases, metallo proteases) and reflect them quantitatively. Summation of subpocket-wise cleavage entropy contributions yields a measure for overall protease substrate specificity. This total cleavage entropy allows ranking of different proteases with respect to their specificity, separating unspecific digestive enzymes showing high total cleavage entropy from specific proteases involved in signaling cascades. The development of a quantitative cleavage entropy score allows an unbiased comparison of subpocket-wise and overall protease specificity. Thus, it enables assessment of relative importance of physicochemical and structural descriptors in protease recognition. We present an exemplary application of cleavage entropy in tracing substrate specificity in protease evolution. This highlights the wide range of substrate promiscuity within homologue proteases and hence the heavy impact of a limited number of mutations on individual substrate specificity. PMID:23637583

  19. Proteases and the gut barrier.

    PubMed

    Biancheri, Paolo; Di Sabatino, Antonio; Corazza, Gino R; MacDonald, Thomas T

    2013-02-01

    Serine proteases, cysteine proteases, aspartic proteases and matrix metalloproteinases play an essential role in extracellular matrix remodeling and turnover through their proteolytic action on collagens, proteoglycans, fibronectin, elastin and laminin. Proteases can also act on chemokines, receptors and anti-microbial peptides, often potentiating their activity. The intestinal mucosa is the largest interface between the external environment and the tissues of the human body and is constantly exposed to proteolytic enzymes from many sources, including bacteria in the intestinal lumen, fibroblasts and immune cells in the lamina propria and enterocytes. Controlled proteolytic activity is crucial for the maintenance of gut immune homeostasis, for normal tissue turnover and for the integrity of the gut barrier. However, in intestinal immune-mediated disorders, pro-inflammatory cytokines induce the up-regulation of proteases, which become the end-stage effectors of mucosal damage by destroying the epithelium and basement membrane integrity and degrading the extracellular matrix of the lamina propria to produce ulcers. Protease-mediated barrier disruption in turn results in increased amounts of antigen crossing into the lamina propria, driving further immune responses and sustaining the inflammatory process.

  20. Proteolytic crosstalk in multi-protease networks

    NASA Astrophysics Data System (ADS)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  1. Proteases in Fas-mediated apoptosis.

    PubMed

    Zhivotovsky, B; Burgess, D H; Schlegel, J; Pörn, M I; Vanags, D; Orrenius, S

    1997-01-01

    Involvement of a unique family of cysteine proteases in the multistep apoptotic process has been documented. Cloning of several mammalian genes identifies some components of this cellular response. However, it is currently unclear which protease plays a role as a signal and/or effector of apoptosis. We summarize contributions to the data concerning proteases in Fas-mediated apoptosis.

  2. The Evolving Field of Biodefence: Therapeutic Developments and Diagnostics

    DTIC Science & Technology

    2005-04-01

    several ways. One method would be to interfere with the furin -medi- ated cleavage of PA to its active form (PA 63 ) following host-cell receptor binding4...b | The inactive form of protective antigen (PA83) binds to a host-cell receptor, where it is cleaved by a furin -related protease, to give active PA63...explore whether a putative target, such as furin cleavage site of Ebola virus, is essential for viral infection88. Compared with filoviruses, poxvirus

  3. Mast cell proteases as pharmacological targets

    PubMed Central

    Caughey, George H.

    2015-01-01

    Mast cells are rich in proteases, which are the major proteins of intracellular granules and are released with histamine and heparin by activated cells. Most of these proteases are active in the granule as well outside of the mast cell when secreted, and can cleave targets near degranulating mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, although human basophils are protease-deficient compared with their murine counterparts. The major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and anaphylaxis, but also include non-allergic diseases such inflammatory bowel disease, autoimmune arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies performed in mouse models suggest protective or homeostatic roles for specific proteases (or groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic inflammation. At the same time, a clearer picture has emerged of differences in the properties

  4. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice.

    PubMed

    Choi, Vivian M; Herrou, Julien; Hecht, Aaron L; Teoh, Wei Ping; Turner, Jerrold R; Crosson, Sean; Bubeck Wardenburg, Juliane

    2016-05-01

    Bacteroides fragilis is the leading cause of anaerobic bacteremia and sepsis. Enterotoxigenic strains that produce B. fragilis toxin (BFT, fragilysin) contribute to colitis and intestinal malignancy, yet are also isolated in bloodstream infection. It is not known whether these strains harbor unique genetic determinants that confer virulence in extra-intestinal disease. We demonstrate that BFT contributes to sepsis in mice, and we identify a B. fragilis protease called fragipain (Fpn) that is required for the endogenous activation of BFT through the removal of its auto-inhibitory prodomain. Structural analysis of Fpn reveals a His-Cys catalytic dyad that is characteristic of C11-family cysteine proteases that are conserved in multiple pathogenic Bacteroides spp. and Clostridium spp. Fpn-deficient, enterotoxigenic B. fragilis has an attenuated ability to induce sepsis in mice; however, Fpn is dispensable in B. fragilis colitis, wherein host proteases mediate BFT activation. Our findings define a role for B. fragilis enterotoxin and its activating protease in the pathogenesis of bloodstream infection, which indicates a greater complexity of cellular targeting and activity of BFT than previously recognized. The expression of fpn by both toxigenic and nontoxigenic strains suggests that this protease may contribute to anaerobic sepsis in ways that extend beyond its role in toxin activation. It could thus potentially serve as a target for disease modification.

  5. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease.

    PubMed

    Qamar, Tahir Ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy.

  6. Computer Aided Screening of Phytochemicals from Garcinia against the Dengue NS2B/NS3 Protease

    PubMed Central

    Qamar, Tahir ul; Mumtaz, Arooj; Ashfaq, Usman Ali; Azhar, Samia; Fatima, Tabeer; Hassan, Muhammad; Hussain, Syed Sajid; Akram, Waheed; Idrees, Sobia

    2014-01-01

    Dengue virus NS2/NS3 protease because of its ability to cleave viral proteins is considered as an attractive target to screen antiviral agents. Medicinal plants contain a variety of phytochemicals that can be used as drug against different diseases and infections. Therefore, this study was designed to uncover possible phytochemical of different classes (Aromatic, Carbohydrates, Lignin, Saponins, Steroids, Tannins, Terpenoids, Xanthones) that could be used as inhibitors against the NS2B/NS3 protease of DENV. With the help of molecular docking, Garcinia phytochemicals found to be bound deeply inside the active site of DENV NS2B/NS3 protease among all tested phytochemicals and had interactions with catalytic triad (His51, Asp75, Ser135). Thus, it can be concluded from the study that these Gracinia phytochemicals could serve as important inhibitors to inhibit the viral replication inside the host cell. Further in-vitro investigations require confirming their efficacy. PMID:24748749

  7. Poxvirus Host Range Genes and Virus–Host Spectrum: A Critical Review

    PubMed Central

    Oliveira, Graziele Pereira; Rodrigues, Rodrigo Araújo Lima; Lima, Maurício Teixeira; Drumond, Betânia Paiva; Abrahão, Jônatas Santos

    2017-01-01

    The Poxviridae family is comprised of double-stranded DNA viruses belonging to nucleocytoplasmic large DNA viruses (NCLDV). Among the NCLDV, poxviruses exhibit the widest known host range, which is likely observed because this viral family has been more heavily investigated. However, relative to each member of the Poxviridae family, the spectrum of the host is variable, where certain viruses can infect a large range of hosts, while others are restricted to only one host species. It has been suggested that the variability in host spectrum among poxviruses is linked with the presence or absence of some host range genes. Would it be possible to extrapolate the restriction of viral replication in a specific cell lineage to an animal, a far more complex organism? In this study, we compare and discuss the relationship between the host range of poxvirus species and the abundance/diversity of host range genes. We analyzed the sequences of 38 previously identified and putative homologs of poxvirus host range genes, and updated these data with deposited sequences of new poxvirus genomes. Overall, the term host range genes might not be the most appropriate for these genes, since no correlation between them and the viruses’ host spectrum was observed, and a change in nomenclature should be considered. Finally, we analyzed the evolutionary history of these genes, and reaffirmed the occurrence of horizontal gene transfer (HGT) for certain elements, as previously suggested. Considering the data presented in this study, it is not possible to associate the diversity of host range factors with the amount of hosts of known poxviruses, and this traditional nomenclature creates misunderstandings. PMID:29112165

  8. Activities of Vacuolar Cysteine Proteases in Plant Senescence.

    PubMed

    Martínez, Dana E; Costa, Lorenza; Guiamét, Juan José

    2018-01-01

    Plant senescence is accompanied by a marked increase in proteolytic activities, and cysteine proteases (Cys-protease) represent the prevailing class among the responsible proteases. Cys-proteases predominantly locate to lytic compartments, i.e., to the central vacuole (CV) and to senescence-associated vacuoles (SAVs), the latter being specific to the photosynthetic cells of senescing leaves. Cellular fractionation of vacuolar compartments may facilitate Cys-proteases purification and their concentration for further analysis. Active Cys-proteases may be analyzed by different, albeit complementary approaches: (1) in vivo examination of proteolytic activity by fluorescence microscopy using specific substrates which become fluorescent upon cleavage by Cys-proteases, (2) protease labeling with specific probes that react irreversibly with the active enzymes, and (3) zymography, whereby protease activities are detected in polyacrylamide gels copolymerized with a substrate for proteases. Here we describe the three methods mentioned above for detection of active Cys-proteases and a cellular fractionation technique to isolate SAVs.

  9. Emerging principles in protease-based drug discovery

    PubMed Central

    Drag, Marcin; Salvesen, Guy S.

    2010-01-01

    Proteases have an important role in many signalling pathways, and represent potential drug targets for diseases ranging from cardiovascular disorders to cancer, as well as for combating many parasites and viruses. Although inhibitors of well-established protease targets such as angiotensin-converting enzyme and HIV protease have shown substantial therapeutic success, developing drugs for new protease targets has proved challenging in recent years. This in part could be due to issues such as the difficulty of achieving selectivity when targeting protease active sites. This Perspective discusses the general principles in protease-based drug discovery, highlighting the lessons learned and the emerging strategies, such as targeting allosteric sites, which could help harness the therapeutic potential of new protease targets. PMID:20811381

  10. Diversity of Both the Cultivable Protease-Producing Bacteria and Bacterial Extracellular Proteases in the Coastal Sediments of King George Island, Antarctica

    PubMed Central

    Zhou, Ming-Yang; Wang, Guang-Long; Li, Dan; Zhao, Dian-Li; Qin, Qi-Long; Chen, Xiu-Lan; Chen, Bo; Zhou, Bai-Cheng; Zhang, Xi-Ying; Zhang, Yu-Zhong

    2013-01-01

    Protease-producing bacteria play a vital role in degrading sedimentary organic nitrogen. However, the diversity of these bacteria and their extracellular proteases in most regions remain unknown. In this paper, the diversity of the cultivable protease-producing bacteria and of bacterial extracellular proteases in the sediments of Maxwell Bay, King George Island, Antarctica was investigated. The cultivable protease-producing bacteria reached 105 cells/g in all 8 sediment samples. The cultivated protease-producing bacteria were mainly affiliated with the phyla Actinobacteria, Firmicutes, Bacteroidetes, and Proteobacteria, and the predominant genera were Bacillus (22.9%), Flavobacterium (21.0%) and Lacinutrix (16.2%). Among these strains, Pseudoalteromonas and Flavobacteria showed relatively high protease production. Inhibitor analysis showed that nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases. These results begin to address the diversity of protease-producing bacteria and bacterial extracellular proteases in the sediments of the Antarctic Sea. PMID:24223990

  11. A novel aspartic acid protease gene from pineapple fruit (Ananas comosus): cloning, characterization and relation to postharvest chilling stress resistance.

    PubMed

    Raimbault, Astrid-Kim; Zuily-Fodil, Yasmine; Soler, Alain; Cruz de Carvalho, Maria H

    2013-11-15

    A full-length cDNA encoding a putative aspartic acid protease (AcAP1) was isolated for the first time from the flesh of pineapple (Ananas comosus) fruit. The deduced sequence of AcAP1 showed all the common features of a typical plant aspartic protease phytepsin precursor. Analysis of AcAP1 gene expression under postharvest chilling treatment in two pineapple varieties differing in their resistance to blackheart development revealed opposite trends. The resistant variety showed an up-regulation of AcAP1 precursor gene expression whereas the susceptible showed a down-regulation in response to postharvest chilling treatment. The same trend was observed regarding specific AP enzyme activity in both varieties. Taken together our results support the involvement of AcAP1 in postharvest chilling stress resistance in pineapple fruits. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Cell entry by a novel European filovirus requires host endosomal cysteine proteases and Niemann-Pick C1

    PubMed Central

    Ng, Melinda; Ndungo, Esther; Jangra, Rohit K.; Cai, Yingyun; Postnikova, Elena; Radoshitzky, Sheli R.; Dye, John M.; de Arellano, Eva Ramírez; Negredo, Ana; Palacios, Gustavo; Kuhn, Jens H.; Chandran, Kartik

    2014-01-01

    Lloviu virus (LLOV), a phylogenetically divergent filovirus, is the proposed etiologic agent of die-offs of Schreiber’s long-fingered bats (Miniopterus schreibersii) in western Europe. Studies of LLOV remain limited because the infectious agent has not yet been isolated. Here, we generated a recombinant vesicular stomatitis virus expressing the LLOV spike glycoprotein (GP) and used it to show that LLOV GP resembles other filovirus GP proteins in structure and function. LLOV GP must be cleaved by endosomal cysteine proteases during entry, but is much more protease-sensitive than EBOV GP. The EBOV/MARV receptor, Niemann Pick C1 (NPC1), is also required for LLOV entry, and its second luminal domain is recognized with high affinity by a cleaved form of LLOV GP, suggesting that receptor binding would not impose a barrier to LLOV infection of humans and non-human primates. The use of NPC1 as an intracellular entry receptor may be a universal property of filoviruses. PMID:25310500

  13. Mechanisms Regulating the Degradation of Dentin Matrices by Endogenous Dentin Proteases and their Role in Dental Adhesion. A Review

    PubMed Central

    Sabatini, Camila; Pashley, David H.

    2015-01-01

    Purpose This systematic review provides an overview of the different mechanisms proposed to regulate the degradation of dentin matrices bye host-derived dentin proteases, particularly as it relates to their role in dental adhesion. Methods Significant developments have taken place over the last few years that have contributed to a better understanding of all the factors affecting the durability of adhesive resin restorations. The complexity of dentin-resin interfaces mandates a thorough understanding of all the mechanical, physical and biochemical aspects that play a role in the formation of hybrid layers. The ionic and hydrophilic nature of current dental adhesives yields permeable, unstable hybrid layers susceptible to water sorption, hydrolytic degradation and resin leaching. The hydrolytic activity of host-derived proteases also contributes to the degradation of the resin-dentin bonds. Preservation of the collagen matrix is critical to the improvement of resin-dentin bond durability. Approaches to regulate collagenolytic activity of dentin proteases have been the subject of extensive research in the last few years. A shift has occurred from the use of proteases inhibitors to the use of collagen cross-linking agents. Data provided by fifty-one studies published in peer-reviewed journals between January 1999 and December 2013 was compiled in this systematic review. Results Appraisal of the data provided by the studies included in the present review yielded a summary of the mechanisms which have already proven to be clinically successful and those which need further investigation before new clinical protocols can be adopted. PMID:25831604

  14. Diversity and transcription of proteases involved in the maturation of hydrogenases in Nostoc punctiforme ATCC 29133 and Nostoc sp. strain PCC 7120

    PubMed Central

    2009-01-01

    Background The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively. Results In order to examine these proteases in cyanobacteria, transcriptional analyses were performed of hupW in Nostoc punctiforme ATCC 29133 and hupW and hoxW in Nostoc sp. strain PCC 7120. These studies revealed numerous transcriptional start points together with putative binding sites for NtcA (hupW) and LexA (hoxW). In order to investigate the diversity and specificity among hydrogeanse specific proteases we constructed a phylogenetic tree which revealed several subgroups that showed a striking resemblance to the subgroups previously described for [NiFe]-hydrogenases. Additionally the proteases specificity was also addressed by amino acid sequence analysis and protein-protein docking experiments with 3D-models derived from bioinformatic studies. These studies revealed a so called "HOXBOX"; an amino acid sequence specific for protease of Hox-type which might be involved in docking with the large subunit of the hydrogenase. Conclusion Our findings suggest that the hydrogenase specific proteases are under similar regulatory control as the hydrogenases they cleave. The result from the phylogenetic study also indicates that the hydrogenase and the protease have co-evolved since ancient time and suggests that at least one major horizontal gene transfer has occurred. This co

  15. The aspartyl protease TgASP5 mediates the export of the Toxoplasma GRA16 and GRA24 effectors into host cells.

    PubMed

    Curt-Varesano, Aurélie; Braun, Laurence; Ranquet, Caroline; Hakimi, Mohamed-Ali; Bougdour, Alexandre

    2016-02-01

    Toxoplasma gondii and Plasmodium species are obligatory intracellular parasites that export proteins into the infected cells in order to interfere with host-signalling pathways, acquire nutrients or evade host defense mechanisms. With regard to export mechanism, a wealth of information in Plasmodium spp. is available, while the mechanisms operating in T. gondii remain uncertain. The recent discovery of exported proteins in T. gondii, mainly represented by dense granule resident proteins, might explain this discrepancy and offers a unique opportunity to study the export mechanism in T. gondii. Here, we report that GRA16 export is mediated by two protein elements present in its N-terminal region. Because the first element contains a putative Plasmodium export element linear motif (RRLAE), we hypothesized that GRA16 export depended on a maturation process involving protein cleavage. Using both N- and C-terminal epitope tags, we provide evidence for protein proteolysis occurring in the N-terminus of GRA16. We show that TgASP5, the T. gondii homolog of Plasmodium plasmepsin V, is essential for GRA16 export and is directly responsible for its maturation in a Plasmodium export element-dependent manner. Interestingly, TgASP5 is also involved in GRA24 export, although the GRA24 maturation mechanism is TgASP5-independent. Our data reveal different modus operandi for protein export, in which TgASP5 should play multiple functions. © 2015 John Wiley & Sons Ltd.

  16. Contrasting Diversity and Host Association of Ectomycorrhizal Basidiomycetes versus Root-Associated Ascomycetes in a Dipterocarp Rainforest

    PubMed Central

    Sato, Hirotoshi; Tanabe, Akifumi S.; Toju, Hirokazu

    2015-01-01

    Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota) in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) region and fungal internal transcribed spacer 2 (ITS2) region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity. PMID:25884708

  17. A study of proteases and protease-inhibitor complexes in biological fluids

    PubMed Central

    Granelli-Piperno, A; Reich, E

    1978-01-01

    We have (a) screened a variety of cell lines and body fluids for plasminogen activators and (b) studied the activity of proteases bound to α2- macroglobulin after exposing the complexes to partial degradation and/or denaturing procedures to unmask proteolytic activity. The respective results show (a) that the plasminogen activators in urine and cell culture media are generally of lower molecular weight than those in plasma; and (b) that proteases bound to α2-macroglobulin recover the ability to attack macromolecular substrates after exposure to sodium dodecyl sulfate while retaining the electrophoretic mobility of the protease inhibitor complex. This indicates that the protease and inhibitor are probably linked by covalent bonds. In contrast, other complexes formed between proteases and inhibitors of lower molecular weight (such as soybean or Kunitz inhibitors) are fully dissociated by sodium dodecyl sulfate (SDS). The experiments described were based on a new procedure for detecting proteolytic enzyme activity in SDS-polyacrylamide gels. The method relies on solutions of nonionic detergents for extracting SDS, after which the electrophoretic gel is applied to an indicator gel consisting of a fibrin- agar mixture. The method is sensitive, permitting the detection of proteinases in less than 1 μl of fresh plasma, and it is effective for resolving small differences in molecular weight. The procedure can be quantitated and, with minor modifications appropriate to each particular system, it has been applied to a broad spectrum of serine enzymes and proenzymes, including some that function in the pathways of fibrinolysis, coagulation and kinin-generation. Other potential applications appear likely. PMID:78958

  18. Arginine-specific gingipains from Porphyromonas gingivalis deprive protective functions of secretory leucocyte protease inhibitor in periodontal tissue

    PubMed Central

    Into, T; Inomata, M; Kanno, Y; Matsuyama, T; Machigashira, M; Izumi, Y; Imamura, T; Nakashima, M; Noguchi, T; Matsushita, K

    2006-01-01

    Chronic periodontitis is correlated with Porphyromonas gingivalis infection. In this study, we found that the expression of secretory leucocyte protease inhibitor (SLPI), an endogenous inhibitor for neutrophil-derived proteases, was reduced in gingival tissues with chronic periodontitis associated with P. gingivalis infection. The addition of vesicles of P. gingivalis decreased the amount of SLPI in the media of primary human gingival keratinocytes compared to untreated cultures. We therefore investigated how arginine-specific gingipains (Rgps) affect the functions of SLPI, because Rgps are the major virulence factors in the vesicles and cleave a wide range of in-host proteins. We found that Rgps digest SLPI in vitro, suppressing the release of SLPI. Rgps proteolysis of SLPI disrupted SLPI functions, which normally suppresses neutrophil elastase and neutralizes pro-inflammatory effects of bacterial cell wall compounds in cultured human gingival fibroblasts. The protease inhibitory action of SLPI was not exerted towards Rgps. These results suggest that Rgps reduce the protective effects of SLPI on neutrophil proteases and bacterial proinflammatory compounds, by which disease in gingival tissue may be accelerated at the sites with P. gingivalis infection. PMID:16907925

  19. Serpin1 and WSCP differentially regulate the activity of the cysteine protease RD21 during plant development in Arabidopsis thaliana

    PubMed Central

    Rustgi, Sachin; Boex-Fontvieille, Edouard; Reinbothe, Christiane; von Wettstein, Diter; Reinbothe, Steffen

    2017-01-01

    Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21’s activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening. PMID:28179567

  20. Serpin1 and WSCP differentially regulate the activity of the cysteine protease RD21 during plant development in Arabidopsis thaliana.

    PubMed

    Rustgi, Sachin; Boex-Fontvieille, Edouard; Reinbothe, Christiane; von Wettstein, Diter; Reinbothe, Steffen

    2017-02-28

    Proteolytic enzymes (proteases) participate in a vast range of physiological processes, ranging from nutrient digestion to blood coagulation, thrombosis, and beyond. In plants, proteases are implicated in host recognition and pathogen infection, induced defense (immunity), and the deterrence of insect pests. Because proteases irreversibly cleave peptide bonds of protein substrates, their activity must be tightly controlled in time and space. Here, we report an example of how nature evolved alternative mechanisms to fine-tune the activity of a cysteine protease dubbed RD21 (RESPONSIVE TO DESICCATION-21). One mechanism in the model plant Arabidopsis thaliana studied here comprises irreversible inhibition of RD21's activity by Serpin1, whereas the other mechanism is a result of the reversible inhibition of RD21 activity by a Kunitz protease inhibitor named water-soluble chlorophyll-binding protein (WSCP). Activity profiling, complex isolation, and homology modeling data revealed unique interactions of RD21 with Serpin1 and WSCP, respectively. Expression studies identified only partial overlaps in Serpin1 and WSCP accumulation that explain how RD21 contributes to the innate immunity of mature plants and arthropod deterrence of seedlings undergoing skotomorphogenesis and greening.

  1. Cross-species infection trials reveal cryptic parasite varieties and a putative polymorphism shared among host species.

    PubMed

    Luijckx, Pepijn; Duneau, David; Andras, Jason P; Ebert, Dieter

    2014-02-01

    A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  2. Extracellular HtrA serine proteases: An emerging new strategy in bacterial pathogenesis.

    PubMed

    Backert, Steffen; Bernegger, Sabine; Skórko-Glonek, Joanna; Wessler, Silja

    2018-03-26

    The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram-negative and Gram-positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell-to-cell junction factors including E-cadherin, occludin, and claudin-8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development. © 2018 John Wiley & Sons Ltd.

  3. The Lon protease homologue LonA, not LonC, contributes to the stress tolerance and biofilm formation of Actinobacillus pleuropneumoniae.

    PubMed

    Xie, Fang; Li, Gang; Zhang, Yanhe; Zhou, Long; Liu, Shuanghong; Liu, Siguo; Wang, Chunlai

    2016-04-01

    Lon proteases are a family of ATP-dependent proteases that are involved in the degradation of abnormal proteins in bacteria exposed to adverse environmental stress. An analysis of the genome sequence of Actinobacillus pleuropneumoniae revealed the unusual presence of two putative ATP-dependent Lon homologues, LonA and LonC. Sequence comparisons indicated that LonA has the classical domain organization of the LonA subfamily, which includes the N-terminal domain, central ATPase (AAA) domain, and C-terminal proteolytic (P) domain. LonC belongs to the recently classified LonC subfamily, which includes Lon proteases that contain neither the N-terminal domain of LonA nor the transmembrane region that is present only in LonB subfamily members. To investigate the roles of LonA and LonC in A. pleuropneumoniae, mutants with deletions in the lonA and lonC genes were constructed. The impaired growth of the △lonA mutant exposed to low and high temperatures and osmotic and oxidative stress conditions indicates that the LonA protease is required for the stress tolerance of A. pleuropneumoniae. Furthermore, the △lonA mutant exhibited significantly reduced biofilm formation compared to the wild-type strain. However, no significant differences in stress responses or biofilm formation were observed between the △lonC mutant and the wild-type strain. The △lonA mutant exhibited reduced colonization ability and attenuated virulence of A. pleuropneumoniae in the BALB/c mouse model compared to the wild-type strain. Disruption of lonC gene did not significantly influence the colonization and virulence of A. pleuropneumoniae. The data presented in this study illustrate that the LonA protease, but not the LonC protease, is required for the stress tolerance, biofilm formation and pathogenicity of A. pleuropneumoniae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes

    PubMed Central

    Hackett, Fiona; Atid, Jonathan; Tan, Michele Ser Ying

    2017-01-01

    Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization) or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture. PMID:28683142

  5. The IL-8 Protease SpyCEP/ScpC of Group A Streptococcus Promotes Resistance to Neutrophil Killing

    PubMed Central

    Zinkernagel, Annelies S.; Timmer, Anjuli M.; Pence, Morgan A.; Locke, Jeffrey B.; Buchanan, John T.; Turner, Claire E.; Mishalian, Inbal; Sriskandan, Shiranee; Hanski, Emanuel; Nizet, Victor

    2009-01-01

    SUMMARY Interleukin-8 (IL-8) promotes neutrophil-mediated host defense through its chemoattractant and immunostimulatory activities. The Group A Streptococcus (GAS) protease SpyCEP (also called ScpC) cleaves IL-8, and SpyCEP expression is strongly upregulated in vivo in the M1T1 GAS strains associated with life-threatening systemic disease including necrotizing fasciitis. Coupling allelic replacement with heterologous gene expression, we show that SpyCEP is necessary and sufficient for IL-8 degradation. SpyCEP decreased IL-8-dependent neutrophil endothelial transmigration and bacterial killing, the latter by reducing neutrophil extracellular trap formation. The knockout mutant lacking SpyCEP was attenuated for virulence in murine infection models, and SpyCEP expression conferred protection to coinfecting bacteria. We also show that the zoonotic pathogen Streptococcus iniae possesses a functional homolog of SpyCEP (Cepl) that cleaves IL-8, promotes neutrophil resistance, and contributes to virulence. By inactivating the multifunctional host defense peptide IL-8, the SpyCEP protease impairs neutrophil clearance mechanisms, contributing to the pathogenesis of invasive streptococcal infection. PMID:18692776

  6. Efficient expression systems for cysteine proteases of malaria parasites

    PubMed Central

    Sarduy, Emir Salas; de los A. Chávez Planes, María

    2013-01-01

    Papain-like cysteine proteases of malaria parasites are considered important chemotherapeutic targets or valuable models for the evaluation of drug candidates. Consequently, many of these enzymes have been cloned and expressed in Escherichia coli for their biochemical characterization. However, their expression has been problematic, showing low yield and leading to the formation of insoluble aggregates. Given that highly-productive expression systems are required for the high-throughput evaluation of inhibitors, we analyzed the existing expression systems to identify the causes of such apparent issues. We found that significant divergences in codon and nucleotide composition from host genes are the most probable cause of expression failure, and propose several strategies to overcome these limitations. Finally we predict that yeast hosts Saccharomyces cerevisiae and Pichia pastoris may be better suited than E. coli for the efficient expression of plasmodial genes, presumably leading to soluble and active products reproducing structural and functional characteristics of the natural enzymes. PMID:23018863

  7. Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses.

    PubMed

    Liu, Tingli; Ye, Wenwu; Ru, Yanyan; Yang, Xinyu; Gu, Biao; Tao, Kai; Lu, Shan; Dong, Suomeng; Zheng, Xiaobo; Shan, Weixing; Wang, Yuanchao; Dou, Daolong

    2011-01-01

    Phytophthora sojae encodes hundreds of putative host cytoplasmic effectors with conserved FLAK motifs following signal peptides, termed crinkling- and necrosis-inducing proteins (CRN) or Crinkler. Their functions and mechanisms in pathogenesis are mostly unknown. Here, we identify a group of five P. sojae-specific CRN-like genes with high levels of sequence similarity, of which three are putative pseudogenes. Functional analysis shows that the two functional genes encode proteins with predicted nuclear localization signals that induce contrasting responses when expressed in Nicotiana benthamiana and soybean (Glycine max). PsCRN63 induces cell death, while PsCRN115 suppresses cell death elicited by the P. sojae necrosis-inducing protein (PsojNIP) or PsCRN63. Expression of CRN fragments with deleted signal peptides and FLAK motifs demonstrates that the carboxyl-terminal portions of PsCRN63 or PsCRN115 are sufficient for their activities. However, the predicted nuclear localization signal is required for PsCRN63 to induce cell death but not for PsCRN115 to suppress cell death. Furthermore, silencing of the PsCRN63 and PsCRN115 genes in P. sojae stable transformants leads to a reduction of virulence on soybean. Intriguingly, the silenced transformants lose the ability to suppress host cell death and callose deposition on inoculated plants. These results suggest a role for CRN effectors in the suppression of host defense responses.

  8. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    PubMed

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.

  9. [Fish ovarian fluid contains protease inhibitors].

    PubMed

    Minin, A A; Ozerova, S G

    2015-01-01

    Studies of the conditions under which fish egg is activated spontaneously without the sperm showed that the egg retains the ability for fertilization in the ovarian (coelomic) fluid, which surrounds it in the gonad cavity after ovulation. Earlier, we showed that, in artificial media, the spontaneous activation is suppressed by protease inhibitors. In this study, we investigated the presence of natural protease inhibitors in the ovarian fluid and showed that the ovarian fluid of zebrafish and loach contains protease inhibitors, in particular, type I serpin a, a protein inhibitor of trypsin proteases.

  10. The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86

    PubMed Central

    2011-01-01

    Background Wheat grains accumulate a variety of low molecular weight proteins that are inhibitors of alpha-amylases and proteases and play an important protective role in the grain. These proteins have more balanced amino acid compositions than the major wheat gluten proteins and contribute important reserves for both seedling growth and human nutrition. The alpha-amylase/protease inhibitors also are of interest because they cause IgE-mediated occupational and food allergies and thereby impact human health. Results The complement of genes encoding alpha-amylase/protease inhibitors expressed in the US bread wheat Butte 86 was characterized by analysis of expressed sequence tags (ESTs). Coding sequences for 19 distinct proteins were identified. These included two monomeric (WMAI), four dimeric (WDAI), and six tetrameric (WTAI) inhibitors of exogenous alpha-amylases, two inhibitors of endogenous alpha-amylases (WASI), four putative trypsin inhibitors (CMx and WTI), and one putative chymotrypsin inhibitor (WCI). A number of the encoded proteins were identical or very similar to proteins in the NCBI database. Sequences not reported previously included variants of WTAI-CM3, three CMx inhibitors and WTI. Within the WDAI group, two different genes encoded the same mature protein. Based on numbers of ESTs, transcripts for WTAI-CM3 Bu-1, WMAI Bu-1 and WTAI-CM16 Bu-1 were most abundant in Butte 86 developing grain. Coding sequences for 16 of the inhibitors were unequivocally associated with specific proteins identified by tandem mass spectrometry (MS/MS) in a previous proteomic analysis of milled white flour from Butte 86. Proteins corresponding to WDAI Bu-1/Bu-2, WMAI Bu-1 and the WTAI subunits CM2 Bu-1, CM3 Bu-1 and CM16 Bu-1 were accumulated to the highest levels in flour. Conclusions Information on the spectrum of alpha-amylase/protease inhibitor genes and proteins expressed in a single wheat cultivar is central to understanding the importance of these proteins in both

  11. Functional sensorial complementation during host orientation in an Asilidae parasitoid larva.

    PubMed

    Pueyrredon, J M; Crespo, J E; Castelo, M K

    2017-10-01

    Changes in environmental conditions influence the performance of organisms in every aspect of their life. Being capable of accurately sensing these changes allow organisms to better adapt. The detection of environmental conditions involves different sensory modalities. There are many studies on the morphology of different sensory structures but not so many studies showing their function. Here we studied the morphology of different sensory structures in the larva of a dipteran parasitoid. We occluded the putative sensory structures coupling the morphology with their function. First, we could develop a non-invasive method in which we occluded the putative sensorial structures annulling their function temporarily. Regarding their functionality, we found that larvae of Mallophora ruficauda require simultaneously of the sensilla found both in the antennae and those of the maxillary palps in order to orient to its host. When either both antennae or both maxillary palps were occluded, no orientation to the host was observed. We also found that these structures are not involved in the acceptance of the host because high and similar proportion of parasitized hosts was found in host acceptance experiments. We propose that other sensilla could be involved in host acceptance and discuss how the different sensilla in the antennae and maxillary palps complement each other to provide larvae with the information for locating its host.

  12. A biotechnology perspective of fungal proteases.

    PubMed

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira Filho, Edivaldo Ximenes; Pessoa Junior, Adalberto; Magalhães, Pérola Oliveira

    2015-06-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications.

  13. Amblyomma americanum (L.) (Acari: Ixodidae) tick salivary gland serine protease inhibitor (serpin) 6 is secreted into tick saliva during tick feeding

    PubMed Central

    Chalaire, Katelyn Cox; Kim, Tae Kwon; Garcia-Rodriguez, Heidy; Mulenga, Albert

    2011-01-01

    In order to successfully feed and transmit disease agents, ticks are thought to inject serine protease inhibitors (serpins) into the host to modulate host defense responses to tick feeding, such as inflammation, the complement activation pathway and blood coagulation. In this study, we show that Amblyomma americanum (Aam) serpin (S) 6 is putatively injected into the host during tick feeding, in that the antibody to recombinant (r) AamS6 specifically reacted with the expected ∼43/45 kDa AamS6 protein band on western blots of pilocarpine-induced tick saliva. Additionally, antibodies to tick saliva proteins that were generated by repeated 48 h infestations of rabbits with adult A. americanum specifically reacted with rAamS6. We speculate that AamS6 is associated with regulating events at the start of the tick feeding process, as temporal and spatial RT-PCR and western blot analyses revealed that both AamS6 mRNA and protein are strongly expressed during the first 24–72 h of feeding time before starting to fade from 96 h. The AamS6 protein has an apparently slow turnover rate in that, although the injection of AamS6 dsRNA into unfed ticks triggered complete disruption of the AamS6 mRNA by the 48 h feeding time point, western blot analysis of protein extracts of the same animals showed that the AamS6 protein that may have been expressed prior to disruption of the AamS6 mRNA was not depleted. We speculate that the presence of the AamS6 protein in ticks despite the complete disruption of the AamS6 mRNA explains the observation that RNAi-mediated silencing of the AamS6 mRNA did not affect the ability of A. americanum ticks to attach onto host skin, successfully feed and lay eggs. These findings are discussed in regards to advances in the molecular biology of ticks. PMID:21270316

  14. Influenza HA subtypes demonstrate divergent phenotypes for cleavage activation and pH of fusion: implications for host range and adaptation.

    PubMed

    Galloway, Summer E; Reed, Mark L; Russell, Charles J; Steinhauer, David A

    2013-02-01

    The influenza A virus (IAV) HA protein must be activated by host cells proteases in order to prime the molecule for fusion. Consequently, the availability of activating proteases and the susceptibility of HA to protease activity represents key factors in facilitating virus infection. As such, understanding the intricacies of HA cleavage by various proteases is necessary to derive insights into the emergence of pandemic viruses. To examine these properties, we generated a panel of HAs that are representative of the 16 HA subtypes that circulate in aquatic birds, as well as HAs representative of the subtypes that have infected the human population over the last century. We examined the susceptibility of the panel of HA proteins to trypsin, as well as human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2). Additionally, we examined the pH at which these HAs mediated membrane fusion, as this property is related to the stability of the HA molecule and influences the capacity of influenza viruses to remain infectious in natural environments. Our results show that cleavage efficiency can vary significantly for individual HAs, depending on the protease, and that some HA subtypes display stringent selectivity for specific proteases as activators of fusion function. Additionally, we found that the pH of fusion varies by 0.7 pH units among the subtypes, and notably, we observed that the pH of fusion for most HAs from human isolates was lower than that observed from avian isolates of the same subtype. Overall, these data provide the first broad-spectrum analysis of cleavage-activation and membrane fusion characteristics for all of the IAV HA subtypes, and also show that there are substantial differences between the subtypes that may influence transmission among hosts and establishment in new species.

  15. Influenza HA Subtypes Demonstrate Divergent Phenotypes for Cleavage Activation and pH of Fusion: Implications for Host Range and Adaptation

    PubMed Central

    Galloway, Summer E.; Reed, Mark L.; Russell, Charles J.; Steinhauer, David A.

    2013-01-01

    The influenza A virus (IAV) HA protein must be activated by host cells proteases in order to prime the molecule for fusion. Consequently, the availability of activating proteases and the susceptibility of HA to protease activity represents key factors in facilitating virus infection. As such, understanding the intricacies of HA cleavage by various proteases is necessary to derive insights into the emergence of pandemic viruses. To examine these properties, we generated a panel of HAs that are representative of the 16 HA subtypes that circulate in aquatic birds, as well as HAs representative of the subtypes that have infected the human population over the last century. We examined the susceptibility of the panel of HA proteins to trypsin, as well as human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2). Additionally, we examined the pH at which these HAs mediated membrane fusion, as this property is related to the stability of the HA molecule and influences the capacity of influenza viruses to remain infectious in natural environments. Our results show that cleavage efficiency can vary significantly for individual HAs, depending on the protease, and that some HA subtypes display stringent selectivity for specific proteases as activators of fusion function. Additionally, we found that the pH of fusion varies by 0.7 pH units among the subtypes, and notably, we observed that the pH of fusion for most HAs from human isolates was lower than that observed from avian isolates of the same subtype. Overall, these data provide the first broad-spectrum analysis of cleavage-activation and membrane fusion characteristics for all of the IAV HA subtypes, and also show that there are substantial differences between the subtypes that may influence transmission among hosts and establishment in new species. PMID:23459660

  16. Regulation of Hydrolytic Enzyme Activity in Aquatic Microbial Communities Hosted by Carnivorous Pitcher Plants.

    PubMed

    Young, Erica B; Sielicki, Jessica; Grothjan, Jacob J

    2018-04-20

    Carnivorous pitcher plants Sarracenia purpurea host diverse eukaryotic and bacterial communities which aid in insect prey digestion, but little is known about the functional processes mediated by the microbial communities. This study aimed to connect pitcher community diversity with functional nutrient transformation processes, identifying bacterial taxa, and measuring regulation of hydrolytic enzyme activity in response to prey and alternative nutrient sources. Genetic analysis identified diverse bacterial taxa known to produce hydrolytic enzyme activities. Chitinase, protease, and phosphatase activities were measured using fluorometric assays. Enzyme activity in field pitchers was positively correlated with bacterial abundance, and activity was suppressed by antibiotics suggesting predominantly bacterial sources of chitinase and protease activity. Fungi, algae, and rotifers observed could also contribute enzyme activity, but fresh insect prey released minimal chitinase activity. Activity of chitinase and proteases was upregulated in response to insect additions, and phosphatase activity was suppressed by phosphate additions. Particulate organic P in prey was broken down, appearing as increasing dissolved organic and inorganic P pools within 14 days. Chitinase and protease were not significantly suppressed by availability of dissolved organic substrates, though organic C and N stimulated bacterial growth, resulting in elevated enzyme activity. This comprehensive field and experimental study show that pitcher plant microbial communities dynamically regulate hydrolytic enzyme activity, to digest prey nutrients to simpler forms, mediating biogeochemical nutrient transformations and release of nutrients for microbial and host plant uptake.

  17. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    PubMed

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  18. Expression of putative pathogenicity-related genes in Xylella fastidiosa grown at low and high cell density conditions in vitro.

    PubMed

    Scarpari, Leandra M; Lambais, Marcio R; Silva, Denise S; Carraro, Dirce M; Carrer, Helaine

    2003-05-16

    Xylella fastidiosa is the causal agent of economically important plant diseases, including citrus variegated chlorosis and Pierce's disease. Hitherto, there has been no information on the molecular mechanisms controlling X. fastidiosa-plant interactions. To determine whether predicted open reading frames (ORFs) encoding putative pathogenicity-related factors were expressed by X. fastidiosa 9a5c cells grown at low (LCD) and high cell density (HCD) conditions in liquid modified PW medium, reverse Northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) experiments were performed. Our results indicated that ORFs XF2344, XF2369, XF1851 and XF0125, encoding putative Fur, GumC, a serine-protease and RsmA, respectively, were significantly suppressed at HCD conditions. In contrast, ORF XF1115, encoding putative RpfF, was significantly induced at HCD conditions. Expressions of ORFs XF2367, XF2362 and XF0290, encoding putative GumD, GumJ and RpfA, respectively, were detected only at HCD conditions, whereas expression of ORF XF0287, encoding putative RpfB was detected only at LCD conditions. Bioassays with an Agrobacterium traG::lacZ reporter system indicated that X. fastidiosa does not synthesize N-acyl-homoserine lactones, whereas bioassays with a diffusible signal factor (DSF)-responsive Xanthomonas campestris pv. campestris mutant indicate that X. fastidiosa synthesizes a molecule similar to DSF in modified PW medium. Our data also suggest that the synthesis of the DSF-like molecule and fastidian gum by X. fastidiosa is affected by cell density in vitro.

  19. Hemoglobin Cleavage Site-Specificity of the Plasmodium falciparum Cysteine Proteases Falcipain-2 and Falcipain-3

    PubMed Central

    Subramanian, Shoba; Hardt, Markus; Choe, Youngchool; Niles, Richard K.; Johansen, Eric B.; Legac, Jennifer; Gut, Jiri; Kerr, Iain D.; Craik, Charles S.; Rosenthal, Philip J.

    2009-01-01

    The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 degrade host hemoglobin to provide free amino acids for parasite protein synthesis. Hemoglobin hydrolysis has been described as an ordered process initiated by aspartic proteases, but cysteine protease inhibitors completely block the process, suggesting that cysteine proteases can also initiate hemoglobin hydrolysis. To characterize the specific roles of falcipains, we used three approaches. First, using random P1 – P4 amino acid substrate libraries, falcipain-2 and falcipain-3 demonstrated strong preference for cleavage sites with Leu at the P2 position. Second, with overlapping peptides spanning α and β globin and proteolysis-dependent 18O labeling, hydrolysis was seen at many cleavage sites. Third, with intact hemoglobin, numerous cleavage products were identified. Our results suggest that hemoglobin hydrolysis by malaria parasites is not a highly ordered process, but rather proceeds with rapid cleavage by falcipains at multiple sites. However, falcipain-2 and falcipain-3 show strong specificity for P2 Leu in small peptide substrates, in agreement with the specificity in optimized small molecule inhibitors that was identified previously. These results are consistent with a principal role of falcipain-2 and falcipain-3 in the hydrolysis of hemoglobin by P. falciparum and with the possibility of developing small molecule inhibitors with optimized specificity as antimalarial agents. PMID:19357776

  20. A Putative Type III Secretion System Effector Encoded by the MA20_12780 Gene in Bradyrhizobium japonicum Is-34 Causes Incompatibility with Rj4 Genotype Soybeans

    PubMed Central

    Hashimoto, Syougo; Okizaki, Kouhei; Kanesaki, Yu; Yoshikawa, Hirofumi; Yamakawa, Takeo

    2015-01-01

    The nodulation of Bradyrhizobium japonicum Is-34 is restricted by Rj4 genotype soybeans (Glycine max). To identify the genes responsible for this incompatibility, Tn5 mutants of B. japonicum Is-34 that were able to overcome this nodulation restriction were obtained. Analysis of the Tn5 mutants revealed that Tn5 was inserted into a region containing the MA20_12780 gene. In addition, direct disruption of this gene using marker exchange overcame the nodulation restriction by Rj4 genotype soybeans. The MA20_12780 gene has a tts box motif in its upstream region, indicating a possibility that this gene encodes a type III secretion system (T3SS) effector protein. Bioinformatic characterization revealed that the MA20_12780 protein contains the small ubiquitin-like modifier (SUMO) protease domain of the C48 peptidase (ubiquitin-like protease 1 [Ulp1]) family. The results of the present study indicate that a putative T3SS effector encoded by the MA20_12780 gene causes the incompatibility with Rj4 genotype soybeans, and they suggest the possibility that the nodulation restriction of B. japonicum Is-34 may be due to Rj4 genotype soybeans recognizing the putative T3SS effector (MA20_12780 protein) as a virulence factor. PMID:26092458

  1. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence.

    PubMed

    Petersen, Lauren M; Tisa, Louis S

    2014-11-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Molecular Characterization of Protease Activity in Serratia sp. Strain SCBI and Its Importance in Cytotoxicity and Virulence

    PubMed Central

    Petersen, Lauren M.

    2014-01-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  3. Potential Roles of Protease Inhibitors in Cancer Progression.

    PubMed

    Yang, Peng; Li, Zhuo-Yu; Li, Han-Qing

    2015-01-01

    Proteases are important molecules that are involved in many key physiological processes. Protease signaling pathways are strictly controlled, and disorders in protease activity can result in pathological changes such as cardiovascular and inflammatory diseases, cancer and neurological disorders. Many proteases have been associated with increasing tumor metastasis in various human cancers, suggesting important functional roles in the metastatic process because of their ability to degrade the extracellular matrix barrier. Proteases are also capable of cleaving non-extracellular matrix molecules. Inhibitors of proteases to some extent can reduce invasion and metastasis of cancer cells, and slow down cancer progression. In this review, we focus on the role of a few proteases and their inhibitors in tumors as a basis for cancer prognostication and therapy.

  4. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershey, David M.; Ren, Xuefeng; Melnyk, Ryan A.

    2016-03-16

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies have implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions.more » By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. In conclusion, our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization.« less

  5. Enhanced enteroviral infectivity via viral protease-mediated cleavage of Grb2-associated binder 1

    PubMed Central

    Deng, Haoyu; Fung, Gabriel; Shi, Junyan; Xu, Suowen; Wang, Chen; Yin, Meimei; Hou, Jun; Zhang, Jingchun; Jin, Zheng-Gen; Luo, Honglin

    2015-01-01

    Coxsackievirus B3 (CVB3), an important human causative pathogen for viral myocarditis, pancreatitis, and meningitis, has evolved different strategies to manipulate the host signaling machinery to ensure successful viral infection. We previously revealed a crucial role for the ERK1/2 signaling pathway in regulating viral infectivity. However, the detail mechanism remains largely unknown. Grb2-associated binder 1 (GAB1) is an important docking protein responsible for intracellular signaling assembly and transduction. In this study, we demonstrated that GAB1 was proteolytically cleaved after CVB3 infection at G175 and G436 by virus-encoded protease 2Apro, independent of caspase activation. Knockdown of GAB1 resulted in a significant reduction of viral protein expression and virus titers. Moreover, we showed that virus-induced cleavage of GAB1 is beneficial to viral growth as the N-terminal proteolytic product of GAB1 (GAB1-N1–174) further enhances ERK1/2 activation and promotes viral replication. Our results collectively suggest that CVB3 targets host GAB1 to generate a GAB1-N1–174 fragment that enhances viral infectivity, at least in part, via activation of the ERK pathway. The findings in this study suggest a novel mechanism that CVB3 employs to subvert the host signaling and facilitate consequent viral replication.—Deng, H., Fung, G., Shi, J., Xu, S., Wang, C., Yin, M., Hou, J., Zhang, J., Jin, Z.-G., Luo, H. Enhanced enteroviral infectivity via viral protease-mediated cleavage of Grb2-associated binder 1. PMID:26183772

  6. Advances in protease engineering for laundry detergents.

    PubMed

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Extracellular proteases as targets for drug development

    PubMed Central

    Cudic, Mare

    2015-01-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV), cysteine proteases (cathepsin B), and renin system are discussed herein. PMID:19689354

  8. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme.

    PubMed

    Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P C; Ovaa, Huib; Drag, Marcin; Lima, Christopher D; Huang, Tony T

    2015-06-01

    Ubiquitin (Ub) and the Ub-like (Ubl) modifier interferon-stimulated gene 15 (ISG15) participate in the host defence of viral infections. Viruses, including the severe acute respiratory syndrome human coronavirus (SARS hCoV), have co-opted Ub-ISG15 conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub-ISG15-conjugated host proteins. In the present study, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle East respiratory syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that, similar to SARS PLpro, MERS PLpro is both a deubiquitinating (DUB) and a deISGylating enzyme. Further analysis of the intrinsic DUB activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, whereas SARS PLpro prefers to cleave Lys48-linked polyUb chains. Secondly, MERS PLpro cleaves polyUb chains in a 'mono-distributive' manner (one Ub at a time) and SARS PLpro prefers to cleave Lys48-linked polyUb chains by sensing a di-Ub moiety as a minimal recognition element using a 'di-distributive' cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP (Ub-specific protease)-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help to identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses.

  9. 1-Aminocyclopropane-1-carboxylic acid oxidase reaction mechanism and putative post-translational activities of the ACCO protein

    PubMed Central

    Dilley, David R.; Wang, Zhenyong; Kadirjan-Kalbach, Deena K.; Ververidis, Fillipos; Beaudry, Randolph; Padmanabhan, Kallaithe

    2013-01-01

    1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACCO) catalyses the final step in ethylene biosynthesis converting ACC to ethylene, cyanide, CO2, dehydroascorbate and water with inputs of Fe(II), ascorbate, bicarbonate (as activators) and oxygen. Cyanide activates ACCO. A ‘nest’ comprising several positively charged amino acid residues from the C-terminal α-helix 11 along with Lys158 and Arg299 are proposed as binding sites for ascorbate and bicarbonate to coordinately activate the ACCO reaction. The binding sites for ACC, bicarbonate and ascorbic acid for Malus domestica ACCO1 include Arg175, Arg244, Ser246, Lys158, Lys292, Arg299 and Phe300. Glutamate 297, Phe300 and Glu301 in α-helix 11 are also important for the ACCO reaction. Our proposed reaction pathway incorporates cyanide as an ACCO/Fe(II) ligand after reaction turnover. The cyanide ligand is likely displaced upon binding of ACC and ascorbate to provide a binding site for oxygen. We propose that ACCO may be involved in the ethylene signal transduction pathway not directly linked to the ACCO reaction. ACC oxidase has significant homology with Lycopersicon esculentum cysteine protease LeCp, which functions as a protease and as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase (Acs2) gene expression. ACC oxidase may play a similar role in signal transduction after post-translational processing. ACC oxidase becomes inactivated by fragmentation and apparently has intrinsic protease and transpeptidase activity. ACC oxidase contains several amino acid sequence motifs for putative protein–protein interactions, phosphokinases and cysteine protease. ACC oxidase is subject to autophosphorylaton in vitro and promotes phosphorylation of some apple fruit proteins in a ripening-dependent manner. PMID:24244837

  10. Proteolytic Activation of the Protease-activated Receptor (PAR)-2 by the Glycosylphosphatidylinositol-anchored Serine Protease Testisin*

    PubMed Central

    Driesbaugh, Kathryn H.; Buzza, Marguerite S.; Martin, Erik W.; Conway, Gregory D.; Kao, Joseph P. Y.; Antalis, Toni M.

    2015-01-01

    Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca2+ mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. PMID:25519908

  11. Proteases Revisited: Roles and Therapeutic Implications in Fibrosis

    PubMed Central

    Kryczka, Jakub

    2017-01-01

    Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis. PMID:28642633

  12. Feline Immunodeficiency Virus Evolutionarily Acquires Two Proteins, Vif and Protease, Capable of Antagonizing Feline APOBEC3.

    PubMed

    Yoshikawa, Rokusuke; Takeuchi, Junko S; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio; Sato, Kei

    2017-06-01

    The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes feline APOBEC3

  13. Feline Immunodeficiency Virus Evolutionarily Acquires Two Proteins, Vif and Protease, Capable of Antagonizing Feline APOBEC3

    PubMed Central

    Yoshikawa, Rokusuke; Takeuchi, Junko S.; Yamada, Eri; Nakano, Yusuke; Misawa, Naoko; Kimura, Yuichi; Ren, Fengrong; Miyazawa, Takayuki; Koyanagi, Yoshio

    2017-01-01

    ABSTRACT The interplay between viral and host proteins has been well studied to elucidate virus-host interactions and their relevance to virulence. Mammalian genes encode apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins, which act as intrinsic restriction factors against lentiviruses. To overcome APOBEC3-mediated antiviral actions, lentiviruses have evolutionarily acquired an accessory protein, viral infectivity factor (Vif), and Vif degrades host APOBEC3 proteins via a ubiquitin/proteasome-dependent pathway. Although the Vif-APOBEC3 interaction and its evolutionary significance, particularly those of primate lentiviruses (including HIV) and primates (including humans), have been well investigated, those of nonprimate lentiviruses and nonprimates are poorly understood. Moreover, the factors that determine lentiviral pathogenicity remain unclear. Here, we focus on feline immunodeficiency virus (FIV), a pathogenic lentivirus in domestic cats, and the interaction between FIV Vif and feline APOBEC3 in terms of viral virulence and evolution. We reveal the significantly reduced diversity of FIV subtype B compared to that of other subtypes, which may associate with the low pathogenicity of this subtype. We also demonstrate that FIV subtype B Vif is less active with regard to feline APOBEC3 degradation. More intriguingly, we further reveal that FIV protease cleaves feline APOBEC3 in released virions. Taken together, our findings provide evidence that a lentivirus encodes two types of anti-APOBEC3 factors, Vif and viral protease. IMPORTANCE During the history of mammalian evolution, mammals coevolved with retroviruses, including lentiviruses. All pathogenic lentiviruses, excluding equine infectious anemia virus, have acquired the vif gene via evolution to combat APOBEC3 proteins, which are intrinsic restriction factors against exogenous lentiviruses. Here we demonstrate that FIV, a pathogenic lentivirus in domestic cats, antagonizes

  14. Zebra chip disease decreases tuber (Solanum tuberosum L.) protein content by attenuating protease inhibitor levels and increasing protease activities.

    PubMed

    Kumar, G N Mohan; Knowles, Lisa O; Knowles, N Richard

    2015-11-01

    Zebra chip disease of potato decreases protease inhibitor levels resulting in enhanced serine-type protease activity, decreased protein content and altered protein profiles of fully mature tubers. Zebra-chip (ZC), caused by Candidatus Liberibacter solanacearum (CLso), is a relatively new disease of potato that negatively affects growth, yield, propagation potential, and fresh and process qualities of tubers. Diseased plants produce tubers with characteristic brown discoloration of vascular tissue accompanied by elevated levels of free amino acids and reducing sugars. Here we demonstrate that ZC disease induces selective protein catabolism in tubers through modulating protease inhibitor levels. Soluble protein content of tubers from CLso-infected plants was 33% lower than from non-infected plants and electrophoretic analyses revealed substantial reductions in major tuber proteins. Patatin (~40 kDa) and ser-, asp- (22 kDa) and cys-type (85 kDa) protease inhibitors were either absent or greatly reduced in ZC-afflicted tubers. In contrast to healthy (non-infected) tubers, the proteolytic activity in CLso infected tubers was high and the ability of extracts from infected tubers to inhibit trypsin (ser-type) and papain (cys-type) proteases greatly attenuated. Moreover, extracts from CLso-infected tubers rapidly catabolized proteins purified from healthy tubers (40 kDa patatin, 22 kDa protease inhibitors, 85 kDa potato multicystatin) when subjected to proteolysis individually. In contrast, crude extracts from non-infected tubers effectively inhibited the proteolytic activity from ZC-afflicted tubers. These results suggest that the altered protein profile of ZC afflicted tubers is largely due to loss of ser- and cys-type protease inhibitors. Further analysis revealed a novel PMSF-sensitive (ser) protease (ca. 80-120 kDa) in CLso infected tubers. PMSF abolished the proteolytic activities responsible for degrading patatin, the 22 kDa protease inhibitor(s) and potato

  15. MicroRNA Regulation of Human Protease Genes Essential for Influenza Virus Replication

    PubMed Central

    Meliopoulos, Victoria A.; Andersen, Lauren E.; Brooks, Paula; Yan, Xiuzhen; Bakre, Abhijeet; Coleman, J. Keegan; Tompkins, S. Mark; Tripp, Ralph A.

    2012-01-01

    Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies. PMID:22606348

  16. MicroRNA regulation of human protease genes essential for influenza virus replication.

    PubMed

    Meliopoulos, Victoria A; Andersen, Lauren E; Brooks, Paula; Yan, Xiuzhen; Bakre, Abhijeet; Coleman, J Keegan; Tompkins, S Mark; Tripp, Ralph A

    2012-01-01

    Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-κB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies.

  17. Characterization of a novel ADAM protease expressed by Pneumocystis carinii.

    PubMed

    Kennedy, Cassie C; Kottom, Theodore J; Limper, Andrew H

    2009-08-01

    Pneumocystis species are opportunistic fungal pathogens that cause severe pneumonia in immunocompromised hosts. Recent evidence has suggested that unidentified proteases are involved in Pneumocystis life cycle regulation. Proteolytically active ADAM (named for "a disintegrin and metalloprotease") family molecules have been identified in some fungal organisms, such as Aspergillus fumigatus and Schizosaccharomyces pombe, and some have been shown to participate in life cycle regulation. Accordingly, we sought to characterize ADAM-like molecules in the fungal opportunistic pathogen, Pneumocystis carinii (PcADAM). After an in silico search of the P. carinii genomic sequencing project identified a 329-bp partial sequence with homology to known ADAM proteins, the full-length PcADAM sequence was obtained by PCR extension cloning, yielding a final coding sequence of 1,650 bp. Sequence analysis detected the presence of a typical ADAM catalytic active site (HEXXHXXGXXHD). Expression of PcADAM over the Pneumocystis life cycle was analyzed by Northern blot. Southern and contour-clamped homogenous electronic field blot analysis demonstrated its presence in the P. carinii genome. Expression of PcADAM was observed to be increased in Pneumocystis cysts compared to trophic forms. The full-length gene was subsequently cloned and heterologously expressed in Saccharomyces cerevisiae. Purified PcADAMp protein was proteolytically active in casein zymography, requiring divalent zinc. Furthermore, native PcADAMp extracted directly from freshly isolated Pneumocystis organisms also exhibited protease activity. This is the first report of protease activity attributable to a specific, characterized protein in the clinically important opportunistic fungal pathogen Pneumocystis.

  18. The herpesvirus proteases as targets for antiviral chemotherapy.

    PubMed

    Waxman, L; Darke, P L

    2000-01-01

    Viruses of the family Herpesviridae are responsible for a diverse set of human diseases. The available treatments are largely ineffective, with the exception of a few drugs for treatment of herpes simplex virus (HSV) infections. For several members of this DNA virus family, advances have been made recently in the biochemistry and structural biology of the essential viral protease, revealing common features that may be possible to exploit in the development of a new class of anti-herpesvirus agents. The herpesvirus proteases have been identified as belonging to a unique class of serine protease, with a Ser-His-His catalytic triad. A new, single domain protein fold has been determined by X-ray crystallography for the proteases of at least three different herpesviruses. Also unique for serine proteases, dimerization has been shown to be required for activity of the cytomegalovirus and HSV proteases. The dimerization requirement seriously impacts methods needed for productive, functional analysis and inhibitor discovery. The conserved functional and catalytic properties of the herpesvirus proteases lead to common considerations for this group of proteases in the early phases of inhibitor discovery. In general, classical serine protease inhibitors that react with active site residues do not readily inactivate the herpesvirus proteases. There has been progress however, with activated carbonyls that exploit the selective nucleophilicity of the active site serine. In addition, screening of chemical libraries has yielded novel structures as starting points for drug development. Recent crystal structures of the herpesvirus proteases now allow more direct interpretation of ligand structure-activity relationships. This review first describes basic functional aspects of herpesvirus protease biology and enzymology. Then we discuss inhibitors identified to date and the prospects for their future development.

  19. Strategies of Vibrio parahaemolyticus to acquire nutritional iron during host colonization

    PubMed Central

    León-Sicairos, Nidia; Angulo-Zamudio, Uriel A.; de la Garza, Mireya; Velázquez-Román, Jorge; Flores-Villaseñor, Héctor M.; Canizalez-Román, Adrian

    2015-01-01

    Iron is an essential element for the growth and development of virtually all living organisms. As iron acquisition is critical for the pathogenesis, a host defense strategy during infection is to sequester iron to restrict the growth of invading pathogens. To counteract this strategy, bacteria such as Vibrio parahaemolyticus have adapted to such an environment by developing mechanisms to obtain iron from human hosts. This review focuses on the multiple strategies employed by V. parahaemolyticus to obtain nutritional iron from host sources. In these strategies are included the use of siderophores and xenosiderophores, proteases and iron-protein receptor. The host sources used by V. parahaemolyticus are the iron-containing proteins transferrin, hemoglobin, and hemin. The implications of iron acquisition systems in the virulence of V. parahaemolyticus are also discussed. PMID:26217331

  20. Proteolytic activation of the protease-activated receptor (PAR)-2 by the glycosylphosphatidylinositol-anchored serine protease testisin.

    PubMed

    Driesbaugh, Kathryn H; Buzza, Marguerite S; Martin, Erik W; Conway, Gregory D; Kao, Joseph P Y; Antalis, Toni M

    2015-02-06

    Protease-activated receptors (PARs) are a family of seven-transmembrane, G-protein-coupled receptors that are activated by multiple serine proteases through specific N-terminal proteolytic cleavage and the unmasking of a tethered ligand. The majority of PAR-activating proteases described to date are soluble proteases that are active during injury, coagulation, and inflammation. Less investigation, however, has focused on the potential for membrane-anchored serine proteases to regulate PAR activation. Testisin is a unique trypsin-like serine protease that is tethered to the extracellular membrane of cells through a glycophosphatidylinositol (GPI) anchor. Here, we show that the N-terminal domain of PAR-2 is a substrate for testisin and that proteolytic cleavage of PAR-2 by recombinant testisin activates downstream signaling pathways, including intracellular Ca(2+) mobilization and ERK1/2 phosphorylation. When testisin and PAR-2 are co-expressed in HeLa cells, GPI-anchored testisin specifically releases the PAR-2 tethered ligand. Conversely, knockdown of endogenous testisin in NCI/ADR-Res ovarian tumor cells reduces PAR-2 N-terminal proteolytic cleavage. The cleavage of PAR-2 by testisin induces activation of the intracellular serum-response element and NFκB signaling pathways and the induction of IL-8 and IL-6 cytokine gene expression. Furthermore, the activation of PAR-2 by testisin results in the loss and internalization of PAR-2 from the cell surface. This study reveals a new biological substrate for testisin and is the first demonstration of the activation of a PAR by a serine protease GPI-linked to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Serine proteases in rodent hippocampus.

    PubMed

    Davies, B J; Pickard, B S; Steel, M; Morris, R G; Lathe, R

    1998-09-04

    Brain serine proteases are implicated in developmental processes, synaptic plasticity, and in disorders including Alzheimer's disease. The spectrum of the major enzymes expressed in brain has not been established previously. We now present a systematic study of the serine proteases expressed in adult rat and mouse hippocampus. Using a combination of techniques including polymerase chain reaction amplification and Northern blotting we show that tissue-type plasminogen activator (t-PA) is the major species represented. Unexpectedly, the next most abundant species were RNK-Met-1, a lymphocyte protease not reported previously in brain, and two new family members, BSP1 (brain serine protease 1) and BSP2. We report full-length sequences of the two new proteases; homologies indicate that these are of tryptic specificity. Although BSP2 is expressed in several brain regions, BSP1 expression is strikingly restricted to hippocampus. Other enzymes represented, but at lower levels, included elastase IV, proteinase 3, complement C2, chymotrypsin B, chymotrypsin-like protein, and Hageman factor. Although thrombin and urokinase-type plasminogen activator were not detected in the primary screen, low level expression was confirmed using specific polymerase chain reaction primers. In contrast, and despite robust expression of t-PA, the usual t-PA substrate plasminogen was not expressed at detectable levels.

  2. Mosaic serine proteases in the mammalian central nervous system.

    PubMed

    Mitsui, Shinichi; Watanabe, Yoshihisa; Yamaguchi, Tatsuyuki; Yamaguchi, Nozomi

    2008-01-01

    We review the structure and function of three kinds of mosaic serine proteases expressed in the mammalian central nervous system (CNS). Mosaic serine proteases have several domains in the proenzyme fragment, which modulate proteolytic function, and a protease domain at the C-terminus. Spinesin/TMPRSS5 is a transmembrane serine protease whose presynaptic distribution on motor neurons in the spinal cord suggests that it is significant for neuronal plasticity. Cell type-specific alternative splicing gives this protease diverse functions by modulating its intracellular localization. Motopsin/PRSS12 is a mosaic protease, and loss of its function causes mental retardation. Recent reports indicate the significance of this protease for cognitive function. We mention the fibrinolytic protease, tissue plasminogen activator (tPA), which has physiological and pathological functions in the CNS.

  3. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures.

    PubMed

    Saeki, Katsuhisa; Ozaki, Katsuya; Kobayashi, Tohru; Ito, Susumu

    2007-06-01

    Subtilisin-like serine proteases from bacilli have been used in various industrial fields worldwide, particularly in the production of laundry and automatic dishwashing detergents. They belong to family A of the subtilase superfamily, which is composed of three clans, namely, true subtilisins, high-alkaline proteases, and intracellular proteases. We succeeded in the large-scale production of a high-alkaline protease (M-protease) from alkaliphilic Bacillus clausii KSM-K16, and the enzyme has been introduced into compact heavy-duty laundry detergents. We have also succeeded in the industrial-scale production of a new alkaline protease, KP-43, which was originally resistant to chemical oxidants and to surfactants, produced by alkaliphilic Bacillus sp. strain KSM-KP43 and have incorporated it into laundry detergents. KP-43 and related proteases form a new clan, oxidatively stable proteases, in subtilase family A. In this review, we describe the enzymatic properties, gene sequences, and crystal structures of M-protease, KP-43, and related enzymes.

  4. Evaluation of cysteine proteases of Plasmodium vivax as antimalarial drug targets: sequence analysis and sensitivity to cysteine protease inhibitors.

    PubMed

    Na, Byoung-Kuk; Kim, Tong-Soo; Rosenthal, Philip J; Lee, Jong-Koo; Kong, Yoon

    2004-10-01

    Cysteine proteases perform critical roles in the life cycles of malaria parasites. In Plasmodium falciparum, treatment of cysteine protease inhibitors inhibits hemoglobin hydrolysis and blocks the parasite development in vitro and in vivo, suggesting that plasmodial cysteine proteases may be interesting targets for new chemotherapeutics. To determine whether sequence diversity may limit chemotherapy against Plasmodium vivax, we analyzed sequence variations in the genes encoding three cysteine proteases, vivapain-1, -2 and -3, in 22 wild isolates of P. vivax. The sequences were highly conserved among wild isolates. A small number of substitutions leading to amino acid changes were found, while they did not modify essential residues for the function or structure of the enzymes. The substrate specificities and sensitivities to synthetic cysteine protease inhibitors of vivapain-2 and -3 from wild isolates were also very similar. These results support the suggestion that cysteine proteases of P. vivax are promising antimalarial chemotherapeutic targets.

  5. Temporal Dynamics and Decay of Putatively Allochthonous and Autochthonous Viral Genotypes in Contrasting Freshwater Lakes

    PubMed Central

    Barbosa, Jorge G.; Brown, Julia M.; Donelan, Ryan P.; Eaglesham, James B.; Eggleston, Erin M.; LaBarre, Brenna A.

    2012-01-01

    Aquatic viruses play important roles in the biogeochemistry and ecology of lacustrine ecosystems; however, their composition, dynamics, and interactions with viruses of terrestrial origin are less extensively studied. We used a viral shotgun metagenomic approach to elucidate candidate autochthonous (i.e., produced within the lake) and allochthonous (i.e., washed in from other habitats) viral genotypes for a comparative study of their dynamics in lake waters. Based on shotgun metagenomes prepared from catchment soil and freshwater samples from two contrasting lakes (Cayuga Lake and Fayetteville Green Lake), we selected two putatively autochthonous viral genotypes (phycodnaviruses likely infecting algae and cyanomyoviruses likely infecting picocyanobacteria) and two putatively allochthonous viral genotypes (geminiviruses likely infecting terrestrial plants and circoviruses infecting unknown hosts but common in soil libraries) for analysis by genotype-specific quantitative PCR (TaqMan) applied to DNAs from viruses in the viral size fraction of lake plankton, i.e., 0.2 μm > virus > 0.02 μm. The abundance of autochthonous genotypes largely reflected expected host abundance, while the abundance of allochthonous genotypes corresponded with rainfall and storm events in the respective catchments, suggesting that viruses with these genotypes may have been transported to the lake in runoff. The decay rates of allochthonous and autochthonous genotypes, assessed in incubations where all potential hosts were killed, were generally lower (0.13 to 1.50% h−1) than those reported for marine virioplankton but similar to those for freshwater virioplankton. Both allochthonous and autochthonous viral genotypes were detected at higher concentrations in subsurface sediments than at the water-sediment interface. Our data indicate that putatively allochthonous viruses are present in lake plankton and sediments, where their temporal dynamics reflect active transport to the lake during

  6. Targeting of a chlamydial protease impedes intracellular bacterial growth.

    PubMed

    Christian, Jan G; Heymann, Julia; Paschen, Stefan A; Vier, Juliane; Schauenburg, Linda; Rupp, Jan; Meyer, Thomas F; Häcker, Georg; Heuer, Dagmar

    2011-09-01

    Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.

  7. Exogenous proteases for meat tenderization.

    PubMed

    Bekhit, Alaa A; Hopkins, David L; Geesink, Geert; Bekhit, Adnan A; Franks, Philip

    2014-01-01

    The use of exogenous proteases to improve meat tenderness has attracted much interest recently, with a view to consistent production of tender meat and added value to lower grade meat cuts. This review discusses the sources, characteristics, and use of exogenous proteases in meat tenderization to highlight the specificity of the proteases toward meat proteins and their impact on meat quality. Plant enzymes (such as papain, bromelain, and ficin) have been extensively investigated as meat tenderizers. New plant proteases (actinidin and zingibain) and microbial enzyme preparations have been of recent interest due to controlled meat tenderization and other advantages. Successful use of these enzymes in fresh meat requires their enzymatic kinetics and characteristics to be determined, together with an understanding of the impact of the surrounding environmental conditions of the meat (pH, temperature) on enzyme function. This enables the optimal conditions for tenderizing fresh meat to be established, and the elimination or reduction of any negative impacts on other quality attributes.

  8. Large-Scale Identification and Characterization of Heterodera avenae Putative Effectors Suppressing or Inducing Cell Death in Nicotiana benthamiana

    PubMed Central

    Chen, Changlong; Chen, Yongpan; Jian, Heng; Yang, Dan; Dai, Yiran; Pan, Lingling; Shi, Fengwei; Yang, Shanshan; Liu, Qian

    2018-01-01

    Heterodera avenae is one of the most important plant pathogens and causes vast losses in cereal crops. As a sedentary endoparasitic nematode, H. avenae secretes effectors that modify plant defenses and promote its biotrophic infection of its hosts. However, the number of effectors involved in the interaction between H. avenae and host defenses remains unclear. Here, we report the identification of putative effectors in H. avenae that regulate plant defenses on a large scale. Our results showed that 78 of the 95 putative effectors suppressed programmed cell death (PCD) triggered by BAX and that 7 of the putative effectors themselves caused cell death in Nicotiana benthamiana. Among the cell-death-inducing effectors, three were found to be dependent on their specific domains to trigger cell death and to be expressed in esophageal gland cells by in situ hybridization. Ten candidate effectors that suppressed BAX-triggered PCD also suppressed PCD triggered by the elicitor PsojNIP and at least one R-protein/cognate effector pair, suggesting that they are active in suppressing both pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Notably, with the exception of isotig16060, these putative effectors could also suppress PCD triggered by cell-death-inducing effectors from H. avenae, indicating that those effectors may cooperate to promote nematode parasitism. Collectively, our results indicate that the majority of the tested effectors of H. avenae may play important roles in suppressing cell death induced by different elicitors in N. benthamiana. PMID:29379510

  9. Dysregulation of Protease and Protease Inhibitors in a Mouse Model of Human Pelvic Organ Prolapse

    PubMed Central

    Budatha, Madhusudhan; Silva, Simone; Montoya, Teodoro Ignacio; Suzuki, Ayako; Shah-Simpson, Sheena; Wieslander, Cecilia Karin; Yanagisawa, Masashi; Word, Ruth Ann; Yanagisawa, Hiromi

    2013-01-01

    Mice deficient for the fibulin-5 gene (Fbln5−/−) develop pelvic organ prolapse (POP) due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP)-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5−/− mice, herein named V1 (25 kDa). V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS) 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5−/− mice. PRSS3 was (a) localized in epithelial secretions, (b) detected in media of vaginal organ culture from both Fbln5−/− and wild type mice, and (c) cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin) and Elafin] was dysregulated in Fbln5−/− epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice. PMID:23437119

  10. Extracellular proteases of Trichoderma species. A review.

    PubMed

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.

  11. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development.

    PubMed

    Puckette, Michael; Clark, Benjamin A; Smith, Justin D; Turecek, Traci; Martel, Erica; Gabbert, Lindsay; Pisano, Melia; Hurtle, William; Pacheco, Juan M; Barrera, José; Neilan, John G; Rasmussen, Max

    2017-11-15

    The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria. IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production. Copyright © 2017 Puckette et al.

  12. The relationship between protease/anti-protease profile, angiogenesis and re-epithelialisation in acute burn wounds.

    PubMed

    Caulfield, Robert H; Tyler, Michael P H; Austyn, Jon M; Dziewulski, Peter; McGrouther, Duncan A

    2008-06-01

    In the management of partial thickness burns, it is difficult to balance between conservative management and surgical intervention. Our hypothesis was that a triangular relationship exists between protease/anti-protease profile at the burn wound surface, angiogenesis and re-epithelialisation. By manipulation of the biochemical profile at the wound level, we determined to affect the nature and extent of angiogenesis and resulting re-epithelialisation. We performed a randomised longitudinal observational study on partial thickness burns in adult patients presenting to two regional burns units. Our results demonstrated that a high-protease wound environment is associated with lower levels of the angiogenic factor VEGF, a lower more uniform change in wound bloodflow and a uniform well healed wound with an architecturally normal epidermis. In addition, we found that a low protease wound environment is associated with higher levels of the angiogenic factor VEGF, a higher wound bloodflow throughout the wound healing period and a more chaotic, hypercellular, overkeratinised, and chaotic thickened epidermis.

  13. Inflammatory effect of environmental proteases on airway mucosa.

    PubMed

    Reed, Charles E

    2007-09-01

    Proteases--both endogenous proteases from the coagulation cascade, mast cells, and respiratory epithelial trypsin, and exogenous proteases from parasites, insects, mites, molds, pollens, and other aeroallergens--stimulate a tissue response that includes attraction and activation of eosinophils and neutrophils, degranulation of eosinophils and mast cells, increased response of afferent neurons, smooth muscle contraction, angiogenesis, fibrosis, and production of immunoglobulin E. This response to exogenous proteases can be considered a form of innate immunity directed against multicellular organisms. The response of the airways to environmental proteases very closely resembles the response to airborne allergens. Although clinical research in this area is just beginning, the response to environmental proteases appears to be important in the pathogenesis of rhinitis and asthma developing from damp, water-damaged buildings, and intrinsic asthma with its associated rhinosinusitis and polyps.

  14. Curcumin derivatives as HIV-1 protease inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sui, Z.; Li, J.; Craik, C.S.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  15. The endothelin system has a significant role in the pathogenesis and progression of Mycobacterium tuberculosis infection.

    PubMed

    Correa, Andre F; Bailão, Alexandre M; Bastos, Izabela M D; Orme, Ian M; Soares, Célia M A; Kipnis, Andre; Santana, Jaime M; Junqueira-Kipnis, Ana Paula

    2014-12-01

    Tuberculosis (TB) remains a major global health problem, and although multiple studies have addressed the relationship between Mycobacterium tuberculosis and the host on an immunological level, few studies have addressed the impact of host physiological responses. Proteases produced by bacteria have been associated with important alterations in the host tissues, and a limited number of these enzymes have been characterized in mycobacterial species. M. tuberculosis produces a protease called Zmp1, which appears to be associated with virulence and has a putative action as an endothelin-converting enzyme. Endothelins are a family of vasoactive peptides, of which 3 distinct isoforms exist, and endothelin 1 (ET-1) is the most abundant and the best-characterized isoform. The aim of this work was to characterize the Zmp1 protease and evaluate its role in pathogenicity. Here, we have shown that M. tuberculosis produces and secretes an enzyme with ET-1 cleavage activity. These data demonstrate a possible role of Zmp1 for mycobacterium-host interactions and highlights its potential as a drug target. Moreover, the results suggest that endothelin pathways have a role in the pathogenesis of M. tuberculosis infections, and ETA or ETB receptor signaling can modulate the host response to the infection. We hypothesize that a balance between Zmp1 control of ET-1 levels and ETA/ETB signaling can allow M. tuberculosis adaptation and survival in the lung tissues. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Cophylogeny of the anther smut fungi and their caryophyllaceous hosts: Prevalence of host shifts and importance of delimiting parasite species for inferring cospeciation

    PubMed Central

    2008-01-01

    Background Using phylogenetic approaches, the expectation that parallel cladogenesis should occur between parasites and hosts has been validated in some studies, but most others provided evidence for frequent host shifts. Here we examine the evolutionary history of the association between Microbotryum fungi that cause anther smut disease and their Caryophyllaceous hosts. We investigated the congruence between host and parasite phylogenies, inferred cospeciation events and host shifts, and assessed whether geography or plant ecology could have facilitated the putative host shifts identified. For cophylogeny analyses on microorganisms, parasite strains isolated from different host species are generally considered to represent independent evolutionary lineages, often without checking whether some strains actually belong to the same generalist species. Such an approach may mistake intraspecific nodes for speciation events and thus bias the results of cophylogeny analyses if generalist species are found on closely related hosts. A second aim of this study was therefore to evaluate the impact of species delimitation on the inferences of cospeciation. Results We inferred a multiple gene phylogeny of anther smut strains from 21 host plants from several geographic origins, complementing a previous study on the delimitation of fungal species and their host specificities. We also inferred a multi-gene phylogeny of their host plants, and the two phylogenies were compared. A significant level of cospeciation was found when each host species was considered to harbour a specific parasite strain, i.e. when generalist parasite species were not recognized as such. This approach overestimated the frequency of cocladogenesis because individual parasite species capable of infecting multiple host species (i.e. generalists) were found on closely related hosts. When generalist parasite species were appropriately delimited and only a single representative of each species was retained

  17. A Putative Type III Secretion System Effector Encoded by the MA20_12780 Gene in Bradyrhizobium japonicum Is-34 Causes Incompatibility with Rj4 Genotype Soybeans.

    PubMed

    Tsurumaru, Hirohito; Hashimoto, Syougo; Okizaki, Kouhei; Kanesaki, Yu; Yoshikawa, Hirofumi; Yamakawa, Takeo

    2015-09-01

    The nodulation of Bradyrhizobium japonicum Is-34 is restricted by Rj4 genotype soybeans (Glycine max). To identify the genes responsible for this incompatibility, Tn5 mutants of B. japonicum Is-34 that were able to overcome this nodulation restriction were obtained. Analysis of the Tn5 mutants revealed that Tn5 was inserted into a region containing the MA20_12780 gene. In addition, direct disruption of this gene using marker exchange overcame the nodulation restriction by Rj4 genotype soybeans. The MA20_12780 gene has a tts box motif in its upstream region, indicating a possibility that this gene encodes a type III secretion system (T3SS) effector protein. Bioinformatic characterization revealed that the MA20_12780 protein contains the small ubiquitin-like modifier (SUMO) protease domain of the C48 peptidase (ubiquitin-like protease 1 [Ulp1]) family. The results of the present study indicate that a putative T3SS effector encoded by the MA20_12780 gene causes the incompatibility with Rj4 genotype soybeans, and they suggest the possibility that the nodulation restriction of B. japonicum Is-34 may be due to Rj4 genotype soybeans recognizing the putative T3SS effector (MA20_12780 protein) as a virulence factor. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Comparative analysis of Leishmania exoproteomes: implication for host-pathogen interactions.

    PubMed

    Peysselon, Franck; Launay, Guillaume; Lisacek, Frédérique; Duclos, Bertrand; Ricard-Blum, Sylvie

    2013-12-01

    Leishmaniasis is a vector-borne disease caused by the protozoa Leishmania. We have analyzed and compared the sequences of three experimental exoproteomes of Leishmania promastigotes from different species to determine their specific features and to identify new candidate proteins involved in interactions of Leishmania with the host. The exoproteomes differ from the proteomes by a decrease in the average molecular weight per protein, in disordered amino acid residues and in basic proteins. The exoproteome of the visceral species is significantly enriched in sites predicted to be phosphorylated as well as in features frequently associated with molecular interactions (intrinsic disorder, number of disordered binding regions per protein, interaction and/or trafficking motifs) compared to the other species. The visceral species might thus have a larger interaction repertoire with the host than the other species. Less than 10% of the exoproteomes contain heparin-binding and RGD sequences, and ~30% the host targeting signal RXLXE/D/Q. These latter proteins might thus be exported inside the host cell during the intracellular stage of the infection. Furthermore we have identified nine protein families conserved in the three exoproteomes with specific combinations of Pfam domains and selected eleven proteins containing at least three interaction and/or trafficking motifs including two splicing factors, phosphomannomutase, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase, the paraflagellar rod protein-1D and a putative helicase. Their role in host-Leishmania interactions warrants further investigation but the putative ATP-dependent DEAD/H RNA helicase, which contains numerous interaction motifs, a host targeting signal and two disordered regions, is a very promising candidate. © 2013.

  19. Indispensable Role of Proteases in Plant Innate Immunity.

    PubMed

    Balakireva, Anastasia V; Zamyatnin, Andrey A

    2018-02-23

    Plant defense is achieved mainly through the induction of microbe-associated molecular patterns (MAMP)-triggered immunity (MTI), effector-triggered immunity (ETI), systemic acquired resistance (SAR), induced systemic resistance (ISR), and RNA silencing. Plant immunity is a highly complex phenomenon with its own unique features that have emerged as a result of the arms race between plants and pathogens. However, the regulation of these processes is the same for all living organisms, including plants, and is controlled by proteases. Different families of plant proteases are involved in every type of immunity: some of the proteases that are covered in this review participate in MTI, affecting stomatal closure and callose deposition. A large number of proteases act in the apoplast, contributing to ETI by managing extracellular defense. A vast majority of the endogenous proteases discussed in this review are associated with the programmed cell death (PCD) of the infected cells and exhibit caspase-like activities. The synthesis of signal molecules, such as salicylic acid, jasmonic acid, and ethylene, and their signaling pathways, are regulated by endogenous proteases that affect the induction of pathogenesis-related genes and SAR or ISR establishment. A number of proteases are associated with herbivore defense. In this review, we summarize the data concerning identified plant endogenous proteases, their effect on plant-pathogen interactions, their subcellular localization, and their functional properties, if available, and we attribute a role in the different types and stages of innate immunity for each of the proteases covered.

  20. Structures of a bi-functional Kunitz-type STI family inhibitor of serine and aspartic proteases: Could the aspartic protease inhibition have evolved from a canonical serine protease-binding loop?

    PubMed

    Guerra, Yasel; Valiente, Pedro A; Pons, Tirso; Berry, Colin; Rudiño-Piñera, Enrique

    2016-08-01

    Bi-functional inhibitors from the Kunitz-type soybean trypsin inhibitor (STI) family are glycosylated proteins able to inhibit serine and aspartic proteases. Here we report six crystal structures of the wild-type and a non-glycosylated mutant of the bifunctional inhibitor E3Ad obtained at different pH values and space groups. The crystal structures show that E3Ad adopts the typical β-trefoil fold of the STI family exhibiting some conformational changes due to pH variations and crystal packing. Despite the high sequence identity with a recently reported potato cathepsin D inhibitor (PDI), three-dimensional structures obtained in this work show a significant conformational change in the protease-binding loop proposed for aspartic protease inhibition. The E3Ad binding loop for serine protease inhibition is also proposed, based on structural similarity with a novel non-canonical conformation described for the double-headed inhibitor API-A from the Kunitz-type STI family. In addition, structural and sequence analyses suggest that bifunctional inhibitors of serine and aspartic proteases from the Kunitz-type STI family are more similar to double-headed inhibitor API-A than other inhibitors with a canonical protease-binding loop. Copyright © 2016. Published by Elsevier Inc.

  1. Evaluation of proteases and protease inhibitors in Heterodera glycines cysts obtained from laboratory and field populations

    USDA-ARS?s Scientific Manuscript database

    Proteases and proteases inhibitors were evaluated in a number of preparations of Heterodera glycines cysts obtained from glasshouse cultures (GH) and field (LR) populations. Using a FRET-peptide library comprising 512 peptide substrate pools that detect 4 endoprotease types (aspartic, cysteine, meta...

  2. HIV-1 protease-substrate coevolution in nelfinavir resistance.

    PubMed

    Kolli, Madhavi; Ozen, Ayşegül; Kurt-Yilmaz, Nese; Schiffer, Celia A

    2014-07-01

    Resistance to various human immunodeficiency virus type 1 (HIV-1) protease inhibitors (PIs) challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. The virus accumulates mutations within the protease (PR) that render the PIs less potent. Occasionally, Gag sequences also coevolve with mutations at PR cleavage sites contributing to drug resistance. In this study, we investigated the structural basis of coevolution of the p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations by determining crystal structures of wild-type and NFV-resistant HIV-1 protease in complex with p1-p6 substrate peptide variants with L449F and/or S451N. Alterations of residue 30's interaction with the substrate are compensated by the coevolving L449F and S451N cleavage site mutations. This interdependency in the PR-p1-p6 interactions enhances intermolecular contacts and reinforces the overall fit of the substrate within the substrate envelope, likely enabling coevolution to sustain substrate recognition and cleavage in the presence of PR resistance mutations. Resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors challenges the effectiveness of therapies in treating HIV-1-infected individuals and AIDS patients. Mutations in HIV-1 protease selected under the pressure of protease inhibitors render the inhibitors less potent. Occasionally, Gag sequences also mutate and coevolve with protease, contributing to maintenance of viral fitness and to drug resistance. In this study, we investigated the structural basis of coevolution at the Gag p1-p6 cleavage site with the nelfinavir (NFV) resistance D30N/N88D protease mutations. Our structural analysis reveals the interdependency of protease-substrate interactions and how coevolution may restore substrate recognition and cleavage in the presence of protease drug resistance mutations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  3. Nematicidal protease genes screened from a soil metagenomic library to control Radopholus similis mediated by Pseudomonas fluorescens pf36.

    PubMed

    Chen, Deqiang; Wang, Dongwei; Xu, Chunling; Chen, Chun; Li, Junyi; Wu, Wenjia; Huang, Xin; Xie, Hui

    2018-04-01

    Controlling Radopholus similis, an important phytopathogenic nematode, is a challenge worldwide. Herein, we constructed a metagenomic fosmid library from the rhizosphere soil of banana plants, and six clones with protease activity were obtained by functionally screening the library. Furthermore, subclones were constructed using the six clones, and three protease genes with nematicidal activity were identified: pase1, pase4, and pase6. The pase4 gene was successfully cloned and expressed, demonstrating that the protease PASE4 could effectively degrade R. similis tissues and result in nematode death. Additionally, we isolated a predominant R. similis-associated bacterium, Pseudomonas fluorescens (pf36), from 10 R. similis populations with different hosts. The pase4 gene was successfully introduced into the pf36 strain by vector transformation and conjugative transposition, and two genetically modified strains were obtained: p4MCS-pf36 and p4Tn5-pf36. p4MCS-pf36 had significantly higher protease expression and nematicidal activity (p < 0.05) than p4Tn5-pf36 in a microtiter plate assay, whereas p4Tn5-pf36 was superior to p4MCS-pf36 in terms of genetic stability and controlling R. similis in growth pot tests. This study confirmed that R. similis is inhibited by the associated bacterium pf36-mediated expression of nematicidal proteases. Herein, a novel approach is provided for the study and development of efficient, environmentally friendly, and sustainable biocontrol techniques against phytonematodes.

  4. Secreted fungal aspartic proteases: A review.

    PubMed

    Mandujano-González, Virginia; Villa-Tanaca, Lourdes; Anducho-Reyes, Miguel Angel; Mercado-Flores, Yuridia

    2016-01-01

    The aspartic proteases, also called aspartyl and aspartate proteases or acid proteases (E.C.3.4.23), belong to the endopeptidase family and are characterized by the conserved sequence Asp-Gly-Thr at the active site. These enzymes are found in a wide variety of microorganisms in which they perform important functions related to nutrition and pathogenesis. In addition, their high activity and stability at acid pH make them attractive for industrial application in the food industry; specifically, they are used as milk-coagulating agents in cheese production or serve to improve the taste of some foods. This review presents an analysis of the characteristics and properties of secreted microbial aspartic proteases and their potential for commercial application. Copyright © 2016 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  5. Supermarket Proteases.

    ERIC Educational Resources Information Center

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  6. Strigolactone-Induced Putative Secreted Protein 1 Is Required for the Establishment of Symbiosis by the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis.

    PubMed

    Tsuzuki, Syusaku; Handa, Yoshihiro; Takeda, Naoya; Kawaguchi, Masayoshi

    2016-04-01

    Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plants and fungi. To provide novel insights into the molecular mechanisms of AM symbiosis, we screened and investigated genes of the AM fungus Rhizophagus irregularis that contribute to the infection of host plants. R. irregularis genes involved in the infection were explored by RNA-sequencing (RNA-seq) analysis. One of the identified genes was then characterized by a reverse genetic approach using host-induced gene silencing (HIGS), which causes RNA interference in the fungus via the host plant. The RNA-seq analysis revealed that 19 genes are up-regulated by both treatment with strigolactone (SL) (a plant symbiotic signal) and symbiosis. Eleven of the 19 genes were predicted to encode secreted proteins and, of these, SL-induced putative secreted protein 1 (SIS1) showed the largest induction under both conditions. In hairy roots of Medicago truncatula, SIS1 expression is knocked down by HIGS, resulting in significant suppression of colonization and formation of stunted arbuscules. These results suggest that SIS1 is a putative secreted protein that is induced in a wide spatiotemporal range including both the presymbiotic and symbiotic stages and that SIS1 positively regulates colonization of host plants by R. irregularis.

  7. Heterocyclic HIV-protease inhibitors.

    PubMed

    Calugi, C; Guarna, A; Trabocchi, A

    2013-01-01

    In the panorama of HIV protease inhibitors (HIV PIs), many efforts have been devoted to the development of new compounds with reduced peptidic nature in order to improve pharmacokinetics and pharmacodynamics features. The introduction of cyclic scaffolds in the design of new chemical entities reduces flexibility and affords more rigid inhibitors. Specifically, common dipeptide isosteres are replaced by a central cyclic scaffold designed to address the key interactions with catalytic aspartic acids and residues belonging to the flap region of the active site. The current interest in cyclic chemotypes addressing key interactions of HIV protease is motivated by the different nature of interactions formed with the enzyme, although maintaining key structural resemblance to a peptide substrate, hopefully giving rise to novel HIV-1 PIs displaying an improved profile towards multidrug resistant strains. This approach has been demonstrated for Tipranavir, which is a potent FDA approved HIV-1 PI representing the most famous example of heterocyclic aspartic protease inhibitors.

  8. Active Site Characterization of Proteases Sequences from Different Species of Aspergillus.

    PubMed

    Morya, V K; Yadav, Virendra K; Yadav, Sangeeta; Yadav, Dinesh

    2016-09-01

    A total of 129 proteases sequences comprising 43 serine proteases, 36 aspartic proteases, 24 cysteine protease, 21 metalloproteases, and 05 neutral proteases from different Aspergillus species were analyzed for the catalytically active site residues using MEROPS database and various bioinformatics tools. Different proteases have predominance of variable active site residues. In case of 24 cysteine proteases of Aspergilli, the predominant active site residues observed were Gln193, Cys199, His364, Asn384 while for 43 serine proteases, the active site residues namely Asp164, His193, Asn284, Ser349 and Asp325, His357, Asn454, Ser519 were frequently observed. The analysis of 21 metalloproteases of Aspergilli revealed Glu298 and Glu388, Tyr476 as predominant active site residues. In general, Aspergilli species-specific active site residues were observed for different types of protease sequences analyzed. The phylogenetic analysis of these 129 proteases sequences revealed 14 different clans representing different types of proteases with diverse active site residues.

  9. Detergent-compatible proteases: microbial production, properties, and stain removal analysis.

    PubMed

    Niyonzima, Francois Niyongabo; More, Sunil

    2015-01-01

    Proteases are one of the most important commercial enzymes used in various industrial domains such as detergent and leather industries. The alkaline proteases as well as other detergent-compatible enzymes such as lipases and amylases serve now as the key components in detergent formulations. They break down various stains during fabric washing. The search for detergent-compatible proteases with better properties is a continuous exercise. The current trend is to use detergent-compatible proteases that are stable over a wide temperature range. Although the proteases showing stability at elevated pH have the capacity to be used in detergent formulations, their usage can be significant if they are also stable and compatible with detergent and detergent ingredients, and also able to remove protein stains. Despite the existence of some reviews on alkaline proteases, there is no specification for the use of alkaline proteases as detergent additives. The present review describes the detergent-compatible proteases tested as detergent additives. An overview was provided for screening, optimization, purification, and properties of detergent compatible proteases, with an emphasis on the stability and compatibility of the alkaline proteases with the detergent and detergent compounds, as well as stain removal examination methods.

  10. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    PubMed Central

    2011-01-01

    Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089

  11. Structural determinants of tobacco vein mottling virus protease substrate specificity

    PubMed Central

    Sun, Ping; Austin, Brian P; Tözsér, József; Waugh, David S

    2010-01-01

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-Å resolution. As observed in several crystal structures of TEV protease, the C-terminus (∼20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by ∼10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1′ position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters kcat and Km for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease. PMID:20862670

  12. Soluble expression of an amebic cysteine protease in the cytoplasm of Escherichia coli SHuffle Express cells and purification of active enzyme.

    PubMed

    Jalomo-Khayrova, Ekaterina; Mares, Rosa E; Muñoz, Patricia L A; Meléndez-López, Samuel G; Rivero, Ignacio A; Ramos, Marco A

    2018-04-03

    Recombinant production of amebic cysteine proteases using Escherichia coli cells as the bacterial system has become a challenging effort, with protein insolubility being the most common issue. Since many of these enzymes need a native conformation stabilized by disulfide bonds, an elaborate process of oxidative folding is usually demanded to get a functional protein. The cytoplasm of E. coli SHuffle Express cells owns an enhanced ability to properly fold proteins with disulfide bonds. Because of this cellular feature, it was possible to assume that this strain represents a reliable expression system and worthwhile been considered as an efficient bacterial host for the recombinant production of amebic cysteine proteases. Using E. coli SHuffle Express cells as the bacterial system, we efficiently produce soluble recombinant EhCP1protein. Enzymatic and inhibition analyses revealed that it exhibits proper catalytic abilities, proceeds effectively over the substrate (following an apparent Michaelis-Menten kinetics), and displays a typical inhibition profile. We report the first feasibility study of the recombinant production of amebic cysteine proteases using E. coli SHuffle Express as the bacterial host. We present a simple protocol for the recombinant expression and purification of fully soluble and active EhCP1 enzyme. We confirm the suitability of recombinant EhCP1 as a therapeutic target. We propose an approachable bacterial system for the recombinant production of amebic proteins, particularly for those with a need for proper oxidative folding.

  13. Positive selection of digestive Cys proteases in herbivorous Coleoptera.

    PubMed

    Vorster, Juan; Rasoolizadeh, Asieh; Goulet, Marie-Claire; Cloutier, Conrad; Sainsbury, Frank; Michaud, Dominique

    2015-10-01

    Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within -or close to- amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Crystal structure of the zymogen form of the group A Streptococcus virulence factor SpeB: an integrin-binding cysteine protease.

    PubMed

    Kagawa, T F; Cooney, J C; Baker, H M; McSweeney, S; Liu, M; Gubba, S; Musser, J M; Baker, E N

    2000-02-29

    Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-A resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes.

  15. Gold nanoparticles-based protease assay

    PubMed Central

    Guarise, Cristian; Pasquato, Lucia; De Filippis, Vincenzo; Scrimin, Paolo

    2006-01-01

    We describe here a simple assay that allows the visual detection of a protease. The method takes advantage of the high molar absorptivity of the plasmon band of gold colloids and is based on the color change of their solution when treated with dithiols. We used C- and N-terminal cysteinyl derivatives of a peptide substrate exploiting its selective recognition and cleavage by a specific protease. Contrary to the native ones, cleaved peptides are unable to induce nanoparticles aggregation; hence, the color of the solution does not change. The detection of two proteases is reported: thrombin (involved in blood coagulation and thrombosis) and lethal factor (an enzyme component of the toxin produced by Bacillus anthracis). The sensitivity of this nanoparticle-based assay is in the low nanomolar range. PMID:16537471

  16. Gold nanoparticles-based protease assay.

    PubMed

    Guarise, Cristian; Pasquato, Lucia; De Filippis, Vincenzo; Scrimin, Paolo

    2006-03-14

    We describe here a simple assay that allows the visual detection of a protease. The method takes advantage of the high molar absorptivity of the plasmon band of gold colloids and is based on the color change of their solution when treated with dithiols. We used C- and N-terminal cysteinyl derivatives of a peptide substrate exploiting its selective recognition and cleavage by a specific protease. Contrary to the native ones, cleaved peptides are unable to induce nanoparticles aggregation; hence, the color of the solution does not change. The detection of two proteases is reported: thrombin (involved in blood coagulation and thrombosis) and lethal factor (an enzyme component of the toxin produced by Bacillus anthracis). The sensitivity of this nanoparticle-based assay is in the low nanomolar range.

  17. Structural determinants of tobacco vein mottling virus protease substrate specificity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ping; Austin, Brian P.; Tozer, Jozsef

    2010-10-28

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMVmore » protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-{angstrom} resolution. As observed in several crystal structures of TEV protease, the C-terminus ({approx}20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by {approx}10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1{prime} position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k{sub cat} and K{sub m} for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.« less

  18. Update on host-pathogen interactions in cystic fibrosis lung disease.

    PubMed

    Hector, Andreas; Frey, Nina; Hartl, Dominik

    2016-12-01

    Bacterial and fungal infections are hallmarks of cystic fibrosis (CF) lung disease. In the era of long-term inhaled antibiotics and increasing CF patient survival, new "emerging" pathogens are detected in CF airways, yet their pathophysiological disease relevance remains largely controversial and incompletely defined. As a response to chronic microbial triggers, innate immune cells, particularly neutrophils, are continuously recruited into CF airways where they combat pathogens but also cause tissue injury through release of oxidants and proteases. The coordinated interplay between host immune cell activation and pathogens is essential for the outcome of CF lung disease. Here, we provide a concise overview and update on host-pathogen interactions in CF lung disease.

  19. Deep sequencing of the Trypanosoma cruzi GP63 surface proteases reveals diversity and diversifying selection among chronic and congenital Chagas disease patients.

    PubMed

    Llewellyn, Martin S; Messenger, Louisa A; Luquetti, Alejandro O; Garcia, Lineth; Torrico, Faustino; Tavares, Suelene B N; Cheaib, Bachar; Derome, Nicolas; Delepine, Marc; Baulard, Céline; Deleuze, Jean-Francois; Sauer, Sascha; Miles, Michael A

    2015-04-01

    Chagas disease results from infection with the diploid protozoan parasite Trypanosoma cruzi. T. cruzi is highly genetically diverse, and multiclonal infections in individual hosts are common, but little studied. In this study, we explore T. cruzi infection multiclonality in the context of age, sex and clinical profile among a cohort of chronic patients, as well as paired congenital cases from Cochabamba, Bolivia and Goias, Brazil using amplicon deep sequencing technology. A 450bp fragment of the trypomastigote TcGP63I surface protease gene was amplified and sequenced across 70 chronic and 22 congenital cases on the Illumina MiSeq platform. In addition, a second, mitochondrial target--ND5--was sequenced across the same cohort of cases. Several million reads were generated, and sequencing read depths were normalized within patient cohorts (Goias chronic, n = 43, Goias congenital n = 2, Bolivia chronic, n = 27; Bolivia congenital, n = 20), Among chronic cases, analyses of variance indicated no clear correlation between intra-host sequence diversity and age, sex or symptoms, while principal coordinate analyses showed no clustering by symptoms between patients. Between congenital pairs, we found evidence for the transmission of multiple sequence types from mother to infant, as well as widespread instances of novel genotypes in infants. Finally, non-synonymous to synonymous (dn:ds) nucleotide substitution ratios among sequences of TcGP63Ia and TcGP63Ib subfamilies within each cohort provided powerful evidence of strong diversifying selection at this locus. Our results shed light on the diversity of parasite DTUs within each patient, as well as the extent to which parasite strains pass between mother and foetus in congenital cases. Although we were unable to find any evidence that parasite diversity accumulates with age in our study cohorts, putative diversifying selection within members of the TcGP63I gene family suggests a link between genetic diversity within this gene

  20. Deep Sequencing of the Trypanosoma cruzi GP63 Surface Proteases Reveals Diversity and Diversifying Selection among Chronic and Congenital Chagas Disease Patients

    PubMed Central

    Llewellyn, Martin S.; Messenger, Louisa A.; Luquetti, Alejandro O.; Garcia, Lineth; Torrico, Faustino; Tavares, Suelene B. N.; Cheaib, Bachar; Derome, Nicolas; Delepine, Marc; Baulard, Céline; Deleuze, Jean-Francois; Sauer, Sascha; Miles, Michael A.

    2015-01-01

    Background Chagas disease results from infection with the diploid protozoan parasite Trypanosoma cruzi. T. cruzi is highly genetically diverse, and multiclonal infections in individual hosts are common, but little studied. In this study, we explore T. cruzi infection multiclonality in the context of age, sex and clinical profile among a cohort of chronic patients, as well as paired congenital cases from Cochabamba, Bolivia and Goias, Brazil using amplicon deep sequencing technology. Methodology/ Principal Findings A 450bp fragment of the trypomastigote TcGP63I surface protease gene was amplified and sequenced across 70 chronic and 22 congenital cases on the Illumina MiSeq platform. In addition, a second, mitochondrial target—ND5—was sequenced across the same cohort of cases. Several million reads were generated, and sequencing read depths were normalized within patient cohorts (Goias chronic, n = 43, Goias congenital n = 2, Bolivia chronic, n = 27; Bolivia congenital, n = 20), Among chronic cases, analyses of variance indicated no clear correlation between intra-host sequence diversity and age, sex or symptoms, while principal coordinate analyses showed no clustering by symptoms between patients. Between congenital pairs, we found evidence for the transmission of multiple sequence types from mother to infant, as well as widespread instances of novel genotypes in infants. Finally, non-synonymous to synonymous (dn:ds) nucleotide substitution ratios among sequences of TcGP63Ia and TcGP63Ib subfamilies within each cohort provided powerful evidence of strong diversifying selection at this locus. Conclusions/Significance Our results shed light on the diversity of parasite DTUs within each patient, as well as the extent to which parasite strains pass between mother and foetus in congenital cases. Although we were unable to find any evidence that parasite diversity accumulates with age in our study cohorts, putative diversifying selection within members of the TcGP63I

  1. Effectiveness of commercial inhibitors against subtype F HIV-1 protease.

    PubMed

    Krauchenco, Sandra; Martins, Nadia H; Sanches, Mario; Polikarpov, Igor

    2009-06-01

    Subtype F wild type HIV protease has been kinetically characterized using six commercial inhibitors (amprenavir, indinavir, lopinavir, nelfinavir, ritonavir and saquinavir) commonly used for HIV/AIDS treatment, as well as inhibitor TL-3 and acetyl-pepstatin. We also obtained kinetic parameters for two multi-resistant proteases (one of subtype B and one of subtype F) harboring primary and secondary mutations selected by intensive treatment with ritonavir/nelfinavir. This newly obtained biochemical data shows that all six studied commercially available protease inhibitors are significantly less effective against subtype F HIV proteases than against HIV proteases of subtype B, as judged by increased K(i) and biochemical fitness (vitality) values. Comparison with previously reported kinetic values for subtype A and C HIV proteases show that subtype F wild type proteases are significantly less susceptible to inhibition. These results demonstrate that the accumulation of natural polymorphisms in subtype F proteases yields catalytically more active enzymes with a large degree of cross-resistance, which thus results in strong virus viability.

  2. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  3. Within-host evolution decreases virulence in an opportunistic bacterial pathogen.

    PubMed

    Mikonranta, Lauri; Mappes, Johanna; Laakso, Jouni; Ketola, Tarmo

    2015-08-19

    Pathogens evolve in a close antagonistic relationship with their hosts. The conventional theory proposes that evolution of virulence is highly dependent on the efficiency of direct host-to-host transmission. Many opportunistic pathogens, however, are not strictly dependent on the hosts due to their ability to reproduce in the free-living environment. Therefore it is likely that conflicting selection pressures for growth and survival outside versus within the host, rather than transmission potential, shape the evolution of virulence in opportunists. We tested the role of within-host selection in evolution of virulence by letting a pathogen Serratia marcescens db11 sequentially infect Drosophila melanogaster hosts and then compared the virulence to strains that evolved only in the outside-host environment. We found that the pathogen adapted to both Drosophila melanogaster host and novel outside-host environment, leading to rapid evolutionary changes in the bacterial life-history traits including motility, in vitro growth rate, biomass yield, and secretion of extracellular proteases. Most significantly, selection within the host led to decreased virulence without decreased bacterial load while the selection lines in the outside-host environment maintained the same level of virulence with ancestral bacteria. This experimental evidence supports the idea that increased virulence is not an inevitable consequence of within-host adaptation even when the epidemiological restrictions are removed. Evolution of attenuated virulence could occur because of immune evasion within the host. Alternatively, rapid fluctuation between outside-host and within-host environments, which is typical for the life cycle of opportunistic bacterial pathogens, could lead to trade-offs that lower pathogen virulence.

  4. Catalytic Function and Substrate Specificity of the Papain-Like Protease Domain of nsp3 from the Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Báez-Santos, Yahira M.; Mielech, Anna M.; Deng, Xufang; Baker, Susan

    2014-01-01

    ABSTRACT The papain-like protease (PLpro) domain from the deadly Middle East respiratory syndrome coronavirus (MERS-CoV) was overexpressed and purified. MERS-CoV PLpro constructs with and without the putative ubiquitin-like (UBL) domain at the N terminus were found to possess protease, deubiquitinating, deISGylating, and interferon antagonism activities in transfected HEK293T cells. The quaternary structure and substrate preferences of MERS-CoV PLpro were determined and compared to those of severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro, revealing prominent differences between these closely related enzymes. Steady-state kinetic analyses of purified MERS-CoV and SARS-CoV PLpros uncovered significant differences in their rates of hydrolysis of 5-aminomethyl coumarin (AMC) from C-terminally labeled peptide, ubiquitin, and ISG15 substrates, as well as in their rates of isopeptide bond cleavage of K48- and K63-linked polyubiquitin chains. MERS-CoV PLpro was found to have 8-fold and 3,500-fold higher catalytic efficiencies for hydrolysis of ISG15-AMC than for hydrolysis of the Ub-AMC and Z-RLRGG-AMC substrates, respectively. A similar trend was observed for SARS-CoV PLpro, although it was much more efficient than MERS-CoV PLpro toward ISG15-AMC and peptide-AMC substrates. MERS-CoV PLpro was found to process K48- and K63-linked polyubiquitin chains at similar rates and with similar debranching patterns, producing monoubiquitin species. However, SARS-CoV PLpro much preferred K48-linked polyubiquitin chains to K63-linked chains, and it rapidly produced di-ubiquitin molecules from K48-linked chains. Finally, potent inhibitors of SARS-CoV PLpro were found to have no effect on MERS-CoV PLpro. A homology model of the MERS-CoV PLpro structure was generated and compared to the X-ray structure of SARS-CoV PLpro to provide plausible explanations for differences in substrate and inhibitor recognition. IMPORTANCE Unlocking the secrets of how coronavirus (CoV) papain

  5. Regulatory Proteolysis in Arabidopsis-Pathogen Interactions.

    PubMed

    Pogány, Miklós; Dankó, Tamás; Kámán-Tóth, Evelin; Schwarczinger, Ildikó; Bozsó, Zoltán

    2015-09-24

    Approximately two and a half percent of protein coding genes in Arabidopsis encode enzymes with known or putative proteolytic activity. Proteases possess not only common housekeeping functions by recycling nonfunctional proteins. By irreversibly cleaving other proteins, they regulate crucial developmental processes and control responses to environmental changes. Regulatory proteolysis is also indispensable in interactions between plants and their microbial pathogens. Proteolytic cleavage is simultaneously used both by plant cells, to recognize and inactivate invading pathogens, and by microbes, to overcome the immune system of the plant and successfully colonize host cells. In this review, we present available results on the group of proteases in the model plant Arabidopsis thaliana whose functions in microbial pathogenesis were confirmed. Pathogen-derived proteolytic factors are also discussed when they are involved in the cleavage of host metabolites. Considering the wealth of review papers available in the field of the ubiquitin-26S proteasome system results on the ubiquitin cascade are not presented. Arabidopsis and its pathogens are conferred with abundant sets of proteases. This review compiles a list of those that are apparently involved in an interaction between the plant and its pathogens, also presenting their molecular partners when available.

  6. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Yuling; Joint Laboratory between Dong-A University and Shenyang Pharmaceutical University, Shenyang Pharmaceutical University, Shenyang; Choo, Young Moo

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olyticmore » enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.« less

  7. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae).

    PubMed

    Silva-Brandão, Karina Lucas; Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes

    2018-01-01

    We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil.

  8. Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae)

    PubMed Central

    Peruchi, Aline; Seraphim, Noemy; Murad, Natália Faraj; Carvalho, Renato Assis; Farias, Juliano Ricardo; Omoto, Celso; Cônsoli, Fernando Luis; Figueira, Antonio; Brandão, Marcelo Mendes

    2018-01-01

    We applied the ddRAD genotyping-by-sequencing technique to investigate the genetic distinctiveness of Brazilian populations of the noctuid moth Spodoptera frugiperda, the fall armyworm (FAW), and the role of host-plant association as a source of genetic diversification. By strain-genotyping all field-collected individuals we found that populations collected from corn were composed primarily of corn-strain individuals, while the population collected from rice was composed almost entirely of rice-strain individuals. Outlier analyses indicated 1,184 loci putatively under selection (ca. 15% of the total) related to 194 different Gene Ontologies (GOs); the most numerous GOs were nucleotide binding, ATP binding, metal-ion binding and nucleic-acid binding. The association analyses indicated 326 loci associated with the host plant, and 216 loci associated with the individual strain, including functions related to Bacillus thuringiensis and insecticide resistance. The genetic-structure analyses indicated a moderate level of differentiation among all populations, and lower genetic structure among populations collected exclusively from corn, which suggests that the population collected from rice has a strong influence on the overall genetic structure. Populations of S. frugiperda are structured partially due to the host plant, and pairs of populations using the same host plant are more genetically similar than pairs using different hosts. Loci putatively under selection are the main factors responsible for the genetic structure of these populations, which indicates that adaptive selection on important traits, including the response to control tactics, is acting in the genetic differentiation of FAW populations in Brazil. PMID:29787608

  9. Interactions of the Algicidal Bacterium Kordia algicida with Diatoms: Regulated Protease Excretion for Specific Algal Lysis

    PubMed Central

    Paul, Carsten; Pohnert, Georg

    2011-01-01

    Interactions of planktonic bacteria with primary producers such as diatoms have great impact on plankton population dynamics. Several studies described the detrimental effect of certain bacteria on diatoms but the biochemical nature and the regulation mechanism involved in the production of the active compounds remained often elusive. Here, we investigated the interactions of the algicidal bacterium Kordia algicida with the marine diatoms Skeletonema costatum, Thalassiosira weissflogii, Phaeodactylum tricornutum, and Chaetoceros didymus. Algicidal activity was only observed towards the first three of the tested diatom species while C. didymus proved to be not susceptible. The cell free filtrate and the >30 kDa fraction of stationary K. algicida cultures is fully active, suggesting a secreted algicidal principle. The active supernatant from bacterial cultures exhibited high protease activity and inhibition experiments proved that these enzymes are involved in the observed algicidal action of the bacteria. Protease mediated interactions are not controlled by the presence of the alga but dependent on the cell density of the K. algicida culture. We show that protease release is triggered by cell free bacterial filtrates suggesting a quorum sensing dependent excretion mechanism of the algicidal protein. The K. algicida / algae interactions in the plankton are thus host specific and under the control of previously unidentified factors. PMID:21695044

  10. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis.

    PubMed

    Paul, Carsten; Pohnert, Georg

    2011-01-01

    Interactions of planktonic bacteria with primary producers such as diatoms have great impact on plankton population dynamics. Several studies described the detrimental effect of certain bacteria on diatoms but the biochemical nature and the regulation mechanism involved in the production of the active compounds remained often elusive. Here, we investigated the interactions of the algicidal bacterium Kordia algicida with the marine diatoms Skeletonema costatum, Thalassiosira weissflogii, Phaeodactylum tricornutum, and Chaetoceros didymus. Algicidal activity was only observed towards the first three of the tested diatom species while C. didymus proved to be not susceptible. The cell free filtrate and the >30 kDa fraction of stationary K. algicida cultures is fully active, suggesting a secreted algicidal principle. The active supernatant from bacterial cultures exhibited high protease activity and inhibition experiments proved that these enzymes are involved in the observed algicidal action of the bacteria. Protease mediated interactions are not controlled by the presence of the alga but dependent on the cell density of the K. algicida culture. We show that protease release is triggered by cell free bacterial filtrates suggesting a quorum sensing dependent excretion mechanism of the algicidal protein. The K. algicida / algae interactions in the plankton are thus host specific and under the control of previously unidentified factors.

  11. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions.

    PubMed

    Petropolis, Debora B; Rodrigues, Juliany C F; Viana, Nathan B; Pontes, Bruno; Pereira, Camila F A; Silva-Filho, Fernando C

    2014-01-01

    Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited "freeze and run" migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular "home"-macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model.

  12. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus.

    PubMed

    Inácio, Fabíola Dorneles; Ferreira, Roselene Oliveira; de Araujo, Caroline Aparecida Vaz; Brugnari, Tatiane; Castoldi, Rafael; Peralta, Rosane Marina; de Souza, Cristina Giatti Marques

    2015-01-01

    Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine.

  13. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases.

    PubMed Central

    Tanaka, T; Kawata, M

    1988-01-01

    We have isolated a DNA fragment from Bacillus subtilis 168 which, when present in a high-copy plasmid, inhibited production of extracellular alkaline and neutral proteases. The gene responsible for this activity was referred to as iep. The open reading frame of iep was found to be incomplete in the cloned DNA fragment. When the intact iep gene was reconstructed after the missing part of the iep gene had been cloned, it showed an enhancing effect on the production of the extracellular proteases. The open reading frame encodes a polypeptide of 229 amino acids with a molecular weight of ca. 25,866. Deletion of two amino acids from the N-terminal half of the putative iep protein resulted in dual effects, i.e., a decrease in the inhibitory activity shown by the incomplete iep gene and a slight increase in the enhancing activity shown by the complete iep gene. These results show that the iep gene product is a bifunctional protein, containing inhibitory and enhancing activities for the exoprotease production in the N-terminal and C-terminal regions, respectively. It was found by genetic and functional analyses that iep lies very close to sacU. Images PMID:3136143

  14. Cloning and characterization of Bacillus subtilis iep, which has positive and negative effects on production of extracellular proteases.

    PubMed

    Tanaka, T; Kawata, M

    1988-08-01

    We have isolated a DNA fragment from Bacillus subtilis 168 which, when present in a high-copy plasmid, inhibited production of extracellular alkaline and neutral proteases. The gene responsible for this activity was referred to as iep. The open reading frame of iep was found to be incomplete in the cloned DNA fragment. When the intact iep gene was reconstructed after the missing part of the iep gene had been cloned, it showed an enhancing effect on the production of the extracellular proteases. The open reading frame encodes a polypeptide of 229 amino acids with a molecular weight of ca. 25,866. Deletion of two amino acids from the N-terminal half of the putative iep protein resulted in dual effects, i.e., a decrease in the inhibitory activity shown by the incomplete iep gene and a slight increase in the enhancing activity shown by the complete iep gene. These results show that the iep gene product is a bifunctional protein, containing inhibitory and enhancing activities for the exoprotease production in the N-terminal and C-terminal regions, respectively. It was found by genetic and functional analyses that iep lies very close to sacU.

  15. Multifunctional Mitochondrial AAA Proteases

    PubMed Central

    Glynn, Steven E.

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle. PMID:28589125

  16. Multifunctional Mitochondrial AAA Proteases.

    PubMed

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  17. Protease production by fermentation of fish solubles from salmon canning processes.

    PubMed

    Wah-On, H C; Branion, R M; Strasdine, G A

    1980-09-01

    Production of protease by fermentation, using Sorangium 495, of a substrate based on condensed fish solubles is demonstrated. The effects of carbohydrate addition, pH, fish solubles concentration, scale-up, agitation, and air flow rate on protease yields are described. While the fish solubles medium alone could give rise to measurable yields of protease, these were, at worst, doubled when 1% glucose was added to the medium. pH 7 was optimal for protease yield. Although the concentration of fish solubles in the basic medium showed no significant effect on cell yield, maximum protease yield was observed at a protein concentration equivalent to 3.85 mg/mL of bovine serum albumin. Protease production rates decreased as medium protein fermentor showed no significant effect on maximum protease yields. The effects of agitator speed and air flow rate on protease yield suggested that the rate of O2 transfer from air to medium could limit the rate of protease production. It was also noted that protease production is not growth associated.

  18. Serine Proteases-Like Genes in the Asian Rice Gall Midge Show Differential Expression in Compatible and Incompatible Interactions with Rice

    PubMed Central

    Sinha, Deepak Kumar; Lakshmi, Mulagondla; Anuradha, Ghanta; Rahman, Shaik J.; Siddiq, Ebrahimali A.; Bentur, Jagadish S.; Nair, Suresh

    2011-01-01

    The Asian rice gall midge, Orseolia oryzae (Wood-Mason), is a serious pest of rice. Investigations into the gall midge-rice interaction will unveil the underlying molecular mechanisms which, in turn, can be used as a tool to assist in developing suitable integrated pest management strategies. The insect gut is known to be involved in various physiological and biological processes including digestion, detoxification and interaction with the host. We have cloned and identified two genes, OoprotI and OoprotII, homologous to serine proteases with the conserved His87, Asp136 and Ser241 residues. OoProtI shared 52.26% identity with mosquito-type trypsin from Hessian fly whereas OoProtII showed 52.49% identity to complement component activated C1s from the Hessian fly. Quantitative real time PCR analysis revealed that both the genes were significantly upregulated in larvae feeding on resistant cultivar than in those feeding on susceptible cultivar. These results provide an opportunity to understand the gut physiology of the insect under compatible or incompatible interactions with the host. Phylogenetic analysis grouped these genes in the clade containing proteases of phytophagous insects away from hematophagous insects. PMID:21686154

  19. Bat-to-human: spike features determining 'host jump' of coronaviruses SARS-CoV, MERS-CoV, and beyond.

    PubMed

    Lu, Guangwen; Wang, Qihui; Gao, George F

    2015-08-01

    Both severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic pathogens that crossed the species barriers to infect humans. The mechanism of viral interspecies transmission is an important scientific question to be addressed. These coronaviruses contain a surface-located spike (S) protein that initiates infection by mediating receptor-recognition and membrane fusion and is therefore a key factor in host specificity. In addition, the S protein needs to be cleaved by host proteases before executing fusion, making these proteases a second determinant of coronavirus interspecies infection. Here, we summarize the progress made in the past decade in understanding the cross-species transmission of SARS-CoV and MERS-CoV by focusing on the features of the S protein, its receptor-binding characteristics, and the cleavage process involved in priming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Discovery: an interactive resource for the rational selection and comparison of putative drug target proteins in malaria

    PubMed Central

    Joubert, Fourie; Harrison, Claudia M; Koegelenberg, Riaan J; Odendaal, Christiaan J; de Beer, Tjaart AP

    2009-01-01

    Background Up to half a billion human clinical cases of malaria are reported each year, resulting in about 2.7 million deaths, most of which occur in sub-Saharan Africa. Due to the over-and misuse of anti-malarials, widespread resistance to all the known drugs is increasing at an alarming rate. Rational methods to select new drug target proteins and lead compounds are urgently needed. The Discovery system provides data mining functionality on extensive annotations of five malaria species together with the human and mosquito hosts, enabling the selection of new targets based on multiple protein and ligand properties. Methods A web-based system was developed where researchers are able to mine information on malaria proteins and predicted ligands, as well as perform comparisons to the human and mosquito host characteristics. Protein features used include: domains, motifs, EC numbers, GO terms, orthologs, protein-protein interactions, protein-ligand interactions and host-pathogen interactions among others. Searching by chemical structure is also available. Results An in silico system for the selection of putative drug targets and lead compounds is presented, together with an example study on the bifunctional DHFR-TS from Plasmodium falciparum. Conclusion The Discovery system allows for the identification of putative drug targets and lead compounds in Plasmodium species based on the filtering of protein and chemical properties. PMID:19642978

  1. Functional protease profiling for diagnosis of malignant disease.

    PubMed

    Findeisen, Peter; Neumaier, Michael

    2012-01-01

    Clinical proteomic profiling by mass spectrometry (MS) aims at uncovering specific alterations within mass profiles of clinical specimens that are of diagnostic value for the detection and classification of various diseases including cancer. However, despite substantial progress in the field, the clinical proteomic profiling approaches have not matured into routine diagnostic applications so far. Their limitations are mainly related to high-abundance proteins and their complex processing by a multitude of endogenous proteases thus making rigorous standardization difficult. MS is biased towards the detection of low-molecular-weight peptides. Specifically, in serum specimens, the particular fragments of proteolytically degraded proteins are amenable to MS analysis. Proteases are known to be involved in tumour progression and tumour-specific proteases are released into the blood stream presumably as a result of invasive progression and metastasis. Thus, the determination of protease activity in clinical specimens from patients with malignant disease can offer diagnostic and also therapeutic options. The identification of specific substrates for tumour proteases in complex biological samples is challenging, but proteomic screens for proteases/substrate interactions are currently experiencing impressive progress. Such proteomic screens include peptide-based libraries, differential isotope labelling in combination with MS, quantitative degradomic analysis of proteolytically generated neo-N-termini, monitoring the degradation of exogenous reporter peptides with MS, and activity-based protein profiling. In the present article, we summarize and discuss the current status of proteomic techniques to identify tumour-specific protease-substrate interactions for functional protease profiling. Thereby, we focus on the potential diagnostic use of the respective approaches. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. pH regulation of recombinant glucoamylase production in Fusarium venenatum JeRS 325, a transformant with a Fusarium oxysporum alkaline (trypsin-like) protease promoter.

    PubMed

    Wiebe, M G; Robson, G D; Shuster, J R; Trinci, A P

    1999-08-05

    Fusarium venenatum (formerly Fusarium graminearum) JeRS 325 produces heterologous glucoamylase (GAM) under the regulation of a Fusarium oxysporum alkaline (trypsin-like) protease promoter. The glucoamylase gene was used as a reporter gene to study the effects of ammonium and pH on GAM production under the control of the alkaline protease promoter. Between pH 4.0 and 5.8, GAM production in glucose-limited chemostat cultures of JeRS 325 grown at a dilution rate of 0.10 h-1 (doubling time, 6.9 h) on (NH4)2SO4 medium increased in a linear manner with increase in pH. However, at pH 4.0 and below GAM production was almost completely repressed in glucose-limited chemostat cultures grown on (NH4)2SO4 or NaNO3 medium. Thus GAM production in JeRS 325 is regulated by culture pH, not by the nature of the nitrogen source in the medium. The difficulty of using unbuffered medium when investigating putative ammonium repression is also shown. The study demonstrates the potential for use of the alkaline protease promoter in F. graminearum for the production of recombinant proteins in a pH dependent man ner. Copyright 1999 John Wiley & Sons, Inc.

  3. Modification of host erythrocyte membranes by trypsin and chymotrypsin treatments and effects on the in vitro growth of bovine and equine Babesia parasites.

    PubMed

    Okamura, Masashi; Yokoyama, Naoaki; Takabatake, Noriyuki; Okubo, Kazuhiro; Ikehara, Yuzuru; Igarashi, Ikuo

    2007-02-01

    In the present study, we investigated the effects of protease pretreatments of host erythrocytes (RBC) on the in vitro growth of bovine Babesia parasites (Babesia bovis and B. bigemina) and equine Babesia parasites (B. equi and B. caballi). The selected proteases, trypsin and chymotrypsin, clearly modified several membrane proteins of both bovine and equine RBC, as demonstrated by SDS-PAGE analysis; however, the protease treatments also modified the sialic acid content exclusively in bovine RBC, as demonstrated by lectin blot analysis. An in vitro growth assay using the protease-treated RBC showed that the trypsin-treated bovine RBC, but not the chymotrypsin-treated ones, significantly reduced the growth of B. bovis and B. bigemina as compared to the control. In contrast, the growth of B. equi and B. caballi was not affected by any of these proteases. Thus, the bovine, but not the equine, Babesia parasites require the trypsin-sensitive membrane (sialoglyco) proteins to infect the RBC.

  4. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus

    PubMed Central

    Inácio, Fabíola Dorneles; Ferreira, Roselene Oliveira; de Araujo, Caroline Aparecida Vaz; Peralta, Rosane Marina; de Souza, Cristina Giatti Marques

    2015-01-01

    Proteases are present in all living organisms and they play an important role in physiological conditions. Cell growth and death, blood clotting, and immune defense are all examples of the importance of proteases in maintaining homeostasis. There is growing interest in proteases due to their use for industrial purposes. The search for proteases with specific characteristics is designed to reduce production costs and to find suitable properties for certain industrial sectors, as well as good producing organisms. Ninety percent of commercialized proteases are obtained from microbial sources and proteases from macromycetes have recently gained prominence in the search for new enzymes with specific characteristics. The production of proteases from saprophytic basidiomycetes has led to the identification of various classes of proteases. The genus Pleurotus has been extensively studied because of its ligninolytic enzymes. The characteristics of this genus are easy cultivation techniques, high yield, low nutrient requirements, and excellent adaptation. There are few studies in the literature about proteases of Pleurotus spp. This review gathers together information about proteases, especially those derived from basidiomycetes, and aims at stimulating further research about fungal proteases because of their physiological importance and their application in various industries such as biotechnology and medicine. PMID:26180792

  5. Discovery and characterization of a novel plant pathogen protease

    USDA-ARS?s Scientific Manuscript database

    Chitinase modifying proteins are fungal proteases that attack specific plant defense chitinases. At least three unrelated types of proteases have evolved to have this function. They all truncate the targeted chitinases by cleaving near their amino termini, but each protease type targets a different ...

  6. Proteolysin, a Novel Highly Thermostable and Cosolvent-Compatible Protease from the Thermophilic Bacterium Coprothermobacter proteolyticus

    PubMed Central

    Toplak, Ana; Wu, Bian; Fusetti, Fabrizia; Quaedflieg, Peter J. L. M.

    2013-01-01

    Through genome mining, we identified a gene encoding a putative serine protease of the thermitase subgroup of subtilases (EC 3.4.21.66) in the thermophilic bacterium Coprothermobacter proteolyticus. The gene was functionally expressed in Escherichia coli, and the enzyme, which we called proteolysin, was purified to near homogeneity from crude cell lysate by a single heat treatment step. Proteolysin has a broad pH tolerance and is active at temperatures of up to 80°C. In addition, the enzyme shows good activity and stability in the presence of organic solvents, detergents, and dithiothreitol, and it remains active in 6 M guanidinium hydrochloride. Based on its stability and activity profile, proteolysin can be an excellent candidate for applications where resistance to harsh process conditions is required. PMID:23851086

  7. Protease signaling through protease activated receptor 1 mediate nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients

    PubMed Central

    Buhner, Sabine; Hahne, Hannes; Hartwig, Kerstin; Li, Qin; Vignali, Sheila; Ostertag, Daniela; Meng, Chen; Hörmannsperger, Gabriele; Braak, Breg; Pehl, Christian; Frieling, Thomas; Barbara, Giovanni; De Giorgio, Roberto; Demir, Ihsan Ekin; Ceyhan, Güralp Onur; Zeller, Florian; Boeckxstaens, Guy; Haller, Dirk; Kuster, Bernhard

    2018-01-01

    Background & aims The causes of gastrointestinal complaints in irritable bowel syndrome (IBS) remain poorly understood. Altered nerve function has emerged as an important pathogenic factor as IBS mucosal biopsy supernatants consistently activate enteric and sensory neurons. We investigated the neurally active molecular components of such supernatants from patients with IBS and quiescent ulcerative colitis (UC). Method Effects of supernatants from 7 healthy controls (HC), 20 IBS and 12 UC patients on human and guinea pig submucous neurons were studied with neuroimaging techniques. We identify differentially expressed proteins with proteome analysis. Results Nerve activation by IBS supernatants was prevented by the protease activated receptor 1 (PAR1) antagonist SCHE79797. UC supernatants also activated enteric neurons through protease dependent mechanisms but without PAR1 involvement. Proteome analysis of the supernatants identified 204 proteins, among them 17 proteases as differentially expressed between IBS, UC and HC. Of those the four proteases elastase 3a, chymotrypsin C, proteasome subunit type beta-2 and an unspecified isoform of complement C3 were significantly more abundant in IBS compared to HC and UC supernatants. Of eight proteases, which were upregulated in IBS, the combination of elastase 3a, cathepsin L and proteasome alpha subunit-4 showed the highest prediction accuracy of 98% to discriminate between IBS and HC groups. Elastase synergistically potentiated the effects of histamine and serotonin–the two other main neuroactive substances in the IBS supernatants. A serine protease inhibitor isolated from the probiotic Bifidobacterium longum NCC2705 (SERPINBL), known to inhibit elastase-like proteases, prevented nerve activation by IBS supernatants. Conclusion Proteases in IBS and UC supernatants were responsible for nerve activation. Our data demonstrate that proteases, particularly those signalling through neuronal PAR1, are biomarker candidates for

  8. Cysteine protease 30 (CP30) contributes to adhesion and cytopathogenicity in feline Tritrichomonas foetus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gould, Emily N.; Giannone, Richard; Kania, Stephen A.

    Tritrichomonas foetus ( T. foetus) is a flagellated protozoan parasite that is recognized as a significant cause of diarrhea in domestic cats with a prevalence rate as high as 30%. No drugs have been shown to consistently eliminate T. foetus infection in all cats. Cysteine proteases (CPs) have been identified as mediators of T. foetus-induced adhesion-dependent cytotoxicity to the intestinal epithelium. These CPs represent novel targets for the treatment of feline trichomonosis. However, cats also produce CPs that are part of life-critical systems. Thus, parasitic CPs need to be selectively targeted to reduce the potential for host toxicity. Previous studiesmore » have demonstrated the importance of a specific CP, CP30, in mediating bovine and human trichomonad cytopathogenicity. This CP has also recently been identified in feline T. foetus, although the function of this protease in the feline genotype remains unknown. Furthermore, the study objectives were to characterize the presence of CP30 in feline T. foetus isolates and to evaluate the effect of targeted inhibition of CP30 on feline T. foetus-induced adhesion dependent cytotoxicity.« less

  9. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spannaus, Ralf; Bodem, Jochen, E-mail: Jochen.Bodem@vim.uni-wuerzburg.de

    2014-04-15

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies.more » The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity.« less

  10. Antibacterial serine protease from Wrightia tinctoria: Purification and characterization.

    PubMed

    Muthu, Sakthivel; Gopal, Venkatesh Babu; Soundararajan, Selvakumar; Nattarayan, Karthikeyan; S Narayan, Karthik; Lakshmikanthan, Mythileeswari; Malairaj, Sathuvan; Perumal, Palani

    2017-03-01

    A serine protease was purified from the leaves of Wrightia tinctoria by sequential flow through method comprising screening, optimization, ammonium sulfate precipitation, gel filtration and ion exchange column chromatography. The yield and purification fold obtained were 11.58% and 9.56 respectively. A single band of serine protease was visualized on SDS-PAGE and 2-D gel electrophoretic analyses were revealed with the molecular mass of 38.5 kDa. Serine protease had an optimum pH of 8.0 and was stable at 45°C with high relative protease activity. The addition of metal ions such as Mg2+ and Mn2+ exhibits a high relative activity. Serine protease had a potent antibacterial activity against both Gram-positive and Gram-negative bacteria. A 10 μg/ml of serine protease was tested against S. aureus, M. luteus, P. aeruginosa and K. pneumoniae which had 21, 20, 18 and 17 mm of zone of inhibition respectively. Serine protease from W. tinctoria degrades the peptidoglycan layer of bacteria which was visualized by transmission electron microscopic analysis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Characterization of the protease activity of detergents: laboratory practicals for studying the protease profile and activity of various commercial detergents.

    PubMed

    Valls, Cristina; Pujadas, Gerard; Garcia-Vallve, Santi; Mulero, Miquel

    2011-07-01

    Detergent enzymes account for about 30% of the total worldwide production of enzymes and are one of the largest and most successful applications of modern industrial biotechnology. Proteases can improve the wash performance of household, industrial, and institutional laundry detergents used to remove protein-based stains such as blood, grass, body fluids, and food soils. This article describes two easy and cheap laboratory exercises to study the presence, profile, and basic enzymology of detergent proteases. These laboratory practicals are based on the determination of the detergent protease activity of various commercial detergents using the N-succinyl-L-alanyl-L-alanyl-L-prolyl-L-phenylalanine p-nitroanilide method and the bovine serum albumin degradation capacity. Students are also required to elucidate the enzymatic subtype of detergent proteases by studying the inhibitory potential of several types of protease inhibitors revealed by the same experimental methodology. Additionally, the results of the exercises can be used to provide additional insights on elementary enzymology by studying the influence of several important parameters on protease activity such as temperature (in this article) and the influence of pH and effects of surfactants and oxidizers (proposed). Students also develop laboratory skills, problem-solving capacities, and the ability to write a laboratory report. The exercises are mainly designed for an advanced undergraduate project in the biochemistry and biotechnology sciences. Globally, these laboratory practicals show students the biotechnological applications of proteases in the detergent industry and also reinforce important enzymology concepts. Copyright © 2010 Wiley Periodicals, Inc.

  12. Analysis of Milk from Mothers Who Delivered Prematurely Reveals Few Changes in Proteases and Protease Inhibitors across Gestational Age at Birth and Infant Postnatal Age.

    PubMed

    Demers-Mathieu, Veronique; Nielsen, Søren Drud; Underwood, Mark A; Borghese, Robyn; Dallas, David C

    2017-06-01

    Background: Peptidomics research has demonstrated that protease activity is higher in breast milk from preterm-delivering mothers than from term-delivering mothers. However, to our knowledge, the effect of the degree of prematurity and postnatal age on proteases and protease inhibitors in human milk remains unknown. Objective: We aimed to determine the change of proteases and protease inhibitors in milk from mothers who delivered prematurely across gestational age (GA) and postnatal age. Methods: Milk samples were collected from 18 mothers aged 26-40 y who delivered preterm infants and who lacked mastitis. For analysis, samples were separated into 2 groups: 9 from early GA (EGA) (24-26 wk GA)-delivering mothers and 9 from late GA (LGA) (27-32 wk GA)-delivering mothers. Within the 9 samples in each group, the collection time ranged from postnatal days 2 to 47. The activity and predicted activity of proteases in preterm milk were determined with the use of fluorometric and spectrophotometric assays and peptidomics, respectively. Protease and protease inhibitor concentrations were determined with the use of ELISA. Linear mixed models were applied to compare enzymes across GA and postnatal age. Results: Carboxypeptidase B2, kallikrein, plasmin, elastase, thrombin, and cytosol aminopeptidase were present and active in the milk of preterm-delivering mothers. Most milk protease and antiprotease concentrations did not change with GA or postnatal age. However, the concentration and activity of kallikrein, the most abundant and active protease in preterm milk, increased by 25.4 ng · mL -1 · d -1 and 0.454 μg · mL -1 · d -1 postnatally, respectively, in EGA milk samples while remaining stable in LGA milk samples. Conclusions: This research demonstrates that proteases are active in human milk and begin to degrade milk protein within the mammary gland before consumption by infants. Proteases and protease inhibitors in milk from mothers of premature infants mostly did not

  13. HIV protease drug resistance and its impact on inhibitor design.

    PubMed

    Ala, P J; Rodgers, J D; Chang, C H

    1999-07-01

    The primary cause of resistance to the currently available HIV protease inhibitors is the accumulation of multiple mutations in the viral protease. So far more than 20 substitutions have been observed in the active site, dimer interface, surface loops and flaps of the homodimer. While many mutations reduce the protease's affinity for inhibitors, others appear to enhance its catalytic efficiency. This high degree of genetic flexibility has made the protease an elusive drug target. The design of the next generation of HIV protease inhibitors will be discussed in light of the current structural information.

  14. 2-D zymographic analysis of Broccoli (Brassica oleracea L. var. Italica) florets proteases: follow up of cysteine protease isotypes in the course of post-harvest senescence.

    PubMed

    Rossano, Rocco; Larocca, Marilena; Riccio, Paolo

    2011-09-01

    Zymographic analysis of Broccoli florets (Brassica oleracea L. var. Italica) revealed the presence of acidic metallo-proteases, serine proteases and cysteine proteases. Under conditions which were denaturing for the other proteases, the study was restricted to cysteine proteases. 2-D zymography, a technique that combines IEF and zymography was used to show the presence of 11 different cysteine protease spots with molecular mass of 44 and 47-48kDa and pIs ranging between 4.1 and 4.7. pI differences could be ascribed to different degrees of phosphorylation that partly disappeared in the presence of alkaline phosphatase. Post-harvest senescence of Broccoli florets was characterized by decrease in protein and chlorophyll contents and increase of protease activity. In particular, as determined by 2-D zymography, the presence of cysteine protease clearly increased during senescence, a finding that may represent a useful tool for the control of the aging process. Copyright © 2011 Elsevier GmbH. All rights reserved.

  15. Novel Mycosin Protease MycP1 Inhibitors Identified by Virtual Screening and 4D Fingerprints

    PubMed Central

    2015-01-01

    The rise of drug-resistant Mycobacterium tuberculosis lends urgency to the need for new drugs for the treatment of tuberculosis (TB). The identification of a serine protease, mycosin protease-1 (MycP1), as the crucial agent in hydrolyzing the virulence factor, ESX-secretion-associated protein B (EspB), potentially opens the door to new tuberculosis treatment options. Using the crystal structure of mycobacterial MycP1 in the apo form, we performed an iterative ligand- and structure-based virtual screening (VS) strategy to identify novel, nonpeptide, small-molecule inhibitors against MycP1 protease. Screening of ∼485 000 ligands from databases at the Genomics Research Institute (GRI) at the University of Cincinnati and the National Cancer Institute (NCI) using our VS approach, which integrated a pharmacophore model and consensus molecular shape patterns of active ligands (4D fingerprints), identified 81 putative inhibitors, and in vitro testing subsequently confirmed two of them as active inhibitors. Thereafter, the lead structures of each VS round were used to generate a new 4D fingerprint that enabled virtual rescreening of the chemical libraries. Finally, the iterative process identified a number of diverse scaffolds as lead compounds that were tested and found to have micromolar IC50 values against the MycP1 target. This study validated the efficiency of the SABRE 4D fingerprints as a means of identifying novel lead compounds in each screening round of the databases. Together, these results underscored the value of using a combination of in silico iterative ligand- and structure-based virtual screening of chemical libraries with experimental validation for the identification of promising structural scaffolds, such as the MycP1 inhibitors. PMID:24628123

  16. Detection of protease activity in cells and animals.

    PubMed

    Verdoes, Martijn; Verhelst, Steven H L

    2016-01-01

    Proteases are involved in a wide variety of biologically and medically important events. They are entangled in a complex network of processes that regulate their activity, which makes their study intriguing, but challenging. For comprehensive understanding of protease biology and effective drug discovery, it is therefore essential to study proteases in models that are close to their complex native environments such as live cells or whole organisms. Protease activity can be detected by reporter substrates and activity-based probes, but not all of these reagents are suitable for intracellular or in vivo use. This review focuses on the detection of proteases in cells and in vivo. We summarize the use of probes and substrates as molecular tools, discuss strategies to deliver these tools inside cells, and describe sophisticated read-out techniques such as mass spectrometry and various imaging applications. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Limited proteolysis in proteomics using protease-immobilized microreactors.

    PubMed

    Yamaguchi, Hiroshi; Miyazaki, Masaya; Maeda, Hideaki

    2012-01-01

    Proteolysis is the key step for proteomic studies integrated with MS analysis. Compared with the conventional method of in-solution digestion, proteolysis by a protease-immobilized microreactor has a number of advantages for proteomic analysis; i.e., rapid and efficient digestion, elimination of a purification step of the digests prior to MS, and high stability against a chemical or thermal denaturant. This chapter describes the preparation of the protease-immobilized microreactors and proteolysis performance of these microreactors. Immobilization of proteases by the formation of a polymeric membrane consisting solely of protease-proteins on the inner wall of the microchannel is performed. This was realized either by a cross-linking reaction in a laminar flow between lysine residues sufficiently present on the protein surfaces themselves or in the case of acidic proteins by mixing them with poly-lysine prior to the crosslink-reaction. The present procedure is simple and widely useful not only for proteases but also for several other enzymes.

  18. Pathophysiological significance and therapeutic applications of snake venom protease inhibitors.

    PubMed

    Thakur, Rupamoni; Mukherjee, Ashis K

    2017-06-01

    Protease inhibitors are important constituents of snake venom and play important roles in the pathophysiology of snakebite. Recently, research on snake venom protease inhibitors has provided valuable information to decipher the molecular details of various biological processes and offer insight for the development of some therapeutically important molecules from snake venom. The process of blood coagulation and fibrinolysis, in addition to affecting platelet function, are well known as the major targets of several snake venom protease inhibitors. This review summarizes the structure-functional aspects of snake venom protease inhibitors that have been described to date. Because diverse biological functions have been demonstrated by protease inhibitors, a comparative overview of their pharmacological and pathophysiological properties is also highlighted. In addition, since most snake venom protease inhibitors are non-toxic on their own, this review evaluates the different roles of individual protease inhibitors that could lead to the identification of drug candidates and diagnostic molecules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection.

    PubMed

    Jagdeo, Julienne M; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M; Jan, Eric

    2018-04-15

    Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed t erminal a mine i sotopic l abeling of s ubstrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3C pro s) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3C pro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3C pro -targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3C pro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3C pro substrates in vivo , we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection

  20. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection

    PubMed Central

    Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.

    2018-01-01

    ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection

  1. Effects of eye rubbing on the levels of protease, protease activity and cytokines in tears: relevance in keratoconus.

    PubMed

    Balasubramanian, Sivaraman A; Pye, David C; Willcox, Mark D P

    2013-03-01

    Proteases, protease activity and inflammatory molecules in tears have been found to be relevant in the pathogenesis of keratoconus. We sought to determine the influence of eye rubbing on protease expression, protease activity and concentration of inflammatory molecules in tears. Basal tears were collected from normal volunteers before and after 60 seconds of experimental eye rubbing. The total amount of matrix metalloproteinase (MMP)-13 and inflammatory molecules interleukin (IL)-6 and tumour necrosis factor (TNF)-α in the tear samples were measured using specific enzyme-linked immunosorbent assays (ELISA). Tear collagenase activity was investigated using a specific activity assay. The concentrations of MMP-13 (51.9 ± 34.3 versus 63 ± 36.8 pg/ml, p = 0.006), IL-6 (1.24 ± 0.98 versus 2.02 ± 1.52 pg/ml, p = 0.004) and TNF-α (1.16 ± 0.74 versus 1.44 ± 0.66 pg/ml, p = 0.003) were significantly increased in normal subjects after eye rubbing. The experimental eye rub did not alter significantly the collagenase activity (5.02 ± 3 versus 7.50 ± 3.90 fluorescent intensity units, p = 0.14) of tears. Eye rubbing for 60 seconds increased the level of tear MMP-13, IL-6 and TNF-α in normal study subjects. This increase in protease, protease activity and inflammatory mediators in tears after eye rubbing may be exacerbated even further during persistent and forceful eye rubbing seen in people with keratoconus and this in turn may contribute to the progression of the disease. © 2013 The Authors. Clinical and Experimental Optometry © 2013 Optometrists Association Australia.

  2. Thermolysin damages animal life through degradation of plasma proteins enhanced by rapid cleavage of serpins and activation of proteases.

    PubMed

    Kong, Lulu; Lu, Anrui; Guan, Jingmin; Yang, Bing; Li, Muwang; Hillyer, Julián F; Ramarao, Nalini; Söderhäll, Kenneth; Liu, Chaoliang; Ling, Erjun

    2015-01-01

    Thermolysin, a metallopeptidase secreted by pathogenic microbes, is concluded as an important virulence factor due to cleaving purified host proteins in vitro. Using the silkworm Bombyx mori as a model system, we found that thermolysin injection into larvae induces the destruction of the coagulation response and the activation of hemolymph melanization, which results in larval death. Thermolysin triggers the rapid degradation of insect and mammalian plasma proteins at a level that is considerably greater than expected in vitro and/or in vivo. To more specifically explore the mechanism, thermolysin-induced changes to key proteins belonging to the insect melanization pathway were assessed as a window for observing plasma protein cleavage. The application of thermolysin induced the rapid cleavage of the melanization negative regulator serpin-3, but did not directly activate the melanization rate-limiting enzyme prophenoloxidase (PPO) or the terminal serine proteases responsible for PPO activation. Terminal serine proteases of melanization are activated indirectly after thermolysin exposure. We hypothesize that thermolysin induces the rapid degradation of serpins and the activation of proteases directly or indirectly, boosting uncontrolled plasma protein degradation in insects and mammalians. © 2014 Wiley Periodicals, Inc.

  3. Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications

    PubMed Central

    Carroll, Ian M; Maharshak, Nitsan

    2013-01-01

    Numerous reports have identified a dysbiosis in the intestinal microbiota in patients suffering from inflammatory bowel diseases (IBD), yet the mechanism(s) in which this complex microbial community initiates or perpetuates inflammation remains unclear. The purpose of this review is to present evidence for one such mechanism that implicates enteric microbial derived proteases in the pathogenesis of IBD. We highlight and discuss studies demonstrating that proteases and protease receptors are abundant in the digestive system. Additionally, we investigate studies demonstrating an association between increased luminal protease activity and activation of protease receptors, ultimately resulting in increased intestinal permeability and exacerbation of colitis in animal models as well as in human IBD. Proteases are essential for the normal functioning of bacteria and in some cases can serve as virulence factors for pathogenic bacteria. Although not classified as traditional virulence factors, proteases originating from commensal enteric bacteria also have a potential association with intestinal inflammation via increased enteric permeability. Reports of increased protease activity in stools from IBD patients support a possible mechanism for a dysbiotic enteric microbiota in IBD. A better understanding of these pathways and characterization of the enteric bacteria involved, their proteases, and protease receptors may pave the way for new therapeutic approaches for these diseases. PMID:24431894

  4. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme

    PubMed Central

    Békés, Miklós; Rut, Wioletta; Kasperkiewicz, Paulina; Mulder, Monique P. C.; Ovaa, Huib; Drag, Marcin; Lima, Christopher D.; Huang, Tony T.

    2015-01-01

    Ubiquitin (Ub) and the ubiquitin-like modifier interferon stimulated gene 15 (ISG15) participate in the host defense of viral infections. Viruses, including the Severe Acute Respiratory Syndrome human coronavirus (SARS hCoV), have co-opted Ub/ISG15-conjugation pathways for their own advantage or have evolved effector proteins to counter pro-inflammatory properties of Ub/ISG15-conjugated host proteins. Here, we compare substrate specificities of the papain-like protease (PLpro) from the recently emerged Middle Eastern Respiratory Syndrome (MERS) hCoV to the related protease from SARS, SARS PLpro. Through biochemical assays, we show that similar to SARS PLpro, MERS PLpro is both a deubiquitinating and a deISGylating enzyme. Further analysis of the intrinsic deubiquitinating enzyme (DUB) activity of these viral proteases revealed unique differences between the recognition and cleavage specificities of polyUb chains. First, MERS PLpro shows broad linkage specificity for the cleavage of polyUb chains, while SARS PLpro prefers to cleave Lys48-linked polyUb chains. Second, MERS PLpro cleaves polyUb chains in a “mono-distributive” manner (one Ub at a time), and SARS PLpro prefers to cleave K48-linked poly-Ub chains by sensing a di-Ub moiety as a minimal recognition element using a “di-distributive” cleavage mechanism. The di-distributive cleavage mechanism for SARS PLpro appears to be uncommon among USP-family DUBs, as related USP family members from humans do not display such a mechanism. We propose that these intrinsic enzymatic differences between SARS and MERS PLpro will help identify pro-inflammatory substrates of these viral DUBs and can guide in the design of therapeutics to combat infection by coronaviruses. PMID:25764917

  5. Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases.

    PubMed

    Wang, Hongwang; Udukala, Dinusha N; Samarakoon, Thilani N; Basel, Matthew T; Kalita, Mausam; Abayaweera, Gayani; Manawadu, Harshi; Malalasekera, Aruni; Robinson, Colette; Villanueva, David; Maynez, Pamela; Bossmann, Leonie; Riedy, Elizabeth; Barriga, Jenny; Wang, Ni; Li, Ping; Higgins, Daniel A; Zhu, Gaohong; Troyer, Deryl L; Bossmann, Stefan H

    2014-02-01

    Numerous proteases are known to be necessary for cancer development and progression including matrix metalloproteinases (MMPs), tissue serine proteases, and cathepsins. The goal of this research is to develop an Fe/Fe3O4 nanoparticle-based system for clinical diagnostics, which has the potential to measure the activity of cancer-associated proteases in biospecimens. Nanoparticle-based "light switches" for measuring protease activity consist of fluorescent cyanine dyes and porphyrins that are attached to Fe/Fe3O4 nanoparticles via consensus sequences. These consensus sequences can be cleaved in the presence of the correct protease, thus releasing a fluorescent dye from the Fe/Fe3O4 nanoparticle, resulting in highly sensitive (down to 1 × 10(-16) mol l(-1) for 12 proteases), selective, and fast nanoplatforms (required time: 60 min).

  6. Cleavage of the NF-κB Family Protein p65/RelA by the Chlamydial Protease-like Activity Factor (CPAF) Impairs Proinflammatory Signaling in Cells Infected with Chlamydiae*

    PubMed Central

    Christian, Jan; Vier, Juliane; Paschen, Stefan A.; Häcker, Georg

    2010-01-01

    Chlamydiae are obligate intracellular bacteria that frequently cause human disease. Chlamydiae replicate in a membranous vacuole in the cytoplasm termed inclusion but have the ability to transport proteins into the host cell cytosol. Chlamydial replication is associated with numerous changes of host cell functions, and these changes are often linked to proteolytic events. It has been shown earlier that the member of the NF-κB family of inflammation-associated transcription factors, p65/RelA, is cleaved during chlamydial infection, and a chlamydial protease has been implicated. We here provide evidence that the chlamydial protease chlamydial protease-like activity factor (CPAF) is responsible for degradation of p65/RelA during infection. This degradation was seen in human and in mouse cells infected with either Chlamydia trachomatis or Chlamydia pneumoniae where it correlated with the expression of CPAF and CPAF activity. Isolated expression of active C. trachomatis or C. pneumoniae CPAF in human or mouse cells yielded a p65 fragment of indistinguishable size from the one generated during infection. Expression of active CPAF in human cells caused a mild reduction in IκBα phosphorylation but a strong reduction in NF-κB reporter activity in response to interleukin-1β. Infection with C. trachomatis likewise reduced this responsiveness. IL-1β-dependent secretion of IL-8 was further reduced by CPAF expression. Secretion of CPAF is, thus, a mechanism that reduces host cell sensitivity to a proinflammatory stimulus, which may facilitate bacterial growth in vivo. PMID:21041296

  7. Enzyme-triggered Gelation: Targeting Proteases with Internal Cleavage Sites

    PubMed Central

    Bremmer, Steven C.

    2014-01-01

    A generalizable method for detecting protease activity via gelation is described. A recognition sequence is used to target the protease of interest while a second protease is used to remove the residual residues from the gelator scaffold. Using this approach, selective assays for both MMP-9 and PSA are demonstrated. PMID:24394494

  8. Protease-Mediated Maturation of HIV: Inhibitors of Protease and the Maturation Process.

    PubMed

    Adamson, Catherine S

    2012-01-01

    Protease-mediated maturation of HIV-1 virus particles is essential for virus infectivity. Maturation occurs concomitant with immature virus particle release and is mediated by the viral protease (PR), which sequentially cleaves the Gag and Gag-Pol polyproteins into mature protein domains. Maturation triggers a second assembly event that generates a condensed conical capsid core. The capsid core organizes the viral RNA genome and viral proteins to facilitate viral replication in the next round of infection. The fundamental role of proteolytic maturation in the generation of mature infectious particles has made it an attractive target for therapeutic intervention. Development of small molecules that target the PR active site has been highly successful and nine protease inhibitors (PIs) have been approved for clinical use. This paper provides an overview of their development and clinical use together with a discussion of problems associated with drug resistance. The second-half of the paper discusses a novel class of antiretroviral drug termed maturation inhibitors, which target cleavage sites in Gag not PR itself. The paper focuses on bevirimat (BVM) the first-in-class maturation inhibitor: its mechanism of action and the implications of naturally occurring polymorphisms that confer reduced susceptibility to BVM in phase II clinical trials.

  9. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions

    PubMed Central

    Rodrigues, Juliany C.F.; Viana, Nathan B.; Pontes, Bruno; Pereira, Camila F.A.; Silva-Filho, Fernando C.

    2014-01-01

    Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model. PMID:24765565

  10. Structure of the N-terminal fragment of Escherichia coli Lon protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Mi; Basic Research Program, SAIC-Frederick, Frederick, MD 21702; Gustchina, Alla

    2010-08-01

    The medium-resolution structure of the N-terminal fragment of E. coli Lon protease shows that this part of the enzyme consists of two compact domains and a very long α-helix. The structure of a recombinant construct consisting of residues 1–245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 Å resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very longmore » C-terminal α-helix. The structure of the first subdomain (residues 1–117), which consists mostly of β-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.« less

  11. Amprenavir, new protease inhibitor, approved.

    PubMed

    James, J S

    1999-05-07

    A new protease inhibitor, amprenavir (Agenerase), has received FDA marketing approval. The approval was based on two 24-week controlled trials and safety data in more than 1,400 patients under FDA accelerated-approval rules. Amprenavir is approved for patients 4 years of age and older. The drug is taken twice daily, with or without food. Side effects include gastrointestinal disturbances, rashes, and oral paresthesia. Severe or life-threatening rashes have occurred in 1 percent of all patients. Pregnant women should not use the drug unless necessary. The drug was developed by Vertex Pharmaceuticals Inc. and is being marketed by Glaxo Wellcome. Some studies suggest that amprenavir is less likely than other protease inhibitors to be associated with lipid metabolism problems. It may have a resistance profile different from that of other protease inhibitors, and therefore may cause different cross resistance problems. Amprenavir appears to be synergistic with abacavir (Ziagen) in laboratory tests.

  12. Tunable protease-activatable virus nanonodes.

    PubMed

    Judd, Justin; Ho, Michelle L; Tiwari, Abhinav; Gomez, Eric J; Dempsey, Christopher; Van Vliet, Kim; Igoshin, Oleg A; Silberg, Jonathan J; Agbandje-McKenna, Mavis; Suh, Junghae

    2014-05-27

    We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus-receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery.

  13. Tunable Protease-Activatable Virus Nanonodes

    PubMed Central

    2015-01-01

    We explored the unique signal integration properties of the self-assembling 60-mer protein capsid of adeno-associated virus (AAV), a clinically proven human gene therapy vector, by engineering proteolytic regulation of virus–receptor interactions such that processing of the capsid by proteases is required for infection. We find the transfer function of our engineered protease-activatable viruses (PAVs), relating the degree of proteolysis (input) to PAV activity (output), is highly nonlinear, likely due to increased polyvalency. By exploiting this dynamic polyvalency, in combination with the self-assembly properties of the virus capsid, we show that mosaic PAVs can be constructed that operate under a digital AND gate regime, where two different protease inputs are required for virus activation. These results show viruses can be engineered as signal-integrating nanoscale nodes whose functional properties are regulated by multiple proteolytic signals with easily tunable and predictable response surfaces, a promising development toward advanced control of gene delivery. PMID:24796495

  14. Analysis of Milk from Mothers Who Delivered Prematurely Reveals Few Changes in Proteases and Protease Inhibitors across Gestational Age at Birth and Infant Postnatal Age123

    PubMed Central

    Demers-Mathieu, Veronique; Nielsen, Søren Drud; Underwood, Mark A; Borghese, Robyn

    2017-01-01

    Background: Peptidomics research has demonstrated that protease activity is higher in breast milk from preterm-delivering mothers than from term-delivering mothers. However, to our knowledge, the effect of the degree of prematurity and postnatal age on proteases and protease inhibitors in human milk remains unknown. Objective: We aimed to determine the change of proteases and protease inhibitors in milk from mothers who delivered prematurely across gestational age (GA) and postnatal age. Methods: Milk samples were collected from 18 mothers aged 26–40 y who delivered preterm infants and who lacked mastitis. For analysis, samples were separated into 2 groups: 9 from early GA (EGA) (24–26 wk GA)-delivering mothers and 9 from late GA (LGA) (27–32 wk GA)-delivering mothers. Within the 9 samples in each group, the collection time ranged from postnatal days 2 to 47. The activity and predicted activity of proteases in preterm milk were determined with the use of fluorometric and spectrophotometric assays and peptidomics, respectively. Protease and protease inhibitor concentrations were determined with the use of ELISA. Linear mixed models were applied to compare enzymes across GA and postnatal age. Results: Carboxypeptidase B2, kallikrein, plasmin, elastase, thrombin, and cytosol aminopeptidase were present and active in the milk of preterm-delivering mothers. Most milk protease and antiprotease concentrations did not change with GA or postnatal age. However, the concentration and activity of kallikrein, the most abundant and active protease in preterm milk, increased by 25.4 ng · mL−1 · d−1 and 0.454 μg · mL−1 · d−1 postnatally, respectively, in EGA milk samples while remaining stable in LGA milk samples. Conclusions: This research demonstrates that proteases are active in human milk and begin to degrade milk protein within the mammary gland before consumption by infants. Proteases and protease inhibitors in milk from mothers of premature infants mostly

  15. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens

    PubMed Central

    Stella, Nicholas A.; Hunt, Kristin M.; Brothers, Kimberly M.; Zhang, Liang; Thibodeau, Patrick H.

    2015-01-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. PMID:25939509

  16. A Look Inside HIV Resistance through Retroviral Protease Interaction Maps

    PubMed Central

    Kontijevskis, Aleksejs; Prusis, Peteris; Petrovska, Ramona; Yahorava, Sviatlana; Mutulis, Felikss; Mutule, Ilze; Komorowski, Jan; Wikberg, Jarl E. S

    2007-01-01

    Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular–chemical mechanisms involved in substrate cleavage by retroviral proteases. PMID:17352531

  17. [Analysis of salivary protease spectrum in chronic periodontitis].

    PubMed

    Qian, Li; Xuedong, Zhou; Yaping, Fan; Tengyu, Yang; Songtao, Wu; Yu, Yu; Jiao, Chen; Ping, Zhang; Yun, Feng

    2017-02-01

    This study aimed to investigate the difference in salivary protease expression in patients with chronic periodontitis and normal individuals. The stimulating saliva in patients with chronic periodontitis and normal individuals were collected. Protein chip technology was adapted to analyze salivary protease spectrum. Among the 34 proteases in the chip, disintegrin and metalloproteinase (ADAM)8, matrix metalloproteinase (MMP)-8, MMP-12, neprilysin/CD10, and uridylyl phosphate adenosine/urokinase showed a significantly increased concentration in the saliva of chronic periodontitis patients compared with those in the saliva of normal individuals (P<0.01). By contrast, the concentrations of ADAM9, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)1, ADAMTS13, cathepsin B, E, L, V, X/Z/P, kallikrein 6, 7, 11, 13, MMP-9, proteinase 3, presenilin-1, and proprotein convertase 9 sharply decreased (P<0.05). The results demonstrated that protease spectrum in the saliva of chronic periodontitis patients and normal individuals significantly differed. Analysis of salivary protease spectrum is a potential clinical method to examine, diagnose, and monitor chronic periodontitis.

  18. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, William J.; Public Health England, Porton Down, Salisbury SP4 0JG; Kirby, Jonathan M.

    2014-07-01

    The crystal structure of Cwp84, an S-layer protein from Clostridium difficile is presented for the first time. The cathepsin L-like fold of cysteine protease domain, a newly observed ‘lectin-like’ domain and several other features are described. Clostridium difficile is a major problem as an aetiological agent for antibiotic-associated diarrhoea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood, but undoubtedly involves a myriad of components present on the bacterial surface. The mechanism of C. difficile surface-layer (S-layer) biogenesis is also largely unknown but involves the post-translational cleavage of a single polypeptide (surface-layer protein A; SlpA)more » into low- and high-molecular-weight subunits by Cwp84, a surface-located cysteine protease. Here, the first crystal structure of the surface protein Cwp84 is described at 1.4 Å resolution and the key structural components are identified. The truncated Cwp84 active-site mutant (amino-acid residues 33–497; C116A) exhibits three regions: a cleavable propeptide and a cysteine protease domain which exhibits a cathepsin L-like fold followed by a newly identified putative carbohydrate-binding domain with a bound calcium ion, which is referred to here as a lectin-like domain. This study thus provides the first structural insights into Cwp84 and a strong base to elucidate its role in the C. difficile S-layer maturation mechanism.« less

  19. Identification of putative adhesins of Actinobacillus suis and their homologues in other members of the family Pasteurellaceae.

    PubMed

    Bujold, Adina R; MacInnes, Janet I

    2015-11-14

    Actinobacillus suis disease has been reported in a wide range of vertebrate species, but is most commonly found in swine. A. suis is a commensal of the tonsils of the soft palate of swine, but in the presence of unknown stimuli it can invade the bloodstream, causing septicaemia and sequelae such as meningitis, arthritis, and death. It is genotypically and phenotypically similar to A. pleuropneumoniae, the causative agent of pleuropneumonia, and to other members of the family Pasteurellaceae that colonise tonsils. At present, very little is known about the genes involved in attachment, colonisation, and invasion by A. suis (or related members of the tonsil microbiota). Bioinformatic analyses of the A. suis H91-0380 genome were done using BASys and blastx in GenBank. Forty-seven putative adhesin-associated genes predicted to encode 24 putative adhesins were discovered. Among these are 6 autotransporters, 25 fimbriae-associated genes (encoding 3 adhesins), 12 outer membrane proteins, and 4 additional genes (encoding 3 adhesins). With the exception of 2 autotransporter-encoding genes (aidA and ycgV), both with described roles in virulence in other species, all of the putative adhesin-associated genes had homologues in A. pleuropneumoniae. However, the majority of the closest homologues of the A. suis adhesins are found in A. ureae and A. capsulatus--species not known to infect swine, but both of which can cause systemic infections. A. suis and A. pleuropneumoniae share many of the same putative adhesins, suggesting that the different diseases, tissue tropism, and host range of these pathogens are due to subtle genetic differences, or perhaps differential expression of virulence factors during infection. However, many of the putative adhesins of A. suis share even greater homology with those of other pathogens within the family Pasteurellaceae. Similar to A. suis, these pathogens (A. capsulatus and A. ureae) cause systemic infections and it is tempting to speculate that

  20. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3.

    PubMed

    Song, Jing; Win, Joe; Tian, Miaoying; Schornack, Sebastian; Kaschani, Farnusch; Ilyas, Muhammad; van der Hoorn, Renier A L; Kamoun, Sophien

    2009-02-03

    Current models of plant-pathogen interactions stipulate that pathogens secrete effector proteins that disable plant defense components known as virulence targets. Occasionally, the perturbations caused by these effectors trigger innate immunity via plant disease resistance proteins as described by the "guard hypothesis." This model is nicely illustrated by the interaction between the fungal plant pathogen Cladosporium fulvum and tomato. C. fulvum secretes a protease inhibitor Avr2 that targets the tomato cysteine protease Rcr3(pim). In plants that carry the resistance protein Cf2, Rcr3(pim) is required for resistance to C. fulvum strains expressing Avr2, thus fulfilling one of the predictions of the guard hypothesis. Another prediction of the guard hypothesis has not yet been tested. Considering that virulence targets are important components of defense, different effectors from unrelated pathogens are expected to evolve to disable the same host target. In this study we confirm this prediction using a different pathogen of tomato, the oomycete Phytophthora infestans that is distantly related to fungi such as C. fulvum. This pathogen secretes an array of protease inhibitors including EPIC1 and EPIC2B that inhibit tomato cysteine proteases. Here we show that, similar to Avr2, EPIC1 and EPIC2B bind and inhibit Rcr3(pim). However, unlike Avr2, EPIC1 and EPIC2B do not trigger hypersensitive cell death or defenses on Cf-2/Rcr3(pim) tomato. We also found that the rcr3-3 mutant of tomato that carries a premature stop codon in the Rcr3 gene exhibits enhanced susceptibility to P. infestans, suggesting a role for Rcr3(pim) in defense. In conclusion, our findings fulfill a key prediction of the guard hypothesis and suggest that the effectors Avr2, EPIC1, and EPIC2B secreted by two unrelated pathogens of tomato target the same defense protease Rcr3(pim). In contrast to C. fulvum, P. infestans appears to have evolved stealthy effectors that carry inhibitory activity without

  1. Economic Methods of Ginger Protease'sextraction and Purification

    NASA Astrophysics Data System (ADS)

    Qiao, Yuanyuan; Tong, Junfeng; Wei, Siqing; Du, Xinyong; Tang, Xiaozhen

    This article reports the ginger protease extraction and purification methods from fresh ginger rhizome. As to ginger protease extraction, we adapt the steps of organic solvent dissolving, ammonium sulfate depositing and freeze-drying, and this method can attain crude enzyme powder 0.6% weight of fresh ginger rhizome. The purification part in this study includes two steps: cellulose ion exchange (DEAE-52) and SP-Sephadex 50 chromatography, which can purify crude ginger protease through ion and molecular weight differences respectively.

  2. Analysis of Cathepsin and Furin Proteolytic Enzymes Involved in Viral Fusion Protein Activation in Cells of the Bat Reservoir Host

    PubMed Central

    El Najjar, Farah; Lampe, Levi; Baker, Michelle L.; Wang, Lin-Fa; Dutch, Rebecca Ellis

    2015-01-01

    Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing. PMID:25706132

  3. Alteration of Substrate and Inhibitor Specificity of Feline Immunodeficiency Virus Protease

    PubMed Central

    Lin, Ying-Chuan; Beck, Zachary; Lee, Taekyu; Le, Van-Duc; Morris, Garrett M.; Olson, Arthur J.; Wong, Chi-Huey; Elder, John H.

    2000-01-01

    Feline immunodeficiency virus (FIV) protease is structurally very similar to human immunodeficiency virus (HIV) protease but exhibits distinct substrate and inhibitor specificities. We performed mutagenesis of subsite residues of FIV protease in order to define interactions that dictate this specificity. The I37V, N55M, M56I, V59I, and Q99V mutants yielded full activity. The I37V, N55M, V59I, and Q99V mutants showed a significant increase in activity against the HIV-1 reverse transcriptase/integrase and P2/nucleocapsid junction peptides compared with wild-type (wt) FIV protease. The I37V, V59I, and Q99V mutants also showed an increase in activity against two rapidly cleaved peptides selected by cleavage of a phage display library with HIV-1 protease. Mutations at Q54K, I98P, and L101I dramatically reduced activity. Mutants containing a I35D or I57G substitution showed no activity against either FIV or HIV substrates. FIV proteases all failed to cut HIV-1 matrix/capsid, P1/P6, P6/protease, and protease/reverse transcriptase junctions, indicating that none of the substitutions were sufficient to change the specificity completely. The I37V, N55M, M56I, V59I, and Q99V mutants, compared with wt FIV protease, all showed inhibitor specificity more similar to that of HIV-1 protease. The data also suggest that FIV protease prefers a hydrophobic P2/P2′ residue like Val over Asn or Glu, which are utilized by HIV-1 protease, and that S2/S2′ might play a critical role in distinguishing FIV and HIV-1 protease by specificity. The findings extend our observations regarding the interactions involved in substrate binding and aid in the development of broad-based inhibitors. PMID:10775609

  4. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    PubMed

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Multi-Approach Analysis for the Identification of Proteases within Birch Pollen.

    PubMed

    McKenna, Olivia E; Posselt, Gernot; Briza, Peter; Lackner, Peter; Schmitt, Armin O; Gadermaier, Gabriele; Wessler, Silja; Ferreira, Fatima

    2017-07-04

    Birch pollen allergy is highly prevalent, with up to 100 million reported cases worldwide. Proteases in such allergen sources have been suggested to contribute to primary sensitisation and exacerbation of allergic disorders. Until now the protease content of Betula verrucosa , a birch species endemic to the northern hemisphere has not been studied in detail. Hence, we aim to identify and characterise pollen and bacteria-derived proteases found within birch pollen. The pollen transcriptome was constructed via de novo transcriptome sequencing and analysis of the proteome was achieved via mass spectrometry; a cross-comparison of the two databases was then performed. A total of 42 individual proteases were identified at the proteomic level. Further clustering of proteases into their distinct catalytic classes revealed serine, cysteine, aspartic, threonine, and metallo-proteases. Further to this, protease activity of the pollen was quantified using a fluorescently-labelled casein substrate protease assay, as 0.61 ng/mg of pollen. A large number of bacterial strains were isolated from freshly collected birch pollen and zymographic gels with gelatinase and casein, enabled visualisation of proteolytic activity of the pollen and the collected bacterial strains. We report the successful discovery of pollen and bacteria-derived proteases of Betula verrucosa .

  6. An in silico pipeline to filter the Toxoplasma gondii proteome for proteins that could traffic to the host cell nucleus and influence host cell epigenetic regulation.

    PubMed

    Syn, Genevieve; Blackwell, Jenefer M; Jamieson, Sarra E; Francis, Richard W

    2018-01-01

    Toxoplasma gondii uses epigenetic mechanisms to regulate both endogenous and host cell gene expression. To identify genes with putative epigenetic functions, we developed an in silico pipeline to interrogate the T. gondii proteome of 8313 proteins. Step 1 employs PredictNLS and NucPred to identify genes predicted to target eukaryotic nuclei. Step 2 uses GOLink to identify proteins of epigenetic function based on Gene Ontology terms. This resulted in 611 putative nuclear localised proteins with predicted epigenetic functions. Step 3 filtered for secretory proteins using SignalP, SecretomeP, and experimental data. This identified 57 of the 611 putative epigenetic proteins as likely to be secreted. The pipeline is freely available online, uses open access tools and software with user-friendly Perl scripts to automate and manage the results, and is readily adaptable to undertake any such in silico search for genes contributing to particular functions.

  7. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells.

    PubMed

    van Kasteren, Puck B; Bailey-Elkin, Ben A; James, Terrence W; Ninaber, Dennis K; Beugeling, Corrine; Khajehpour, Mazdak; Snijder, Eric J; Mark, Brian L; Kikkert, Marjolein

    2013-02-26

    Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases.

  8. Replication of a low-pathogenic avian influenza virus is enhanced by chicken ubiquitin-specific protease 18.

    PubMed

    Tanikawa, Taichiro; Uchida, Yuko; Saito, Takehiko

    2017-09-01

    Previous research revealed the induction of chicken USP18 (chUSP18) in the lungs of chickens infected with highly pathogenic avian influenza viruses (HPAIVs). This activity was correlated with the degree of pathogenicity of the viruses to chickens. As mammalian ubiquitin-specific protease (USP18) is known to remove type I interferon (IFN I)-inducible ubiquitin-like molecules from conjugated proteins and block IFN I signalling, we explored the function of the chicken homologue of USP18 during avian influenza virus infection. With this aim, we cloned chUSP18 from cultured chicken cells and revealed that the putative chUSP18 ORF comprises 1137 bp. Comparative analysis of the predicted aa sequence of chUSP18 with those of human and mouse USP18 revealed relatively high sequence similarity among the sequences, including domains specific for the ubiquitin-specific processing protease family. Furthermore, we found that chUSP18 expression was induced by chicken IFN I, as observed for mammalian USP18. Experiments based on chUSP18 over-expression and depletion demonstrated that chUSP18 significantly enhanced the replication of a low-pathogenic avian influenza virus (LPAIV), but not an HPAIV. Our findings suggest that chUSP18, being similar to mammalian USP18, acts as a pro-viral factor during LPAIV replication in vitro.

  9. Recombinant protease inhibitors for herbivore pest control: a multitrophic perspective.

    PubMed

    Schlüter, Urte; Benchabane, Meriem; Munger, Aurélie; Kiggundu, Andrew; Vorster, Juan; Goulet, Marie-Claire; Cloutier, Conrad; Michaud, Dominique

    2010-10-01

    Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.

  10. A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease

    PubMed Central

    Liu, Binbin; Zhang, Jing; Koetzner, Cheri A.; Jones, Susan A.; Lin, Qishan

    2017-01-01

    The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC) to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2) in vitro, with IC50 values of 1.8 μM, 11.4 μM, and 4.8 μM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV), West Nile virus (WNV), and Yellow fever virus (YFV) on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 μM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and mutagenesis

  11. Data integration aids understanding of butterfly-host plant networks

    NASA Astrophysics Data System (ADS)

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-03-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant-herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant-herbivore and plant-compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect-compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection.

  12. Data integration aids understanding of butterfly–host plant networks

    PubMed Central

    Muto-Fujita, Ai; Takemoto, Kazuhiro; Kanaya, Shigehiko; Nakazato, Takeru; Tokimatsu, Toshiaki; Matsumoto, Natsushi; Kono, Mayo; Chubachi, Yuko; Ozaki, Katsuhisa; Kotera, Masaaki

    2017-01-01

    Although host-plant selection is a central topic in ecology, its general underpinnings are poorly understood. Here, we performed a case study focusing on the publicly available data on Japanese butterflies. A combined statistical analysis of plant–herbivore relationships and taxonomy revealed that some butterfly subfamilies in different families feed on the same plant families, and the occurrence of this phenomenon more than just by chance, thus indicating the independent acquisition of adaptive phenotypes to the same hosts. We consequently integrated plant–herbivore and plant–compound relationship data and conducted a statistical analysis to identify compounds unique to host plants of specific butterfly families. Some of the identified plant compounds are known to attract certain butterfly groups while repelling others. The additional incorporation of insect–compound relationship data revealed potential metabolic processes that are related to host plant selection. Our results demonstrate that data integration enables the computational detection of compounds putatively involved in particular interspecies interactions and that further data enrichment and integration of genomic and transcriptomic data facilitates the unveiling of the molecular mechanisms involved in host plant selection. PMID:28262809

  13. Expanding proteome coverage with orthogonal-specificity α-Lytic proteases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Jesse G.; Kim, Sangtae; Maltby, David A.

    2014-03-01

    Bottom-up proteomics studies traditionally involve proteome digestion with a single protease, trypsin. However, trypsin alone does not generate peptides that encompass the entire proteome. Alternative proteases have been explored, but most have specificity for charged amino acid side chains. Therefore, additional proteases that improve proteome coverage by cleavage at sequences complimentary to trypsin may increase proteome coverage. We demonstrate the novel application of two proteases for bottom-up proteomics: wild type alpha-lytic protease (WaLP), and an active site mutant of WaLP, M190A alpha-lytic protease (MaLP). We assess several relevant factors including MS/MS fragmentation, peptide length, peptide yield, and protease specificity. Bymore » combining data from separate digestions with trypsin, LysC, WaLP, and MaLP, proteome coverage was increased 101% compared to trypsin digestion alone. To demonstrate how the gained sequence coverage can access additional PTM information, we show identification of a number of novel phosphorylation sites in the S. pombe proteome and include an illustrative example from the protein MPD2, wherein two novel sites are identified, one in a tryptic peptide too short to identify and the other in a sequence devoid of tryptic sites. The specificity of WaLP and MaLP for aliphatic amino acid side chains was particularly valuable for coverage of membrane protein sequences, which increased 350% when the data from trypsin, LysC, WaLP, and MaLP were combined.« less

  14. The Pseudomonas aeruginosa Periplasmic Protease CtpA Can Affect Systems That Impact Its Ability To Mount Both Acute and Chronic Infections

    PubMed Central

    Seo, Jin

    2013-01-01

    Proteases play important roles in the virulence of Pseudomonas aeruginosa. Some are exported to act on host targets and facilitate tissue destruction and bacterial dissemination. Others work within the bacterial cell to process virulence factors and regulate virulence gene expression. Relatively little is known about the role of one class of bacterial serine proteases known as the carboxyl-terminal processing proteases (CTPs). The P. aeruginosa genome encodes two CTPs annotated as PA3257/Prc and PA5134/CtpA in strain PAO1. Prc degrades mutant forms of the anti-sigma factor MucA to promote mucoidy in some cystic fibrosis lung isolates. However, nothing is known about the role or importance of CtpA. We have now found that endogenous CtpA is a soluble periplasmic protein and that a ctpA null mutant has specific phenotypes consistent with an altered cell envelope. Although a ctpA null mutation has no major effect on bacterial growth in the laboratory, CtpA is essential for the normal function of the type 3 secretion system (T3SS), for cytotoxicity toward host cells, and for virulence in a mouse model of acute pneumonia. Conversely, increasing the amount of CtpA above its endogenous level induces an uncharacterized extracytoplasmic function sigma factor regulon, an event that has been reported to attenuate P. aeruginosa in a rat model of chronic lung infection. Therefore, a normal level of CtpA activity is critical for T3SS function and acute virulence, whereas too much activity can trigger an apparent stress response that is detrimental to chronic virulence. PMID:24082078

  15. Characterization of detergent compatible protease from halophilic Virgibacillus sp. CD6.

    PubMed

    Lam, Ming Quan; Nik Mut, Nik Nurhidayu; Thevarajoo, Suganthi; Chen, Sye Jinn; Selvaratnam, Chitra; Hussin, Huszalina; Jamaluddin, Haryati; Chong, Chun Shiong

    2018-02-01

    A halophilic bacterium, Virgibacillus sp. strain CD6, was isolated from salted fish and its extracellular protease was characterized. Protease production was found to be highest when yeast extract was used as nitrogen source for growth. The protease exhibited stability at wide range of salt concentration (0-12.5%, w/v), temperatures (20-60 °C), and pH (4-10) with maximum activity at 10.0% (w/v) NaCl, 60 °C, pH 7 and 10, indicating its polyextremophilicity. The protease activity was enhanced in the presence of Mg 2+ , Mn 2+ , Cd 2+ , and Al 3+ (107-122% relative activity), and with retention of activity > 80% for all of other metal ions examined (K + , Ca 2+ , Cu 2+ , Co 2+ , Ni 2+ , Zn 2+ , and Fe 3+ ). Both PMSF and EDTA inhibited protease activity, denoting serine protease and metalloprotease properties, respectively. High stability (> 70%) was demonstrated in the presence of organic solvents and detergent constituents, and the extracellular protease from strain CD6 was also found to be compatible in commercial detergents. Proteinaceous stain removal efficacy revealed that crude protease of strain CD6 could significantly enhance the performance of commercial detergent. The protease from Virgibacillus sp. strain CD6 could serve as a promising alternative for various applications, especially in detergent industry.

  16. Distribution of putative xenogeneic silencers in prokaryote genomes.

    PubMed

    Perez-Rueda, Ernesto; Ibarra, J Antonio

    2015-10-01

    Gene silencing is an important function as it keeps newly acquired foreign DNA repressed, thereby avoiding possible deleterious effects in the host organism. Known transcriptional regulators associated with this process are called xenogeneic silencers (XS) and belong to either the H-NS, Lsr2, MvaT or Rok families. In the work described here we looked for XS-like regulators and their distribution in prokaryotic organisms was evaluated. Our analysis showed that putative XS regulators similar to H-NS, Lsr2, MvaT or Rok are present only in bacteria (31.7%). This does not exclude the existence of alternative XS in the rest of the organisms analyzed. Additionally, of the four XS groups evaluated in this work, those from the H-NS family have diversified more than the other groups. In order to compare the distribution of these putative XS regulators we also searched for other nucleoid-associated proteins (NAPs) not included in this group such as Fis, EbfC/YbaB, HU/IHF and Alba. Results showed that NAPs from the Fis, EbfC/YbaB, HU/IHF and Alba families are widely (94%) distributed among prokaryotes. These NAPs were found in multiple combinations with or without XS-like proteins. In regard with XS regulators, results showed that only XS proteins from one family were found in those organisms containing them. This suggests specificity for this type of regulators and their corresponding genomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Degradome database: mammalian proteases and diseases of proteolysis.

    PubMed

    Quesada, Víctor; Ordóñez, Gonzalo R; Sánchez, Luis M; Puente, Xose S; López-Otín, Carlos

    2009-01-01

    The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes.

  18. The Degradome database: mammalian proteases and diseases of proteolysis

    PubMed Central

    Quesada, Víctor; Ordóñez, Gonzalo R.; Sánchez, Luis M.; Puente, Xose S.; López-Otín, Carlos

    2009-01-01

    The degradome is defined as the complete set of proteases present in an organism. The recent availability of whole genomic sequences from multiple organisms has led us to predict the contents of the degradomes of several mammalian species. To ensure the fidelity of these predictions, our methods have included manual curation of individual sequences and, when necessary, direct cloning and sequencing experiments. The results of these studies in human, chimpanzee, mouse and rat have been incorporated into the Degradome database, which can be accessed through a web interface at http://degradome.uniovi.es. The annotations about each individual protease can be retrieved by browsing catalytic classes and families or by searching specific terms. This web site also provides detailed information about genetic diseases of proteolysis, a growing field of great importance for multiple users. Finally, the user can find additional information about protease structures, protease inhibitors, ancillary domains of proteases and differences between mammalian degradomes. PMID:18776217

  19. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.

    PubMed

    Panigrahi, Rashmi; Lemieux, M Joanne

    2015-01-01

    Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.

  20. Glycolipid-Dependent, Protease Sensitive Internalization of Pseudomonas aeruginosa Into Cultured Human Respiratory Epithelial Cells

    PubMed Central

    Emam, Aufaugh; Carter, William G; Lingwood, Clifford

    2010-01-01

    Internalization of PAK strain Pseudomonas aeruginosa into human respiratory epithelial cell lines and HeLa cervical cancer cells in vitro was readily demonstrable via a gentamycin protection assay. Depletion of target cell glycosphingolipids (GSLs) using a glucosyl ceramide synthase inhibitor, P4, completely prevented P. aeruginosa internalization. In contrast, P4 treatment had no effect on the internalization of Salmonella typhimurium into HeLa cells. Internalized P. aeruginosa were within membrane vacuoles, often containing microvesicles, between the bacterium and the limiting membrane. P. aeruginosa internalization was markedly enhanced by target cell pretreatment with the exogenous GSL, deacetyl gangliotetraosyl ceramide (Gg4). Gg4 binds the lipid raft marker, GM1 ganglioside. Target cell pretreatment with TLCK, but not other (serine) protease inhibitors, prevented both P. aeruginosa host cell binding and internalization. NFkB inhibition also prevented internalization. A GSL-containing lipid-raft model of P. aeruginosa host cell binding/internalization is proposed PMID:21270937

  1. A Comparative Study: Taxonomic Grouping of Alkaline Protease Producing Bacilli.

    PubMed

    Tekin, Nilgun; Cihan, Arzu Coleri; Karaca, Basar; Cokmus, Cumhur

    2017-03-30

    Alkaline proteases have biotechnological importance due to their activity and stability at alkaline pH. 56 bacteria, capable of growing under alkaline conditions were isolated and their alkaline protease activities were carried out at different parameters to determine their optimum alkaline protease production conditions. Seven isolates were showed higher alkaline protease production capacity than the reference strains. The highest alkaline protease producing isolates (103125 U/g), E114 and C265, were identified as Bacillus licheniformis with 99.4% and Bacillus mojavensis 99.8% based on 16S rRNA gene sequence similarities, respectively. Interestingly, the isolates identified as Bacillus safensis were also found to be high alkaline protease producing strains. Genotypic characterizations of the isolates were also determined by using a wide range of molecular techniques (ARDRA, ITS-PCR, (GTG)5-PCR, BOX-PCR). These different techniques allowed us to differentiate the alkaliphilic isolates and the results were in concurrence with phylogenetic analyses of the 16S rRNA genes. While ITS-PCR provided the highest correlation with 16S rRNA groups, (GTG)5-PCR showed the highest differentiation at species and intra-species level. In this study, each of the biotechnologically valuable alkaline protease producing isolates was grouped into their taxonomic positions with multi-genotypic analyses.

  2. Geographic Origin and Host Cultivar Influence on Digestive Physiology of Spodoptera exigua (Lepidoptera: Noctuidae) Larvae

    PubMed Central

    Golikhajeh, Neshat; Razmjou, Jabraeil

    2017-01-01

    Digestive enzymatic activity in three geographic strains (Miandiab, Kalposh and Moghan regions) of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) reared on different sugar beet cultivars (Dorothea, Rozier, Persia and Perimer) was studied under laboratory conditions (25 ± 1 °C, 65 ± 5% RH, and a photo period of 16:8 (L:D) h photoperiod). The results of this study demonstrated that digestive protease and amylase activity of S. exigua larvae was affected by both geographic origin of the pest and host plant cultivar. Three strains reared on the same sugar beet cultivars demonstrated different levels of proteolytic and amylolytic activities in fourth and fifth instars. The highest proteolytic and amylolytic activity, in most cases, was observed in larvae collected from Kalposh region. Among different sugar beet cultivars, the highest protease activity in three strains was observed on cultivars Rozier and Perimer. Nevertheless, the highest amylase activity was seen on cultivar Dorothea, and the lowest activity was seen on cultivar Rozier. This study suggested that variations in digestive enzymatic activity of three geographic strains of S. exigua might be attributed to local adaptation with their local host plant and environmental conditions inherent by larvae. PMID:28069730

  3. Isolation and characterization of a cysteine protease of freesia corms.

    PubMed

    Uchikoba, Tetsuya; Okubo, Michiko; Arima, Kazunari; Yonezawa, Hiroo

    2002-02-01

    A protease, freesia protease (FP)-A, was purified to electrophoretic homogeneity from regular freesia (Freesia reflacta) corms in harvest time. The Mr of FP-A was estimated to be 24 k by SDS-PAGE. The optimum pH of the enzyme was 8.0 using a casein substrate. These enzymes were strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethane-sulfonylfluoride and EDTA. These results indicate that FP-A belongs to the cysteine proteases. The amino terminal sequence of FP-A was similar to that of papain, and the sequences was regarded to the conservative residues of cysteine protease. From the hydrolysis of peptidyl-p-NAs, the specificity of FP-A was found to be broad. It was thought that FP-A was a new protease from freesia corms.

  4. Influence of the Host Contact Sequence on the Outcome of Competition among Aspergillus flavus Isolates during Host Tissue Invasion▿

    PubMed Central

    Mehl, H. L.; Cotty, P. J.

    2011-01-01

    Biological control of aflatoxin contamination by Aspergillus flavus is achieved through competitive exclusion of aflatoxin producers by atoxigenic strains. Factors dictating the extent to which competitive displacement occurs during host infection are unknown. The role of initial host contact in competition between pairs of A. flavus isolates coinfecting maize kernels was examined. Isolate success during tissue invasion and reproduction was assessed by quantification of isolate-specific single nucleotide polymorphisms using pyrosequencing. Isolates were inoculated either simultaneously or 1 h apart. Increased success during competition was conferred to the first isolate to contact the host independent of that isolate's innate competitive ability. The first-isolate advantage decreased with the conidial concentration, suggesting capture of limited resources on kernel surfaces contributes to competitive exclusion. Attempts to modify access to putative attachment sites by either coating kernels with dead conidia or washing kernels with solvents did not influence the success of the first isolate, suggesting competition for limited attachment sites on kernel surfaces does not mediate first-isolate advantage. The current study is the first to demonstrate an immediate competitive advantage conferred to A. flavus isolates upon host contact and prior to either germ tube emergence or host colonization. This suggests the timing of host contact is as important to competition during disease cycles as innate competitive ability. Early dispersal to susceptible crop components may allow maintenance within A. flavus populations of genetic types with low competitive ability during host tissue invasion. PMID:21216896

  5. Intracellular serine protease 1 of Bacillus subtilis is formed in vivo as an unprocessed, active protease in stationary cells.

    PubMed Central

    Sheehan, S M; Switzer, R L

    1990-01-01

    Western immunoblots and assays of Bacillus subtilis extracts showed that intracellular serine protease 1 is produced in a form larger than previously reported, appears not to have undergone N-terminal processing, and is active in the presence or absence of calcium. No evidence for an inactive precursor form of the protease was found. Images FIG. 1 PMID:2104610

  6. Protease activity, localization and inhibition in the human hair follicle.

    PubMed

    Bhogal, R K; Mouser, P E; Higgins, C A; Turner, G A

    2014-02-01

    In humans, the process of hair shedding, referred to as exogen, is believed to occur independently of the other hair cycle phases. Although the actual mechanisms involved in hair shedding are not fully known, it has been hypothesized that the processes leading to the final step of hair shedding may be driven by proteases and/or protease inhibitor activity. In this study, we investigated the presence of proteases and protease activity in naturally shed human hairs and assessed enzyme inhibition activity of test materials. We measured enzyme activity using a fluorescence-based assay and protein localization by indirect immunohistochemistry (IHC). We also developed an ex vivo skin model for measuring the force required to pull hair fibres from skin. Our data demonstrate the presence of protease activity in the tissue material surrounding club roots. We also demonstrated the localization of specific serine protease protein expression in human hair follicle by IHC. These data provide evidence demonstrating the presence of proteases around the hair club roots, which may play a role during exogen. We further tested the hypothesis that a novel protease inhibitor system (combination of Trichogen) and climbazole) could inhibit protease activity in hair fibre club root extracts collected from a range of ethnic groups (U.K., Brazil, China, first-generation Mexicans in the U.S.A., Thailand and Turkey) in both males and females. Furthermore, we demonstrated that this combination is capable of increasing the force required to remove hair in an ex vivo skin model system. These studies indicate the presence of proteolytic activity in the tissue surrounding the human hair club root and show that it is possible to inhibit this activity with a combination of Trichogen and climbazole. This technology may have potential to reduce excessive hair shedding. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions*

    PubMed Central

    Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V.; Kwon, Keehwan; Townsend, Katherine; Yu, Chenggang; Yu, Xueping; DeShazer, David; Reifman, Jaques; Wallqvist, Anders

    2013-01-01

    Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin

  8. A Venom Serpin Splicing Isoform of the Endoparasitoid Wasp Pteromalus puparum Suppresses Host Prophenoloxidase Cascade by Forming Complexes with Host Hemolymph Proteinases*

    PubMed Central

    Yan, Zhichao; Fang, Qi; Liu, Yang; Xiao, Shan; Yang, Lei; Wang, Fei; An, Chunju; Werren, John H.; Ye, Gongyin

    2017-01-01

    To ensure successful parasitism, parasitoid wasps inject venom along with their eggs into their hosts. The venom serves to suppress host immune responses, including melanization. Venom from Pteromalus puparum, a pupal endoparasitoid, inhibits melanization of host hemolymph in vitro in a dose-dependent manner. Using assay-guided fractionation, a serpin splicing isoform with phenoloxidase inhibitory activity was identified as P. puparum serpin-1, venom isoform (PpS1V). This serpin gene has 16 predicted splicing isoforms that differ only in the C-terminal region. RT-PCR results show that the specific serpin isoform is differentially expressed in the venom gland. Recombinant PpS1V (rPpS1V) suppresses host prophenoloxidase (PPO) activation rather than inhibiting the phenoloxidase directly. Pulldown assays show that PpS1V forms complexes with two host hemolymph proteins, here named Pieris rapae hemolymph proteinase 8 (PrHP8) and P. rapae prophenoloxidase-activating proteinase 1 (PrPAP1), based on gene sequence blasting and phylogenetic analysis. The role of rPrPAP1 in the PPO activation cascade and its interaction with rPpS1V were confirmed. The stoichiometry of inhibition of PrPAP1 by PpS1V is 2.3. PpS1V also inhibits PPO activation in a non-natural host, Ostrinia furnacalis, through forming a complex with O. furnacalis serine protease 13 (OfSP13), an ortholog to PrPAP1. Our results identify a venom-enriched serpin isoform in P. puparum that inhibits host PPO activation, probably by forming a complex with host hemolymph proteinase PrPAP1. PMID:27913622

  9. Generation of an antibody that recognizes Plasmodium chabaudi cysteine protease (chabaupain-1) in both sexual and asexual parasite life cycle and evaluation of chabaupain-1 vaccine potential.

    PubMed

    Armada, Ana; Gazarini, Marcos L; Gonçalves, Lídia M; Antunes, Sandra; Custódio, Ana; Rodrigues, Armanda; Almeida, António J; Silveira, Henrique; Rosário, Virgílio do; Santos-Gomes, Gabriela; Domingos, Ana

    2013-09-01

    Malaria cysteine proteases have been shown to be immunogenic and are being exploited as serodiagnostic markers, drug and vaccine targets. Several Plasmodium spp. cysteine proteases have been described and the best characterized of these are the falcipains, a family of papain-family enzymes. Falcipain-2 and falcipain-3 act in concert with other proteases to hydrolyze host erythrocyte hemoglobin in the parasite food vacuole. Falcipain-1 has less similarity to the other falcipains and its physiological role in parasite asexual blood stage still remains uncertain. Immunolocalization studies using an antibody developed against the Plasmodium chabaudi recombinant chabaupain-1, the falcipain-1 ortholog, were performed confirming its cellular localization in both erythrocyte and mosquito ookinete stage. Immunostaining of chabaupain-1 preferentially in apical portion of parasite ookinete suggests that this protease may be related with parasite egression from mosquito midgut. Immune responses to chabaupain-1 were evaluated using two different adjuvants, chitosan nanoparticles and hydroxide aluminum. Mice immunized with the recombinant protein alone or in association with nanoparticles were challenged with P. chabaudi showing that immunization with the recombinant protein confers partial protection to blood stage infection in BALB/c animal model. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Factors affecting the protease activity of venom from jellyfish Rhopilema esculentum Kishinouye.

    PubMed

    Li, Cuiping; Yu, Huahua; Liu, Song; Xing, Ronge; Guo, Zhanyong; Li, Pengcheng

    2005-12-15

    In this paper, the effects of some chemical and physical factors such as temperature, pH values, glycerol, and divalent metal cations on the protease activity of venom from jellyfish, Rhopilema esculentum Kishinouye, were assayed. Protease activity was dependent on temperature and pH values. Zn(2+), Mg(2+), and Mn(2+) in sodium phosphate buffer (0.02M, pH 8.0) could increase protease activity. Mn(2+) had the best effects among the three metal cations and the effect was about 20 times of that of Zn(2+) or Mg(2+) and its maximal protease activity was 2.3x10(5)U/mL. EDTA could increase protease activity. PMSF had hardly affected protease activity. O-Phenanthroline and glycerol played an important part in inhibiting protease activity and their maximal inhibiting rates were 87.5% and 82.1%, respectively.

  11. Dual origin of gut proteases in Formosan subterranean termites (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae).

    PubMed

    Sethi, Amit; Xue, Qing-Gang; La Peyre, Jerome F; Delatte, Jennifer; Husseneder, Claudia

    2011-07-01

    Cellulose digestion in lower termites, mediated by carbohydrases originating from both termite and endosymbionts, is well characterized. In contrast, limited information exists on gut proteases of lower termites, their origins and roles in termite nutrition. The objective of this study was to characterize gut proteases of the Formosan subterranean termite (Coptotermes formosanus Shiraki) (Isoptera: Rhinotermitidae). The protease activity of extracts from gut tissues (fore-, mid- and hindgut) and protozoa isolated from hindguts of termite workers was quantified using hide powder azure as a substrate and further characterized by zymography with gelatin SDS-PAGE. Midgut extracts showed the highest protease activity followed by the protozoa extracts. High level of protease activity was also detected in protozoa culture supernatants after 24 h incubation. Incubation of gut and protozoa extracts with class-specific protease inhibitors revealed that most of the proteases were serine proteases. All proteolytic bands identified after gelatin SDS-PAGE were also inhibited by serine protease inhibitors. Finally, incubation with chromogenic substrates indicated that extracts from fore- and hindgut tissues possessed proteases with almost exclusively trypsin-like activity while both midgut and protozoa extracts possessed proteases with trypsin-like and subtilisin/chymotrypsin-like activities. However, protozoa proteases were distinct from midgut proteases (with different molecular mass). Our results suggest that the Formosan subterranean termite not only produces endogenous proteases in its gut tissues, but also possesses proteases originating from its protozoan symbionts. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. A Synthetic Serine Protease Inhibitor, Nafamostat Mesilate, Is a Drug Potentially Applicable to the Treatment of Ebola Virus Disease.

    PubMed

    Nishimura, Hidekazu; Yamaya, Mutsuo

    2015-09-01

    Ebola virus disease (EVD) has been a great concern worldwide because of its high mortality. EVD usually manifests with fever, diarrhea and vomiting, as well as disseminated intravascular coagulation (DIC). To date, there is neither a licensed Ebola vaccine nor a promising therapeutic agent, although clinical trials are ongoing. For replication inside the cell, Ebola virus (EBOV) must undergo the proteolytic processing of its surface glycoprotein in the endosome by proteases including cathepsin B (CatB), followed by the fusion of the viral membrane and host endosome. Thus, the proteases have been considered as potential targets for drugs against EVD. However, no protease inhibitor has been presented as effective clinical drug against it. A synthetic serine protease inhibitor, nafamostat mesilate (NM), reduced the release of CatB from the rat pancreas. Furthermore, it has anticoagulant activities, such as inhibition of the factor VIIa complex, and has been used for treating DIC in Japan. Thus, NM could be considered as a drug candidate for the treatment of DIC induced by EBOV infection, as well as for the possible CatB-related antiviral action. Moreover, the drug has a history of large-scale production and clinical use, and the issues of safety and logistics might have been cleared. We advocate in vitro and in vivo experiments using active EBOV to examine the activities of NM against the infection and the DIC induced by the infection. In addition, we suggest trials for comparison among anti-DIC drugs including the NM in EVD patients, in parallel with the experiments.

  13. Functional Proteomic Profiling of Secreted Serine Proteases in Health and Inflammatory Bowel Disease.

    PubMed

    Denadai-Souza, Alexandre; Bonnart, Chrystelle; Tapias, Núria Solà; Marcellin, Marlène; Gilmore, Brendan; Alric, Laurent; Bonnet, Delphine; Burlet-Schiltz, Odile; Hollenberg, Morley D; Vergnolle, Nathalie; Deraison, Céline

    2018-05-18

    While proteases are essential in gastrointestinal physiology, accumulating evidence indicates that dysregulated proteolysis plays a pivotal role in the pathophysiology of inflammatory bowel disease (IBD). Nonetheless, the identity of overactive proteases released by human colonic mucosa remains largely unknown. Studies of protease abundance have primarily investigated expression profiles, not taking into account their enzymatic activity. Herein we have used serine protease-targeted activity-based probes (ABPs) coupled with mass spectral analysis to identify active forms of proteases secreted by the colonic mucosa of healthy controls and IBD patients. Profiling of (Pro-Lys)-ABP bound proteases revealed that most of hyperactive proteases from IBD secretome are clustered at 28-kDa. We identified seven active proteases: the serine proteases cathepsin G, plasma kallikrein, plasmin, tryptase, chymotrypsin-like elastase 3 A, and thrombin and the aminopeptidase B. Only cathepsin G and thrombin were overactive in supernatants from IBD patient tissues compared to healthy controls. Gene expression analysis highlighted the transcription of genes encoding these proteases into intestinal mucosae. The functional ABP-targeted proteomic approach that we have used to identify active proteases in human colonic samples bears directly on the understanding of the role these enzymes may play in the pathophysiology of IBD.

  14. Plant proteases for bioactive peptides release: A review.

    PubMed

    Mazorra-Manzano, M A; Ramírez-Suarez, J C; Yada, R Y

    2017-04-10

    Proteins are a potential source of health-promoting biomolecules with medical, nutraceutical, and food applications. Nowadays, bioactive peptides production, its isolation, characterization, and strategies for its delivery to target sites are a matter of intensive research. In vitro and in vivo studies regarding the bioactivity of peptides has generated strong evidence of their health benefits. Dairy proteins are considered the richest source of bioactive peptides, however proteins from animal and vegetable origin also have been shown to be important sources. Enzymatic hydrolysis has been the process most commonly used for bioactive peptide production. Most commercial enzymatic preparations frequently used are from animal (e.g., trypsin and pepsin) and microbial (e.g., Alcalase® and Neutrase®) sources. Although the use of plant proteases is still relatively limited to papain and bromelain from papaya and pineapple, respectively, the application of new plant proteases is increasing. This review presents the latest knowledge in the use and diversity of plant proteases for bioactive peptides release from food proteins including both available commercial plant proteases as well as new potential plant sources. Furthermore, the properties of peptides released by plant proteases and health benefits associated in the control of disorders such as hypertension, diabetes, obesity, and cancer are reviewed.

  15. Host cell recruitment patterns by bone morphogenetic protein-2 releasing hyaluronic acid hydrogels in a mouse subcutaneous environment.

    PubMed

    Todeschi, Maria R; El Backly, Rania M; Varghese, Oommen P; Hilborn, Jöns; Cancedda, Ranieri; Mastrogiacomo, Maddalena

    2017-07-01

    This study aimed to identify host cell recruitment patterns in a mouse model in response to rhBMP-2 releasing hyaluronic acid hydrogels and influence of added nano-hydroxyapatite particles on rhBMP-2 release and pattern of bone formation. Implanted gels were retrieved after implantation and cells were enzymatically dissociated for flow cytometric analysis. Percentages of macrophages, progenitor endothelial cells and putative mesenchymal stem cells were measured. Implants were evaluated for BMP-2 release by ELISA and by histology to monitor tissue formation. Hyaluronic acid+BMP-2 gels influenced the inflammatory response in the bone healing microenvironment. Host-derived putative mesenchymal stem cells were major contributors. Addition of hydroxyapatite nanoparticles modified the release pattern of rhBMP-2, resulting in enhanced bone formation.

  16. Generic protease detection technology for monitoring periodontal disease.

    PubMed

    Zheng, Xinwei; Cook, Joseph P; Watkinson, Michael; Yang, Shoufeng; Douglas, Ian; Rawlinson, Andrew; Krause, Steffi

    2011-01-01

    Periodontal diseases are inflammatory conditions that affect the supporting tissues of teeth and can lead to destruction of the bone support and ultimately tooth loss if untreated. Progression of periodontitis is usually site specific but not uniform, and currently there are no accurate clinical methods for distinguishing sites where there is active disease progression from sites that are quiescent. Consequently, unnecessary and costly treatment of periodontal sites that are not progressing may occur. Three proteases have been identified as suitable markers for distinguishing sites with active disease progression and quiescent sites: human neutrophil elastase, cathepsin G and MMP8. Generic sensor materials for the detection of these three proteases have been developed based on thin dextran hydrogel films cross-linked with peptides. Degradation of the hydrogel films was monitored using impedance measurements. The target proteases were detected in the clinically relevant range within a time frame of 3 min. Good specificity for different proteases was achieved by choosing appropriate peptide cross-linkers.

  17. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease.

    PubMed

    Alvizo, Oscar; Mittal, Seema; Mayo, Stephen L; Schiffer, Celia A

    2012-07-01

    HIV-1 protease recognizes and cleaves more than 12 different substrates leading to viral maturation. While these substrates share no conserved motif, they are specifically selected for and cleaved by protease during viral life cycle. Drug resistant mutations evolve within the protease that compromise inhibitor binding but allow the continued recognition of all these substrates. While the substrate envelope defines a general shape for substrate recognition, successfully predicting the determinants of substrate binding specificity would provide additional insights into the mechanism of altered molecular recognition in resistant proteases. We designed a variant of HIV protease with altered specificity using positive computational design methods and validated the design using X-ray crystallography and enzyme biochemistry. The engineered variant, Pr3 (A28S/D30F/G48R), was designed to preferentially bind to one out of three of HIV protease's natural substrates; RT-RH over p2-NC and CA-p2. In kinetic assays, RT-RH binding specificity for Pr3 increased threefold compared to the wild-type (WT), which was further confirmed by isothermal titration calorimetry. Crystal structures of WT protease and the designed variant in complex with RT-RH, CA-p2, and p2-NC were determined. Structural analysis of the designed complexes revealed that one of the engineered substitutions (G48R) potentially stabilized heterogeneous flap conformations, thereby facilitating alternate modes of substrate binding. Our results demonstrate that while substrate specificity could be engineered in HIV protease, the structural pliability of protease restricted the propagation of interactions as predicted. These results offer new insights into the plasticity and structural determinants of substrate binding specificity of the HIV-1 protease. Copyright © 2012 The Protein Society.

  18. Characterizing Protease Specificity: How Many Substrates Do We Need?

    PubMed Central

    Schauperl, Michael; Fuchs, Julian E.; Waldner, Birgit J.; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.

    2015-01-01

    Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4’) with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design. PMID:26559682

  19. Mast cell proteases as protective and inflammatory mediators.

    PubMed

    Caughey, George H

    2011-01-01

    Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor F(c)εRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them, notably tryptases and chymases, are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the "rubor" component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptideslike endothelin and neurotensin during septic peritonitis and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence nonmast cell proteases, such as by activating matrix metalloproteinase cascades, which

  20. Mast Cell Proteases as Protective and Inflammatory Mediators

    PubMed Central

    Caughey, George H.

    2014-01-01

    Proteases are the most abundant class of proteins produced by mast cells. Many of these are stored in membrane-enclosed intracellular granules until liberated by degranulating stimuli, which include cross-linking of high affinity IgE receptor FcεRI by IgE bound to multivalent allergen. Understanding and separating the functions of the proteases is important because expression differs among mast cells in different tissue locations. Differences between laboratory animals and humans in protease expression also influence the degree of confidence with which results obtained in animal models of mast cell function can be extrapolated to humans. The inflammatory potential of mast cell proteases was the first aspect of their biology to be explored and has received the most attention, in part because some of them—notably tryptases and chymases—are biomarkers of local and systemic mast cell degranulation and anaphylaxis. Although some of the proteases indeed augment allergic inflammation and are potential targets for inhibition to treat asthma and related allergic disorders, they are protective and even anti-inflammatory in some settings. For example, mast cell tryptases may protect from serious bacterial lung infections and may limit the “rubor” component of inflammation caused by vasodilating neuropeptides in the skin. Chymases help to maintain intestinal barrier function and to expel parasitic worms, and may support blood pressure during anaphylaxis by generating angiotensin II. In other life-or-death examples, carboxypeptidase A3 and other mast cell peptidases limit systemic toxicity of endogenous peptides like endothelin and neurotensin during septic peritonitis, and inactivate venom-associated peptides. On the other hand, mast cell peptidase-mediated destruction of protective cytokines, like IL-6, can enhance mortality from sepsis. Peptidases released from mast cells also influence non-mast cell proteases, such as by activating matrix metalloproteinase cascades

  1. Loss of second and sixth conserved cysteine residues from trypsin inhibitor-like cysteine-rich domain-type protease inhibitors in Bombyx mori may induce activity against microbial proteases.

    PubMed

    Li, Youshan; Liu, Huawei; Zhu, Rui; Xia, Qingyou; Zhao, Ping

    2016-12-01

    Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys 2nd and Cys 6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be

  2. Purification and characterization of Bacillus cereus protease suitable for detergent industry.

    PubMed

    Prakash, Monika; Banik, Rathindra Mohan; Koch-Brandt, Claudia

    2005-12-01

    An extracellular alkaline protease from an alkalophilic bacterium, Bacillus cereus, was produced in a large amount by the method of extractive fermentation. The protease is thermostable, pH tolerant, and compatible with commercial laundry detergents. The protease purified and characterized in this study was found to be superior to endogenous protease already present in commercial laundry detergents. The enzyme was purified to homogeneity by ammonium sulfate precipitation, concentration by ultrafiltration, anion-exchange chromatography, and gel filtration. The purified enzyme had a specific activity of 3256.05 U/mg and was found to be a monomeric protein with a molecular mass of 28 and 31 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE, respectively. Its maximum protease activity against casein was found to be at pH 10.5 and 50 degrees C. Proteolytic activity of the enzyme was detected by casein and gelatin zymography, which gave a very clear protease activity zone on gel that corresponded to the band obtained on SDS-PAGE and nondenaturing PAGE with a molecular mass of nearly 31 kDa. The purified enzyme was analyzed through matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and identified as a subtilisin class of protease. Specific serine protease inhibitors, suggesting the presence of serine residues at the active site, inhibited the enzyme significantly.

  3. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration

    PubMed Central

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-01-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders. PMID:29451229

  4. m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration.

    PubMed

    Patron, Maria; Sprenger, Hans-Georg; Langer, Thomas

    2018-03-01

    The function of mitochondria depends on ubiquitously expressed and evolutionary conserved m-AAA proteases in the inner membrane. These ATP-dependent peptidases form hexameric complexes built up of homologous subunits. AFG3L2 subunits assemble either into homo-oligomeric isoenzymes or with SPG7 (paraplegin) subunits into hetero-oligomeric proteolytic complexes. Mutations in AFG3L2 are associated with dominant spinocerebellar ataxia (SCA28) characterized by the loss of Purkinje cells, whereas mutations in SPG7 cause a recessive form of hereditary spastic paraplegia (HSP7) with motor neurons of the cortico-spinal tract being predominantly affected. Pleiotropic functions have been assigned to m-AAA proteases, which act as quality control and regulatory enzymes in mitochondria. Loss of m-AAA proteases affects mitochondrial protein synthesis and respiration and leads to mitochondrial fragmentation and deficiencies in the axonal transport of mitochondria. Moreover m-AAA proteases regulate the assembly of the mitochondrial calcium uniporter (MCU) complex. Impaired degradation of the MCU subunit EMRE in AFG3L2-deficient mitochondria results in the formation of deregulated MCU complexes, increased mitochondrial calcium uptake and increased vulnerability of neurons for calcium-induced cell death. A reduction of calcium influx into the cytosol of Purkinje cells rescues ataxia in an AFG3L2-deficient mouse model. In this review, we discuss the relationship between the m-AAA protease and mitochondrial calcium homeostasis and its relevance for neurodegeneration and describe a novel mouse model lacking MCU specifically in Purkinje cells. Our results pledge for a novel view on m-AAA proteases that integrates their pleiotropic functions in mitochondria to explain the pathogenesis of associated neurodegenerative disorders.

  5. Effects of host species and environment on the skin microbiome of Plethodontid salamanders

    USGS Publications Warehouse

    Muletz-Wolz, Carly R.; Yarwood, Stephanie A.; Grant, Evan H. Campbell; Fleischer, Robert C.; Lips, Karen R.

    2018-01-01

    The amphibian skin microbiome is recognized for its role in defence against pathogens, including the deadly fungal pathogen Batrachochytrium dendrobatidis (Bd). Yet, we have little understanding of evolutionary and ecological processes that structure these communities, especially for salamanders and closely related species. We investigated patterns in the distribution of bacterial communities on Plethodon salamander skin across host species and environments.Quantifying salamander skin microbiome structure contributes to our understanding of how host-associated bacteria are distributed across the landscape, among host species, and their putative relationship with disease.We characterized skin microbiome structure (alpha-diversity, beta-diversity and bacterial operational taxonomic unit [OTU] abundances) using 16S rRNA gene sequencing for co-occurring Plethodon salamander species (35 Plethodon cinereus, 17 Plethodon glutinosus, 10 Plethodon cylindraceus) at three localities to differentiate the effects of host species from environmental factors on the microbiome. We sampled the microbiome of P. cinereus along an elevational gradient (n = 50, 700–1,000 m a.s.l.) at one locality to determine whether elevation predicts microbiome structure. Finally, we quantified prevalence and abundance of putatively anti-Bd bacteria to determine if Bd-inhibitory bacteria are dominant microbiome members.Co-occurring salamanders had similar microbiome structure, but among sites salamanders had dissimilar microbiome structure for beta-diversity and abundance of 28 bacterial OTUs. We found that alpha-diversity increased with elevation, beta-diversity and the abundance of 17 bacterial OTUs changed with elevation (16 OTUs decreasing, 1 OTU increasing). We detected 11 putatively anti-Bd bacterial OTUs that were present on 90% of salamanders and made up an average relative abundance of 83% (SD ± 8.5) per salamander. All salamanders tested negative for Bd.We conclude that

  6. In vivo imaging of protease activity by Probody therapeutic activation

    PubMed Central

    Wong, Kenneth R.; Menendez, Elizabeth; Craik, Charles S.; Kavanaugh, W. Michael; Vasiljeva, Olga

    2017-01-01

    Probody™ therapeutics are recombinant, proteolytically-activated antibody prodrugs, engineered to remain inert until activated locally by tumor-associated proteases. Probody therapeutics exploit the fundamental dysregulation of extracellular protease activity that exists in tumors relative to healthy tissue. Leveraging the ability of a Probody therapeutic to bind its target at the site of disease after proteolytic cleavage, we developed a novel method for profiling protease activity in living animals. Using NIR optical imaging, we demonstrated that a non-labeled anti-EGFR Probody therapeutic can become activated and compete for binding to tumor cells in vivo with a labeled anti-EGFR monoclonal antibody. Furthermore, by inhibiting matriptase activity in vivo with a blocking-matriptase antibody, we show that the ability of the Probody therapeutic to bind EGFR in vivo was dependent on protease activity. These results demonstrate that in vivo imaging of Probody therapeutic activation can be used for screening and characterization of protease activity in living animals, and provide a method that avoids some of the limitations of prior methods. This approach can improve our understanding of the activity of proteases in disease models and help to develop efficient strategies for cancer diagnosis and treatment. PMID:26546838

  7. Rhomboid protease inhibitors: Emerging tools and future therapeutics.

    PubMed

    Strisovsky, Kvido

    2016-12-01

    Rhomboid-family intramembrane serine proteases are evolutionarily widespread. Their functions in different organisms are gradually being uncovered and already suggest medical relevance for infectious diseases and cancer. In contrast to these advances, selective inhibitors that could serve as efficient tools for investigation of physiological functions of rhomboids, validation of their disease relevance or as templates for drug development are lacking. In this review I extract what is known about rhomboid protease mechanism and specificity, examine the currently used inhibitors, their mechanism of action and limitations, and conclude by proposing routes for future development of rhomboid protease inhibitors. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  8. A cyclohexanecarboxamide derivative with inhibitory effects on Schistosoma mansoni cercarial serine protease and penetration of mice skin by the parasite.

    PubMed

    Bahgat, Mahmoud; Aboul-Enein, Mohamed N; El Azzouny, Aida A; Maghraby, Amany; Ruppel, Andreas; Soliman, Wael M

    2009-01-01

    A cyclohexanecarboxamide derivative, N-phenyl-N-[1-(piperidine-1-carbonyl)cyclohexyl] benzamide (MNRC-5), was evaluated for its inhibitory effects on Schistosoma mansoni cercarial serine protease activity and cercarial penetration. MNRC-5 exerted an inhibitory effect on S. mansoni cercarial serine protease at serial concentrations of the specific chromogenic substrate Boc-Val-Leu-Gly-Arg-PNA for such enzyme family and the inhibitory coefficient (Ki) value was deduced. Moreover, topical treatment of mice tails with the most potent inhibitory concentration of MNRC-5 formulated in jojoba oil successfully blocked cercarial penetration as demonstrated by a significant reduction (75%; p < 0.05) in the recovered S. mansoni worms from treated mice in comparison to control ones whose tails were painted with jojoba oil base containing no MNRC-5. In addition, the IgM and IgG reactivities to crude S. mansoni cercarial, worm and egg antigens were generally lower in sera from treated infected mice than untreated infected mice. In conclusion, we report on a new serine protease inhibitor capable for blocking penetration of host skin by S. mansoni cercariae as measured by lowering worm burden and decrease in the levels of both IgM and IgG towards different bilharzial antigens upon topical treatment.

  9. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans.

    PubMed

    Lermann, Ulrich; Morschhäuser, Joachim

    2008-11-01

    A well-known virulence attribute of the human-pathogenic yeast Candida albicans is the secretion of aspartic proteases (Saps), which may contribute to colonization and infection of different host niches by degrading tissue barriers, destroying host defence molecules, or digesting proteins for nutrient supply. The role of individual Sap isoenzymes, which are encoded by a large gene family, for the pathogenicity of C. albicans has been investigated by assessing the virulence of mutants lacking specific SAP genes and by studying the expression pattern of the SAP genes in various models of superficial and systemic infections. We used a recombination-based genetic reporter system to detect the induction of the SAP1-SAP6 genes during infection of reconstituted human vaginal epithelium. Only SAP5, but none of the other tested SAP genes, was detectably activated in this in vitro infection model. To directly address the importance of the SAP1-SAP6 genes for invasion of reconstituted human epithelia (RHE), we constructed a set of mutants of the wild-type C. albicans model strain SC5314 in which either single or multiple SAP genes were specifically deleted. Even mutants lacking all of the SAP1-SAP3 or the SAP4-SAP6 genes displayed the same capacity to invade and damage both oral and vaginal RHE as their wild-type parental strain, in contrast to a nonfilamentous efg1Delta mutant that was avirulent under these conditions. We therefore conclude from these results that the secreted aspartic proteases Sap1p-Sap6p are not required for invasion of RHE by C. albicans.

  10. The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants

    PubMed Central

    Kamel, Laurent; Tang, Nianwu; Malbreil, Mathilde; San Clemente, Hélène; Le Marquer, Morgane; Roux, Christophe; Frei dit Frey, Nicolas

    2017-01-01

    Arbuscular mycorrhizal fungi (AMF), belonging to the fungal phylum Glomeromycota, form mutualistic symbioses with roots of almost 80% of land plants. The release of genomic data from the ubiquitous AMF Rhizophagus irregularis revealed that this species possesses a large set of putative secreted proteins (RiSPs) that could be of major importance for establishing the symbiosis. In the present study, we aimed to identify SPs involved in the establishment of AM symbiosis based on comparative gene expression analyses. We first curated the secretome of the R. irregularis DAOM 197198 strain based on two available genomic assemblies. Then we analyzed the expression patterns of the putative RiSPs obtained from the fungus in symbiotic association with three phylogenetically distant host plants—a monocot, a dicot and a liverwort—in comparison with non-symbiotic stages. We found that 33 out of 84 RiSPs induced in planta were commonly up-regulated in these three hosts. Most of these common RiSPs are small proteins of unknown function that may represent putative host non-specific effector proteins. We further investigated the expressed secretome of Gigaspora rosea, an AM fungal species phylogenetically distant from R. irregularis. G. rosea also presents original symbiotic features, a narrower host spectrum and a restrictive geographic distribution compared to R. irregularis. Interestingly, when analyzing up-regulated G. rosea SPs (GrSPs) in different hosts, a higher ratio of host-specific GrSPs was found compared to RiSPs. Such difference of expression patterns may mirror the restrained host spectrum of G. rosea compared to R. irregularis. Finally, we identified a set of conserved SPs, commonly up-regulated by both fungi in all hosts tested, that could correspond to common keys of AMF to colonize host plants. Our data thus highlight the specificities of two distant AM fungi and help in understanding their conserved and specific strategies to invade different hosts. PMID

  11. Inhibition of Bombyx mori nuclear polyhedrosis virus (NPV) replication by the putative DNA helicase gene of Autographa californica NPV.

    PubMed Central

    Kamita, S G; Maeda, S

    1993-01-01

    Coinfection of Bombyx mori nuclear polyhedrosis virus (BmNPV) with Autographa californica NPV (AcNPV) in the BmNPV-permissive BmN cell line resulted in the complete inhibition of BmNPV replication. Coinfected BmN cells exhibited an atypical cytopathic effect (CPE) and synthesis of viral and host proteins was dramatically attenuated by 5 h postinfection (p.i.) and nearly completely blocked by 24 h p.i. Viral transcription, however, appeared to occur normally during both early (5-h-p.i.) and late (24-h-p.i.) stages of infection. Superinfection of BmN cells with AcNPV at 5 and 12 h post-BmNPV infection resulted in limited inhibition of BmNPV replication. BmN cells singly infected with AcNPV also showed similar CPE, premature inhibition of viral and host protein synthesis, and apparently normal viral transcription. BmNPV replication occurred normally following coinfection of BmNPV and eh2-AcNPV, an AcNPV mutant identical to AcNPV except for a 572-bp region in its putative DNA helicase gene originating from BmNPV (S. Maeda, S. G. Kamita, and A. Kondo, J. Virol. 67:6234-6238, 1993). Furthermore, atypical CPE and premature attenuation of host and viral protein synthesis were not observed. These results indicated that the inhibition of BmNPV replication was caused either directly or indirectly at the translational level by the putative AcNPV DNA helicase gene. Images PMID:7690422

  12. Evidence for possible involvement of an elastolytic serine protease in aspergillosis.

    PubMed

    Kolattukudy, P E; Lee, J D; Rogers, L M; Zimmerman, P; Ceselski, S; Fox, B; Stein, B; Copelan, E A

    1993-06-01

    A number of isolates of Aspergillus fumigatus obtained from the hospital environment produced extracellular elastolytic activity. This activity was found to be catalyzed by a single 33-kDa protein which was purified and characterized to be a serine protease. A. fumigatus, when grown on the insoluble structural material obtained from murine and bovine lung, produced the same extracellular 33-kDa elastolytic protease, indicating that this enzyme is likely to be produced when the organism infects the lung. Polymerase chain reaction with an oligonucleotide primer based on the N-terminal amino acid sequence of the elastolytic enzyme yielded a cDNA which was cloned and sequenced. The active serine motif showed more similarity to subtilisin than to mammalian elastase. The amino acid sequence showed 80% identity to the alkaline protease from Aspergillus oryzae. Screening of hospital isolates of Aspergillus flavus showed great variation in the production of elastolytic activity and a much lower level of activity than that produced by A. fumigatus. The elastolytic protease from A. flavus was shown to be a serine protease susceptible to modification and inactivation by active serine and histidine-directed reagents. This protease cross-reacted with the antibodies prepared against the elastolytic protease from A. fumigatus. Immunogold localization of the elastolytic enzyme showed that A. fumigatus germinating and penetrating into the lungs of neutropenic mice secreted the elastolytic protease. An elastase-deficient mutant generated from a highly virulent isolate of A. fumigatus caused drastically reduced mortality when nasally introduced into the lung of neutropenic mice. All of the evidence suggests that extracellular elastolytic protease is a significant virulence factor in invasive aspergillosis.

  13. Evidence for possible involvement of an elastolytic serine protease in aspergillosis.

    PubMed Central

    Kolattukudy, P E; Lee, J D; Rogers, L M; Zimmerman, P; Ceselski, S; Fox, B; Stein, B; Copelan, E A

    1993-01-01

    A number of isolates of Aspergillus fumigatus obtained from the hospital environment produced extracellular elastolytic activity. This activity was found to be catalyzed by a single 33-kDa protein which was purified and characterized to be a serine protease. A. fumigatus, when grown on the insoluble structural material obtained from murine and bovine lung, produced the same extracellular 33-kDa elastolytic protease, indicating that this enzyme is likely to be produced when the organism infects the lung. Polymerase chain reaction with an oligonucleotide primer based on the N-terminal amino acid sequence of the elastolytic enzyme yielded a cDNA which was cloned and sequenced. The active serine motif showed more similarity to subtilisin than to mammalian elastase. The amino acid sequence showed 80% identity to the alkaline protease from Aspergillus oryzae. Screening of hospital isolates of Aspergillus flavus showed great variation in the production of elastolytic activity and a much lower level of activity than that produced by A. fumigatus. The elastolytic protease from A. flavus was shown to be a serine protease susceptible to modification and inactivation by active serine and histidine-directed reagents. This protease cross-reacted with the antibodies prepared against the elastolytic protease from A. fumigatus. Immunogold localization of the elastolytic enzyme showed that A. fumigatus germinating and penetrating into the lungs of neutropenic mice secreted the elastolytic protease. An elastase-deficient mutant generated from a highly virulent isolate of A. fumigatus caused drastically reduced mortality when nasally introduced into the lung of neutropenic mice. All of the evidence suggests that extracellular elastolytic protease is a significant virulence factor in invasive aspergillosis. Images PMID:8500876

  14. Using every trick in the book: the Pla surface protease of Yersinia pestis.

    PubMed

    Suomalainen, Marjo; Haiko, Johanna; Ramu, Päivi; Lobo, Leandro; Kukkonen, Maini; Westerlund-Wikström, Benita; Virkola, Ritva; Lähteenmäki, Kaarina; Korhonen, Timo K

    2007-01-01

    The Pla surface protease of Yersinia pestis, encoded by the Y. pestis-specific plasmid pPCP1, is a versatile virulence factor. In vivo studies have shown that Pla is essential in the establishment of bubonic plague, and in vitro studies have demonstrated various putative virulence functions for the Pla molecule. Pla is a surface protease of the omptin family, and its proteolytic targets include the abundant, circulating human zymogen plasminogen, which is activated by Pla to the serine protease plasmin. Plasmin is important in cell migration, and Pla also proteolytically inactivates the main circulating inhibitor of plasmin, alpha2-antiplasmin. Pla also is an adhesin with affinity for laminin, a major glycoprotein of mammalian basement membranes, which is degraded by plasmin but not by Pla. Together, these functions create uncontrolled plasmin proteolysis targeted at tissue barriers. Other proteolytic targets for Pla include complement proteins. Pla also mediates bacterial invasion into human endothelial cell lines; the adhesive and invasive charateristics of Pla can be genetically dissected from its proteolytic activity. Pla is a 10-stranded antiparallel beta-barrel with five surface-exposed short loops, where the catalytic residues are oriented inwards at the top of the beta-barrel. The sequence of Pla contains a three-dimensional motif for protein binding to lipid A of the lipopolysaccharide. Indeed, the proteolytic activity of Pla requires rough lipopolysaccharide but is sterically inhibited by the O antigen in smooth LPS, which may be the selective advantage of the loss of O antigen in Y. pestis. Members of the omptin family are highly similar in structure but differ in functions and virulence association. The catalytic residues of omptins are conserved, but the variable substrate specificities in proteolysis by Pla and other omptins are dictated by the amino acid sequences near or at the surface loops, and hence reflect differences in substrate binding. The

  15. Viral evolution in response to the broad-based retroviral protease inhibitor TL-3.

    PubMed

    Bühler, B; Lin, Y C; Morris, G; Olson, A J; Wong, C H; Richman, D D; Elder, J H; Torbett, B E

    2001-10-01

    TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity.

  16. Characterization and identification of proteases secreted by Aspergillus fumigatus using free flow electrophoresis and MS.

    PubMed

    Neustadt, Madlen; Costina, Victor; Kupfahl, Claudio; Buchheidt, Dieter; Eckerskorn, Christoph; Neumaier, Michael; Findeisen, Peter

    2009-06-01

    Early diagnosis of life-threatening invasive aspergillosis in neutropenic patients remains challenging because current laboratory methods have limited diagnostic sensitivity and/or specificity. Aspergillus species are known to secrete various pathogenetically relevant proteases and the monitoring of their protease activity in serum specimens might serve as a new diagnostic approach.For the characterization and identification of secreted proteases, the culture supernatant of Aspergillus fumigatus was fractionated using free flow electrophoresis (Becton Dickinson). Protease activity of separated fractions was measured using fluorescently labeled reporter peptides. Fractions were also co-incubated in parallel with various protease inhibitors that specifically inhibit a distinct class of proteases e.g. metallo- or cysteine-proteases. Those fractions with high protease activity were further subjected to LC-MS/MS analysis for protease identification. The highest protease activity was measured in fractions with an acidic pH range. The results of the 'inhibitor-panel' gave a clear indication that it is mainly metallo- and serine-proteases that are involved in the degradation of reporter peptides. Furthermore, several proteases were identified that facilitate the optimization of reporter peptides for functional protease profiling as a diagnostic tool for invasive aspergillosis.

  17. The Crystal Structure of GXGD Membrane Protease FlaK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Hu; Y Xue; S Lee

    2011-12-31

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices.more » The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.« less

  18. The crystal structure of GXGD membrane protease FlaK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jian; Xue, Yi; Lee, Sangwon

    2011-09-20

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices.more » The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.« less

  19. Physical characterization of the cloned protease III gene from Escherichia coli K-12.

    PubMed

    Dykstra, C C; Kushner, S R

    1985-09-01

    Analysis of the cloned protease III gene (ptr) from Escherichia coli K-12 has demonstrated that in addition to the previously characterized 110,000-Mr protease III protein, a second 50,000-Mr polypeptide (p50) is derived from the amino-terminal end of the coding sequence. The p50 polypeptide is found predominantly in the periplasmic space along with protease III, but does not proteolytically degrade insulin, a substrate for protease III. p50 does not appear to originate from autolysis of the larger protein. Protease III is not essential for normal cell growth since deletion of the structural gene causes no observed alterations in the phenotypic properties of the bacteria. A 30-fold overproduction of protease III does not affect cell viability. A simple new purification method for protease III is described.

  20. Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B.

    PubMed

    Ulvatne, Hilde; Haukland, Hanne Husom; Samuelsen, Ørjan; Krämer, Manuela; Vorland, Lars H

    2002-10-01

    Lactoferricin B is a cationic antimicrobial peptide derived from the N-terminal part of bovine lactoferrin. The effect of bacterial proteases on the antibacterial activity of lactoferricin B towards Escherichia coli and Staphylococcus aureus was investigated using various protease inhibitors and protease-deficient E. coli mutants. Sodium-EDTA, a metalloprotease inhibitor, was the most efficient inhibitors in both species, but combinations of sodium-EDTA with other types of protease inhibitor gave a synergic effect. The results indicate that several groups of proteases are involved in resistance to lactoferricin B in both E. coli and S. aureus. We also report that genetic inactivation of the heat shock-induced serine protease DegP increased the susceptibility to lactoferricin B in E. coli, suggesting that this protease, at least, is involved in reduced susceptibility to lactoferricin B.

  1. The Flavivirus Protease As a Target for Drug Discovery

    PubMed Central

    Brecher, Matthew; Zhang, Jing; Li, Hongmin

    2014-01-01

    Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures. PMID:24242363

  2. The flavivirus protease as a target for drug discovery.

    PubMed

    Brecher, Matthew; Zhang, Jing; Li, Hongmin

    2013-12-01

    Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures.

  3. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications

    PubMed Central

    Hua, Yinan; Nair, Sreejayan

    2014-01-01

    Cardiovascular disease is the leading cause of death in the U.S. and other developed country. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or overexpress proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better

  4. Purification and characterization of a cysteine protease from corms of freesia, Freesia reflacta.

    PubMed

    Kaneda, M; Yonezawa, H; Uchikoba, T

    1997-09-01

    A protease (freesia protease B) has been purified to electrophoretic homogeneity from corms of freesia, Freesia reflacta by five steps of chromatography. Its M(r) was estimated to be about 26,000 by SDS-PAGE. The optimum pH of the enzyme was 6.0-7.0 at 30 degrees C using casein as a substrate. The enzyme was strongly inhibited by p-chloromercuribenzoic acid but not by phenylmethanesulphonylfluoride and EDTA. These results indicate that freesia protease B is a cysteine protease. Nine sites of oxidized insulin B-chain were cleaved by freesia protease B in 24 h of hydrolysis. The four cleavage sites among them resembled those of papain. From the digestion of five peptidyl substrates the specificity of freesia protease B was found to be approximately broad, but the preferential cleavage sites were negatively charged residues at P1 positions. Freesia protease B preferred also the large hydrophobic amino acid residues at the P2 position, in a similar manner to papain. The amino terminal sequence of freesia protease B was identical with those of papain in regard to the conservative residues of cysteine protease.

  5. Protease Expression Levels in Prostate Cancer Tissue Can Explain Prostate Cancer-Associated Seminal Biomarkers-An Explorative Concept Study.

    PubMed

    Neuhaus, Jochen; Schiffer, Eric; Mannello, Ferdinando; Horn, Lars-Christian; Ganzer, Roman; Stolzenburg, Jens-Uwe

    2017-05-04

    Previously, we described prostate cancer (PCa) detection (83% sensitivity; 67% specificity) in seminal plasma by CE-MS/MS. Moreover, advanced disease was distinguished from organ-confined tumors with 80% sensitivity and 82% specificity. The discovered biomarkers were naturally occurring fragments of larger seminal proteins, predominantly semenogelin 1 and 2, representing endpoints of the ejaculate liquefaction. Here we identified proteases putatively involved in PCa specific protein cleavage, and examined gene expression and tissue protein levels, jointly with cell localization in normal prostate (nP), benign prostate hyperplasia (BPH), seminal vesicles and PCa using qPCR, Western blotting and confocal laser scanning microscopy. We found differential gene expression of chymase (CMA1), matrix metalloproteinases (MMP3, MMP7), and upregulation of MMP14 and tissue inhibitors (TIMP1 and TIMP2) in BPH. In contrast tissue protein levels of MMP14 were downregulated in PCa. MMP3/TIMP1 and MMP7/TIMP1 ratios were decreased in BPH. In seminal vesicles, we found low-level expression of most proteases and, interestingly, we also detected TIMP1 and low levels of TIMP2. We conclude that MMP3 and MMP7 activity is different in PCa compared to BPH due to fine regulation by their inhibitor TIMP1. Our findings support the concept of seminal plasma biomarkers as non-invasive tool for PCa detection and risk stratification.

  6. Using host-pathogen protein interactions to identify and characterize Francisella tularensis virulence factors.

    PubMed

    Wallqvist, Anders; Memišević, Vesna; Zavaljevski, Nela; Pieper, Rembert; Rajagopala, Seesandra V; Kwon, Keehwan; Yu, Chenggang; Hoover, Timothy A; Reifman, Jaques

    2015-12-29

    Francisella tularensis is a select bio-threat agent and one of the most virulent intracellular pathogens known, requiring just a few organisms to establish an infection. Although several virulence factors are known, we lack an understanding of virulence factors that act through host-pathogen protein interactions to promote infection. To address these issues in the highly infectious F. tularensis subsp. tularensis Schu S4 strain, we deployed a combined in silico, in vitro, and in vivo analysis to identify virulence factors and their interactions with host proteins to characterize bacterial infection mechanisms. We initially used comparative genomics and literature to identify and select a set of 49 putative and known virulence factors for analysis. Each protein was then subjected to proteome-scale yeast two-hybrid (Y2H) screens with human and murine cDNA libraries to identify potential host-pathogen protein-protein interactions. Based on the bacterial protein interaction profile with both hosts, we selected seven novel putative virulence factors for mutant construction and animal validation experiments. We were able to create five transposon insertion mutants and used them in an intranasal BALB/c mouse challenge model to establish 50 % lethal dose estimates. Three of these, ΔFTT0482c, ΔFTT1538c, and ΔFTT1597, showed attenuation in lethality and can thus be considered novel F. tularensis virulence factors. The analysis of the accompanying Y2H data identified intracellular protein trafficking between the early endosome to the late endosome as an important component in virulence attenuation for these virulence factors. Furthermore, we also used the Y2H data to investigate host protein binding of two known virulence factors, showing that direct protein binding was a component in the modulation of the inflammatory response via activation of mitogen-activated protein kinases and in the oxidative stress response. Direct interactions with specific host proteins and the

  7. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity.

    PubMed

    Stobart, Christopher C; Sexton, Nicole R; Munjal, Havisha; Lu, Xiaotao; Molland, Katrina L; Tomar, Sakshi; Mesecar, Andrew D; Denison, Mark R

    2013-12-01

    Human coronaviruses (CoVs) such as severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause epidemics of severe human respiratory disease. A conserved step of CoV replication is the translation and processing of replicase polyproteins containing 16 nonstructural protein domains (nsp's 1 to 16). The CoV nsp5 protease (3CLpro; Mpro) processes nsp's at 11 cleavage sites and is essential for virus replication. CoV nsp5 has a conserved 3-domain structure and catalytic residues. However, the intra- and intermolecular determinants of nsp5 activity and their conservation across divergent CoVs are unknown, in part due to challenges in cultivating many human and zoonotic CoVs. To test for conservation of nsp5 structure-function determinants, we engineered chimeric betacoronavirus murine hepatitis virus (MHV) genomes encoding nsp5 proteases of human and bat alphacoronaviruses and betacoronaviruses. Exchange of nsp5 proteases from HCoV-HKU1 and HCoV-OC43, which share the same genogroup, genogroup 2a, with MHV, allowed for immediate viral recovery with efficient replication albeit with impaired fitness in direct competition with wild-type MHV. Introduction of MHV nsp5 temperature-sensitive mutations into chimeric HKU1 and OC43 nsp5 proteases resulted in clear differences in viability and temperature-sensitive phenotypes compared with MHV nsp5. These data indicate tight genetic linkage and coevolution between nsp5 protease and the genomic background and identify differences in intramolecular networks regulating nsp5 function. Our results also provide evidence that chimeric viruses within coronavirus genogroups can be used to test nsp5 determinants of function and inhibition in common isogenic backgrounds and cell types.

  8. [The extracellular proteases of the phytopathogenic bacterium Xanthomonas campestris].

    PubMed

    Kalashnikova, E E; Chernyshova, M P; Ignatov, V V

    2003-01-01

    The culture liquids of three Xanthomonas campestris pv. campestris strains were found to possess proteolytic activity. The culture liquid of strain B-611 with the highest proteolytic activity was fractionated by salting-out with ammonium sulfate, gel filtration, and ion-exchange chromatography. The electrophoretic analysis of active fractions showed the presence of two proteases in the culture liquid of strain B-611, the major of which being serine protease. The treatment of cabbage seedlings with the proteases augmented the activity of peroxidase in the cabbage roots by 28%.

  9. New Coxsackievirus 2Apro and 3Cpro protease antibodies for virus detection and discovery of pathogenic mechanisms.

    PubMed

    Laitinen, Olli H; Svedin, Emma; Kapell, Sebastian; Hankaniemi, Minna M; Larsson, Pär G; Domsgen, Erna; Stone, Virginia M; Määttä, Juha A E; Hyöty, Heikki; Hytönen, Vesa P; Flodström-Tullberg, Malin

    2018-05-01

    Enteroviruses (EVs), such as the Coxsackie B-viruses (CVBs), are common human pathogens, which can cause severe diseases including meningitis, myocarditis and neonatal sepsis. EVs encode two proteases (2A pro and 3C pro ), which perform the proteolytic cleavage of the CVB polyprotein and also cleave host cell proteins to facilitate viral replication. The 2A pro cause direct damage to the infected heart and tools to investigate 2A pro and 3C pro expression may contribute new knowledge on virus-induced pathologies. Here, we developed new antibodies to CVB-encoded 2A pro and 3C pro ; Two monoclonal 2A pro antibodies and one 3C pro antibody were produced. Using cells infected with selected viruses belonging to the EV A, B and C species and immunocytochemistry, we demonstrate that the 3C pro antibody detects all of the EV species B (EV-B) viruses tested and that the 2A pro antibody detects all EV-B viruses apart from Echovirus 9. We furthermore show that the new antibodies work in Western blotting, immunocyto- and immunohistochemistry, and flow cytometry to detect CVBs. Confocal microscopy demonstrated the expression kinetics of 2A pro and 3C pro , and revealed a preferential cytosolic localization of the proteases in CVB3 infected cells. In summary, the new antibodies detect proteases that belong to EV species B in cells and tissue using multiple applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group

    PubMed Central

    2013-01-01

    Background Comparatively little information is available on members of the Myoviridae infecting low G+C content, Gram-positive host bacteria of the family Firmicutes. While numerous Bacillus phages have been isolated up till now only very few Bacillus cereus phages have been characterized in detail. Results Here we present data on the large, virulent, broad-host-range B. cereus phage vB_BceM_Bc431v3 (Bc431v3). Bc431v3 features a 158,618 bp dsDNA genome, encompassing 239 putative open reading frames (ORFs) and, 20 tRNA genes encoding 17 different amino acids. Since pulsed-field gel electrophoresis indicated that the genome of this phage has a mass of 155-158 kb Bc431v3 DNA appears not to contain long terminal repeats that are found in the genome of Bacillus phage SPO1. Conclusions Bc431v3 displays significant sequence similarity, at the protein level, to B. cereus phage BCP78, Listeria phage A511 and Enterococcus phage ØEF24C and other morphologically related phages infecting Firmicutes such as Staphylococcus phage K and Lactobacillus phage LP65. Based on these data we suggest that Bc431v3 should be included as a member of the Spounavirinae; however, because of all the diverse taxonomical information has been addressed recently, it is difficult to determine the genus. The Bc431v3 phage contains some highly unusual genes such as gp143 encoding putative tRNAHis guanylyltransferase. In addition, it carries some genes that appear to be related to the host sporulation regulators. These are: gp098, which encodes a putative segregation protein related to FstK/SpoIIIE DNA transporters; gp105, a putative segregation protein; gp108, RNA polymerase sigma factor F/B; and, gp109 encoding RNA polymerase sigma factor G. PMID:23388049

  11. Modulation of Immune Signaling and Metabolism Highlights Host and Fungal Transcriptional Responses in Mouse Models of Invasive Pulmonary Aspergillosis.

    PubMed

    Kale, Shiv D; Ayubi, Tariq; Chung, Dawoon; Tubau-Juni, Nuria; Leber, Andrew; Dang, Ha X; Karyala, Saikumar; Hontecillas, Raquel; Lawrence, Christopher B; Cramer, Robert A; Bassaganya-Riera, Josep

    2017-12-06

    Incidences of invasive pulmonary aspergillosis, an infection caused predominantly by Aspergillus fumigatus, have increased due to the growing number of immunocompromised individuals. While A. fumigatus is reliant upon deficiencies in the host to facilitate invasive disease, the distinct mechanisms that govern the host-pathogen interaction remain enigmatic, particularly in the context of distinct immune modulating therapies. To gain insights into these mechanisms, RNA-Seq technology was utilized to sequence RNA derived from lungs of 2 clinically relevant, but immunologically distinct murine models of IPA on days 2 and 3 post inoculation when infection is established and active disease present. Our findings identify notable differences in host gene expression between the chemotherapeutic and steroid models at the interface of immunity and metabolism. RT-qPCR verified model specific and nonspecific expression of 23 immune-associated genes. Deep sequencing facilitated identification of highly expressed fungal genes. We utilized sequence similarity and gene expression to categorize the A. fumigatus putative in vivo secretome. RT-qPCR suggests model specific gene expression for nine putative fungal secreted proteins. Our analysis identifies contrasting responses by the host and fungus from day 2 to 3 between the two models. These differences may help tailor the identification, development, and deployment of host- and/or fungal-targeted therapeutics.

  12. The protease-activated receptor-2 upregulates keratinocyte phagocytosis.

    PubMed

    Sharlow, E R; Paine, C S; Babiarz, L; Eisinger, M; Shapiro, S; Seiberg, M

    2000-09-01

    The protease-activated receptor-2 (PAR-2) belongs to the family of seven transmembrane domain receptors, which are activated by the specific enzymatic cleavage of their extracellular amino termini. Synthetic peptides corresponding to the tethered ligand domain (SLIGRL in mouse, SLIGKV in human) can activate PAR-2 without the need for receptor cleavage. PAR-2 activation is involved in cell growth, differentiation and inflammatory processes, and was shown to affect melanin and melanosome ingestion by human keratinocytes. Data presented here suggest that PAR-2 activation may regulate human keratinocyte phagocytosis. PAR-2 activation by trypsin, SLIGRL or SLIGKV increased the ability of keratinocytes to ingest fluorescently labeled microspheres or E. coli K-12 bioparticles. This PAR-2 mediated increase in keratinocyte phagocytic capability correlated with an increase in actin polymerization and *-actinin reorganization, cell surface morphological changes and increased soluble protease activity. Moreover, addition of serine protease inhibitors downmodulated both the constitutive and the PAR-2 mediated increases in phagocytosis, suggesting that serine proteases mediate this functional activity in keratinocytes. PAR-2 involvement in keratinocyte phagocytosis is a novel function for this receptor.

  13. The genome of the myxosporean Thelohanellus kitauei shows adaptations to nutrient acquisition within its fish host.

    PubMed

    Yang, Yalin; Xiong, Jie; Zhou, Zhigang; Huo, Fengmin; Miao, Wei; Ran, Chao; Liu, Yuchun; Zhang, Jinyong; Feng, Jinmei; Wang, Meng; Wang, Min; Wang, Lei; Yao, Bin

    2014-11-08

    Members of Myxozoa, a parasitic metazoan taxon, have considerable detrimental effects on fish hosts and also have been associated with human food-borne illness. Little is known about their biology and metabolism. Analysis of the genome of Thelohanellus kitauei and comparative analysis with genomes of its two free-living cnidarian relatives revealed that T. kitauei has adapted to parasitism, as indicated by the streamlined metabolic repertoire and the tendency toward anabolism rather than catabolism. Thelohanellus kitauei mainly secretes proteases and protease inhibitors for nutrient digestion (parasite invasion), and depends on endocytosis (mainly low-density lipoprotein receptors-mediated type) and secondary carriers for nutrient absorption. Absence of both classic and complementary anaerobic pathways and gluconeogenesis, the lack of de novo synthesis and reduced activity in hydrolysis of fatty acids, amino acids, and nucleotides indicated that T. kitauei in this vertebrate host-parasite system has adapted to inhabit a physiological environment extremely rich in both oxygen and nutrients (especially glucose), which is consistent with its preferred parasitic site, that is, the host gut submucosa. Taking advantage of the genomic and transcriptomic information, 23 potential nutrition-related T. kitauei-specific chemotherapeutic targets were identified. This first genome sequence of a myxozoan will facilitate development of potential therapeutics for efficient control of myxozoan parasites and ultimately prevent myxozoan-induced fish-borne illnesses in humans. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. A novel serine protease from strawberry (Fragaria ananassa): Purification and biochemical characterization.

    PubMed

    Alici, Esma Hande; Arabaci, Gulnur

    2018-03-27

    In this study, a protease enzyme was purified from strawberry by using Sepharose-4B-l-tyrosine-p-amino benzoic acid affinity chromatography. The molecular weight of pure protease was determined 65.8 kDa by SDS-PAGE. The single band observed on the gel showed that the enzyme had a single polypeptide chain and was successfully purified. Purification of the protease by the chromatographic method resulted in a 395.6-fold increase in specific activity (3600 U/mg). Optimum pH and temperature for the enzyme were 6 and 40 °C, respectively. The protease was stable at a wide temperature range of 40 to 70 °C and a pH range of 3.0 to 9.0. Co 2+ ions stimulated protease activity very strongly. Cu 2+ , Hg 2+ , Cd 2+ and Mn 2+ ions significantly inhibited protease activity. While 2-propanol completely inhibited the enzyme, the enzyme maintained its activity better in the presence of ethanol and methanol. The strawberry protease showed the highest specificity towards hemoglobin among all the natural substrates tested. The specificity of the enzyme towards synthetic substrates was also investigated and it was concluded that it has broad substrate specificity. The obtained results indicated that this purified protease was highly-likely a serine protease and its activity was significantly affected by the presence of metal ions. Copyright © 2018. Published by Elsevier B.V.

  15. The higher barrier of darunavir and tipranavir resistance for HIV-1 protease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yong; Liu, Zhigang; Brunzelle, Joseph S.

    2011-11-17

    Darunavir and tipranavir are two inhibitors that are active against multi-drug resistant (MDR) HIV-1 protease variants. In this study, the invitro inhibitory efficacy was tested against a MDR HIV-1 protease variant, MDR 769 82T, containing the drug resistance mutations of 46L/54V/82T/84V/90M. Crystallographic and enzymatic studies were performed to examine the mechanism of resistance and the relative maintenance of potency. The key findings are as follows: (i) The MDR protease exhibits decreased susceptibility to all nine HIV-1 protease inhibitors approved by the US Food and Drug Administration (FDA), among which darunavir and tipranavir are the most potent; (ii) the threonine 82more » mutation on the protease greatly enhances drug resistance by altering the hydrophobicity of the binding pocket; (iii) darunavir or tipranavir binding facilitates closure of the wide-open flaps of the MDR protease; and (iv) the remaining potency of tipranavir may be preserved by stabilizing the flaps in the inhibitor-protease complex while darunavir maintains its potency by preserving protein main chain hydrogen bonds with the flexible P2 group. These results could provide new insights into drug design strategies to overcome multi-drug resistance of HIV-1 protease variants.« less

  16. Activity-based mass spectrometric characterization of proteases and inhibitors in human saliva

    PubMed Central

    Sun, Xiuli; Salih, Erdjan; Oppenheim, Frank G.; Helmerhorst, Eva J.

    2009-01-01

    Proteases present in oral fluid effectively modulate the structure and function of some salivary proteins and have been implicated in tissue destruction in oral disease. To identify the proteases operating in the oral environment, proteins in pooled whole saliva supernatant were separated by anion-exchange chromatography and individual fractions were analyzed for proteolytic activity by zymography using salivary histatins as the enzyme substrates. Protein bands displaying proteolytic activity were particularly prominent in the 50–75 kDa region. Individual bands were excised, in-gel trypsinized and subjected to LC/ESI-MS/MS. The data obtained were searched against human, oral microbial and protease databases. A total of 13 proteases were identified all of which were of mammalian origin. Proteases detected in multiple fractions with cleavage specificities toward arginine and lysine residues, were lactotransferrin, kallikrein-1, and human airway trypsin-like protease. Unexpectedly, ten protease inhibitors were co-identified suggesting they were associated with the proteases in the same fractions. The inhibitors found most frequently were alpha-2-macroglobulin-like protein 1, alpha-1-antitrypsin, and leukocyte elastase inhibitor. Regulation of oral fluid proteolysis is highly important given that an inbalance in such activities has been correlated to a variety of pathological conditions including oral cancer. PMID:20011683

  17. Fluorescent diphenylphosphonate-based probes for detection of serine protease activity during inflammation.

    PubMed

    Edgington-Mitchell, Laura E; Barlow, Nicholas; Aurelio, Luigi; Samha, Aminath; Szabo, Monika; Graham, Bim; Bunnett, Nigel

    2017-01-15

    Activity-based probes are small molecules that covalently bind to the active site of a protease in an activity-dependent manner. We synthesized and characterized two fluorescent activity-based probes that target serine proteases with trypsin-like or elastase-like activity. We assessed the selectivity and potency of these probes against recombinant enzymes and demonstrated that while they are efficacious at labeling active proteases in complex protein mixtures in vitro, they are less valuable for in vivo studies. We used these probes to evaluate serine protease activity in two mouse models of acute inflammation, including pancreatitis and colitis. As anticipated, the activity of trypsin-like proteases was increased during pancreatitis. Levels of elastase-like proteases were low in pancreatic lysates and colonic luminal fluids, whether healthy or inflamed. Exogenously added recombinant neutrophil elastase was inhibited upon incubation with these samples, an effect that was augmented in inflamed samples compared to controls. These data suggest that endogenous inhibitors and elastase-degrading proteases are upregulated during inflammation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. History and update on host defense against vaginal candidiasis.

    PubMed

    Fidel, Paul L

    2007-01-01

    Vulvovaginal candidiasis (VVC), caused by Candida albicans, remains a significant problem in women of childbearing age. While cell-mediated immunity is considered the predominant host defense mechanism against mucosal candidal infections, two decades of research from animal models and clinical studies have revealed a lack of a protective role for adaptive immunity against VVC caused by putative immunoregulatory mechanisms. Moreover, natural protective mechanisms and factors associated with susceptibility to infection have remained elusive. That is until recently, when through a live challenge model in humans, it was revealed that protection against vaginitis coincides with a non-inflammatory innate presence, whereas symptomatic infection correlates with a neutrophil infiltrate in the vaginal lumen and elevated fungal burden. Thus, instead of VVC being caused by a putative deficient adaptive immune response, it is now being considered that symptomatic vaginitis is caused by an aggressive innate response.

  19. Systematic identification of substrates for profiling of secreted proteases from Aspergillus species.

    PubMed

    Schaal, René; Kupfahl, Claudio; Buchheidt, Dieter; Neumaier, Michael; Findeisen, Peter

    2007-11-01

    Reliable and early diagnosis of life-threatening invasive mycoses in neutropenic patients caused by fungi of the Aspergillus species remains challenging because current clinical diagnostic tools lack in sensitivity and/or specificity. During invasive growth a variety of fungal proteases are secreted into the bloodstream and protease profiling with reporter peptides might improve diagnosis of invasive aspergillosis in serum specimens. To characterise the specific protease activity of Aspergillus fumigatus and Aspergillus niger we analyzed Aspergillus culture supernatants, human serum and the mixture of both. A systematic screening for optimised protease substrates was performed using a random peptide library consisting of 360 synthetic peptides featuring fluorescence resonance energy transfer (FRET). We could identify numerous peptides that are selectively cleaved by fungus-specific proteases. These reporter peptides might be feasible for future protease profiling of serum specimens to improve diagnosis and monitoring of invasive aspergillosis.

  20. Serine protease activity in m-1 cortical collecting duct cells.

    PubMed

    Liu, Lian; Hering-Smith, Kathleen S; Schiro, Faith R; Hamm, L Lee

    2002-04-01

    An apical serine protease, channel-activating protease 1 (CAP1), augments sodium transport in A6 cells. Prostasin, a novel serine protease originally purified from seminal fluid, has been proposed to be the mammalian ortholog of CAP1. We have recently found functional evidence for a similar protease activity in the M-1 cortical collecting duct cell line. The purposes of the present studies were to determine whether prostasin (or CAP1) is present in collecting duct cells by use of mouse M-1 cells, to sequence mouse prostasin, and to further characterize the identity of the serine protease activity and additional functional features in M-1 cells. Using mouse expressed sequence tag sequences that are highly homologous to the published human prostasin sequence as templates, reverse transcription-polymerase chain reaction and RACE (rapid amplification of cDNA ends) were used to sequence mouse prostasin mRNA, which shows 99% identical to published mouse CAP1 sequence. A single 1800-bp transcript was found by Northern analysis, and this was not altered by aldosterone. Equivalent short-circuit current (I(eq)), which represents sodium transport in these cells, dropped to 59+/-3% of control value within 1 hour of incubation with aprotinin, a serine protease inhibitor. Trypsin increased the I(eq) in aprotinin-treated cells to the value of the control group within 5 minutes. Application of aprotinin not only inhibited amiloride sensitive I(eq) but also reduced transepithelial resistance (R(te)) to 43+/-2%, an effect not expected with simple inhibition of sodium channels. Trypsin partially reversed the effect of aprotinin on R(te). Another serine protease inhibitor, soybean trypsin inhibitor (STI), decreased I(eq) in M-1 cells. STI inhibited I(eq) gradually over 6 hours, and the inhibition of I(eq) by 2 inhibitors was additive. STI decreased transepithelial resistance much less than did aprotinin. Neither aldosterone nor dexamethasone significantly augmented protease activity

  1. A putative marker for human pathogenic strains of Anaplasma phagocytophilum correlates with geography and host, but not human tropism.

    PubMed

    Foley, Janet; Stephenson, Nicole; Cubilla, Michelle Pires; Qurollo, Barbara; Breitschwerdt, Edward B

    2016-03-01

    Anaplasma phagocytophilum is an Ixodes species tick-transmitted bacterium that is capable of infecting a variety of host species, although there is a diversity of bacterial strains with differing host tropism. Recent analysis of A. phagocytophilum strains suggested that "drhm", a gene locus designated "distantly related to human marker" (drhm), which was predicted to be an integral membrane protein with possible transporter functions was not present in available canine and human isolates. By assessing 117 strains from 14 host species from across the US, we extended this analysis. Phylogenetic clades were associated with geography, but not host species. Additionally, a virulent clade that lacks drhm and infects dogs, horses, and humans in northeastern US was identified. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Purification, Characterization, and Cloning of a Cold-Adapted Protease from Antarctic Janthinobacterium lividum.

    PubMed

    Kim, Hyun-Do; Kim, Su-Mi; Choi, Jong-Il

    2018-03-28

    In this study, a 107 kDa protease from psychrophilic Janthinobacterium lividum PAMC 26541 was purified by anion-exchange chromatography. The specific activity of the purified protease was 264 U/mg, and the overall yield was 12.5%. The J. lividum PAMC 25641 protease showed optimal activity at pH 7.0-7.5 and 40°C. Protease activity was inhibited by PMSF, but not by DTT. On the basis of the N-terminal sequence of the purified protease, the gene encoding the cold-adapted protease from J. lividum PAMC 25641 was cloned into the pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3) as an intracellular soluble protein.

  3. Fifteen years of HIV Protease Inhibitors: raising the barrier to resistance.

    PubMed

    Wensing, Annemarie M J; van Maarseveen, Noortje M; Nijhuis, Monique

    2010-01-01

    HIV protease plays a crucial role in the viral life cycle and is essential for the generation of mature infectious virus particles. Detailed knowledge of the structure of HIV protease and its substrate has led to the design of specific HIV protease inhibitors. Unfortunately, resistance to all protease inhibitors (PIs) has been observed and the genetic basis of resistance has been well documented over the past 15 years. The arrival of the early PIs was a pivotal moment in the development of antiretroviral therapy. They made possible the dual class triple combination therapy that became known as HAART. However, the clinical utility of the first generation of PIs was limited by low bioavailability and high pill burdens, which ultimately reduced adherence and limited long-term viral inhibition. When therapy failure occurred multiple protease resistance mutations were observed, often resulting in broad class resistance. To combat PI-resistance development, second-generation approaches have been developed. The first advance was to increase the level of existing PIs in the plasma by boosting with ritonavir. The second was to develop novel PIs with high potency against the known PI-resistant HIV protease variants. Both approaches increased the number of protease mutations required for clinical resistance, thereby raising the genetic barrier. This review provides an overview of the history of protease inhibitor therapy, its current status and future perspectives. It forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, vol. 85, issue 1, 2010. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    PubMed

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  5. A secretory multifunctional serine protease, DegP of Plasmodium falciparum, plays an important role in thermo-oxidative stress, parasite growth and development.

    PubMed

    Sharma, Shweta; Jadli, Mohit; Singh, Anu; Arora, Kavita; Malhotra, Pawan

    2014-03-01

    Plasmodium falciparum heat shock proteins and proteases are known for their indispensable roles in parasite virulence and survival in the host cell. They neutralize various host-derived stress responses that are deleterious for parasite growth and invasion. We report identification and functional characterization of the first DegP from an apicomplexan (P. falciparum). To determine the molecular identity and functions of the parasite-encoded DegP, we complemented the Escherichia coli degP null mutant with a putative PfdegP gene, and the results showed that PfDegP complements the growth defect of the temperature sensitive DegP-deficient mutant and imparts resistance to non-permissive temperatures and oxidative stress. Molecular interaction studies showed that PfDegP exists as a complex with parasite-encoded heat shock protein 70, iron superoxide dismutase and enolase. DegP expression is significantly induced in parasite culture upon heat shock/oxidative stress. Our data suggest that the PfDegP protein may play a role in the growth and development of P. falciparum through its ability to confer protection against thermal/oxidative stress. Antibody against DegP showed anti-plasmodial activity against blood-stage parasites in vitro, suggesting that PfDegP and its associated complex may be a potential focus for new anti-malarial therapies. ●PfDegP physically interacts with PfHsp70 and PfEno by anti-bait co-immunoprecipitation (View interaction) ●PfDegP physically interacts with PfEno, PfSod, PfOat, PfHsp70, PfLDH and PfGpi by anti-bait co-immunoprecipitation (View interaction) ●PfHsp-70 and PfDegP co-localize by fluorescence microscopy (View interaction) ●PfDegP physically interacts with PfOat, PfHsp70, PfEno, PfSod, PfGpi and PfLDH by surface plasmon resonance (View interaction) ●PfEno and PfDegP co-localize by fluorescence microscopy (View interaction) ●PfDegP and PfHsp70 co-localize by co-sedimentation through density gradient (View interaction). © 2014

  6. Aspartic protease inhibitors as potential anti-Candida albicans drugs: impacts on fungal biology, virulence and pathogenesis.

    PubMed

    Braga-Silva, L A; Santos, A L S

    2011-01-01

    Mycoses are still one of the most problematic illnesses worldwide, especially affecting immunocompromised individuals. The development of novel antifungal drugs is becoming more demanding every day, since existing drugs either have too many side effects or they tend to lose effectiveness due to the resistant fungal strains. In this scenario, Candida albicans is still the main fungal pathogen isolated in hospitals. Pathogenicity results essentially from modifications of the host defense mechanisms that secondarily initiate transformations in the fungal behavior. The pathogenesis of C. albicans is multifactorial and different virulence attributes are important during the various stages of infection. Some virulence factors, like the secreted aspartic proteases (Saps), play a role in several infection stages and the inhibition of one of the many stages may contribute to the containment of the pathogen and thus should help in the treatment of disease. Therefore, Saps are potential targets for the development of novel anti-C. albicans drugs. Herein, we review the beneficial properties of pepstatin A and aspartic-type protease inhibitors used in the anti-human immunodeficiency virus chemotherapy on C. albicans, with particular emphasis in the effects on Sap activity, proliferation, morphogenesis (yeasts into mycelia transformation), ultrastructural architecture, adhesion to mammalian cells and abiotic materials, modulation of unrelated virulence factors (e.g., surface glycoconjugates, lipases and sterol), experimental candidiasis infection as well as synergistic properties when conjugated with classical antifungals. Collectively, these positive findings have stimulated the search for novel natural and/or synthetic pharmacological compounds with anti-aspartic protease properties against the human opportunistic fungus C. albicans.

  7. Comprehensive mutagenesis of HIV-1 protease: a computational geometry approach.

    PubMed

    Masso, Majid; Vaisman, Iosif I

    2003-05-30

    A computational geometry technique based on Delaunay tessellation of protein structure, represented by C(alpha) atoms, is used to study effects of single residue mutations on sequence-structure compatibility in HIV-1 protease. Profiles of residue scores derived from the four-body statistical potential are constructed for all 1881 mutants of the HIV-1 protease monomer and compared with the profile of the wild-type protein. The profiles for an isolated monomer of HIV-1 protease and the identical monomer in a dimeric state with an inhibitor are analyzed to elucidate changes to structural stability. Protease residues shown to undergo the greatest impact are those forming the dimer interface and flap region, as well as those known to be involved in inhibitor binding.

  8. Direct-acting antivirals and host-targeting strategies to combat enterovirus infections.

    PubMed

    Bauer, Lisa; Lyoo, Heyrhyoung; van der Schaar, Hilde M; Strating, Jeroen Rpm; van Kuppeveld, Frank Jm

    2017-06-01

    Enteroviruses (e.g., poliovirus, enterovirus-A71, coxsackievirus, enterovirus-D68, rhinovirus) include many human pathogens causative of various mild and more severe diseases, especially in young children. Unfortunately, antiviral drugs to treat enterovirus infections have not been approved yet. Over the past decades, several direct-acting inhibitors have been developed, including capsid binders, which block virus entry, and inhibitors of viral enzymes required for genome replication. Capsid binders and protease inhibitors have been clinically evaluated, but failed due to limited efficacy or toxicity issues. As an alternative approach, host-targeting inhibitors with potential broad-spectrum activity have been identified. Furthermore, drug repurposing screens have recently uncovered promising new inhibitors with disparate viral and host targets. Together, these findings raise hope for the development of (broad-range) anti-enteroviral drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cloning, expression and activity analysis of a novel fibrinolytic serine protease from Arenicola cristata

    NASA Astrophysics Data System (ADS)

    Zhao, Chunling; Ju, Jiyu

    2015-06-01

    The full-length cDNA of a protease gene from a marine annelid Arenicola cristata was amplified through rapid amplification of cDNA ends technique and sequenced. The size of the cDNA was 936 bp in length, including an open reading frame encoding a polypeptide of 270 amino acid residues. The deduced amino acid sequnce consisted of pro- and mature sequences. The protease belonged to the serine protease family because it contained the highly conserved sequence GDSGGP. This protease was novel as it showed a low amino acid sequence similarity (< 40%) to other serine proteases. The gene encoding the active form of A. cristata serine protease was cloned and expressed in E. coli. Purified recombinant protease in a supernatant could dissolve an artificial fibrin plate with plasminogen-rich fibrin, whereas the plasminogen-free fibrin showed no clear zone caused by hydrolysis. This result suggested that the recombinant protease showed an indirect fibrinolytic activity of dissolving fibrin, and was probably a plasminogen activator. A rat model with venous thrombosis was established to demonstrate that the recombinant protease could also hydrolyze blood clot in vivo. Therefore, this recombinant protease may be used as a thrombolytic agent for thrombosis treatment. To our knowledge, this study is the first of reporting the fibrinolytic serine protease gene in A. cristata.

  10. Functional dissection of the alphavirus capsid protease: sequence requirements for activity.

    PubMed

    Thomas, Saijo; Rai, Jagdish; John, Lijo; Günther, Stephan; Drosten, Christian; Pützer, Brigitte M; Schaefer, Stephan

    2010-11-18

    The alphavirus capsid is multifunctional and plays a key role in the viral life cycle. The nucleocapsid domain is released by the self-cleavage activity of the serine protease domain within the capsid. All alphaviruses analyzed to date show this autocatalytic cleavage. Here we have analyzed the sequence requirements for the cleavage activity of Chikungunya virus capsid protease of genus alphavirus. Amongst alphaviruses, the C-terminal amino acid tryptophan (W261) is conserved and found to be important for the cleavage. Mutating tryptophan to alanine (W261A) completely inactivated the protease. Other amino acids near W261 were not having any effect on the activity of this protease. However, serine protease inhibitor AEBSF did not inhibit the activity. Through error-prone PCR we found that isoleucine 227 is important for the effective activity. The loss of activity was analyzed further by molecular modelling and comparison of WT and mutant structures. It was found that lysine introduced at position 227 is spatially very close to the catalytic triad and may disrupt electrostatic interactions in the catalytic site and thus inactivate the enzyme. We are also examining other sequence requirements for this protease activity. We analyzed various amino acid sequence requirements for the activity of ChikV capsid protease and found that amino acids outside the catalytic triads are important for the activity.

  11. Emerging roles for diverse intramembrane proteases in plant biology.

    PubMed

    Adam, Zach

    2013-12-01

    Progress in the field of regulated intramembrane proteolysis (RIP) in recent years has made its impact on plant biology as well. Although this field within plant research is still in its infancy, some interesting observations have started to emerge. Gene encoding orthologs of rhomboid proteases, site-2 proteases (S2P), presenilin/γ-secretases, and signal peptide peptidases are found in plant genomes and some of these gene products were identified in different plant cell membranes. The lack of chloroplast-located rhomboid proteases was associated with reduced fertility and aberrations in flower morphology. Mutations in homologues of S2P resulted in chlorophyll deficiency and impaired chloroplast development. An S2P was also implicated in the response to ER stress through cleavage of ER-membrane bZIP transcription factors, allowing their migration to the nucleus and activation of the transcription of BiP chaperones. Other membrane-bound transcription factors of the NAC and PHD families were also demonstrated to undergo RIP and relocalization to the nucleus. These and other new data are expected to shed more light on the roles of intramembrane proteases in plant biology in the future. This article is part of a Special Issue entitled: Intramembrane Proteases. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease.

    PubMed

    Schüller, Andreas; Yin, Zheng; Brian Chia, C S; Doan, Danny N P; Kim, Hyeong-Kyu; Shang, Luqing; Loh, Teck Peng; Hill, Jeffery; Vasudevan, Subhash G

    2011-10-01

    A series of tripeptide aldehyde inhibitors were synthesized and their inhibitory effect against dengue virus type 2 (DENV2) and West Nile virus (WNV) NS3 protease was evaluated side by side with the aim to discover potent flaviviral protease inhibitors and to examine differences in specificity of the two proteases. The synthesized inhibitors feature a varied N-terminal cap group and side chain modifications of a P2-lysine residue. In general a much stronger inhibitory effect of the tripeptide inhibitors was observed toward WNV protease. The inhibitory concentrations against DENV2 protease were in the micromolar range while they were submicromolar against WNV. The data suggest that a P2-arginine shifts the specificity toward DENV2 protease while WNV protease favors a lysine in the P2 position. Peptides with an extended P2-lysine failed to inhibit DENV2 protease suggesting a size-constrained S2 pocket. Our results generally encourage the investigation of di- and tripeptide aldehydes as inhibitors of DENV and WNV protease. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Histochemical studies on protease formation in the cotyledons of germinating bean seeds.

    PubMed

    Yomo, H; Taylor, M P

    1973-03-01

    Protease formation in Phaseolus vulgaris L. cotyledons during seed germination was studied histochemically using a gelatin-film-substrate method. Protease activity can be detected by this method on the 5th day of germination, at approximately the same time that a rapid increase of activity was observed by a test-tube assay with casein as a substrate. At the early stage of germination, protease activity was observed throughout the cotyledon except in two or three cell layers below the cotyledon surface and in several cell layers around the vascular bundles. A highly active cell layer surrounding the protease-inactive cells near the vascular bundles is suggested to be a source of the protease.

  14. Cupincin: A Unique Protease Purified from Rice (Oryza sativa L.) Bran Is a New Member of the Cupin Superfamily.

    PubMed

    Sreedhar, Roopesh; Kaul Tiku, Purnima

    2016-01-01

    Cupin superfamily is one of the most diverse super families. This study reports the purification and characterization of a novel cupin domain containing protease from rice bran for the first time. Hypothetical protein OsI_13867 was identified and named as cupincin. Cupincin was purified to 4.4 folds with a recovery of 4.9%. Cupincin had an optimum pH and temperature of pH 4.0 and 60 °C respectively. Cupincin was found to be a homotrimer, consisting of three distinct subunits with apparent molecular masses of 33.45 kDa, 22.35 kDa and 16.67 kDa as determined by MALDI-TOF, whereas it eluted as a single unit with an apparent molecular mass of 135.33 ± 3.52 kDa in analytical gel filtration and migrated as a single band in native page, suggesting its homogeneity. Sequence identity of cupincin was deduced by determining the amino-terminal sequence of the polypeptide chains and by and de novo sequencing. For understanding the hydrolysing mechanism of cupincin, its three-dimensional model was developed. Structural analysis indicated that cupincin contains His313, His326 and Glu318 with zinc ion as the putative active site residues, inhibition of enzyme activity by 1,10-phenanthroline and atomic absorption spectroscopy confirmed the presence of zinc ion. The cleavage specificity of cupincin towards oxidized B-chain of insulin was highly specific; cleaving at the Leu15-Tyr16 position, the specificity was also determined using neurotensin as a substrate, where it cleaved only at the Glu1-Tyr2 position. Limited proteolysis of the protease suggests a specific function for cupincin. These results demonstrated cupincin as a completely new protease.

  15. Cupincin: A Unique Protease Purified from Rice (Oryza sativa L.) Bran Is a New Member of the Cupin Superfamily

    PubMed Central

    Sreedhar, Roopesh; Kaul Tiku, Purnima

    2016-01-01

    Cupin superfamily is one of the most diverse super families. This study reports the purification and characterization of a novel cupin domain containing protease from rice bran for the first time. Hypothetical protein OsI_13867 was identified and named as cupincin. Cupincin was purified to 4.4 folds with a recovery of 4.9%. Cupincin had an optimum pH and temperature of pH 4.0 and 60°C respectively. Cupincin was found to be a homotrimer, consisting of three distinct subunits with apparent molecular masses of 33.45 kDa, 22.35 kDa and 16.67 kDa as determined by MALDI-TOF, whereas it eluted as a single unit with an apparent molecular mass of 135.33 ± 3.52 kDa in analytical gel filtration and migrated as a single band in native page, suggesting its homogeneity. Sequence identity of cupincin was deduced by determining the amino-terminal sequence of the polypeptide chains and by and de novo sequencing. For understanding the hydrolysing mechanism of cupincin, its three-dimensional model was developed. Structural analysis indicated that cupincin contains His313, His326 and Glu318 with zinc ion as the putative active site residues, inhibition of enzyme activity by 1,10-phenanthroline and atomic absorption spectroscopy confirmed the presence of zinc ion. The cleavage specificity of cupincin towards oxidized B-chain of insulin was highly specific; cleaving at the Leu15-Tyr16 position, the specificity was also determined using neurotensin as a substrate, where it cleaved only at the Glu1-Tyr2 position. Limited proteolysis of the protease suggests a specific function for cupincin. These results demonstrated cupincin as a completely new protease. PMID:27064905

  16. Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae.

    PubMed

    Wilkinson, Derek; Ramsdale, Mark

    2011-10-01

    A variety of proteases have been implicated in yeast PCD (programmed cell death) including the metacaspase Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase 3-, 6- and 8-like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response. Global proteolytic events that accompany PCD are discussed alongside a consideration of the conservation of the death-related degradome (both at the level of substrate choice and cleavage site). The importance of both gain-of-function changes in the degradome as well as loss-of-function changes are highlighted. Better understanding of both death-related proteases and their substrates may facilitate the design of future antifungal drugs or the manipulation of industrial yeasts for commercial exploitation.

  17. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.

    PubMed

    Wang, Shuaiyu; Jacquemyn, Julie; Murru, Sara; Martinelli, Paola; Barth, Esther; Langer, Thomas; Niessen, Carien M; Rugarli, Elena I

    2016-12-01

    The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.

  18. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis

    PubMed Central

    Zimbler, Daniel L.; Eddy, Justin L.; Schroeder, Jay A.

    2015-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. PMID:26553463

  19. Inactivation of Peroxiredoxin 6 by the Pla Protease of Yersinia pestis.

    PubMed

    Zimbler, Daniel L; Eddy, Justin L; Schroeder, Jay A; Lathem, Wyndham W

    2016-01-01

    Pneumonic plague represents the most severe form of disease caused by Yersinia pestis due to its ease of transmission, rapid progression, and high mortality rate. The Y. pestis outer membrane Pla protease is essential for the development of pneumonic plague; however, the complete repertoire of substrates cleaved by Pla in the lungs is not known. In this study, we describe a proteomic screen to identify host proteins contained within the bronchoalveolar lavage fluid of mice that are cleaved and/or processed by Y. pestis in a Pla-dependent manner. We identified peroxiredoxin 6 (Prdx6), a host factor that contributes to pulmonary surfactant metabolism and lung defense against oxidative stress, as a previously unknown substrate of Pla. Pla cleaves Prdx6 at three distinct sites, and these cleavages disrupt both the peroxidase and phospholipase A2 activities of Prdx6. In addition, we found that infection with wild-type Y. pestis reduces the abundance of extracellular Prdx6 in the lungs compared to that after infection with Δpla Y. pestis, suggesting that Pla cleaves Prdx6 in the pulmonary compartment. However, following infection with either wild-type or Δpla Y. pestis, Prdx6-deficient mice exhibit no differences in bacterial burden, host immune response, or lung damage from wild-type mice. Thus, while Pla is able to disrupt Prdx6 function in vitro and reduce Prdx6 levels in vivo, the cleavage of Prdx6 has little detectable impact on the progression or outcome of pneumonic plague. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adoptedmore » a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.« less

  1. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.

    PubMed

    Lee, Sukyeong; Augustin, Steffen; Tatsuta, Takashi; Gerdes, Florian; Langer, Thomas; Tsai, Francis T F

    2011-02-11

    FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.

  2. Contrasting amino acid profiles among permissive and non-permissive hosts of Candidatus Liberibacter asiaticus, putative causal agent of Huanglongbing

    PubMed Central

    Alabi, Olufemi J.; Simpson, Catherine R.; Jifon, John L.

    2017-01-01

    Huanglongbing is a devastating disease of citrus. In this study, a comprehensive profile of phloem sap amino acids (AA) in four permissive host plants of Candidatus Liberibacter asiaticus (CLas) and three non-permissive Rutaceae plants was conducted to gain a better understanding of host factors that may promote or suppress the bacterium. The AA profiles of Diaphorina citri nymphs and adults were similarly analyzed. A total of 38 unique AAs were detected in phloem sap of the various plants and D. citri samples, with phloem sap of young shoots containing more AAs and at higher concentrations than their mature counterparts. All AAs detected in phloem sap of non-permissive plants were also present in CLas -permissive hosts plus additional AAs in the latter class of plants. However, the relative composition of 18 commonly shared AAs varied between CLas -permissive hosts and non-permissive plants. Multivariate analysis with a partial least square discriminant methodology revealed a total of 12 AAs as major factors affecting CLas host status, of which seven were positively related to CLas tolerance/resistance and five positively associated with CLas susceptibility. Most of the AAs positively associated with CLas susceptibility were predominantly of the glutamate family, notably stressed-induced AAs such as arginine, GABA and proline. In contrast, AAs positively correlated with CLas tolerance/resistance were mainly of the serine family. Further analysis revealed that whereas the relative proportions of AAs positively associated with CLas susceptibility did not vary with host developmental stages, those associated with CLas tolerance/resistance increased with flush shoot maturity. Significantly, the proline-to-glycine ratio was determined to be an important discriminating factor for CLas permissivity with higher values characteristic of CLas -permissive hosts. This ratio could be exploited as a biomarker in HLB-resistance breeding programs. PMID:29236706

  3. Studies on detection and analysis of proteases in leaf extract of medicinally important plants.

    PubMed

    Chinnadurai, Gandhi Shree; Krishnan, Sivakumar; Perumal, Palani

    2018-02-01

    The whole plant or the extracts obtained from them have long been used as medicine to treat various human diseases and disorders. Notably, those plants endowed with protease activity have been traditionally used as the agents for treating tumors, digestion disorders, swelling, blood coagulation, fibrinolysis and also for immune-modulation. Proteases occupy a pivotal position in enzyme based industries. Plant proteases have been increasingly exploited for pharmaceutical, food, leather and textile processing industries. Earlier investigations have focused on the occurrence of proteases in medicinally unimportant plants. Therefore it has been aimed to study the occurrence of proteolytic enzymes from medicinally important plants establish any correlation exists between protease activity and medicinal use of individual plants. Crude extract were obtained from the leaves of 80 different medicinal plants. Tris-HCl buffer was used as the extraction buffer and the supernatants obtained were used for determination of total protein and protease activity using spectrophotometric methods. Qualitative screening for the presence of protease was carried out with agar diffusion method by incorporating the substrate. SDS-PAGE was used to analyse the isoforms of protease and for determination of relative molecular mass. Relatively higher protease activities were observed in the extracts of leaves of Pongamia pinnata (Fabaceae), Wrightia tinctoria (Apocyanaceae) Acalypha indica (Euphorbiaceae), Adhatoda vasica (Acanthaceae) and Curcuma longa (Zingiberaceae). No correlation was found between the total protein content and protease activity in individual plant species. SDS-PAGE analysis indicated the presence of multiple forms of protease of higher molecular weight range in several plant species. We found a strong correlation between the protease activity and medicinal application of the plant CONCLUSION: The present study has unequivocally revealed that the leaves of medicinal plants

  4. Phenylalanine and Phenylglycine Analogues as Arginine Mimetics in Dengue Protease Inhibitors.

    PubMed

    Weigel, Lena F; Nitsche, Christoph; Graf, Dominik; Bartenschlager, Ralf; Klein, Christian D

    2015-10-08

    Dengue virus is an increasingly global pathogen. One of the promising targets for antiviral drug discovery against dengue and related flaviviruses such as West Nile virus is the viral serine protease NS2B-NS3. We here report the synthesis and in vitro characterization of potent peptidic inhibitors of dengue virus protease that incorporate phenylalanine and phenylglycine derivatives as arginine-mimicking groups with modulated basicity. The most promising compounds were (4-amidino)-L-phenylalanine-containing inhibitors, which reached nanomolar affinities against dengue virus protease. The type and position of the substituents on the phenylglycine and phenylalanine side chains has a significant effect on the inhibitory activity against dengue virus protease and selectivity against other proteases. In addition, the non-natural, basic amino acids described here may have relevance for the development of other peptidic and peptidomimetic drugs such as inhibitors of the blood clotting cascade.

  5. The weed Sorghum almum is a putative alternative host of sugarcane infecting viruses in Florida

    USDA-ARS?s Scientific Manuscript database

    Sorghum almum or Columbus grass is a common weed growing in the Everglades Agricultural Area (EAA). In recent surveys for alternative hosts of sugarcane yellow leaf virus (SCYLV), 123 out of 141 (87%) plants of S. almum tested positive for this virus by tissue blot immunoassay (TBIA) using polyclona...

  6. Viral Evolution in Response to the Broad-Based Retroviral Protease Inhibitor TL-3†

    PubMed Central

    Bühler, Bernd; Lin, Ying-Chuan; Morris, Garrett; Olson, Arthur J.; Wong, Chi-Huey; Richman, Douglas D.; Elder, John H.; Torbett, Bruce E.

    2001-01-01

    TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity. PMID:11533212

  7. Evaluation of Genotypic and Phenotypic Protease Virulence Tests for Dichelobacter nodosus Infection in Sheep

    PubMed Central

    McPherson, Andrew S.; Dhungyel, Om P.

    2017-01-01

    ABSTRACT Dichelobacter nodosus is a fastidious, strictly anaerobic bacterium, an obligate parasite of the ruminant hoof, and the essential causative agent of virulent ovine footrot. The clinical disease results from a complex interplay between the pathogen, the environment, and the host. Sheep flocks diagnosed with virulent but not benign footrot in Australia may be quarantined and required to undergo a compulsory eradication program, with costs met by the farmer. Virulence of D. nodosus at least partially depends on the elaboration of a protease encoded by aprV2 and manifests as elastase activity. Laboratory virulence tests are used to assist diagnosis because clinical differentiation of virulent and benign footrot can be challenging during the early stages of disease or when the disease is not fully expressed due to unfavorable pasture conditions. Using samples collected from foot lesions from 960 sheep from 40 flocks in four different geographic regions, we evaluated the analytical characteristics of qPCR tests for the protease gene alleles aprV2 and aprB2, and compared these with results from phenotypic protease (elastase and gelatin gel) tests. There was a low level of agreement between clinical diagnosis and quantitative PCR (qPCR) test outcomes at both the flock and sample levels and poor agreement between qPCR test outcomes and the results of phenotypic virulence tests. The diagnostic specificity of the qPCR test was low at both the flock and individual swab levels (31.3% and 18.8%, respectively). By contrast, agreement between the elastase test and clinical diagnosis was high at both the flock level (diagnostic sensitivity [DSe], 100%; diagnostic specificity [DSp], 78.6%) and the isolate level (DSe, 69.5%; DSp, 80.5%). PMID:28202796

  8. Evaluation of Genotypic and Phenotypic Protease Virulence Tests for Dichelobacter nodosus Infection in Sheep.

    PubMed

    McPherson, Andrew S; Dhungyel, Om P; Whittington, Richard J

    2017-05-01

    Dichelobacter nodosus is a fastidious, strictly anaerobic bacterium, an obligate parasite of the ruminant hoof, and the essential causative agent of virulent ovine footrot. The clinical disease results from a complex interplay between the pathogen, the environment, and the host. Sheep flocks diagnosed with virulent but not benign footrot in Australia may be quarantined and required to undergo a compulsory eradication program, with costs met by the farmer. Virulence of D. nodosus at least partially depends on the elaboration of a protease encoded by aprV2 and manifests as elastase activity. Laboratory virulence tests are used to assist diagnosis because clinical differentiation of virulent and benign footrot can be challenging during the early stages of disease or when the disease is not fully expressed due to unfavorable pasture conditions. Using samples collected from foot lesions from 960 sheep from 40 flocks in four different geographic regions, we evaluated the analytical characteristics of qPCR tests for the protease gene alleles aprV2 and aprB2 , and compared these with results from phenotypic protease (elastase and gelatin gel) tests. There was a low level of agreement between clinical diagnosis and quantitative PCR (qPCR) test outcomes at both the flock and sample levels and poor agreement between qPCR test outcomes and the results of phenotypic virulence tests. The diagnostic specificity of the qPCR test was low at both the flock and individual swab levels (31.3% and 18.8%, respectively). By contrast, agreement between the elastase test and clinical diagnosis was high at both the flock level (diagnostic sensitivity [DSe], 100%; diagnostic specificity [DSp], 78.6%) and the isolate level (DSe, 69.5%; DSp, 80.5%). Copyright © 2017 McPherson et al.

  9. Detection of Legume Protease Inhibitors by the Gel-X-ray Film Contact Print Technique

    ERIC Educational Resources Information Center

    Mulimani, Veerappa H.; Sudheendra, Kulkarni; Giri, Ashok P.

    2002-01-01

    Redgram (Cajanus cajan L.) extracts have been analyzed for the protease inhibitors using a new, sensitive, simple, and rapid method for detection of electrophoretically separated protease inhibitors. The detection involves equilibrating the gel successively in the protease assay buffer and protease solution, rinsing the gel in assay buffer, and…

  10. Purification and characterisation of a salt-stable protease from the halophilic archaeon Halogranum rubrum.

    PubMed

    Gao, Ruichang; Shi, Tong; Liu, Xiangdong; Zhao, Mengqin; Cui, Henglin; Yuan, Li

    2017-03-01

    Because proteases play an important role in the fermentation of fish sauce, the purification and characterisation of an extracellular protease from the halophilic archaeon Halogranum rubrum was investigated. The molecular mass of the protease was estimated to be approximately 47 kDa based on sodium dodecyl sulfate-polyacrylamide gel electropheresis (SDS-PAGE) and native-PAGE analysis. The optimum conditions for catalytic activity were pH 8.0 and 50°C. The protease showed alkaline stability (pH 7.0-10.0). The protease also exhibited novel catalytic ability over a broad range of salinity (NaCl 0-3 mol L -1 ). Calcium ion enhanced the proteolytic activity of the enzyme. The K m and V max values of the purified protease for casein were calculated to be 4.89 mg mL -1 and 1111.11 U mL -1 , respectively. The protease was strongly inhibited by ethylenediamine tetraacetic acid (EDTA) and phenylmethanesulfonyl fluoride (PMSF). Meanwhile, the protease was stable in the presence of Triton X-100, isopropanol, ethanol or dithio-bis-nitrobenzoic (DTNB), but was inhibited by sodium dodecyl sulfate (SDS), dimethyl sulfoxide (DMSO) or methanol. MALDI -TOF/TOF MS analysis revealed that the protease shared some functional traits with protease produced by Halogranum salarium. Furthermore, it exhibited high hydrolytic activity on silver carp myosin protein. The protease is an alkaline and salt-tolerant enzyme that hydrolyses silver carp myosin with high efficiency. These excellent characteristics make this protease an attractive candidate for industrial use in low-salt fish sauce fermentation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease.

    PubMed

    Ding, Qiang; Gaska, Jenna M; Douam, Florian; Wei, Lei; Kim, David; Balev, Metodi; Heller, Brigitte; Ploss, Alexander

    2018-06-18

    The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human-but not murine-cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse-but not human-cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain-at least in part-the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.

  12. Feces Derived Allergens of Tyrophagus putrescentiae Reared on Dried Dog Food and Evidence of the Strong Nutritional Interaction between the Mite and Bacillus cereus Producing Protease Bacillolysins and Exo-chitinases

    PubMed Central

    Erban, Tomas; Rybanska, Dagmar; Harant, Karel; Hortova, Bronislava; Hubert, Jan

    2016-01-01

    Tyrophagus putrescentiae (Schrank, 1781) is an emerging source of allergens in stored products and homes. Feces proteases are the major allergens of astigmatid mites (Acari: Acaridida). In addition, the mites are carriers of microorganisms and microbial adjuvant compounds that stimulate innate signaling pathways. We sought to analyze the mite feces proteome, proteolytic activities, and mite-bacterial interaction in dry dog food (DDF). Proteomic methods comprising enzymatic and zymographic analysis of proteases and 2D-E-MS/MS were performed. The highest protease activity was assigned to trypsin-like proteases; lower activity was assigned to chymotrypsin-like proteases, and the cysteine protease cathepsin B-like had very low activity. The 2D-E-MS/MS proteomic analysis identified mite trypsin allergen Tyr p3, fatty acid-binding protein Tyr p13 and putative mite allergens ferritin (Grp 30) and (poly)ubiquitins. Tyr p3 was detected at different positions of the 2D-E. It indicates presence of zymogen at basic pI, and mature-enzyme form and enzyme fragment at acidic pI. Bacillolysins (neutral and alkaline proteases) of Bacillus cereus symbiont can contribute to the protease activity of the mite extract. The bacterial exo-chitinases likely contribute to degradation of mite exuviae, mite bodies or food boluses consisting of chitin, including the peritrophic membrane. Thus, the chitinases disrupt the feces and facilitate release of the allergens. B. cereus was isolated and identified based on amplification and sequencing of 16S rRNA and motB genes. B. cereus was added into high-fat, high-protein (DDF) and low-fat, low-protein (flour) diets to 1 and 5% (w/w), and the diets palatability was evaluated in 21-day population growth test. The supplementation of diet with B. cereus significantly suppressed population growth and the suppressive effect was higher in the high-fat, high-protein diet than in the low-fat, low-protein food. Thus, B. cereus has to coexist with the mite in

  13. Partial characterisation of digestive proteases of the Mayan cichlid Cichlasoma urophthalmus.

    PubMed

    Cuenca-Soria, C A; Álvarez-González, C A; Ortiz-Galindo, J L; Nolasco-Soria, H; Tovar-Ramírez, D; Guerrero-Zárate, R; Castillo-Domínguez, A; Perera-García, M A; Hernández-Gómez, R; Gisbert, E

    2014-06-01

    The characterisation of digestive proteases in native freshwater fish such as the Mayan cichlid Cichlasoma urophthalmus provides scientific elements that may be used to design balanced feed that matches with the digestive capacity of the fish. The purpose of this study was to characterise the digestive proteases, including the effect of the pH and the temperature on enzyme activity and stability, as well as the effect of inhibitors using multienzymatic extracts of the stomach and intestine of C. urophthalmus juveniles. Results showed that the optimum activities of the acid and alkaline proteases occurred at pH values of 3 and 9, respectively, whereas their optimum temperatures were 55 and 65 °C, respectively. The acid proteases were most stable at pH values of 2–3 and at temperatures of 35–45 °C, whereas the alkaline proteases were most stable at pH values of 6–9 and at 25–55 °C. The inhibition assays recorded a residual activity of 4% with pepstatin A for the acid proteases. The inhibition of the alkaline proteases was greater than 80% with TPCK, TLCK, EDTA and ovalbumin, and of 60 and 43.8% with PMSF and SBT1, respectively. The results obtained in this study make it possible to state that C. urophthalmus has a sufficiently complete digestive enzyme machinery to degrade food items characteristic of an omnivorous fish species, although specimens showed a tendency to carnivory.

  14. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae.

    PubMed

    Qiu, J; Hendrixson, D R; Baker, E N; Murphy, T F; St Geme, J W; Plaut, A G

    1998-10-13

    Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.

  15. Defining a new diagnostic assessment parameter for wound care: Elevated protease activity, an indicator of nonhealing, for targeted protease-modulating treatment.

    PubMed

    Serena, Thomas E; Cullen, Breda M; Bayliff, Simon W; Gibson, Molly C; Carter, Marissa J; Chen, Lingyun; Yaakov, Raphael A; Samies, John; Sabo, Matthew; DeMarco, Daniel; Le, Namchi; Galbraith, James

    2016-05-01

    It is widely accepted that elevated protease activity (EPA) in chronic wounds impedes healing. However, little progress has occurred in quantifying the level of protease activity that is detrimental for healing. The aim of this study was to determine the relationship between inflammatory protease activity and wound healing status, and to establish the level of EPA above which human neutrophil-derived elastase (HNE) and matrix metalloproteases (MMP) activities correlate with nonhealing wounds. Chronic wound swab samples (n = 290) were collected from four wound centers across the USA to measure HNE and MMP activity. Healing status was determined according to percentage reduction in wound area over the previous 2-4 weeks; this was available for 211 wounds. Association between protease activity and nonhealing wounds was determined by receiver operating characteristic analysis (ROC), a statistical technique used for visualizing and analyzing the performance of diagnostic tests. ROC analysis showed that area under the curve (AUC) for HNE were 0.69 for all wounds and 0.78 for wounds with the most reliable wound trajectory information, respectively. For MMP, the corresponding AUC values were 0.70 and 0.82. Analysis suggested that chronic wounds having values of HNE >5 and/or MMP ≥13, should be considered wound healing impaired. EPA is indicative of nonhealing wounds. Use of a diagnostic test to detect EPA in clinical practice could enable clinicians to identify wounds that are nonhealing, thus enabling targeted treatment with protease modulating therapies. © 2016 by the Wound Healing Society.

  16. Protease-Mediated Suppression of DRG Neuron Excitability by Commensal Bacteria.

    PubMed

    Sessenwein, Jessica L; Baker, Corey C; Pradhananga, Sabindra; Maitland, Megan E; Petrof, Elaine O; Allen-Vercoe, Emma; Noordhof, Curtis; Reed, David E; Vanner, Stephen J; Lomax, Alan E

    2017-11-29

    Peripheral pain signaling reflects a balance of pronociceptive and antinociceptive influences; the contribution by the gastrointestinal microbiota to this balance has received little attention. Disorders, such as inflammatory bowel disease and irritable bowel syndrome, are associated with exaggerated visceral nociceptive actions that may involve altered microbial signaling, particularly given the evidence for bacterial dysbiosis. Thus, we tested whether a community of commensal gastrointestinal bacteria derived from a healthy human donor (microbial ecosystem therapeutics; MET-1) can affect the excitability of male mouse DRG neurons. MET-1 reduced the excitability of DRG neurons by significantly increasing rheobase, decreasing responses to capsaicin (2 μm) and reducing action potential discharge from colonic afferent nerves. The increase in rheobase was accompanied by an increase in the amplitude of voltage-gated K + currents. A mixture of bacterial protease inhibitors abrogated the effect of MET-1 effects on DRG neuron rheobase. A serine protease inhibitor but not inhibitors of cysteine proteases, acid proteases, metalloproteases, or aminopeptidases abolished the effects of MET-1. The serine protease cathepsin G recapitulated the effects of MET-1 on DRG neurons. Inhibition of protease-activated receptor-4 (PAR-4), but not PAR-2, blocked the effects of MET-1. Furthermore, Faecalibacterium prausnitzii recapitulated the effects of MET-1 on excitability of DRG neurons. We conclude that serine proteases derived from commensal bacteria can directly impact the excitability of DRG neurons, through PAR-4 activation. The ability of microbiota-neuronal interactions to modulate afferent signaling suggests that therapies that induce or correct microbial dysbiosis may impact visceral pain. SIGNIFICANCE STATEMENT Commercially available probiotics have the potential to modify visceral pain. Here we show that secretory products from gastrointestinal microbiota derived from a human

  17. The role of protease activation of inflammation in allergic respiratory diseases.

    PubMed

    Reed, Charles E; Kita, Hirohito

    2004-11-01

    Extracellular endogenous proteases, as well as exogenous proteases from mites and molds, react with cell-surface receptors in the airways to generate leukocyte infiltration and to amplify the response to allergens. Stimulation leads to increased intracellular Ca ++ and gene transcription. The most thoroughly investigated receptors, protease-activated receptors (PARs), are 7-transmembrane proteins coupled to G proteins. PARs are widely distributed on the cells of the airways, where they contribute to the inflammation characteristic of allergic diseases. PAR stimulation of epithelial cells opens tight junctions, causes desquamation, and produces cytokines, chemokines, and growth factors. They degranulate eosinophils and mast cells. Proteases contract bronchial smooth muscle and cause it to proliferate. PARs also promote maturation, proliferation, and collagen production of fibroblast precursors and mature fibroblasts. PAR-2, apparently the most important of the 4 PARs that have been characterized, is increased on the epithelium of patients with asthma. Trypsin, a product of injured epithelial cells, and mast cell tryptase are potent activators of PAR-2. Mast cell chymase activates PAR-1. Proteases from mites and molds appear to act through similar receptors. They amplify IgE production to allergens, degranulate eosinophils, and can generate inflammation, even in the absence of IgE. Proteases produced by Aspergillus species to support its growth are presumably responsible for the exuberant IgE, IgG, and granulomatous response of allergic bronchopulmonary aspergillosis. Similar proteases from molds germinating on the respiratory mucosa have been recently been implicated in the pathogenesis of chronic hyperplastic rhinitis and polyps and, by extension, of intrinsic asthma. Finally, proteases from mites and fungi growing in damp, water-damaged buildings might be the basis for the increased prevalence in these buildings of rhinitis, asthma, and other respiratory diseases

  18. Pathomimetic cancer avatars for live-cell imaging of protease activity

    PubMed Central

    Ji, Kyungmin; Heyza, Joshua; Cavallo-Medved, Dora; Sloane, Bonnie F.

    2016-01-01

    Proteases are essential for normal physiology as well as multiple diseases, e.g., playing a causative role in cancer progression, including in tumor angiogenesis, invasion, and metastasis. Identification of dynamic alterations in protease activity may allow us to detect early stage cancers and to assess the efficacy of anti-cancer therapies. Despite the clinical importance of proteases in cancer progression, their functional roles individually and within the context of complex protease networks have not yet been well defined. These gaps in our understanding might be addressed with: 1) accurate and sensitive tools and methods to directly identify changes in protease activities in live cells, and 2) pathomimetic avatars for cancer that recapitulate in vitro the tumor in the context of its cellular and non-cellular microenvironment. Such avatars should be designed to facilitate mechanistic studies that can be translated to animal models and ultimately the clinic. Here, we will describe basic principles and recent applications of live-cell imaging for identification of active proteases. The avatars optimized by our laboratory are three-dimensional (3D) human breast cancer models in a matrix of reconstituted basement membrane (rBM). They are designated mammary architecture and microenvironment engineering (MAME) models as they have been designed to mimic the structural and functional interactions among cell types in the normal and cancerous human breast. We have demonstrated the usefulness of these pathomimetic avatars for following dynamic and temporal changes in cell:cell interactions and quantifying changes in protease activity associated with these interactions in real-time (4D). We also briefly describe adaptation of the avatars to custom-designed and fabricated tissue architecture and microenvironment engineering (TAME) chambers that enhance our ability to analyze concomitant changes in the malignant phenotype and the associated tumor microenvironment. PMID

  19. Pathomimetic cancer avatars for live-cell imaging of protease activity.

    PubMed

    Ji, Kyungmin; Heyza, Joshua; Cavallo-Medved, Dora; Sloane, Bonnie F

    2016-03-01

    Proteases are essential for normal physiology as well as multiple diseases, e.g., playing a causative role in cancer progression, including in tumor angiogenesis, invasion, and metastasis. Identification of dynamic alterations in protease activity may allow us to detect early stage cancers and to assess the efficacy of anti-cancer therapies. Despite the clinical importance of proteases in cancer progression, their functional roles individually and within the context of complex protease networks have not yet been well defined. These gaps in our understanding might be addressed with: 1) accurate and sensitive tools and methods to directly identify changes in protease activities in live cells, and 2) pathomimetic avatars for cancer that recapitulate in vitro the tumor in the context of its cellular and non-cellular microenvironment. Such avatars should be designed to facilitate mechanistic studies that can be translated to animal models and ultimately the clinic. Here, we will describe basic principles and recent applications of live-cell imaging for identification of active proteases. The avatars optimized by our laboratory are three-dimensional (3D) human breast cancer models in a matrix of reconstituted basement membrane (rBM). They are designated mammary architecture and microenvironment engineering (MAME) models as they have been designed to mimic the structural and functional interactions among cell types in the normal and cancerous human breast. We have demonstrated the usefulness of these pathomimetic avatars for following dynamic and temporal changes in cell:cell interactions and quantifying changes in protease activity associated with these interactions in real-time (4D). We also briefly describe adaptation of the avatars to custom-designed and fabricated tissue architecture and microenvironment engineering (TAME) chambers that enhance our ability to analyze concomitant changes in the malignant phenotype and the associated tumor microenvironment. Copyright

  20. Uncoupling of Protease trans-Cleavage and Helicase Activities in Pestivirus NS3

    PubMed Central

    Zheng, Fengwei; Lu, Guoliang; Li, Ling

    2017-01-01

    ABSTRACT The nonstructural protein NS3 from the Flaviviridae family is a multifunctional protein that contains an N-terminal protease and a C-terminal helicase, playing essential roles in viral polyprotein processing and genome replication. Here we report a full-length crystal structure of the classical swine fever virus (CSFV) NS3 in complex with its NS4A protease cofactor segment (PCS) at a 2.35-Å resolution. The structure reveals a previously unidentified ∼2,200-Å2 intramolecular protease-helicase interface comprising three clusters of interactions, representing a “closed” global conformation related to the NS3-NS4A cis-cleavage event. Although this conformation is incompatible with protease trans-cleavage, it appears to be functionally important and beneficial to the helicase activity, as the mutations designed to perturb this conformation impaired both the helicase activities in vitro and virus production in vivo. Our work reveals important features of protease-helicase coordination in pestivirus NS3 and provides a key basis for how different conformational states may explicitly contribute to certain functions of this natural protease-helicase fusion protein. IMPORTANCE Many RNA viruses encode helicases to aid their RNA genome replication and transcription by unwinding structured RNA. Being naturally fused to a protease participating in viral polyprotein processing, the NS3 helicases encoded by the Flaviviridae family viruses are unique. Therefore, how these two enzyme modules coordinate in a single polypeptide is of particular interest. Here we report a previously unidentified conformation of pestivirus NS3 in complex with its NS4A protease cofactor segment (PCS). This conformational state is related to the protease cis-cleavage event and is optimal for the function of helicase. This work provides an important basis to understand how different enzymatic activities of NS3 may be achieved by the coordination between the protease and helicase through

  1. Protease inhibitors from several classes work synergistically against Callosobruchus maculatus.

    PubMed

    Amirhusin, Bahagiawati; Shade, Richard E; Koiwa, Hisashi; Hasegawa, Paul M; Bressan, Ray A; Murdock, Larry L; Zhu-Salzman, Keyan

    2007-07-01

    Targeting multiple digestive proteases may be more effective in insect pest control than inhibition of a single enzyme class. We therefore explored possible interactions of three antimetabolic protease inhibitors fed to cowpea bruchids in artificial diets, using a recombinant soybean cysteine protease inhibitor scN, an aspartic protease inhibitor pepstatin A, and soybean Kunitz trypsin inhibitor KI. scN and pepstatin, inhibiting major digestive cysteine and aspartic proteases, respectively, significantly prolonged the developmental time of cowpea bruchids individually. When combined, the anti-insect effect was synergistic, i.e., the toxicity of the mixture was markedly greater than that of scN or pepstatin alone. KI alone did not impact insect development even at relatively high concentrations, but its anti-insect properties became apparent when acting jointly with scN or scN plus pepstatin. Incubating KI with bruchid midgut extract showed that it was partially degraded. This instability may explain its lack of anti-insect activity. However, this proteolytic degradation was inhibited by scN and/or pepstatin. Protection of KI from proteolysis in the insect digestive tract thus could be the basis for the synergistic effect. These observations support the concept that cowpea bruchid gut proteases play a dual role; digesting protein for nutrient needs and protecting insects by inactivating dietary proteins that may otherwise be toxic. Our results also suggest that transgenic resistance strategies that involve multigene products are likely to have enhanced efficacy and durability.

  2. Proteases induce secretion of collagenase and plasminogen activator by fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werb, Z.; Aggeler, J.

    1978-04-01

    We have observed that treatment of rabbit synovial fibroblasts with proteolytic enzymes can induce secretion of collagenase (EC 3.4.24.7) and plasminogen activator (EC 3.4.21.-). Cells treated for 2 to 24 hr with plasmin, trypsin, chymotrypsin, pancreatic elastase, papain, bromelain, thermolysin, or ..cap alpha..-protease but not with thrombin or neuraminidase secreted detectable amounts of collagenase within 16 to 48 hr. Treatment of fibroblasts with trypsin also induced secretion of plasminogen activator. Proteases initiated secretion of collagenase (up to 20 units per 10/sup 6/ cells per 24 hr) only when treatment produced decreased cell adhesion. Collagenase production did not depend on continuedmore » presence of proteolytic activity or on subsequent cell adhesion, spreading, or proliferation. Routine subculturing with crude trypsin also induced collagenase secretion by cells. Secretion of collagenase was prevented and normal spreading was obtained if the trypsinized cells were placed into medium containing fetal calf serum. Soybean trypsin inhibitor, ..cap alpha../sub 1/-antitrypsin, bovine serum albumin, collagen, and fibronectin did not inhibit collagenase production. Although proteases that induced collagenase secretion also removed surface glycoprotein, the kinetics of induction of cell protease secretion were different from those for removal of fibronectin. Physiological inducers of secretion of collagenase and plasminogen activator by cells have not been identified. These results suggest that extracellular proteases in conjunction with plasma proteins may govern protease secretion by cells.« less

  3. Biochemical characterization of a halophilic, alkalithermophilic protease from Alkalibacillus sp. NM-Da2.

    PubMed

    Abdel-Hamed, Asmaa R; Abo-Elmatty, Dina M; Wiegel, Juergen; Mesbah, Noha M

    2016-11-01

    An extracellular, halophilic, alkalithermophilic serine protease from the halo-alkaliphilic Alkalibacillus sp. NM-Da2 was purified to homogeneity by ethanol precipitation and anion-exchange chromatography. The purified protease was a monomeric enzyme with an approximate molecular mass of 35 kDa and exhibited maximal activity at 2.7 M NaCl, pH 55 °C 9 and 56 °C. The protease showed great temperature stability, retaining greater than 80 % of initial activity after 2 h incubation at 55 °C. The protease was also extremely pH tolerant, retaining 80 % of initial activity at pH 55 °C 10.5 after 30 min incubation. Protease hydrolyzed complex substrates, displaying activity on yeast extract, tryptone, casein, gelatin and peptone. Protease activity was inhibited at casein concentrations greater than 1.2 mg/mL. The enzyme was stable and active in 40 % (v/v) solutions of isopropanol, ethanol and benzene and was stable in the presence of the polysorbate surfactant Tween 80. Activity was stimulated with the oxidizing agent hydrogen peroxide. Inhibition with phenyl methylsulfonylfluoride indicates it is a serine protease. Synthetic saline wastewater treated with the protease showed 50 % protein removal after 5 h. Being halophilic, alkaliphilic and thermophilic, in addition to being resistant to organic solvents, this protease has potential for various applications in biotechnological and pharmaceutical industries.

  4. Nematode sperm maturation triggered by protease involves sperm-secreted serine protease inhibitor (Serpin)

    PubMed Central

    Zhao, Yanmei; Sun, Wei; Zhang, Pan; Chi, Hao; Zhang, Mei-Jun; Song, Chun-Qing; Ma, Xuan; Shang, Yunlong; Wang, Bin; Hu, Youqiao; Hao, Zhiqi; Hühmer, Andreas F.; Meng, Fanxia; L'Hernault, Steven W.; He, Si-Min; Dong, Meng-Qiu; Miao, Long

    2012-01-01

    Spermiogenesis is a series of poorly understood morphological, physiological and biochemical processes that occur during the transition of immotile spermatids into motile, fertilization-competent spermatozoa. Here, we identified a Serpin (serine protease inhibitor) family protein (As_SRP-1) that is secreted from spermatids during nematode Ascaris suum spermiogenesis (also called sperm activation) and we showed that As_SRP-1 has two major functions. First, As_SRP-1 functions in cis to support major sperm protein (MSP)-based cytoskeletal assembly in the spermatid that releases it, thereby facilitating sperm motility acquisition. Second, As_SRP-1 released from an activated sperm inhibits, in trans, the activation of surrounding spermatids by inhibiting vas deferens-derived As_TRY-5, a trypsin-like serine protease necessary for sperm activation. Because vesicular exocytosis is necessary to create fertilization-competent sperm in many animal species, components released during this process might be more important modulators of the physiology and behavior of surrounding sperm than was previously appreciated. PMID:22307610

  5. Designing cellulosic and nanocellulosic sensors for interface with a protease sequestrant wound-dressing prototype: Implications of material selection for dressing and protease sensor design.

    PubMed

    Fontenot, Krystal R; Edwards, J Vincent; Haldane, David; Pircher, Nicole; Liebner, Falk; Condon, Brian D; Qureshi, Huzaifah; Yager, Dorne

    2017-11-01

    Interfacing nanocellulosic-based biosensors with chronic wound dressings for protease point of care diagnostics combines functional material properties of high specific surface area, appropriate surface charge, and hydrophilicity with biocompatibility to the wound environment. Combining a protease sensor with a dressing is consistent with the concept of an intelligent dressing, which has been a goal of wound-dressing design for more than a quarter century. We present here biosensors with a nanocellulosic transducer surface (nanocrystals, nanocellulose composites, and nanocellulosic aerogels) immobilized with a fluorescent elastase tripeptide or tetrapeptide biomolecule, which has selectivity and affinity for human neutrophil elastase present in chronic wound fluid. The specific surface area of the materials correlates with a greater loading of the elastase peptide substrate. Nitrogen adsorption and mercury intrusion studies revealed gas permeable systems with different porosities (28-98%) and pore sizes (2-50 nm, 210 µm) respectively, which influence water vapor transmission rates. A correlation between zeta potential values and the degree of protease sequestration imply that the greater the negative surface charge of the nanomaterials, the greater the sequestration of positively charged neutrophil proteases. The biosensors gave detection sensitivities of 0.015-0.13 units/ml, which are at detectable human neutrophil elastase levels present in chronic wound fluid. Thus, the physical and interactive biochemical properties of the nano-based biosensors are suitable for interfacing with protease sequestrant prototype wound dressings. A discussion of the relevance of protease sensors and cellulose nanomaterials to current chronic wound dressing design and technology is included.

  6. A New Subtilase-Like Protease Deriving from Fusarium equiseti with High Potential for Industrial Applications.

    PubMed

    Juntunen, Kari; Mäkinen, Susanna; Isoniemi, Sari; Valtakari, Leena; Pelzer, Alexander; Jänis, Janne; Paloheimo, Marja

    2015-09-01

    A gene encoding a novel extracellular subtilisin-like protease was cloned from the ascomycete Fusarium equiseti and expressed in Trichoderma reesei. The F. equiseti protease (Fe protease) showed excellent performance in stain removal and good compatibility with several commercial laundry detergent formulations, suggesting that it has high potential for use in various industrial applications. The recombinant enzyme was purified and characterized. The temperature optimum of the Fe protease was 60 °C and it showed high activity in the pH range of 6-10, with a sharp decline in activity at pH above 10. The amino acid specificity of the Fe protease was studied using casein, cytochrome c, and ubiquitin as substrates. The Fe protease had broad substrate specificity: almost all amino acid residues were accepted at position P1, even though it showed some preference for cleavage at the C-terminal side of asparagine and histidine residues. The S4 subsite of Fe protease favors aspartic acid and threonine. The other well-characterized proteases from filamentous fungi, Proteinase K from Engyodontium album, Thermomycolin from Malbranchea sulfurea, and alkaline subtilisins from Bacillus species prefer hydrophobic amino acids in both the S1 and S4 subsites. Due to its different specificity compared to the members of the S8 family of clan SB of proteases, we consider that the Fe protease is a new protease. It does not belong to any previously defined IUBMB groups of proteases.

  7. Cysteine Protease-Binding Protein Family 6 Mediates the Trafficking of Amylases to Phagosomes in the Enteric Protozoan Entamoeba histolytica

    PubMed Central

    Furukawa, Atsushi; Nakada-Tsukui, Kumiko

    2013-01-01

    Phagocytosis plays a pivotal role in nutrient acquisition and evasion from the host defense systems in Entamoeba histolytica, the intestinal protozoan parasite that causes amoebiasis. We previously reported that E. histolytica possesses a unique class of a hydrolase receptor family, designated the cysteine protease-binding protein family (CPBF), that is involved in trafficking of hydrolases to lysosomes and phagosomes, and we have also reported that CPBF1 and CPBF8 bind to cysteine proteases or β-hexosaminidase α-subunit and lysozymes, respectively. In this study, we showed by immunoprecipitation that CPBF6, one of the most highly expressed CPBF proteins, specifically binds to α-amylase and γ-amylase. We also found that CPBF6 is localized in lysosomes, based on immunofluorescence imaging. Immunoblot and proteome analyses of the isolated phagosomes showed that CPBF6 mediates transport of amylases to phagosomes. We also demonstrated that the carboxyl-terminal cytosolic region of CPBF6 is engaged in the regulation of the trafficking of CPBF6 to phagosomes. Our proteome analysis of phagosomes also revealed new potential phagosomal proteins. PMID:23509141

  8. The Inflammasome Drives GSDMD-Independent Secondary Pyroptosis and IL-1 Release in the Absence of Caspase-1 Protease Activity.

    PubMed

    Schneider, Katharina S; Groß, Christina J; Dreier, Roland F; Saller, Benedikt S; Mishra, Ritu; Gorka, Oliver; Heilig, Rosalie; Meunier, Etienne; Dick, Mathias S; Ćiković, Tamara; Sodenkamp, Jan; Médard, Guillaume; Naumann, Ronald; Ruland, Jürgen; Kuster, Bernhard; Broz, Petr; Groß, Olaf

    2017-12-26

    Inflammasomes activate the protease caspase-1, which cleaves interleukin-1β and interleukin-18 to generate the mature cytokines and controls their secretion and a form of inflammatory cell death called pyroptosis. By generating mice expressing enzymatically inactive caspase-1 C284A , we provide genetic evidence that caspase-1 protease activity is required for canonical IL-1 secretion, pyroptosis, and inflammasome-mediated immunity. In caspase-1-deficient cells, caspase-8 can be activated at the inflammasome. Using mice either lacking the pyroptosis effector gasdermin D (GSDMD) or expressing caspase-1 C284A , we found that GSDMD-dependent pyroptosis prevented caspase-8 activation at the inflammasome. In the absence of GSDMD-dependent pyroptosis, the inflammasome engaged a delayed, alternative form of lytic cell death that was accompanied by the release of large amounts of mature IL-1 and contributed to host protection. Features of this cell death modality distinguished it from apoptosis, suggesting it may represent a distinct form of pro-inflammatory regulated necrosis. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Inhibition of Prevotella and Capnocytophaga immunoglobulin A1 proteases by human serum.

    PubMed

    Frandsen, E V; Kjeldsen, M; Kilian, M

    1997-07-01

    Oral Prevotella and Capnocytophaga species, regularly isolated from periodontal pockets and associated with extraoral infections, secret specific immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region into intact Fab and Fc fragments. To investigate whether these enzymes are subject to inhibition in vivo in humans, we tested 34 sera from periodontally diseased and healthy individuals in an enzyme-linked immunosorbent assay for the presence and titers of inhibition of seven Prevotella and Capnocytophaga proteases. All or nearly all of the sera inhibited the IgA1 protease activity of Prevotella buccae, Prevotella oris, and Prevotella loescheii. A minor proportion of the sera inhibited Prevotella buccalis, Prevotella denticola, and Prevotella melaninogenica IgA1 proteases, while no sera inhibited Capnocytophaga ochracea IgA1 protease. All inhibition titers were low, ranging from 5 to 55, with titer being defined as the reciprocal of the dilution of serum causing 50% inhibition of one defined unit of protease activity. No correlation between periodontal disease status and the presence, absence, or titer of inhibition was observed. The nature of the low titers of inhibition in all sera of the IgA1 proteases of P. buccae, P. oris, and P. loescheii was further examined. In size exclusion chromatography, inhibitory activity corresponded to the peak volume of IgA. Additional inhibition of the P. oris IgA1 protease was found in fractions containing both IgA and IgG. Purification of the IgG fractions of five sera by passage of the sera on a protein G column resulted in recovery of inhibitory IgG antibodies against all three IgA1 proteases, with the highest titer being for the P. oris enzyme. These finding indicate that inhibitory activity is associated with enzyme-neutralizing antibodies.

  10. Inhibition of Prevotella and Capnocytophaga immunoglobulin A1 proteases by human serum.

    PubMed Central

    Frandsen, E V; Kjeldsen, M; Kilian, M

    1997-01-01

    Oral Prevotella and Capnocytophaga species, regularly isolated from periodontal pockets and associated with extraoral infections, secret specific immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region into intact Fab and Fc fragments. To investigate whether these enzymes are subject to inhibition in vivo in humans, we tested 34 sera from periodontally diseased and healthy individuals in an enzyme-linked immunosorbent assay for the presence and titers of inhibition of seven Prevotella and Capnocytophaga proteases. All or nearly all of the sera inhibited the IgA1 protease activity of Prevotella buccae, Prevotella oris, and Prevotella loescheii. A minor proportion of the sera inhibited Prevotella buccalis, Prevotella denticola, and Prevotella melaninogenica IgA1 proteases, while no sera inhibited Capnocytophaga ochracea IgA1 protease. All inhibition titers were low, ranging from 5 to 55, with titer being defined as the reciprocal of the dilution of serum causing 50% inhibition of one defined unit of protease activity. No correlation between periodontal disease status and the presence, absence, or titer of inhibition was observed. The nature of the low titers of inhibition in all sera of the IgA1 proteases of P. buccae, P. oris, and P. loescheii was further examined. In size exclusion chromatography, inhibitory activity corresponded to the peak volume of IgA. Additional inhibition of the P. oris IgA1 protease was found in fractions containing both IgA and IgG. Purification of the IgG fractions of five sera by passage of the sera on a protein G column resulted in recovery of inhibitory IgG antibodies against all three IgA1 proteases, with the highest titer being for the P. oris enzyme. These finding indicate that inhibitory activity is associated with enzyme-neutralizing antibodies. PMID:9220164

  11. Molecular characterization of 45 kDa aspartic protease of Trichinella spiralis.

    PubMed

    Park, Jong Nam; Park, Sang Kyun; Cho, Min Kyoung; Park, Mi-Kyung; Kang, Shin Ae; Kim, Dong-Hee; Yu, Hak Sun

    2012-12-21

    In a previous study, we identified an aspartic protease gene (Ts-Asp) from the Trichinella spiralis muscle stage larva cDNA library. The gene sequence of Ts-Asp was 1281 bp long and was found to encode a protein consisting of 405 amino acids, with a molecular mass of 45.248 kD and a pI of 5.95. The deduced Ts-Asp has a conserved catalytic motif with catalytic aspartic acid residues in the active site, a common characteristic of aspartic proteases. In addition, the deduced amino acid sequence of Ts-Asp was found to possess significant homology (above 50%) with aspartic proteases from nematode parasites. Results of phylogenetic analysis indicated a close relationship of Ts-Asp with cathepsin D aspartic proteases. For production of recombinant Ts-Asp (rTs-Asp), the pGEX4T expression system was used. Like other proteases, the purified rTs-Asp was able to digest collagen matrix in vitro. Abundant expression of Ts-Asp was observed in muscle stage larva. Ts-Asp was detected in ES proteins, and was able to elicit the production of specific antibodies. It is the first report of molecular characterization of aspartic protease isolated from T. spiralis. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The Degradome database: expanding roles of mammalian proteases in life and disease

    PubMed Central

    Pérez-Silva, José G.; Español, Yaiza; Velasco, Gloria; Quesada, Víctor

    2016-01-01

    Since the definition of the degradome as the complete repertoire of proteases in a given organism, the combined effort of numerous laboratories has greatly expanded our knowledge of its roles in biology and pathology. Once the genomic sequences of several important model organisms were made available, we presented the Degradome database containing the curated sets of known protease genes in human, chimpanzee, mouse and rat. Here, we describe the updated Degradome database, featuring 81 new protease genes and 7 new protease families. Notably, in this short time span, the number of known hereditary diseases caused by mutations in protease genes has increased from 77 to 119. This increase reflects the growing interest on the roles of the degradome in multiple diseases, including cancer and ageing. Finally, we have leveraged the widespread adoption of new webtools to provide interactive graphic views that show information about proteases in the global context of the degradome. The Degradome database can be accessed through its web interface at http://degradome.uniovi.es. PMID:26553809

  13. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria.

    PubMed

    König, Tim; Tröder, Simon E; Bakka, Kavya; Korwitz, Anne; Richter-Dennerlein, Ricarda; Lampe, Philipp A; Patron, Maria; Mühlmeister, Mareike; Guerrero-Castillo, Sergio; Brandt, Ulrich; Decker, Thorsten; Lauria, Ines; Paggio, Angela; Rizzuto, Rosario; Rugarli, Elena I; De Stefani, Diego; Langer, Thomas

    2016-10-06

    Mutations in subunits of mitochondrial m-AAA proteases in the inner membrane cause neurodegeneration in spinocerebellar ataxia (SCA28) and hereditary spastic paraplegia (HSP7). m-AAA proteases preserve mitochondrial proteostasis, mitochondrial morphology, and efficient OXPHOS activity, but the cause for neuronal loss in disease is unknown. We have determined the neuronal interactome of m-AAA proteases in mice and identified a complex with C2ORF47 (termed MAIP1), which counteracts cell death by regulating the assembly of the mitochondrial Ca 2+ uniporter MCU. While MAIP1 assists biogenesis of the MCU subunit EMRE, the m-AAA protease degrades non-assembled EMRE and ensures efficient assembly of gatekeeper subunits with MCU. Loss of the m-AAA protease results in accumulation of constitutively active MCU-EMRE channels lacking gatekeeper subunits in neuronal mitochondria and facilitates mitochondrial Ca 2+ overload, mitochondrial permeability transition pore opening, and neuronal death. Together, our results explain neuronal loss in m-AAA protease deficiency by deregulated mitochondrial Ca 2+ homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases.

    PubMed

    Ceuleers, Hannah; Van Spaendonk, Hanne; Hanning, Nikita; Heirbaut, Jelena; Lambeir, Anne-Marie; Joossens, Jurgen; Augustyns, Koen; De Man, Joris G; De Meester, Ingrid; De Winter, Benedicte Y

    2016-12-21

    Proteases, enzymes catalyzing the hydrolysis of peptide bonds, are present at high concentrations in the gastrointestinal tract. Besides their well-known role in the digestive process, they also function as signaling molecules through the activation of protease-activated receptors (PARs). Based on their chemical mechanism for catalysis, proteases can be classified into several classes: serine, cysteine, aspartic, metallo- and threonine proteases represent the mammalian protease families. In particular, the class of serine proteases will play a significant role in this review. In the last decades, proteases have been suggested to play a key role in the pathogenesis of visceral hypersensitivity, which is a major factor contributing to abdominal pain in patients with inflammatory bowel diseases and/or irritable bowel syndrome. So far, only a few preclinical animal studies have investigated the effect of protease inhibitors specifically on visceral sensitivity while their effect on inflammation is described in more detail. In our accompanying review we describe their effect on gastrointestinal permeability. On account of their promising results in the field of visceral hypersensitivity, further research is warranted. The aim of this review is to give an overview on the concept of visceral hypersensitivity as well as on the physiological and pathophysiological functions of proteases herein.

  15. Visceral hypersensitivity in inflammatory bowel diseases and irritable bowel syndrome: The role of proteases

    PubMed Central

    Ceuleers, Hannah; Van Spaendonk, Hanne; Hanning, Nikita; Heirbaut, Jelena; Lambeir, Anne-Marie; Joossens, Jurgen; Augustyns, Koen; De Man, Joris G; De Meester, Ingrid; De Winter, Benedicte Y

    2016-01-01

    Proteases, enzymes catalyzing the hydrolysis of peptide bonds, are present at high concentrations in the gastrointestinal tract. Besides their well-known role in the digestive process, they also function as signaling molecules through the activation of protease-activated receptors (PARs). Based on their chemical mechanism for catalysis, proteases can be classified into several classes: serine, cysteine, aspartic, metallo- and threonine proteases represent the mammalian protease families. In particular, the class of serine proteases will play a significant role in this review. In the last decades, proteases have been suggested to play a key role in the pathogenesis of visceral hypersensitivity, which is a major factor contributing to abdominal pain in patients with inflammatory bowel diseases and/or irritable bowel syndrome. So far, only a few preclinical animal studies have investigated the effect of protease inhibitors specifically on visceral sensitivity while their effect on inflammation is described in more detail. In our accompanying review we describe their effect on gastrointestinal permeability. On account of their promising results in the field of visceral hypersensitivity, further research is warranted. The aim of this review is to give an overview on the concept of visceral hypersensitivity as well as on the physiological and pathophysiological functions of proteases herein. PMID:28058009

  16. Cellular and molecular aspects of rhabdovirus interactions with insect and plant hosts.

    PubMed

    Ammar, El-Desouky; Tsai, Chi-Wei; Whitfield, Anna E; Redinbaugh, Margaret G; Hogenhout, Saskia A

    2009-01-01

    The rhabdoviruses form a large family (Rhabdoviridae) whose host ranges include humans, other vertebrates, invertebrates, and plants. There are at least 90 plant-infecting rhabdoviruses, several of which are economically important pathogens of various crops. All definitive plant-infecting and many vertebrate-infecting rhabdoviruses are persistently transmitted by insect vectors, and a few putative plant rhabdoviruses are transmitted by mites. Plant rhabdoviruses replicate in their plant and arthropod hosts, and transmission by vectors is highly specific, with each virus species transmitted by one or a few related insect species, mainly aphids, leafhoppers, or planthoppers. Here, we provide an overview of plant rhabdovirus interactions with their insect hosts and of how these interactions compare with those of vertebrate-infecting viruses and with the Sigma rhabdovirus that infects Drosophila flies. We focus on cellular and molecular aspects of vector/host specificity, transmission barriers, and virus receptors in the vectors. In addition, we briefly discuss recent advances in understanding rhabdovirus-plant interactions.

  17. Structure-guided fragment-based in silico drug design of dengue protease inhibitors

    NASA Astrophysics Data System (ADS)

    Knehans, Tim; Schüller, Andreas; Doan, Danny N.; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M. S.; Weil, Tanja; Vasudevan, Subhash G.

    2011-03-01

    An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC50 = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC50 = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.

  18. Proteases for Processing Proneuropeptides into Peptide Neurotransmitters and Hormones

    PubMed Central

    Hook, Vivian; Funkelstein, Lydiane; Lu, Douglas; Bark, Steven; Wegrzyn, Jill; Hwang, Shin-Rong

    2009-01-01

    Peptide neurotransmitters and peptide hormones, collectively known as neuropeptides, are required for cell-cell communication in neurotransmission and for regulation of endocrine functions. Neuropeptides are synthesized from protein precursors (termed proneuropeptides or prohormones) that require proteolytic processing primarily within secretory vesicles that store and secrete the mature neuropeptides to control target cellular and organ systems. This review describes interdisciplinary strategies that have elucidated two primary protease pathways for prohormone processing consisting of the cysteine protease pathway mediated by secretory vesicle cathepsin L and the well-known subtilisin-like proprotein convertase pathway that together support neuropeptide biosynthesis. Importantly, this review discusses important areas of current and future biomedical neuropeptide research with respect to biological regulation, inhibitors, structural features of proneuropeptide and protease interactions, and peptidomics combined with proteomics for systems biological approaches. Future studies that gain in-depth understanding of protease mechanisms for generating active neuropeptides will be instrumental for translational research to develop pharmacological strategies for regulation of neuropeptide functions. Pharmacological applications for neuropeptide research may provide valuable therapeutics in health and disease. PMID:18184105

  19. Interdependence of Inhibitor Recognition in HIV-1 Protease.

    PubMed

    Paulsen, Janet L; Leidner, Florian; Ragland, Debra A; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-09

    Molecular recognition is a highly interdependent process. Subsite couplings within the active site of proteases are most often revealed through conditional amino acid preferences in substrate recognition. However, the potential effect of these couplings on inhibition and thus inhibitor design is largely unexplored. The present study examines the interdependency of subsites in HIV-1 protease using a focused library of protease inhibitors, to aid in future inhibitor design. Previously a series of darunavir (DRV) analogs was designed to systematically probe the S1' and S2' subsites. Co-crystal structures of these analogs with HIV-1 protease provide the ideal opportunity to probe subsite interdependency. All-atom molecular dynamics simulations starting from these structures were performed and systematically analyzed in terms of atomic fluctuations, intermolecular interactions, and water structure. These analyses reveal that the S1' subsite highly influences other subsites: the extension of the hydrophobic P1' moiety results in 1) reduced van der Waals contacts in the P2' subsite, 2) more variability in the hydrogen bond frequencies with catalytic residues and the flap water, and 3) changes in the occupancy of conserved water sites both proximal and distal to the active site. In addition, one of the monomers in this homodimeric enzyme has atomic fluctuations more highly correlated with DRV than the other monomer. These relationships intricately link the HIV-1 protease subsites and are critical to understanding molecular recognition and inhibitor binding. More broadly, the interdependency of subsite recognition within an active site requires consideration in the selection of chemical moieties in drug design; this strategy is in contrast to what is traditionally done with independent optimization of chemical moieties of an inhibitor.

  20. Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence.

    PubMed

    De Baets, Kenneth; Dentzien-Dias, Paula; Upeniece, Ieva; Verneau, Olivier; Donoghue, Philip C J

    2015-01-01

    Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Protease inhibitor from Moringa oleifera with potential for use as therapeutic drug and as seafood preservative

    PubMed Central

    Bijina, B.; Chellappan, Sreeja; Krishna, Jissa G.; Basheer, Soorej M.; Elyas, K.K.; Bahkali, Ali H.; Chandrasekaran, M.

    2011-01-01

    Protease inhibitors are well known to have several applications in medicine and biotechnology. Several plant sources are known to return potential protease inhibitors. In this study plants belonging to different families of Leguminosae, Malvaceae, Rutaceae, Graminae and Moringaceae were screened for the protease inhibitor. Among them Moringa oleifera, belonging to the family Moringaceae, recorded high level of protease inhibitor activity after ammonium sulfate fractionation. M. oleifera, which grows throughout most of the tropics and having several industrial and medicinal uses, was selected as a source of protease inhibitor since so far no reports were made on isolation of the protease inhibitor. Among the different parts of M. oleifera tested, the crude extract isolated from the mature leaves and seeds showed the highest level of inhibition against trypsin. Among the various extraction media evaluated, the crude extract prepared in phosphate buffer showed maximum recovery of the protease inhibitor. The protease inhibitor recorded high inhibitory activity toward the serine proteases thrombin, elastase, chymotrypsin and the cysteine proteases cathepsin B and papain which have more importance in pharmaceutical industry. The protease inhibitor also showed complete inhibition of activities of the commercially available proteases of Bacillus licheniformis and Aspergillus oryzae. However, inhibitory activities toward subtilisin, esperase, pronase E and proteinase K were negligible. Further, it was found that the protease inhibitor could prevent proteolysis in a commercially valuable shrimp Penaeus monodon during storage indicating the scope for its application as a seafood preservative. This is the first report on isolation of a protease inhibitor from M. oleifera. PMID:23961135

  2. Approaches for Analyzing the Roles of Mast Cells and Their Proteases In Vivo

    PubMed Central

    Galli, Stephen J.; Tsai, Mindy; Marichal, Thomas; Tchougounova, Elena; Reber, Laurent L.; Pejler, Gunnar

    2016-01-01

    The roles of mast cells in health and disease remain incompletely understood. While the evidence that mast cells are critical effector cells in IgE-dependent anaphylaxis and other acute IgE-mediated allergic reactions seems unassailable, studies employing various mice deficient in mast cells or mast cell-associated proteases have yielded divergent conclusions about the roles of mast cells or their proteases in certain other immunological responses. Such “controversial” results call into question the relative utility of various older versus newer approaches to ascertain the roles of mast cells and mast cell proteases in vivo. This review discusses how both older and more recent mouse models have been used to investigate the functions of mast cells and their proteases in health and disease. We particularly focus on settings in which divergent conclusions about the importance of mast cells and their proteases have been supported by studies that employed different models of mast cell or mast cell protease deficiency. We think that two major conclusions can be drawn from such findings: (1) no matter which models of mast cell or mast cell protease deficiency one employs, the conclusions drawn from the experiments always should take into account the potential limitations of the models (particularly abnormalities affecting cell types other than mast cells) and (2) even when analyzing a biological response using a single model of mast cell or mast cell protease deficiency, details of experimental design are critical in efforts to define those conditions under which important contributions of mast cells or their proteases can be identified. PMID:25727288

  3. Variable context Markov chains for HIV protease cleavage site prediction.

    PubMed

    Oğul, Hasan

    2009-06-01

    Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.

  4. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways.

    PubMed

    Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K

    2015-01-01

    Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well.

  5. Restricting detergent protease action to surface of protein fibres by chemical modification.

    PubMed

    Schroeder, M; Lenting, H B M; Kandelbauer, A; Silva, C J S M; Cavaco-Paulo, A; Gübitz, G M

    2006-10-01

    Due to their excellent properties, such as thermostability, activity over a broad range of pH and efficient stain removal, proteases from Bacillus sp. are commonly used in the textile industry including industrial processes and laundry and represent one of the most important groups of enzymes. However, due to the action of proteases, severe damage on natural protein fibres such as silk and wool result after washing with detergents containing proteases. To include the benefits of proteases in a wool fibre friendly detergent formulation, the soluble polymer polyethylene glycol (PEG) was covalently attached to a protease from Bacillus licheniformis. In contrast to activation of PEG with cyanuric chloride (50%) activation with 1,1'-carbonyldiimidazole (CDI) lead to activity recovery above 90%. With these modified enzymes, hydrolytic attack on wool fibres could be successfully prevented up to 95% compared to the native enzymes. Colour difference (DeltaE) measured in the three dimensional colour space showed good stain removal properties for the modified enzymes. Furthermore, half-life of the modified enzymes in buffers and commercial detergents solutions was nearly twice as high as those of the non-modified enzymes with values of up to 63 min. Out of the different modified proteases especially the B. licheniformis protease with the 2.0-kDa polymer attached both retained stain removal properties and did not hydrolyse/damage wool fibres.

  6. Multiple Classes of Immune-Related Proteases Associated with the Cell Death Response in Pepper Plants

    PubMed Central

    Bae, Chungyun; Kim, Su-min; Lee, Dong Ju; Choi, Doil

    2013-01-01

    Proteases regulate a large number of biological processes in plants, such as metabolism, physiology, growth, and defense. In this study, we carried out virus-induced gene silencing assays with pepper cDNA clones to elucidate the biological roles of protease superfamilies. A total of 153 representative protease genes from pepper cDNA were selected and cloned into a Tobacco rattle virus-ligation independent cloning vector in a loss-of-function study. Silencing of 61 proteases resulted in altered phenotypes, such as the inhibition of shoot growth, abnormal leaf shape, leaf color change, and lethality. Furthermore, the silencing experiments revealed that multiple proteases play a role in cell death and immune response against avirulent and virulent pathogens. Among these 153 proteases, 34 modulated the hypersensitive cell death response caused by infection with an avirulent pathogen, and 16 proteases affected disease symptom development caused by a virulent pathogen. Specifically, we provide experimental evidence for the roles of multiple protease genes in plant development and immune defense following pathogen infection. With these results, we created a broad sketch of each protease function. This information will provide basic information for further understanding the roles of the protease superfamily in plant growth, development, and defense. PMID:23696830

  7. Aberrant epithelial differentiation by cigarette smoke dysregulates respiratory host defence.

    PubMed

    Amatngalim, Gimano D; Schrumpf, Jasmijn A; Dishchekenian, Fernanda; Mertens, Tinne C J; Ninaber, Dennis K; van der Linden, Abraham C; Pilette, Charles; Taube, Christian; Hiemstra, Pieter S; van der Does, Anne M

    2018-04-01

    It is currently unknown how cigarette smoke-induced airway remodelling affects highly expressed respiratory epithelial defence proteins and thereby mucosal host defence.Localisation of a selected set of highly expressed respiratory epithelial host defence proteins was assessed in well-differentiated primary bronchial epithelial cell (PBEC) cultures. Next, PBEC were cultured at the air-liquid interface, and during differentiation for 2-3 weeks exposed daily to whole cigarette smoke. Gene expression, protein levels and epithelial cell markers were subsequently assessed. In addition, functional activities and persistence of the cigarette smoke-induced effects upon cessation were determined.Expression of the polymeric immunoglobulin receptor, secretory leukocyte protease inhibitor and long and short PLUNC (palate, lung and nasal epithelium clone protein) was restricted to luminal cells and exposure of differentiating PBECs to cigarette smoke resulted in a selective reduction of the expression of these luminal cell-restricted respiratory host defence proteins compared to controls. This reduced expression was a consequence of cigarette smoke-impaired end-stage differentiation of epithelial cells, and accompanied by a significant decreased transepithelial transport of IgA and bacterial killing.These findings shed new light on the importance of airway epithelial cell differentiation in respiratory host defence and could provide an additional explanation for the increased susceptibility of smokers and patients with chronic obstructive pulmonary disease to respiratory infections. Copyright ©ERS 2018.

  8. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses

    PubMed Central

    Tabor, Ala E.; Ali, Abid; Rehman, Gauhar; Rocha Garcia, Gustavo; Zangirolamo, Amanda Fonseca; Malardo, Thiago; Jonsson, Nicholas N.

    2017-01-01

    numbers of eosinophils, mast cells and basophils with up-regulated proteases, cathepsins, keratins, collagens and extracellular matrix proteins in response to feeding ticks. Here we review immunological and molecular determinants that explore the cattle tick Rhipicephalus microplus-host resistance phenomenon as well as contemplating new insights and future directions to study tick resistance and susceptibility, in order to facilitate interventions for tick control. PMID:29322033

  9. Extracellular fluid proteins of goldfish brain: evidence for the presence of proteases and esterases.

    PubMed

    Shashoua, V E; Holmquist, B

    1986-09-01

    Preparations of enriched fractions of extracellular fluid (ECF) proteins from goldfish brain were found to contain protease(s) and esterase(s). The N-substituted furanacryloyl (FA) peptides FA-Phe-Gly-Gly and FA-Phe-OMe were used as model substrates for determining protease and esterase activity, respectively, in a spectrophotometric assay. Studies of the profile of substrate specificity and identification of the types of compounds that were effective as inhibitors showed that these ECF enzymes have some distinctive properties. GSH, but not GSSG, and EDTA inhibited the protease(s) without influencing the esterase(s), whereas L-1-tosylamide-2-phenylethylchloromethyl ketone blocked both protease and esterase activities of ECF. Most of the protease and esterase properties of ECF could be bound to concanavalin A-Sepharose affinity chromatographic columns in association with ependymin--a brain extracellular protein. These observations indicate that ECF may contain a metalloprotease(s) and raise the possibility that the ependymins might be a substrate for these ECF enzymes.

  10. Development of a protease activity assay using heat-sensitive Tus-GFP fusion protein substrates.

    PubMed

    Askin, Samuel P; Morin, Isabelle; Schaeffer, Patrick M

    2011-08-15

    Proteases are implicated in various diseases and several have been identified as potential drug targets or biomarkers. As a result, protease activity assays that can be performed in high throughput are essential for the screening of inhibitors in drug discovery programs. Here we describe the development of a simple, general method for the characterization of protease activity and its use for inhibitor screening. GFP was genetically fused to a comparatively unstable Tus protein through an interdomain linker containing a specially designed protease site, which can be proteolyzed. When this Tus-GFP fusion protein substrate is proteolyzed it releases GFP, which remains in solution after a short heat denaturation and centrifugation step used to eliminate uncleaved Tus-GFP. Thus, the increase in GFP fluorescence is directly proportional to protease activity. We validated the protease activity assay with three different proteases, i.e., trypsin, caspase 3, and neutrophil elastase, and demonstrated that it can be used to determine protease activity and the effect of inhibitors with small sample volumes in just a few simple steps using a fluorescence plate reader. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Novel inexpensive fungi proteases: Production by solid state fermentation and characterization.

    PubMed

    Novelli, Paula Kern; Barros, Margarida Maria; Fleuri, Luciana Francisco

    2016-05-01

    A comparative study was carried out for proteases production using agroindustrial residues as substrate for solid state fermentation (SSF) of several fungal strains. High protease production was observed for most of the microorganisms studied, as well as very different biochemical characteristics, including activities at specific temperatures and a wide range of pH values. The enzymes produced were very different regarding optimum pH and they showed stability at 50 °C. Aspergillus oryzae showed stability at all pH values studied. Penicillium roquefortii and Aspergillus flavipes presented optimum activity at temperatures of 50 °C and 90 °C, respectively. Lyophilized protease from A. oryzae reached 1251.60 U/g and yield of 155010.66 U/kg of substrate. Therefore, the substrate as well as the microorganism strain can modify the biochemical character of the enzyme produced. The high protease activity and stability established plus the low cost of substrates, make these fungal proteases potential alternatives for the biotechnological industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Dynamic viscoelasticity of protease-treated rice batters for gluten-free rice bread making.

    PubMed

    Honda, Yuji; Inoue, Nanami; Sugimoto, Reina; Matsumoto, Kenji; Koda, Tomonori; Nishioka, Akihiro

    2018-03-01

    Papain (cysteine protease), subtilisin (Protin SD-AY10, serine protease), and bacillolysin (Protin SD-NY10, metallo protease) increased the specific volume of gluten-free rice breads by 19-63% compared to untreated bread. In contrast, Newlase F (aspartyl protease) did not expand the volume of the rice bread. In a rheological analysis, the viscoelastic properties of the gluten-free rice batters also depended on the protease categories. Principal component analysis (PCA) analysis suggested that the storage and loss moduli (G' and G″, respectively) at 35 °C, and the maximum values of G' and G″, were important factors in the volume expansion. Judging from the PCA of the viscoelastic parameters of the rice batters, papain and Protin SD-AY10 improved the viscoelasticity for gluten-free rice bread making, and Protin SD-NY effectively expanded the gluten-free rice bread. The rheological properties differed between Protin SD-NY and the other protease treatments.

  13. Mapping the Tail Fiber as the Receptor Binding Protein Responsible for Differential Host Specificity of Pseudomonas aeruginosa Bacteriophages PaP1 and JG004

    PubMed Central

    Le, Shuai; He, Xuesong; Tan, Yinling; Huang, Guangtao; Zhang, Lin; Lux, Renate; Shi, Wenyuan; Hu, Fuquan

    2013-01-01

    The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy. PMID:23874674

  14. Production, purification and characterization of an aspartic protease from Aspergillus foetidus.

    PubMed

    Souza, Paula Monteiro; Werneck, Gabriela; Aliakbarian, Bahar; Siqueira, Felix; Ferreira Filho, Edivaldo Ximenes; Perego, Patrizia; Converti, Attilio; Magalhães, Pérola Oliveira; Junior, Adalberto Pessoa

    2017-11-01

    An acidic thermostable protease was extracellularly produced either in shake flask or in stirred tank bioreactor by an Aspergillus foetidus strain isolated from the Brazilian savanna soil using different nitrogen sources. Its maximum activity (63.7 U mL -1 ) was obtained in a medium containing 2% (w/v) peptone. A cultivation carried out in a 5.0 L stirred-tank bioreactor provided a maximum protease activity 9% lower than that observed in Erlenmeyer flasks, which was obtained after a significantly shorter (by 16-29%) time. Protease purification by a combination of gel-filtration chromatography resulted in a 16.9-fold increase in specific activity (248.1 U g -1 ). The estimated molecular weight of the purified enzyme was 50.6 kDa, and the optimal pH and temperature were 5.0 and 55 °C, respectively. The enzyme was completely inhibited by pepstatin A, and its activity enhanced by some metals. According to the inhibition profiles, it was confirmed that the purified acid protease belongs to the aspartic protease type. These results are quite promising for future development of large-scale production of such protease, which can be useful in biotechnological applications requiring high enzyme activity and stability under acidic conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Seneca Valley Virus Suppresses Host Type I Interferon Production by Targeting Adaptor Proteins MAVS, TRIF, and TANK for Cleavage

    PubMed Central

    Qian, Suhong; Fan, Wenchun; Liu, Tingting; Wu, Mengge; Zhang, Huawei; Cui, Xiaofang; Zhou, Yun; Hu, Junjie; Wei, Shaozhong; Chen, Huanchun

    2017-01-01

    ABSTRACT Seneca Valley virus (SVV) is an oncolytic RNA virus belonging to the Picornaviridae family. Its nucleotide sequence is highly similar to those of members of the Cardiovirus genus. SVV is also a neuroendocrine cancer-selective oncolytic picornavirus that can be used for anticancer therapy. However, the interaction between SVV and its host is yet to be fully characterized. In this study, SVV inhibited antiviral type I interferon (IFN) responses by targeting different host adaptors, including mitochondrial antiviral signaling (MAVS), Toll/interleukin 1 (IL-1) receptor domain-containing adaptor inducing IFN-β (TRIF), and TRAF family member-associated NF-κB activator (TANK), via viral 3C protease (3Cpro). SVV 3Cpro mediated the cleavage of MAVS, TRIF, and TANK at specific sites, which required its protease activity. The cleaved MAVS, TRIF, and TANK lost the ability to regulate pattern recognition receptor (PRR)-mediated IFN production. The cleavage of TANK also facilitated TRAF6-induced NF-κB activation. SVV was also found to be sensitive to IFN-β. Therefore, SVV suppressed antiviral IFN production to escape host antiviral innate immune responses by cleaving host adaptor molecules. IMPORTANCE Host cells have developed various defenses against microbial pathogen infection. The production of IFN is the first line of defense against microbial infection. However, viruses have evolved many strategies to disrupt this host defense. SVV, a member of the Picornavirus genus, is an oncolytic virus that shows potential functions in anticancer therapy. It has been demonstrated that IFN can be used in anticancer therapy for certain tumors. However, the relationship between oncolytic virus and innate immune response in anticancer therapy is still not well known. In this study, we showed that SVV has evolved as an effective mechanism to inhibit host type I IFN production by using its 3Cpro to cleave the molecules MAVS, TRIF, and TANK directly. These molecules are crucial

  16. Seneca Valley Virus Suppresses Host Type I Interferon Production by Targeting Adaptor Proteins MAVS, TRIF, and TANK for Cleavage.

    PubMed

    Qian, Suhong; Fan, Wenchun; Liu, Tingting; Wu, Mengge; Zhang, Huawei; Cui, Xiaofang; Zhou, Yun; Hu, Junjie; Wei, Shaozhong; Chen, Huanchun; Li, Xiangmin; Qian, Ping

    2017-08-15

    Seneca Valley virus (SVV) is an oncolytic RNA virus belonging to the Picornaviridae family. Its nucleotide sequence is highly similar to those of members of the Cardiovirus genus. SVV is also a neuroendocrine cancer-selective oncolytic picornavirus that can be used for anticancer therapy. However, the interaction between SVV and its host is yet to be fully characterized. In this study, SVV inhibited antiviral type I interferon (IFN) responses by targeting different host adaptors, including mitochondrial antiviral signaling (MAVS), Toll/interleukin 1 (IL-1) receptor domain-containing adaptor inducing IFN-β (TRIF), and TRAF family member-associated NF-κB activator (TANK), via viral 3C protease (3C pro ). SVV 3C pro mediated the cleavage of MAVS, TRIF, and TANK at specific sites, which required its protease activity. The cleaved MAVS, TRIF, and TANK lost the ability to regulate pattern recognition receptor (PRR)-mediated IFN production. The cleavage of TANK also facilitated TRAF6-induced NF-κB activation. SVV was also found to be sensitive to IFN-β. Therefore, SVV suppressed antiviral IFN production to escape host antiviral innate immune responses by cleaving host adaptor molecules. IMPORTANCE Host cells have developed various defenses against microbial pathogen infection. The production of IFN is the first line of defense against microbial infection. However, viruses have evolved many strategies to disrupt this host defense. SVV, a member of the Picornavirus genus, is an oncolytic virus that shows potential functions in anticancer therapy. It has been demonstrated that IFN can be used in anticancer therapy for certain tumors. However, the relationship between oncolytic virus and innate immune response in anticancer therapy is still not well known. In this study, we showed that SVV has evolved as an effective mechanism to inhibit host type I IFN production by using its 3C pro to cleave the molecules MAVS, TRIF, and TANK directly. These molecules are crucial for

  17. Structure-guided fragment-based in silico drug design of dengue protease inhibitors.

    PubMed

    Knehans, Tim; Schüller, Andreas; Doan, Danny N; Nacro, Kassoum; Hill, Jeffrey; Güntert, Peter; Madhusudhan, M S; Weil, Tanja; Vasudevan, Subhash G

    2011-03-01

    An in silico fragment-based drug design approach was devised and applied towards the identification of small molecule inhibitors of the dengue virus (DENV) NS2B-NS3 protease. Currently, no DENV protease co-crystal structure with bound inhibitor and fully formed substrate binding site is available. Therefore a homology model of DENV NS2B-NS3 protease was generated employing a multiple template spatial restraints method and used for structure-based design. A library of molecular fragments was derived from the ZINC screening database with help of the retrosynthetic combinatorial analysis procedure (RECAP). 150,000 molecular fragments were docked to the DENV protease homology model and the docking poses were rescored using a target-specific scoring function. High scoring fragments were assembled to small molecule candidates by an implicit linking cascade. The cascade included substructure searching and structural filters focusing on interactions with the S1 and S2 pockets of the protease. The chemical space adjacent to the promising candidates was further explored by neighborhood searching. A total of 23 compounds were tested experimentally and two compounds were discovered to inhibit dengue protease (IC(50) = 7.7 μM and 37.9 μM, respectively) and the related West Nile virus protease (IC(50) = 6.3 μM and 39.0 μM, respectively). This study demonstrates the successful application of a structure-guided fragment-based in silico drug design approach for dengue protease inhibitors providing straightforward hit generation using a combination of homology modeling, fragment docking, chemical similarity and structural filters.

  18. Viral proteases: an emerging therapeutic target.

    PubMed

    Korant, B D

    1988-01-01

    Only a few viral diseases are presently treatable because of our limited knowledge of specific viral target molecules. An attractive class of viral molecules toward which chemotherapeutic agents could be aimed are proteases coded by some virus groups such as retro- or picornaviruses (poliomyelitis, common cold virus). The picornavirus enzymes were discovered first, and they have now been characterized by a combination of molecular-genetic and biochemical approaches. Several laboratories have expressed the picornaviral enzymes in heterologous systems and have reported proteolytic activity, as well as the high cleavage fidelity diagnostic of the viral proteases. After dealing with several technical difficulties often encountered in standard genetic engineering approaches, one viral protease is now available to us in quantity and is amendable to mutagenic procedures. The initial outcome of the mutagenesis studies has been the confirmation of our earlier work with inhibitors, which suggested a cysteine active-site class. There is a clustering of active-site residues which may be unique to these viruses. The requirement for an active-site cysteine-histidine pair in combination with detailed information on the viral cleavage sites has permitted design of selective inhibitors with attractive antiviral properties. Future goals include investigation of the structural basis for selective processing and application of the cleavage specificity to general problems in genetic engineering.

  19. Identification of Putative Cytoskeletal Protein Homologues in the Protozoan Host Hartmannella vermiformis as Substrates for Induced Tyrosine Phosphatase Activity upon Attachment to the Legionnaires' Disease Bacterium, Legionella pneumophila

    PubMed Central

    Venkataraman, Chandrasekar; Gao, Lian-Yong; Bondada, Subbarao; Kwaik, Yousef Abu

    1998-01-01

    The Legionnaires' disease bacterium, Legionella pneumophila, is a facultative intracellular pathogen that invades and replicates within two evolutionarily distant hosts, free living protozoa and mammalian cells. Invasion and intracellular replication within protozoa are thought to be major factors in the transmission of Legionnaires' disease. We have recently reported the identification of a galactose/N-acetyl-d-galactosamine (Gal/GalNAc) lectin in the protozoan host Hartmannella vermiformis as a receptor for attachment and invasion by L. pneumophila (Venkataraman, C., B.J. Haack, S. Bondada, and Y.A. Kwaik. 1997. J. Exp. Med. 186:537–547). In this report, we extended our studies to the effects of bacterial attachment and invasion on the cytoskeletal proteins of H. vermiformis. We first identified the presence of many protozoan cytoskeletal proteins that were putative homologues to their mammalian counterparts, including actin, pp125FAK, paxillin, and vinculin, all of which were basally tyrosine phosphorylated in resting H. vermiformis. In addition to L. pneumophila–induced tyrosine dephosphorylation of the lectin, bacterial attachment and invasion was associated with tyrosine dephosphorylation of paxillin, pp125FAK, and vinculin, whereas actin was minimally affected. Inhibition of bacterial attachment to H. vermiformis by Gal or GalNAc monomers blocked bacteria-induced tyrosine dephosphorylation of detergent-insoluble proteins. In contrast, inhibition of bacterial invasion but not attachment failed to block bacteria-induced tyrosine dephosphorylation of H. vermiformis proteins. This was further supported by the observation that 10 mutants of L. pneumophila that were defective in invasion of H. vermiformis were capable of inducing tyrosine dephosphorylation of H. vermiformis proteins. Entry of L. pneumophila into H. vermiformis was predominantly mediated by noncoated receptor-mediated endocytosis (93%) but coiling phagocytosis was infrequently observed (7%). We

  20. Saccharomyces boulardii protease inhibits Clostridium difficile toxin A effects in the rat ileum.

    PubMed Central

    Castagliuolo, I; LaMont, J T; Nikulasson, S T; Pothoulakis, C

    1996-01-01

    Saccharomyces boulardii, a nonpathogenic yeast, is effective in treating some patients with Clostridium difficile diarrhea and colitis. We have previously reported that S. boulardii inhibits rat ileal secretion in response to C. difficile toxin A possibly by releasing a protease that digests the intestinal receptor for this toxin (C. Pothoulakis, C. P. Kelly, M. A. Joshi, N. Gao, C. J. O'Keane, I. Castagliuolo, and J. T. LaMont, Gastroenterology 104: 1108-1115, 1993). The aim of this study was to purify and characterize this protease. S. boulardii protease was partially purified by gel filtration on Sephadex G-50 and octyl-Sepharose. The effect of S. boulardii protease on rat ileal secretion, epithelial permeability, and morphology in response to toxin A was examined in rat ileal loops in vivo. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified S. boulardii protease revealed a major band at 54 kDa. Pretreatment of rat ileal brush border (BB) membranes with partially purified protease reduced specific toxin A receptor binding (by 26%). Partially purified protease digested the toxin A molecule and significantly reduced its binding to BB membranes in vitro (by 42%). Preincubation of toxin A with S. boulardii protease inhibited ileal secretion (46% inhibition, P < 0.01), mannitol permeability (74% inhibition, P < 0.01), and histologic damage caused by toxin A. Thus, S. boulardii protease inhibits the intestinal effects of C. difficile toxin A by proteolysis of the toxin and inhibition of toxin A binding to its BB receptor. Our results may be relevant to the mechanism by which S. boulardii exerts its protective effects in C. difficile infection in humans. PMID:8945570