Science.gov

Sample records for putative host protease

  1. Isolation of the human PC6 gene encoding the putative host protease for HIV-1 gp160 processing in CD4+ T lymphocytes.

    PubMed Central

    Miranda, L; Wolf, J; Pichuantes, S; Duke, R; Franzusoff, A

    1996-01-01

    Production of infectious HIV-1 virions is dependent on the processing of envelope glycoprotein gp160 by a host cell protease. The protease in human CD4+ T lymphocytes has not been unequivocally identified, yet members of the family of mammalian subtilisin-like protein convertases (SPCs), which are soluble or membrane-bound proteases of the secretory pathway, best fulfill the criteria. These proteases are required for proprotein maturation and cleave at paired basic amino acid motifs in numerous cellular and viral glycoprotein precursors, both in vivo and in vitro. To identify the gp160 processing protease, we have used reverse transcription-PCR and Northern blot analyses to ascertain the spectrum of SPC proteases in human CD4+ T cells. We have cloned novel members of the SPC family, known as the human PC6 genes. Two isoforms of the hPC6 protease are expressed in human T cells, hPC6A and the larger hPC6B. The patterns of SPC gene expression in human T cells has been compared with the furin-defective LoVo cell line, both of which are competent in the production of infectious HIV virions. This comparison led to the conclusion that the hPC6 gene products are the most likely candidates for the host cell protease responsible for HIV-1 gp160 processing in human CD4+ T cells. Images Fig. 1 Fig. 3 PMID:8755538

  2. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    PubMed Central

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-01-01

    Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macro­globulin, this protease-activation mechanism is likely to operate across the diverse members of this group. PMID:26143919

  3. Structure of protease-cleaved Escherichia coli α-2-macroglobulin reveals a putative mechanism of conformational activation for protease entrapment

    SciTech Connect

    Fyfe, Cameron D.; Grinter, Rhys; Josts, Inokentijs; Mosbahi, Khedidja; Roszak, Aleksander W.; Cogdell, Richard J.; Wall, Daniel M.; Burchmore, Richard J. S.; Byron, Olwyn; Walker, Daniel

    2015-06-30

    The X-ray structure of protease-cleaved E. coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.

  4. Characterization of three putative Lon proteases of Thermus thermophilus HB27 and use of their defective mutants as hosts for production of heterologous proteins.

    PubMed

    Maehara, Tomoko; Hoshino, Takayuki; Nakamura, Akira

    2008-03-01

    In the genome of a thermophilic bacterium, Thermus thermophilus HB27, three genes, TTC0418, TTC0746 and TTC1975, were annotated as ATP-dependent protease La (Lon). Sequence comparisons indicated that TTC0418 and TTC0746 showed significant similarities to bacterial LonA-type proteases, such as Escherichia coli Lon protease, especially in regions corresponding to domains for ATP-binding and hydrolysis, and for proteolysis, but TTC1975 exhibited a similarity only at the C-terminal proteolytic domain. The enzymatic analyses, using purified recombinant proteins produced by E. coli, revealed that TTC0418 and TTC0746 exhibited peptidase and protease activities against two synthetic peptides and casein, respectively, in an ATP-dependent manner, and at the same time, both the enzymes had significant ATPase activities in the presence of substrates. On the other hand, TTC1975 possessed a protease activity against casein, but addition of ATP did not enhance this activity. Moreover, a T. thermophilus mutant deficient in both TTC0418 and TTC0746 showed a similar growth characteristic to an E. coli lon mutant, i.e., a growth defect lag after a nutritional downshift. These results indicate that TTC0418 and TTC0746 are actually members of bacterial LonA-type proteases with different substrate specificities, whereas TTC1975 should not be classified as a Lon protease. Finally, the effects of mutations deficient in these proteases were assessed on production of several heterologous gene products from Pyrococcus horikoshii and Geobacillus stearothermophilus. It was shown that TTC0746 mutation was more effective in improving production than the other two mutations, especially for production of P. horikoshii alpha-mannosidase and G. stearothermophilus alpha-amylase, indicating that the TTC0746 mutant of T. thermophilus HB27 may be useful for production of heterologous proteins from thermophiles and hyperthermophiles. PMID:18157502

  5. KLIKK proteases of Tannerella forsythia: putative virulence factors with a unique domain structure

    PubMed Central

    Ksiazek, Miroslaw; Mizgalska, Danuta; Eick, Sigrum; Thøgersen, Ida B.; Enghild, Jan J.; Potempa, Jan

    2015-01-01

    Comparative genomics of virulent Tannerella forsythia ATCC 43037 and a close health-associated relative, Tannerella BU063, revealed, in the latter, the absence of an entire array of genes encoding putative secretory proteases that possess a nearly identical C-terminal domain (CTD) that ends with a -Lys-Leu-Ile-Lys-Lys motif. This observation suggests that these proteins, referred to as KLIKK proteases, may function as virulence factors. Re-sequencing of the loci of the KLIKK proteases found only six genes grouped in two clusters. All six genes were expressed by T. forsythia in routine culture conditions, although at different levels. More importantly, a transcript of each gene was detected in gingival crevicular fluid (GCF) from periodontitis sites infected with T. forsythia indicating that the proteases are expressed in vivo. In each protein, a protease domain was flanked by a unique N-terminal profragment and a C-terminal extension ending with the CTD. Partially purified recombinant proteases showed variable levels of proteolytic activity in zymography gels and toward protein substrates, including collagen, gelatin, elastin, and casein. Taken together, these results indicate that the pathogenic strain of T. forsythia secretes active proteases capable of degrading an array of host proteins, which likely represents an important pathogenic feature of this bacterium. PMID:25954253

  6. Enteroviral proteases: structure, host interactions and pathogenicity.

    PubMed

    Laitinen, Olli H; Svedin, Emma; Kapell, Sebastian; Nurminen, Anssi; Hytönen, Vesa P; Flodström-Tullberg, Malin

    2016-07-01

    Enteroviruses are common human pathogens, and infections are particularly frequent in children. Severe infections can lead to a variety of diseases, including poliomyelitis, aseptic meningitis, myocarditis and neonatal sepsis. Enterovirus infections have also been implicated in asthmatic exacerbations and type 1 diabetes. The large disease spectrum of the closely related enteroviruses may be partially, but not fully, explained by differences in tissue tropism. The molecular mechanisms by which enteroviruses cause disease are poorly understood, but there is increasing evidence that the two enteroviral proteases, 2A(pro) and 3C(pro) , are important mediators of pathology. These proteases perform the post-translational proteolytic processing of the viral polyprotein, but they also cleave several host-cell proteins in order to promote the production of new virus particles, as well as to evade the cellular antiviral immune responses. Enterovirus-associated processing of cellular proteins may also contribute to pathology, as elegantly demonstrated by the 2A(pro) -mediated cleavage of dystrophin in cardiomyocytes contributing to Coxsackievirus-induced cardiomyopathy. It is likely that improved tools to identify targets for these proteases will reveal additional host protein substrates that can be linked to specific enterovirus-associated diseases. Here, we discuss the function of the enteroviral proteases in the virus replication cycle and review the current knowledge regarding how these proteases modulate the infected cell in order to favour virus replication, including ways to avoid detection by the immune system. We also highlight new possibilities for the identification of protease-specific cellular targets and thereby a way to discover novel mechanisms contributing to disease. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27145174

  7. Midgut serine proteases and alternative host plant utilization in Pieris brassicae L.

    PubMed Central

    Kumar, Rakesh; Bhardwaj, Usha; Kumar, Pawan; Mazumdar-Leighton, Sudeshna

    2015-01-01

    Pieris brassicae L. is a serious pest of cultivated crucifers in several parts of the world. Larvae of P. brassicae also feed prolifically on garden nasturtium (Tropaeolum majus L., of the family Tropaeolaceae). Proteolytic digestion was studied in larvae feeding on multiple hosts. Fourth instars were collected from cauliflower fields before transfer onto detached, aerial tissues of selected host plants in the lab. Variable levels of midgut proteases were detected in larvae fed on different hosts using protein substrates (casein and recombinant RBCL cloned from cauliflower) and diagnostic, synthetic substrates. Qualitative changes in midgut trypsin activities and quantitative changes in midgut chymotrypsin activities were implicated in physiological adaptation of larvae transferred to T. majus. Midgut proteolytic activities were inhibited to different extents by serine protease inhibitors, including putative trypsin inhibitors isolated from herbivore-attacked and herbivore-free leaves of cauliflower (CfTI) and T. majus (TpTI). Transfer of larvae to T. majus significantly influenced feeding parameters but not necessarily when transferred to different tissues of the same host. Results obtained are relevant for devising sustainable pest management strategies, including transgenic approaches using genes encoding plant protease inhibitors. PMID:25873901

  8. Host cell proteases: critical determinants of coronavirus tropism and pathogenesis

    PubMed Central

    Millet, Jean Kaoru; Whittaker, Gary R.

    2015-01-01

    Coronaviruses are a large group of enveloped, single-stranded positive-sense RNA viruses that infect a wide range of avian and mammalian species, including humans. The emergence of deadly human coronaviruses, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) have bolstered research in these viral and often zoonotic pathogens. While coronavirus cell and tissue tropism, host range, and pathogenesis are initially controlled by interactions between the spike envelope glycoprotein and host cell receptor, it is becoming increasingly apparent that proteolytic activation of spike by host cell proteases also plays a critical role. Coronavirus spike proteins are the main determinant of entry as they possess both receptor binding and fusion functions. Whereas binding to the host cell receptor is an essential first step in establishing infection, the proteolytic activation step is often critical for the fusion function of spike, as it allows for controlled release of the fusion peptide into target cellular membranes. Coronaviruses have evolved multiple strategies for proteolytic activation of spike, and a large number of host proteases have been shown to proteolytically process the spike protein. These include, but are not limited to, endosomal cathepsins, cell surface transmembrane protease/serine (TMPRSS) proteases, furin, and trypsin. This review focuses on the diversity of strategies coronaviruses have evolved to proteolytically activate their fusion protein during spike protein biosynthesis and the critical entry step of their life cycle, and highlights important findings on how proteolytic activation of coronavirus spike influences tissue and cell tropism, host range and pathogenicity. PMID:25445340

  9. In vitro anti-leishmanial efficacy of potato tuber extract (PTEx): leishmanial serine protease(s) as putative target.

    PubMed

    Paik, Dibyendu; Das, Partha; De, Tripti; Chakraborti, Tapati

    2014-11-01

    Leishmaniasis, a neglected tropical disease (NTD) causes major health problems in the tropical and subtropical world. Most of the antileishmanial modern therapies with different formulations of pentavalent antimonials, Miltefosine, Amphotericin B etc. are not satisfactory in recent times due to high toxicity to the host and present rising strain resistance issues. So there is an urgent need to develop new, safe and cost-effective drugs against leishmaniasis. In this regard, bioactive phytocomponents may lead to the discovery of new medicines with appropriate efficiency. The prominent roles played by Leishmania proteases in the virulence of this parasite make them very promising targets for the development of current therapeutics of leishmaniasis. As part of a search for novel drugs, we have evaluated in vitro anti-leishmanial activity of serine protease inhibitor rich fraction (PTEx) obtained from potato tuber. The extract (PTEx) was prepared by sodium bisulfite fractionation and inhibitors were identified by reverse zymography. Inhibition study of PTEx in gelatin-zymogram and spectrophotometric assay using BApNA and BTpNA as substrate reveal its strong inhibitory activity against trypsin as well as serine proteases present in cell lysate of Leishmania donovani infective strain. The in vitro MTT based colorimetric assay as well as ex vivo L. donovani infected macrophages showed reduced parasite viability and intracellular parasite load with IC50 = 312.5 ± 0.1 μg/ml and IC50 82.3 ± 0.2 μg/ml of PTEx respectively in a concentration dependent manner. This anti-leishmanial effect was also preceded by PTEx induced acute formation of ROS and prolonged NO generation. The PTEx has no significant cytotoxic effect on host macrophages. So taken together, these findings indicate that PTEx has promising leishmanicidal effect and thus this study provides a new perspective of natural serine protease inhibitor from potato tuber on the development of new drug against

  10. MOLECULAR IDENTIFICATION OF CYSTEINE AND TRYPSIN PROTEASE, EFFECT OF DIFFERENT HOSTS ON PROTEASE EXPRESSION, AND RNAI MEDIATED SILENCING OF CYSTEINE PROTEASE GENE IN THE SUNN PEST.

    PubMed

    Amiri, Azam; Bandani, Ali Reza; Alizadeh, Houshang

    2016-04-01

    Sunn pest, Eurygaster integriceps, is a serious pest of cereals in the wide area of the globe from Near and Middle East to East and South Europe and North Africa. This study described for the first time, identification of E. integriceps trypsin serine protease and cathepsin-L cysteine, transcripts involved in digestion, which might serve as targets for pest control management. A total of 478 and 500 base pair long putative trypsin and cysteine gene sequences were characterized and named Tryp and Cys, respectively. In addition, the tissue-specific relative gene expression levels of these genes as well as gluten hydrolase (Gl) were determined under different host kernels feeding conditions. Result showed that mRNA expression of Cys, Tryp, and Gl was significantly affected after feeding on various host plant species. Transcript levels of these genes were most abundant in the wheat-fed E. integriceps larvae compared to other hosts. The Cys transcript was detected exclusively in the gut, whereas the Gl and Tryp transcripts were detectable in both salivary glands and gut. Also possibility of Sunn pest gene silencing was studied by topical application of cysteine double-stranded RNA (dsRNA). The results indicated that topically applied dsRNA on fifth nymphal stage can penetrate the cuticle of the insect and induce RNA interference. The Cys gene mRNA transcript in the gut was reduced to 83.8% 2 days posttreatment. Also, it was found that dsRNA of Cys gene affected fifth nymphal stage development suggesting the involvement of this protease in the insect growth, development, and molting. PMID:26609789

  11. A Trichomonas vaginalis Rhomboid Protease and Its Substrate Modulate Parasite Attachment and Cytolysis of Host Cells

    PubMed Central

    Riestra, Angelica M.; Gandhi, Shiv; Sweredoski, Michael J.; Moradian, Annie; Hess, Sonja; Urban, Sinisa; Johnson, Patricia J.

    2015-01-01

    Trichomonas vaginalis is an extracellular eukaryotic parasite that causes the most common, non-viral sexually transmitted infection worldwide. Although disease burden is high, molecular mechanisms underlying T. vaginalis pathogenesis are poorly understood. Here, we identify a family of putative T. vaginalis rhomboid proteases and demonstrate catalytic activity for two, TvROM1 and TvROM3, using a heterologous cell cleavage assay. The two T. vaginalis intramembrane serine proteases display different subcellular localization and substrate specificities. TvROM1 is a cell surface membrane protein and cleaves atypical model rhomboid protease substrates, whereas TvROM3 appears to localize to the Golgi apparatus and recognizes a typical model substrate. To identify TvROM substrates, we interrogated the T. vaginalis surface proteome using both quantitative proteomic and bioinformatic approaches. Of the nine candidates identified, TVAG_166850 and TVAG_280090 were shown to be cleaved by TvROM1. Comparison of amino acid residues surrounding the predicted cleavage sites of TvROM1 substrates revealed a preference for small amino acids in the predicted transmembrane domain. Over-expression of TvROM1 increased attachment to and cytolysis of host ectocervical cells. Similarly, mutations that block the cleavage of a TvROM1 substrate lead to its accumulation on the cell surface and increased parasite adherence to host cells. Together, these data indicate a role for TvROM1 and its substrate(s) in modulating attachment to and lysis of host cells, which are key processes in T. vaginalis pathogenesis. PMID:26684303

  12. Flamingo cadherin: a putative host receptor for Streptococcus pneumoniae.

    PubMed

    Blau, Karin; Portnoi, Maxim; Shagan, Marilou; Kaganovich, Antonina; Rom, Slava; Kafka, Daniel; Chalifa Caspi, Vered; Porgador, Angel; Givon-Lavi, Noga; Gershoni, Jonathan M; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2007-06-15

    Streptococcus pneumoniae fructose bisphosphate aldolase (FBA) is a cell wall-localized lectin. We demonstrate that recombinant (r) FBA and anti-rFBA antibodies inhibit encapsulated and unencapsulated S. pneumoniae serotype 3 adherence to A549 type II lung carcinoma epithelial cells. A random combinatorial peptide library expressed by filamentous phage was screened with rFBA. Eleven of 30 rFBA-binding phages inhibited 90% of S. pneumoniae adhesion to A549 cells. The insert peptide sequence of 9 of these phages matched the Flamingo cadherin receptor (FCR) when aligned against the human genome. A peptide comprising a putative FBA-binding region of FCR (FCRP) inhibited 2 genetically and capsularly unrelated pairs of encapsulated and unencapsulated S. pneumoniae strains from binding to A549 cells. Moreover, FCRP inhibited S. pneumoniae nasopharyngeal and lung colonization and, possibly, pneumonia development in the mouse intranasal inoculation model system. These data indicate that FBA is an S. pneumoniae adhesin and that FCR is its host receptor. PMID:17492599

  13. Lectin Activation in Giardia lamblia by Host Protease: A Novel Host-Parasite Interaction

    NASA Astrophysics Data System (ADS)

    Lev, Boaz; Ward, Honorine; Keusch, Gerald T.; Pereira, Miercio E. A.

    1986-04-01

    A lectin in Giardia lamblia was activated by secretions from the human duodenum, the environment where the parasite lives. Incubation of the secretions with trypsin inhibitors prevented the appearance of lectin activity, implicating proteases as the activating agent. Accordingly, lectin activation was also produced by crystalline trypsin and Pronase; other proteases tested were ineffective. When activated, the lectin agglutinated intestinal cells to which the parasite adheres in vivo. The lectin was most specific to mannose-6-phosphate and apparently was bound to the plasma membrane. Activation of a parasite lectin by a host protease represents a novel mechanism of hostparasite interaction and may contribute to the affinity of Giardia lamblia to the infection site.

  14. Serine and cysteine protease-like genes in the genome of a gall midge and their interactions with host plant genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For plant-feeding insects, digestive proteases are targets for engineering protease inhibitors for pest control. In this study, we identified 105 putative serine- and cysteine-protease genes from Hessian fly genome. Among the genes, 31 encode putative trypsins, 18 encode putative chymotrypsins, se...

  15. Antimicrobial proteins and peptides in human lung diseases: A friend and foe partnership with host proteases.

    PubMed

    Lecaille, Fabien; Lalmanach, Gilles; Andrault, Pierre-Marie

    2016-03-01

    Lung antimicrobial proteins and peptides (AMPs) are major sentinels of innate immunity by preventing microbial colonization and infection. Nevertheless bactericidal activity of AMPs against Gram-positive and Gram-negative bacteria is compromised in patients with chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF) and asthma. Evidence is accumulating that expression of harmful human serine proteases, matrix metalloproteases and cysteine cathepsins is markedely increased in these chronic lung diseases. The local imbalance between proteases and protease inhibitors compromises lung tissue integrity and function, by not only degrading extracellular matrix components, but also non-matrix proteins. Despite the fact that AMPs are somewhat resistant to proteolytic degradation, some human proteases cleave them efficiently and impair their antimicrobial potency. By contrast, certain AMPs may be effective as antiproteases. Host proteases participate in concert with bacterial proteases in the degradation of key innate immunity peptides/proteins and thus may play immunomodulatory activities during chronic lung diseases. In this context, the present review highlights the current knowledge and recent discoveries on the ability of host enzymes to interact with AMPs, providing a better understanding of the role of human proteases in innate host defense. PMID:26341472

  16. Role of NADPH Oxidase versus Neutrophil Proteases in Antimicrobial Host Defense

    PubMed Central

    Grimm, Melissa J.; Lewandowski, David C.; Pham, Christine T. N.; Blackwell, Timothy S.; Petraitiene, Ruta; Petraitis, Vidmantas; Walsh, Thomas J.; Urban, Constantin F.; Segal, Brahm H.

    2011-01-01

    NADPH oxidase is a crucial enzyme in mediating antimicrobial host defense and in regulating inflammation. Patients with chronic granulomatous disease, an inherited disorder of NADPH oxidase in which phagocytes are defective in generation of reactive oxidant intermediates (ROIs), suffer from life-threatening bacterial and fungal infections. The mechanisms by which NADPH oxidase mediate host defense are unclear. In addition to ROI generation, neutrophil NADPH oxidase activation is linked to the release of sequestered proteases that are posited to be critical effectors of host defense. To definitively determine the contribution of NADPH oxidase versus neutrophil serine proteases, we evaluated susceptibility to fungal and bacterial infection in mice with engineered disruptions of these pathways. NADPH oxidase-deficient mice (p47phox−/−) were highly susceptible to pulmonary infection with Aspergillus fumigatus. In contrast, double knockout neutrophil elastase (NE)−/−×cathepsin G (CG)−/− mice and lysosomal cysteine protease cathepsin C/dipeptidyl peptidase I (DPPI)-deficient mice that are defective in neutrophil serine protease activation demonstrated no impairment in antifungal host defense. In separate studies of systemic Burkholderia cepacia infection, uniform fatality occurred in p47phox−/− mice, whereas NE−/−×CG−/− mice cleared infection. Together, these results show a critical role for NADPH oxidase in antimicrobial host defense against A. fumigatus and B. cepacia, whereas the proteases we evaluated were dispensable. Our results indicate that NADPH oxidase dependent pathways separate from neutrophil serine protease activation are required for host defense against specific pathogens. PMID:22163282

  17. The Hypervariable Amino-Terminus of P1 Protease Modulates Potyviral Replication and Host Defense Responses

    PubMed Central

    Pasin, Fabio; Simón-Mateo, Carmen; García, Juan Antonio

    2014-01-01

    The replication of many RNA viruses involves the translation of polyproteins, whose processing by endopeptidases is a critical step for the release of functional subunits. P1 is the first protease encoded in plant potyvirus genomes; once activated by an as-yet-unknown host factor, it acts in cis on its own C-terminal end, hydrolyzing the P1-HCPro junction. Earlier research suggests that P1 cooperates with HCPro to inhibit host RNA silencing defenses. Using Plum pox virus as a model, we show that although P1 does not have a major direct role in RNA silencing suppression, it can indeed modulate HCPro function by its self-cleavage activity. To study P1 protease regulation, we used bioinformatic analysis and in vitro activity experiments to map the core C-terminal catalytic domain. We present evidence that the hypervariable region that precedes the protease domain is predicted as intrinsically disordered, and that it behaves as a negative regulator of P1 proteolytic activity in in vitro cleavage assays. In viral infections, removal of the P1 protease antagonistic regulator is associated with greater symptom severity, induction of salicylate-dependent pathogenesis-related proteins, and reduced viral loads. We suggest that fine modulation of a viral protease activity has evolved to keep viral amplification below host-detrimental levels, and thus to maintain higher long-term replicative capacity. PMID:24603811

  18. The dose of a putative ubiquitin-specific protease affects position-effect variegation in Drosophila melanogaster.

    PubMed Central

    Henchoz, S; De Rubertis, F; Pauli, D; Spierer, P

    1996-01-01

    A dominant insertional P-element mutation enhances position-effect variegation in Drosophila melanogaster. The mutation is homozygous, viable, and fertile and maps at 64E on the third chromosome. The corresponding gene was cloned by transposon tagging. Insertion of the transposon upstream of the open reading frame correlates with a strong reduction of transcript level. A transgene was constructed with the cDNA and found to have the effect opposite from that of the mutation, namely, to suppress variegation. Sequencing of the cDNA reveals a large open reading frame encoding a putative ubiquitin-specific protease (Ubp). Ubiquitin marks various proteins, frequently for proteasome-dependent degradation. Ubps can cleave the ubiquitin part from these proteins. We discuss the link established here between a deubiquitinating enzyme and epigenetic silencing processes. PMID:8816485

  19. The Protease Locus of Francisella tularensis LVS Is Required for Stress Tolerance and Infection in the Mammalian Host.

    PubMed

    He, Lihong; Nair, Manoj Kumar Mohan; Chen, Yuling; Liu, Xue; Zhang, Mengyun; Hazlett, Karsten R O; Deng, Haiteng; Zhang, Jing-Ren

    2016-05-01

    Francisella tularensis is the causative agent of tularemia and a category A potential agent of bioterrorism, but the pathogenic mechanisms of F. tularensis are largely unknown. Our previous transposon mutagenesis screen identified 95 lung infectivity-associated F. tularensis genes, including those encoding the Lon and ClpP proteases. The present study validates the importance of Lon and ClpP in intramacrophage growth and infection of the mammalian host by using unmarked deletion mutants of the F. tularensis live vaccine strain (LVS). Further experiments revealed that lon and clpP are also required for F. tularensis tolerance to stressful conditions. A quantitative proteomic comparison between heat-stressed LVS and the isogenic Lon-deficient mutant identified 29 putative Lon substrate proteins. The follow-up protein degradation experiments identified five substrates of the F. tularensis Lon protease (FTL578, FTL663, FTL1217, FTL1228, and FTL1957). FTL578 (ornithine cyclodeaminase), FTL663 (heat shock protein), and FTL1228 (iron-sulfur activator complex subunit SufD) have been previously described as virulence-associated factors in F. tularensis Identification of these Lon substrates has thus provided important clues for further understanding of the F. tularensis stress response and pathogenesis. The high-throughput approach developed in this study can be used for systematic identification of the Lon substrates in other prokaryotic and eukaryotic organisms. PMID:26902724

  20. Schizosaccharomyces pombe sxa1+ and sxa2+ encode putative proteases involved in the mating response.

    PubMed

    Imai, Y; Yamamoto, M

    1992-04-01

    The Schizosaccharomyces pombe sxa1 and sxa2 mutants showed an exaggerated response to mating pheromones, producing excessively long conjugation tubes and exhibiting mating deficiency. This phenotype was similar to phenotypes of cells bearing an activated allele of ras1, such as ras1Val-17 or ras1Leu-66, and phenotypes of cells defective in gap1. However, genetic evidence suggested that the sxa1 and sxa2 gene products are not directly involved in the Ras1 pathway. The gene products of sxa1 and sxa2, as deduced from their nucleotide sequences, were homologous to aspartyl proteases and serine carboxypeptidases, respectively. The sxa1 gene function was required for efficient mating only in h+ cells, although even disruption of sxa1 did not completely abolish the mating ability. Conversely, the sxa2 gene function was required only in h- cells. Wild-type cells produced a diffusible substance, which may be the sxa2 gene product itself, that could confer fertility to sxa2 mutant cells placed at a distance. These observations are consistent with the possibility that the sxa gene products are involved in degradation or processing of the mating pheromones and that their loss cause a persistent response to the pheromones. PMID:1549128

  1. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response.

    PubMed

    Majchrzak-Gorecka, Monika; Majewski, Pawel; Grygier, Beata; Murzyn, Krzysztof; Cichy, Joanna

    2016-04-01

    Secretory leukocyte protease inhibitor (SLPI), a ∼12kDa nonglycosylated cationic protein, is emerging as an important regulator of innate and adaptive immunity and as a component of tissue regenerative programs. First described as an inhibitor of serine proteases such as neutrophil elastase, this protein is increasingly recognized as a molecule that benefits the host via its anti-proteolytic, anti-microbial and immunomodulatory activities. Here, we discuss the diverse functions of SLPI. Moreover, we review several novel layers of SLPI-mediated control that protect the host from excessive/dysregulated inflammation typical of infectious, allergic and autoinflammatory diseases and that support healing responses through affecting cell proliferation, differentiation and apoptosis. PMID:26718149

  2. The putative role of Rhipicephalus microplus salivary serpins in the tick-host relationship.

    PubMed

    Tirloni, Lucas; Kim, Tae Kwon; Coutinho, Mariana Loner; Ali, Abid; Seixas, Adriana; Termignoni, Carlos; Mulenga, Albert; da Silva Vaz, Itabajara

    2016-04-01

    Inflammation and hemostasis are part of the host's first line of defense to tick feeding. These systems are in part serine protease mediated and are tightly controlled by their endogenous inhibitors, in the serpin superfamily (serine protease inhibitors). From this perspective ticks are thought to use serpins to evade host defenses during feeding. The cattle tick Rhipicephalus microplus encodes at least 24 serpins, of which RmS-3, RmS-6, and RmS-17 were previously identified in saliva of this tick. In this study, we screened inhibitor functions of these three saliva serpins against a panel of 16 proteases across the mammalian defense pathway. Our data confirm that Pichia pastoris-expressed rRmS-3, rRmS-6, and rRmS-17 are likely inhibitors of pro-inflammatory and pro-coagulant proteases. We show that rRmS-3 inhibited chymotrypsin and cathepsin G with stoichiometry of inhibition (SI) indices of 1.8 and 2.0, and pancreatic elastase with SI higher than 10. Likewise, rRmS-6 inhibited trypsin with SI of 2.6, chymotrypsin, factor Xa, factor XIa, and plasmin with SI higher than 10, while rRmS-17 inhibited trypsin, cathepsin G, chymotrypsin, plasmin, and factor XIa with SI of 1.6, 2.6, 2.7, 3.4, and 9.0, respectively. Additionally, we observed the formation of irreversible complexes between rRmS-3 and chymotrypsin, rRmS-6/rRmS-17 and trypsin, and rRmS-3/rRmS-17 and cathepsin G, which is consistent with typical mechanism of inhibitory serpins. In blood clotting assays, rRmS-17 delayed plasma clotting by 60 s in recalcification time assay, while rRmS-3 and rRmS-6 did not have any effect. Consistent with inhibitor function profiling data, 2.0 μM rRmS-3 and rRmS-17 inhibited cathepsin G-activated platelet aggregation in a dose-responsive manner by up to 96% and 95% respectively. Of significant interest, polyclonal antibodies blocked inhibitory functions of the three serpins. Also notable, antibodies to Amblyomma americanum, Ixodes scapularis, and Rhipicephalus sanguineus

  3. An aspartyl protease defines a novel pathway for export of Toxoplasma proteins into the host cell

    PubMed Central

    Coffey, Michael J; Sleebs, Brad E; Uboldi, Alessandro D; Garnham, Alexandra; Franco, Magdalena; Marino, Nicole D; Panas, Michael W; Ferguson, David JP; Enciso, Marta; O'Neill, Matthew T; Lopaticki, Sash; Stewart, Rebecca J; Dewson, Grant; Smyth, Gordon K; Smith, Brian J; Masters, Seth L; Boothroyd, John C; Boddey, Justin A; Tonkin, Christopher J

    2015-01-01

    Infection by Toxoplasma gondii leads to massive changes to the host cell. Here, we identify a novel host cell effector export pathway that requires the Golgi-resident aspartyl protease 5 (ASP5). We demonstrate that ASP5 cleaves a highly constrained amino acid motif that has similarity to the PEXEL-motif of Plasmodium parasites. We show that ASP5 matures substrates at both the N- and C-terminal ends of proteins and also controls trafficking of effectors without this motif. Furthermore, ASP5 controls establishment of the nanotubular network and is required for the efficient recruitment of host mitochondria to the vacuole. Assessment of host gene expression reveals that the ASP5-dependent pathway influences thousands of the transcriptional changes that Toxoplasma imparts on its host cell. All these changes result in attenuation of virulence of Δasp5 tachyzoites in vivo. This work characterizes the first identified machinery required for export of Toxoplasma effectors into the infected host cell. DOI: http://dx.doi.org/10.7554/eLife.10809.001 PMID:26576949

  4. A computational module assembled from different protease family motifs identifies PI PLC from Bacillus cereus as a putative prolyl peptidase with a serine protease scaffold.

    PubMed

    Rendón-Ramírez, Adela; Shukla, Manish; Oda, Masataka; Chakraborty, Sandeep; Minda, Renu; Dandekar, Abhaya M; Ásgeirsson, Bjarni; Goñi, Félix M; Rao, Basuthkar J

    2013-01-01

    Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a β-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues. PMID:23940667

  5. Influenza virus pathogenicity regulated by host cellular proteases, cytokines and metabolites, and its therapeutic options

    PubMed Central

    KIDO, Hiroshi

    2015-01-01

    Influenza A virus (IAV) causes significant morbidity and mortality. The knowledge gained within the last decade on the pandemic IAV(H1N1)2009 improved our understanding not only of the viral pathogenicity but also the host cellular factors involved in the pathogenicity of multiorgan failure (MOF), such as cellular trypsin-type hemagglutinin (HA0) processing proteases for viral multiplication, cytokine storm, metabolic disorders and energy crisis. The HA processing proteases in the airway and organs for all IAV known to date have been identified. Recently, a new concept on the pathogenicity of MOF, the “influenza virus–cytokine–trypsin” cycle, has been proposed involving up-regulation of trypsin through pro-inflammatory cytokines, and potentiation of viral multiplication in various organs. Furthermore, the relationship between causative factors has been summarized as the “influenza virus–cytokine–trypsin” cycle interconnected with the “metabolic disorders–cytokine” cycle. These cycles provide new treatment concepts for ATP crisis and MOF. This review discusses IAV pathogenicity on cellular proteases, cytokines, metabolites and therapeutic options. PMID:26460316

  6. Intracellular Activation of Tenofovir Alafenamide and the Effect of Viral and Host Protease Inhibitors.

    PubMed

    Birkus, Gabriel; Bam, Rujuta A; Willkom, Madeleine; Frey, Christian R; Tsai, Luong; Stray, Kirsten M; Yant, Stephen R; Cihlar, Tomas

    2016-01-01

    Tenofovir alafenamide fumarate (TAF) is an oral phosphonoamidate prodrug of the HIV reverse transcriptase nucleotide inhibitor tenofovir (TFV). Previous studies suggested a principal role for the lysosomal serine protease cathepsin A (CatA) in the intracellular activation of TAF. Here we further investigated the role of CatA and other human hydrolases in the metabolism of TAF. Overexpression of CatA or liver carboxylesterase 1 (Ces1) in HEK293T cells increased intracellular TAF hydrolysis 2- and 5-fold, respectively. Knockdown of CatA expression with RNA interference (RNAi) in HeLa cells reduced intracellular TAF metabolism 5-fold. Additionally, the anti-HIV activity and the rate of CatA hydrolysis showed good correlation within a large set of TFV phosphonoamidate prodrugs. The covalent hepatitis C virus (HCV) protease inhibitors (PIs) telaprevir and boceprevir potently inhibited CatA-mediated TAF activation (50% inhibitory concentration [IC50] = 0.27 and 0.16 μM, respectively) in vitro and also reduced its anti-HIV activity in primary human CD4(+) T lymphocytes (21- and 3-fold, respectively) at pharmacologically relevant concentrations. In contrast, there was no inhibition of CatA or any significant effect on anti-HIV activity of TAF observed with cobicistat, noncovalent HIV and HCV PIs, or various prescribed inhibitors of host serine proteases. Collectively, these studies confirm that CatA plays a pivotal role in the intracellular metabolism of TAF, whereas the liver esterase Ces1 likely contributes to the hepatic activation of TAF. Moreover, this work demonstrates that a wide range of viral and host PIs, with the exception of telaprevir and boceprevir, do not interfere with the antiretroviral activity of TAF. PMID:26503655

  7. Absence of Yps7p, a putative glycosylphosphatidylinositol-linked aspartyl protease in Pichia pastoris, results in aberrant cell wall composition and increased osmotic stress resistance.

    PubMed

    Guan, Bo; Lei, Jianyong; Su, Shuai; Chen, Fengxiang; Duan, Zuoying; Chen, Yun; Gong, Xiaohai; Li, Huazhong; Jin, Jian

    2012-12-01

    Recently, studies performed on Saccharomyces cerevisiae and Candida albicans have confirmed the importance of fungal glycosylphosphatidylinositol (GPI)-anchored aspartyl proteases (yapsins) for cell-wall integrity. Genome sequence annotation of Pichia pastoris also revealed seven putative GPI-anchored aspartyl protease genes. The five yapsin genes assigned as YPS1, YPS2, YPS3, YPS7 and MKC7 in P. pastoris were disrupted. Among these putative GPI-linked aspartyl proteases, disruption of PpYPS7 gene confers the Ppyps7Δ mutant cell increased resistance to cell wall perturbing reagents congo red, calcofluor white (CW) and sodium dodecyl sulfate. Quantitative analysis of cell wall components shows lower content of chitin and increased amounts of β-1,3-glucan. Further staining of the cell with CW demonstrates that disruption of PpYPS7 gene causes a reduction of the chitin content in lateral cell wall. Consistently, transmission electron micrographs show that the inner layer of mutant cell wall, mainly composed of chitin and β-1, 3-glucan, is much thicker than that in parental strain GS115. Additionally, Ppyps7Δ mutant also exhibits increased osmotic resistance compared with parental strain GS115. This could be due to the dramatically elevated intracellular glycerol level in Ppyps7Δ mutant. These results suggest that PpYPS7 is involved in cell wall integrity and response to osmotic stress. PMID:22943416

  8. Host Generated siRNAs Attenuate Expression of Serine Protease Gene in Myzus persicae

    PubMed Central

    Bhatia, Varnika; Bhattacharya, Ramcharan; Uniyal, Prem L.; Singh, Rajendra; Niranjan, Rampal S.

    2012-01-01

    Background Sap sucking hemipteran aphids damage diverse crop species. Although delivery of ds-RNA or siRNA through microinjection/feeding has been demonstrated, the efficacy of host-mediated delivery of aphid-specific dsRNA in developing aphid resistance has been far from being elucidated. Methodology/Principal Findings Transgenic Arabidopsis expressing ds-RNA of Myzus persicae serine protease (MySP) was developed that triggered the generation of corresponding siRNAs amenable for delivery to the feeding aphids. M. persicae when fed on the transgenic plants for different time intervals under controlled growth conditions resulted in a significant attenuation of the expression of MySP and a commensurate decline in gut protease activity. Although the survivability of these aphids was not affected, there was a noticeable decline in their fecundity resulting in a significant reduction in parthenogenetic population. Conclusions/Significance The study highlighted the feasibility of developing host based RNAi-mediated resistance against hemipteran pest aphids. PMID:23071558

  9. An Aspartic Protease of the Scabies Mite Sarcoptes scabiei Is Involved in the Digestion of Host Skin and Blood Macromolecules

    PubMed Central

    Mahmood, Wajahat; Viberg, Linda T.; Fischer, Katja; Walton, Shelley F.; Holt, Deborah C.

    2013-01-01

    Background Scabies is a disease of worldwide significance, causing considerable morbidity in both humans and other animals. The scabies mite Sarcoptes scabiei burrows into the skin of its host, obtaining nutrition from host skin and blood. Aspartic proteases mediate a range of diverse and essential physiological functions such as tissue invasion and migration, digestion, moulting and reproduction in a number of parasitic organisms. We investigated whether aspartic proteases may play role in scabies mite digestive processes. Methodology/Principle Findings We demonstrated the presence of aspartic protease activity in whole scabies mite extract. We then identified a scabies mite aspartic protease gene sequence and produced recombinant active enzyme. The recombinant scabies mite aspartic protease was capable of digesting human haemoglobin, serum albumin, fibrinogen and fibronectin, but not collagen III or laminin. This is consistent with the location of the scabies mites in the upper epidermis of human skin. Conclusions/Significance The development of novel therapeutics for scabies is of increasing importance given the evidence of emerging resistance to current treatments. We have shown that a scabies mite aspartic protease plays a role in the digestion of host skin and serum molecules, raising the possibility that interference with the function of the enzyme may impact on mite survival. PMID:24244770

  10. Enabling Low Cost Biopharmaceuticals: A Systematic Approach to Delete Proteases from a Well-Known Protein Production Host Trichoderma reesei

    PubMed Central

    Landowski, Christopher P.; Huuskonen, Anne; Wahl, Ramon; Westerholm-Parvinen, Ann; Kanerva, Anne; Hänninen, Anna-Liisa; Salovuori, Noora; Penttilä, Merja; Natunen, Jari; Ostermeier, Christian; Helk, Bernhard; Saarinen, Juhani; Saloheimo, Markku

    2015-01-01

    The filamentous fungus Trichoderma reesei has tremendous capability to secrete proteins. Therefore, it would be an excellent host for producing high levels of therapeutic proteins at low cost. Developing a filamentous fungus to produce sensitive therapeutic proteins requires that protease secretion is drastically reduced. We have identified 13 major secreted proteases that are related to degradation of therapeutic antibodies, interferon alpha 2b, and insulin like growth factor. The major proteases observed were aspartic, glutamic, subtilisin-like, and trypsin-like proteases. The seven most problematic proteases were sequentially removed from a strain to develop it for producing therapeutic proteins. After this the protease activity in the supernatant was dramatically reduced down to 4% of the original level based upon a casein substrate. When antibody was incubated in the six protease deletion strain supernatant, the heavy chain remained fully intact and no degradation products were observed. Interferon alpha 2b and insulin like growth factor were less stable in the same supernatant, but full length proteins remained when incubated overnight, in contrast to the original strain. As additional benefits, the multiple protease deletions have led to faster strain growth and higher levels of total protein in the culture supernatant. PMID:26309247

  11. A peptide immunization approach to counteract a Staphylococcus aureus protease defense against host immunity.

    PubMed

    Jordan, Robert E; Fernandez, Jeffrey; Brezski, Randall J; Greenplate, Allison R; Knight, David M; Raju, T Shantha; Lynch, A Simon

    2016-04-01

    Pathogens that induce acute and chronic infections, as well as certain cancers, employ numerous strategies to thwart host cellular and humoral immune defenses. One proposed evasion mechanism against humoral immunity is a localized expression of extracellular proteases that cleave the IgG hinge and disable host IgG functions. Host immunity appears to be prepared to counter such a proteolytic tactic by providing a group of autoantibodies, denoted anti-hinge antibodies that specifically bind to cleaved IgGs and provide compensating functional restoration in vitro. These respective counter-measures highlight the complex interrelationships among pathogens and host immunity and suggested to us a possible means for therapeutic intervention. In this study, we combined an investigation of pathogen-mediated proteolysis of host IgGs with an immunization strategy to boost host anti-hinge antibodies. In a Staphylococcus aureus infection model using an artificial tissue cage (wiffle ball) implanted into rabbits, cleaved rabbit IgGs were detected in abundance in the abscesses of untreated animals early after infection. However, in animals previously immunized with peptide analogs of the cleaved IgG hinge to generate substantial anti-hinge antibody titers, S. aureus colony formation was markedly reduced compared to control animals or those similarly immunized with a scrambled peptide sequence. The results of this study demonstrate that extensive local proteolysis of IgGs occurs in a test abscess setting and that immunization to increase host anti-hinge antibodies provided substantial acute protection against bacterial growth. PMID:26905931

  12. Identification of a Novel Host-Specific IgM Protease in Streptococcus suis

    PubMed Central

    Seele, Jana; Singpiel, Alena; Spoerry, Christian; von Pawel-Rammingen, Ulrich; Valentin-Weigand, Peter

    2013-01-01

    Streptococcus suis serotype 2 is a highly invasive, extracellular pathogen in pigs with the capacity to cause severe infections in humans. This study was initiated by the finding that IgM degradation products are released after opsonization of S. suis. The objective of this work was to identify the bacterial factor responsible for IgM degradation. The results of this study showed that a member of the IdeS family, designated IdeSsuis (Immunoglobulin M-degrading enzyme of S. suis), is responsible and sufficient for IgM cleavage. Recombinant IdeSsuis was found to degrade only IgM but neither IgG nor IgA. Interestingly, Western blot analysis revealed that IdeSsuis is host specific, as it exclusively cleaves porcine IgM but not IgM from six other species, including a closely related member of the Suidae family. As demonstrated by flow cytometry and immunofluorescence microscopy, IdeSsuis modulates binding of IgM to the bacterial surface. IdeSsuis is the first prokaryotic IgM-specific protease described, indicating that this enzyme is involved in a so-far-unknown mechanism of host-pathogen interaction at an early stage of the host immune response. Furthermore, cleavage of porcine IgM by IdeSsuis is the first identified phenotype reflecting functional adaptation of S. suis to pigs as the main host. PMID:23243300

  13. Proteomic Analysis on Cercariae and Schistosomula in Reference to Potential Proteases Involved in Host Invasion of Schistosoma japonicum Larvae.

    PubMed

    Liu, Mu; Ju, Chuan; Du, Xiao-Feng; Shen, Hai-Mo; Wang, Ji-Peng; Li, Jian; Zhang, Xu-Min; Feng, Zheng; Hu, Wei

    2015-11-01

    Schistosomiasis is a parasitic zoonosis posing great threat to human health. The infection is acquired by larval cercariae penetrating host skin and transforming into juveniles, schistosomula. Proteolytic enzymes secreted from the cercarial acetabular glands are known to aid to the skin penetration, but molecular mechanisms remain largely unclear. To profile the protein composition and identify potential invasive proteases, we developed a new method for simulating cercarial transformation and collecting schistosomula, and for the first time, we compared the proteomes of Schistosoma japonicum cercariae and schistosomula by using in-gel shotgun proteomic analysis. Totally, 1972 proteins were identified in association with ten main biological processes based on Gene Ontology analysis; 46 proteases were detected in cercariae, and among them, 25 proteases disappeared after penetrated. Notably, leishmanolysins and serine and cysteine proteases were found abundant but differentially expressed. Recombinant serine protease SjCE2b and cysteine protease SjCB2 were produced and used for validation of native proteins. Immunofluorescence and Western blotting assays detected SjCE2b and SjCB2 in cercariae but not in schistosomula, suggesting the two enzymes might be consumed upon skin migration. Our data comprehensively chart the proteomic changes during cercarial invasion, revealing the potential proteases involved, providing a platform for the development of molecular anti-infection strategy. PMID:26370134

  14. Serine proteases of parasitic helminths.

    PubMed

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-02-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  15. Serine Proteases of Parasitic Helminths

    PubMed Central

    Yang, Yong; Wen, Yun jun; Cai, Ya Nan; Vallée, Isabelle; Boireau, Pascal; Liu, Ming Yuan; Cheng, Shi Peng

    2015-01-01

    Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed. PMID:25748703

  16. Rhinovirus 3C protease facilitates specific nucleoporin cleavage and mislocalisation of nuclear proteins in infected host cells.

    PubMed

    Walker, Erin J; Younessi, Parisa; Fulcher, Alex J; McCuaig, Robert; Thomas, Belinda J; Bardin, Philip G; Jans, David A; Ghildyal, Reena

    2013-01-01

    Human Rhinovirus (HRV) infection results in shut down of essential cellular processes, in part through disruption of nucleocytoplasmic transport by cleavage of the nucleoporin proteins (Nups) that make up the host cell nuclear pore. Although the HRV genome encodes two proteases (2A and 3C) able to cleave host proteins such as Nup62, little is known regarding the specific contribution of each. Here we use transfected as well as HRV-infected cells to establish for the first time that 3C protease is most likely the mediator of cleavage of Nup153 during HRV infection, while Nup62 and Nup98 are likely to be targets of HRV2A protease. HRV16 3C protease was also able to elicit changes in the appearance and distribution of the nuclear speckle protein SC35 in transfected cells, implicating it as a key mediator of the mislocalisation of SC35 in HRV16-infected cells. In addition, 3C protease activity led to the redistribution of the nucleolin protein out of the nucleolus, but did not affect nuclear localisation of hnRNP proteins, implying that complete disruption of nucleocytoplasmic transport leading to relocalisation of hnRNP proteins from the nucleus to the cytoplasm in HRV-infected cells almost certainly requires 2A in addition to 3C protease. Thus, a specific role for HRV 3C protease in cleavage and mislocalisation of host cell nuclear proteins, in concert with 2A, is implicated for the first time in HRV pathogenesis. PMID:23951130

  17. Proteolytic Activation of the Essential Parasitophorous Vacuole Cysteine Protease SERA6 Accompanies Malaria Parasite Egress from Its Host Erythrocyte*

    PubMed Central

    Ruecker, Andrea; Shea, Michael; Hackett, Fiona; Suarez, Catherine; Hirst, Elizabeth M. A.; Milutinovic, Katarina; Withers-Martinez, Chrislaine; Blackman, Michael J.

    2012-01-01

    The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV). The PV and host cell membranes eventually rupture, releasing merozoites in a process called egress. Certain inhibitors of serine and cysteine proteases block egress, indicating a crucial role for proteases. The Plasmodium falciparum genome encodes nine serine-repeat antigens (SERAs), each of which contains a central domain homologous to the papain-like (clan CA, family C1) protease family. SERA5 and SERA6 are indispensable in blood-stage parasites, but the function of neither is known. Here we show that SERA6 localizes to the PV where it is precisely cleaved just prior to egress by an essential serine protease called PfSUB1. Mutations that replace the predicted catalytic Cys of SERA6, or that block SERA6 processing by PfSUB1, could not be stably introduced into the parasite genomic sera6 locus, indicating that SERA6 is an essential enzyme and that processing is important for its function. We demonstrate that cleavage of SERA6 by PfSUB1 converts it to an active cysteine protease. Our observations reveal a proteolytic activation step in the malarial PV that may be required for release of the parasite from its host erythrocyte. PMID:22984267

  18. Pseudomonas syringae evades host immunity by degrading flagellin monomers with alkaline protease AprA.

    PubMed

    Pel, Michiel J C; van Dijken, Anja J H; Bardoel, Bart W; Seidl, Michael F; van der Ent, Sjoerd; van Strijp, Jos A G; Pieterse, Corné M J

    2014-07-01

    Bacterial flagellin molecules are strong inducers of innate immune responses in both mammals and plants. The opportunistic pathogen Pseudomonas aeruginosa secretes an alkaline protease called AprA that degrades flagellin monomers. Here, we show that AprA is widespread among a wide variety of bacterial species. In addition, we investigated the role of AprA in virulence of the bacterial plant pathogen P. syringae pv. tomato DC3000. The AprA-deficient DC3000 ΔaprA knockout mutant was significantly less virulent on both tomato and Arabidopsis thaliana. Moreover, infiltration of A. thaliana Col-0 leaves with DC3000 ΔaprA evoked a significantly higher level of expression of the defense-related genes FRK1 and PR-1 than did wild-type DC3000. In the flagellin receptor mutant fls2, pathogen virulence and defense-related gene activation did not differ between DC3000 and DC3000 ΔaprA. Together, these results suggest that AprA of DC3000 is important for evasion of recognition by the FLS2 receptor, allowing wild-type DC3000 to be more virulent on its host plant than AprA-deficient DC3000 ΔaprA. To provide further evidence for the role of DC3000 AprA in host immune evasion, we overexpressed the AprA inhibitory peptide AprI of DC3000 in A. thaliana to counteract the immune evasive capacity of DC3000 AprA. Ectopic expression of aprI in A. thaliana resulted in an enhanced level of resistance against wild-type DC3000, while the already elevated level of resistance against DC3000 ΔaprA remained unchanged. Together, these results indicate that evasion of host immunity by the alkaline protease AprA is important for full virulence of strain DC3000 and likely acts by preventing flagellin monomers from being recognized by its cognate immune receptor. PMID:24654978

  19. A Bacillus anthracis strain deleted for six proteases serves as an effective host for production of recombinant proteins.

    PubMed

    Pomerantsev, Andrei P; Pomerantseva, Olga M; Moayeri, Mahtab; Fattah, Rasem; Tallant, Cynthia; Leppla, Stephen H

    2011-11-01

    Bacillus anthracis produces a number of extracellular proteases that impact the integrity and yield of other proteins in the B. anthracis secretome. In this study we show that anthrolysin O (ALO) and the three anthrax toxin proteins, protective antigen (PA), lethal factor (LF), and edema factor (EF), produced from the B. anthracis Ames 35 strain (pXO1⁺, pXO2⁻), are completely degraded at the onset of stationary phase due to the action of proteases. An improved Cre-loxP gene knockout system was used to sequentially delete the genes encoding six proteases (InhA1, InhA2, camelysin, TasA, NprB, and MmpZ). The role of each protease in degradation of the B. anthracis toxin components and ALO was demonstrated. Levels of the anthrax toxin components and ALO in the supernatant of the sporulation defective, pXO1⁺ A35HMS mutant strain deleted for the six proteases were significantly increased and remained stable over 24 h. A pXO1-free variant of this six-protease mutant strain, designated BH460, provides an improved host strain for the preparation of recombinant proteins. As an example, BH460 was used to produce recombinant EF, which previously has been difficult to obtain from B. anthracis. The EF protein produced from BH460 had the highest in vivo potency of any EF previously purified from B. anthracis or Escherichia coli hosts. BH460 is recommended as an effective host strain for recombinant protein production, typically yielding greater than 10mg pure protein per liter of culture. PMID:21827967

  20. Compatibility in the Ustilago maydis–Maize Interaction Requires Inhibition of Host Cysteine Proteases by the Fungal Effector Pit2

    PubMed Central

    Mueller, André N.; Ziemann, Sebastian; Treitschke, Steffi; Aßmann, Daniela; Doehlemann, Gunther

    2013-01-01

    The basidiomycete Ustilago maydis causes smut disease in maize, with large plant tumors being formed as the most prominent disease symptoms. During all steps of infection, U. maydis depends on a biotrophic interaction, which requires an efficient suppression of plant immunity. In a previous study, we identified the secreted effector protein Pit2, which is essential for maintenance of biotrophy and induction of tumors. Deletion mutants for pit2 successfully penetrate host cells but elicit various defense responses, which stops further fungal proliferation. We now show that Pit2 functions as an inhibitor of a set of apoplastic maize cysteine proteases, whose activity is directly linked with salicylic-acid-associated plant defenses. Consequently, protease inhibition by Pit2 is required for U. maydis virulence. Sequence comparisons with Pit2 orthologs from related smut fungi identified a conserved sequence motif. Mutation of this sequence caused loss of Pit2 function. Consequently, expression of the mutated protein in U. maydis could not restore virulence of the pit2 deletion mutant, indicating that the protease inhibition by Pit2 is essential for fungal virulence. Moreover, synthetic peptides of the conserved sequence motif showed full activity as protease inhibitor, which identifies this domain as a new, minimal protease inhibitor domain in plant-pathogenic fungi. PMID:23459172

  1. Angiostrongylus cantonensis cathepsin B-like protease (Ac-cathB-1) is involved in host gut penetration

    PubMed Central

    Long, Ying; Cao, Binbin; Yu, Liang; Tukayo, Meks; Feng, Chonglv; Wang, Yinan; Luo, Damin

    2015-01-01

    Although the global spread of the emerging zoonosis, human angiostrongyliasis, has attracted increasing attention, understanding of specific gene function has been impeded by the inaccessibility of genetic manipulation of the pathogen nematode causing this disease, Angiostrongylus cantonensis. Many parasitic proteases play key roles in host-parasite interactions, but those of A. cantonensis are always expressed as the inactive form in prokaryotic expression systems, thereby impeding functional studies. Hence, a lentiviral system that drives secreted expression of target genes fused to a Myc-His tag was used to obtain recombinant Ac-cathB-1 with biological activity. Although this class of proteases was always reported to function in nutrition and immune evasion in parasitic nematodes, recombinant Ac-cathB-1 was capable of hydrolysis of fibronectin and laminin as well as the extracellular matrix of IEC-6 monolayer, so that the intercellular space of the IEC-6 monolayer increased 5.15 times as compared to the control, while the shape of the adherent cells partly rounded up. This suggests a probable role for this protease in intestinal epithelial penetration. The inhibition of Ac-cathB-1 enzymatic activity with antiserum partly suppressed larval penetration ability in the isolated intestine. Thus, an effective system for heterologous expression of parasite proteases is presented for studying gene function in A. cantonensis; and Ac-cathB-1 was related to larval penetration ability in the host small intestine. PMID:26682577

  2. Molecular Mechanisms of Viral and Host Cell Substrate Recognition by Hepatitis C Virus NS3/4A Protease

    SciTech Connect

    Romano, Keith P.; Laine, Jennifer M.; Deveau, Laura M.; Cao, Hong; Massi, Francesca; Schiffer, Celia A.

    2011-08-16

    Hepatitis C NS3/4A protease is a prime therapeutic target that is responsible for cleaving the viral polyprotein at junctions 3-4A, 4A4B, 4B5A, and 5A5B and two host cell adaptor proteins of the innate immune response, TRIF and MAVS. In this study, NS3/4A crystal structures of both host cell cleavage sites were determined and compared to the crystal structures of viral substrates. Two distinct protease conformations were observed and correlated with substrate specificity: (i) 3-4A, 4A4B, 5A5B, and MAVS, which are processed more efficiently by the protease, form extensive electrostatic networks when in complex with the protease, and (ii) TRIF and 4B5A, which contain polyproline motifs in their full-length sequences, do not form electrostatic networks in their crystal complexes. These findings provide mechanistic insights into NS3/4A substrate recognition, which may assist in a more rational approach to inhibitor design in the face of the rapid acquisition of resistance.

  3. Identification of homologues to the pathogenicity factor Pat-1, a putative serine protease of Clavibacter michiganensis subsp. michiganensis.

    PubMed

    Burger, Annette; Gräfen, Ines; Engemann, Jutta; Niermann, Erik; Pieper, Martina; Kirchner, Oliver; Gartemann, Karl-Heinz; Eichenlaub, Rudolf

    2005-01-01

    Hybridization of Clavibacter michiganensis subsp. michiganensis total DNA against the pathogenicity gene pat-1 indicated the presence of pat-1 homologous nucleotide sequences on the chromosome and on plasmid pCM2. Isolation of the corresponding DNA fragments and nucleotide sequence determination showed that there are three pat-1 homologous genes: chpA (chromosome) and phpA and phpB (plasmid pCM2). The gene products share common characteristics, i.e. a signal sequence for Sec-dependent secretion, a serine protease motif, and six cysteine residues at conserved positions. Gene chpA located on the chromosome is a pseudogene since it contains a translational stop codon after 97 of 280 amino acids. In contrast to pat-1, cloning of the plasmid encoded homologs phpA and phpB into the avirulent plasmid free Cmm strain CMM100 did not result in a virulent phenotype. So far, no proteolytic activity could be demonstrated for Pat-1, however, site specific mutagenesis of pat-1 showed that the serine residue in the motif GDSGG is required for the virulent phenotype of pat-1 and thus Pat-1 could be a functional protease. PMID:16255147

  4. Putative Bioalteration Textures Hosted Within Impact Melt Glasses From the Ries Crater, Germany

    NASA Astrophysics Data System (ADS)

    Sapers, H. M.; Osinski, G. R.; Banerjee, N. R.

    2009-05-01

    Impact cratering is a ubiquitous geological process on solid bodies. Any hypervelocity impact into a H2O- rich target has the potential to generate hydrothermal systems [1]. Recent research has suggested that such impact-induced environments may be conducive to microbial colonization [e.g., 2]. Bioalteration of terrestrial basaltic glasses produces characteristic tubular and granular aggregate textures. Such bioalteration textures preserved in Archean greenstone belts constitute one of the oldest records of life on Earth [3]. Our examination of glasses from the Ries crater in Germany has revealed tubular textures with remarkably similar morphologies to those seen in volcanic glasses. The hyperthermophilic root of the 16S phylogenic tree of life suggests an essential role for thermophilic environments in the origin or the early evolutionary history of life on Earth. Previous work has associated primitive life on Earth with submarine volcanic activity suggesting that submarine hydrothermal settings may have played an essential role in the origin of life [e.g., 4]. Impact-induced hydrothermal systems share many characteristics with submarine volcanic hydrothermal systems including the presence of chemical and thermal energy for microbial metabolism. Interestingly, the Late Heavy Bombardment period, during which life purportedly arose on Earth, was characterized by a high impact flux. Thus, impact-generated habitats were likely much more common on Earth than submarine hydrothermal systems suggesting the former as a more statistically probable habitat for the origin of life. Here we present preliminary data characterizing the putative bioalteration structures hosted within the Ries impact glasses. Establishing the biogenecity of the alteration structures observed in these glasses may have significant astrobiological implications: impact glasses share many similarities with volcanic glasses, however, fundamental differences make impact glasses unique geochemical systems

  5. Fundamental Roles of the Golgi-Associated Toxoplasma Aspartyl Protease, ASP5, at the Host-Parasite Interface

    PubMed Central

    Hammoudi, Pierre-Mehdi; Jacot, Damien; Mueller, Christina; Di Cristina, Manlio; Dogga, Sunil Kumar; Marq, Jean-Baptiste; Romano, Julia; Tosetti, Nicolò; Dubrot, Juan; Emre, Yalin; Lunghi, Matteo; Coppens, Isabelle; Yamamoto, Masahiro; Sojka, Daniel; Pino, Paco; Soldati-Favre, Dominique

    2015-01-01

    Toxoplasma gondii possesses sets of dense granule proteins (GRAs) that either assemble at, or cross the parasitophorous vacuole membrane (PVM) and exhibit motifs resembling the HT/PEXEL previously identified in a repertoire of exported Plasmodium proteins. Within Plasmodium spp., cleavage of the HT/PEXEL motif by the endoplasmic reticulum-resident protease Plasmepsin V precedes trafficking to and export across the PVM of proteins involved in pathogenicity and host cell remodelling. Here, we have functionally characterized the T. gondii aspartyl protease 5 (ASP5), a Golgi-resident protease that is phylogenetically related to Plasmepsin V. We show that deletion of ASP5 causes a significant loss in parasite fitness in vitro and an altered virulence in vivo. Furthermore, we reveal that ASP5 is necessary for the cleavage of GRA16, GRA19 and GRA20 at the PEXEL-like motif. In the absence of ASP5, the intravacuolar nanotubular network disappears and several GRAs fail to localize to the PVM, while GRA16 and GRA24, both known to be targeted to the host cell nucleus, are retained within the vacuolar space. Additionally, hypermigration of dendritic cells and bradyzoite cyst wall formation are impaired, critically impacting on parasite dissemination and persistence. Overall, the absence of ASP5 dramatically compromises the parasite’s ability to modulate host signalling pathways and immune responses. PMID:26473595

  6. Prediction and biochemical analysis of putative cleavage sites of the 3C-like protease of Middle East respiratory syndrome coronavirus.

    PubMed

    Wu, Andong; Wang, Yi; Zeng, Cong; Huang, Xingyu; Xu, Shan; Su, Ceyang; Wang, Min; Chen, Yu; Guo, Deyin

    2015-10-01

    Coronavirus 3C-like protease (3CLpro) is responsible for the cleavage of coronaviral polyprotein 1a/1ab (pp1a/1ab) to produce the mature non-structural proteins (nsps) of nsp4-16. The nsp5 of the newly emerging Middle East respiratory syndrome coronavirus (MERS-CoV) was identified as 3CLpro and its canonical cleavage sites (between nsps) were predicted based on sequence alignment, but the cleavability of these cleavage sites remains to be experimentally confirmed and putative non-canonical cleavage sites (inside one nsp) within the pp1a/1ab awaits further analysis. Here, we proposed a method for predicting coronaviral 3CLpro cleavage sites which balances the prediction accuracy and false positive outcomes. By applying this method to MERS-CoV, the 11 canonical cleavage sites were readily identified and verified by the biochemical assays. The Michaelis constant of the canonical cleavage sites of MERS-CoV showed that the substrate specificity of MERS-CoV 3CLpro is relatively conserved. Interestingly, nine putative non-canonical cleavage sites were predicted and three of them could be cleaved by MERS-CoV nsp5. These results pave the way for identification and functional characterization of new nsp products of coronaviruses. PMID:26036787

  7. The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host.

    PubMed

    Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B Brett; Turvey, Stuart E; Vallance, Bruce A

    2015-07-01

    Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed "protein involved in colonization," or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system. PMID:25895966

  8. The Serine Protease Autotransporter Pic Modulates Citrobacter rodentium Pathogenesis and Its Innate Recognition by the Host

    PubMed Central

    Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B. Brett; Turvey, Stuart E.

    2015-01-01

    Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed “protein involved in colonization,” or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system. PMID:25895966

  9. Identification and Characterization of a Novel Aspergillus fumigatus Rhomboid Family Putative Protease, RbdA, Involved in Hypoxia Sensing and Virulence.

    PubMed

    Vaknin, Yakir; Hillmann, Falk; Iannitti, Rossana; Ben Baruch, Netali; Sandovsky-Losica, Hana; Shadkchan, Yona; Romani, Luigina; Brakhage, Axel; Kniemeyer, Olaf; Osherov, Nir

    2016-06-01

    Aspergillus fumigatus is the most common pathogenic mold infecting humans and a significant cause of morbidity and mortality in immunocompromised patients. In invasive pulmonary aspergillosis, A. fumigatus spores are inhaled into the lungs, undergoing germination and invasive hyphal growth. The fungus occludes and disrupts the blood vessels, leading to hypoxia and eventual tissue necrosis. The ability of this mold to adapt to hypoxia is regulated in part by the sterol regulatory element binding protein (SREBP) SrbA and the DscA to DscD Golgi E3 ligase complex critical for SREBP activation by proteolytic cleavage. Loss of the genes encoding these proteins results in avirulence. To identify novel regulators of hypoxia sensing, we screened the Neurospora crassa gene deletion library under hypoxia and identified a novel rhomboid family protease essential for hypoxic growth. Deletion of the A. fumigatus rhomboid homolog rbdA resulted in an inability to grow under hypoxia, hypersensitivity to CoCl2, nikkomycin Z, fluconazole, and ferrozine, abnormal swollen tip morphology, and transcriptional dysregulation-accurately phenocopying deletion of srbA. In vivo, rbdA deletion resulted in increased sensitivity to phagocytic killing, a reduced inflammatory Th1 and Th17 response, and strongly attenuated virulence. Phenotypic rescue of the ΔrbdA mutant was achieved by expression and nuclear localization of the N terminus of SrbA, including its HLH domain, further indicating that RbdA and SrbA act in the same signaling pathway. In summary, we have identified RbdA, a novel putative rhomboid family protease in A. fumigatus that mediates hypoxia adaptation and fungal virulence and that is likely linked to SrbA cleavage and activation. PMID:27068092

  10. Effects of Host Sex, Plant Species, and Putative Host Species on the Prevalence of Wolbachia in Natural Populations of Bemisia tabaci (Hemiptera: Aleyrodidae): A Modified Nested PCR Study.

    PubMed

    Ji, Han-Le; Qi, Lan-Da; Hong, Xiao-Yue; Xie, Hong-Fang; Li, Yuan-Xi

    2015-02-01

    Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a globally distributed pest. One of the key endosymbionts in B. tabaci is Wolbachia, an α-proteobacterium implicated in many important biological processes. Previous studies indicated that the infection frequency of Wolbachia in Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) varied greatly among populations in different areas. However, little is known about the factors that influence the prevalence of Wolbachia in B. tabaci. In this paper, 25 field populations were collected from different locations in China, and 1,161 individuals were screened for the presence of Wolbachia using a nested polymerase chain reaction (PCR)-based method, which targets the wsp gene, to confirm Wolbachia infection status. The prevalence of Wolbachia ranged from 1.54 to 66.67% within the 25 field populations, and the infection frequency of Wolbachia was affected significantly by the putative species of B. tabaci. The infection frequency (51.55%) of Wolbachia was significantly greater in native species than in the MED (25.65%) and MEAM1 (14.37%). With the exception of host plant, all factors, including putative species, geographic location, and the sex of the host, affected the Wolbachia infection frequency in whiteflies. Six Wolbachia strains were found and clustered into four distinct clades upon phylogenetic analyses. Furthermore, Wolbachia in B. tabaci have close relationships with those from other host species, including Liriomyza trifolii (Burgess), Sogatella furcifera (Horvath), Nilaparvata lugens (Stål), and Culex pipiens L. The results demonstrated the variation and diversity of Wolbachia in B. tabaci field populations, and that the application of nested PCR extended our knowledge of Wolbachia infection in B. tabaci, especially in invasive whiteflies. PMID:26470122

  11. Inhibition of soybean seeds in warm water results in the release of copious amounts of Bowman-Birk protease inhibitor, a putative anticarcinogenic agent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protease inhibitors play a protective role against pathogenic microorganisms and herbivorous insects. The two predominant protease inhibitors of soybean seeds are the Kunitz trypsin inhibitor (KTI) and Bowman-Birk protease inhibitor (BBI). In this study we report that soybean seeds incubated in war...

  12. Different host cell proteases activate the SARS-coronavirus spike-protein for cell-cell and virus-cell fusion

    SciTech Connect

    Simmons, Graham; Bertram, Stephanie; Glowacka, Ilona; Steffen, Imke; Chaipan, Chawaree; Agudelo, Juliet; Lu Kai; Rennekamp, Andrew J.; Hofmann, Heike; Bates, Paul; Poehlmann, Stefan

    2011-05-10

    Severe acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined. We found that R667 was dispensable for SARS-S-driven virus-cell fusion and for SARS-S-activation by trypsin and cathepsin L in a virus-virus fusion assay. Mutation T760R, which optimizes the minimal furin consensus motif 758-RXXR-762, and furin overexpression augmented SARS-S activity, but did not result in detectable SARS-S cleavage. Finally, SARS-S-driven cell-cell fusion was independent of cathepsin L, a protease essential for virus-cell fusion. Instead, a so far unknown leupeptin-sensitive host cell protease activated cellular SARS-S for fusion with target cells expressing high levels of ACE2. Thus, different host cell proteases activate SARS-S for virus-cell and cell-cell fusion and SARS-S cleavage at R667 and 758-RXXR-762 can be dispensable for SARS-S activation.

  13. Serine protease inhibitors of parasitic helminths.

    PubMed

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships. PMID:22310379

  14. Human Transbodies to HCV NS3/4A Protease Inhibit Viral Replication and Restore Host Innate Immunity

    PubMed Central

    Jittavisutthikul, Surasak; Seesuay, Watee; Thanongsaksrikul, Jeeraphong; Thueng-in, Kanyarat; Srimanote, Potjanee; Werner, Rolf G.; Chaicumpa, Wanpen

    2016-01-01

    A safe and effective direct acting anti-hepatitis C virus (HCV) agent is still needed. In this study, human single chain variable fragments of antibody (scFvs) that bound to HCV NS3/4A protein were produced by phage display technology. The engineered scFvs were linked to nonaarginines (R9) for making them cell penetrable. HCV-RNA-transfected Huh7 cells treated with the transbodies produced from four different transformed E. coli clones had reduced HCV-RNA inside the cells and in the cell spent media, as well as fewer HCV foci in the cell monolayer compared to the transfected cells in culture medium alone. The transbodies-treated transfected cells also had up-expression of the genes coding for the host innate immune response, including TRIF, TRAF3, IRF3, IL-28B, and IFN-β. Computerized homology modeling and intermolecular docking predicted that the effective transbodies interacted with several critical residues of the NS3/4A protease, including those that form catalytic triads, oxyanion loop, and S1 and S6 pockets, as well as a zinc-binding site. Although insight into molecular mechanisms of the transbodies need further laboratory investigation, it can be deduced from the current data that the transbodies blocked the HCV NS3/4A protease activities, leading to the HCV replication inhibition and restoration of the virally suppressed host innate immunity. The engineered antibodies should be tested further for treatment of HCV infection either alone, in combination with current therapeutics, or in a mixture with their cognates specific to other HCV proteins. PMID:27617013

  15. Human Transbodies to HCV NS3/4A Protease Inhibit Viral Replication and Restore Host Innate Immunity.

    PubMed

    Jittavisutthikul, Surasak; Seesuay, Watee; Thanongsaksrikul, Jeeraphong; Thueng-In, Kanyarat; Srimanote, Potjanee; Werner, Rolf G; Chaicumpa, Wanpen

    2016-01-01

    A safe and effective direct acting anti-hepatitis C virus (HCV) agent is still needed. In this study, human single chain variable fragments of antibody (scFvs) that bound to HCV NS3/4A protein were produced by phage display technology. The engineered scFvs were linked to nonaarginines (R9) for making them cell penetrable. HCV-RNA-transfected Huh7 cells treated with the transbodies produced from four different transformed E. coli clones had reduced HCV-RNA inside the cells and in the cell spent media, as well as fewer HCV foci in the cell monolayer compared to the transfected cells in culture medium alone. The transbodies-treated transfected cells also had up-expression of the genes coding for the host innate immune response, including TRIF, TRAF3, IRF3, IL-28B, and IFN-β. Computerized homology modeling and intermolecular docking predicted that the effective transbodies interacted with several critical residues of the NS3/4A protease, including those that form catalytic triads, oxyanion loop, and S1 and S6 pockets, as well as a zinc-binding site. Although insight into molecular mechanisms of the transbodies need further laboratory investigation, it can be deduced from the current data that the transbodies blocked the HCV NS3/4A protease activities, leading to the HCV replication inhibition and restoration of the virally suppressed host innate immunity. The engineered antibodies should be tested further for treatment of HCV infection either alone, in combination with current therapeutics, or in a mixture with their cognates specific to other HCV proteins. PMID:27617013

  16. Serine Protease-mediated Host Invasion by the Parasitic Nematode Steinernema carpocapsae*

    PubMed Central

    Toubarro, Duarte; Lucena-Robles, Miguel; Nascimento, Gisela; Santos, Romana; Montiel, Rafael; Veríssimo, Paula; Pires, Euclides; Faro, Carlos; Coelho, Ana V.; Simões, Nelson

    2010-01-01

    Steinernema carpocapsae is an insect parasitic nematode used in biological control, which infects insects penetrating by mouth and anus and invading the hemocoelium through the midgut wall. Invasion has been described as a key factor in nematode virulence and suggested to be mediated by proteases. A serine protease cDNA from the parasitic stage was sequenced (sc-sp-1); the recombinant protein was produced in an Escherichia coli system, and a native protein was purified from the secreted products. Both proteins were confirmed by mass spectrometry to be encoded by the sc-sp-1 gene. Sc-SP-1 has a pI of 8.7, a molecular mass of 27.3 kDa, a catalytic efficiency of 22.2 × 104 s−1 m−1 against N-succinyl-Ala-Ala-Pro-Phe-pNA, and is inhibited by chymostatin (IC 0.07) and PMSF (IC 0.73). Sc-SP-1 belongs to the chymotrypsin family, based on sequence and biochemical analysis. Only the nematode parasitic stage expressed sc-sp-1. These nematodes in the midgut lumen, prepared to invade the insect hemocoelium, expressed higher levels than those already in the hemocoelium. Moreover, parasitic nematode sense insect peritrophic membrane and hemolymph more quickly than they do other tissues, which initiates sc-sp-1 expression. Ex vivo, Sc-SP-1 was able to bind to insect midgut epithelium and to cause cell detachment from basal lamina. In vitro, Sc-SP-1 formed holes in an artificial membrane model (Matrigel), whereas Sc-SP-1 treated with PMSF did not, very likely because it hydrolyzes matrix glycoproteins. These findings highlight the S. carpocapsae-invasive process that is a key step in the parasitism thus opening new perspectives for improving nematode virulence to use in biological control. PMID:20656686

  17. Exoerythrocytic Plasmodium Parasites Secrete a Cysteine Protease Inhibitor Involved in Sporozoite Invasion and Capable of Blocking Cell Death of Host Hepatocytes

    PubMed Central

    Rennenberg, Annika; Lehmann, Christine; Heitmann, Anna; Witt, Tina; Hansen, Guido; Nagarajan, Krishna; Deschermeier, Christina; Turk, Vito; Hilgenfeld, Rolf; Heussler, Volker T.

    2010-01-01

    Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death. PMID:20361051

  18. Schistosome serine protease inhibitors: parasite defense or homeostasis?

    PubMed Central

    Lopez Quezada, Landys A.; McKerrow, James H.

    2016-01-01

    Serpins are a structurally conserved family of macromolecular inhibitors found in numerous biological systems. The completion and annotation of the genomes of Schistosoma mansoni and Schistosoma japonicum has enabled the identification by phylogenetic analysis of two major serpin clades. S. mansoni shows a greater multiplicity of serpin genes, perhaps reflecting adaptation to infection of a human host. Putative targets of schistosome serpins can be predicted from the sequence of the reactive center loop (RCL). Schistosome serpins may play important roles in both post-translational regulation of schistosome-derived proteases, as well as parasite defense mechanisms against the action of host proteases. PMID:21670886

  19. PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection.

    PubMed

    Zhang, Yong; Mao, Dailing; Roswit, William T; Jin, Xiaohua; Patel, Anand C; Patel, Dhara A; Agapov, Eugene; Wang, Zhepeng; Tidwell, Rose M; Atkinson, Jeffrey J; Huang, Guangming; McCarthy, Ronald; Yu, Jinsheng; Yun, Nadezhda E; Paessler, Slobodan; Lawson, T Glen; Omattage, Natalie S; Brett, Tom J; Holtzman, Michael J

    2015-12-01

    Enhancing the response to interferon could offer an immunological advantage to the host. In support of this concept, we used a modified form of the transcription factor STAT1 to achieve hyper-responsiveness to interferon without toxicity and markedly improve antiviral function in transgenic mice and transduced human cells. We found that the improvement depended on expression of a PARP9-DTX3L complex with distinct domains for interaction with STAT1 and for activity as an E3 ubiquitin ligase that acted on host histone H2BJ to promote interferon-stimulated gene expression and on viral 3C proteases to degrade these proteases via the immunoproteasome. Thus, PARP9-DTX3L acted on host and pathogen to achieve a double layer of immunity within a safe reserve in the interferon signaling pathway. PMID:26479788

  20. Host Factors That Interact with the Pestivirus N-Terminal Protease, Npro, Are Components of the Ribonucleoprotein Complex

    PubMed Central

    Jefferson, Matthew; Donaszi-Ivanov, Andras; Pollen, Sean; Dalmay, Tamas; Saalbach, Gerhard

    2014-01-01

    prevent apoptosis and interferon production during infection, the function of this unique viral protease in the pestivirus life cycle remains to be elucidated. We used proteomic mass spectrometry to identify novel interacting proteins and have shown that Npro is present in ribosomal and ribonucleoprotein particles (RNPs), indicating a translational role in virus particle production. The virus itself can prevent stress granule assembly from these complexes, but this inhibition is not due to Npro. A proviral role to subvert RNA silencing through binding of these host RNP proteins was not identified for this viral suppressor of interferon. PMID:24965446

  1. Endosymbiotic and Host Proteases in the Digestive Tract of the Invasive Snail Pomacea canaliculata: Diversity, Origin and Characterization

    PubMed Central

    Godoy, Martín S.; Castro-Vasquez, Alfredo; Vega, Israel A.

    2013-01-01

    Digestive proteases of the digestive tract of the apple snail Pomacea canaliculata were studied. Luminal protease activity was found in the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Several protease bands and their apparent molecular weights were identified in both tissue extracts and luminal contents by gel zymography: (1) a 125 kDa protease in salivary gland extracts and in the crop content; (2) a 30 kDa protease throughout all studied luminal contents and in extracts of the midgut gland and of the endosymbionts isolated from this gland; (3) two proteases of 145 and 198 kDa in the coiled gut content. All these proteases were inhibited by aprotinin, a serine-protease inhibitor, and showed maximum activity between 30°C and 35°C and pH between 8.5 and 9.5. Tissue L-alanine-N-aminopeptidase activity was determined in the wall of the crop, the style sac and the coiled gut and was significantly higher in the coiled gut. Our findings show that protein digestion in P. canaliculata is carried out through a battery of diverse proteases originated from the salivary glands and the endosymbionts lodged in the midgut gland and by proteases of uncertain origin that occur in the coiled gut lumen. PMID:23818959

  2. The role of endogenous and exogenous enzymes in chronic wounds: a focus on the implications of aberrant levels of both host and bacterial proteases in wound healing.

    PubMed

    McCarty, Sara M; Cochrane, Christine A; Clegg, Peter D; Percival, Steven L

    2012-01-01

    Cutaneous wound healing is orchestrated by a number of physiological pathways that ultimately lead to reformation of skin integrity and the production of functional scar tissue. The remodeling of a wound is significantly affected by matrix metalloproteinases (MMPs), which act to control the degradation of the extracellular matrix (ECM). Regulation of MMPs is imperative for wound healing as excessive levels of MMPs can lead to disproportionate destruction of the wound ECM compared to ECM deposition. In addition to human MMPs, bacterial proteases have been found to be influential in tissue breakdown and, as such, have a role to play in the healing of infected wounds. For example, the zinc-metalloproteinase, elastase, produced by Pseudomonas aeruginosa, induces degradation of fibroblast proteins and proteoglycans in chronic wounds and has also been shown to degrade host immune cell mediators. Microbial extracellular enzymes have also been shown to degrade human wound fluid and inhibit fibroblast cell growth. It is now being acknowledged that host and bacterial MMPs may act synergistically to cause tissue breakdown within the wound bed. Several studies have suggested that bacterial-derived secreted proteases may act to up-regulate the levels of MMPs produced by the host cells. Together, these findings indicate that bacterial phenotype in terms of protease producing potential of bacteria should be taken into consideration during diagnostic and clinical intervention of infected wound management. Furthermore, both host MMPs and those derived from infecting bacteria need to be targeted in order to increase the healing capacity of the injured tissue. The aim of this review is to investigate the evidence suggestive of a relationship between unregulated levels of both host and bacterial proteases and delayed wound healing. PMID:22380687

  3. HtrA, a Temperature- and Stationary Phase-Activated Protease Involved in Maturation of a Key Microbial Virulence Determinant, Facilitates Borrelia burgdorferi Infection in Mammalian Hosts.

    PubMed

    Ye, Meiping; Sharma, Kavita; Thakur, Meghna; Smith, Alexis A; Buyuktanir, Ozlem; Xiang, Xuwu; Yang, Xiuli; Promnares, Kamoltip; Lou, Yongliang; Yang, X Frank; Pal, Utpal

    2016-08-01

    High-temperature requirement protease A (HtrA) represents a family of serine proteases that play important roles in microbial biology. Unlike the genomes of most organisms, that of Borrelia burgdorferi notably encodes a single HtrA gene product, termed BbHtrA. Previous studies identified a few substrates of BbHtrA; however, their physiological relevance could not be ascertained, as targeted deletion of the gene has not been successful. Here we show that BbhtrA transcripts are induced during spirochete growth either in the stationary phase or at elevated temperature. Successful generation of a BbhtrA deletion mutant and restoration by genetic complementation suggest a nonessential role for this protease in microbial viability; however, its remarkable growth, morphological, and structural defects during cultivation at 37°C confirm a high-temperature requirement for protease activation and function. The BbhtrA-deficient spirochetes were unable to establish infection of mice, as evidenced by assessment of culture, PCR, and serology. We show that transcript abundance as well as proteolytic processing of a borrelial protein required for cell fission and infectivity, BB0323, is impaired in BbhtrA mutants grown at 37°C, which likely contributed to their inability to survive in a mammalian host. Together, these results demonstrate the physiological relevance of a unique temperature-regulated borrelial protease, BbHtrA, which further enlightens our knowledge of intriguing aspects of spirochete biology and infectivity. PMID:27271745

  4. An Effector-Targeted Protease Contributes to Defense against Phytophthora infestans and Is under Diversifying Selection in Natural Hosts1[W

    PubMed Central

    Kaschani, Farnusch; Shabab, Mohammed; Bozkurt, Tolga; Shindo, Takayuki; Schornack, Sebastian; Gu, Christian; Ilyas, Muhammad; Win, Joe; Kamoun, Sophien; van der Hoorn, Renier A.L.

    2010-01-01

    Since the leaf apoplast is a primary habitat for many plant pathogens, apoplastic proteins are potent, ancient targets for apoplastic effectors secreted by plant pathogens. So far, however, only a few apoplastic effector targets have been identified and characterized. Here, we discovered that the papain-like cysteine protease C14 is a new common target of EPIC1 and EPIC2B, two apoplastic, cystatin-like proteins secreted by the potato (Solanum tuberosum) late blight pathogen Phytophthora infestans. C14 is a secreted protease of tomato (Solanum lycopersicum) and potato typified by a carboxyl-terminal granulin domain. The EPIC-C14 interaction occurs at a wide pH range and is stronger than the previously described interactions of EPICs with tomato defense proteases PIP1 and RCR3. The selectivity of the EPICs is also different when compared with the AVR2 effector of the fungal tomato pathogen Cladosporium fulvum, which targets PIP1 and RCR3, and only at apoplastic pH. Importantly, silencing of C14 increased susceptibility to P. infestans, demonstrating that this protease plays a role in pathogen defense. Although C14 is under conservative selection in tomato, it is under diversifying selection in wild potato species (Solanum demissum, Solanum verrucosum, and Solanum stoliniferum) that are the natural hosts of P. infestans. These data reveal a novel effector target in the apoplast that contributes to immunity and is under diversifying selection, but only in the natural host of the pathogen. PMID:20940351

  5. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    PubMed

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses. PMID:25606855

  6. Analysis of Putative Apoplastic Effectors from the Nematode, Globodera rostochiensis, and Identification of an Expansin-Like Protein That Can Induce and Suppress Host Defenses

    PubMed Central

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses. PMID:25606855

  7. PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection

    PubMed Central

    Zhang, Yong; Mao, Dailing; Roswit, William T.; Jin, Xiaohua; Patel, Anand C.; Patel, Dhara A.; Agapov, Eugene; Wang, Zhepeng; Tidwell, Rose M.; Atkinson, Jeffrey J.; Huang, Guangming; McCarthy, Ronald; Yu, Jinsheng; Yun, Nadezhda E.; Paessler, Slobodan; Lawson, T. Glen; Omattage, Natalie S.; Brett, Tom J.; Holtzman, Michael J.

    2015-01-01

    Enhancing the response to interferon could offer an immunological advantage to the host. In support of this concept, we used a modified form of the transcription factor STAT1 to achieve interferon hyperresponsiveness without toxicity and markedly improve antiviral function in transgenic mice and transduced human cells. We found that the improvement depends on expression of a PARP9-DTX3L complex with distinct domains for interaction with STAT1 and for activity as an E3 ubiquitin ligase that acts on host histone H2BJ to promote interferon-stimulated gene expression and on viral 3C proteases to initiate their degradation via the immunoproteasome. Together, PARP9-DTX3L acts on host and pathogen to achieve a double layer of immunity within a safe reserve in the interferon signaling pathway. PMID:26479788

  8. The Xenopus laevis Atg4B Protease: Insights into Substrate Recognition and Application for Tag Removal from Proteins Expressed in Pro- and Eukaryotic Hosts

    PubMed Central

    Frey, Steffen; Görlich, Dirk

    2015-01-01

    During autophagy, members of the ubiquitin-like Atg8 protein family get conjugated to phosphatidylethanolamine and act as protein-recruiting scaffolds on the autophagosomal membrane. The Atg4 protease produces mature Atg8 from C-terminally extended precursors and deconjugates lipid-bound Atg8. We now found that Xenopus laevis Atg4B (xAtg4B) is ideally suited for proteolytic removal of N-terminal tags from recombinant proteins. To implement this strategy, an Atg8 cleavage module is inserted in between tag and target protein. An optimized xAtg4B protease fragment includes the so far uncharacterized C-terminus, which crucially contributes to recognition of the Xenopus Atg8 homologs xLC3B and xGATE16. xAtg4B-mediated tag cleavage is very robust in solution or on-column, efficient at 4°C and orthogonal to TEV protease and the recently introduced proteases bdSENP1, bdNEDP1 and xUsp2. Importantly, xLC3B fusions are stable in wheat germ extract or when expressed in Saccharomyces cerevisiae, but cleavable by xAtg4B during or following purification. We also found that fusions to the bdNEDP1 substrate bdNEDD8 are stable in S. cerevisiae. In combination, or findings now provide a system, where proteins and complexes fused to xLC3B or bdNEDD8 can be expressed in a eukaryotic host and purified by successive affinity capture and proteolytic release steps. PMID:25923686

  9. The Xenopus laevis Atg4B Protease: Insights into Substrate Recognition and Application for Tag Removal from Proteins Expressed in Pro- and Eukaryotic Hosts.

    PubMed

    Frey, Steffen; Görlich, Dirk

    2015-01-01

    During autophagy, members of the ubiquitin-like Atg8 protein family get conjugated to phosphatidylethanolamine and act as protein-recruiting scaffolds on the autophagosomal membrane. The Atg4 protease produces mature Atg8 from C-terminally extended precursors and deconjugates lipid-bound Atg8. We now found that Xenopus laevis Atg4B (xAtg4B) is ideally suited for proteolytic removal of N-terminal tags from recombinant proteins. To implement this strategy, an Atg8 cleavage module is inserted in between tag and target protein. An optimized xAtg4B protease fragment includes the so far uncharacterized C-terminus, which crucially contributes to recognition of the Xenopus Atg8 homologs xLC3B and xGATE16. xAtg4B-mediated tag cleavage is very robust in solution or on-column, efficient at 4°C and orthogonal to TEV protease and the recently introduced proteases bdSENP1, bdNEDP1 and xUsp2. Importantly, xLC3B fusions are stable in wheat germ extract or when expressed in Saccharomyces cerevisiae, but cleavable by xAtg4B during or following purification. We also found that fusions to the bdNEDP1 substrate bdNEDD8 are stable in S. cerevisiae. In combination, or findings now provide a system, where proteins and complexes fused to xLC3B or bdNEDD8 can be expressed in a eukaryotic host and purified by successive affinity capture and proteolytic release steps. PMID:25923686

  10. Venom gland EST analysis of the saw-scaled viper, Echis ocellatus, reveals novel alpha9beta1 integrin-binding motifs in venom metalloproteinases and a new group of putative toxins, renin-like aspartic proteases.

    PubMed

    Wagstaff, Simon C; Harrison, Robert A

    2006-08-01

    Echis ocellatus is the most medically important snake in West Africa. However, the composition of its venom and the differential contribution of these venom components to the severe haemorrhagic and coagulopathic pathology of envenoming are poorly understood. To address this situation we assembled a toxin transcriptome based upon 1000 expressed sequence tags (EST) from a cDNA library constructed from pooled venom glands of 10 individual E. ocellatus. We used a variety of bioinformatic tools to construct a fully annotated venom-toxin transcriptome that was interrogated with a combination of BLAST annotation, gene ontology cataloguing and disintegrin-motif searching. The results of these analyses revealed an unusually abundant and diverse expression of snake venom metalloproteinases (SVMP) and a broad toxin-expression profile including several distinct isoforms of bradykinin-potentiating peptides, phospholipase A(2), C-type lectins, serine proteinases and l-amino oxidases. Most significantly, we identified for the first time a conserved alpha(9)beta(1) integrin-binding motif in several SVMPs, and a new group of putative venom toxins, renin-like aspartic proteases. PMID:16713134

  11. Deubiquitinase function of arterivirus papain-like protease 2 suppresses the innate immune response in infected host cells

    PubMed Central

    van Kasteren, Puck B.; Bailey-Elkin, Ben A.; James, Terrence W.; Ninaber, Dennis K.; Beugeling, Corrine; Khajehpour, Mazdak; Snijder, Eric J.; Mark, Brian L.; Kikkert, Marjolein

    2013-01-01

    Protein ubiquitination regulates important innate immune responses. The discovery of viruses encoding deubiquitinating enzymes (DUBs) suggests they remove ubiquitin to evade ubiquitin-dependent antiviral responses; however, this has never been conclusively demonstrated in virus-infected cells. Arteriviruses are economically important positive-stranded RNA viruses that encode an ovarian tumor (OTU) domain DUB known as papain-like protease 2 (PLP2). This enzyme is essential for arterivirus replication by cleaving a site within the viral replicase polyproteins and also removes ubiquitin from cellular proteins. To dissect this dual specificity, which relies on a single catalytic site, we determined the crystal structure of equine arteritis virus PLP2 in complex with ubiquitin (1.45 Å). PLP2 binds ubiquitin using a zinc finger that is uniquely integrated into an exceptionally compact OTU-domain fold that represents a new subclass of zinc-dependent OTU DUBs. Notably, the ubiquitin-binding surface is distant from the catalytic site, which allowed us to mutate this surface to significantly reduce DUB activity without affecting polyprotein cleavage. Viruses harboring such mutations exhibited WT replication kinetics, confirming that PLP2-mediated polyprotein cleavage was intact, but the loss of DUB activity strikingly enhanced innate immune signaling. Compared with WT virus infection, IFN-β mRNA levels in equine cells infected with PLP2 mutants were increased by nearly an order of magnitude. Our findings not only establish PLP2 DUB activity as a critical factor in arteriviral innate immune evasion, but the selective inactivation of DUB activity also opens unique possibilities for developing improved live attenuated vaccines against arteriviruses and other viruses encoding similar dual-specificity proteases. PMID:23401522

  12. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways.

    PubMed

    Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K

    2015-01-01

    Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions ("BIOMARK" interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with "Experiments" and "Databases" as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the "BIOMARK" members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well. PMID:26793622

  13. Data-mining approaches reveal hidden families of proteases in the genome of malaria parasite.

    PubMed

    Wu, Yimin; Wang, Xiangyun; Liu, Xia; Wang, Yufeng

    2003-04-01

    The search for novel antimalarial drug targets is urgent due to the growing resistance of Plasmodium falciparum parasites to available drugs. Proteases are attractive antimalarial targets because of their indispensable roles in parasite infection and development, especially in the processes of host erythrocyte rupture/invasion and hemoglobin degradation. However, to date, only a small number of proteases have been identified and characterized in Plasmodium species. Using an extensive sequence similarity search, we have identified 92 putative proteases in the P. falciparum genome. A set of putative proteases including calpain, metacaspase, and signal peptidase I have been implicated to be central mediators for essential parasitic activity and distantly related to the vertebrate host. Moreover, of the 92, at least 88 have been demonstrated to code for gene products at the transcriptional levels, based upon the microarray and RT-PCR results, and the publicly available microarray and proteomics data. The present study represents an initial effort to identify a set of expressed, active, and essential proteases as targets for inhibitor-based drug design. PMID:12671001

  14. A Systems Biology Approach to Reveal Putative Host-Derived Biomarkers of Periodontitis by Network Topology Characterization of MMP-REDOX/NO and Apoptosis Integrated Pathways

    PubMed Central

    Zeidán-Chuliá, Fares; Gürsoy, Mervi; Neves de Oliveira, Ben-Hur; Özdemir, Vural; Könönen, Eija; Gürsoy, Ulvi K.

    2016-01-01

    Periodontitis, a formidable global health burden, is a common chronic disease that destroys tooth-supporting tissues. Biomarkers of the early phase of this progressive disease are of utmost importance for global health. In this context, saliva represents a non-invasive biosample. By using systems biology tools, we aimed to (1) identify an integrated interactome between matrix metalloproteinase (MMP)-REDOX/nitric oxide (NO) and apoptosis upstream pathways of periodontal inflammation, and (2) characterize the attendant topological network properties to uncover putative biomarkers to be tested in saliva from patients with periodontitis. Hence, we first generated a protein-protein network model of interactions (“BIOMARK” interactome) by using the STRING 10 database, a search tool for the retrieval of interacting genes/proteins, with “Experiments” and “Databases” as input options and a confidence score of 0.400. Second, we determined the centrality values (closeness, stress, degree or connectivity, and betweenness) for the “BIOMARK” members by using the Cytoscape software. We found Ubiquitin C (UBC), Jun proto-oncogene (JUN), and matrix metalloproteinase-14 (MMP14) as the most central hub- and non-hub-bottlenecks among the 211 genes/proteins of the whole interactome. We conclude that UBC, JUN, and MMP14 are likely an optimal candidate group of host-derived biomarkers, in combination with oral pathogenic bacteria-derived proteins, for detecting periodontitis at its early phase by using salivary samples from patients. These findings therefore have broader relevance for systems medicine in global health as well. PMID:26793622

  15. The aspartyl protease TgASP5 mediates the export of the Toxoplasma GRA16 and GRA24 effectors into host cells.

    PubMed

    Curt-Varesano, Aurélie; Braun, Laurence; Ranquet, Caroline; Hakimi, Mohamed-Ali; Bougdour, Alexandre

    2016-02-01

    Toxoplasma gondii and Plasmodium species are obligatory intracellular parasites that export proteins into the infected cells in order to interfere with host-signalling pathways, acquire nutrients or evade host defense mechanisms. With regard to export mechanism, a wealth of information in Plasmodium spp. is available, while the mechanisms operating in T. gondii remain uncertain. The recent discovery of exported proteins in T. gondii, mainly represented by dense granule resident proteins, might explain this discrepancy and offers a unique opportunity to study the export mechanism in T. gondii. Here, we report that GRA16 export is mediated by two protein elements present in its N-terminal region. Because the first element contains a putative Plasmodium export element linear motif (RRLAE), we hypothesized that GRA16 export depended on a maturation process involving protein cleavage. Using both N- and C-terminal epitope tags, we provide evidence for protein proteolysis occurring in the N-terminus of GRA16. We show that TgASP5, the T. gondii homolog of Plasmodium plasmepsin V, is essential for GRA16 export and is directly responsible for its maturation in a Plasmodium export element-dependent manner. Interestingly, TgASP5 is also involved in GRA24 export, although the GRA24 maturation mechanism is TgASP5-independent. Our data reveal different modus operandi for protein export, in which TgASP5 should play multiple functions. PMID:26270241

  16. The IL-8 protease SpyCEP is detrimental for Group A Streptococcus host-cells interaction and biofilm formation

    PubMed Central

    Andreoni, Federica; Ogawa, Taiji; Ogawa, Mariko; Madon, Jerzy; Uchiyama, Satoshi; Schuepbach, Reto A.; Zinkernagel, Annelies S.

    2014-01-01

    SpyCEP-mediated chemokine degradation translates into more efficient spreading and increased severity of invasive Group A Streptococcus (GAS) infections, due to impaired neutrophil recruitment to the site of infection. SpyCEP is markedly up-regulated in invasive as compared to colonizing GAS isolates raising the question whether SpyCEP expression hinders bacterial attachment and thus colonization of the host. To address this question we used a molecular approach involving the use of homologous GAS strains either expressing or not SpyCEP or expressing an enzymatically inactive variant of SpyCEP. We found that expression of enzymatically functional SpyCEP lowered GAS adherence and invasion potential toward various epithelial and endothelial cells. SpyCEP also blunted biofilm formation capacity. Our data indicate that expression of SpyCEP decreases colonization and thus might be detrimental for the spreading of GAS. PMID:25071751

  17. Campylobacter jejuni serine protease HtrA plays an important role in heat tolerance, oxygen resistance, host cell adhesion, invasion, and transmigration

    PubMed Central

    Lind, Judith; Backert, Steffen; Tegtmeyer, Nicole

    2015-01-01

    Campylobacter jejuni is an important pathogen of foodborne illness. Transmigration across the intestinal epithelial barrier and invasion are considered as primary reasons for tissue damage triggered by C. jejuni. Using knockout mutants, it was shown that the serine protease HtrA may be important for stress tolerance and physiology of C. jejuni. HtrA is also secreted in the extra­cellular environment, where it can cleave junctional host cell proteins such as E-cadherin. Aim of the present study was to establish a genetic complementation system in two C. jejuni strains in order to introduce the wild-type htrA gene in trans, test known htrA phenotypes, and provide the basis to perform further mutagenesis. We confirm that reexpression of the htrA wild-type gene in ΔhtrA mutants restored the following phenotypes: 1) C. jejuni growth at high temperature (44 °C), 2) growth under high oxygen stress conditions, 3) expression of proteolytically active HtrA oligomers, 4) secretion of HtrA into the supernatant, 5) cell attachment and invasion, and 6) transmigration across polarized epithelial cells. These results establish a genetic complementation system for htrA in C. jejuni, exclude polar effects in the ΔhtrA mutants, confirm important HtrA properties, and permit the discovery and dissection of new functions. PMID:25883795

  18. Supermarket Proteases.

    ERIC Educational Resources Information Center

    Hagar, William G.; Bullerwell, Lornie D.

    2003-01-01

    Presents a laboratory activity on enzymes. Uses common items found in the supermarket that contain protease enzymes, such as contact lens cleaner and meat tenderizer. Demonstrates the digestion of gelatin proteins as part of enzymatic reactions. (Author/SOE)

  19. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  20. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  1. Expression and characterization of Coprothermobacter proteolyticus alkaline serine protease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TECHNICAL ABSTRACT A putative protease gene (aprE) from the thermophilic bacterium Coprothermobacter proteolyticus was cloned and expressed in Bacillus subtilis. The enzyme was determined to be a serine protease based on inhibition by PMSF. Biochemical characterization demonstrated the enzyme had...

  2. Cell Death Triggered by a Putative Amphipathic Helix of Radish mosaic virus Helicase Protein Is Tightly Correlated With Host Membrane Modification.

    PubMed

    Hashimoto, Masayoshi; Komatsu, Ken; Iwai, Ryo; Keima, Takuya; Maejima, Kensaku; Shiraishi, Takuya; Ishikawa, Kazuya; Yoshida, Tetsuya; Kitazawa, Yugo; Okano, Yukari; Yamaji, Yasuyuki; Namba, Shigetou

    2015-06-01

    Systemic necrosis is one of the most severe symptoms caused by plant RNA viruses. Recently, systemic necrosis has been suggested to have similar features to a defense response referred to as the hypersensitive response (HR), a form of programmed cell death. In virus-infected plant cells, host intracellular membrane structures are changed dramatically for more efficient viral replication. However, little is known about whether this replication-associated membrane modification is the cause of the symptoms. In this study, we identified an amino-terminal amphipathic helix of the helicase encoded by Radish mosaic virus (RaMV) (genus Comovirus) as an elicitor of cell death in RaMV-infected plants. Cell death caused by the amphipathic helix had features similar to HR, such as SGT1-dependence. Mutational analyses and inhibitor assays using cerulenin demonstrated that the amphipathic helix-induced cell death was tightly correlated with dramatic alterations in endoplasmic reticulum (ER) membrane structures. Furthermore, the cell death-inducing activity of the amphipathic helix was conserved in Cowpea mosaic virus (genus Comovirus) and Tobacco ringspot virus (genus Nepovirus), both of which are classified in the family Secoviridae. Together, these results indicate that ER membrane modification associated with viral intracellular replication may be recognized to prime defense responses against plant viruses. PMID:25650831

  3. Small-RNA Deep Sequencing Reveals Arctium tomentosum as a Natural Host of Alstroemeria virus X and a New Putative Emaravirus

    PubMed Central

    Bi, Yaqi; Tugume, Arthur K.; Valkonen, Jari P. T.

    2012-01-01

    Background Arctium species (Asteraceae) are distributed worldwide and are used as food and rich sources of secondary metabolites for the pharmaceutical industry, e.g., against avian influenza virus. RNA silencing is an antiviral defense mechanism that detects and destroys virus-derived double-stranded RNA, resulting in accumulation of virus-derived small RNAs (21–24 nucleotides) that can be used for generic detection of viruses by small-RNA deep sequencing (SRDS). Methodology/Principal Findings SRDS was used to detect viruses in the biennial wild plant species Arctium tomentosum (woolly burdock; family Asteraceae) displaying virus-like symptoms of vein yellowing and leaf mosaic in southern Finland. Assembly of the small-RNA reads resulted in contigs homologous to Alstroemeria virus X (AlsVX), a positive/single-stranded RNA virus of genus Potexvirus (family Alphaflexiviridae), or related to negative/single-stranded RNA viruses of the genus Emaravirus. The coat protein gene of AlsVX was 81% and 89% identical to the two AlsVX isolates from Japan and Norway, respectively. The deduced, partial nucleocapsid protein amino acid sequence of the emara-like virus was only 78% or less identical to reported emaraviruses and showed no variability among the virus isolates characterized. This virus—tentatively named as Woolly burdock yellow vein virus—was exclusively associated with yellow vein and leaf mosaic symptoms in woolly burdock, whereas AlsVX was detected in only one of the 52 plants tested. Conclusions/Significance These results provide novel information about natural virus infections in Acrtium species and reveal woolly burdock as the first natural host of AlsVX besides Alstroemeria (family Alstroemeriaceae). Results also revealed a new virus related to the recently emerged Emaravirus genus and demonstrated applicability of SRDS to detect negative-strand RNA viruses. SRDS potentiates virus surveys of wild plants, a research area underrepresented in plant virology

  4. CPDadh: A new peptidase family homologous to the cysteine protease domain in bacterial MARTX toxins

    PubMed Central

    Pei, Jimin; Lupardus, Patrick J; Garcia, K Christopher; Grishin, Nick V

    2009-01-01

    A cysteine protease domain (CPD) has been recently discovered in a group of multifunctional, autoprocessing RTX toxins (MARTX) and Clostridium difficile toxins A and B. These CPDs (referred to as CPDmartx) autocleave the toxins to release domains with toxic effects inside host cells. We report identification and computational analysis of CPDadh, a new cysteine peptidase family homologous to CPDmartx. CPDadh and CPDmartx share a Rossmann-like structural core and conserved catalytic residues. In bacteria, domains of the CPDadh family are present at the N-termini of a diverse group of putative cell-cell interaction proteins and at the C-termini of some RHS (recombination hot spot) proteins. In eukaryotes, catalytically inactive members of the CPDadh family are found in cell surface protein NELF (nasal embryonic LHRH factor) and some putative signaling proteins. PMID:19309740

  5. Proteases as Insecticidal Agents

    PubMed Central

    Harrison, Robert L.; Bonning, Bryony C.

    2010-01-01

    Proteases from a variety of sources (viruses, bacteria, fungi, plants, and insects) have toxicity towards insects. Some of these insecticidal proteases evolved as venom components, herbivore resistance factors, or microbial pathogenicity factors, while other proteases play roles in insect development or digestion, but exert an insecticidal effect when over-expressed from genetically engineered plants or microbial pathogens. Many of these proteases are cysteine proteases, although insect-toxic metalloproteases and serine proteases have also been examined. The sites of protease toxic activity range from the insect midgut to the hemocoel (body cavity) to the cuticle. This review discusses these insecticidal proteases along with their evaluation and use as potential pesticides. PMID:22069618

  6. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infection by a variety of viruses alters the nuclear-cytoplasmic trafficking of certain host cell proteins. In our continued search for interacting factors, we reported the re-localization of RNA helicase A (RHA) from the nucleus to the cytoplasm in cells infected with foot-and-mouth disease virus ...

  7. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain.

    PubMed Central

    Häse, C C; Finkelstein, R A

    1991-01-01

    The structural gene hap for the extracellular hemagglutinin/protease (HA/protease) of Vibrio cholerae was cloned and sequenced. The cloned DNA fragment contained a 1,827-bp open reading frame potentially encoding a 609-amino-acid polypeptide. The deduced protein contains a putative signal sequence followed by a large propeptide. The extracellular HA/protease consists of 414 amino acids with a computed molecular weight of 46,700. In the absence of protease inhibitors, this is processed to the 32-kDa form which is usually isolated. The deduced amino acid sequence of the mature HA/protease showed 61.5% identity with the Pseudomonas aeruginosa elastase. The cloned hap gene was inactivated and introduced into the chromosome of V. cholerae by recombination to construct the HA/protease-negative strain HAP-1. The cloned fragment containing the hap gene was then shown to complement the mutant strain. Images PMID:2045361

  8. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  9. High Throughput Substrate Phage Display for Protease Profiling

    PubMed Central

    Ratnikov, Boris; Cieplak, Piotr; Smith, Jeffrey W.

    2012-01-01

    Summary The interplay between a protease and its substrates is controlled at many different levels, including coexpression, colocalization, binding driven by ancillary contacts, and the presence of natural inhibitors. Here we focus on the most basic parameter that guides substrate recognition by a protease, the recognition specificity at the catalytic cleft. An understanding of this substrate specificity can be used to predict the putative substrates of a protease, to design protease activated imaging agents, and to initiate the design of active site inhibitors. Our group has characterized protease specificities of several matrix metalloproteinases using substrate phage display. Recently, we have adapted this method to a semiautomated platform that includes several high-throughput steps. The semiautomated platform allows one to obtain an order of magnitude more data, thus permitting precise comparisons among related proteases to define their functional distinctions. PMID:19377968

  10. High throughput substrate phage display for protease profiling.

    PubMed

    Ratnikov, Boris; Cieplak, Piotr; Smith, Jeffrey W

    2009-01-01

    The interplay between a protease and its substrates is controlled at many different levels, including coexpression, colocalization, binding driven by ancillary contacts, and the presence of natural inhibitors. Here we focus on the most basic parameter that guides substrate recognition by a protease, the recognition specificity at the catalytic cleft. An understanding of this substrate specificity can be used to predict the putative substrates of a protease, to design protease activated imaging agents, and to initiate the design of active site inhibitors. Our group has characterized protease specificities of several matrix metalloproteinases using substrate phage display. Recently, we have adapted this method to a semiautomated platform that includes several high-throughput steps. The semiautomated platform allows one to obtain an order of magnitude more data, thus permitting precise comparisons among related proteases to define their functional distinctions. PMID:19377968

  11. Lung protease/anti-protease network and modulation of mucus production and surfactant activity.

    PubMed

    Garcia-Verdugo, Ignacio; Descamps, Delphyne; Chignard, Michel; Touqui, Lhousseine; Sallenave, Jean-Michel

    2010-11-01

    Lung epithelium guarantees gas-exchange (performed in the alveoli) and protects from external insults (pathogens, pollutants…) present within inhaled air. Both functions are facilitated by secretions lining airway surface liquid, mucus (in the upper airways) and pulmonary surfactant (in the alveoli). Mucins, the main glycoproteins present within the mucus, are responsible for its rheologic properties and participate in lung defense mechanisms. In parallel, lung collectins are pattern recognition molecules present in pulmonary surfactant that also modulate lung defense. During chronic airways diseases, excessive protease activity can promote mucus hypersecretion and degradation of lung collectins and therefore contribute to the pathophysiology of these diseases. Importantly, secretion of local and systemic anti-proteases might be crucial to equilibrate the protease/anti-protease unbalance and therefore preserve the function of lung host defense compounds and airway surface liquid homeostasis. In this review we will present information relative to proteases able to modulate mucin production and lung collectin integrity, two important compounds of innate immune defense. One strategy to preserve physiological mucus production and collectin integrity during chronic airways diseases might be the over-expression of local 'alarm' anti-proteases such as SLPI and elafin. Interestingly, a cross-talk between lung collectins and anti-protease activity has recently been described, implicating the presence within the lung of a complex network between proteases, anti-proteases and pattern recognition molecules, which aims to keep or restore homeostasis in resting or inflamed lungs. PMID:20493919

  12. Identification and Characterization of IgdE, a Novel IgG-degrading Protease of Streptococcus suis with Unique Specificity for Porcine IgG.

    PubMed

    Spoerry, Christian; Seele, Jana; Valentin-Weigand, Peter; Baums, Christoph G; von Pawel-Rammingen, Ulrich

    2016-04-01

    Streptococcus suisis a major endemic pathogen of pigs causing meningitis, arthritis, and other diseases. ZoonoticS. suisinfections are emerging in humans causing similar pathologies as well as severe conditions such as toxic shock-like syndrome. Recently, we discovered an IdeS family protease ofS. suisthat exclusively cleaves porcine IgM and represents the first virulence factor described, linkingS. suisto pigs as their natural host. Here we report the identification and characterization of a novel, unrelated protease ofS. suisthat exclusively targets porcine IgG. This enzyme, designated IgdE forimmunoglobulinG-degradingenzyme ofS. suis, is a cysteine protease distinct from previous characterized streptococcal immunoglobulin degrading proteases of the IdeS family and mediates efficient cleavage of the hinge region of porcine IgG with a high degree of specificity. The findings that allS. suisstrains investigated possess the IgG proteolytic activity and that piglet serum samples contain specific antibodies against IgdE strongly indicate that the protease is expressedin vivoduring infection and represents a novel and putative important bacterial virulence/colonization determinant, and a thus potential therapeutic target. PMID:26861873

  13. Investigations with Protease.

    ERIC Educational Resources Information Center

    Yip, Din Yan

    1997-01-01

    Presents two simple and reliable ways for measuring protease activity that can be used for a variety of investigations in a range of biology class levels. The investigations use protease from a variety of sources. (DDR)

  14. Dual Mutation Events in the Haemagglutinin-Esterase and Fusion Protein from an Infectious Salmon Anaemia Virus HPR0 Genotype Promote Viral Fusion and Activation by an Ubiquitous Host Protease

    PubMed Central

    Fourrier, Mickael; Lester, Katherine; Markussen, Turhan; Falk, Knut; Secombes, Christopher J.; McBeath, Alastair; Collet, Bertrand

    2015-01-01

    In Infectious salmon anaemia virus (ISAV), deletions in the highly polymorphic region (HPR) in the near membrane domain of the haemagglutinin-esterase (HE) stalk, influence viral fusion. It is suspected that selected mutations in the associated Fusion (F) protein may also be important in regulating fusion activity. To better understand the underlying mechanisms involved in ISAV fusion, several mutated F proteins were generated from the Scottish Nevis and Norwegian SK779/06 HPR0. Co-transfection with constructs encoding HE and F were performed, fusion activity assessed by content mixing assay and the degree of proteolytic cleavage by western blot. Substitutions in Nevis F demonstrated that K276 was the most likely cleavage site in the protein. Furthermore, amino acid substitutions at three sites and two insertions, all slightly upstream of K276, increased fusion activity. Co-expression with HE harbouring a full-length HPR produced high fusion activities when trypsin and low pH were applied. In comparison, under normal culture conditions, groups containing a mutated HE with an HPR deletion were able to generate moderate fusion levels, while those with a full length HPR HE could not induce fusion. This suggested that HPR length may influence how the HE primes the F protein and promotes fusion activation by an ubiquitous host protease and/or facilitate subsequent post-cleavage refolding steps. Variations in fusion activity through accumulated mutations on surface glycoproteins have also been reported in other orthomyxoviruses and paramyxoviruses. This may in part contribute to the different virulence and tissue tropism reported for HPR0 and HPR deleted ISAV genotypes. PMID:26517828

  15. Protease inhibitors targeting coronavirus and filovirus entry.

    PubMed

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H; Renslo, Adam R; Simmons, Graham

    2015-04-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  16. Crystal Structures of the Viral Protease Npro Imply Distinct Roles for the Catalytic Water in Catalysis

    PubMed Central

    Zögg, Thomas; Sponring, Michael; Schindler, Sabrina; Koll, Maria; Schneider, Rainer; Brandstetter, Hans; Auer, Bernhard

    2013-01-01

    Summary Npro is a key effector protein of pestiviruses such as bovine viral diarrhea virus and abolishes host cell antiviral defense mechanisms. Synthesized as the N-terminal part of the viral polyprotein, Npro releases itself via an autoproteolytic cleavage, triggering its immunological functions. However, the mechanisms of its proteolytic action and its immune escape were unclear. Here, we present the crystal structures of Npro to 1.25 Å resolution. Structures of pre- and postcleavage intermediates identify three catalytically relevant elements. The trapping of the putative catalytic water reveals its distinct roles as a base, acid, and nucleophile. The presentation of the substrate further explains the enigmatic latency of the protease, ensuring a single in cis cleavage. Additionally, we identified a zinc-free, disulfide-linked conformation of the TRASH motif, an interaction hub of immune factors. The structure opens additional opportunities in utilizing Npro as an autocleaving fusion protein and as a pharmaceutical target. PMID:23643950

  17. Protease IV, a quorum sensing-dependent protease of Pseudomonas aeruginosa modulates insect innate immunity.

    PubMed

    Park, Su-Jin; Kim, Soo-Kyoung; So, Yong-In; Park, Ha-Young; Li, Xi-Hui; Yeom, Doo Hwan; Lee, Mi-Nan; Lee, Bok-Luel; Lee, Joon-Hee

    2014-12-01

    In Pseudomonas aeruginosa, quorum sensing (QS) plays an essential role in pathogenesis and the QS response controls many virulence factors. Using a mealworm, Tenebrio molitor as a host model, we found that Protease IV, a QS-regulated exoprotease of P. aeruginosa functions as a key virulence effector causing the melanization and death of T. molitor larvae. Protease IV was able to degrade zymogens of spätzle processing enzyme (SPE) and SPE-activating enzyme (SAE) without the activation of the antimicrobial peptide (AMP) production. Since SPE and SAE function to activate spätzle, a ligand of Toll receptor in the innate immune system of T. molitor, we suggest that Protease IV may interfere with the activation of the Toll signaling. Independently of the Toll pathway, the melanization response, another innate immunity was still generated, since Protease IV directly converted Tenebrio prophenoloxidase into active phenoloxidase. Protease IV also worked as an important factor in the virulence to brine shrimp and nematode. These results suggest that Protease IV provides P. aeruginosa with a sophisticated way to escape the immune attack of host by interfering with the production of AMPs. PMID:25315216

  18. DNA-sensing inflammasomes: regulation of bacterial host defense and the gut microbiota.

    PubMed

    Man, Si Ming; Karki, Rajendra; Kanneganti, Thirumala-Devi

    2016-06-01

    DNA sensors are formidable immune guardians of the host. At least 14 cytoplasmic DNA sensors have been identified in recent years, each with specialized roles in driving inflammation and/or cell death. Of these, AIM2 is a sensor of dsDNA, and forms an inflammasome complex to activate the cysteine protease caspase-1, mediates the release of the proinflammatory cytokines IL-1β and IL-18, and induces pyroptosis. The inflammasome sensor NLRP3 can also respond to DNA in the forms of oxidized mitochondrial DNA and the DNA derivative RNA:DNA hybrids produced by bacteria, whereas the putative inflammasome sensor IFI16 responds to viral DNA in the nucleus. Although inflammasomes provoke inflammation for anti-microbial host defense, they must also maintain homeostasis with commensal microbiota. Here, we outline recent advances highlighting the complex relationship between DNA-sensing inflammasomes, bacterial host defense and the gut microbiota. PMID:27056948

  19. Coagulation, Protease Activated Receptors and Viral Myocarditis

    PubMed Central

    Antoniak, Silvio; Mackman, Nigel

    2013-01-01

    The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling and heart failure. Recent studies using a mouse model have shown that tissue factor, thrombin and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new target to reduce viral myocarditis.. PMID:24203054

  20. A cysteine protease encoded by the baculovirus Bombyx mori nuclear polyhedrosis virus.

    PubMed Central

    Ohkawa, T; Majima, K; Maeda, S

    1994-01-01

    Sequence analysis of the BamHI F fragment of the genome of Bombyx mori nuclear polyhedrosis virus (BmNPV) revealed an open reading frame whose deduced amino acid sequence had homology to those of cysteine proteases of the papain superfamily. The putative cysteine protease sequence (BmNPV-CP) was 323 amino acids long and showed 35% identity to a cysteine proteinase precursor from Trypanosoma brucei. Of 36 residues conserved among cathepsins B, H, L, and S and papain, 31 were identical in BmNPV-CP. In order to determine the activity and function of the putative cysteine protease, a BmNPV mutant (BmCysPD) was constructed by homologous recombination of the protease gene with a beta-galactosidase gene cassette. BmCysPD-infected BmN cell extracts were significantly reduced in acid protease activity compared with wild-type virus-infected cell extracts. The cysteine protease inhibitor E-64 [trans-epoxysuccinylleucylamido-(4-guanidino)butane] inhibited wild-type virus-expressed protease activity. Deletion of the cysteine protease gene had no significant effect on viral growth or polyhedron production in BmN cells, indicating that the cysteine protease was not essential for viral replication in vitro. However, B. mori larvae infected with BmCysPD showed symptoms different from those of wild-type BmNPV-infected larvae, e.g., less degradation of the body, including fat body cells, white body surface color due presumably to undegraded epidermal cells, and an increase in the number of polyhedra released into the hemolymph. This is the first report of (i) a virus-encoded protease with activity on general substrates and (ii) evidence that a virus-encoded protease may play a role in degradation of infected larvae to facilitate horizontal transmission of the virus. Images PMID:8083997

  1. Metal-mediated modulation of streptococcal cysteine protease activity and its biological implications.

    PubMed

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A; Caruso, Joseph A; Kotb, Malak

    2014-07-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues (47)Cys and (195)His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  2. Metal-Mediated Modulation of Streptococcal Cysteine Protease Activity and Its Biological Implications

    PubMed Central

    Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.

    2014-01-01

    Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625

  3. The serine protease autotransporter Tsh contributes to the virulence of Edwardsiella tarda.

    PubMed

    Hu, Yong-Hua; Zhou, Hai-Zhen; Jin, Qian-Wen; Zhang, Jian

    2016-06-30

    The temperature-sensitive hemagglutinin (Tsh), identified as serine protease autotransporters of the Enterobacteriaceae (SPATEs) proteins, is an important virulence factor for avian-pathogenic Escherichia coli (APEC) and uropathogenic E. coli. However, little is known about the role of Tsh as a virulence factor in Edwardsiella tarda, a severe fish pathogen. In this study, we characterized the Tsh of E. tarda (named TshEt) and examined its function and vaccine potential. TshEt is composed of 1224 residues and has three functional domains typical for autotransporters. Quantitative real-time reverse transcriptase-PCR analysis showed that expression of tshEt was upregulated under conditions of high temperature, increased cell density, high pH, and iron starvation and during the infection of host cells. A markerless tsh in-frame mutant strain, TX01Δtsh, was constructed to determine whether TshEt participates in the pathogenicity of E. tarda, Compared to the wild type TX01, TX01Δtsh exhibited (i) retarded biofilm growth, (ii) decreased resistance against serum killing, (iii) impaired ability to block the host immune response, (iv) attenuated tissue and cellular infectivity. Introduction of a trans-expressed tsh gene restored the lost virulence of TX01Δtsh. The passenger domain of TshEt contains a putative serine protease (PepS) that exhibits apparent proteolytic activity when expressed in and purified from E. coli as a recombinant protein (rPepS). When used as a subunit vaccine to immunize Japanese flounder, rPepS was able to induce effective immune protection. This is the first study of Tsh in a fish pathogen, and the results suggest that TshEt exerts pleiotropic effects on the pathogenesis of E. tarda. PMID:27259829

  4. Cysteine Protease Inhibitors as Chemotherapy: Lessons from a Parasite Target

    NASA Astrophysics Data System (ADS)

    Selzer, Paul M.; Pingel, Sabine; Hsieh, Ivy; Ugele, Bernhard; Chan, Victor J.; Engel, Juan C.; Bogyo, Matthew; Russell, David G.; Sakanari, Judy A.; McKerrow, James H.

    1999-09-01

    Papain family cysteine proteases are key factors in the pathogenesis of cancer invasion, arthritis, osteoporosis, and microbial infections. Targeting this enzyme family is therefore one strategy in the development of new chemotherapy for a number of diseases. Little is known, however, about the efficacy, selectivity, and safety of cysteine protease inhibitors in cell culture or in vivo. We now report that specific cysteine protease inhibitors kill Leishmania parasites in vitro, at concentrations that do not overtly affect mammalian host cells. Inhibition of Leishmania cysteine protease activity was accompanied by defects in the parasite's lysosome/endosome compartment resembling those seen in lysosomal storage diseases. Colocalization of anti-protease antibodies with biotinylated surface proteins and accumulation of undigested debris and protease in the flagellar pocket of treated parasites were consistent with a pathway of protease trafficking from flagellar pocket to the lysosome/endosome compartment. The inhibitors were sufficiently absorbed and stable in vivo to ameliorate the pathology associated with a mouse model of Leishmania infection.

  5. Feeding Anthrax: The Crystal Structure of Bacillus anthracis InhA Protease.

    PubMed

    Schacherl, Magdalena; Baumann, Ulrich

    2016-01-01

    Pathogenic bacteria secrete proteases to evade host defense and to acquire nutrients. In this issue of Structure, Arolas et al. (2016) describe the structural basis of activation and latency of InhA, a major secreted protease of Bacillus anthracis. PMID:26745525

  6. Revisiting rubisco as a protein substrate for insect midgut proteases.

    PubMed

    Bhardwaj, Usha; Bhardwaj, Amit; Kumar, Rakesh; Leelavathi, Sadhu; Reddy, Vanga Siva; Mazumdar-Leighton, Sudeshna

    2014-01-01

    Gene fragments encoding the large subunit (LS) of Rubisco (RBCL) were cloned from various species of host plants of phytophagous Lepidoptera and expressed as recombinant proteins in Escherichia coli. Recombinant RBCLs were compared among each other along with casein and native Rubisco as proteinaceous substrates for measuring total midgut protease activities of fourth instar larvae of Helicoverpa armigera feeding on casein, Pieris brassicae feeding on cauliflower, and Antheraea assamensis feeding on Litsea monopetala and Persea bombycina. Cognate rRBCL (from the pertinent host plant species) substrates performed similar to noncognate rRBCL reflecting the conserved nature of encoding genes and the versatile use of these recombinant proteins. Casein and recombinant RBCL generally outperformed native Rubisco as substrates, except where inclusion of a reducing agent in the enzyme assay likely unfolded the plant proteins. Levels of total midgut protease activities detected in A. assamensis larvae feeding on two primary host species were similar, suggesting that the suite(s) of digestive enzymes in these insects could hydrolyze a plant protein efficiently. Protease activities detected in the presence of protease inhibitors and the reducing agent dithiothreitol (DTT) suggested that recombinant RBCL was a suitable protein substrate for studying insect proteases using in vitro enzyme assays and substrate zymography. PMID:24338735

  7. Characterization of up-regulated proteases in an industrial recombinant Escherichia coli fermentation.

    PubMed

    Jordan, G L; Harcum, S W

    2002-02-01

    Proteolytic degradation of recombinant proteins is an industry-wide challenge in host organisms such as Escherichia coli. These proteases have been linked to stresses, such as the stringent and heat-shock responses. This study reports the dramatic up-regulation of protease activity in an industrial recombinant E. coli fermentation upon induction. The objective of this project was to detect and characterize up-regulated proteases due to recombinant AXOKINE overexpression upon IPTG induction. AXOKINE is a 22-kDa protein currently in clinical trials as a therapeutic for obesity associated with diabetes. AXOKINE was expressed in both the soluble and inclusion body fractions in E. coli. Sodium dodecyl sulfate gelatin-polyacrylamide gel electrophoresis (SDS-GPAGE) was used to analyze the up-regulated protease activity. Western blot analysis showed degraded AXOKINE in both the soluble and insoluble fractions. Protease inhibitors were used to characterize the proteases. The proteases were ethylenediaminetetraacetic acid (EDTA) sensitive. The protease activity increased in the presence of phenyl-methyl sulfonyl-fluoride (PMSF), a serine protease inhibitor. The incubation buffer composition was varied with respect to Mg2+ and ATP, and the protease activity was ATP independent and Mg2+ dependent. A two-dimensional electrophoresis technique was used to estimate the pI of the proteases to be between 2.9 and 4.0. PMID:12074055

  8. Mycobacterium avium Genes MAV_5138 and MAV_3679 Are Transcriptional Regulators That Play a Role in Invasion of Epithelial Cells, in Part by Their Regulation of CipA, a Putative Surface Protein Interacting with Host Cell Signaling Pathways▿

    PubMed Central

    Harriff, Melanie J.; Danelishvili, Lia; Wu, Martin; Wilder, Cara; McNamara, Michael; Kent, Michael L.; Bermudez, Luiz E.

    2009-01-01

    The Mycobacterium avium complex (MAC) is an important group of opportunistic pathogens for birds, cattle, swine, and immunosuppressed humans. Although invasion of epithelial cells lining the intestine is the chief point of entry for these organisms, little is known about the mechanisms by which members of the MAC are taken up by these cells. Studies with M. avium have shown that cytoskeletal rearrangement via activation of the small G-protein Cdc42 is involved and that this activation is regulated in part by the M. avium fadD2 gene. The fadD2 gene indirectly regulates a number of genes upon exposure to HEp-2 cells, including transcriptional regulators, membrane proteins, and secreted proteins. Overexpression of two fadD2-associated regulators (MAV_5138 and MAV_3679) led to increased invasion of HEp-2 cells, as well as altered expression of other genes. The protein product of one of the regulated genes, named CipA, has domains that resemble the PXXP motif of human Piccolo proteins, which bind SH3 domains in proteins involved in the scaffold complex formed during cytoskeletal rearrangement. Although CipA was not detected in the cytoplasm of HEp-2 cells exposed to M. avium, the recombinant protein was shown to be potentially expressed on the surface of Mycobacterium smegmatis incubated with HEp-2 cells and, possibly, to interact with human Cdc42. The interaction was then confirmed by showing that CipA activates Cdc42. These results suggest that members of the M. avium complex have a novel mechanism for activating cytoskeletal rearrangement, prompting uptake by host epithelial cells, and that this mechanism is regulated in part by fadD2, MAV_5138, and MAV_3679. PMID:19060135

  9. Comparative genomic analysis identifies divergent genomic features of pathogenic Enterococcus cecorum including a type IC CRISPR-Cas system, a capsule locus, an epa-like locus, and putative host tissue binding proteins.

    PubMed

    Borst, Luke B; Suyemoto, M Mitsu; Scholl, Elizabeth H; Fuller, Fredrick J; Barnes, H John

    2015-01-01

    Enterococcus cecorum (EC) is the dominant enteric commensal of adult chickens and contributes to the gut consortia of many avian and mammalian species. While EC infection is an uncommon zoonosis, like other enterococcal species it can cause life-threating nosocomial infection in people. In contrast to other enterococci which are considered opportunistic pathogens, emerging pathogenic strains of EC cause outbreaks of musculoskeletal disease in broiler chickens. Typical morbidity and mortality is comparable to other important infectious diseases of poultry. In molecular epidemiologic studies, pathogenic EC strains were found to be genetically clonal. These findings suggested acquisition of specific virulence determinants by pathogenic EC. To identify divergent genomic features and acquired virulence determinants in pathogenic EC; comparative genomic analysis was performed on genomes of 3 pathogenic and 3 commensal strains of EC. Pathogenic isolates had smaller genomes with a higher GC content, and they demonstrated large regions of synteny compared to commensal isolates. A molecular phylogenetic analysis demonstrated sequence divergence in pathogenic EC genomes. At a threshold of 98% identity, 414 predicted proteins were identified that were highly conserved in pathogenic EC but not in commensal EC. Among these, divergent CRISPR-cas defense loci were observed. In commensal EC, the type IIA arrangement typical for enterococci was present; however, pathogenic EC had a type IC locus, which is novel in enterococci but commonly observed in streptococci. Potential mediators of virulence identified in this analysis included a polysaccharide capsular locus similar to that recently described for E. faecium, an epa-like locus, and cell wall associated proteins which may bind host extracellular matrix. This analysis identified specific genomic regions, coding sequences, and predicted proteins which may be related to the divergent evolution and increased virulence of emerging

  10. Comparative Genomic Analysis Identifies Divergent Genomic Features of Pathogenic Enterococcus cecorum Including a Type IC CRISPR-Cas System, a Capsule Locus, an epa-Like Locus, and Putative Host Tissue Binding Proteins

    PubMed Central

    Borst, Luke B.; Suyemoto, M. Mitsu; Scholl, Elizabeth H.; Fuller, Fredrick J.; Barnes, H. John

    2015-01-01

    Enterococcus cecorum (EC) is the dominant enteric commensal of adult chickens and contributes to the gut consortia of many avian and mammalian species. While EC infection is an uncommon zoonosis, like other enterococcal species it can cause life-threating nosocomial infection in people. In contrast to other enterococci which are considered opportunistic pathogens, emerging pathogenic strains of EC cause outbreaks of musculoskeletal disease in broiler chickens. Typical morbidity and mortality is comparable to other important infectious diseases of poultry. In molecular epidemiologic studies, pathogenic EC strains were found to be genetically clonal. These findings suggested acquisition of specific virulence determinants by pathogenic EC. To identify divergent genomic features and acquired virulence determinants in pathogenic EC; comparative genomic analysis was performed on genomes of 3 pathogenic and 3 commensal strains of EC. Pathogenic isolates had smaller genomes with a higher GC content, and they demonstrated large regions of synteny compared to commensal isolates. A molecular phylogenetic analysis demonstrated sequence divergence in pathogenic EC genomes. At a threshold of 98% identity, 414 predicted proteins were identified that were highly conserved in pathogenic EC but not in commensal EC. Among these, divergent CRISPR-cas defense loci were observed. In commensal EC, the type IIA arrangement typical for enterococci was present; however, pathogenic EC had a type IC locus, which is novel in enterococci but commonly observed in streptococci. Potential mediators of virulence identified in this analysis included a polysaccharide capsular locus similar to that recently described for E. faecium, an epa-like locus, and cell wall associated proteins which may bind host extracellular matrix. This analysis identified specific genomic regions, coding sequences, and predicted proteins which may be related to the divergent evolution and increased virulence of emerging

  11. Inhibitors of rhomboid proteases.

    PubMed

    Wolf, Eliane V; Verhelst, Steven H L

    2016-03-01

    Rhomboid proteases form one of the most widespread families of intramembrane proteases. They utilize a catalytic serine-histidine dyad located several Å below the surface of the membrane for substrate hydrolysis. Multiple studies have implicated rhomboid proteases in biologically and medically relevant processes. Several assays have been developed that are able to monitor rhomboid activity. With the aid of these assays, different types of inhibitors have been found, all based on electrophiles that covalently react with the active site machinery. Although the currently available inhibitors have limited selectivity and moderate potency, they can function as research tools and as starting point for the development of activity-based probes, which are reagents that can specifically detect active rhomboid species. Structural studies on complexes of inhibitors with the Escherichia coli rhomboid GlpG have provided insight into how substrate recognition may occur. Future synthetic efforts, aided by high-throughput screening or structure-based design, may lead to more potent and selective inhibitors for this interesting family of proteases. PMID:26166068

  12. Analyzing Protease Specificity and Detecting in Vivo Proteolytic Events Using Tandem Mass Spectrometry

    SciTech Connect

    Gupta, Nitin; Hixson, Kim K.; Culley, David E.; Smith, Richard D.; Pevzner, Pavel A.

    2010-07-01

    While trypsin remains the most commonly used protease in mass spectrometry, other proteases may be employed for increasing peptide-coverage or generating overlapping peptides. Knowledge of the accurate specifcity rules of these proteases is helpful for database search tools to detect peptides, and becomes crucial when mass spectrometry is used to discover in vivo proteolytic cleavages. In this study, we use tandem mass spectrometry to analyze the specifcity rules of selected proteases and describe MS- Proteolysis, a software tool for identifying putative sites of in vivo proteolytic cleavage. Our analysis suggests that the specifcity rules for some commonly used proteases can be improved, e.g., we find that V8 protease cuts not only after Asp and Glu, as currently expected, but also shows a smaller propensity to cleave after Gly for the conditions tested in this study. Finally, we show that comparative analysis of multiple proteases can be used to detect putative in vivo proteolytic sites on a proteome-wide scale.

  13. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production

    PubMed Central

    Duwadi, Kishor; Chen, Ling; Menassa, Rima; Dhaubhadel, Sangeeta

    2015-01-01

    Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL)-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP) in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10) were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER), suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves. PMID:26148064

  14. Botulinum neurotoxin: a deadly protease with applications to human medicine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Botulinum neurotoxins (BoNTs) are some of the most potent biological toxins to humans. They are synthesized by the gram-positive, spore-forming bacterium Clostridium botulinum. BoNT is secreted from the bacterium as a ~150 kDa polypeptide which is cleaved by bacterial or host proteases into a ~50 kD...

  15. Bioinformatic analyses of male and female Amblyomma americanum tick expressed serine protease inhibitors (serpins)

    PubMed Central

    Porter, Lindsay; Radulovic, Zeljko; Kim, Tae; Braz, Gloria R. C.; Da Silva Vaz, Itabajara; Mulenga, Albert

    2014-01-01

    Serine protease inhibitors (serpins) are a diverse family of proteins that is conserved across taxa. The diversity of Amblyomma americanum serpins (AAS) is far more complex than previously thought as revealed by discovery of 57 and 33 AAS transcripts that are respectively expressed in male and female A. americanum ticks, with 30 found in both. While distinct reproductively, both male and female metastriate ticks, such as A. americanum, require a blood meal. Thus, 30 AAS sequences found in both male and female ticks could play important role(s) in regulating tick feeding and thus represent attractive candidates for anti-tick vaccine development. Of significant interest, 19 AAS sequences expressed in male and female ticks are also part of the 48 AAS sequences expressed in fed female tick salivary glands or midguts; two organs through which the tick interacts with host blood and immune response factors. Considered the most important domain for serpin function, the reactive center loop (RCL) is further characterized by a single ‘P1’ site amino acid residue, which is central to determining the protease regulated by the serpin. In this study, a diversity of 17 different P1 site amino acid residues were predicted, suggesting that A. americanum serpins potentially regulate a large number of proteolytic pathways. Our data also indicate that some serpins in this study could regulate target protease common to all tick species, in that more than 40% of AAS show 58–97% inter-species amino acid conservation. Of significance, 24% of AAS showed 62–100% inter-species conservation within the functional RCL domain, with 10 RCLs showing ≥90–100% conservation. In vertebrates, serpins with basic residues at the P1 site regulate key host defense pathways, which the tick must evade to feed successfully. Interestingly, we found that AAS sequences with basic or polar uncharged residues at the putative P1 site are more likely to be conserved across tick species. Another notable

  16. From proteases to proteomics

    PubMed Central

    Neurath, Hans

    2001-01-01

    This personal and professional autobiography covers the 50-yr period of 1950–2000 and includes the following topics: History of the University of Washington School of Medicine and its Department of Biochemistry (Mount Rainier and the University of Washington, recruiting faculty, biology, research programs); scientific editing (publication, Biochemistry, Protein Science, electronic publication); Europe revisited (Heidelberg, approaching retirement, the German Research Center, reunion in Vienna); and 50 yr of research on proteolytic enzymes (trypsin, carboxypeptidases, mast cell proteases, future developments). PMID:11274481

  17. Signaling pathways activated by a protease allergen in basophils

    PubMed Central

    Rosenstein, Rachel K.; Bezbradica, Jelena S.; Yu, Shuang; Medzhitov, Ruslan

    2014-01-01

    Allergic diseases represent a significant burden in industrialized countries, but why and how the immune system responds to allergens remain largely unknown. Because many clinically significant allergens have proteolytic activity, and many helminths express proteases that are necessary for their life cycles, host mechanisms likely have evolved to detect the proteolytic activity of helminth proteases, which may be incidentally activated by protease allergens. A cysteine protease, papain, is a prototypic protease allergen that can directly activate basophils and mast cells, leading to the production of cytokines, including IL-4, characteristic of the type 2 immune response. The mechanism of papain’s immunogenic activity remains unknown. Here we have characterized the cellular response activated by papain in basophils. We find that papain-induced IL-4 production requires calcium flux and activation of PI3K and nuclear factor of activated T cells. Interestingly, papain-induced IL-4 production was dependent on the immunoreceptor tyrosine-based activation motif (ITAM) adaptor protein Fc receptor γ-chain, even though the canonical ITAM signaling was not activated by papain. Collectively, these data characterize the downstream signaling pathway activated by a protease allergen in basophils. PMID:25369937

  18. Proteases of human rhinovirus: role in infection.

    PubMed

    Jensen, Lora M; Walker, Erin J; Jans, David A; Ghildyal, Reena

    2015-01-01

    Human rhinoviruses (HRV) are the major etiological agents of the common cold and asthma exacerbations, with significant worldwide health and economic impact. Although large-scale population vaccination has proved successful in limiting or even eradicating many viruses, the more than 100 distinct serotypes mean that conventional vaccination is not a feasible strategy to combat HRV. An alternative strategy is to target conserved viral proteins such as the HRV proteases, 2A(pro) and 3C(pro), the focus of this review. Necessary for host cell shutoff, virus replication, and pathogenesis, 2A(pro) and 3C(pro) are clearly viable drug targets, and indeed, 3C(pro) has been successfully targeted for treating the common cold in experimental infection. 2A(pro) and 3C(pro) are crucial for virus replication due to their role in polyprotein processing as well as cleavage of key cellular proteins to inhibit cellular transcription and translation. Intriguingly, the action of the HRV proteases also disrupts nucleocytoplasmic trafficking, contributing to HRV cytopathic effects. Improved understanding of the protease-cell interactions should enable new therapeutic approaches to be identified for drug development. PMID:25261311

  19. Novel proteases: common themes and surprising features.

    PubMed

    Vandeputte-Rutten, Lucy; Gros, Piet

    2002-12-01

    Proteases perform a wide variety of functions, inside and outside cells, regulating many biological processes. Recent years have witnessed a number of significant advances in the structural biology of proteases, including aspects of intracellular protein and peptide degradation by self-compartmentalizing proteases, activation of proteases in proteolytic cascades of regulatory pathways, and mechanisms of microbial proteases in pathogenicity. PMID:12504673

  20. Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts

    PubMed Central

    González-Fernández, Raquel; Valero-Galván, José; Gómez-Gálvez, Francisco J.; Jorrín-Novo, Jesús V.

    2015-01-01

    Botrytis cinerea is a necrotrophic fungus with high adaptability to different environments and hosts. It secretes a large number of extracellular proteins, which favor plant tissue penetration and colonization, thus contributing to virulence. Secretomics is a proteomics sub-discipline which study the secreted proteins and their secretion mechanisms, so-called secretome. By using proteomics as experimental approach, many secreted proteins by B. cinerea have been identified from in vitro experiments, and belonging to different functional categories: (i) cell wall-degrading enzymes such as pectinesterases and endo-polygalacturonases; (ii) proteases involved in host protein degradation such as an aspartic protease; (iii) proteins related to the oxidative burst such as glyoxal oxidase; (iv) proteins which may induce the plant hypersensitive response such as a cerato-platanin domain-containing protein; and (v) proteins related to production and secretion of toxins such as malate dehydrogenase. In this mini-review, we made an overview of the proteomics contribution to the study and knowledge of the B. cinerea extracellular secreted proteins based on our current work carried out from in vitro experiments, and recent published papers both in vitro and in planta studies on this fungi. We hypothesize on the putative functions of these secreted proteins, and their connection to the biology of the B. cinerea interaction with its hosts. PMID:26500673

  1. Autocatalytic activity and substrate specificity of the pestivirus N-terminal protease N{sup pro}

    SciTech Connect

    Gottipati, Keerthi; Acholi, Sudheer; Ruggli, Nicolas; Choi, Kyung H.

    2014-03-15

    Pestivirus N{sup pro} is the first protein translated in the viral polypeptide, and cleaves itself off co-translationally generating the N-terminus of the core protein. Once released, N{sup pro} blocks the host's interferon response by inducing degradation of interferon regulatory factor-3. N{sup pro'}s intracellular autocatalytic activity and lack of trans-activity have hampered in vitro cleavage studies to establish its substrate specificity and the roles of individual residues. We constructed N{sup pro}-GFP fusion proteins that carry the authentic cleavage site and determined the autoproteolytic activities of N{sup pro} proteins containing substitutions at the predicted catalytic sites Glu22 and Cys69, at Arg100 that forms a salt bridge with Glu22, and at the cleavage site Cys168. Contrary to previous reports, we show that N{sup pro'}s catalytic activity does not involve Glu22, which may instead be involved in protein stability. Furthermore, N{sup pro} does not have specificity for Cys168 at the cleavage site even though this residue is conserved throughout the pestivirus genus. - Highlights: • N{sup pro'}s autoproteolysis is studied using N{sup pro}-GFP fusion proteins. • N-terminal 17 amino acids are dispensable without loss of protease activity. • The putative catalytic residue Glu22 is not involved in protease catalysis. • No specificity for Cys168 at the cleavage site despite evolutionary conservation. • N{sup pro} prefers small amino acids with non-branched beta carbons at the P1 position.

  2. Characterization of a papain-like cysteine protease essential for the survival of Babesia ovis merozoites.

    PubMed

    Carletti, Tamara; Barreto, Carmo; Mesplet, Maria; Mira, Anabela; Weir, William; Shiels, Brian; Oliva, Abel Gonzalez; Schnittger, Leonhard; Florin-Christensen, Monica

    2016-02-01

    Babesia ovis, a tick-transmitted intraerythrocytic protozoan parasite, causes severe infections in small ruminants from Southern Europe, Middle East, and Northern Africa. With the aim of finding potential targets for the development of control methods against this parasite, sequence analysis of its genome led to the identification of four putative cysteine proteases of the C1A family. Orthology between B. ovis, B. bovis, T. annulata, and T. parva sequences showed that each B. ovis C1A peptidase sequence clustered within one of the four ortholog groups previously reported for these piroplasmids. The ortholog of bovipain-2 of B. bovis and falcipain-2 of Plasmodium falciparum, respectively, was designated "ovipain-2" and further characterized. In silico analysis showed that ovipain-2 has the typical topology of papain-like cysteine peptidases and a highly similar predicted three dimensional structure to bovipain-2 and falcipain-2, suggesting susceptibility to similar inhibitors. Immunoblotting using antibodies raised against a recombinant form of ovipain-2 (r-ovipain-2) demonstrated expression of ovipain-2 in in vitro cultured B. ovis merozoites. By immunofluorescence, these antibodies reacted with merozoites and stained the cytoplasm of infected erythrocytes. This suggests that ovipain-2 is secreted by the parasite and could be involved in intra- and extracellular digestion of hemoglobin and/or cleavage of erythrocyte proteins facilitating parasite egress. A significant reduction in the percentage of parasitized erythrocytes was obtained upon incubation of B. ovis in vitro cultures with anti-r-ovipain-2 antibodies, indicating an important functional role for ovipain-2 in the intra erythrocytic development cycle of this parasite. Finally, studies of the reactivity of sera from B. ovis-positive and negative sheep against r-ovipain-2 showed that this protease is expressed in vivo, and can be recognized by host antibodies. The results of this study suggest that ovipain-2

  3. Protease-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Dickson, Eva F.; Goyan, Rebecca L.; Kennedy, James C.; Mackay, M.; Mendes, M. A. K.; Pottier, Roy H.

    2003-12-01

    Drugs used in disease treatment can cause damage to both malignant and normal tissue. This toxicity limits the maximum therapeutic dose. Drug targeting is of high interest to increase the therapeutic efficacy of the drug without increasing systemic toxicity. Certain tissue abnormalities, disease processes, cancers, and infections are characterized by high levels of activity of specific extracellular and/or intracellular proteases. Abnormally high activity levels of specific proteases are present at sites of physical or chemical trauma, blood clots, malignant tumors, rheumatoid arthritis, inflammatory bowel disease, gingival disease, glomerulonerphritis, and acute pancreatitis. Abnormal protease activity is suspected in development of liver thrombosis, pulmonary emphysema, atherosclerosis, and muscular dystrophy. Inactiviating disease-associated proteases by the administration of appropriate protease inhibitors has had limited success. Instead, one could use such proteases to target drugs to treat the condition. Protease mediated drug delivery offers such a possibility. Solubilizing groups are attached to insoluble drugs via a polypeptide chain which is specifically cleavable by certian proteases. When the solubilized drug enounters the protease, the solubilizing moieties are cleaved, and the drug precipitates at the disease location. Thus, a smaller systemic dosage could result in a therapeutic drug concentration at the treatment site with less systemic toxicity.

  4. Viral proteases as targets for drug design.

    PubMed

    Skoreński, Marcin; Sieńczyk, Marcin

    2013-01-01

    In order to productively infect a host, viruses must enter the cell and force host cell replication mechanisms to produce new infectious virus particles. The success of this process unfortunately results in disease progression and, in the case of infection with many viral species, may cause mortality. The discoveries of Louis Pasteur and Edward Jenner led to one of the greatest advances in modern medicine - the development of vaccines that generate long-lasting memory immune responses to combat viral infection. Widespread use of vaccines has reduced mortality and morbidity associated with viral infection and, in some cases, has completely eradicated virus from the human population. Unfortunately, several viral species maintain a significant ability to mutate and "escape" vaccine-induced immune responses. Thus, novel anti-viral agents are required for treatment and prevention of viral disease. Targeting proteases that are crucial in the viral life cycle has proven to be an effective method to control viral infection, and this avenue of investigation continues to generate anti-viral treatments. Herein, we provide the reader with a brief history as well as a comprehensive review of the most recent advances in the design and synthesis of viral protease inhibitors. PMID:23016690

  5. Pallial mucus of the oyster Crassostrea virginica regulates the expression of putative virulence genes of its pathogen Perkinsus marinus.

    PubMed

    Pales Espinosa, Emmanuelle; Corre, Erwan; Allam, Bassem

    2014-04-01

    Perkinsus marinus is a pathogen responsible for severe mortalities of the eastern oyster Crassostrea virginica along the East and Gulf coasts of the United States. When cultivated, the pathogenicity of this microorganism decreases significantly, hampering the study of its virulence factors. Recent investigations have shown a significant increase of the in vivo virulence of P. marinus exposed to oyster pallial mucus. In the current study, we investigated the effect of pallial mucus on P. marinus gene expression compared with cultures supplemented with oyster digestive extracts or with un-supplemented cultures. In parallel, parasite cells cultured under these three conditions were used to challenge oysters and to assess virulence in vivo. Perkinsus marinus mRNA sequencing was performed on an Illumina GAIIX sequencer and data were analysed using the Tuxedo RNAseq suite for mapping against the draft P. marinus genome and for differential expression analysis. Results showed that exposure of P. marinus to mucus induces significant regulation of nearly 3,600 transcripts, many of which are considered as putative virulence factors. Pallial mucus is suspected to mimic internal host conditions, thereby preparing the pathogen to overcome defense factors before invasion. This hypothesis is supported by significant regulation in several antioxidant proteins, heat shock proteins, protease inhibitors and proteasome subunits. In addition, mucus exposure induced the modulation of several genes known to affect immunity and apoptosis in vertebrates and invertebrates. Several proteases (proteolysis) and merozoite surface proteins (cell recognition) were also modulated. Overall, these results provide a baseline for targeted, in depth analysis of candidate virulence factors in P. marinus. PMID:24560916

  6. Transcriptional Reprogramming of the Mycoparasitic Fungus Ampelomyces quisqualis During the Powdery Mildew Host-Induced Germination.

    PubMed

    Siozios, Stefanos; Tosi, Lorenzo; Ferrarini, Alberto; Ferrari, Alessandro; Tononi, Paola; Bellin, Diana; Maurhofer, Monika; Gessler, Cesare; Delledonne, Massimo; Pertot, Ilaria

    2015-02-01

    Ampelomyces quisqualis is a mycoparasite of a diverse range of phytopathogenic fungi associated with the powdery mildew disease. Among them are several Erysiphaceae species with great economic impact on high-value crops such as grape. Due to its ability to parasitize and prevent the spread of powdery mildews, A. quisqualis has received considerable attention for its biocontrol potential. However, and in sharp contrast to the extensively studied biocontrol species belonging to the genus Trichoderma, little is known about the biology of A. quisqualis at the molecular and genetic levels. We present the first genome-wide transcription profiling in A. quisqualis during host-induced germination. A total of 1,536 putative genes showed significant changes in transcription during the germination of A. quisqualis. This finding denotes an extensive transcriptional reprogramming of A. quisqualis induced by the presence of the host. Several upregulated genes were predicted to encode for putative mycoparasitism-related proteins such as secreted proteases, virulence factors, and proteins related to toxin biosynthesis. Our data provide the most comprehensive sequence resource currently available for A. quisqualis in addition to offering valuable insights into the biology of A. quisqualis and its mycoparasitic lifestyle. Eventually, this may improve the biocontrol capacity of this mycoparasite. PMID:25185010

  7. Activation mechanism of thiol protease precursor from broiler chicken specific Staphylococcus aureus strain CH-91.

    PubMed

    Wladyka, Benedykt; Dubin, Grzegorz; Dubin, Adam

    2011-01-10

    Staphylococcus aureus strain CH-91 isolated from chicken dermatitis lesions produces large quantities of thiol protease implicated in disease formation. Observed overproduction requires efficient activation of the protease precursor which mechanism is studied here in detail. Wild type and mutant precursor forms are expressed in E. coli to test different hypotheses on the activation process. It is demonstrated that wild type precursor undergoes rapid autocatalytic processing whereas proteolytically inactive catalytic triad cysteine mutant (C(249)A) of the precursor is stable, but can be processed by minute quantities of active protease. It is concluded that limited intramolecular proteolysis is mainly responsible for efficient activation but, a positive feedback loop also contributes to the process. Both activation pathways allow efficient production of mature extracellular thiol protease, a putative virulence factor specific for avian strains of S. aureus. PMID:20598816

  8. Protease degradable electrospun fibrous hydrogels

    PubMed Central

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-01-01

    Electrospun nanofibers are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases (MMPs). Here, we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fiber populations support selective fiber degradation based on individual fiber degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications. PMID:25799370

  9. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina

    PubMed Central

    2010-01-01

    Background Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi. Results Phylogenetic analysis of 189 subtilisin-like serine protease genes from Pezizomycotina suggests five strongly-supported monophyletic clades. The subtilisin-like serine protease genes previously identified or presumed as endocellular proteases were clustered into one clade and diverged the earliest in the phylogeny. In addition, the cuticle-degrading protease genes from entomopathogenic and nematode-parasitic fungi were clustered together, indicating that they might have overlapping pathogenic mechanisms against insects and nematodes. Our experimental bioassays supported this conclusion. Interestingly, although they both function as cuticle-degrading proteases, the subtilisin-like serine protease genes from nematode-trapping fungi and nematode-parasitic fungi were not grouped together in the phylogenetic tree. Our evolutionary analysis revealed evidence for positive selection on the subtilisin-like serine protease genes of the nematode-trapping fungi. Conclusions Our study provides new insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Pezizomycotina subtilisins most likely evolved

  10. Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors.

    PubMed

    Butterworth, Michael B; Zhang, Liang; Liu, Xiaoning; Shanks, Robert M; Thibodeau, Patrick H

    2014-01-01

    The serralysin family of metalloproteases is associated with the virulence of multiple gram-negative human pathogens, including Pseudomonas aeruginosa and Serratia marcescens. The serralysin proteases share highly conserved catalytic domains and show evolutionary similarity to the mammalian matrix metalloproteases. Our previous studies demonstrated that alkaline protease (AP) from Pseudomonas aeruginosa is capable of activating the epithelial sodium channel (ENaC), leading to an increase in sodium absorption in airway epithelia. The serralysin proteases are often co-expressed with endogenous, intracellular or periplasmic inhibitors, which putatively protect the bacterium from unwanted or unregulated protease activities. To evaluate the potential use of these small protein inhibitors in regulating the serralysin induced activation of ENaC, proteases from Pseudomonas aeruginosa and Serratia marcescens were purified for characterization along with a high affinity inhibitor from Pseudomonas. Both proteases showed activity against in vitro substrates and could be blocked by near stoichiometric concentrations of the inhibitor. In addition, both proteases were capable of activating ENaC when added to the apical surfaces of multiple epithelial cells with similar slow activation kinetics. The high-affinity periplasmic inhibitor from Pseudomonas effectively blocked this activation. These data suggest that multiple metalloproteases are capable of activating ENaC. Further, the endogenous, periplasmic bacterial inhibitors may be useful for modulating the downstream effects of the serralysin virulence factors under physiological conditions. PMID:24963801

  11. Characterization, biomedical and agricultural applications of protease inhibitors: A review.

    PubMed

    Shamsi, Tooba Naz; Parveen, Romana; Fatima, Sadaf

    2016-10-01

    This review describes Protease Inhibitors (PIs) which target or inhibit proteases, protein digesting enzymes. These proteases play a crucial task in many biological events including digestion, blood coagulation, apoptosis etc. Regardless of their crucial roles, they need to be checked regularly by PIs as their excess may possibly damage host organism. On basis of amino acid composition of PIs where Protease-PI enzymatic reactions occur i.e. serine, cysteine, and aspartic acid, they are classified. Nowadays, various PIs are being worked upon to fight various parasitic or viral diseases including malaria, schistosomiasis, colds, flu', dengue etc. They prevent an ongoing process begun by carcinogen exposure by keeping a check on metastasis. They also possess potential to reduce carcinogen-induced, increased levels of gene amplification to almost normal levels. Some PIs can principally be used for treatment of hypertension and congestive heart failure by blocking conversion of angiotensin I to angiotensin II for example Angiotensin-converting enzyme inhibitors (ACEIs). Also PIs target amyloid β-peptide (Aβ) level in brain which is prime responsible for development of Alzheimer's Disease (AD). Also, PIs inhibit enzymatic activity of HIV-1 Protease Receptor (PR) by preventing cleavage events in Gag and Gag-Pol that result in production of non-virulent virus particles. PMID:26955746

  12. Xanthomonas campestris pv. vesicatoria Secretes Proteases and Xylanases via the Xps Type II Secretion System and Outer Membrane Vesicles

    PubMed Central

    Solé, Magali; Scheibner, Felix; Hoffmeister, Anne-Katrin; Hartmann, Nadine; Hause, Gerd; Rother, Annekatrin; Jordan, Michael; Lautier, Martine; Arlat, Matthieu

    2015-01-01

    ABSTRACT Many plant-pathogenic bacteria utilize type II secretion (T2S) systems to secrete degradative enzymes into the extracellular milieu. T2S substrates presumably mediate the degradation of plant cell wall components during the host-pathogen interaction and thus promote bacterial virulence. Previously, the Xps-T2S system from Xanthomonas campestris pv. vesicatoria was shown to contribute to extracellular protease activity and the secretion of a virulence-associated xylanase. The identities and functions of additional T2S substrates from X. campestris pv. vesicatoria, however, are still unknown. In the present study, the analysis of 25 candidate proteins from X. campestris pv. vesicatoria led to the identification of two type II secreted predicted xylanases, a putative protease and a lipase which was previously identified as a virulence factor of X. campestris pv. vesicatoria. Studies with mutant strains revealed that the identified xylanases and the protease contribute to virulence and in planta growth of X. campestris pv. vesicatoria. When analyzed in the related pathogen X. campestris pv. campestris, several T2S substrates from X. campestris pv. vesicatoria were secreted independently of the T2S systems, presumably because of differences in the T2S substrate specificities of the two pathogens. Furthermore, in X. campestris pv. vesicatoria T2S mutants, secretion of T2S substrates was not completely absent, suggesting the contribution of additional transport systems to protein secretion. In line with this hypothesis, T2S substrates were detected in outer membrane vesicles, which were frequently observed for X. campestris pv. vesicatoria. We, therefore, propose that extracellular virulence-associated enzymes from X. campestris pv. vesicatoria are targeted to the Xps-T2S system and to outer membrane vesicles. IMPORTANCE The virulence of plant-pathogenic bacteria often depends on TS2 systems, which secrete degradative enzymes into the extracellular milieu. T2S

  13. Genome and secretome analyses provide insights into keratin decomposition by novel proteases from the non-pathogenic fungus Onygena corvina.

    PubMed

    Huang, Yuhong; Busk, Peter Kamp; Herbst, Florian-Alexander; Lange, Lene

    2015-11-01

    Poultry processing plants and slaughterhouses produce huge quantities of feathers and hair/bristle waste annually. These keratinaceous wastes are highly resistant to degradation. Onygena corvina, a non-pathogenic fungus, grows specifically on feathers, hooves, horn, and hair in nature. Hence, the proteases secreted by O. corvina are interesting in view of their potential relevance for industrial decomposition of keratinaceous wastes. We sequenced and assembled the genome of O. corvina and used a method called peptide pattern recognition to identify 73 different proteases. Comparative genome analysis of proteases in keratin-degrading and non-keratin-degrading fungi indicated that 18 putative secreted proteases from four protease families (M36, M35, M43, and S8) may be responsible for keratin decomposition. Twelve of the 18 predicted protease genes could be amplified from O. corvina grown on keratinaceous materials and were transformed into Pichia pastoris. One of the recombinant proteases belonging to the S8 family showed high keratin-degrading activity. Furthermore, 29 different proteases were identified by mass spectrometry in the culture broth of O. corvina grown on feathers and bristle. The culture broth was fractionated by ion exchange chromatography to isolate active fractions with five novel proteases belonging to three protease families (S8, M28, and M3). Enzyme blends composed of three of these five proteases, one from each family, showed high degree of degradation of keratin in vitro. A blend of novel proteases, such as those we discovered, could possibly find a use for degrading keratinaceous wastes and provide proteins, peptides, and amino acids as valuable ingredients for animal feed. PMID:26177915

  14. Protease-dependent mechanisms of complement evasion by bacterial pathogens

    PubMed Central

    Potempa, Michal; Potempa, Jan

    2012-01-01

    The human immune system has evolved a variety of mechanisms for the primary task of neutralizing and eliminating microbial intruders. As the first line of defense, the complement system is responsible for rapid recognition and opsonisation of bacteria, presentation to phagocytes and bacterial cell killing by direct lysis. All successful human pathogens have mechanisms of circumventing the antibacterial activity of the complement system and escaping this stage of the immune response. One of the ways in which pathogens achieve this is the deployment of proteases. Based on the increasing number of recent publications in this area, it appears that proteolytic inactivation of the antibacterial activities of the complement system is a common strategy of avoiding targeting by this arm of host innate immune defense. In this review, we focus on those bacteria that deploy proteases capable of degrading complement system components into non-functional fragments, thus impairing complement-dependent antibacterial activity and facilitating pathogen survival inside the host. PMID:22944688

  15. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant–pathogen interactions

    PubMed Central

    Jashni, Mansoor Karimi; Mehrabi, Rahim; Collemare, Jérôme; Mesarich, Carl H.; de Wit, Pierre J. G. M.

    2015-01-01

    Upon host penetration, fungal pathogens secrete a plethora of effectors to promote disease, including proteases that degrade plant antimicrobial proteins, and protease inhibitors (PIs) that inhibit plant proteases with antimicrobial activity. Conversely, plants secrete proteases and PIs to protect themselves against pathogens or to mediate recognition of pathogen proteases and PIs, which leads to induction of defense responses. Many examples of proteases and PIs mediating effector-triggered immunity in host plants have been reported in the literature, but little is known about their role in compromising basal defense responses induced by microbe-associated molecular patterns. Recently, several reports appeared in literature on secreted fungal proteases that modify or degrade pathogenesis-related proteins, including plant chitinases or PIs that compromise their activities. This prompted us to review the recent advances on proteases and PIs involved in fungal virulence and plant defense. Proteases and PIs from plants and their fungal pathogens play an important role in the arms race between plants and pathogens, which has resulted in co-evolutionary diversification and adaptation shaping pathogen lifestyles. PMID:26284100

  16. The battle in the apoplast: further insights into the roles of proteases and their inhibitors in plant-pathogen interactions.

    PubMed

    Jashni, Mansoor Karimi; Mehrabi, Rahim; Collemare, Jérôme; Mesarich, Carl H; de Wit, Pierre J G M

    2015-01-01

    Upon host penetration, fungal pathogens secrete a plethora of effectors to promote disease, including proteases that degrade plant antimicrobial proteins, and protease inhibitors (PIs) that inhibit plant proteases with antimicrobial activity. Conversely, plants secrete proteases and PIs to protect themselves against pathogens or to mediate recognition of pathogen proteases and PIs, which leads to induction of defense responses. Many examples of proteases and PIs mediating effector-triggered immunity in host plants have been reported in the literature, but little is known about their role in compromising basal defense responses induced by microbe-associated molecular patterns. Recently, several reports appeared in literature on secreted fungal proteases that modify or degrade pathogenesis-related proteins, including plant chitinases or PIs that compromise their activities. This prompted us to review the recent advances on proteases and PIs involved in fungal virulence and plant defense. Proteases and PIs from plants and their fungal pathogens play an important role in the arms race between plants and pathogens, which has resulted in co-evolutionary diversification and adaptation shaping pathogen lifestyles. PMID:26284100

  17. Differential Response of Extracellular Proteases of Trichoderma Harzianum Against Fungal Phytopathogens.

    PubMed

    Sharma, Vivek; Salwan, Richa; Sharma, Prem N

    2016-09-01

    In the present study, production of extracellular proteases by Trichoderma harzianum was evaluated based on the relative gene expression and spectrophotometric assay. The fungal isolates were grown in Czapek Dox Broth medium supplemented with deactivated mycelium of plant fungal pathogens such as Fusarium oxysporum, Colletotrichum capsici, Gloeocercospora sorghi, and Colletotrichum truncatum. The maximum protease activity was detected after 48 h of incubation against Colletotrichum spp. Similarly in qRT-PCR, the relative gene expression of four proteases varied from 48 to 96 h against host pathogens in a time-independent manner. Among proteases, statistically significant upregulation of asp, asp, and srp was observed against Colletotrichum spp., followed by F. oxysporum. But in the case of pepM22, maximum upregulation was observed against F. oxysporum. The variation in enzyme assay and qRT-PCR of proteases at different time intervals against various fungal phytopathogens could be due to the limitation of using casein as a substrate for all types of proteases or protease-encoding transcripts selected for qRT-PCR, which may not be true representative of total protease activity. PMID:27278806

  18. Cloning and heterologous expression of serine protease SL41 related to biocontrol in Trichoderma harzianum.

    PubMed

    Liu, Yan; Yang, Qian

    2013-01-01

    Serine proteases are highly conserved among fungi and considered to play a key role in different aspects of fungal biology. These proteases are involved in fungal growth and have been related to biocontrol processes. To assess the functional role of serine proteases from Trichoderma harzianum T88, an effective biocontrol agent, on inhibition of phytopathogenic fungi, a gene (SL41) encoding a serine protease was isolated by 5' and 3' RACE (rapid amplification of cDNA ends). Northern blot analysis indicated that SL41 was induced in response to cell walls of different fungi. This protease gene was expressed in Saccharomyces cerevisiae under the control of the galactose-inducible GAL1 promoter. After induction, the enzyme activity was culminated (16.2 units ml(-1)) at 60 h of cultivation. The optimal enzyme reaction temperature was 40°C and optimal pH was 10.5. Northern blot analysis indicated that the amount of the transcripts increased with the culture time in agreement with the measured enzyme activity. Antifungal activity of serine protease against five phytopathogens was investigated in vitro. It can inhibit the mycelial growth of phytopathogenic fungi and exerted broad spectrum antifungal activity against phytopathogenic fungi. This is the first time that the different regulation of serine protease in T. harzianum response to five phytopathogenic fungi was shown, the protease was functionally expressed in a heterologous host, and its antagonistic activity was evaluated in vitro. PMID:24060651

  19. Mutagenesis of the NS3 Protease of Dengue Virus Type 2

    PubMed Central

    Valle, Rosaura P. C.; Falgout, Barry

    1998-01-01

    The flavivirus protease is composed of two viral proteins, NS2B and NS3. The amino-terminal portion of NS3 contains sequence and structural motifs characteristic of bacterial and cellular trypsin-like proteases. We have undertaken a mutational analysis of the region of NS3 which contains the catalytic serine, five putative substrate binding residues, and several residues that are highly conserved among flavivirus proteases and among all serine proteases. In all, 46 single-amino-acid substitutions were created in a cloned NS2B-NS3 cDNA fragment of dengue virus type 2, and the effect of each mutation on the extent of self-cleavage of the NS2B-NS3 precursor at the NS2B-NS3 junction was assayed in vivo. Twelve mutations almost completely or completely inhibited protease activity, 9 significantly reduced it, 14 decreased cleavage, and 11 yielded wild-type levels of activity. Substitution of alanine at ultraconserved residues abolished NS3 protease activity. Cleavage was also inhibited by substituting some residues that are conserved among flavivirus NS3 proteins. Two (Y150 and G153) of the five putative substrate binding residues could not be replaced by alanine, and only Y150 and N152 could be replaced by a conservative change. The two other putative substrate binding residues, D129 and F130, were more freely substitutable. By analogy with the trypsin model, it was proposed that D129 is located at the bottom of the substrate binding pocket so as to directly interact with the basic amino acid at the substrate cleavage site. Interestingly, we found that significant cleavage activity was displayed by mutants in which D129 was replaced by E, S, or A and that low but detectable protease activity was exhibited by mutants in which D129 was replaced by K, R, or L. Contrary to the proposed model, these results indicate that D129 is not a major determinant of substrate binding and that its interaction with the substrate, if it occurs at all, is not essential. This mutagenesis

  20. Retrovirus Entry by Endocytosis and Cathepsin Proteases

    PubMed Central

    Kubo, Yoshinao; Hayashi, Hideki; Matsuyama, Toshifumi; Sato, Hironori; Yamamoto, Naoki

    2012-01-01

    Retroviruses include infectious agents inducing severe diseases in humans and animals. In addition, retroviruses are widely used as tools to transfer genes of interest to target cells. Understanding the entry mechanism of retroviruses contributes to developments of novel therapeutic approaches against retrovirus-induced diseases and efficient exploitation of retroviral vectors. Entry of enveloped viruses into host cell cytoplasm is achieved by fusion between the viral envelope and host cell membranes at either the cell surface or intracellular vesicles. Many animal retroviruses enter host cells through endosomes and require endosome acidification. Ecotropic murine leukemia virus entry requires cathepsin proteases activated by the endosome acidification. CD4-dependent human immunodeficiency virus (HIV) infection is thought to occur via endosomes, but endosome acidification is not necessary for the entry whereas entry of CD4-independent HIVs, which are thought to be prototypes of CD4-dependent viruses, is low pH dependent. There are several controversial results on the retroviral entry pathways. Because endocytosis and endosome acidification are complicatedly controlled by cellular mechanisms, the retrovirus entry pathways may be different in different cell lines. PMID:23304142

  1. Highly efficient and easy protease-mediated protein purification.

    PubMed

    Last, Daniel; Müller, Janett; Dawood, Ayad W H; Moldenhauer, Eva J; Pavlidis, Ioannis V; Bornscheuer, Uwe T

    2016-02-01

    As both research on and application of proteins are rarely focused on the resistance towards nonspecific proteases, this property remained widely unnoticed, in particular in terms of protein purification and related fields. In the present study, diverse aspects of protease-mediated protein purification (PMPP) were explored on the basis of the complementary proteases trypsin and proteinase K as well as the model proteins green fluorescent protein (GFP) from Aequorea victoria, lipase A from Candida antarctica (CAL-A), a transaminase from Aspergillus fumigatus (AspFum), quorum quenching lactonase AiiA from Bacillus sp., and an alanine dehydrogenase from Thermus thermophilus (AlaDH). While GFP and AiiA were already known to be protease resistant, the thermostable enzymes CAL-A, AspFum, and AlaDH were selected due to the documented correlation between thermostability and protease resistance. As proof of principle for PMPP, recombinant GFP remained unaffected whereas most Escherichia coli (E. coli) host proteins were degraded by trypsin. PMPP was highly advantageous compared to the widely used heat-mediated purification of commercial CAL-A. The resistance of AspFum towards trypsin was improved by rational protein design introducing point mutation R20Q. Trypsin also served as economical and efficient substitute for site-specific endopeptidases for the removal of a His-tag fused to AiiA. Moreover, proteolysis of host enzymes with interfering properties led to a strongly improved sensitivity and accuracy of the NADH assay in E. coli cell lysate for AlaDH activity measurements. Thus, PMPP is an attractive alternative to common protein purification methods and facilitates also enzyme characterization in cell lysate. PMID:26671615

  2. Structural Mechanisms of Inactivation in Scabies Mite Serine Protease Paralogues

    SciTech Connect

    Fischer, Katja; Langendorf, Christopher G.; Irving, James A.; Reynolds, Simone; Willis, Charlene; Beckham, Simone; Law, Ruby H.P.; Yang, Sundy; Bashtannyk-Puhalovich, Tanya A.; McGowan, Sheena; Whisstock, James C.; Pike, Robert N.; Kemp, David J.; Buckle, Ashley M.

    2009-08-07

    The scabies mite (Sarcoptes scabiei) is a parasite responsible for major morbidity in disadvantaged communities and immuno-compromised patients worldwide. In addition to the physical discomfort caused by the disease, scabies infestations facilitate infection by Streptococcal species via skin lesions, resulting in a high prevalence of rheumatic fever/heart disease in affected communities. The scabies mite produces 33 proteins that are closely related to those in the dust mite group 3 allergen and belong to the S1-like protease family (chymotrypsin-like). However, all but one of these molecules contain mutations in the conserved active-site catalytic triad that are predicted to render them catalytically inactive. These molecules are thus termed scabies mite inactivated protease paralogues (SMIPPs). The precise function of SMIPPs is unclear; however, it has been suggested that these proteins might function by binding and protecting target substrates from cleavage by host immune proteases, thus preventing the host from mounting an effective immune challenge. In order to begin to understand the structural basis for SMIPP function, we solved the crystal structures of SMIPP-S-I1 and SMIPP-S-D1 at 1.85 {angstrom} and 2.0 {angstrom} resolution, respectively. Both structures adopt the characteristic serine protease fold, albeit with large structural variations over much of the molecule. In both structures, mutations in the catalytic triad together with occlusion of the S1 subsite by a conserved Tyr200 residue is predicted to block substrate ingress. Accordingly, we show that both proteases lack catalytic function. Attempts to restore function (via site-directed mutagenesis of catalytic residues as well as Tyr200) were unsuccessful. Taken together, these data suggest that SMIPPs have lost the ability to bind substrates in a classical 'canonical' fashion, and instead have evolved alternative functions in the lifecycle of the scabies mite.

  3. Potential Elucidation of a Novel CTL Epitope in HIV-1 Protease by the Protease Inhibitor Resistance Mutation L90M

    PubMed Central

    Smidt, Werner

    2013-01-01

    The combination of host immune responses and use of antiretrovirals facilitate partial control of human immunodeficiency virus type 1 (HIV-1) infection and result in delayed progression to Acquired Immunodeficiency Syndrome (AIDS). Both treatment and host immunity impose selection pressures on the highly mutable HIV-1 genome resulting in antiretroviral resistance and immune escape. Researchers have shown that antiretroviral resistance mutations can shape cytotoxic T-lymphocyte immunity by altering the epitope repertoire of HIV infected cells. Here it was discovered that an important antiretroviral resistance mutation, L90M in HIV protease, occurs at lower frequencies in hosts that harbor the B*15, B*48 or A*32 human leukocyte antigen subtypes. A likely reason is the elucidation of novel epitopes by L90M. NetMHCPan predictions reveal increased affinity of the peptide spanning the HIV protease region, PR 89–97 and PR 90–99 to HLA-B*15/B*48 and HLA-A*32 respectively due to the L90M substitution. The higher affinity could increase the chance of the epitope being presented and recognized by Cytotoxic T-lymphocytes and perhaps provide additional immunological pressures in the presence of antiretroviral attenuating mutations. This evidence supports the notion that knowledge of HLA allotypes in HIV infected individuals could augment antiretroviral treatment by the elucidation of epitopes due to antiretroviral resistance mutations in HIV protease. PMID:24015196

  4. Genomic and exoproteomic analyses of cold- and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases.

    PubMed

    Lylloff, Jeanette E; Hansen, Lea B S; Jepsen, Morten; Sanggaard, Kristian W; Vester, Jan K; Enghild, Jan J; Sørensen, Søren J; Stougaard, Peter; Glaring, Mikkel A

    2016-03-01

    Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography-tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin-like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20 °C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity. PMID:26834075

  5. Crystal Structure of a Rhomboid Family Intramembrane Protease.

    SciTech Connect

    Wang,Y.; Zhang, Y.; Ha, Y.

    2006-01-01

    Escherichia coli GlpG is an integral membrane protein that belongs to the widespread rhomboid protease family. Rhomboid proteases, like site-2 protease (S2P) and {gamma}-secretase, are unique in that they cleave the transmembrane domain of other membrane proteins. Here we describe the 2.1 {angstrom} resolution crystal structure of the GlpG core domain. This structure contains six transmembrane segments. Residues previously shown to be involved in catalysis, including a Ser-His dyad, and several water molecules are found at the protein interior at a depth below the membrane surface. This putative active site is accessible by substrate through a large 'V-shaped' opening that faces laterally towards the lipid, but is blocked by a half-submerged loop structure. These observations indicate that, in intramembrane proteolysis, the scission of peptide bonds takes place within the hydrophobic environment of the membrane bilayer. The crystal structure also suggests a gating mechanism for GlpG that controls substrate access to its hydrophilic active site.

  6. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.

    PubMed

    Iqbal, Irfana; Aftab, Muhammad Nauman; Afzal, Mohammed; Ur-Rehman, Asad; Aftab, Saima; Zafar, Asma; Ud-Din, Zia; Khuharo, Ateeque Rahman; Iqbal, Jawad; Ul-Haq, Ikram

    2015-02-01

    Thermostable alkaline serine protease gene of Geobacillus stearothermophilus B-1172 was cloned and expressed in Escherichia coli BL21 (DE3) using pET-22b(+), as an expression vector. The growth conditions were optimized for maximal production of the protease using variable fermentation parameters, i.e., pH, temperature, and addition of an inducer. Protease, thus produced, was purified by ammonium sulfate precipitation followed by ion exchange chromatography with 13.7-fold purification, with specific activity of 97.5 U mg(-1) , and a recovery of 23.6%. Molecular weight of the purified protease, 39 kDa, was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme was stable at 90 °C at pH 9. The enzyme activity was steady in the presence of EDTA indicating that the protease was not a metalloprotease. No significant change in the activity of protease after addition of various metal ions further strengthened this fact. However, an addition of 1% Triton X-100 or SDS surfactants constrained the enzyme specific activity to 34 and 19%, respectively. Among organic solvents, an addition of 1-butanol (20%) augmented the enzyme activity by 29% of the original activity. With casein as a substrate, the enzyme activity under optimized conditions was found to be 73.8 U mg(-1) . The effect of protease expression on the host cells growth was also studied and found to negatively affect E. coli cells to certain extent. Catalytic domains of serine proteases from eight important thermostable organisms were analyzed through WebLogo and found to be conserved in all serine protease sequences suggesting that protease of G. stearothermophilus could be beneficially used as a biocontrol agent and in many industries including detergent industry. PMID:25224381

  7. Protease inhibitors interfere with the necessary factors of carcinogenesis.

    PubMed Central

    Troll, W

    1989-01-01

    Many tumor promoters are inflammatory agents that stimulate the formation of oxygen radicals (.O2-) and hydrogen peroxide (H2O2) in phagocytic neutrophils. The neutrophils use the oxygen radicals to kill bacteria, which are recognized by the cell membrane of phagocytic cells causing a signal to mount the oxygen response. The tumor promoter isolated from croton oil, 12-O-tetradecanoylphorbol-13-acetate (TPA), mimics the signal, causing an oxygen radical release that is intended to kill bacteria; instead, it injures cells in the host. Oxygen radicals cause single strand breaks in DNA and modify DNA bases. These damaging reactions appear to be related to tumor promotion, as three types of chemopreventive agents, retinoids, onion oil, and protease inhibitors, suppress the induction of oxygen radicals in phagocytic neutrophils and suppress tumor promotion in skin cancer in mice. Protease inhibitors also suppress breast and colon cancers in mice. Protease inhibitors capable of inhibiting chymotrypsin show a greater suppression of the oxygen effect and are better suppressors of tumor promotion. In addition, oxygen radicals may be one of the many agents that cause activation of oncogenes. Since retinoids and protease inhibitors suppress the expression of the ras oncogene in NIH 3T3 cells, NIH 3T3 cells may serve as a relatively facile model for finding and measuring chemopreventive agents that interfere with the carcinogenic process. PMID:2667986

  8. Functional and Structural Characterization of Vibrio cholerae Extracellular Serine Protease B, VesB*

    PubMed Central

    Gadwal, Shilpa; Korotkov, Konstantin V.; Delarosa, Jaclyn R.; Hol, Wim G. J.; Sandkvist, Maria

    2014-01-01

    The chymotrypsin subfamily A of serine proteases consists primarily of eukaryotic proteases, including only a few proteases of bacterial origin. VesB, a newly identified serine protease that is secreted by the type II secretion system in Vibrio cholerae, belongs to this subfamily. VesB is likely produced as a zymogen because sequence alignment with trypsinogen identified a putative cleavage site for activation and a catalytic triad, His-Asp-Ser. Using synthetic peptides, VesB efficiently cleaved a trypsin substrate, but not chymotrypsin and elastase substrates. The reversible serine protease inhibitor, benzamidine, inhibited VesB and served as an immobilized ligand for VesB affinity purification, further indicating its relationship with trypsin-like enzymes. Consistent with this family of serine proteases, N-terminal sequencing implied that the propeptide is removed in the secreted form of VesB. Separate mutagenesis of the activation site and catalytic serine rendered VesB inactive, confirming the importance of these features for activity, but not for secretion. Similar to trypsin but, in contrast to thrombin and other coagulation factors, Na+ did not stimulate the activity of VesB, despite containing the Tyr250 signature. The crystal structure of catalytically inactive pro-VesB revealed that the protease domain is structurally similar to trypsinogen. The C-terminal domain of VesB was found to adopt an immunoglobulin (Ig)-fold that is structurally homologous to Ig-folds of other extracellular Vibrio proteins. Possible roles of the Ig-fold domain in stability, substrate specificity, cell surface association, and type II secretion of VesB, the first bacterial multidomain trypsin-like protease with known structure, are discussed. PMID:24459146

  9. Humanized-VHH transbodies that inhibit HCV protease and replication.

    PubMed

    Jittavisutthikul, Surasak; Thanongsaksrikul, Jeeraphong; Thueng-In, Kanyarat; Chulanetra, Monrat; Srimanote, Potjanee; Seesuay, Watee; Malik, Aijaz Ahmad; Chaicumpa, Wanpen

    2015-04-01

    There is a need for safe and broadly effective anti-HCV agents that can cope with genetic multiplicity and mutations of the virus. In this study, humanized-camel VHHs to genotype 3a HCV serine protease were produced and were linked molecularly to a cell penetrating peptide, penetratin (PEN). Human hepatic (Huh7) cells transfected with the JFH-1 RNA of HCV genotype 2a and treated with the cell penetrable nanobodies (transbodies) had a marked reduction of the HCV RNA intracellularly and in their culture fluids, less HCV foci inside the cells and less amounts of HCV core antigen in culture supernatants compared with the infected cells cultured in the medium alone. The PEN-VHH-treated-transfected cells also had up-regulation of the genes coding for the host innate immune response (TRIF, TRAF3, IRF3, IL-28B and IFN-β), indicating that the cell penetrable nanobodies rescued the host innate immune response from the HCV mediated-suppression. Computerized intermolecular docking revealed that the VHHs bound to residues of the protease catalytic triad, oxyanion loop and/or the NS3 N-terminal portion important for non-covalent binding of the NS4A protease cofactor protein. The so-produced transbodies have high potential for testing further as a candidate for safe, broadly effective and virus mutation tolerable anti-HCV agents. PMID:25903832

  10. Pathogen-Secreted Proteases Activate a Novel Plant Immune Pathway

    PubMed Central

    Cheng, Zhenyu; Li, Jian-Feng; Niu, Yajie; Zhang, Xue-Cheng; Woody, Owen Z.; Xiong, Yan; Djonović, Slavica; Millet, Yves; Bush, Jenifer; McConkey, Brendan J.; Sheen, Jen; Ausubel, Frederick M.

    2015-01-01

    Mitogen-Activated Protein Kinase (MAPK) cascades play central roles in innate immune signaling networks in plants and animals1,2. In plants, however, the molecular mechanisms of how signal perception is transduced to MAPK activation remain elusive1. We report that pathogen-secreted proteases activate a previously unknown signaling pathway in Arabidopsis thaliana involving the Gα, Gβ and Gγ subunits of heterotrimeric G-protein complexes, which function upstream of a MAPK cascade. In this pathway, Receptor for Activated C Kinase 1 (RACK1) functions as a novel scaffold that binds to the Gβ subunit as well as to all three tiers of the MAPK cascade, thereby linking upstream G protein signaling to downstream activation of a MAPK cascade. The protease-G protein-RACK1-MAPK cascade modules identified in these studies are distinct from previously described plant immune signaling pathways such as the one elicited by bacterial flagellin, in which G proteins function downstream of or in parallel to a MAPK cascade without the involvement of the RACK1 scaffolding protein. The discovery of the novel protease-mediated immune signaling pathway described here was facilitated by the use of the broad host range, opportunistic bacterial pathogen Pseudomonas aeruginosa. The ability of P. aeruginosa to infect both plants and animals makes it an excellent model to identify novel types of immunoregulatory strategies that account for its niche adaptation to diverse host tissues and immune systems. PMID:25731164

  11. Humanized-VHH Transbodies that Inhibit HCV Protease and Replication

    PubMed Central

    Jittavisutthikul, Surasak; Thanongsaksrikul, Jeeraphong; Thueng-in, Kanyarat; Chulanetra, Monrat; Srimanote, Potjanee; Seesuay, Watee; Malik, Aijaz Ahmad; Chaicumpa, Wanpen

    2015-01-01

    There is a need for safe and broadly effective anti-HCV agents that can cope with genetic multiplicity and mutations of the virus. In this study, humanized-camel VHHs to genotype 3a HCV serine protease were produced and were linked molecularly to a cell penetrating peptide, penetratin (PEN). Human hepatic (Huh7) cells transfected with the JFH-1 RNA of HCV genotype 2a and treated with the cell penetrable nanobodies (transbodies) had a marked reduction of the HCV RNA intracellularly and in their culture fluids, less HCV foci inside the cells and less amounts of HCV core antigen in culture supernatants compared with the infected cells cultured in the medium alone. The PEN-VHH-treated-transfected cells also had up-regulation of the genes coding for the host innate immune response (TRIF, TRAF3, IRF3, IL-28B and IFN-β), indicating that the cell penetrable nanobodies rescued the host innate immune response from the HCV mediated-suppression. Computerized intermolecular docking revealed that the VHHs bound to residues of the protease catalytic triad, oxyanion loop and/or the NS3 N-terminal portion important for non-covalent binding of the NS4A protease cofactor protein. The so-produced transbodies have high potential for testing further as a candidate for safe, broadly effective and virus mutation tolerable anti-HCV agents. PMID:25903832

  12. Phage-protease-peptide: a novel trifecta enabling multiplex detection of viable bacterial pathogens.

    PubMed

    Alcaine, S D; Tilton, L; Serrano, M A C; Wang, M; Vachet, R W; Nugen, S R

    2015-10-01

    Bacteriophages represent rapid, readily targeted, and easily produced molecular probes for the detection of bacterial pathogens. Molecular biology techniques have allowed researchers to make significant advances in the bioengineering of bacteriophage to further improve speed and sensitivity of detection. Despite their host specificity, bacteriophages have not been meaningfully leveraged in multiplex detection of bacterial pathogens. We propose a proof-of-principal phage-based scheme to enable multiplex detection. Our scheme involves bioengineering bacteriophage to carry a gene for a specific protease, which is expressed during infection of the target cell. Upon lysis, the protease is released to cleave a reporter peptide, and the signal detected. Here we demonstrate the successful (i) modification of T7 bacteriophage to carry tobacco etch virus (TEV) protease; (ii) expression of TEV protease by Escherichia coli following infection by our modified T7, an average of 2000 units of protease per phage are produced during infection; and (iii) proof-of-principle detection of E. coli in 3 h after a primary enrichment via TEV protease activity using a fluorescent peptide and using a designed target peptide for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis (MALDI-TOF MS) analysis. This proof-of-principle can be translated to other phage-protease-peptide combinations to enable multiplex bacterial detection and readily adopted on multiple platforms, like MALDI-TOF MS or fluorescent readers, commonly found in labs. PMID:26245682

  13. Characterization of the in vitro activities of the P1 and helper component proteases of Soybean mosaic virus Strain G2 and Tobacco vein mottling virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potyviruses express their RNA genomes through the production of polyproteins that are processed in host cells by three virus-encoded proteases. Soybean plants produce large amounts of protease inhibitors during seed development and in response to wounding that could affect the activities of these pr...

  14. Protease inhibitors decrease IgG shedding from Staphylococcus aureus, increasing complement activation and phagocytosis efficiency.

    PubMed

    Fernandez Falcon, Maria F; Echague, Charlene G; Hair, Pamela S; Nyalwidhe, Julius O; Cunnion, Kenji M

    2011-10-01

    Staphylococcus aureus is a major pathogen for immunologically intact humans and its pathogenesis is a model system for evasion of host defences. Antibodies and complement are essential elements of the humoral immune system for prevention and control of S. aureus infections. The specific hypothesis for the proposed research is that S. aureus modifies humoral host defences by cleaving IgG that has bound to the bacterial surface, thereby inhibiting opsonophagocytosis. S. aureus was coated with pooled, purified human IgG and assayed for the shedding of cleaved IgG fragments using ELISA and Western blot analysis. Surface-bound IgG was shed efficiently from S. aureus in the absence of host blood proteins. Broad-spectrum protease inhibitors prevented cleavage of IgG from the S. aureus surface, suggesting that staphylococcal proteases are responsible for IgG cleavage. Serine protease inhibitors and cysteine protease inhibitors decreased the cleavage of surface-bound IgG; however, a metalloprotease inhibitor had no effect. Using protease inhibitors to prevent the cleavage of surface-bound IgG increased the binding of complement C3 fragments on the surface of S. aureus, increased the association with human neutrophils and increased phagocytosis by human neutrophils. PMID:21636671

  15. Exogenous proteases for meat tenderization.

    PubMed

    Bekhit, Alaa A; Hopkins, David L; Geesink, Geert; Bekhit, Adnan A; Franks, Philip

    2014-01-01

    The use of exogenous proteases to improve meat tenderness has attracted much interest recently, with a view to consistent production of tender meat and added value to lower grade meat cuts. This review discusses the sources, characteristics, and use of exogenous proteases in meat tenderization to highlight the specificity of the proteases toward meat proteins and their impact on meat quality. Plant enzymes (such as papain, bromelain, and ficin) have been extensively investigated as meat tenderizers. New plant proteases (actinidin and zingibain) and microbial enzyme preparations have been of recent interest due to controlled meat tenderization and other advantages. Successful use of these enzymes in fresh meat requires their enzymatic kinetics and characteristics to be determined, together with an understanding of the impact of the surrounding environmental conditions of the meat (pH, temperature) on enzyme function. This enables the optimal conditions for tenderizing fresh meat to be established, and the elimination or reduction of any negative impacts on other quality attributes. PMID:24499119

  16. Structural Basis for the Immunomodulatory Function of Cysteine Protease Inhibitor from Human Roundworm Ascaris lumbricoides

    PubMed Central

    Mei, Guoqiang; Dong, Jianmei; Li, Zhaotao; Liu, Sanling; Liu, Yunfeng; Sun, Mingze; Liu, Guiyun; Su, Zhong; Liu, Jinsong

    2014-01-01

    Immunosuppression associated with infections of nematode parasites has been documented. Cysteine protease inhibitor (CPI) released by the nematode parasites is identified as one of the major modulators of host immune response. In this report, we demonstrated that the recombinant CPI protein of Ascaris lumbricoides (Al-CPI) strongly inhibited the activities of cathepsin L, C, S, and showed weaker effect to cathepsin B. Crystal structure of Al-CPI was determined to 2.1 Å resolution. Two segments of Al-CPI, loop 1 and loop 2, were proposed as the key structure motifs responsible for Al-CPI binding with proteases and its inhibitory activity. Mutations at loop 1 and loop 2 abrogated the protease inhibition activity to various extents. These results provide the molecular insight into the interaction between the nematode parasite and its host and will facilitate the development of anthelmintic agents or design of anti-autoimmune disease drugs. PMID:24781326

  17. Network Analyses Reveal Pervasive Functional Regulation Between Proteases in the Human Protease Web

    PubMed Central

    Fortelny, Nikolaus; Cox, Jennifer H.; Kappelhoff, Reinhild; Starr, Amanda E.; Lange, Philipp F.; Pavlidis, Paul; Overall, Christopher M.

    2014-01-01

    Proteolytic processing is an irreversible posttranslational modification affecting a large portion of the proteome. Protease-cleaved mediators frequently exhibit altered activity, and biological pathways are often regulated by proteolytic processing. Many of these mechanisms have not been appreciated as being protease-dependent, and the potential in unraveling a complex new dimension of biological control is increasingly recognized. Proteases are currently believed to act individually or in isolated cascades. However, conclusive but scattered biochemical evidence indicates broader regulation of proteases by protease and inhibitor interactions. Therefore, to systematically study such interactions, we assembled curated protease cleavage and inhibition data into a global, computational representation, termed the protease web. This revealed that proteases pervasively influence the activity of other proteases directly or by cleaving intermediate proteases or protease inhibitors. The protease web spans four classes of proteases and inhibitors and so links both recently and classically described protease groups and cascades, which can no longer be viewed as operating in isolation in vivo. We demonstrated that this observation, termed reachability, is robust to alterations in the data and will only increase in the future as additional data are added. We further show how subnetworks of the web are operational in 23 different tissues reflecting different phenotypes. We applied our network to develop novel insights into biologically relevant protease interactions using cell-specific proteases of the polymorphonuclear leukocyte as a system. Predictions from the protease web on the activity of matrix metalloproteinase 8 (MMP8) and neutrophil elastase being linked by an inactivating cleavage of serpinA1 by MMP8 were validated and explain perplexing Mmp8 −/− versus wild-type polymorphonuclear chemokine cleavages in vivo. Our findings supply systematically derived and

  18. Biotechnology of Cold-Active Proteases

    PubMed Central

    Joshi, Swati; Satyanarayana, Tulasi

    2013-01-01

    The bulk of Earth’s biosphere is cold (<5 °C) and inhabited by psychrophiles. Biocatalysts from psychrophilic organisms (psychrozymes) have attracted attention because of their application in the ongoing efforts to decrease energy consumption. Proteinases as a class represent the largest category of industrial enzymes. There has been an emphasis on employing cold-active proteases in detergents because this allows laundry operations at ambient temperatures. Proteases have been used in environmental bioremediation, food industry and molecular biology. In view of the present limited understanding and availability of cold-active proteases with diverse characteristics, it is essential to explore Earth’s surface more in search of an ideal cold-active protease. The understanding of molecular and mechanistic details of these proteases will open up new avenues to tailor proteases with the desired properties. A detailed account of the developments in the production and applications of cold-active proteases is presented in this review. PMID:24832807

  19. Cysteine protease gene expression and proteolytic activity during senescence of Alstroemeria petals.

    PubMed

    Wagstaff, Carol; Leverentz, Michael K; Griffiths, Gareth; Thomas, Brian; Chanasut, Usawadee; Stead, Anthony D; Rogers, Hilary J

    2002-02-01

    The functional life of the flower is terminated by senescence and/or abscission. Multiple processes contribute to produce the visible signs of petal wilting and inrolling that typify senescence, but one of the most important is that of protein degradation and remobilization. This is mediated in many species through protein ubiquitination and the action of specific protease enzymes. This paper reports the changes in protein and protease activity during development and senescence of Alstroemeria flowers, a Liliaceous species that shows very little sensitivity to ethylene during senescence and which shows perianth abscission 8-10 d after flower opening. Partial cDNAs of ubiquitin (ALSUQ1) and a putative cysteine protease (ALSCYP1) were cloned from Alstroemeria using degenerate PCR primers and the expression pattern of these genes was determined semi-quantitatively by RT-PCR. While the levels of ALSUQ1 only fluctuated slightly during floral development and senescence, there was a dramatic increase in the expression of ALSCYP1 indicating that this gene may encode an important enzyme for the proteolytic process in this species. Three papain class cysteine protease enzymes showing different patterns of activity during flower development were identified on zymograms, one of which showed a similar expression pattern to the cysteine protease cDNA. PMID:11807127

  20. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion.

    PubMed

    Nishikado, Hideto; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Ogawa, Hideoki; Okumura, Ko; Takai, Toshiro

    2015-05-01

    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. PMID:25778870

  1. The effect of environmental conditions on expression of Bacteroides fragilis and Bacteroides thetaiotaomicron C10 protease genes

    PubMed Central

    2012-01-01

    Background Bacteroides fragilis and Bacteroides thetaiotaomicron are members of the normal human intestinal microbiota. However, both organisms are capable of causing opportunistic infections, during which the environmental conditions to which the bacteria are exposed change dramatically. To further explore their potential for contributing to infection, we have characterized the expression in B. thetaiotaomicron of four homologues of the gene encoding the C10 cysteine protease SpeB, a potent extracellular virulence factor produced by Streptococcus pyogenes. Results We identified a paralogous set of genes (btp genes) in the B. thetaiotaomicron genome, that were related to C10 protease genes we recently identified in B. fragilis. Similar to C10 proteases found in B. fragilis, three of the B. thetaiotaomicron homologues were transcriptionally coupled to genes encoding small proteins that are similar in structural architecture to Staphostatins, protease inhibitors associated with Staphopains in Staphylococcus aureus. The expression of genes for these C10 proteases in both B. fragilis and B. thetaiotaomicron was found to be regulated by environmental stimuli, in particular by exposure to oxygen, which may be important for their contribution to the development of opportunistic infections. Conclusions Genes encoding C10 proteases are increasingly identified in operons which also contain genes encoding proteins homologous to protease inhibitors. The Bacteroides C10 protease gene expression levels are responsive to different environmental stimuli suggesting they may have distinct roles in the bacterial-host interaction. PMID:22943521

  2. Molecular Imaging of Proteases in Cancer

    PubMed Central

    Yang, Yunan; Hong, Hao; Zhang, Yin; Cai, Weibo

    2010-01-01

    Proteases play important roles during tumor angiogenesis, invasion, and metastasis. Various molecular imaging techniques have been employed for protease imaging: optical (both fluorescence and bioluminescence), magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), and positron emission tomography (PET). In this review, we will summarize the current status of imaging proteases in cancer with these techniques. Optical imaging of proteases, in particular with fluorescence, is the most intensively validated and many of the imaging probes are already commercially available. It is generally agreed that the use of activatable probes is the most accurate and appropriate means for measuring protease activity. Molecular imaging of proteases with other techniques (i.e. MRI, SPECT, and PET) has not been well-documented in the literature which certainly deserves much future effort. Optical imaging and molecular MRI of protease activity has very limited potential for clinical investigation. PET/SPECT imaging is suitable for clinical investigation; however the optimal probes for PET/SPECT imaging of proteases in cancer have yet to be developed. Successful development of protease imaging probes with optimal in vivo stability, tumor targeting efficacy, and desirable pharmacokinetics for clinical translation will eventually improve cancer patient management. Not limited to cancer, these protease-targeted imaging probes will also have broad applications in other diseases such as arthritis, atherosclerosis, and myocardial infarction. PMID:20234801

  3. Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion

    SciTech Connect

    Nishikado, Hideto; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Ogawa, Hideoki; Okumura, Ko; Takai, Toshiro

    2015-05-01

    Th2 type immune responses are essential for protective immunity against parasites and play crucial roles in allergic disorders. Helminth parasites secrete a variety of proteases for their infectious cycles including for host entry, tissue migration, and suppression of host immune effector cell function. Furthermore, a number of pathogen-derived antigens, as well as allergens such as papain, belong to the family of cysteine proteases. Although the link between protease activity and Th2 type immunity is well documented, the mechanisms by which proteases regulate host immune responses are largely unknown. Here, we demonstrate that the cysteine proteases papain and bromelain selectively cleave the α subunit of the IL-3 receptor (IL-3Rα/CD123) on the surface of murine basophils. The decrease in CD123 expression on the cell surface, and the degradation of the extracellular domain of recombinant CD123 were dependent on the protease activity of papain and bromelain. Pre-treatment of murine basophils with papain resulted in inhibition of IL-3-IL-3R signaling and suppressed IL-3- but not thymic stromal lymphopoietin-induced expansion of basophils in vitro. Our unexpected findings illuminate a novel mechanism for the regulation of basophil functions by protease antigens. Because IL-3 plays pivotal roles in the activation and proliferation of basophils and in protective immunity against helminth parasites, pathogen-derived proteases might contribute to the pathogenesis of infections by regulating IL-3-mediated functions in basophils. - Highlights: • We identified the murine IL3R as a novel target of papain-family cysteine proteases. • Papain-family cysteine proteases cleaved IL3Rα/CD123 on murine basophils. • Papain suppressed IL3- but not TSLP-induced expansion of murine basophils. • The inactivation of IL3R might be a strategy for pathogens to suppress host immunity.

  4. Blunting the knife: development of vaccines targeting digestive proteases of blood-feeding helminth parasites.

    PubMed

    Pearson, Mark S; Ranjit, Najju; Loukas, Alex

    2010-08-01

    Proteases are pivotal to parasitism, mediating biological processes crucial to worm survival including larval migration through tissue, immune evasion/modulation and nutrient acquisition by the adult parasite. In haematophagous parasites, many of these proteolytic enzymes are secreted from the intestine (nematodes) or gastrodermis (trematodes) where they act to degrade host haemoglobin and serum proteins as part of the feeding process. These proteases are exposed to components of the immune system of the host when the worms ingest blood, and therefore present targets for the development of anti-helminth vaccines. The protective effects of current vaccine antigens against nematodes that infect humans (hookworm) and livestock (barber's pole worm) are based on haemoglobin-degrading intestinal proteases and act largely as a result of the neutralisation of these proteases by antibodies that are ingested with the blood-meal. In this review, we survey the current status of helminth proteases that show promise as vaccines and describe their vital contribution to a parasitic existence. PMID:20482309

  5. Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors

    PubMed Central

    Serrano-Luna, Jesús; Piña-Vázquez, Carolina; Reyes-López, Magda; Ortiz-Estrada, Guillermo

    2013-01-01

    The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms. PMID:23476670

  6. Cleavage of CD14 and LBP by a protease from Prevotella intermedia

    PubMed Central

    Deschner, James; Singhal, Anuradha; Long, Ping; Liu, Chau-Ching; Piesco, Nicholas

    2016-01-01

    Periodontitis is an inflammatory disease caused by subgingival microorganisms and their components, such as lipopolysaccharide (LPS). Responses of the host to LPS are mediated by CD14 and LPS-binding protein (LBP). In this study, it was determined that proteases from a periodontal pathogen, Prevotella intermedia, cleave CD14 and LBP, and thereby modulate the virulence of LPS. Culture supernatants from two strains of P. intermedia (ATCC 25611 and 25261) cleaved CD14 and LBP in a concentration-dependent manner. Zymographic and molecular mass analysis revealed the presence of a membrane-associated, 170-kDa, monomeric protease. Class-specific inhibitors and stimulators demonstrated that this enzyme is a metal-requiring, thiol-activated, cysteine protease. The protease was stable over a wide range of temperatures (4–56 °C) and pH values (4.5–8.5). This enzyme also decreased the expression of interleukin-1β (IL-1β)-specific mRNA in the LPS-activated macrophage-like cell lines U937 and THP-1 in a concentration-dependent manner, indicating that it also cleaves membrane-associated CD14. Furthermore, addition of soluble CD14 abrogated protease-mediated inhibition of IL-1 mRNA expression induced by LPS. The observations suggest that proteolysis of CD14 and LBP by P. intermedia protease might modulate the virulence of LPS at sites of periodontal infections. PMID:12728301

  7. Structural and functional characterization of cleavage and inactivation of human serine protease inhibitors by the bacterial SPATE protease EspPα from enterohemorrhagic E. coli.

    PubMed

    Weiss, André; Joerss, Hanna; Brockmeyer, Jens

    2014-01-01

    EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition. PMID:25347319

  8. Structural and Functional Characterization of Cleavage and Inactivation of Human Serine Protease Inhibitors by the Bacterial SPATE Protease EspPα from Enterohemorrhagic E. coli

    PubMed Central

    Weiss, André; Joerss, Hanna; Brockmeyer, Jens

    2014-01-01

    EspPα and EspI are serine protease autotransporters found in enterohemorrhagic Escherichia coli. They both belong to the SPATE autotransporter family and are believed to contribute to pathogenicity via proteolytic cleavage and inactivation of different key host proteins during infection. Here, we describe the specific cleavage and functional inactivation of serine protease inhibitors (serpins) by EspPα and compare this activity with the related SPATE EspI. Serpins are structurally related proteins that regulate vital protease cascades, such as blood coagulation and inflammatory host response. For the rapid determination of serpin cleavage sites, we applied direct MALDI-TOF-MS or ESI-FTMS analysis of coincubations of serpins and SPATE proteases and confirmed observed cleavage positions using in-gel-digest of SDS-PAGE-separated degradation products. Activities of both serpin and SPATE protease were assessed in a newly developed photometrical assay using chromogenic peptide substrates. EspPα cleaved the serpins α1-protease inhibitor (α1-PI), α1-antichymotrypsin, angiotensinogen, and α2-antiplasmin. Serpin cleavage led to loss of inhibitory function as demonstrated for α1-PI while EspPα activity was not affected. Notably, EspPα showed pronounced specificity and cleaved procoagulatory serpins such as α2-antiplasmin while the anticoagulatory antithrombin III was not affected. Together with recently published research, this underlines the interference of EspPα with hemostasis or inflammatory responses during infection, while the observed interaction of EspI with serpins is likely to be not physiologically relevant. EspPα-mediated serpin cleavage occurred always in flexible loops, indicating that this structural motif might be required for substrate recognition. PMID:25347319

  9. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments.

    PubMed

    Nishimura, Kenji; Kato, Yusuke; Sakamoto, Wataru

    2016-08-01

    Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed. PMID:27288365

  10. A new chymotrypsin-like serine protease involved in dietary protein digestion in a primitive animal, Scorpio maurus: purification and biochemical characterization

    PubMed Central

    2011-01-01

    Background Most recent works on chymotrypsins have been focused on marine animals and insects. However, no study was reported in chelicerate. Results Scorpion chymotrypsin-like protease (SCP) was purified to homogeneity from delipidated hepatopancreases. The protease NH2-terminal sequence exhibited more than 60% monoacids identity with those of insect putative peptidases. The protease displayed no sequence homology with classical proteases. From this point of view, the protease recalls the case of the scorpion lipase which displayed no sequence homology with known lipases. The scorpion amylase purified and characterized by our time, has an amino-acids sequence similar to those of mammalian amylases. The enzyme was characterized with respect its biochemical properties: it was active on a chymotrypsin substrate and had an apparent molecular mass of 25 kDa, like the classically known chymotrypsins. The dependence of the SCP activity and stability on pH and temperature was similar to that of mammalian chymotrypsin proteases. However, the SCP displayed a lower specific activity and a boarder pH activity range (from 6 to 9). Conclusion lower animal have a less evaluated digestive organ: a hepatopancreas, whereas, higher ones possess individualized pancreas and liver. A new chymotrypsin-like protease was purified for the first time from the scorpion hepatopancreas. Its biochemical characterization showed new features as compared to classical chymotrypsin-higher-animals proteases. PMID:21777432

  11. Advances in protease engineering for laundry detergents.

    PubMed

    Vojcic, Ljubica; Pitzler, Christian; Körfer, Georgette; Jakob, Felix; Ronny Martinez; Maurer, Karl-Heinz; Schwaneberg, Ulrich

    2015-12-25

    Proteases are essential ingredients in modern laundry detergents. Over the past 30 years, subtilisin proteases employed in the laundry detergent industry have been engineered by directed evolution and rational design to tailor their properties towards industrial demands. This comprehensive review discusses recent success stories in subtilisin protease engineering. Advances in protease engineering for laundry detergents comprise simultaneous improvement of thermal resistance and activity at low temperatures, a rational strategy to modulate pH profiles, and a general hypothesis for how to increase promiscuous activity towards the production of peroxycarboxylic acids as mild bleaching agents. The three protease engineering campaigns presented provide in-depth analysis of protease properties and have identified principles that can be applied to improve or generate enzyme variants for industrial applications beyond laundry detergents. PMID:25579194

  12. Extracellular proteases as targets for drug development.

    PubMed

    Cudic, Mare; Fields, Gregg B

    2009-08-01

    Proteases constitute one of the primary targets in drug discovery. In the present review, we focus on extracellular proteases (ECPs) because of their differential expression in many pathophysiological processes, including cancer, cardiovascular conditions, and inflammatory, pulmonary, and periodontal diseases. Many new ECP inhibitors are currently under clinical investigation and a significant increase in new therapies based on protease inhibition can be expected in the coming years. In addition to directly blocking the activity of a targeted protease, one can take advantage of differential expression in disease states to selectively deliver therapeutic or imaging agents. Recent studies in targeted drug development for the metalloproteases (matrix metalloproteinases, adamalysins, pappalysins, neprilysin, angiotensin-converting enzyme, metallocarboxypeptidases, and glutamate carboxypeptidase II), serine proteases (elastase, coagulation factors, tissue/urokinase plasminogen activator system, kallikreins, tryptase, dipeptidyl peptidase IV) and cysteine proteases (cathepsin B) are discussed herein. PMID:19689354

  13. Serine protease inhibitor A3 in atherosclerosis and aneurysm disease.

    PubMed

    Wågsäter, Dick; Johansson, Daniel; Fontaine, Vincent; Vorkapic, Emina; Bäcklund, Alexandra; Razuvaev, Anton; Mäyränpää, Mikko I; Hjerpe, Charlotta; Caidahl, Kenneth; Hamsten, Anders; Franco-Cereceda, Anders; Wilbertz, Johannes; Swedenborg, Jesper; Zhou, Xinghua; Eriksson, Per

    2012-08-01

    Remodeling of extracellular matrix (ECM) plays an important role in both atherosclerosis and aneurysm disease. Serine protease inhibitor A3 (serpinA3) is an inhibitor of several proteases such as elastase, cathepsin G and chymase derived from mast cells and neutrophils. In this study, we investigated the putative role of serpinA3 in atherosclerosis and aneurysm formation. SerpinA3 was expressed in endothelial cells and medial smooth muscle cells in human atherosclerotic lesions and a 14-fold increased expression of serpinA3n mRNA was found in lesions from Apoe-/- mice compared to lesion-free vessels. In contrast, decreased mRNA expression (-80%) of serpinA3 was found in biopsies of human abdominal aortic aneurysm (AAA) compared to non-dilated aortas. Overexpression of serpinA3n in transgenic mice did not influence the development of atherosclerosis or CaCl2-induced aneurysm formation. In situ zymography analysis showed that the transgenic mice had lower cathepsin G and elastase activity, and more elastin in the aortas compared to wild-type mice, which could indicate a more stable aortic phenotype. Differential vascular expression of serpinA3 is clearly associated with human atherosclerosis and AAA but serpinA3 had no major effect on experimentally induced atherosclerosis or AAA development in mouse. However, serpinA3 may be involved in a phenotypic stabilization of the aorta. PMID:22580763

  14. Chymotrypsin protease inhibitor gene family in rice: Genomic organization and evidence for the presence of a bidirectional promoter shared between two chymotrypsin protease inhibitor genes.

    PubMed

    Singh, Amanjot; Sahi, Chandan; Grover, Anil

    2009-01-01

    Protease inhibitors play important roles in stress and developmental responses of plants. Rice genome contains 17 putative members in chymotrypsin protease inhibitor (ranging in size from 7.21 to 11.9 kDa) gene family with different predicted localization sites. Full-length cDNA encoding for a putative subtilisin-chymotrypsin protease inhibitor (OCPI2) was obtained from Pusa basmati 1 (indica) rice seedlings. 620 bp-long OCPI2 cDNA contained 219 bp-long ORF, coding for 72 amino acid-long 7.7 kDa subtilisin-chymotrypsin protease inhibitor (CPI) cytoplasmic protein. Expression analysis by semi-quantitative RT-PCR analysis showed that OCPI2 transcript is induced by varied stresses including salt, ABA, low temperature and mechanical injury in both root and shoot tissues of the seedlings. Transgenic rice plants produced with OCPI2 promoter-gus reporter gene showed that this promoter directs high salt- and ABA-regulated expression of the GUS gene. Another CPI gene (OCPI1) upstream to OCPI2 (with 1126 bp distance between the transcription initiation sites of the two genes; transcription in the reverse orientation) was noted in genome sequence of rice genome. A vector that had GFP and GUS reporter genes in opposite orientations driven by 1881 bp intergenic sequence between the OCPI2 and OCPI1 (encompassing the region between the translation initiation sites of the two genes) was constructed and shot in onion epidermal cells by particle bombardment. Expression of both GFP and GUS from the same epidermal cell showed that this sequence represents a bidirectional promoter. Examples illustrating gene pairs showing co-expression of two divergent neighboring genes sharing a bidirectional promoter have recently been extensively worked out in yeast and human systems. We provide an example of a gene pair constituted of two homologous genes showing co-expression governed by a bidirectional promoter in rice. PMID:18952157

  15. Proteases in biological control and biotechnology

    SciTech Connect

    Cunningham, D.D.; Long, G.L.

    1987-01-01

    This book explores the role of proteases in biological control systems and diseases, examines their structures and evolution, and reviews the methods by which proteases and protease inhibitors are engineered. In addition, the use of recombinant DNA technology is explained throughout the volume. Specific topics examined include: the versatility of proteolytic enzymes, the intricate proteolytic control mechanisms in hemostasis and their application to thrombolytic therapy, the evolution of proteolytic enzymes, and the role of limited proteolytic processing in several biological control processes.

  16. Proteolytic crosstalk in multi-protease networks

    NASA Astrophysics Data System (ADS)

    Ogle, Curtis T.; Mather, William H.

    2016-04-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete (‘queue’) for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics.

  17. Proteolytic crosstalk in multi-protease networks.

    PubMed

    Ogle, Curtis T; Mather, William H

    2016-01-01

    Processive proteases, such as ClpXP in E. coli, are conserved enzyme assemblies that can recognize and rapidly degrade proteins. These proteases are used for a number of purposes, including degrading mistranslated proteins and controlling cellular stress response. However, proteolytic machinery within the cell is limited in capacity and can lead to a bottleneck in protein degradation, whereby many proteins compete ('queue') for proteolytic resources. Previous work has demonstrated that such queueing can lead to pronounced statistical relationships between different protein counts when proteins compete for a single common protease. However, real cells contain many different proteases, e.g. ClpXP, ClpAP, and Lon in E. coli, and it is not clear how competition between proteins for multiple classes of protease would influence the dynamics of cellular networks. In the present work, we theoretically demonstrate that a multi-protease proteolytic bottleneck can substantially couple the dynamics for both simple and complex (oscillatory) networks, even between substrates with substantially different affinities for protease. For these networks, queueing often leads to strong positive correlations between protein counts, and these correlations are strongest near the queueing theoretic point of balance. Furthermore, we find that the qualitative behavior of these networks depends on the relative size of the absolute affinity of substrate to protease compared to the cross affinity of substrate to protease, leading in certain regimes to priority queue statistics. PMID:27042892

  18. The C-terminal amyloidogenic peptide contributes to self-assembly of Avibirnavirus viral protease

    PubMed Central

    Zheng, Xiaojuan; Jia, Lu; Hu, Boli; Sun, Yanting; Zhang, Yina; Gao, Xiangxiang; Deng, Tingjuan; Bao, Shengjun; Xu, Li; Zhou, Jiyong

    2015-01-01

    Unlike other viral protease, Avibirnavirus infectious bursal disease virus (IBDV)-encoded viral protease VP4 forms unusual intracellular tubule-like structures during viral infection. However, the formation mechanism and potential biological functions of intracellular VP4 tubules remain largely elusive. Here, we show that VP4 can assemble into tubules in diverse IBDV-infected cells. Dynamic analysis show that VP4 initiates the assembly at early stage of IBDV infection, and gradually assembles into larger size of fibrils within the cytoplasm and nucleus. Intracellular assembly of VP4 doesn’t involve the host cytoskeleton, other IBDV-encoded viral proteins or vital subcellular organelles. Interestingly, the last C-terminal hydrophobic and amyloidogenic stretch 238YHLAMA243 with two “aggregation-prone” alanine residues was found to be essential for its intracellular self-assembly. The assembled VP4 fibrils show significantly low solubility, subsequently, the deposition of highly assembled VP4 structures ultimately deformed the host cytoskeleton and nucleus, which was potentially associated with IBDV lytic infection. Importantly, the assembly of VP4 significantly reduced the cytotoxicity of protease activity in host cells which potentially prevent the premature cell death and facilitate viral replication. This study provides novel insights into the formation mechanism and biological functions of the Avibirnavirus protease-related fibrils. PMID:26440769

  19. Cloning and analysis of a Trichinella pseudospiralis muscle larva secreted serine protease gene

    PubMed Central

    Cwiklinski, Krystyna; Meskill, Diana; Robinson, Mark W.; Pozio, E.; Appleton, Judith A.; Connolly, Bernadette

    2009-01-01

    Nematode parasites of the genus Trichinella are intracellular and distinct life cycle stages invade intestinal epithelial and skeletal muscle cells. Within the genus, Trichinella spiralis and Trichinella pseudospiralis exhibit species-specific differences with respect to host-parasite complex formation and host immune modulation. Parasite excretory-secretory (ES) proteins play important roles at the host-parasite interface and are thought to underpin these differences in biology. Serine proteases are among the most abundant group of T. spiralis ES proteins and multiple isoforms of the muscle larvae-specific TspSP-1 serine protease have been identified. Recently, a similar protein (TppSP-1) in T. pseudospiralis muscle larvae was identified. Here we report the cloning and characterisation of the full-length transcript of TppSP-1 and present comparative data between TspSP-1 and TppSP-1. PMID:19054614

  20. Cloning and analysis of a Trichinella pseudospiralis muscle larva secreted serine protease gene.

    PubMed

    Cwiklinski, Krystyna; Meskill, Diana; Robinson, Mark W; Pozio, Eduardo; Appleton, Judith A; Connolly, Bernadette

    2009-02-23

    Nematode parasites of the genus Trichinella are intracellular and distinct life cycle stages invade intestinal epithelial and skeletal muscle cells. Within the genus, Trichinella spiralis and Trichinella pseudospiralis exhibit species-specific differences with respect to host-parasite complex formation and host immune modulation. Parasite excretory-secretory (ES) proteins play important roles at the host-parasite interface and are thought to underpin these differences in biology. Serine proteases are among the most abundant group of T. spiralis ES proteins and multiple isoforms of the muscle larvae-specific TspSP-1 serine protease have been identified. Recently, a similar protein (TppSP-1) in T. pseudospiralis muscle larvae was identified. Here we report the cloning and characterisation of the full-length transcript of TppSP-1 and present comparative data between TspSP-1 and TppSP-1. PMID:19054614

  1. Identification and functional analysis of Penicillium digitatum genes putatively involved in virulence towards citrus fruit.

    PubMed

    López-Pérez, Mario; Ballester, Ana-Rosa; González-Candelas, Luis

    2015-04-01

    The fungus Penicillium digitatum, the causal agent of green mould rot, is the most destructive post-harvest pathogen of citrus fruit in Mediterranean regions. In order to identify P. digitatum genes up-regulated during the infection of oranges that may constitute putative virulence factors, we followed a polymerase chain reaction (PCR)-based suppression subtractive hybridization and cDNA macroarray hybridization approach. The origin of expressed sequence tags (ESTs) was determined by comparison against the available genome sequences of both organisms. Genes coding for fungal proteases and plant cell wall-degrading enzymes represent the largest categories in the subtracted cDNA library. Northern blot analysis of a selection of P. digitatum genes, including those coding for proteases, cell wall-related enzymes, redox homoeostasis and detoxification processes, confirmed their up-regulation at varying time points during the infection process. Agrobacterium tumefaciens-mediated transformation was used to generate knockout mutants for two genes encoding a pectin lyase (Pnl1) and a naphthalene dioxygenase (Ndo1). Two independent P. digitatum Δndo1 mutants were as virulent as the wild-type. However, the two Δpnl1 mutants analysed were less virulent than the parental strain or an ectopic transformant. Together, these results provide a significant advance in our understanding of the putative determinants of the virulence mechanisms of P. digitatum. PMID:25099378

  2. Tissue dissociation enzyme neutral protease assessment.

    PubMed

    Breite, A G; Dwulet, F E; McCarthy, R C

    2010-01-01

    Neutral proteases, essential components of purified tissue dissociation enzymes required for successful human islet isolation, show variable activities and effects of substrate on their activities. Initially we used a spectrophotometric endpoint assay with azocasein substrate to measure neutral protease activity. After critical review of the results, we observed these data to be inconsistent and not correlating expected differences in specific activities between thermolysin and Bacillus polymyxa proteases. This observation led to the development of a fluorescent microplate assay using fluorescein isothyocyanate-conjugated bovine serum albumin (FITC-BSA) as the substrate. This simpler, more flexible method offered a homogeneous, kinetic enzyme assay allowing determination of steady state reaction rates of sample replicates at various dilutions. The assay had a linear range of 4- to 8-fold and interassay coefficients of variation for B polymyxa protease and thermolysin of <9% and <15%, respectively, which were lower than those using the spectrophotometric endpoint assay, namely, 54% and 36%, respectively. This format allowed for incorporation of enzyme inhibitors, as illustrated by addition of sulfhydryl protease inhibitors, which, consistent with earlier reports, strongly indicated that the main contaminant in purified collagenase preparations was clostripain. Determination of the specific activities for several purified neutral proteases showed that the B polymyxa and Clostridium histolyticum proteases had approximately 40% and 15% specific activities, respectively, of those obtained with purified thermolysin, indicating the different characteristics of neutral protease enzymes for cell isolation procedures. PMID:20692405

  3. Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma antarctica PI12

    PubMed Central

    Ahmad Mazian, Mu'adz; Salleh, Abu Bakar; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abd.

    2014-01-01

    Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE) strategy with an open reading frame (ORF) of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity) and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX) promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml) was obtained from P. pastoris GS115 host (GpPro2) at 20°C after 72 hours of postinduction time with 0.5% (v/v) of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa. PMID:25093119

  4. Molecular Cloning and Optimization for High Level Expression of Cold-Adapted Serine Protease from Antarctic Yeast Glaciozyma antarctica PI12.

    PubMed

    Alias, Norsyuhada; Ahmad Mazian, Mu'adz; Salleh, Abu Bakar; Basri, Mahiran; Rahman, Raja Noor Zaliha Raja Abd

    2014-01-01

    Psychrophilic basidiomycete yeast, Glaciozyma antarctica strain PI12, was shown to be a protease-producer. Isolation of the PI12 protease gene from genomic and mRNA sequences allowed determination of 19 exons and 18 introns. Full-length cDNA of PI12 protease gene was amplified by rapid amplification of cDNA ends (RACE) strategy with an open reading frame (ORF) of 2892 bp, coded for 963 amino acids. PI12 protease showed low homology with the subtilisin-like protease from fungus Rhodosporidium toruloides (42% identity) and no homology to other psychrophilic proteases. The gene encoding mature PI12 protease was cloned into Pichia pastoris expression vector, pPIC9, and positioned under the induction of methanol-alcohol oxidase (AOX) promoter. The recombinant PI12 protease was efficiently secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. The highest protease production (28.3 U/ml) was obtained from P. pastoris GS115 host (GpPro2) at 20°C after 72 hours of postinduction time with 0.5% (v/v) of methanol inducer. The expressed protein was detected by SDS-PAGE and activity staining with a molecular weight of 99 kDa. PMID:25093119

  5. Characterization of a serine protease-mediated cell death program activated in human leukemia cells

    SciTech Connect

    O'Connell, A.R.; Holohan, C.; Torriglia, A.; Lee, B.F.; Stenson-Cox, C. . E-mail: catherine.stenson@nuigalway.ie

    2006-01-01

    Tightly controlled proteolysis is a defining feature of apoptosis and caspases are critical in this regard. Significant roles for non-caspase proteases in cell death have been highlighted. Staurosporine causes a rapid induction of apoptosis in virtually all mammalian cell types. Numerous studies demonstrate that staurosporine can activate cell death under caspase-inhibiting circumstances. The aim of this study was to investigate the proteolytic mechanisms responsible for cell death under these conditions. To that end, we show that inhibitors of serine proteases can delay cell death in one such system. Furthermore, through profiling of proteolytic activation, we demonstrate, for the first time, that staurosporine activates a chymotrypsin-like serine protease-dependent cell death in HL-60 cells independently, but in parallel with the caspase controlled systems. Features of the serine protease-mediated system include cell shrinkage and apoptotic morphology, regulation of caspase-3, altered nuclear morphology, generation of an endonuclease and DNA degradation. We also demonstrate a staurosporine-induced activation of a putative 16 kDa chymotrypsin-like protein during apoptosis.

  6. Mirolase, a novel subtilisin-like serine protease from the periodontopathogen Tannerella forsythia

    PubMed Central

    Ksiazek, Miroslaw; Karim, Abdulkarim Y.; Bryzek, Danuta; Enghild, Jan J.; Thøgersen, Ida B.; Koziel, Joanna; Potempa, Jan

    2015-01-01

    The genome of Tannerella forsythia, an etiologic factor of chronic periodontitis, contains several genes encoding putative proteases. Here, we characterized a subtilisin-like serine protease of T. forsythia referred to as mirolase. Recombinant full-length latent promirolase (85 kDa, without its signal peptide) processed itself through sequential autoproteolytic cleavages into a mature enzyme of 40 kDa. Mirolase latency was driven by the N-terminal prodomain (NTP). In stark contrast to almost all known subtilases, the cleaved NTP remained non-covalently associated with mirolase, inhibiting its proteolytic, but not amidolytic, activity. Full activity was observed only after the NTP was gradually, and fully, degraded. Both activity and processing was absolutely dependent on calcium ions, which were also essential for enzyme stability. As a consequence, both serine protease inhibitors and calcium ions chelators inhibited mirolase activity. Activity assays using an array of chromogenic substrates revealed that mirolase specificity is driven not only by the substrate-binding subsite S1, but also by other subsites. Taken together mirolase is a calcium-dependent serine protease of the S8 family with the unique mechanism of activation that may contribute to T. forsythia pathogenicity by degradation of fibrinogen, hemoglobin and the antimicrobial peptide LL-37. PMID:25391881

  7. Increased virulence using engineered protease-chitin binding domain hybrid expressed in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Fan, Yanhua; Pei, Xiaoqiong; Guo, Shujuan; Zhang, Yongjun; Luo, Zhibing; Liao, Xinggang; Pei, Yan

    2010-12-01

    Insect cuticles consist mainly of interlinked networks of proteins and the highly insoluble polysaccharide, chitin. Entomopathogenic fungi, such as Beauveria bassiana, invade insects by direct penetration of host cuticles via the action of diverse hydrolases including proteases and chitinases coupled to mechanical pressure. In order to better target cuticle protein-chitin structures and accelerate penetration speed, a hybrid protease (CDEP-BmChBD) was constructed by fusion of a chitin binding domain BmChBD from Bombyx mori chitinase to the C-terminal of CDEP-1, a subtilisin-like protease from B. bassiana. Compared to the wild-type, the hybrid protease was able to bind chitin and released greater amounts of peptides/proteins from insect cuticles. The insecticidal activity of B. bassiana was enhanced by including proteases, CDEP-1 or CDEP:BmChBD produced in Pichia pastoris, as an additive, however, the augment effect of CDEP:BmChBD was significantly higher than that of CDEP-1. Expression of the hybrid protease in B. bassiana also significantly increased fungal virulence compared to wild-type and strains overexpressing the native protease. These results demonstrate that rational design virulence factor is a potential strategy for strain improvement by genetic engineering. PMID:20674735

  8. Protease-degradable electrospun fibrous hydrogels

    NASA Astrophysics Data System (ADS)

    Wade, Ryan J.; Bassin, Ethan J.; Rodell, Christopher B.; Burdick, Jason A.

    2015-03-01

    Electrospun nanofibres are promising in biomedical applications to replicate features of the natural extracellular matrix (ECM). However, nearly all electrospun scaffolds are either non-degradable or degrade hydrolytically, whereas natural ECM degrades proteolytically, often through matrix metalloproteinases. Here we synthesize reactive macromers that contain protease-cleavable and fluorescent peptides and are able to form both isotropic hydrogels and electrospun fibrous hydrogels through a photoinitiated polymerization. These biomimetic scaffolds are susceptible to protease-mediated cleavage in vitro in a protease dose-dependent manner and in vivo in a subcutaneous mouse model using transdermal fluorescent imaging to monitor degradation. Importantly, materials containing an alternate and non-protease-cleavable peptide sequence are stable in both in vitro and in vivo settings. To illustrate the specificity in degradation, scaffolds with mixed fibre populations support selective fibre degradation based on individual fibre degradability. Overall, this represents a novel biomimetic approach to generate protease-sensitive fibrous scaffolds for biomedical applications.

  9. Progress and prospects on DENV protease inhibitors.

    PubMed

    Timiri, Ajay Kumar; Sinha, Barij Nayan; Jayaprakash, Venkatesan

    2016-07-19

    New treatments are desperately required to combat increasing rate of dengue fever cases reported in tropical and sub-tropical parts of the world. Among the ten proteins (structural and non-structural) encoded by dengue viral genome, NS2B-NS3 protease is an ideal target for drug discovery. It is responsible for the processing of poly protein that is required for genome replication of the virus. Moreover, inhibitors designed against proteases were found successful in Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV). Complete molecular mechanism and a survey of inhibitors reported against dengue protease will be helpful in designing effective and potent inhibitors. This review provides an insight on molecular mechanism of dengue virus protease and covers up-to-date information on different inhibitors reported against dengue proteases with medicinal chemistry perspective. PMID:27092412

  10. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain.

    PubMed

    Urban, Sinisa; Freeman, Matthew

    2003-06-01

    Rhomboid intramembrane proteases initiate cell signaling during Drosophila development and Providencia bacterial growth by cleaving transmembrane ligand precursors. We have determined how specificity is achieved: Drosophila Rhomboid-1 is a site-specific protease that recognizes its substrate Spitz by a small region of the Spitz transmembrane domain (TMD). This substrate motif is necessary and sufficient for cleavage and is composed of residues known to disrupt helices. Rhomboids from diverse organisms including bacteria and vertebrates recognize the same substrate motif, suggesting that they use a universal targeting strategy. We used this information to search for other rhomboid substrates and identified a family of adhesion proteins from the human parasite Toxoplasma gondii, the TMDs of which were efficient substrates for rhomboid proteases. Intramembrane cleavage of these proteins is required for host cell invasion. These results provide an explanation of how rhomboid proteases achieve specificity, and allow some rhomboid substrates to be predicted from sequence information. PMID:12820957

  11. Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine

    SciTech Connect

    Hodder, Anthony N.; Malby, Robyn L.; Clarke, Oliver B.; Fairlie, W. Douglas; Colman, Peter M.; Crabb, Brendan S.; Smith, Brian J.

    2009-08-28

    The sera genes of the malaria-causing parasite Plasmodium encode a family of unique proteins that are maximally expressed at the time of egress of parasites from infected red blood cells. These multi-domain proteins are unique, containing a central papain-like cysteine-protease fragment enclosed between the disulfide-linked N- and C-terminal domains. However, the central fragment of several members of this family, including serine repeat antigen 5 (SERA5), contains a serine (S596) in place of the active-site cysteine. Here we report the crystal structure of the central protease-like domain of Plasmodium falciparum SERA5, revealing a number of anomalies in addition to the putative nucleophilic serine: (1) the structure of the putative active site is not conducive to binding substrate in the canonical cysteine-protease manner; (2) the side chain of D594 restricts access of substrate to the putative active site; and (3) the S{sub 2} specificity pocket is occupied by the side chain of Y735, reducing this site to a small depression on the protein surface. Attempts to determine the structure in complex with known inhibitors were not successful. Thus, despite having revealed its structure, the function of the catalytic domain of SERA5 remains an enigma.

  12. Experimental Determination of the Membrane Topology of the Plasmodium Protease Plasmepsin V

    PubMed Central

    Tarr, Sarah J.; Osborne, Andrew R.

    2015-01-01

    The malaria parasite exports hundreds of proteins into its host cell. The majority of exported proteins contain a Host-Targeting motif (also known as a Plasmodium export element) that directs them for export. Prior to export, the Host-Targeting motif is cleaved by the endoplasmic reticulum-resident protease Plasmepsin V and the newly generated N-terminus is N-α-acetylated by an unidentified enzyme. The cleaved, N-α-acetylated protein is trafficked to the parasitophorous vacuole, where it is translocated across the vacuole membrane. It is clear that cleavage and N-α-acetylation of the Host-Targeting motif occur at the endoplasmic reticulum, and it has been proposed that Host-Targeting motif cleavage and N-α-acetylation occur either on the luminal or cytosolic side of the endoplasmic reticulum membrane. Here, we use self-associating ‘split’ fragments of GFP to determine the topology of Plasmepsin V in the endoplasmic reticulum membrane; we show that the catalytic protease domain of Plasmepsin V faces the endoplasmic reticulum lumen. These data support a model in which the Host-Targeting motif is cleaved and N-α-acetylated in the endoplasmic reticulum lumen. Furthermore, these findings suggest that cytosolic N-α-acetyltransferases are unlikely to be candidates for the N-α-acetyltransferase of Host-Targeting motif-containing exported proteins. PMID:25849462

  13. AraPerox. A Database of Putative Arabidopsis Proteins from Plant Peroxisomes1[w

    PubMed Central

    Reumann, Sigrun; Ma, Changle; Lemke, Steffen; Babujee, Lavanya

    2004-01-01

    To identify unknown proteins from plant peroxisomes, the Arabidopsis genome was screened for proteins with putative major or minor peroxisome targeting signals type 1 or 2 (PTS1 or PTS2), as defined previously (Reumann S [2004] Plant Physiol 135: 783–800). About 220 and 60 proteins were identified that carry a putative PTS1 or PTS2, respectively. To further support postulated targeting to peroxisomes, several prediction programs were applied and the putative targeting domains analyzed for properties conserved in peroxisomal proteins and for PTS conservation in homologous plant expressed sequence tags. The majority of proteins with a major PTS and medium to high overall probability of peroxisomal targeting represent novel nonhypothetical proteins and include several enzymes involved in β-oxidation of unsaturated fatty acids and branched amino acids, and 2-hydroxy acid oxidases with a predicted function in fatty acid α-oxidation, as well as NADP-dependent dehydrogenases and reductases. In addition, large protein families with many putative peroxisomal isoforms were recognized, including acyl-activating enzymes, GDSL lipases, and small thioesterases. Several proteins are homologous to prokaryotic enzymes of a novel aerobic hybrid degradation pathway for aromatic compounds and proposed to be involved in peroxisomal biosynthesis of plant hormones like jasmonic acid, auxin, and salicylic acid. Putative regulatory proteins of plant peroxisomes include protein kinases, small heat shock proteins, and proteases. The information on subcellular targeting prediction, homology, and in silico expression analysis for these Arabidopsis proteins has been compiled in the public database AraPerox to accelerate discovery and experimental investigation of novel metabolic and regulatory pathways of plant peroxisomes. PMID:15333753

  14. Chemoproteomic profiling of host and pathogen enzymes active in cholera

    PubMed Central

    Hatzios, Stavroula K.; Hubbard, Troy; Sasabe, Jumpei; Munera, Diana; Clark, Lars; Bachovchin, Daniel A.; Qadri, Firdausi; Ryan, Edward T.; Davis, Brigid M.; Weerapana, Eranthie; Waldor, Matthew K.

    2016-01-01

    Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human cholera stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, while genetic disruption of all four proteases increased the abundance and binding of an intestinal lectin—intelectin—to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialogue in an animal model of infection. PMID:26900865

  15. HIV-1 protease mutations and protease inhibitor cross-resistance.

    PubMed

    Rhee, Soo-Yon; Taylor, Jonathan; Fessel, W Jeffrey; Kaufman, David; Towner, William; Troia, Paolo; Ruane, Peter; Hellinger, James; Shirvani, Vivian; Zolopa, Andrew; Shafer, Robert W

    2010-10-01

    The effects of many protease inhibitor (PI)-selected mutations on the susceptibility to individual PIs are unknown. We analyzed in vitro susceptibility test results on 2,725 HIV-1 protease isolates. More than 2,400 isolates had been tested for susceptibility to fosamprenavir, indinavir, nelfinavir, and saquinavir; 2,130 isolates had been tested for susceptibility to lopinavir; 1,644 isolates had been tested for susceptibility to atazanavir; 1,265 isolates had been tested for susceptibility to tipranavir; and 642 isolates had been tested for susceptibility to darunavir. We applied least-angle regression (LARS) to the 200 most common mutations in the data set and identified a set of 46 mutations associated with decreased PI susceptibility of which 40 were not polymorphic in the eight most common HIV-1 group M subtypes. We then used least-squares regression to ascertain the relative contribution of each of these 46 mutations. The median number of mutations associated with decreased susceptibility to each PI was 28 (range, 19 to 32), and the median number of mutations associated with increased susceptibility to each PI was 2.5 (range, 1 to 8). Of the mutations with the greatest effect on PI susceptibility, I84AV was associated with decreased susceptibility to eight PIs; V32I, G48V, I54ALMSTV, V82F, and L90M were associated with decreased susceptibility to six to seven PIs; I47A, G48M, I50V, L76V, V82ST, and N88S were associated with decreased susceptibility to four to five PIs; and D30N, I50L, and V82AL were associated with decreased susceptibility to fewer than four PIs. This study underscores the greater impact of nonpolymorphic mutations compared with polymorphic mutations on decreased PI susceptibility and provides a comprehensive quantitative assessment of the effects of individual mutations on susceptibility to the eight clinically available PIs. PMID:20660676

  16. Rapid Detection of Thrombin and Other Protease Activity Directly in Whole Blood

    NASA Astrophysics Data System (ADS)

    Yu, Johnson Chung Sing

    Thrombin is a serine protease that plays a key role in the clotting cascade to promote hemostasis following injury to the endothelium. From a clinical diagnostic perspective, in-vivo thrombin activity is linked to various blood clotting disorders, as well as cardiovascular disease (DVT, arteriosclerosis, etc). Thus, the ability to rapidly measure protease activity directly in whole blood will provide important new diagnostics, and clinical researchers with a powerful tool to further elucidate the relationship between circulating protease levels and disease. The ultimate goal is to design novel point of care (POC) diagnostic devices that are capable of monitoring protease activities directly in whole blood and biological sample. A charge-changing substrate specific to the thrombin enzyme was engineered and its functionality was confirmed by a series of experiments. This led to the preliminary design, construction, and testing of two device platforms deemed fully functional for the electrophoretic separation and focusing of charged peptide fragments. The concept of using the existing charge-changing substrate platform for bacterial protease detection was also investigated. Certain strains of E coli are associated with severe symptoms such as abdominal cramps, bloody diarrhea, and vomiting. The OmpT protease is expressed on the outer membrane of E coli and plays a role in the cleavage of antimicrobial peptides, the degradation of recombinant heterologous proteins, and the activation of plasminogen in the host. Thus, a synthetic peptide substrate specific to the OmpT protease was designed and modeled for the purpose of detecting E coli in biological sample.

  17. Assessing the impact of long term frozen storage of faecal samples on protein concentration and protease activity

    PubMed Central

    Morris, Laura S.; Marchesi, Julian R.

    2016-01-01

    Background The proteome is the second axis of the microbiome:host interactome and proteases are a significant aspect in this interaction. They interact with a large variety of host proteins and structures and in many situations are implicated in pathogenesis. Furthermore faecal samples are commonly collected and stored frozen so they can be analysed at a later date. So we were interested to know whether long term storage affected the integrity of proteases and total protein and whether historical native faecal samples were still a viable option for answering research questions around the functional proteome. Methods Faecal samples were collected from 3 healthy volunteers (3 biological replicates) and processed in order to be stored at both − 20 °C and − 80 °C and in a variety of storage buffers. Protein extraction, protein content and protease activity were assessed at the time of collection, after 24 h, 1 week, 1 month, 3 months 6 months and finally 1 year. Results Beadbeating impacted the quantity of protein extracted, while sodium azide did not impact protease assays. Long term storage of extracted proteins showed that both total protein and protease activity were affected when they were stored as extracted protein. Intact faecal samples were shown to maintain both protein levels and protease activity regardless of time and temperature. Conclusions Beadbeating increases the protein and protease activity when extracting from a faecal sample, however, the extracted protein is not stable and activity is lost, even with a suitable storage buffer. The most robust solution is to store the proteins in an intact frozen native faecal matrix and extract at the time of assay or analysis, this approach was shown to be suitable for samples in which, there are low levels of protease activity and which had been frozen for a year. PMID:26853125

  18. Cloning and Characterization of Two Potent Kunitz Type Protease Inhibitors from Echinococcus granulosus.

    PubMed

    Ranasinghe, Shiwanthi L; Fischer, Katja; Zhang, Wenbao; Gobert, Geoffrey N; McManus, Donald P

    2015-12-01

    The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic. PMID:26645974

  19. Cloning and Characterization of Two Potent Kunitz Type Protease Inhibitors from Echinococcus granulosus

    PubMed Central

    Ranasinghe, Shiwanthi L.; Fischer, Katja; Zhang, Wenbao; Gobert, Geoffrey N.; McManus, Donald P.

    2015-01-01

    The tapeworm Echinococcus granulosus is responsible for cystic echinococcosis (CE), a cosmopolitan disease which imposes a significant burden on the health and economy of affected communities. Little is known about the molecular mechanisms whereby E. granulosus is able to survive in the hostile mammalian host environment, avoiding attack by host enzymes and evading immune responses, but protease inhibitors released by the parasite are likely implicated. We identified two nucleotide sequences corresponding to secreted single domain Kunitz type protease inhibitors (EgKIs) in the E. granulosus genome, and their cDNAs were cloned, bacterially expressed and purified. EgKI-1 is highly expressed in the oncosphere (egg) stage and is a potent chymotrypsin and neutrophil elastase inhibitor that binds calcium and reduced neutrophil infiltration in a local inflammation model. EgKI-2 is highly expressed in adult worms and is a potent inhibitor of trypsin. As powerful inhibitors of mammalian intestinal proteases, the EgKIs may play a pivotal protective role in preventing proteolytic enzyme attack thereby ensuring survival of E. granulosus within its mammalian hosts. EgKI-1 may also be involved in the oncosphere in host immune evasion by inhibiting neutrophil elastase and cathepsin G once this stage is exposed to the mammalian blood system. In light of their key roles in protecting E. granulosus from host enzymatic attack, the EgKI proteins represent potential intervention targets to control CE. This is important as new public health measures against CE are required, given the inefficiencies of available drugs and the current difficulties in its treatment and control. In addition, being a small sized highly potent serine protease inhibitor, and an inhibitor of neutrophil chemotaxis, EgKI-1 may have clinical potential as a novel anti-inflammatory therapeutic. PMID:26645974

  20. Identification and Partial Characterization of Extracellular Aspartic Protease Genes from Metschnikowia pulcherrima IWBT Y1123 and Candida apicola IWBT Y1384

    PubMed Central

    Reid, Vernita J.; Theron, Louwrens W.; du Toit, Maret

    2012-01-01

    The extracellular acid proteases of non-Saccharomyces wine yeasts may fulfill a number of roles in winemaking, which include increasing the available nitrogen sources for the growth of fermentative microbes, affecting the aroma profile of the wine, and potentially reducing protein haze formation. These proteases, however, remain poorly characterized, especially at genetic level. In this study, two extracellular aspartic protease-encoding genes were identified and sequenced, from two yeast species of enological origin: one gene from Metschnikowia pulcherrima IWBT Y1123, named MpAPr1, and the other gene from Candida apicola IWBT Y1384, named CaAPr1. In silico analysis of these two genes revealed a number of features peculiar to aspartic protease genes, and both the MpAPr1 and CaAPr1 putative proteins showed homology to proteases of yeast genera. Heterologous expression of MpAPr1 in Saccharomyces cerevisiae YHUM272 confirmed that it encodes an aspartic protease. MpAPr1 production, which was shown to be constitutive, and secretion were confirmed in the presence of bovine serum albumin (BSA), casein, and grape juice proteins. The MpAPr1 gene was found to be present in 12 other M. pulcherrima strains; however, plate assays revealed that the intensity of protease activity was strain dependent and unrelated to the gene sequence. PMID:22820332

  1. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    PubMed

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching. PMID:25731909

  2. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice.

    PubMed

    Choi, Vivian M; Herrou, Julien; Hecht, Aaron L; Teoh, Wei Ping; Turner, Jerrold R; Crosson, Sean; Bubeck Wardenburg, Juliane

    2016-05-01

    Bacteroides fragilis is the leading cause of anaerobic bacteremia and sepsis. Enterotoxigenic strains that produce B. fragilis toxin (BFT, fragilysin) contribute to colitis and intestinal malignancy, yet are also isolated in bloodstream infection. It is not known whether these strains harbor unique genetic determinants that confer virulence in extra-intestinal disease. We demonstrate that BFT contributes to sepsis in mice, and we identify a B. fragilis protease called fragipain (Fpn) that is required for the endogenous activation of BFT through the removal of its auto-inhibitory prodomain. Structural analysis of Fpn reveals a His-Cys catalytic dyad that is characteristic of C11-family cysteine proteases that are conserved in multiple pathogenic Bacteroides spp. and Clostridium spp. Fpn-deficient, enterotoxigenic B. fragilis has an attenuated ability to induce sepsis in mice; however, Fpn is dispensable in B. fragilis colitis, wherein host proteases mediate BFT activation. Our findings define a role for B. fragilis enterotoxin and its activating protease in the pathogenesis of bloodstream infection, which indicates a greater complexity of cellular targeting and activity of BFT than previously recognized. The expression of fpn by both toxigenic and nontoxigenic strains suggests that this protease may contribute to anaerobic sepsis in ways that extend beyond its role in toxin activation. It could thus potentially serve as a target for disease modification. PMID:27089515

  3. Cleavage of influenza A virus H1 hemagglutinin by swine respiratory bacterial proteases.

    PubMed Central

    Callan, R J; Hartmann, F A; West, S E; Hinshaw, V S

    1997-01-01

    Cleavage of influenza A virus hemagglutinin (HA) is required for expression of fusion activity and virus entry into cells. Extracellular proteases are responsible for the proteolytic cleavage activation of avirulent avian and mammalian influenza viruses and contribute to pathogenicity and tissue tropism. The relative contributions of host and microbial proteases to cleavage activation in natural infection remain to be established. We examined 23 respiratory bacterial pathogens and 150 aerobic bacterial isolates cultured from the nasal cavities of pigs for proteolytic activity. No evidence of secreted proteases was found for the bacterial pathogens, including Haemophilus parasuis, Pasteurella multocida, Actinobacillus pleuropneumoniae, Bordetella bronchiseptica, and Streptococcus suis. Proteolytic bacteria were isolated from 7 of 11 swine nasal samples and included Staphylococcus chromogenes, Staphylococcus hyicus, Aeromonas caviae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Enterococcus sp. Only P. aeruginosa secreted a protease, elastase, that cleaved influenza virus HA. However, compared to trypsin, the site of cleavage by elastase was shifted one amino acid in the carboxy-terminal direction and resulted in inactivation of the virus. Under the conditions of this study, we identified several bacterial isolates from the respiratory tracts of pigs that secrete proteases in vitro. However, none of these proteolytic isolates demonstrated direct cleavage activation of influenza virus HA. PMID:9311838

  4. Structural Evidence for Regulation and Specificity of Flaviviral Proteases and Evolution of the Flaviviridae Fold

    SciTech Connect

    Aleshin,A.; Shiryaev, S.; Strongin, A.; Liddington, R.

    2007-01-01

    Pathogenic members of the flavivirus family, including West Nile Virus (WNV) and Dengue Virus (DV), are growing global threats for which there are no specific treatments. The two-component flaviviral enzyme NS2B-NS3 cleaves the viral polyprotein precursor within the host cell, a process that is required for viral replication. Here, we report the crystal structure of WNV NS2B-NS3pro both in a substrate-free form and in complex with the trypsin inhibitor aprotinin/BPTI. We show that aprotinin binds in a substrate-mimetic fashion in which the productive conformation of the protease is fully formed, providing evidence for an 'induced fit' mechanism of catalysis and allowing us to rationalize the distinct substrate specificities of WNV and DV proteases. We also show that the NS2B cofactor of WNV can adopt two very distinct conformations and that this is likely to be a general feature of flaviviral proteases, providing further opportunities for regulation. Finally, by comparing the flaviviral proteases with the more distantly related Hepatitis C virus, we provide insights into the evolution of the Flaviviridae fold. Our work should expedite the design of protease inhibitors to treat a range of flaviviral infections.

  5. Protease proteomics: revealing protease in vivo functions using systems biology approaches.

    PubMed

    Doucet, Alain; Overall, Christopher M

    2008-10-01

    Proteases irreversibly modify proteins by cleaving their amide bonds and are implicated in virtually every important biological process such as immunity, development and tissue repair. Accordingly, it is easy to see that deregulated proteolysis is a pathognomic feature of many diseases. Most of the current information available on proteases was acquired using in vitro methods, which reveals molecular structure, enzyme kinetics and active-site specificity. However, considerably less is known about the relevant biological functions and combined roles of proteases in moulding the proteome. Although models using genetically modified animals are powerful, they are slow to develop, they can be difficult to interpret, and while useful, they remain only models of human disease. Therefore, to understand how proteases accomplish their tasks in organisms and how they participate in pathology, we need to elucidate the protease degradome-the repertoire of proteases expressed by a cell, a tissue or an organism at a particular time-their expression level, activation state, their biological substrates, also known as the substrate degradome-the repertoire of substrates for each protease-and the effect of the activity of each protease on the pathways of the system under study. Achieving this goal is challenging because several proteases might cleave the same protein, and proteases also form pathways and interact to form the protease web [Overall, C.M., Kleifeld, O., 2006. Tumour microenvironment - opinion: validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6 (3), 227-239]. Hence, the net proteolytic potential of the degradome at a particular time on a substrate and pathway must also be understood. Proteomics offers one of the few routes to the understanding of proteolysis in complex in vivo systems and especially in man where genetic manipulations are impossible. The aim of this chapter is to review methods and tools that allow

  6. The Race against Protease Activation Defines the Role of ESCRTs in HIV Budding

    PubMed Central

    Bendjennat, Mourad; Saffarian, Saveez

    2016-01-01

    HIV virions assemble on the plasma membrane and bud out of infected cells using interactions with endosomal sorting complexes required for transport (ESCRTs). HIV protease activation is essential for maturation and infectivity of progeny virions, however, the precise timing of protease activation and its relationship to budding has not been well defined. We show that compromised interactions with ESCRTs result in delayed budding of virions from host cells. Specifically, we show that Gag mutants with compromised interactions with ALIX and Tsg101, two early ESCRT factors, have an average budding delay of ~75 minutes and ~10 hours, respectively. Virions with inactive proteases incorporated the full Gag-Pol and had ~60 minutes delay in budding. We demonstrate that during budding delay, activated proteases release critical HIV enzymes back to host cytosol leading to production of non-infectious progeny virions. To explain the molecular mechanism of the observed budding delay, we modulated the Pol size artificially and show that virion release delays are size-dependent and also show size-dependency in requirements for Tsg101 and ALIX. We highlight the sensitivity of HIV to budding “on-time” and suggest that budding delay is a potent mechanism for inhibition of infectious retroviral release. PMID:27280284

  7. Identification of proteases from periodontopathogenic bacteria as activators of latent human neutrophil and fibroblast-type interstitial collagenases.

    PubMed Central

    Sorsa, T; Ingman, T; Suomalainen, K; Haapasalo, M; Konttinen, Y T; Lindy, O; Saari, H; Uitto, V J

    1992-01-01

    concert with host enzymes the bacterial proteases may participate in periodontal tissue destruction. Images PMID:1398963

  8. Extracellular proteases of Trichoderma species. A review.

    PubMed

    Kredics, L; Antal, Zsuzsanna; Szekeres, A; Hatvani, L; Manczinger, L; Vágvölgyi, Cs; Nagy, Erzsébet

    2005-01-01

    Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed. PMID:16003937

  9. Regulation of protease production in Clostridium sporogenes.

    PubMed Central

    Allison, C; Macfarlane, G T

    1990-01-01

    The physiological and nutritional factors that regulate protease synthesis in Clostridium sporogenes C25 were studied in batch and continuous cultures. Formation of extracellular proteases occurred at the end of active growth and during the stationary phase in batch cultures. Protease production was inversely related to growth rate in glucose-excess and glucose-limited chemostats over the range D = 0.05 to 0.70 h-1. In pulse experiments, glucose, ammonia, phosphate, and some amino acids (tryptophan, proline, tyrosine, and isoleucine) strongly repressed protease synthesis. This repression was not relieved by addition of 4 mM cyclic AMP, cyclic GMP, or dibutyryl cyclic AMP. Protease formation was markedly inhibited by 4 mM ATP and ADP, but GTP and GDP had little effect on the process. It is concluded that protease production by C. sporogenes is strongly influenced by the amount of energy available to the cells, with the highest levels of protease synthesis occurring under energy-limiting conditions. PMID:2268158

  10. A biotechnology perspective of fungal proteases

    PubMed Central

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira, Edivaldo Ximenes; Pessoa, Adalberto; Magalhães, Pérola Oliveira

    2015-01-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  11. A biotechnology perspective of fungal proteases.

    PubMed

    de Souza, Paula Monteiro; Bittencourt, Mona Lisa de Assis; Caprara, Carolina Canielles; de Freitas, Marcela; de Almeida, Renata Paula Coppini; Silveira, Dâmaris; Fonseca, Yris Maria; Ferreira Filho, Edivaldo Ximenes; Pessoa Junior, Adalberto; Magalhães, Pérola Oliveira

    2015-06-01

    Proteases hydrolyze the peptide bonds of proteins into peptides and amino acids, being found in all living organisms, and are essential for cell growth and differentiation. Proteolytic enzymes have potential application in a wide number of industrial processes such as food, laundry detergent and pharmaceutical. Proteases from microbial sources have dominated applications in industrial sectors. Fungal proteases are used for hydrolyzing protein and other components of soy beans and wheat in soy sauce production. Proteases can be produced in large quantities in a short time by established methods of fermentation. The parameters such as variation in C/N ratio, presence of some sugars, besides several other physical factors are important in the development of fermentation process. Proteases of fungal origin can be produced cost effectively, have an advantage faster production, the ease with which the enzymes can be modified and mycelium can be easily removed by filtration. The production of proteases has been carried out using submerged fermentation, but conditions in solid state fermentation lead to several potential advantages for the production of fungal enzymes. This review focuses on the production of fungal proteases, their distribution, structural-functional aspects, physical and chemical parameters, and the use of these enzymes in industrial applications. PMID:26273247

  12. HIV-1 Protease: Structure, Dynamics and Inhibition

    SciTech Connect

    Louis, John M.; Ishima, R.; Torchia, D.A.; Weber, Irene T.

    2008-06-03

    The HIV-1 protease is synthesized as part of a large Gag-Pol precursor protein. It is responsible for its own release from the precursor and the processing of the Gag and Gag-Pol polyproteins into the mature structural and functional proteins required for virus maturation. Because of its indispensable role, the mature HIV-1 protease dimer has proven to be a successful target for the development of antiviral agents. In the last 5 years, a major emphasis in protease research has been to improve inhibitor design and treatment regimens.

  13. Structural Insight into Serine Protease Rv3671c that Protects M. tuberculosis from Oxidative and Acidic Stress

    SciTech Connect

    Biswas, Tapan; Small, Jennifer; Vandal, Omar; Odaira, Toshiko; Deng, Haiteng; Ehrt, Sabine; Tsodikov, Oleg V.

    2010-11-15

    Rv3671c, a putative serine protease, is crucial for persistence of Mycobacterium tuberculosis in the hostile environment of the phagosome. We show that Rv3671c is required for M. tuberculosis resistance to oxidative stress in addition to its role in protection from acidification. Structural and biochemical analyses demonstrate that the periplasmic domain of Rv3671c is a functional serine protease of the chymotrypsin family and, remarkably, that its activity increases on oxidation. High-resolution crystal structures of this protease in an active strained state and in an inactive relaxed state reveal that a solvent-exposed disulfide bond controls the protease activity by constraining two distant regions of Rv3671c and stabilizing it in the catalytically active conformation. In vitro biochemical studies confirm that activation of the protease in an oxidative environment is dependent on this reversible disulfide bond. These results suggest that the disulfide bond modulates activity of Rv3671c depending on the oxidative environment in vivo.

  14. Cloning, expression, and sequencing of a protease gene (tpr) from Porphyromonas gingivalis W83 in Escherichia coli.

    PubMed Central

    Bourgeau, G; Lapointe, H; Péloquin, P; Mayrand, D

    1992-01-01

    Porphyromonas gingivalis is a highly proteolytic organism which metabolizes small peptides and amino acids. Indirect evidence suggests that the proteases produced by this microorganism constitute an important virulence factor. In this study, a gene bank of P. gingivalis W83 DNA was constructed by cloning 0.5- to 20-kb HindIII-cut DNA fragments into Escherichia coli DH5 alpha by using the plasmid vector pUC19. A clone expressing a protease from P. gingivalis was isolated on LB agar containing 1% skim milk. The clone contained a 3.0-kb insert that coded for a protease with an apparent molecular mass of 64 kDa. Sequencing part of the 3.0-kb DNA fragment revealed an open reading frame encoding a protein of 482 amino acids with a molecular mass of 62.5 kDa. Putative promoter and termination elements flanking the open reading frame were identified. The activity expressed in E. coli was extensively characterized by using various substrates and protease inhibitors, and the results suggest that it is possibly a thiol protease. Images PMID:1322368

  15. Structural insight into serine protease Rv3671c that protects M. tuberculosis from oxidative and acidic stress

    PubMed Central

    Biswas, Tapan; Small, Jennifer; Vandal, Omar; Odaira, Toshiko; Deng, Haiteng; Ehrt, Sabine; Tsodikov, Oleg V.

    2010-01-01

    Summary Rv3671c, a putative serine protease, is crucial for persistence of M. tuberculosis in the hostile environment of the phagosome. We show that Rv3671c is required for M. tuberculosis resistance to oxidative stress in addition to its role in protection from acidification. Structural and biochemical analyses demonstrate that the periplasmic domain of Rv3671c is a functional serine protease of the chymotrypsin family and, remarkably, that its activity increases upon oxidation. High-resolution crystal structures of this protease in an active strained state and in an inactive relaxed state reveal that a solvent-exposed disulfide bond controls the protease activity by constraining two distant regions of Rv3671c and stabilizing it in the catalytically active conformation. In vitro biochemical studies confirm that activation of the protease in an oxidative environment is dependent on this reversible disulfide bond. These results suggest that the disulfide bond modulates activity of Rv3671c depending on the oxidative environment in vivo. PMID:20947023

  16. Toddlers' Duration of Attention toward Putative Threat

    ERIC Educational Resources Information Center

    Kiel, Elizabeth J.; Buss, Kristin A.

    2011-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk of developing anxious behavior, toddlers' attention toward a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined…

  17. Roles of FtsH protease in choloroplast biogensis and protection of photosystems from high temperatures stress in higher plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    AtFtsH11 protease gene is essential for Arabidopsis plant to survive at moderate heat stress. Under high and normal light at 21ºC, ftsh11 mutants were indistinguishable from wild type plants in photosynthesis capability and in overall growth. However, mutant plants display a host of dramatic change...

  18. Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants.

    PubMed

    Robert, Stéphanie; Jutras, Philippe V; Khalf, Moustafa; D'Aoust, Marc-André; Goulet, Marie-Claire; Sainsbury, Frank; Michaud, Dominique

    2016-01-01

    We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts. PMID:26614285

  19. Antiviral effects of a thiol protease inhibitor on foot-and-mouth disease virus.

    PubMed Central

    Kleina, L G; Grubman, M J

    1992-01-01

    The thiol protease inhibitor E-64 specifically blocks autocatalytic activity of the leader protease of foot-and-mouth disease virus (FMDV) and interferes with cleavage of the structural protein precursor in an in vitro translation assay programmed with virion RNA. Experiments with FMDV-infected cells and E-64 or a membrane-permeable analog, E-64d, have confirmed these results and demonstrated interference in virus assembly, causing a reduction in virus yield. In addition, there is a lag in the appearance of virus-induced cellular morphologic alterations, a delay in cleavage of host cell protein p220 and in shutoff of host protein synthesis, and a decrease in viral protein and RNA synthesis. The implications of using E-64-based compounds as potential antiviral agents for FMDV are discussed. Images PMID:1331517

  20. Reaching the Melting Point: Degradative Enzymes and Protease Inhibitors Involved in Baculovirus Infection and Dissemination

    PubMed Central

    Ishimwe, Egide; Hodgson, Jeffrey J.; Clem, Rollie J.; Passarelli, A. Lorena

    2015-01-01

    Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in “melting” or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process. PMID:25724418

  1. Reaching the melting point: Degradative enzymes and protease inhibitors involved in baculovirus infection and dissemination.

    PubMed

    Ishimwe, Egide; Hodgson, Jeffrey J; Clem, Rollie J; Passarelli, A Lorena

    2015-05-01

    Baculovirus infection of a host insect involves several steps, beginning with initiation of virus infection in the midgut, followed by dissemination of infection from the midgut to other tissues in the insect, and finally culminating in "melting" or liquefaction of the host, which allows for horizontal spread of infection to other insects. While all of the viral gene products are involved in ultimately reaching this dramatic infection endpoint, this review focuses on two particular types of baculovirus-encoded proteins: degradative enzymes and protease inhibitors. Neither of these types of proteins is commonly found in other virus families, but they both play important roles in baculovirus infection. The types of degradative enzymes and protease inhibitors encoded by baculoviruses are discussed, as are the roles of these proteins in the infection process. PMID:25724418

  2. Protease and protease inhibitory activity in pregnant and postpartum involuting uterus

    SciTech Connect

    Milwidsky, A.; Beller, U.; Palti, Z.; Mayer, M.

    1982-08-15

    The presence of two distinct proteolytic activities in the rat uterus was confirmed with /sup 14/C-labeled globin used as a sensitive protein substrate and following release of label into the trichloroacetic acid-soluble supernatant fraction. Protease I is a cytoplasmic acid protease while protease II is associated with the pellet fraction, can be extracted by 0.6 M sodium chloride, and is active at pH 7.0. Protease I activity is low during pregnancy and markedly increases at term achieving maximal activity at day 3 post partum with a subsequent decline to preterm activity values. Lactation did not affect the uterine protease I activity. Protease II activity is not significantly different during pregnancy, at term, and post partum. The presence of an inhibitor of protease I was suggested by a decrease in enzyme activity with an increased cytosolic protein concentration. The inhibitor also lessened bovine trypsin activity but had no effect on protease II. Although its inhibitory potency on trypsin fluctuated during the various uterine physiologic stages, these changes appeared to be statistically insignificant. Human uterine samples were also found to contain the two protease activities with similar changes in protease I post partum. It is suggested that, both in the rat and in man, uterine involution post partum is associated with a marked increase in activity of acid cytosolic protease, while a particulate neutral protease and a soluble inhibitor of trypsin, which are also present in uterine cells, do not appear to play a significant role in the dissolution of uterine tissues after parturition.

  3. Comparison of HIV-1 protease expression in different fusion forms.

    PubMed

    Wan, M; Takagi, M; Loh, B N; Imanaka, T

    1995-06-01

    Earlier observations showed that the expression of recombinant protease of human immunodeficiency virus type-1 (HIV-1 PR) was usually in a low level, and its proteolytic activity and hydrophobicity were believed to be toxic for the host cells. Various constructs were investigated that contained an N-terminal extended HIV-1 PR gene (PR107) in order to find a system which can express this protease in high level. The constructs of PR107 gene expressed as fusion proteins either with glutathione S-transferase (GST) by pGEX-PR107 or with maltose-binding protein (MBP) by pMAL-PR107 showed that the full length of fusion protein exhibited self-cleavage in E. coli. The results from expression experiments indicated that the size of the fusion portion does not affect the self-processing of fused HIV-1 PR to release its mature form, despite the attachment of only one subunit of the dimeric protease to GST or MBP. The construct, pET-PR107, under the control of strong bacteriophage T7 promoter system, did not show clear advantages for expression of this HIV-1 PR. Comparing these three constructs, the pGEX-PR107 system showed the highest expression level. Quantitative immuno-blotting indicated that the amount of HIV-1 PR expressed by pGEX-PR107 was twice that expressed by pMAL-PR107, and thrice that expressed by pET-PR107. More than 1 mg of pure HIV-1 PR from per liter culture of E. coli. DH5 alpha containing pGEX-PR107 can be obtained via the purification procedures [Biochem. Mol. Biol. International, (1995) 35:899-912].(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7663445

  4. Synthesis of amino heterocycle aspartyl protease inhibitors.

    PubMed

    Chambers, Rachel K; Khan, Tanweer A; Olsen, David B; Sleebs, Brad E

    2016-06-14

    Aspartyl proteases are important pharmacological targets. Historically aspartyl proteases have been commonly targeted with transition state derived peptidomimetics. The strategy to develop aspartyl protease inhibitors has undertaken a dramatic paradigm shift in the last 10 years. The pharmaceutical industry in 2005 disclosed several scaffolds or "head groups" that prompted the field to move beyond peptidomimetic derived inhibitors. Since the discovery of the first amino heterocycle aspartyl protease inhibitor, the amino hydantoin, industry and academia have positioned themselves for a foothold on the new molecular space, designing a variety of related "head groups". Both the design and synthetic efforts involved in constructing these scaffolds are varied and complex. Here we highlight the synthetic strategies used to access these amino heterocycle scaffolds. PMID:27143279

  5. Targeting the AKT pathway: Repositioning HIV protease inhibitors as radiosensitizers

    PubMed Central

    Goda, Jayant S.; Pachpor, Tejaswini; Basu, Trinanjan; Chopra, Supriya; Gota, Vikram

    2016-01-01

    Cellular resistance in tumour cells to different therapeutic approaches has been a limiting factor in the curative treatment of cancer. Resistance to therapeutic radiation is a common phenomenon which significantly reduces treatment options and impacts survival. One of the mechanisms of acquiring resistance to ionizing radiation is the overexpression or activation of various oncogenes like the EGFR (epidermal growth factor receptor), RAS (rat sarcoma) oncogene or loss of PTEN (phosphatase and tensin homologue) which in turn activates the phosphatidyl inositol 3-kinase/protein kinase B (PI3-K)/AKT pathway responsible for radiation resistance in various tumours. Blocking the pathway enhances the radiation response both in vitro and in vivo. Due to the differential activation of this pathway (constitutively activated in tumour cells and not in the normal host cells), it is an excellent candidate target for molecular targeted therapy to enhance radiation sensitivity. In this regard, HIV protease inhibitors (HPIs) known to interfere with PI3-K/AKT signaling in tumour cells, have been shown to sensitize various tumour cells to radiation both in vitro and in vivo. As a result, HPIs are now being investigated as possible radiosensitizers along with various chemotherapeutic drugs. This review describes the mechanisms by which PI3-K/AKT pathway causes radioresistance and the role of HIV protease inhibitors especially nelfinavir as a potential candidate drug to target the AKT pathway for overcoming radioresistance and its use in various clinical trials for different malignancies. PMID:27121513

  6. A radiometric assay for HIV-1 protease

    SciTech Connect

    Hyland, L.J.; Dayton, B.D.; Moore, M.L.; Shu, A.Y.; Heys, J.R.; Meek, T.D. )

    1990-08-01

    A rapid, high-throughput radiometric assay for HIV-1 protease has been developed using ion-exchange chromatography performed in 96-well filtration plates. The assay monitors the activity of the HIV-1 protease on the radiolabeled form of a heptapeptide substrate, (tyrosyl-3,5-3H)Ac-Ser-Gln-Asn-Tyr-Pro-Val-Val-NH2, which is based on the p17-p24 cleavage site found in the viral polyprotein substrate Pr55gag. Specific cleavage of this uncharged heptapeptide substrate by HIV-1 protease releases the anionic product (tyrosyl-3,5-3H)Ac-Ser-Gln-Asn-Tyr, which is retained upon minicolumns of the anion-exchange resin AG1-X8. Protease activity is determined from the recovery of this radiolabeled product following elution with formic acid. This facile and highly sensitive assay may be utilized for steady-state kinetic analysis of the protease, for measurements of enzyme activity during its purification, and as a routine assay for the evaluation of protease inhibitors from natural product or synthetic sources.

  7. Screen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases.

    PubMed

    Shindo, Takayuki; Kaschani, Farnusch; Yang, Fan; Kovács, Judit; Tian, Fang; Kourelis, Jiorgos; Hong, Tram Ngoc; Colby, Tom; Shabab, Mohammed; Chawla, Rohini; Kumari, Selva; Ilyas, Muhammad; Hörger, Anja C; Alfano, James R; van der Hoorn, Renier A L

    2016-09-01

    Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) is an extracellular model plant pathogen, yet its potential to produce secreted effectors that manipulate the apoplast has been under investigated. Here we identified 131 candidate small, secreted, non-annotated proteins from the PtoDC3000 genome, most of which are common to Pseudomonas species and potentially expressed during apoplastic colonization. We produced 43 of these proteins through a custom-made gateway-compatible expression system for extracellular bacterial proteins, and screened them for their ability to inhibit the secreted immune protease C14 of tomato using competitive activity-based protein profiling. This screen revealed C14-inhibiting protein-1 (Cip1), which contains motifs of the chagasin-like protease inhibitors. Cip1 mutants are less virulent on tomato, demonstrating the importance of this effector in apoplastic immunity. Cip1 also inhibits immune protease Pip1, which is known to suppress PtoDC3000 infection, but has a lower affinity for its close homolog Rcr3, explaining why this protein is not recognized in tomato plants carrying the Cf-2 resistance gene, which uses Rcr3 as a co-receptor to detect pathogen-derived protease inhibitors. Thus, this approach uncovered a protease inhibitor of P. syringae, indicating that also P. syringae secretes effectors that selectively target apoplastic host proteases of tomato, similar to tomato pathogenic fungi, oomycetes and nematodes. PMID:27603016

  8. Isolation and identification of an extracellular subtilisin-like serine protease secreted by the bat pathogen Pseudogymnoascus destructans.

    PubMed

    Pannkuk, Evan L; Risch, Thomas S; Savary, Brett J

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  9. Isolation and Identification of an Extracellular Subtilisin-Like Serine Protease Secreted by the Bat Pathogen Pseudogymnoascus destructans

    PubMed Central

    Pannkuk, Evan L.; Risch, Thomas S.; Savary, Brett J.

    2015-01-01

    White nose syndrome (WNS) is a cutaneous fungal disease of bats. WNS is responsible for unprecedented mortalities in North American cave bat populations. There have been few descriptions of enzyme activities that may function in WNS host/pathogen interactions, while no study has isolated and described secreted proteases. To address the hypothesis that Pseudogymnoascus destructans secretes extracellular proteases that function in wing necrosis during WNS infection, the object of this study was to culture P. destructans on various media, then isolate and structurally identify those proteases accumulated stably in the culture medium. We found a single dominant protease activity on minimal nutrient broth enriched with protein substrates, which was strongly inhibited by phenylmethylsulfonyl fluoride. This P. destructans serine protease (PdSP1) was isolated by preparative isoelectric focusing and concanavalin A lectin affinity chromatography. PdSP1 showed a molecular weight 27,900 (estimated by SDS-PAGE), broad pH optimum 6-8, and temperature optimum 60°C. Structural characterization of PdSP1 by MALDI-TOF MS, Orbitrap MS/MS, and Edman amino-terminal peptide sequencing matched it directly to a hypothetical protein accession from the sequenced P. destructans genome that is further identified as a MEROPS family S8A subtilisin-like serine peptidase. Two additional isoforms, PdSP2 and PdSP3, were identified in the P. destructans genome with 90% and 53% homology, respectively. P. destructans S8A serine proteases showed closer sequence conservation to P. pannorum and plant pathogenic fungi than to human pathogenic dermatophytes. Peptide-specific polyclonal antibodies developed from the PdSP1 sequence detected the protein in western blots. These subtilisin-like serine proteases are candidates for further functional studies in WNS host-pathogen interaction. PMID:25785714

  10. ADAM Proteases and Gastrointestinal Function.

    PubMed

    Jones, Jennifer C; Rustagi, Shelly; Dempsey, Peter J

    2016-01-01

    A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis. PMID:26667078

  11. ADAM Proteases and Gastrointestinal Function

    PubMed Central

    Jones, Jennifer C.; Rustagi, Shelly; Dempsey, Peter J.

    2016-01-01

    A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis. PMID:26667078

  12. Neutral serine proteases of neutrophils.

    PubMed

    Kettritz, Ralph

    2016-09-01

    Neutrophil serine proteases (NSPs) exercise tissue-degrading and microbial-killing effects. The spectrum of NSP-mediated functions grows continuously, not least because of methodological progress. Sensitive and specific FRET substrates were developed to study the proteolytic activity of each NSP member. Advanced biochemical methods are beginning to characterize common and specific NSP substrates. The resulting novel information indicates that NSPs contribute not only to genuine inflammatory neutrophil functions but also to autoimmunity, metabolic conditions, and cancer. Tight regulatory mechanisms control the proteolytic potential of NSPs. However, not all NSP functions depend on their enzymatic activity. Proteinase-3 (PR3) is somewhat unique among the NSPs for PR3 functions as an autoantigen. Patients with small-vessel vasculitis develop autoantibodies to PR3 that bind their target antigens on the neutrophil surface and trigger neutrophil activation. These activated cells subsequently contribute to vascular necrosis with life-threatening multiorgan failure. This article discusses various aspects of NSP biology and highlights translational aspects with strong clinical implications. PMID:27558338

  13. Boceprevir, an NS3 protease inhibitor of HCV.

    PubMed

    Berman, Kenneth; Kwo, Paul Y

    2009-08-01

    Hepatitis C virus (HCV) is a major cause of chronic liver disease leading to death from liver failure or hepatocellular carcinoma. Hepatitis C is the most common indication for liver transplantation worldwide and is a major cause of the increased incidence of hepatocellular cancer in the United States. The current paradigm for HCV treatment relies on pegylated interferon and ribavirin as agents that enhance endogenous mechanisms for viral clearance and are dependent on host factors. In patients with genotype 1 HCV infection, sustained viral response (SVR) rates remain suboptimal, with less than half of genotype 1-infected individuals going on to achieve SVR. This has led to a shift in the investigational focus for treatment of HCV toward specifically targeted antiviral therapy for HCV agents. This review focuses on boceprevir, a protease inhibitor, and discusses its mechanism of action, effects on HCV, and viral resistance. PMID:19628159

  14. Carbohydrate protease conjugates: Stabilized proteases for peptide synthesis

    SciTech Connect

    Wartchow, C.A.; Wang, Peng; Bednarski, M.D.; Callstrom, M.R. |

    1995-12-31

    The synthesis of oligopeptides using stable carbohydrate protease conjugates (CPCs) was examined in acetonitrile solvent systems. CPC[{alpha}-chymotrypsin] was used for the preparation of peptides containing histidine, phenylalanine, tryptophan in the P{sub 1} position in 60-93% yield. The CPC[{alpha}-chymotrypsin]-catalyzed synthesis of octamer Z-Gly-Gly-Phe-Gly-Gly-Phe-Gly-Gly-OEt from Z-Gly-Gly-Phe-Gly-Gly-Phe-OMe was achieved in 71% yield demonstrating that synthesis peptides containing both hydrophylic and hydrophobic amino acids. The P{sub 2} specificity of papain for aromatic residues was utilized for the 2 + 3 coupling of Z-Tyr-Gly-OMe to H{sub 2}N-Gly-Phe-Leu-OH to generate the leucine enkephalin derivative in 79% yield. Although papain is nonspecific for the hydrolysis of N-benzyloxycarbonyl amino acid methyl esters in aqueous solution, the rates of synthesis for these derivitives with nucleophile leucine tert-butyl ester differed by nearly 2 orders of magnitude. CPC[thermolysin] was used to prepare the aspartame precursor Z-Asp-Phe-OMe in 90% yield. The increased stability of CPCs prepared from periodate-modified poly(2-methacryl- amido-2-deoxy-D-glucose), poly(2-methacrylamido-2-deoxy-D-galactose), and poly(5-methacryl-amido-5-deoxy-D-ribose), carbohydrate materials designed to increase the aldehyde concentration in aqueous solution, suggests that the stability of CPCs is directly related to the aldehyde concentration of the carbohydrate material. Periodate oxidation of poly(2-methacrylamido-2-deoxy-D-glucose) followed by covalent attachment to {alpha}-chymotrypsin gave a CPC with catalytic activity in potassium phosphate buffer at 90{degrees}C for 2 h. 1 fig., 1 tab., 40 refs.

  15. Magnetism and the putative early Martian life

    NASA Astrophysics Data System (ADS)

    Rochette, P.

    2001-08-01

    A short critical review is provided on three questions linking magnetism and the putative early Mars life. Was there a large internal Martian magnetic field, during which period, and is it a requisite for life? What is the origin of the paleomagnetic signal of Martian meteorites, including ALH84001? What is the present credibility of the case for fossil bacterial magnetite grains in ALH84001?

  16. New soluble ATP-dependent protease, Ti, in Escherichia coli that is distinct from protease La

    SciTech Connect

    Chung, C.H.; Hwang, B.J.; Park, W.J.; Goldberg, A.L.

    1987-05-01

    E. coli must contain other ATP-requiring proteolytic systems in addition to protease La (the lon gene product). A new ATP-dependent protease was purified from lon cells which lack protease La, as shown by immuno-blotting. This enzyme hydrolyzes (TH)casein to acid-soluble products in the presence of ATP (or dATP) and MgS . Nonhydrolyzable ATP analogs, other nucleoside triphosphates and AMP can not replace ATP. Therefore, ATP hydrolysis appears necessary for proteolysis. The enzyme appears to be a serine protease, but also contains essential thiol residues. Unlike protease La, it is not inhibited by vanadate, heparin, or the defective R9 subunit of protease La. On gel filtration, this enzyme has an apparent Mr of 340,000 and is comprised of two components of 190,000D and 130,000D, which can be separated by phosphocellulose chromatography. By themselves, these components do not show ATP-dependent proteolysis, but when mixed, full activity is restored. These finding and similar ones of Maurizi and Gottesman indicate that E. coli contain two soluble ATP-dependent proteases, which function by different mechanisms. This new enzyme may contribute to the rapid breakdown of abnormal polypeptides or of normal proteins during starvation. The authors propose to name it protease Ti.

  17. Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La

    SciTech Connect

    Hwang, B.J.; Park, W.J.; Chung, C.H.; Goldberg, A.L.

    1987-08-01

    The energy requirement for protein breakdown in Escherichia coli has generally been attributed to the ATP-dependence of protease La, the lon gene product. The authors have partially purified another ATP-dependent protease from lon/sup -/ cells that lack protease La (as shown by immunoblotting). This enzyme hydrolyzes (/sup 3/H)methyl-casein to acid-soluble products in the presence of ATP and Mg/sup 2 +/. ATP hydrolysis appears necessary for proteolytic activity. Since this enzyme is inhibited by diisopropyl fluorophosphate, it appears to be a serine protease, but it also contains essential thiol residues. They propose to name this enzyme protease Ti. It differs from protease La in nucleotide specificity, inhibitor sensitivity, and subunit composition. On gel filtration, protease Ti has an apparent molecular weight of 370,000. It can be fractionated by phosphocellulose chromatography or by DEAE chromatography into two components with apparent molecular weights of 260,000 and 140,000. When separated, they do not show preteolytic activity. One of these components, by itself, has ATPase activity and is labile in the absence of ATP. The other contains the diisopropyl fluorophosphate-sensitive proteolytic site. These results and the similar findings of Katayama-Fujimura et al. indicate that E. coli contains two ATP-hydrolyzing proteases, which differ in many biochemical features and probably in their physiological roles.

  18. A Novel Bioluminescent Protease Assay Using Engineered Firefly Luciferase

    PubMed Central

    Wigdal, Susan S; Anderson, Jessica L; Vidugiris, Gediminas J; Shultz, John; Wood, Keith V; Fan, Frank

    2008-01-01

    Proteases play important roles in a variety of disease processes. Understanding their biological functions underpins the efforts of drug discovery. We have developed a bioluminescent protease assay using a circularly permuted form of firefly luciferase, wherein the native enzyme termini were joined by a peptide containing a protease site of interest. Protease cleavage of these mutant luciferases greatly activates the enzyme, typically over 100 fold. The mutant luciferase substrates are easily generated by molecular cloning and cell-free translation reactions and thus the protease substrates do not need to be chemically synthesized or purchased. The assay has broad applicability using a variety of proteases and their cognate sites and can sensitively detect protease activity. In this report we further demonstrate its utility for the evaluation of protease recognition sequence specificity and subsequent establishment of an optimized assay for the identification and characterization of protease inhibitors using high throughput screening. PMID:20161840

  19. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface

    PubMed Central

    Bozkurt, Tolga O.; Schornack, Sebastian; Win, Joe; Shindo, Takayuki; Ilyas, Muhammad; Oliva, Ricardo; Cano, Liliana M.; Jones, Alexandra M. E.; Huitema, Edgar; van der Hoorn, Renier A. L.; Kamoun, Sophien

    2011-01-01

    In response to pathogen attack, plant cells secrete antimicrobial molecules at the site of infection. However, how plant pathogens interfere with defense-related focal secretion remains poorly known. Here we show that the host-translocated RXLR-type effector protein AVRblb2 of the Irish potato famine pathogen Phytophthora infestans focally accumulates around haustoria, specialized infection structures that form inside plant cells, and promotes virulence by interfering with the execution of host defenses. AVRblb2 significantly enhances susceptibility of host plants to P. infestans by targeting the host papain-like cysteine protease C14 and specifically preventing its secretion into the apoplast. Plants altered in C14 expression were significantly affected in susceptibility to P. infestans in a manner consistent with a positive role of C14 in plant immunity. Our findings point to a unique counterdefense strategy that plant pathogens use to neutralize secreted host defense proteases. Effectors, such as AVRblb2, can be used as molecular probes to dissect focal immune responses at pathogen penetration sites. PMID:22143776

  20. Extracellular acid proteases from Neurospora crassa.

    PubMed Central

    Lindberg, R A; Rhodes, W G; Eirich, L D; Drucker, H

    1982-01-01

    Three electrophoretically distinct acid proteases appear in culture filtrates of Neurospora crassa. Like the previously investigated alkaline and neutral proteases, these enzymes require induction by an exogenous protein. But in contrast to alkaline and neutral proteases, which are synthesized and secreted in response to limitation of any one of three nutrilites (carbon, nitrogen or sulfur), extracellular elaboration of the acidic proteases is more specifically a function of the missing nutrilite. AcP, a pepstatin-inhibitable enzyme similar to other fungal carboxyl proteases, was secreted in large amounts when protein was the sole source of sulfur. Only trace amounts were secreted when nitrogen was the limiting nutrilite, and it was undetectable under carbon limitation. M-1, a chelator-sensitive protease, was secreted when nitrogen or carbon was limiting. M-2, also chelator sensitive, was present only when nitrogen or sulfur was limiting. The evidence presented suggests that the differential regulation of the acidic proteases with respect to nutrilite deprivation may not occur at the level of transcription. AcP and M-2 were partially purified from nitrogen-derepressed cultures by ultrafiltration, cation-exchange chromatography, and gel filtration. AcP has a molecular weight of 66,000, is stable from pH 3.0 to 6.0, and is optimally active toward bovine serum albumin at pH 4.0. M-2 has a molecular weight of 18,000, is stable from pH 1.6 to 5.5, and has optimal activity at pH 4.5. Images PMID:6210687

  1. Extracellular acid proteases from Neurospora crassa.

    PubMed

    Lindberg, R A; Rhodes, W G; Eirich, L D; Drucker, H

    1982-06-01

    Three electrophoretically distinct acid proteases appear in culture filtrates of Neurospora crassa. Like the previously investigated alkaline and neutral proteases, these enzymes require induction by an exogenous protein. But in contrast to alkaline and neutral proteases, which are synthesized and secreted in response to limitation of any one of three nutrilites (carbon, nitrogen or sulfur), extracellular elaboration of the acidic proteases is more specifically a function of the missing nutrilite. AcP, a pepstatin-inhibitable enzyme similar to other fungal carboxyl proteases, was secreted in large amounts when protein was the sole source of sulfur. Only trace amounts were secreted when nitrogen was the limiting nutrilite, and it was undetectable under carbon limitation. M-1, a chelator-sensitive protease, was secreted when nitrogen or carbon was limiting. M-2, also chelator sensitive, was present only when nitrogen or sulfur was limiting. The evidence presented suggests that the differential regulation of the acidic proteases with respect to nutrilite deprivation may not occur at the level of transcription. AcP and M-2 were partially purified from nitrogen-derepressed cultures by ultrafiltration, cation-exchange chromatography, and gel filtration. AcP has a molecular weight of 66,000, is stable from pH 3.0 to 6.0, and is optimally active toward bovine serum albumin at pH 4.0. M-2 has a molecular weight of 18,000, is stable from pH 1.6 to 5.5, and has optimal activity at pH 4.5. PMID:6210687

  2. Extracellular acid proteases from Neurospora crassa

    SciTech Connect

    Lindberg, R.A.; Rhodes, W.G.; Eirich, L.D.; Drucker, H.

    1982-06-01

    Three electrophoretically distinct acid proteases appear in culture filtrates of Neurospora crassa. Like the previously investigated alkaline and neutral proteases, these enzymes require induction by an exogenous protein. But in contrast to alkaline and neutral proteases, which are synthesized and secreted in response to limitation of any one of three nutrilites (carbon, nitrogen or sulfur), extracellular elaboration of the acidic proteases is more specifically a function of the missing nutrilite. AcP, a pepstatin-inhibitable enzyme similar to other fungal carboxyl proteases, was secreted in large amounts when protein was the sole source of sulfur. Only trace amounts were secreted when nitrogen was the limiting nutrilite, and it was undetectable under carbon limitation. M-1, a chelator-sensitive protease, was secreted when nitrogen or carbon was limiting. M-2, also chelator sensitive, was present only when nitrogen or sulfur was limiting. The evidence presented suggests that the differential regulation of the acidic proteases with respect to nutrilite deprivation may not occur at the level of transcription. AcP and M-2 were partially purified from nitrogen-derepressed cultures by ultrafiltration, cation-exchange chromatography, and gel filtration. AcP has a molecular weight of 66,000, is stable from pH 3.0 to 6.0, and is optimally active toward bovine serum albumin at pH 4.0. M-2 has a molecular weight of 18,000, is stable from pH 1.6 to 5.5, and has optimal activity at pH 4.5.

  3. Putative regulatory factors associated with intramuscular fat content.

    PubMed

    Cesar, Aline S M; Regitano, Luciana C A; Koltes, James E; Fritz-Waters, Eric R; Lanna, Dante P D; Gasparin, Gustavo; Mourão, Gerson B; Oliveira, Priscila S N; Reecy, James M; Coutinho, Luiz L

    2015-01-01

    Intramuscular fat (IMF) content is related to insulin resistance, which is an important prediction factor for disorders, such as cardiovascular disease, obesity and type 2 diabetes in human. At the same time, it is an economically important trait, which influences the sensorial and nutritional value of meat. The deposition of IMF is influenced by many factors such as sex, age, nutrition, and genetics. In this study Nellore steers (Bos taurus indicus subspecies) were used to better understand the molecular mechanisms involved in IMF content. This was accomplished by identifying differentially expressed genes (DEG), biological pathways and putative regulatory factors. Animals included in this study had extreme genomic estimated breeding value (GEBV) for IMF. RNA-seq analysis, gene set enrichment analysis (GSEA) and co-expression network methods, such as partial correlation coefficient with information theory (PCIT), regulatory impact factor (RIF) and phenotypic impact factor (PIF) were utilized to better understand intramuscular adipogenesis. A total of 16,101 genes were analyzed in both groups (high (H) and low (L) GEBV) and 77 DEG (FDR 10%) were identified between the two groups. Pathway Studio software identified 13 significantly over-represented pathways, functional classes and small molecule signaling pathways within the DEG list. PCIT analyses identified genes with a difference in the number of gene-gene correlations between H and L group and detected putative regulatory factors involved in IMF content. Candidate genes identified by PCIT include: ANKRD26, HOXC5 and PPAPDC2. RIF and PIF analyses identified several candidate genes: GLI2 and IGF2 (RIF1), MPC1 and UBL5 (RIF2) and a host of small RNAs, including miR-1281 (PIF). These findings contribute to a better understanding of the molecular mechanisms that underlie fat content and energy balance in muscle and provide important information for the production of healthier beef for human consumption. PMID:26042666

  4. Putative Regulatory Factors Associated with Intramuscular Fat Content

    PubMed Central

    Cesar, Aline S. M.; Regitano, Luciana C. A.; Koltes, James E.; Fritz-Waters, Eric R.; Lanna, Dante P. D.; Gasparin, Gustavo; Mourão, Gerson B.; Oliveira, Priscila S. N.; Reecy, James M.; Coutinho, Luiz L.

    2015-01-01

    Intramuscular fat (IMF) content is related to insulin resistance, which is an important prediction factor for disorders, such as cardiovascular disease, obesity and type 2 diabetes in human. At the same time, it is an economically important trait, which influences the sensorial and nutritional value of meat. The deposition of IMF is influenced by many factors such as sex, age, nutrition, and genetics. In this study Nellore steers (Bos taurus indicus subspecies) were used to better understand the molecular mechanisms involved in IMF content. This was accomplished by identifying differentially expressed genes (DEG), biological pathways and putative regulatory factors. Animals included in this study had extreme genomic estimated breeding value (GEBV) for IMF. RNA-seq analysis, gene set enrichment analysis (GSEA) and co-expression network methods, such as partial correlation coefficient with information theory (PCIT), regulatory impact factor (RIF) and phenotypic impact factor (PIF) were utilized to better understand intramuscular adipogenesis. A total of 16,101 genes were analyzed in both groups (high (H) and low (L) GEBV) and 77 DEG (FDR 10%) were identified between the two groups. Pathway Studio software identified 13 significantly over-represented pathways, functional classes and small molecule signaling pathways within the DEG list. PCIT analyses identified genes with a difference in the number of gene-gene correlations between H and L group and detected putative regulatory factors involved in IMF content. Candidate genes identified by PCIT include: ANKRD26, HOXC5 and PPAPDC2. RIF and PIF analyses identified several candidate genes: GLI2 and IGF2 (RIF1), MPC1 and UBL5 (RIF2) and a host of small RNAs, including miR-1281 (PIF). These findings contribute to a better understanding of the molecular mechanisms that underlie fat content and energy balance in muscle and provide important information for the production of healthier beef for human consumption. PMID:26042666

  5. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe

    PubMed Central

    Benko, Zsigmond; Elder, Robert T.; Li, Ge; Liang, Dong; Zhao, Richard Y.

    2016-01-01

    Background HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. Results A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. Conclusions This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings. PMID:26982200

  6. Identification of covalent active site inhibitors of dengue virus protease

    PubMed Central

    Koh-Stenta, Xiaoying; Joy, Joma; Wang, Si Fang; Kwek, Perlyn Zekui; Wee, John Liang Kuan; Wan, Kah Fei; Gayen, Shovanlal; Chen, Angela Shuyi; Kang, CongBao; Lee, May Ann; Poulsen, Anders; Vasudevan, Subhash G; Hill, Jeffrey; Nacro, Kassoum

    2015-01-01

    Dengue virus (DENV) protease is an attractive target for drug development; however, no compounds have reached clinical development to date. In this study, we utilized a potent West Nile virus protease inhibitor of the pyrazole ester derivative class as a chemical starting point for DENV protease drug development. Compound potency and selectivity for DENV protease were improved through structure-guided small molecule optimization, and protease-inhibitor binding interactions were validated biophysically using nuclear magnetic resonance. Our work strongly suggests that this class of compounds inhibits flavivirus protease through targeted covalent modification of active site serine, contrary to an allosteric binding mechanism as previously described. PMID:26677315

  7. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  8. Global Regulator MorA Affects Virulence-Associated Protease Secretion in Pseudomonas aeruginosa PAO1

    PubMed Central

    Ravichandran, Ayshwarya; Wong, Chui Ching; Swarup, Sanjay

    2015-01-01

    Bacterial invasion plays a critical role in the establishment of Pseudomonas aeruginosa infection and is aided by two major virulence factors – surface appendages and secreted proteases. The second messenger cyclic diguanylate (c-di-GMP) is known to affect bacterial attachment to surfaces, biofilm formation and related virulence phenomena. Here we report that MorA, a global regulator with GGDEF and EAL domains that was previously reported to affect virulence factors, negatively regulates protease secretion via the type II secretion system (T2SS) in P. aeruginosa PAO1. Infection assays with mutant strains carrying gene deletion and domain mutants show that host cell invasion is dependent on the active domain function of MorA. Further investigations suggest that the MorA-mediated c-di-GMP signaling affects protease secretion largely at a post-translational level. We thus report c-di-GMP second messenger system as a novel regulator of T2SS function in P. aeruginosa. Given that T2SS is a central and constitutive pump, and the secreted proteases are involved in interactions with the microbial surroundings, our data broadens the significance of c-di-GMP signaling in P. aeruginosa pathogenesis and ecological fitness. PMID:25894344

  9. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    SciTech Connect

    Alvarez, Enrique; Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M.

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  10. Subtilisin-like proteases in nematodes.

    PubMed

    Poole, Catherine B; Jin, Jingmin; McReynolds, Larry A

    2007-09-01

    Cleavage by subtilisin-like proteases (subtilases) is an essential step in post-translational processing of proteins found in organisms ranging from yeast to mammals. Our knowledge of the diversity of this protease family in nematodes is aided by the rapid increase in sequence information, especially from the Brugia malayi genome project. Genetic studies of the subtilases in Caenorhabitis elegans give valuable insight into the biological function of these proteases in other nematode species. In this review, we focus on the subtilases in filarial nematodes as well as other parasitic and free-living nematodes in comparison to what is known in C. elegans. Topics to be addressed include expansion and diversity of the subtilase gene family during evolution, enhanced complexity created by alternative RNA splicing, molecular and biochemical characterization of the different subtilases and the challenges of designing subtilase-specific inhibitors for parasitic nematodes. PMID:17570539

  11. Dataset of cocoa aspartic protease cleavage sites.

    PubMed

    Janek, Katharina; Niewienda, Agathe; Wöstemeyer, Johannes; Voigt, Jürgen

    2016-09-01

    The data provide information in support of the research article, "The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors" (Janek et al., 2016) [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS) and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. PMID:27508221

  12. Molecular characterization of a gene encoding extracellular serine protease isolated from a subtilisin inhibitor-deficient mutant of Streptomyces albogriseolus S-3253.

    PubMed Central

    Taguchi, S; Odaka, A; Watanabe, Y; Momose, H

    1995-01-01

    An extracellular serine protease produced by a mutant, M1, derived from Streptomyces albogriseolus S-3253 that no longer produces a protease inhibitor (Streptomyces subtilisin inhibitor [SSI]) was isolated. A 20-kDa protein was purified by its affinity for SSI and designated SAM-P20. The amino acid sequence of the amino-terminal region of SAM-P20 revealed high homology with the sequences of Streptomyces griseus proteases A and B, and the gene sequence confirmed the relationships. The sequence also revealed a putative amino acid signal sequence for SAM-P20 that apparently functioned to allow secretion of SAM-P20 from Escherichia coli carrying the recombinant gene. SAM-P20 produced by E. coli cells was shown to be sensitive to SSI inhibition. PMID:7887600

  13. Putative Excitatory and Putative Inhibitory Inputs Localize to Different Dendritic Domains in a Drosophila Flight Motoneuron

    PubMed Central

    Kuehn, Claudia; Duch, Carsten

    2012-01-01

    Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the targeting of input synapses to specific parts of their dendrites. However, only few examples exist where dendritic architecture can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical, and confocal laser scanning methods this study estimates the location of the spike initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with more than 4000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provided only an estimate of putative input synapse distributions, the data indicated that inhibitory and excitatory synapses were targeted preferentially to different dendritic domains of MN5, and thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies. PMID:23279094

  14. German cockroach proteases and protease-activated receptor-2 regulate chemokine production and dendritic cell recruitment.

    PubMed

    Day, Scottie B; Ledford, John R; Zhou, Ping; Lewkowich, Ian P; Page, Kristen

    2012-01-01

    We recently showed that serine proteases in German cockroach (GC) feces (frass) decreased experimental asthma through the activation of protease-activated receptor (PAR)-2. Since dendritic cells (DCs) play an important role in the initiation of asthma, we queried the role of GC frass proteases in modulating CCL20 (chemokine C-C motif ligand 20) and granulocyte macrophage colony-stimulating factor (GM-CSF) production, factors that regulate pulmonary DCs. A single exposure to GC frass resulted in a rapid, but transient, increase in GM-CSF and a steady increase in CCL20 in the airways of mice. Instillation of protease-depleted GC frass or instillation of GC frass in PAR-2-deficient mice significantly decreased chemokine release. A specific PAR-2-activating peptide was also sufficient to induce CCL20 production. To directly assess the role of the GC frass protease in chemokine release, we enriched the protease from GC frass and confirmed that the protease was sufficient to induce both GM-CSF and CCL20 production in vivo. Primary airway epithelial cells produced both GM-CSF and CCL20 in a protease- and PAR-2-dependent manner. Finally, we show a decreased percentage of myeloid DCs in the lung following allergen exposure in PAR-2-deficient mice compared to wild-type mice. However, there was no difference in GC frass uptake. Our data indicate that, through the activation of PAR-2, allergen-derived proteases are sufficient to induce CCL20 and GM-CSF production in the airways. This leads to increased recruitment and/or differentiation of myeloid DC populations in the lungs and likely plays an important role in the initiation of allergic airway responses. PMID:21876326

  15. Outer Membrane Vesicle-Mediated Export of Processed PrtV Protease from Vibrio cholerae

    PubMed Central

    Duperthuy, Marylise; Johnson, Tanya L.; Åhlund, Monika; Lundmark, Richard; Oscarsson, Jan; Sandkvist, Maria; Uhlin, Bernt Eric; Wai, Sun Nyunt

    2015-01-01

    Background Outer membrane vesicles (OMVs) are known to release from almost all Gram-negative bacteria during normal growth. OMVs carry different biologically active toxins and enzymes into the surrounding environment. We suggest that OMVs may therefore be able to transport bacterial proteases into the target host cells. We present here an analysis of the Vibrio cholerae OMV-associated protease PrtV. Methodology/Principal Findings In this study, we demonstrated that PrtV was secreted from the wild type V. cholerae strain C6706 via the type II secretion system in association with OMVs. By immunoblotting and electron microscopic analysis using immunogold labeling, the association of PrtV with OMVs was examined. We demonstrated that OMV-associated PrtV was biologically active by showing altered morphology and detachment of cells when the human ileocecum carcinoma (HCT8) cells were treated with OMVs from the wild type V. cholerae strain C6706 whereas cells treated with OMVs from the prtV isogenic mutant showed no morphological changes. Furthermore, OMV-associated PrtV protease showed a contribution to bacterial resistance towards the antimicrobial peptide LL-37. Conclusion/Significance Our findings suggest that OMVs released from V. cholerae can deliver a processed, biologically active form of PrtV that contributes to bacterial interactions with target host cells. PMID:26222047

  16. Collagenolytic activity related to metalloproteases (and serine proteases) in the fish parasite Hysterothylacium aduncum (Nematoda: Anisakidae).

    PubMed

    Malagón, David; Adroher, Francisco Javier; Díaz-López, Manuel; Benítez, Rocío

    2010-06-11

    Proteases play a vital role in both the life cycle of parasites and the parasite-host relationship and are considered important virulence factors. In the present study, the presence of proteases with collagenolytic activity was investigated in the fish nematode Hysterothylacium aduncum during in vitro development. Collagenolytic activity was found in all studied developmental stages of the nematode (third [L3] and fourth [L4] larval stages and adults). In L3, the activity was maximum at pH 6.5 and, in the other stages, at 7.0. Pepsin is known to favour in vitro development of the worm, but, in this study, collagenolytic activity was shown to be significantly greater when no pepsin was added to the culture medium (at pH 6.5, p = 0.011). At pH 7.0, most activity was observed in the immature adult, after the final moult, suggesting that the collagenolytic activity may be involved in remodelling of the cuticle and in sexual maturity. On the other hand, at pH 6.5, activity may be related to tissue migration by L3 within the host. Using specific inhibitors, it was demonstrated that most of the collagenolytic activity detected in all the developmental stages was due to metalloproteases (40 to 100%), although serine proteases were also detected in L4 and adults (10 to 30%). PMID:20662369

  17. msaABCR operon positively regulates biofilm development by repressing proteases and autolysis in Staphylococcus aureus

    PubMed Central

    Sahukhal, Gyan S.; Batte, Justin L.; Elasri, Mohamed O.

    2015-01-01

    Staphylococcus aureus is an important human pathogen that causes nosocomial and community-acquired infections. One of the most important aspects of staphylococcal infections is biofilm development within the host, which renders the bacterium resistant to the host's immune response and antimicrobial agents. Biofilm development is very complex and involves several regulators that ensure cell survival on surfaces within the extracellular polymeric matrix. Previously, we identified the msaABCR operon as an additional positive regulator of biofilm formation. In this study, we define the regulatory pathway by which msaABCR controls biofilm formation. We demonstrate that the msaABCR operon is a negative regulator of proteases. The control of protease production mediates the processing of the major autolysin, Atl, and thus regulates the rate of autolysis. In the absence of the msaABCR operon, Atl is processed by proteases at a high rate, leading to increased cell death and a defect in biofilm maturation. We conclude that the msaABCR operon plays a key role in maintaining the balance between autolysis and growth within the staphylococcal biofilm. PMID:25724778

  18. Using specificity to strategically target proteases

    PubMed Central

    Lim, Mark D.; Craik, Charles S.

    2009-01-01

    Proteases are a family of naturally occurring enzymes in the body whose dysregulation has been implicated in numerous diseases and cancers. Their ability to selectively and catalytically turnover substrate adds both signal amplification and functionality as parameters for the detection of disease. This review will focus on the development of activity-based methodologies to characterize proteases, and in particular, the use of positional scanning, synthetic combinatorial libraries (PS-SCL’s), and substrate activity screening (SAS) assays. The use of these approaches to better understand a protease’s natural substrate will be discussed as well as the technologies that emerged. PMID:18434168

  19. A set of aspartyl protease-deficient strains for improved expression of heterologous proteins in Kluyveromyces lactis

    PubMed Central

    Ganatra, Mehul B; Vainauskas, Saulius; Hong, Julia M; Taylor, Troy E; Denson, John-Paul M; Esposito, Dominic; Read, Jeremiah D; Schmeisser, Hana; Zoon, Kathryn C; Hartley, James L; Taron, Christopher H

    2011-01-01

    Secretion of recombinant proteins is a common strategy for heterologous protein expression using the yeast Kluyveromyces lactis. However, a common problem is degradation of a target recombinant protein by secretory pathway aspartyl proteases. In this study, we identified five putative pfam00026 aspartyl proteases encoded by the K. lactis genome. A set of selectable marker-free protease deletion mutants was constructed in the prototrophic K. lactis GG799 industrial expression strain background using a PCR-based dominant marker recycling method based on the Aspergillus nidulans acetamidase gene (amdS). Each mutant was assessed for its secretion of protease activity, its health and growth characteristics, and its ability to efficiently produce heterologous proteins. In particular, despite having a longer lag phase and slower growth compared with the other mutants, a Δyps1 mutant demonstrated marked improvement in both the yield and the quality of Gaussia princeps luciferase and the human chimeric interferon Hy3, two proteins that experienced significant proteolysis when secreted from the wild-type parent strain. PMID:21166768

  20. Detection of protease and protease activity using a single nanoscrescent SERS probe

    DOEpatents

    Liu, Gang L.; Ellman, Jonathan A.; Lee, Luke P.; Chen, Fanqing Frank

    2013-01-29

    This invention pertains to the in vitro detection of proteases using a single peptide-conjugate nanocrescent surface enhanced Raman scattering (SERS) probes with at least nanomolar sensitivity. The probe enables detection of proteolytic activity in extremely small volume and at low concentration. In certain embodiments the probes comprise an indicator for the detection of an active protease, where the indicator comprises a nanocrescent attached to a peptide, where said peptide comprises a recognition site for the protease and a Raman tag attached to the peptide.

  1. Putative fossil life in a hydrothermal system of the Dellen impact structure, Sweden

    NASA Astrophysics Data System (ADS)

    Lindgren, Paula; Ivarsson, Magnus; Neubeck, Anna; Broman, Curt; Henkel, Herbert; Holm, Nils G.

    2010-07-01

    Impact-generated hydrothermal systems are commonly proposed as good candidates for hosting primitive life on early Earth and Mars. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is rarely reported in the literature. Here we present the occurrence of putative fossil microorganisms in a hydrothermal system of the 89 Ma Dellen impact structure, Sweden. We found the putative fossilized microorganisms hosted in a fine-grained matrix of hydrothermal alteration minerals set in interlinked fractures of an impact breccia. The putative fossils appear as semi-straight to twirled filaments, with a thickness of 1-2 μm, and a length between 10 and 100 μm. They have an internal structure with segmentation, and branching of filaments occurs frequently. Their composition varies between an outer and an inner layer of a filament, where the inner layer is more iron rich. Our results indicate that hydrothermal systems in impact craters could potentially be capable of supporting microbial life. This could have played an important role for the evolution of life on early Earth and Mars.

  2. Porcine Epidemic Diarrhea Virus 3C-Like Protease Regulates Its Interferon Antagonism by Cleaving NEMO

    PubMed Central

    Wang, Dang; Fang, Liurong; Shi, Yanling; Zhang, Huan; Gao, Li; Peng, Guiqing; Chen, Huanchun; Li, Kui

    2015-01-01

    ABSTRACT Porcine epidemic diarrhea virus (PEDV) is an enteropathogenic coronavirus causing lethal watery diarrhea in piglets. Since 2010, a PEDV variant has spread rapidly in China, and it emerged in the United States in 2013, posing significant economic and public health concerns. The ability to circumvent the interferon (IFN) antiviral response, as suggested for PEDV, promotes viral survival and regulates pathogenesis of PEDV infections, but the underlying mechanisms remain obscure. Here, we show that PEDV-encoded 3C-like protease, nsp5, is an IFN antagonist that proteolytically cleaves the nuclear transcription factor kappa B (NF-κB) essential modulator (NEMO), an essential adaptor bridging interferon-regulatory factor and NF-κB activation. NEMO is cleaved at glutamine 231 (Q231) by PEDV, and this cleavage impaired the ability of NEMO to activate downstream IFN production and to act as a signaling adaptor of the RIG-I/MDA5 pathway. Mutations specifically disrupting the cysteine protease activity of PEDV nsp5 abrogated NEMO cleavage and the inhibition of IFN induction. Structural analysis suggests that several key residues outside the catalytic sites of PEDV nsp5 probably impact NEMO cleavage by modulating potential interactions of nsp5 with their substrates. These data show that PEDV nsp5 disrupts type I IFN signaling by cleaving NEMO. Previously, we and others demonstrated that NEMO is also cleaved by 3C or 3C-like proteinases of picornavirus and artertivirus. Thus, NEMO probably represents a prime target for 3C or 3C-like proteinases of different viruses. IMPORTANCE The continued emergence and reemergence of porcine epidemic diarrhea virus (PEDV) underscore the importance of studying how this virus manipulates the immune responses of its hosts. During coevolution with its hosts, PEDV has acquired mechanisms to subvert host innate immune responses for its survival advantage. At least two proteins encoded by PEDV have been identified as interferon (IFN

  3. Mycobacterium tuberculosis evolutionary pathogenesis and its putative impact on drug development.

    PubMed

    Le Chevalier, Fabien; Cascioferro, Alessandro; Majlessi, Laleh; Herrmann, Jean Louis; Brosch, Roland

    2014-01-01

    Mycobacterium tuberculosis, the etiological agent of human TB, is the most important mycobacterial pathogen in terms of global patient numbers and gravity of disease. The molecular mechanisms by which M. tuberculosis causes disease are complex and the result of host-pathogen coevolution that might have started already in the time of its Mycobacterium canettii-like progenitors. Despite research progress, M. tuberculosis still holds many secrets of its successful strategy for circumventing host defences, persisting in the host and developing resistance, which makes anti-TB treatment regimens extremely long and often inefficient. Here, we discuss what we have learned from recent studies on the evolution of the pathogen and its putative new drug targets that are essential for mycobacterial growth under in vitro or in vivo conditions. PMID:25302954

  4. Ten Putative Contributors to the Obesity Epidemic

    PubMed Central

    McAllister, Emily J.; Dhurandhar, Nikhil V.; Keith, Scott W.; Aronne, Louis J.; Barger, Jamie; Baskin, Monica; Benca, Ruth M.; Biggio, Joseph; Boggiano, Mary M.; Eisenmann, Joe C.; Elobeid, Mai; Fontaine, Kevin R.; Gluckman, Peter; Hanlon, Erin C.; Katzmarzyk, Peter; Pietrobelli, Angelo; Redden, David T.; Ruden, Douglas M.; Wang, Chenxi; Waterland, Robert A.; Wright, Suzanne M.; Allison, David B.

    2010-01-01

    The obesity epidemic is a global issue and shows no signs of abating, while the cause of this epidemic remains unclear. Marketing practices of energy-dense foods and institutionally-driven declines in physical activity are the alleged perpetrators for the epidemic, despite a lack of solid evidence to demonstrate their causal role. While both may contribute to obesity, we call attention to their unquestioned dominance in program funding and public efforts to reduce obesity, and propose several alternative putative contributors that would benefit from equal consideration and attention. Evidence for microorganisms, epigenetics, increasing maternal age, greater fecundity among people with higher adiposity, assortative mating, sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, reduction in variability of ambient temperatures, and intrauterine and intergenerational effects, as contributing factors to the obesity epidemic are reviewed herein. While the evidence is strong for some contributors such as pharmaceutical-induced weight gain, it is still emerging for other reviewed factors. Considering the role of such putative etiological factors of obesity may lead to comprehensive, cause specific, and effective strategies for prevention and treatment of this global epidemic. PMID:19960394

  5. HIV-protease inhibitors block the replication of both vesicular stomatitis and influenza viruses at an early post-entry replication step

    SciTech Connect

    Federico, Maurizio

    2011-08-15

    The inhibitors of HIV-1 protease (PIs) have been designed to block the activity of the viral aspartyl-protease. However, it is now accepted that this family of inhibitors can also affect the activity of cell proteases. Since the replication of many virus species requires the activity of host cell proteases, investigating the effects of PIs on the life cycle of viruses other than HIV would be of interest. Here, the potent inhibition induced by saquinavir and nelfinavir on the replication of both vesicular stomatitis and influenza viruses is described. These are unrelated enveloped RNA viruses infecting target cells upon endocytosis and intracellular fusion. The PI-induced inhibition was apparently a consequence of a block at the level of the fusion between viral envelope and endosomal membranes. These findings would open the way towards the therapeutic use of PIs against enveloped RNA viruses other than HIV.

  6. Molecular cloning of a thermostable neutral protease gene from Bacillus stearothermophilus in a vector plasmid and its expression in Bacillus stearothermophilus and Bacillus subtilis.

    PubMed Central

    Fujii, M; Takagi, M; Imanaka, T; Aiba, S

    1983-01-01

    The structural gene for a thermostable protease from Bacillus stearothermophilus was cloned in plasmid pTB90. It is expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about 15-fold more protease (310 U/mg of cell dry weight) than did the wild-type strain of B. stearothermophilus. Some properties of the proteases that have been purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant difference was observed among the enzyme properties studied here despite the difference in host cells. We found that the protease, neutral in pH characteristics and with a molecular weight of 36,000, retained about 80% of its activity even after treatment of 65 degrees C for 30 min. Images PMID:6302083

  7. Thermodynamic properties of the effector domains of MARTX toxins suggest their unfolding for translocation across the host membrane.

    PubMed

    Kudryashova, Elena; Heisler, David; Zywiec, Andrew; Kudryashov, Dmitri S

    2014-06-01

    MARTX (multifunctional autoprocessing repeats-in-toxin) family toxins are produced by Vibrio cholerae, Vibrio vulnificus, Aeromonas hydrophila and other Gram-negative bacteria. Effector domains of MARTX toxins cross the cytoplasmic membrane of a host cell through a putative pore formed by the toxin's glycine-rich repeats. The structure of the pore is unknown and the translocation mechanism of the effector domains is poorly understood. We examined the thermodynamic stability of the effector domains of V. cholerae and A. hydrophila MARTX toxins to elucidate the mechanism of their translocation. We found that all but one domain in each toxin are thermodynamically unstable and several acquire a molten globule state near human physiological temperatures. Fusion of the most stable cysteine protease domain to the adjacent effector domain reduces its thermodynamic stability ∼ 1.4-fold (from D G H 2 O 21.8 to 16.1 kJ mol(-1) ). Precipitation of several individual domains due to thermal denaturation is reduced upon their fusion into multi-domain constructs. We speculate that low thermostability of the MARTX effector domains correlates with that of many other membrane-penetrating toxins and implies their unfolding for cell entry. This study extends the list of thermolabile bacterial toxins, suggesting that this quality is essential and could be susceptible for selective targeting of pathogenic toxins. PMID:24724536

  8. A novel aspartic acid protease gene from pineapple fruit (Ananas comosus): cloning, characterization and relation to postharvest chilling stress resistance.

    PubMed

    Raimbault, Astrid-Kim; Zuily-Fodil, Yasmine; Soler, Alain; Cruz de Carvalho, Maria H

    2013-11-15

    A full-length cDNA encoding a putative aspartic acid protease (AcAP1) was isolated for the first time from the flesh of pineapple (Ananas comosus) fruit. The deduced sequence of AcAP1 showed all the common features of a typical plant aspartic protease phytepsin precursor. Analysis of AcAP1 gene expression under postharvest chilling treatment in two pineapple varieties differing in their resistance to blackheart development revealed opposite trends. The resistant variety showed an up-regulation of AcAP1 precursor gene expression whereas the susceptible showed a down-regulation in response to postharvest chilling treatment. The same trend was observed regarding specific AP enzyme activity in both varieties. Taken together our results support the involvement of AcAP1 in postharvest chilling stress resistance in pineapple fruits. PMID:23838125

  9. REASSESSING THE ROLE OF THE SECRETED PROTEASE CPAF IN CHLAMYDIA TRACHOMATIS INFECTION THROUGH GENETIC APPROACHES

    PubMed Central

    Snavely, Emily A.; Kokes, Marcela; Dunn, Joe D.; Saka, Hector A.; Nguyen, Bidong D.; Bastidas, Robert J.; McCafferty, Dewey G.; Valdivia, Raphael H.

    2014-01-01

    The secreted Chlamydia protease CPAF cleaves a defined set of mammalian and Chlamydia proteins in vitro. As a result, this protease has been proposed to modulate a range of bacterial and host cellular functions. However, it has recently come into question the extent to which many of its identified substrates constitute bona fide targets of proteolysis in infected host cell rather than artifacts of post lysis degradation. Here we clarify the role played by CPAF in cellular models of infection by analyzing Chlamydia trachomatis mutants deficient for CPAF activity. Using reverse genetic approaches, we identified two C. trachomatis strains possessing nonsense, loss-of-function mutations in cpa (CT858), and a third strain containing a mutation in Type II secretion (T2S) machinery that inhibited CPAF activity by blocking zymogen secretion and subsequent proteolytic maturation into the active hydrolase. HeLa cells infected with T2S− or CPAF− C. trachomatis mutants lacked detectable in vitro CPAF proteolytic activity, and were not defective for cellular traits that have been previously attributed to CPAF activity, including resistance to staurosporine-induced apoptosis, Golgi fragmentation, altered NFκB-dependent gene expression, and resistance to reinfection. However, CPAF-deficient mutants did display impaired generation of infectious elementary bodies (EBs), indicating an important role for this protease in the full replicative potential of C. trachomatis. In addition, we provide compelling evidence in live cells that CPAF-mediated protein processing of at least two host protein targets, vimentin filaments and the nuclear envelope protein Lamin-associated protein 1 (LAP1), occurs rapidly after the loss of the inclusion membrane integrity, but before loss of plasma membrane permeability and cell lysis. CPAF-dependent processing of host proteins correlates with a loss of inclusion membrane integrity, and so we propose that CPAF plays a role late in infection

  10. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence.

    PubMed

    Petersen, Lauren M; Tisa, Louis S

    2014-11-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  11. Molecular Characterization of Protease Activity in Serratia sp. Strain SCBI and Its Importance in Cytotoxicity and Virulence

    PubMed Central

    Petersen, Lauren M.

    2014-01-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. PMID:25182493

  12. Virtual Screening of Indonesian Herbal Database as HIV-1 Protease Inhibitor

    PubMed Central

    Yanuar, Arry; Suhartanto, Heru; Mun׳im, Abdul; Anugraha, Bram Hik; Syahdi, Rezi Riadhi

    2014-01-01

    HIV-1 (Human immunodeficiency virus type 1)׳s infection is considered as one of most harmful disease known by human, the survivability rate of the host reduced significantly when it developed into AIDS. HIV drug resistance is one of the main problems of its treatment and several drug designs have been done to find new leads compound as the cure. In this study, in silico virtual screening approach was used to find lead molecules from the library or database of natural compounds as HIV-1 protease inhibitor. Virtual screening against Indonesian Herbal Database with AutoDock was performed on HIV-1 protease. From the virtual screening, top ten compounds obtained were 8-Hydroxyapigenin 8-(2",4"-disulfatoglucuronide), Isoscutellarein 4'-methyl ether, Amaranthin, Torvanol A, Ursonic acid, 5-Carboxypyranocyanidin 3-O-(6"-O-malonyl-beta-glucopyranoside), Oleoside, Jacoumaric acid, Platanic acid and 5-Carboxypyranocyanidin 3-O-beta-glucopyranoside. PMID:24616554

  13. The Streptococcal Cysteine Protease SpeB Is Not a Natural Immunoglobulin-Cleaving Enzyme

    PubMed Central

    Persson, Helena; Vindebro, Reine

    2013-01-01

    The human bacterial pathogen Streptococcus pyogenes has developed a broad variety of virulence mechanisms to evade the actions of the host immune defense. One of the best-characterized factors is the streptococcal cysteine protease SpeB, an important multifunctional protease that contributes to group A streptococcal pathogenesis in vivo. Among many suggested activities, SpeB has been described to degrade various human plasma proteins, including immunoglobulins (Igs). In this study, we show that SpeB has no Ig-cleaving activity under physiological conditions and that only Igs in a reduced state, i.e., semimonomeric molecules, are cleaved and degraded by SpeB. Since reducing conditions outside eukaryotic cells have to be considered nonphysiological and IgG in a reduced state lacks biological effector functions, we conclude that SpeB does not contribute to S. pyogenes virulence through the proteolytic degradation of Igs. PMID:23569114

  14. Comparative analysis of immunoglobulin A1 protease activity among bacteria representing different genera, species, and strains.

    PubMed Central

    Reinholdt, J; Kilian, M

    1997-01-01

    Immunoglobulin A1 (IgA1) proteases cleaving human IgA1 in the hinge region are produced constitutively by a number of pathogens, including Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, and Streptococcus pneumoniae, as well as by some members of the resident oropharyngeal flora. Whereas IgA1 proteases have been shown to interfere with the functions of IgA antibodies in vitro, the exact role of these enzymes in the relationship of bacteria to a human host capable of responding with enzyme-neutralizing antibodies is not clear. Conceivably, the role of IgA1 proteases may depend on the quantity of IgA1 protease generated as well as on the balance between secreted and cell-associated forms of the enzyme. Therefore, we have compared levels of IgA1 protease activity in cultures of 38 bacterial strains representing different genera and species as well as strains of different pathogenic potential. Wide variation in activity generation rate was found overall and within some species. High activity was not an exclusive property of bacteria with documented pathogenicity. Almost all activity of H. influenzae, N. meningitidis, and N. gonorrhoeae strains was present in the supernatant. In contrast, large proportions of the activity in Streptococcus, Prevotella, and Capnocytophaga species was cell associated at early stationary phase, suggesting that the enzyme may play the role of a surface antigen. Partial release of cell-associated activity occurred during stationary phase. Within some taxa, the degree of activity variation correlated with degree of antigenic diversity of the enzyme as determined previously. This finding may indicate that the variation observed is of biological significance. PMID:9353019

  15. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family.

    PubMed

    Costa, Tatiana F R; Lima, Ana Paula C A

    2016-03-01

    Chagasin-type inhibitors comprise natural inhibitors of papain-like cysteine proteases that are distributed among Protist, Bacteria and Archaea. Chagasin was identified in the pathogenic protozoa Trypanosoma cruzi as an approximately 11 kDa protein that is a tight-binding and highly thermostable inhibitor of papain, cysteine cathepsins and endogenous parasite cysteine proteases. It displays an Imunoglobulin-like fold with three exposed loops to one side of the molecule, where amino acid residues present in conserved motifs at the tips of each loop contact target proteases. Differently from cystatins, the loop 2 of chagasin enters the active-site cleft, making direct contact with the catalytic residues, while loops 4 and 6 embrace the enzyme from the sides. Orthologues of chagasin are named Inhibitors of Cysteine Peptidases (ICP), and share conserved overall tri-dimensional structure and mode of binding to proteases. ICPs are tentatively distributed in three families: in family I42 are grouped chagasin-type inhibitors that share conserved residues at the exposed loops; family I71 contains Plasmodium ICPs, which are large proteins having a chagasin-like domain at the C-terminus, with lower similarity to chagasin in the conserved motif at loop 2; family I81 contains Toxoplasma ICP. Recombinant ICPs tested so far can inactivate protozoa cathepsin-like proteases and their mammalian counterparts. Studies on their biological roles were carried out in a few species, mainly using transgenic protozoa, and the conclusions vary. However, in all cases, alterations in the levels of expression of chagasin/ICPs led to substantial changes in one or more steps of parasite biology, with higher incidence in influencing their interaction with the hosts. We will cover most of the findings on chagasin/ICP structural and functional properties and overview the current knowledge on their roles in protozoa. PMID:26546840

  16. Modifying the substrate specificity of Carcinoscorpius rotundicauda serine protease inhibitor domain 1 to target thrombin.

    PubMed

    Giri, Pankaj Kumar; Tang, Xuhua; Thangamani, Saravanan; Shenoy, Rajesh T; Ding, Jeak Ling; Swaminathan, Kunchithapadam; Sivaraman, J

    2010-01-01

    Protease inhibitors play a decisive role in maintaining homeostasis and eliciting antimicrobial activities. Invertebrates like the horseshoe crab have developed unique modalities with serine protease inhibitors to detect and respond to microbial and host proteases. Two isoforms of an immunomodulatory two-domain Kazal-like serine protease inhibitor, CrSPI-1 and CrSPI-2, have been recently identified in the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. Full length and domain 2 of CrSPI-1 display powerful inhibitory activities against subtilisin. However, the structure and function of CrSPI-1 domain-1 (D1) remain unknown. Here, we report the crystal structure of CrSPI-1-D1 refined up to 2.0 Å resolution. Despite the close structural homology of CrSPI-1-D1 to rhodniin-D1 (a known thrombin inhibitor), the CrSPI-1-D1 does not inhibit thrombin. This prompted us to modify the selectivity of CrSPI-1-D1 specifically towards thrombin. We illustrate the use of structural information of CrSPI-1-D1 to modify this domain into a potent thrombin inhibitor with IC(50) of 26.3 nM. In addition, these studies demonstrate that, besides the rigid conformation of the reactive site loop of the inhibitor, the sequence is the most important determinant of the specificity of the inhibitor. This study will lead to the significant application to modify a multi-domain inhibitor protein to target several proteases. PMID:21188150

  17. Modifying the Substrate Specificity of Carcinoscorpius rotundicauda Serine Protease Inhibitor Domain 1 to Target Thrombin

    PubMed Central

    Giri, Pankaj Kumar; Tang, Xuhua; Thangamani, Saravanan; Shenoy, Rajesh T.; Ding, Jeak Ling; Swaminathan, Kunchithapadam; Sivaraman, J.

    2010-01-01

    Protease inhibitors play a decisive role in maintaining homeostasis and eliciting antimicrobial activities. Invertebrates like the horseshoe crab have developed unique modalities with serine protease inhibitors to detect and respond to microbial and host proteases. Two isoforms of an immunomodulatory two-domain Kazal-like serine protease inhibitor, CrSPI-1 and CrSPI-2, have been recently identified in the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. Full length and domain 2 of CrSPI-1 display powerful inhibitory activities against subtilisin. However, the structure and function of CrSPI-1 domain-1 (D1) remain unknown. Here, we report the crystal structure of CrSPI-1-D1 refined up to 2.0 Å resolution. Despite the close structural homology of CrSPI-1-D1 to rhodniin-D1 (a known thrombin inhibitor), the CrSPI-1-D1 does not inhibit thrombin. This prompted us to modify the selectivity of CrSPI-1-D1 specifically towards thrombin. We illustrate the use of structural information of CrSPI-1-D1 to modify this domain into a potent thrombin inhibitor with IC50 of 26.3 nM. In addition, these studies demonstrate that, besides the rigid conformation of the reactive site loop of the inhibitor, the sequence is the most important determinant of the specificity of the inhibitor. This study will lead to the significant application to modify a multi-domain inhibitor protein to target several proteases. PMID:21188150

  18. Proteases decode the extracellular matrix cryptome.

    PubMed

    Ricard-Blum, Sylvie; Vallet, Sylvain D

    2016-03-01

    The extracellular matrix is comprised of 1100 core-matrisome and matrisome-associated proteins and of glycosaminoglycans. This structural scaffold contributes to the organization and mechanical properties of tissues and modulates cell behavior. The extracellular matrix is dynamic and undergoes constant remodeling, which leads to diseases if uncontrolled. Bioactive fragments, called matricryptins, are released from the extracellular proteins by limited proteolysis and have biological activities on their own. They regulate numerous physiological and pathological processes such as angiogenesis, cancer, diabetes, wound healing, fibrosis and infectious diseases and either improve or worsen the course of diseases depending on the matricryptins and on the molecular and biological contexts. Several protease families release matricryptins from core-matrisome and matrisome-associated proteins both in vitro and in vivo. The major proteases, which decrypt the extracellular matrix, are zinc metalloproteinases of the metzincin superfamily (matrixins, adamalysins and astacins), cysteine proteinases and serine proteases. Some matricryptins act as enzyme inhibitors, further connecting protease and matricryptin fates and providing intricate regulation of major physiopathological processes such as angiogenesis and tumorigenesis. They strengthen the role of the extracellular matrix as a key player in tissue failure and core-matrisome and matrisome-associated proteins as important therapeutic targets. PMID:26382969

  19. Transient ECM protease activity promotes synaptic plasticity.

    PubMed

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 - TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  20. Proteases and Peptidases of Castor Bean Endosperm

    PubMed Central

    Tully, Raymond E.; Beevers, Harry

    1978-01-01

    The endosperm of castor bean seeds (Ricinus communis L.) contains two —SH-dependent aminopeptidases, one hydrolyzing l-leucine-β-naphthylamide optimally at pH 7.0, and the other hydrolyzing l-proline-β-naphthylamide optimally at pH 7.5. After germination the endosperm contains in addition an —SH-dependent hemoglobin protease, a serine-dependent carboxypeptidase, and at least two —SH-dependent enzymes hydrolyzing the model substrate α-N-benzoyl-dl-arginine-β-naphthylamide (BANA). The carboxypeptidase is active on a variety of N-carbobenzoxy dipeptides, especially N-carbobenzoxy-L-phenylalanine-l-alanine and N-carbobenzoxy-l-tyrosine-l-leucine. The pH optima for the protease, carboxypeptidase, and BANAase acivities are 3.5 to 4.0, 5.0 to 5.5, and 6 to 8, respectively. The two aminopeptidases increased about 4-fold in activity during the first 4 days of growth, concurrent with the period of rapid depletion of storage protein. Activities then declined as the endosperm senesced, but were still evident after 6 days. Senescence was complete by day 7 to 8. Hemoglobin protease, carboxypeptidase, and BANAase activities appeared in the endosperm at day 2 to 3, and reached peak activity at day 5 to 6. The data indicate that the aminopeptidases are involved in the early mobilization of endosperm storage protein, whereas protease, carboxypeptidase, and BANAase may take part in later turnover and/or senescence. PMID:16660598

  1. Transient ECM protease activity promotes synaptic plasticity

    PubMed Central

    Magnowska, Marta; Gorkiewicz, Tomasz; Suska, Anna; Wawrzyniak, Marcin; Rutkowska-Wlodarczyk, Izabela; Kaczmarek, Leszek; Wlodarczyk, Jakub

    2016-01-01

    Activity-dependent proteolysis at a synapse has been recognized as a pivotal factor in controlling dynamic changes in dendritic spine shape and function; however, excessive proteolytic activity is detrimental to the cells. The exact mechanism of control of these seemingly contradictory outcomes of protease activity remains unknown. Here, we reveal that dendritic spine maturation is strictly controlled by the proteolytic activity, and its inhibition by the endogenous inhibitor (Tissue inhibitor of matrix metalloproteinases-1 – TIMP-1). Excessive proteolytic activity impairs long-term potentiation of the synaptic efficacy (LTP), and this impairment could be rescued by inhibition of protease activity. Moreover LTP is altered persistently when the ability of TIMP-1 to inhibit protease activity is abrogated, further demonstrating the role of such inhibition in the promotion of synaptic plasticity under well-defined conditions. We also show that dendritic spine maturation involves an intermediate formation of elongated spines, followed by their conversion into mushroom shape. The formation of mushroom-shaped spines is accompanied by increase in AMPA/NMDA ratio of glutamate receptors. Altogether, our results identify inhibition of protease activity as a critical regulatory mechanism for dendritic spines maturation. PMID:27282248

  2. Uptake and Degradation of Protease-Sensitive and -Resistant Forms of Abnormal Human Prion Protein Aggregates by Human Astrocytes

    PubMed Central

    Choi, Young Pyo; Head, Mark W.; Ironside, James W.; Priola, Suzette A.

    2015-01-01

    Sporadic Creutzfeldt-Jakob disease is the most common of the human prion diseases, a group of rare, transmissible, and fatal neurologic diseases associated with the accumulation of an abnormal form (PrPSc) of the host prion protein. In sporadic Creutzfeldt-Jakob disease, disease-associated PrPSc is present not only as an aggregated, protease-resistant form but also as an aggregated protease-sensitive form (sPrPSc). Although evidence suggests that sPrPSc may play a role in prion pathogenesis, little is known about how it interacts with cells during prion infection. Here, we show that protease-sensitive abnormal PrP aggregates derived from patients with sporadic Creutzfeldt-Jakob disease are taken up and degraded by immortalized human astrocytes similarly to abnormal PrP aggregates that are resistant to proteases. Our data suggest that relative proteinase K resistance does not significantly influence the astrocyte's ability to degrade PrPSc. Furthermore, the cell does not appear to distinguish between sPrPSc and protease-resistant PrPSc, suggesting that sPrPSc could contribute to prion infection. PMID:25280631

  3. Protease inhibitors and haemagglutinins associated with resistance to the protozoan parasite, Perkinsus marinus, in the Pacific oyster, Crassostrea gigas.

    PubMed

    Romestand, B; Corbier, F; Roch, P

    2002-10-01

    Perkinsus marinus is a protozoan responsible for dramatic mortality in the Eastern oyster, Crassostrea virginica, but not in the Pacific oyster, C. gigas. To understand the host-parasite relationship, we inoculated P. marinus trophozoites into the shell cavity of C. gigas and measured, over 2 months, (i) intensity of infection, (ii) protease inhibitory activities against P. marinus proteases and against bovine z-chymotrypsin, (iii) plasma haemagglutinin titre, (iv) plasma protein concentration, (v) plasma lysozyme activity and (vi) total haemocyte count. We observed that the highest protease inhibitory activities and haemagglutinin titres (3-10 days post-challenge) preceded parasite elimination (initiated 7 days post-challenge). In contrast, plasma protein concentration, lysozyme activity and total haemocyte count showed no significant modification following the challenge. It is hypothesized that the capacity of C. gigas to increase its protease inhibitors represents the key event in resistance to parasite infection by neutralizing the proteases secreted by P. marinus, thus preserving the oyster haemagglutinins from degradation. Such haemagglutinins will be ready to act as opsonins stimulating phagocytosis of parasites. PMID:12403320

  4. Preliminary crystallographic study of two cuticle-degrading proteases from the nematophagous fungi Lecanicillium psalliotae and Paecilomyces lilacinus

    PubMed Central

    Ye, Fengping; Liang, Lianming; Mi, Qili; Yang, Jinkui; Lou, Zhiyong; Sun, Yuna; Guo, Yu; Meng, Zhaohui; Zhang, Keqin

    2009-01-01

    Cuticle-degrading proteases are extracellular subtilisin-like serine proteases that are secreted by entomopathogenic and nematophagous fungi. These proteases can digest the host cuticle during invasion of an insect or nematode and serve as a group of important virulence factors during the infection of nematodes by nematophagous fungi. To elucidate the mechanism of interaction between the proteases and the nematode cuticle, two cuticle-degrading proteases, Ver112 from Lecanicillium psalliotae (syn. Verticillium psalliotae) and PL646 from Paecilomyces lilacinus, were studied. The Ver112 protein and the complex between PL646 and the substrate-like tetrapeptide inhibitor methoxy­succinyl-Ala-Ala-Pro-Val-chloromethyl ketone (MSU-AAPV) were crystallized using the hanging-drop vapour-diffusion method at 289 K. The crystals were analyzed by X-ray diffraction to resolutions of 1.65 and 2.2 Å, respectively. These analyses identified that crystals of Ver112 belonged to space group P212121, with unit-cell parameters a = 43.7, b = 67.8, c = 76.3 Å, α = β = γ = 90°. In contrast, crystals of the PL646–MSU-AAPV complex belonged to space group P21, with unit-cell parameters a = 65.1, b = 62.5, c = 67.6 Å, β = 92.8°. PMID:19255481

  5. A novel protease activity assay using a protease-responsive chaperone protein

    SciTech Connect

    Sao, Kentaro; Murata, Masaharu; Fujisaki, Yuri; Umezaki, Kaori; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki; Hashizume, Makoto

    2009-06-05

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  6. Inherent dynamics within the Crimean-Congo Hemorrhagic fever virus protease are localized to the same region as substrate interactions

    SciTech Connect

    Eisenmesser, Elan Z.; Capodagli, Glenn; Armstrong, Geoffrey S.; Holliday, Michael; Isern, Nancy G.; Zhang, Fengli; Pegan, Scott D.

    2015-05-01

    Crimean-Congo Hemorrhagic fever virus (CCHFV) is one of several lethal viruses that encodes for a viral ovarian tumor domain (vOTU), which serves to cleave and remove multiple proteins involved in cellular signaling such as ubiquitin (Ub) and interferon stimulated gene produce 15 (ISG15). Such manipulation of the host cell machinery serves to downregulate the host response and, therefore, complete characterization of these proteases is important. While several structures of the CCHFV vOTU protease have been solved, both free and bound to Ub and ISG15, few structural differences have been found and little insight has been gained as to the dynamic plasticity of this protease. Therefore, we have used NMR relaxation experiments to probe the dynamics of CCHV vOTU, both alone and in complex with Ub, thereby discovering a highly dynamic protease that exhibits conformational exchange within the same regions found to engage its Ub substrate. These experiments reveal a structural plasticity around the N-terminal regions of CCHV vOTU, which are unique to vOTUs, and provide a rationale for engaging multiple substrates with the same binding site.

  7. [Peculiarities of the expression, structure, and localization of the subtilisin-like protease in the microsporidium Paranosema locustae].

    PubMed

    Timofeev, S A; Sendersky, I V; Pavlova, O A; Dolgikh, V V

    2014-01-01

    Peculiarities of the expression, localization, and structure of the subtilisin-like protease from the microsporidium Paranosema locustae, a parasite of the migratory locust and other orthopteran species, are analyzed. Heterologous expression of the microsporidian ferment in the bacterium Escherichia coli allowed obtaining antibodies to the recombinant protein and to start its examination. In spite of the presence of the N-tail signal peptide in the ferment, potentially able to secret it into the cytoplasm of the infected cell, immunoblotting with obtained antibodies had demonstrated specific accumulation of the protease in the insoluble fraction of spore homogenate. At the same time, the ferment was absent in intracellular stages.of the parasite and also in the cytoplasm of infested host cells. Accumulation of mRNA, coding the studied protein in microsporidian spores was confirmed with the use of RT-PCR method. Heterologous expression of the protease in the methylotrophic yeast Pichiapastoris demonstrated the same result. The ferment of P. locustae was not secreted into a culture medium and was absent in the cytoplasm of yeast cells, accumulating in a dissoluble (membrane) fraction of the homogenate. On the whole, the obtained data testify to the fact that the subtilisin-like protease of P. locustae plays an important role in the physiology of spores rather than participates in host-parasite relations during intra-cellular development. PMID:25929105

  8. Coagulation factor XII protease domain crystal structure

    PubMed Central

    Pathak, M; Wilmann, P; Awford, J; Li, C; Hamad, BK; Fischer, PM; Dreveny, I; Dekker, LV; Emsley, J

    2015-01-01

    Background Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI. Objective To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain. Methods and results A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to β-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates. Conclusions These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation. PMID:25604127

  9. A putative serine protease, SpSsp1, from Saprolegnia parasitica is recognised by sera of rainbow trout, Oncorhynchus mykiss.

    PubMed

    Minor, Kirsty L; Anderson, Victoria L; Davis, Katie S; Van Den Berg, Albert H; Christie, James S; Löbach, Lars; Faruk, Ali Reza; Wawra, Stephan; Secombes, Chris J; Van West, Pieter

    2014-07-01

    Saprolegniosis, the disease caused by Saprolegnia sp., results in considerable economic losses in aquaculture. Current control methods are inadequate, as they are either largely ineffective or present environmental and fish health concerns. Vaccination of fish presents an attractive alternative to these control methods. Therefore we set out to identify suitable antigens that could help generate a fish vaccine against Saprolegnia parasitica. Unexpectedly, antibodies against S. parasitica were found in serum from healthy rainbow trout, Oncorhynchus mykiss. The antibodies detected a single band in secreted proteins that were run on a one-dimensional SDS-polyacrylamide gel, which corresponded to two protein spots on a two-dimensional gel. The proteins were analysed by liquid chromatography tandem mass spectrometry. Mascot and bioinformatic analysis resulted in the identification of a single secreted protein, SpSsp1, of 481 amino acid residues, containing a subtilisin domain. Expression analysis demonstrated that SpSsp1 is highly expressed in all tested mycelial stages of S. parasitica. Investigation of other non-infected trout from several fish farms in the United Kingdom showed similar activity in their sera towards SpSsp1. Several fish that had no visible saprolegniosis showed an antibody response towards SpSsp1 suggesting that SpSsp1 might be a useful candidate for future vaccination trial experiments. PMID:25088077

  10. Serine protease autotransporters of enterobacteriaceae (SPATEs): biogenesis and function.

    PubMed

    Dautin, Nathalie

    2010-06-01

    Serine Protease Autotransporters of Enterobacteriaceae (SPATEs) constitute a large family of proteases secreted by Escherichia coli and Shigella. SPATEs exhibit two distinct proteolytic activities. First, a C-terminal catalytic site triggers an intra-molecular cleavage that releases the N-terminal portion of these proteins in the extracellular medium. Second, the secreted N-terminal domains of SPATEs are themselves proteases; each contains a canonical serine-protease catalytic site. Some of these secreted proteases are toxins, eliciting various effects on mammalian cells. Here, we discuss the biogenesis of SPATEs and their function as toxins. PMID:22069633

  11. Catalytic Function and Substrate Specificity of the Papain-Like Protease Domain of nsp3 from the Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Báez-Santos, Yahira M.; Mielech, Anna M.; Deng, Xufang; Baker, Susan

    2014-01-01

    ABSTRACT The papain-like protease (PLpro) domain from the deadly Middle East respiratory syndrome coronavirus (MERS-CoV) was overexpressed and purified. MERS-CoV PLpro constructs with and without the putative ubiquitin-like (UBL) domain at the N terminus were found to possess protease, deubiquitinating, deISGylating, and interferon antagonism activities in transfected HEK293T cells. The quaternary structure and substrate preferences of MERS-CoV PLpro were determined and compared to those of severe acute respiratory syndrome coronavirus (SARS-CoV) PLpro, revealing prominent differences between these closely related enzymes. Steady-state kinetic analyses of purified MERS-CoV and SARS-CoV PLpros uncovered significant differences in their rates of hydrolysis of 5-aminomethyl coumarin (AMC) from C-terminally labeled peptide, ubiquitin, and ISG15 substrates, as well as in their rates of isopeptide bond cleavage of K48- and K63-linked polyubiquitin chains. MERS-CoV PLpro was found to have 8-fold and 3,500-fold higher catalytic efficiencies for hydrolysis of ISG15-AMC than for hydrolysis of the Ub-AMC and Z-RLRGG-AMC substrates, respectively. A similar trend was observed for SARS-CoV PLpro, although it was much more efficient than MERS-CoV PLpro toward ISG15-AMC and peptide-AMC substrates. MERS-CoV PLpro was found to process K48- and K63-linked polyubiquitin chains at similar rates and with similar debranching patterns, producing monoubiquitin species. However, SARS-CoV PLpro much preferred K48-linked polyubiquitin chains to K63-linked chains, and it rapidly produced di-ubiquitin molecules from K48-linked chains. Finally, potent inhibitors of SARS-CoV PLpro were found to have no effect on MERS-CoV PLpro. A homology model of the MERS-CoV PLpro structure was generated and compared to the X-ray structure of SARS-CoV PLpro to provide plausible explanations for differences in substrate and inhibitor recognition. IMPORTANCE Unlocking the secrets of how coronavirus (CoV) papain

  12. Duplications and losses in gene families of rust pathogens highlight putative effectors

    PubMed Central

    Pendleton, Amanda L.; Smith, Katherine E.; Feau, Nicolas; Martin, Francis M.; Grigoriev, Igor V.; Hamelin, Richard; Nelson, C. Dana; Burleigh, J. Gordon; Davis, John M.

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity. PMID:25018762

  13. Proteases from the Regenerating Gut of the Holothurian Eupentacta fraudatrix

    PubMed Central

    Lamash, Nina E.; Dolmatov, Igor Yu

    2013-01-01

    Four proteases with molecular masses of 132, 58, 53, and 47 kDa were detected in the digestive system of the holothurian Eupentacta fraudatrix. These proteases displayed the gelatinase activity and characteristics of zinc metalloproteinases. The 58 kDa protease had similar protease inhibitor sensitivity to that of mammalian matrix metalloproteinases. Zymographic assay revealed different lytic activities of all four proteases during intestine regeneration in the holothurian. The 132 kDa protease showed the highest activity at the first stage. During morphogenesis (stages 2–4 of regeneration), the highest activity was measured for the 53 and 58 kDa proteases. Inhibition of protease activity exerts a marked effect on regeneration, which was dependent on the time when 1,10-phenanthroline injections commenced. When metalloproteinases were inhibited at the second stage of regeneration, the restoration rates were decreased. However, such an effect proved to be reversible, and when inhibition ceased, the previous rate of regeneration was recovered. When protease activity is inhibited at the first stage, regeneration is completely abolished, and the animals die, suggesting that early activation of the proteases is crucial for triggering the regenerative process in holothurians. The role of the detected proteases in the regeneration processes of holothurians is discussed. PMID:23505505

  14. Comparative study on the protease inhibitors from fish eggs

    NASA Astrophysics Data System (ADS)

    Ustadi; Kim, K. Y.; Kim, S. M.

    2005-07-01

    The protease inhibitor was purified from five different fish eggs. The molecular weights of Pacific herring, chum salmon, pond smelt, glassfish, and Alaska pollock egg protease inhibitors were 120, 89, 84.5, 17, and l6.8kDa, respectively. The specific inhibitory activity of glassfish egg protease inhibitor was the highest followed by those of Pacific herring and Alaska pollock in order. The specific inhibitory activity and purity of glassfish egg protease inhibitor were 19.70 Umg-1 protein and 164.70 folds of purification, respectively. Glassfish egg protease inhibitor was reasonably stable at 50-65°C and pH 8, which was more stable at high temperature and pH than protease inhibitors from the other fish species. Glassfish egg protease inhibitor was noncompetitive with inhibitor constant ( K i) of 4.44 nmolL-1.

  15. New directions for protease inhibitors directed drug discovery.

    PubMed

    Hamada, Yoshio; Kiso, Yoshiaki

    2016-11-01

    Proteases play crucial roles in various biological processes, and their activities are essential for all living organisms-from viruses to humans. Since their functions are closely associated with many pathogenic mechanisms, their inhibitors or activators are important molecular targets for developing treatments for various diseases. Here, we describe drugs/drug candidates that target proteases, such as malarial plasmepsins, β-secretase, virus proteases, and dipeptidyl peptidase-4. Previously, we reported inhibitors of aspartic proteases, such as renin, human immunodeficiency virus type 1 protease, human T-lymphotropic virus type I protease, plasmepsins, and β-secretase, as drug candidates for hypertension, adult T-cell leukaemia, human T-lymphotropic virus type I-associated myelopathy, malaria, and Alzheimer's disease. Our inhibitors are also described in this review article as examples of drugs that target proteases. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 563-579, 2016. PMID:26584340

  16. Deep Sequencing of the Trypanosoma cruzi GP63 Surface Proteases Reveals Diversity and Diversifying Selection among Chronic and Congenital Chagas Disease Patients

    PubMed Central

    Llewellyn, Martin S.; Messenger, Louisa A.; Luquetti, Alejandro O.; Garcia, Lineth; Torrico, Faustino; Tavares, Suelene B. N.; Cheaib, Bachar; Derome, Nicolas; Delepine, Marc; Baulard, Céline; Deleuze, Jean-Francois; Sauer, Sascha; Miles, Michael A.

    2015-01-01

    Background Chagas disease results from infection with the diploid protozoan parasite Trypanosoma cruzi. T. cruzi is highly genetically diverse, and multiclonal infections in individual hosts are common, but little studied. In this study, we explore T. cruzi infection multiclonality in the context of age, sex and clinical profile among a cohort of chronic patients, as well as paired congenital cases from Cochabamba, Bolivia and Goias, Brazil using amplicon deep sequencing technology. Methodology/ Principal Findings A 450bp fragment of the trypomastigote TcGP63I surface protease gene was amplified and sequenced across 70 chronic and 22 congenital cases on the Illumina MiSeq platform. In addition, a second, mitochondrial target—ND5—was sequenced across the same cohort of cases. Several million reads were generated, and sequencing read depths were normalized within patient cohorts (Goias chronic, n = 43, Goias congenital n = 2, Bolivia chronic, n = 27; Bolivia congenital, n = 20), Among chronic cases, analyses of variance indicated no clear correlation between intra-host sequence diversity and age, sex or symptoms, while principal coordinate analyses showed no clustering by symptoms between patients. Between congenital pairs, we found evidence for the transmission of multiple sequence types from mother to infant, as well as widespread instances of novel genotypes in infants. Finally, non-synonymous to synonymous (dn:ds) nucleotide substitution ratios among sequences of TcGP63Ia and TcGP63Ib subfamilies within each cohort provided powerful evidence of strong diversifying selection at this locus. Conclusions/Significance Our results shed light on the diversity of parasite DTUs within each patient, as well as the extent to which parasite strains pass between mother and foetus in congenital cases. Although we were unable to find any evidence that parasite diversity accumulates with age in our study cohorts, putative diversifying selection within members of the TcGP63I

  17. Structural Basis for Dual-Inhibition Mechanism of a Non-Classical Kazal-Type Serine Protease Inhibitor from Horseshoe Crab in Complex with Subtilisin

    SciTech Connect

    Shenoy, Rajesh T.; Thangamani, Saravanan; Velazquez-Campoy, Adrian; Ho, Bow; Ding, Jeak Ling; Sivaraman, J.; Kursula, Petri

    2011-04-26

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki=1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1:2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation.

  18. Structural basis for dual-inhibition mechanism of a non-classical Kazal-type serine protease inhibitor from horseshoe crab in complex with subtilisin.

    PubMed

    Shenoy, Rajesh T; Thangamani, Saravanan; Velazquez-Campoy, Adrian; Ho, Bow; Ding, Jeak Ling; Sivaraman, J

    2011-01-01

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation. PMID:21541315

  19. Structural Basis for Dual-Inhibition Mechanism of a Non-Classical Kazal-Type Serine Protease Inhibitor from Horseshoe Crab in Complex with Subtilisin

    PubMed Central

    Shenoy, Rajesh T.; Thangamani, Saravanan; Velazquez-Campoy, Adrian; Ho, Bow; Ding, Jeak Ling; Sivaraman, J.

    2011-01-01

    Serine proteases play a crucial role in host-pathogen interactions. In the innate immune system of invertebrates, multi-domain protease inhibitors are important for the regulation of host-pathogen interactions and antimicrobial activities. Serine protease inhibitors, 9.3-kDa CrSPI isoforms 1 and 2, have been identified from the hepatopancreas of the horseshoe crab, Carcinoscorpius rotundicauda. The CrSPIs were biochemically active, especially CrSPI-1, which potently inhibited subtilisin (Ki = 1.43 nM). CrSPI has been grouped with the non-classical Kazal-type inhibitors due to its unusual cysteine distribution. Here we report the crystal structure of CrSPI-1 in complex with subtilisin at 2.6 Å resolution and the results of biophysical interaction studies. The CrSPI-1 molecule has two domains arranged in an extended conformation. These two domains act as heads that independently interact with two separate subtilisin molecules, resulting in the inhibition of subtilisin activity at a ratio of 1:2 (inhibitor to protease). Each subtilisin molecule interacts with the reactive site loop from each domain of CrSPI-1 through a standard canonical binding mode and forms a single ternary complex. In addition, we propose the substrate preferences of each domain of CrSPI-1. Domain 2 is specific towards the bacterial protease subtilisin, while domain 1 is likely to interact with the host protease, Furin. Elucidation of the structure of the CrSPI-1: subtilisin (1∶2) ternary complex increases our understanding of host-pathogen interactions in the innate immune system at the molecular level and provides new strategies for immunomodulation. PMID:21541315

  20. Dissection of the roles of FtsH protease in chloroplast biogenesis and stability at moderately high temperature: a quantitative proteomics approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chloroplast-targeted FtsH11 protease has been identified as essential for Arabidopsis survival at moderately high temperatures. The ftsh11 plants display a host of dramatic changes in photosynthetic parameters, cessation of growth and development, and eventual death if temperature exceeds 30ºC a...

  1. Temporal Dynamics and Decay of Putatively Allochthonous and Autochthonous Viral Genotypes in Contrasting Freshwater Lakes

    PubMed Central

    Barbosa, Jorge G.; Brown, Julia M.; Donelan, Ryan P.; Eaglesham, James B.; Eggleston, Erin M.; LaBarre, Brenna A.

    2012-01-01

    Aquatic viruses play important roles in the biogeochemistry and ecology of lacustrine ecosystems; however, their composition, dynamics, and interactions with viruses of terrestrial origin are less extensively studied. We used a viral shotgun metagenomic approach to elucidate candidate autochthonous (i.e., produced within the lake) and allochthonous (i.e., washed in from other habitats) viral genotypes for a comparative study of their dynamics in lake waters. Based on shotgun metagenomes prepared from catchment soil and freshwater samples from two contrasting lakes (Cayuga Lake and Fayetteville Green Lake), we selected two putatively autochthonous viral genotypes (phycodnaviruses likely infecting algae and cyanomyoviruses likely infecting picocyanobacteria) and two putatively allochthonous viral genotypes (geminiviruses likely infecting terrestrial plants and circoviruses infecting unknown hosts but common in soil libraries) for analysis by genotype-specific quantitative PCR (TaqMan) applied to DNAs from viruses in the viral size fraction of lake plankton, i.e., 0.2 μm > virus > 0.02 μm. The abundance of autochthonous genotypes largely reflected expected host abundance, while the abundance of allochthonous genotypes corresponded with rainfall and storm events in the respective catchments, suggesting that viruses with these genotypes may have been transported to the lake in runoff. The decay rates of allochthonous and autochthonous genotypes, assessed in incubations where all potential hosts were killed, were generally lower (0.13 to 1.50% h−1) than those reported for marine virioplankton but similar to those for freshwater virioplankton. Both allochthonous and autochthonous viral genotypes were detected at higher concentrations in subsurface sediments than at the water-sediment interface. Our data indicate that putatively allochthonous viruses are present in lake plankton and sediments, where their temporal dynamics reflect active transport to the lake during

  2. A new principle of oligomerization of plant DEG7 protease based on interactions of degenerated protease domains

    PubMed Central

    Schuhmann, Holger; Mogg, Ulrike; Adamska, Iwona

    2011-01-01

    Deg/HtrA proteases are a large group of ATP-independent serine endoproteases found in almost every organism. Their usual domain arrangement comprises a trypsin-type protease domain and one or more PDZ domains. All Deg/HtrA proteases form homo-oligomers with trimers as the basic unit, where the active protease domain mediates the interaction between individual monomers. Among the members of the Deg/HtrA protease family, the plant protease DEG7 is unique since it contains two protease domains (one active and one degenerated) and four PDZ domains. In the present study, we investigated the oligomerization behaviour of this unusual protease using yeast two-hybrid analysis in vivo and with recombinant protein in vitro. We show that DEG7 forms trimeric complexes, but in contrast with other known Deg/HtrA proteases, it shows a new principle of oligomerization, where trimerization is based on the interactions between degenerated protease domains. We propose that, during evolution, a duplicated active protease domain degenerated and specialized in protein–protein interaction and complex formation. PMID:21247409

  3. A putative, novel coli surface antigen 8B (CS8B) of enterotoxigenic Escherichia coli.

    PubMed

    Njoroge, Samuel M; Boinett, Christine J; Madé, Laure F; Ouko, Tom T; Fèvre, Eric M; Thomson, Nicholas R; Kariuki, Samuel

    2015-10-01

    Enterotoxigenic Escherichia coli (ETEC) strains harbor multiple fimbriae and pili to mediate host colonization, including the type IVb pilus, colonization factor antigen III (CFA/III). Not all colonization factors are well characterized or known in toxin positive ETEC isolates, which may have an impact identifying ETEC isolates based on molecular screening of these biomarkers. We describe a novel coli surface antigen (CS) 8 subtype B (CS8B), a family of CFA/III pilus, in a toxin producing ETEC isolate from a Kenyan collection. In highlighting the existence of this putative CS, we provide the sequence and specific primers, which can be used alongside other ETEC primers previously described. PMID:26187892

  4. A putative, novel coli surface antigen 8B (CS8B) of enterotoxigenic Escherichia coli

    PubMed Central

    Njoroge, Samuel M.; Boinett, Christine J.; Madé, Laure F.; Ouko, Tom T.; Fèvre, Eric M.; Thomson, Nicholas R.; Kariuki, Samuel

    2015-01-01

    Enterotoxigenic Escherichia coli (ETEC) strains harbor multiple fimbriae and pili to mediate host colonization, including the type IVb pilus, colonization factor antigen III (CFA/III). Not all colonization factors are well characterized or known in toxin positive ETEC isolates, which may have an impact identifying ETEC isolates based on molecular screening of these biomarkers. We describe a novel coli surface antigen (CS) 8 subtype B (CS8B), a family of CFA/III pilus, in a toxin producing ETEC isolate from a Kenyan collection. In highlighting the existence of this putative CS, we provide the sequence and specific primers, which can be used alongside other ETEC primers previously described. PMID:26187892

  5. Compositional discordance between prokaryotic plasmids and host chromosomes

    PubMed Central

    van Passel, Mark WJ; Bart, Aldert; Luyf, Angela CM; van Kampen, Antoine HC; van der Ende, Arie

    2006-01-01

    Background Most plasmids depend on the host replication machinery and possess partitioning genes. These properties confine plasmids to a limited range of hosts, yielding a close and presumably stable relationship between plasmid and host. Hence, it is anticipated that due to amelioration the dinucleotide composition of plasmids is similar to that of the genome of their hosts. However, plasmids are also thought to play a major role in horizontal gene transfer and thus are frequently exchanged between hosts, suggesting dinucleotide composition dissimilarity between plasmid and host genome. We compared the dinucleotide composition of a large collection of plasmids with that of their host genomes to shed more light on this enigma. Results The dinucleotide frequency, coined the genome signature, facilitates the identification of putative horizontally transferred DNA in complete genome sequences, since it was found to be typical for a certain genome, and similar between related species. By comparison of the genome signature of 230 plasmid sequences with that of the genome of each respective host, we found that in general the genome signature of plasmids is dissimilar from that of their host genome. Conclusion Our results show that the genome signature of plasmids does not resemble that of their host genome. This indicates either absence of amelioration or a less stable relationship between plasmids and their host. We propose an indiscriminate lifestyle for plasmids preserving the genome signature discordance between these episomes and host chromosomes. PMID:16480495

  6. Neuroserpin, an axonally secreted serine protease inhibitor.

    PubMed Central

    Osterwalder, T; Contartese, J; Stoeckli, E T; Kuhn, T B; Sonderegger, P

    1996-01-01

    We have identified and chromatographically purified an axonally secreted glycoprotein of CNS and PNS neurons. Several peptides derived from it were microsequenced. Based on these sequences, a fragment of the corresponding cDNA was amplified and used as a probe to isolate a full length cDNA from a chicken brain cDNA library. Because the deduced amino acid sequence qualified the protein as a novel member of the serpin family of serine protease inhibitors, we called it neuroserpin. Analysis of the primary structural features further characterized neuroserpin as a heparin-independent, functional inhibitor of a trypsin-like serine protease. In situ hybridization revealed a predominantly neuronal expression during the late stages of neurogenesis and in the adult brain in regions which exhibit synaptic plasticity. Thus, neuroserpin might function as an axonally secreted regulator of the local extracellular proteolysis involved in the reorganization of the synaptic connectivity during development and synapse plasticity in the adult. Images PMID:8670795

  7. Protease-induced infectivity of hepatitis B virus for a human hepatoblastoma cell line.

    PubMed Central

    Lu, X; Block, T M; Gerlich, W H

    1996-01-01

    The human hepatoblastoma cell line HepG2 produces and secretes hepatitis B virus (HBV) after transfection of cloned HBV DNA. Intact virions do not infect these cells, although they attach to the surface of the HepG2 cell through binding sites in the pre-S1 domain. Entry of enveloped virions into the cell often requires proteolytic cleavage of a viral surface protein that is involved in fusion between the cell membrane and the viral envelope. Recently, we observed pre-S-independent, nonspecific binding between hepatitis B surface (HBs) particles and HepG2 cells after treatment of HBs antigen particles with V8 protease, which cleaves next to a putative fusion sequence. Chymotrypsin removed this fusion sequence and did not induce binding. In this study, we postulate that lack of a suitable fusion-activating protease was the reason why the HepG2 cells were not susceptible to HBV. To test this hypothesis, virions were partially purified from the plasma of HBV carriers and treated with either staphylococcal V8 or porcine chymotrypsin protease. Protease-digested virus lost reactivity with pre-S2-specific antibody but remained morphologically intact as determined by electron microscopy. After separation from the proteases, virions were incubated with HepG2 cells at pH 5.5. Cultures inoculated with either intact or chymotrypsin-digested virus did not contain detectable levels of intracellular HBV DNA at any time following infection. However, in cultures inoculated with V8-digested virions, HBV-specific products, including covalently closed circular DNA, viral RNA, and viral pre-S2 antigen, could be detected in a time-dependent manner following infection. Immunofluorescence analysis revealed that 10 to 30% of the infected HepG2 cells produced HBV antigen. Persistent secretion of virus by the infected HepG2 cells lasted at least 14 days and was maintained during several reseeding steps. The results show that V8-digested HBV can productively infect tissue cultures of HepG2

  8. Dysregulation of protease and protease inhibitors in a mouse model of human pelvic organ prolapse.

    PubMed

    Budatha, Madhusudhan; Silva, Simone; Montoya, Teodoro Ignacio; Suzuki, Ayako; Shah-Simpson, Sheena; Wieslander, Cecilia Karin; Yanagisawa, Masashi; Word, Ruth Ann; Yanagisawa, Hiromi

    2013-01-01

    Mice deficient for the fibulin-5 gene (Fbln5(-/-)) develop pelvic organ prolapse (POP) due to compromised elastic fibers and upregulation of matrix metalloprotease (MMP)-9. Here, we used casein zymography, inhibitor profiling, affinity pull-down, and mass spectrometry to discover additional protease upregulated in the vaginal wall of Fbln5(-/-) mice, herein named V1 (25 kDa). V1 was a serine protease with trypsin-like activity similar to protease, serine (PRSS) 3, a major extrapancreatic trypsinogen, was optimum at pH 8.0, and predominantly detected in estrogenized vaginal epithelium of Fbln5(-/-) mice. PRSS3 was (a) localized in epithelial secretions, (b) detected in media of vaginal organ culture from both Fbln5(-/-) and wild type mice, and (c) cleaved fibulin-5 in vitro. Expression of two serine protease inhibitors [Serpina1a (α1-antitrypsin) and Elafin] was dysregulated in Fbln5(-/-) epithelium. Finally, we confirmed that PRSS3 was expressed in human vaginal epithelium and that SERPINA1 and Elafin were downregulated in vaginal tissues from women with POP. These data collectively suggest that the balance between proteases and their inhibitors contributes to support of the pelvic organs in humans and mice. PMID:23437119

  9. The Biogeography of Putative Microbial Antibiotic Production.

    PubMed

    Morlon, Hélène; O'Connor, Timothy K; Bryant, Jessica A; Charkoudian, Louise K; Docherty, Kathryn M; Jones, Evan; Kembel, Steven W; Green, Jessica L; Bohannan, Brendan J M

    2015-01-01

    Understanding patterns in the distribution and abundance of functional traits across a landscape is of fundamental importance to ecology. Mapping these distributions is particularly challenging for species-rich groups with sparse trait measurement coverage, such as flowering plants, insects, and microorganisms. Here, we use likelihood-based character reconstruction to infer and analyze the spatial distribution of unmeasured traits. We apply this framework to a microbial dataset comprised of 11,732 ketosynthase alpha gene sequences extracted from 144 soil samples from three continents to document the spatial distribution of putative microbial polyketide antibiotic production. Antibiotic production is a key competitive strategy for soil microbial survival and performance. Additionally, novel antibiotic discovery is highly relevant to human health, making natural antibiotic production by soil microorganisms a major target for bioprospecting. Our comparison of trait-based biogeographical patterns to patterns based on taxonomy and phylogeny is relevant to our basic understanding of microbial biogeography as well as the pressing need for new antibiotics. PMID:26102275

  10. The Biogeography of Putative Microbial Antibiotic Production

    PubMed Central

    Bryant, Jessica A.; Charkoudian, Louise K.; Docherty, Kathryn M.; Jones, Evan; Kembel, Steven W.; Green, Jessica L.; Bohannan, Brendan J. M.

    2015-01-01

    Understanding patterns in the distribution and abundance of functional traits across a landscape is of fundamental importance to ecology. Mapping these distributions is particularly challenging for species-rich groups with sparse trait measurement coverage, such as flowering plants, insects, and microorganisms. Here, we use likelihood-based character reconstruction to infer and analyze the spatial distribution of unmeasured traits. We apply this framework to a microbial dataset comprised of 11,732 ketosynthase alpha gene sequences extracted from 144 soil samples from three continents to document the spatial distribution of putative microbial polyketide antibiotic production. Antibiotic production is a key competitive strategy for soil microbial survival and performance. Additionally, novel antibiotic discovery is highly relevant to human health, making natural antibiotic production by soil microorganisms a major target for bioprospecting. Our comparison of trait-based biogeographical patterns to patterns based on taxonomy and phylogeny is relevant to our basic understanding of microbial biogeography as well as the pressing need for new antibiotics. PMID:26102275

  11. Magnetic Pulse Affects a Putative Magnetoreceptor Mechanism

    PubMed Central

    Davila, Alfonso F.; Winklhofer, Michael; Shcherbakov, Valera P.; Petersen, Nikolai

    2005-01-01

    Clusters of superparamagnetic (SP) magnetite crystals have recently been identified in free nerve endings in the upper-beak skin of homing pigeons and are interpreted as being part of a putative magnetoreceptor system. Motivated by these findings, we developed a physical model that accurately predicts the dynamics of interacting SP clusters in a magnetic field. The main predictions are: 1), under a magnetic field, a group of SP clusters self-assembles into a chain-like structure that behaves like a compass needle under slowly rotating fields; 2), in a frequently changing field as encountered by a moving bird, a stacked chain is a structurally more stable configuration than a single chain; 3), chain-like structures of SP clusters disrupt under strong fields applied at oblique angles; and 4), reassemble on a timescale of hours to days (assuming a viscosity of the cell plasma η ∼ 1 P). Our results offer a novel mechanism for magnetic field perception and are in agreement with the response of birds observed after magnetic-pulse treatments, which have been conducted in the past to specifically test if ferrimagnetic material is involved in magnetoreception, but which have defied explanation so far. Our theoretical results are supported by experiments on a technical SP model system using a high-speed camera. We also offer new predictions that can be tested experimentally. PMID:15863473

  12. Toddlers’ Duration of Attention towards Putative Threat

    PubMed Central

    Kiel, Elizabeth J.; Buss, Kristin A.

    2010-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk for developing anxious behavior, toddlers’ attention towards a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined how attention towards an angry-looking gorilla mask in a room with alternative opportunities for play in 24-month-old toddlers predicted social inhibition when children entered kindergarten. Analyses examined attention to threat above and beyond and in interaction with both proximity to the mask and fear of novelty observed in other situations. Attention to threat interacted with proximity to the mask to predict social inhibition, such that attention to threat most strongly predicted social inhibition when toddlers stayed furthest from the mask. This relation occurred above and beyond the predictive relation between fear of novelty and social inhibition. Results are discussed within the broader literature of anxiety development and attentional processes in young children. PMID:21373365

  13. Biogenic Origin for Earth's Oldest Putative Microfossils

    SciTech Connect

    De Gregorio, B.; Sharp, T; Flynn, G; Wirick, S; Hervig, R

    2009-01-01

    Carbonaceous microbe-like features preserved within a local chert unit of the 3.5 Ga old Apex Basalt in Western Australia may represent some of the oldest evidence of life on Earth. However, the biogenicity of these putative microfossils has been called into question, primarily because the sample collection locality is a black, carbon-rich, brecciated chert dike representing an Archean submarine hydrothermal spring, suggesting a formation via an abiotic organic synthesis mechanism. Here we describe the macromolecular hydrocarbon structure, carbon bonding, functional group chemistry, and biotic element abundance of carbonaceous matter associated with these filamentous features. These characteristics are similar to those of biogenic kerogen from the ca. 1.9 Ga old Gunflint Formation. Although an abiotic origin cannot be entirely ruled out, it is unlikely that known abiotic synthesis mechanisms could recreate both the structural and compositional complexity of this ancient carbonaceous matter. Thus, we find that a biogenic origin for this material is more likely, implying that the Apex microbe-like features represent authentic biogenic organic matter.

  14. Structural determinants of tobacco vein mottling virus protease substrate specificity

    SciTech Connect

    Sun, Ping; Austin, Brian P.; Tozer, Jozsef; Waugh, David

    2010-10-28

    Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-{angstrom} resolution. As observed in several crystal structures of TEV protease, the C-terminus ({approx}20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by {approx}10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1{prime} position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k{sub cat} and K{sub m} for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.

  15. Mitochondrial Proteases as Emerging Pharmacological Targets.

    PubMed

    Gibellini, Lara; De Biasi, Sara; Nasi, Milena; Iannone, Anna; Cossarizza, Andrea; Pinti, Marcello

    2016-01-01

    The preservation of mitochondrial function and integrity is critical for cell viability. Under stress conditions, unfolded, misfolded or damaged proteins accumulate in a certain compartment of the organelle, interfering with oxidative phosphorylation and normal mitochondrial functions. In stress conditions, several mechanisms, including mitochondrial unfolded protease response (UPRmt), fusion and fission, and mitophagy are engaged to restore normal proteostasis of the organelle. Mitochondrial proteases are a family of more than 20 enzymes that not only are involved in the UPRmt, but actively participate at multiple levels in the stress-response system. Alterations in their expression levels, or mutations that determine loss or gain of function of these proteases deeply impair mitochondrial functionality and can be associated with the onset of inherited diseases, with the development of neurodegenerative disorders and with the process of carcinogenesis. In this review, we focus our attention on six of them, namely CLPP, HTRA2 and LONP1, by analysing the current knowledge about their functions, their involvement in the pathogenesis of human diseases, and the compounds currently available for inhibiting their functions. PMID:26831646

  16. Corruption of Innate Immunity by Bacterial Proteases

    PubMed Central

    Potempa, Jan; Pike, Robert N.

    2009-01-01

    The innate immune system of the human body has developed numerous mechanisms to control endogenous and exogenous bacteria and thus prevent infections by these microorganisms. These mechanisms range from physical barriers such as the skin or mucosal epithelium to a sophisticated array of molecules and cells that function to suppress or prevent bacterial infection. Many bacteria express a variety of proteases, ranging from non-specific and powerful enzymes that degrade many proteins involved in innate immunity to proteases that are extremely precise and specific in their mode of action. Here we have assembled a comprehensive picture of how bacterial proteases affect the host’s innate immune system to gain advantage and cause infection. This picture is far from being complete since the numbers of mechanisms utilized are as astonishing as they are diverse, ranging from degradation of molecules vital to innate immune mechanisms to subversion of the mechanisms to allow the bacterium to hide from the system or take advantage of it. It is vital that such mechanisms are elucidated to allow strategies to be developed to aid the innate immune system in controlling bacterial infections. PMID:19756242

  17. Cleavage of the dengue virus polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B-NS3, whereas NS4A/NS4B may be processed by a cellular protease.

    PubMed Central

    Cahour, A; Falgout, B; Lai, C J

    1992-01-01

    The cleavage mechanism utilized for processing of the NS3-NS4A-NS4B-NS5 domain of the dengue virus polyprotein was studied by using the vaccinia virus expression system. Recombinant vaccinia viruses vNS2B-NS3-NS4A-NS4B-NS5, vNS3-NS4A-NS4B-NS5, vNS4A-NS4B-NS5, and vNS4B-NS5 were constructed. These recombinants were used to infect cells, and the labeled lysates were analyzed by immunoprecipitation. Recombinant vNS2B-NS3-NS4A-NS4B-NS5 expressed the authentic NS3 and NS5 proteins, but the other recombinants produced uncleaved polyproteins. These findings indicate that NS2B is required for processing of the downstream nonstructural proteins, including the NS3/NS4A and NS4B/NS5 junctions, both of which contain a dibasic amino acid sequence preceding the cleavage site. The flavivirus NS4A/NS4B cleavage site follows a long hydrophobic sequence. The polyprotein NS4A-NS4B-NS5 was cleaved at the NS4A/NS4B junction in the absence of other dengue virus functions. One interpretation for this finding is that NS4A/NS4B cleavage is mediated by a host protease, presumably a signal peptidase. Although vNS3-NS4A-NS4B-NS5 expressed only the polyprotein, earlier results demonstrated that cleavage at the NS4A/NS4B junction occurred when an analogous recombinant, vNS3-NS4A-84%NS4B, was expressed. Thus, it appears that uncleaved NS3 plus NS5 inhibit NS4A/NS4B cleavage presumably because the putative signal sequence is not accessible for recognition by the responsible protease. Finally, recombinants that expressed an uncleaved NS4B-NS5 polyprotein, such as vNS4A-NS4B-NS5 or vNS4B-NS5, produced NS5 when complemented with vNS2B-30%NS3 or with vNS2B plus v30%NS3. These results indicate that cleavage at the NS4B/NS5 junction can be mediated by NS2B and NS3 in trans. Images PMID:1531368

  18. A modular chitin-binding protease associated with hemocytes and hemolymph in the mosquito Anopheles gambiae.

    PubMed

    Danielli, A; Loukeris, T G; Lagueux, M; Müller, H M; Richman, A; Kafatos, F C

    2000-06-20

    Sp22D, a modular serine protease encompassing chitin binding, low density lipoprotein receptor, and scavenger receptor cysteine-rich domains, was identified by molecular cloning in the malaria vector, Anopheles gambiae. It is expressed in multiple body parts and during much of development, most intensely in hemocytes. The protein appears to be posttranslationally modified. Its integral, putatively glycosylated form is secreted in the hemolymph, whereas a smaller form potentially generated by proteolytic processing is associated with the tissues. Bacterial challenge or wounding result in low-level RNA induction, but the protein does not bind to bacteria, nor is its processing affected by infection. However, Sp22D binds to chitin with high affinity and undergoes transient changes in processing during pupal to adult metamorphosis; it may respond to exposure to naked chitin during tissue remodeling or damage. PMID:10860981

  19. Bacillus subtillis RTSBA6 6.00, a new strain isolated from gut of Helicoverpa armigera (Lepidoptera: Noctuidae) produces chymotrypsin-like proteases

    PubMed Central

    Shinde, Ashok A.; Shaikh, Faiyaz K.; Padul, Manohar V.; Kachole, Manvendra S.

    2012-01-01

    Exploring bacterial communities with proteolytic activity from the gut of the Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) insect pests was the purpose of this study. As initial efforts to achieve this goal here we report the isolation of new Bacillus subtillis RTSBA6 6.00 strain from the gut of H. armigera and demonstrated as proteases producer. Zymographic analysis revealed 12 proteolytic bands with apparent molecular weights ranging from 20 to 185 kDa. Although some activity was detected at acidic pH, the major activity was observed at slight alkaline pH (7.8). The optimum temperature was found to be 35 °C with complete loss of activity at 70 °C. All proteases were completely inactivated by PMSF (phenylmethylsulfonyl fluoride) and TPCK (N-tosyl-l-phenylalanine chloromethyl ketone), suggesting that proteases secreted by B. subtillis RTSBA6 6.00 belong to serine proteases class with chymotrypsin-like activity. The occurrence of protease producing bacterial community in the gut of the H. armigera advocates its probable assistance to insect in proteinaceous food digestion and adaptation to protease inhibitors of host plants. PMID:23961192

  20. Secretory leukocyte protease inhibitor and elafin/trappin-2: versatile mucosal antimicrobials and regulators of immunity.

    PubMed

    Sallenave, Jean-Michel

    2010-06-01

    Elafin and secretory leukocyte protease inhibitor (SLPI) are pleiotropic molecules chiefly synthesized at the mucosal surface that have a fundamental role in the surveillance against microbial infections. Their initial discovery as anti-proteases present in the inflammatory milieu in chronic pathologies such as those of the lung suggested that they may play a role in keeping in check extracellular proteases released during the excessive activation of innate immune cells such as neutrophils. This soon proved to be a simplistic explanation, as other functions were also soon ascribed to these molecules (antimicrobial, modulation of innate and adaptive immunity, regulation of tissue repair). Data emanating from patients with chronic pathologies (in the lung and elsewhere) have shown that SLPI and elafin are often inactivated in inflammatory secretions, either through the action of host or microbial products, justifying attempts at antiprotease supplementation in clinical protocols. Although these have been sparse, proof of principle has been demonstrated, and future challenges will undoubtedly rest with improvements in methods of delivery in the context of tissue inflammation and in careful selection of patients more likely to benefit from SLPI/elafin augmentation. PMID:20395631

  1. Is dihydrolipoic acid among the reductive activators of parasite CysHis proteases?

    PubMed

    Lockwood, Thomas D

    2008-04-01

    Activities of mature CysHis proteases depend upon relative rates of oxidations vs. reductions of catalytic sulfur by multiple enzymatic and non-enzymatic reactions. CysHis peptidolysis is inhibited by Fe3+ but not Fe2+. Others report the paradox that malarial parasites require exogenous free lipoic acid (LA) from human host, although the apicoplast organelle produces it. Extra-cellular LA disulfide can be taken up and reduced to dihydrolipoic acid (DHLA) by reductases of any cell type. Here, the opposing effects of DHLA vs. Fe3+ on the falcipain-2 hemoglobinase were investigated employing Z-Phe-Arg-AMC substrate. Despite limited solubility, non-regenerated DHLA (10 microM, threshold 2 microM) was found to be the most potent activator of the air-inactivated (sulfoxygenated) protease discovered thus far. Activation was preemptively opposed by Fe3+, but not Fe2+. However, cruzain from T. cruzi, and cathepsin B from mammal were indistinguishable in their responsiveness to DHLA and Fe redox. Thus, DHLA activation vs. Fe3+ inhibition is not unique to falcipain-2 or apicomplexans but is rather a primordial feature of CysHis peptidolysis. Free LA and/or unassociated lipoylated enzyme subunits could be among multiple pathways shuttling reducing equivalents to reduction of proteins, including CysHis proteases. It is discussed that opposing DHLA-Fe3+ modification of plasmodial proteolysis might be a specialized adaptation to intra-erythrocytic growth. PMID:18068706

  2. Sequence-specific alterations of epitope production by HIV Protease Inhibitors

    PubMed Central

    Kourjian, Georgio; Xu, Yang; Mondesire-Crump, Ijah; Shimada, Mariko; Gourdain, Pauline; Le Gall, Sylvie

    2014-01-01

    Antigen processing by intracellular proteases and peptidases and epitope presentation are critical for recognition of pathogen-infected cells by CD8+ T lymphocytes. First generation HIV protease inhibitors (PIs) alter proteasome activity, but the effect of first or second generation PIs on other cellular peptidases, the underlying mechanism and impact on antigen processing and epitope presentation to CTL are still unknown. Here we demonstrate that several HIV PIs altered not only proteasome but also aminopeptidase activities in PBMC. Using an in vitro degradation assay involving PBMC cytosolic extracts we showed that PIs altered the degradation patterns of oligopeptides and peptide production in a sequence-specific manner, enhancing the cleavage of certain residues and reducing others’. PIs affected the sensitivity of peptides to intracellular degradation, altered the kinetics and amount of HIV epitopes produced intracellularly. Accordingly the endogenous degradation of incoming virions in the presence of PIs led to variations in CTL-mediated killing of HIV-infected cells. By altering host protease activities and the degradation patterns of proteins in a sequence-specific manner, HIV PIs may diversify peptides available for MHC-I presentation to CTL, alter the patters of CTL responses, and may provide a complementary approach to current therapies for the CTL-mediated clearance of abnormal cells in infection, cancer or other immune disease. PMID:24616479

  3. Interactions of the algicidal bacterium Kordia algicida with diatoms: regulated protease excretion for specific algal lysis.

    PubMed

    Paul, Carsten; Pohnert, Georg

    2011-01-01

    Interactions of planktonic bacteria with primary producers such as diatoms have great impact on plankton population dynamics. Several studies described the detrimental effect of certain bacteria on diatoms but the biochemical nature and the regulation mechanism involved in the production of the active compounds remained often elusive. Here, we investigated the interactions of the algicidal bacterium Kordia algicida with the marine diatoms Skeletonema costatum, Thalassiosira weissflogii, Phaeodactylum tricornutum, and Chaetoceros didymus. Algicidal activity was only observed towards the first three of the tested diatom species while C. didymus proved to be not susceptible. The cell free filtrate and the >30 kDa fraction of stationary K. algicida cultures is fully active, suggesting a secreted algicidal principle. The active supernatant from bacterial cultures exhibited high protease activity and inhibition experiments proved that these enzymes are involved in the observed algicidal action of the bacteria. Protease mediated interactions are not controlled by the presence of the alga but dependent on the cell density of the K. algicida culture. We show that protease release is triggered by cell free bacterial filtrates suggesting a quorum sensing dependent excretion mechanism of the algicidal protein. The K. algicida / algae interactions in the plankton are thus host specific and under the control of previously unidentified factors. PMID:21695044

  4. Leishmania donovani secretory serine protease alters macrophage inflammatory response via COX-2 mediated PGE-2 production.

    PubMed

    Das, Partha; De, Tripti; Chakraborti, Tapati

    2014-12-01

    Leishmania parasites determine the outcome of the infection by inducing inflammatory response that suppresses macrophage's activation. Defense against Leishmania is dependent on Th1 inflammatory response by turning off macrophages' microbicidal property by upregulation of COX-2, as well as immunosuppressive PGE-2 production. To understand the role of L. donovani secretory serine protease (pSP) in these phenomena, pSP was inhibited by its antibody and serine protease inhibitor, aprotinin. Western blot and TAME assay demonstrated that pSP antibody and aprotinin significantly inhibited protease activity in the live Leishmania cells and reduced infection index of L. donovani-infected macrophages. Additionally, ELISA and RT-PCR analysis showed that treatment with pSP antibody or aprotinin hold back COX-2-mediated immunosuppressive PGE-2 secretion with enhancement of Th1 cytokine like IL-12 expression. This was also supported in Griess test and NBT assay, where inhibition of pSP with its inhibitors elevated ROS and NO production. Overall, our study implies the pSP is involved in down-regulation of macrophage microbicidal activity by inducing host inflammatory responses in terms of COX-2-mediated PGE-2 release with diminished reactive oxygen species generation and thus suggests its importance as a novel drug target of visceral leishmaniasis. PMID:25823228

  5. High-level expression and characterization of two serine protease inhibitors from Trichinella spiralis.

    PubMed

    Zhang, Zhaoxia; Mao, Yixian; Li, Da; Zhang, Yvhan; Li, Wei; Jia, Honglin; Zheng, Jun; Li, Li; Lu, Yixin

    2016-03-30

    Serine protease inhibitors (SPIs) play important roles in tissue homeostasis, cell survival, development, and host defense. So far, SPIs have been identified from various organisms, such as animals, plants, bacteria, poxviruses, and parasites. In this study, two SPIs (Tsp03044 and TspAd5) were identified from the genome of Trichinella spiralis and expressed in Escherichia coli. Sequence analysis revealed that these two SPIs contained essential structural motifs, which were well conserved within the tumor-infiltrating lymphocytes (TIL) and serpin superfamily. Based on protease inhibition assays, the recombinant Tsp03044 showed inhibitory effects on trypsin, α-chymotrypsin, and pepsin, while the recombinant TspAd5 could effectively inhibit the activities of α-chymotrypsin and pepsin. Both these inhibitors showed activity between 28 and 48 °C. The expression levels of the two SPIs were also determined at different developmental stages of the parasite with real-time PCR. Our results indicate that Tsp03044 and TspAd5 are functional serine protease inhibitors. PMID:26921036

  6. Chloroplast Proteases: Updates on Proteolysis within and across Suborganellar Compartments1[OPEN

    PubMed Central

    Nishimura, Kenji

    2016-01-01

    Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides. Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key questions and future directions in this field are discussed. PMID:27288365

  7. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication

    SciTech Connect

    Ratia, Kiira; Pegan, Scott; Takayama, Jun; Sleeman, Katrina; Coughlin, Melissa; Baliji, Surendranath; Chaudhuri, Rima; Fu, Wentao; Prabhakar, Bellur S.; Johnson, Michael E.; Baker, Susan C.; Ghosh, Arun K.; Mesecar, Andrew D.

    2008-10-27

    We report the discovery and optimization of a potent inhibitor against the papain-like protease (PLpro) from the coronavirus that causes severe acute respiratory syndrome (SARS-CoV). This unique protease is not only responsible for processing the viral polyprotein into its functional units but is also capable of cleaving ubiquitin and ISG15 conjugates and plays a significant role in helping SARS-CoV evade the human immune system. We screened a structurally diverse library of 50,080 compounds for inhibitors of PLpro and discovered a noncovalent lead inhibitor with an IC{sub 50} value of 20 {mu}M, which was improved to 600 nM via synthetic optimization. The resulting compound, GRL0617, inhibited SARS-CoV viral replication in Vero E6 cells with an EC{sub 50} of 15 {mu}M and had no associated cytotoxicity. The X-ray structure of PLpro in complex with GRL0617 indicates that the compound has a unique mode of inhibition whereby it binds within the S4-S3 subsites of the enzyme and induces a loop closure that shuts down catalysis at the active site. These findings provide proof-of-principle that PLpro is a viable target for development of antivirals directed against SARS-CoV, and that potent noncovalent cysteine protease inhibitors can be developed with specificity directed toward pathogenic deubiquitinating enzymes without inhibiting host DUBs.

  8. A new autocatalytic activation mechanism for cysteine proteases revealed by Prevotella intermedia interpain A

    PubMed Central

    Mallorquí-Fernández, Noemí; Manandhar, Surya P.; Mallorquí-Fernández, Goretti; Usón, Isabel; Wawrzonek, Katarzyna; Kantyka, Tomasz; Solà, Maria; Thøgersen, Ida B.; Enghild, Jan J.; Potempa, Jan; Gomis-Rüth, F.Xavier

    2009-01-01

    Prevotella intermedia is a major periodontopathogen contributing to human gingivitis and periodontitis. Such pathogens release proteases as virulence factors that cause deterrence of host defences and tissue destruction. A new cysteine protease from the cysteine-histidine-dyad class, interpain A, was studied in its zymogenic and its self-processed mature form. The latter consists of a bivalved moiety made up by two subdomains. In the structure of a catalytic cysteine-to-alanine zymogen variant, the right subdomain interacts with an unusual prodomain, thus contributing to latency. Unlike the catalytic cysteine residue, already in its competent conformation in the zymogen, the catalytic histidine is swung out from its active conformation and trapped in a cage shaped by a backing helix, a zymogenic hairpin and a latency flap in the zymogen. Dramatic rearrangement of up to 20Å of these elements triggered by a tryptophan switch occurs during activation and accounts for a new activation mechanism for proteolytic enzymes. These findings can be extrapolated to related potentially pathogenic cysteine proteases such as Streprococcus pyogenes SpeB and Porphyromonas gingivalis periodontain. PMID:17993455

  9. Interactions of the Algicidal Bacterium Kordia algicida with Diatoms: Regulated Protease Excretion for Specific Algal Lysis

    PubMed Central

    Paul, Carsten; Pohnert, Georg

    2011-01-01

    Interactions of planktonic bacteria with primary producers such as diatoms have great impact on plankton population dynamics. Several studies described the detrimental effect of certain bacteria on diatoms but the biochemical nature and the regulation mechanism involved in the production of the active compounds remained often elusive. Here, we investigated the interactions of the algicidal bacterium Kordia algicida with the marine diatoms Skeletonema costatum, Thalassiosira weissflogii, Phaeodactylum tricornutum, and Chaetoceros didymus. Algicidal activity was only observed towards the first three of the tested diatom species while C. didymus proved to be not susceptible. The cell free filtrate and the >30 kDa fraction of stationary K. algicida cultures is fully active, suggesting a secreted algicidal principle. The active supernatant from bacterial cultures exhibited high protease activity and inhibition experiments proved that these enzymes are involved in the observed algicidal action of the bacteria. Protease mediated interactions are not controlled by the presence of the alga but dependent on the cell density of the K. algicida culture. We show that protease release is triggered by cell free bacterial filtrates suggesting a quorum sensing dependent excretion mechanism of the algicidal protein. The K. algicida / algae interactions in the plankton are thus host specific and under the control of previously unidentified factors. PMID:21695044

  10. Comparative genomics study for identification of putative drug targets in Salmonella typhi Ty2.

    PubMed

    Batool, Nisha; Waqar, Maleeha; Batool, Sidra

    2016-01-15

    Typhoid presents a major health concern in developing countries with an estimated annual infection rate of 21 million. The disease is caused by Salmonella typhi, a pathogenic bacterium acquiring multiple drug resistance. We aim to identify proteins that could prove to be putative drug targets in the genome of S. typhi str. Ty2. We employed comparative and subtractive genomics to identify targets that are absent in humans and are essential to S. typhi Ty2. We concluded that 46 proteins essential to pathogen are absent in the host genome. Filtration on the basis of drug target prioritization singled out 20 potentially therapeutic targets. Their absence in the host and specificity to S. typhi Ty2 makes them ideal targets for treating typhoid in Homo sapiens. 3D structures of two of the final target enzymes, MurA and MurB have been predicted via homology modeling which are then used for a docking study. PMID:26555890

  11. Fibrinogen cleavage by the Streptococcus pyogenes extracellular cysteine protease and generation of antibodies that inhibit enzyme proteolytic activity.

    PubMed

    Matsuka, Y V; Pillai, S; Gubba, S; Musser, J M; Olmsted, S B

    1999-09-01

    The extracellular cysteine protease from Streptococcus pyogenes is a virulence factor that plays a significant role in host-pathogen interaction. Streptococcal protease is expressed as an inactive 40-kDa precursor that is autocatalytically converted into a 28-kDa mature (active) enzyme. Replacement of the single cysteine residue involved in formation of the enzyme active site with serine (C192S mutation) abolished detectable proteolytic activity and eliminated autocatalytic processing of zymogen to the mature form. In the present study, we investigated activity of the wild-type (wt) streptococcal protease toward human fibrinogen and bovine casein. The former is involved in blood coagulation, wound healing, and other aspects of hemostasis. Treatment with streptococcal protease resulted in degradation of the COOH-terminal region of fibrinogen alpha chain, indicating that fibrinogen may serve as an important substrate for this enzyme during the course of human infection. Polyclonal antibodies generated against recombinant 40- and 28-kDa (r40- and r28-kDa) forms of the C192S streptococcal protease mutant exhibited high enzyme-linked immunosorbent assay titers but demonstrated different inhibition activities toward proteolytic action of the wt enzyme. Activity of the wt protease was readily inhibited when the reaction was carried out in the presence of antibodies generated against r28-kDa C192S mutant. Antibodies produced against r40-kDa C192S mutant had no significant effect on proteolysis. These data suggest that the presence of the NH(2)-terminal prosegment prevents generation of functionally active antibodies and indicate that inhibition activity of antibodies most likely depends on their ability to bind the active-site region epitope(s) of the protein. PMID:10456870

  12. Fibrinogen Cleavage by the Streptococcus pyogenes Extracellular Cysteine Protease and Generation of Antibodies That Inhibit Enzyme Proteolytic Activity

    PubMed Central

    Matsuka, Yury V.; Pillai, Subramonia; Gubba, Siddeswar; Musser, James M.; Olmsted, Stephen B.

    1999-01-01

    The extracellular cysteine protease from Streptococcus pyogenes is a virulence factor that plays a significant role in host-pathogen interaction. Streptococcal protease is expressed as an inactive 40-kDa precursor that is autocatalytically converted into a 28-kDa mature (active) enzyme. Replacement of the single cysteine residue involved in formation of the enzyme active site with serine (C192S mutation) abolished detectable proteolytic activity and eliminated autocatalytic processing of zymogen to the mature form. In the present study, we investigated activity of the wild-type (wt) streptococcal protease toward human fibrinogen and bovine casein. The former is involved in blood coagulation, wound healing, and other aspects of hemostasis. Treatment with streptococcal protease resulted in degradation of the COOH-terminal region of fibrinogen α chain, indicating that fibrinogen may serve as an important substrate for this enzyme during the course of human infection. Polyclonal antibodies generated against recombinant 40- and 28-kDa (r40- and r28-kDa) forms of the C192S streptococcal protease mutant exhibited high enzyme-linked immunosorbent assay titers but demonstrated different inhibition activities toward proteolytic action of the wt enzyme. Activity of the wt protease was readily inhibited when the reaction was carried out in the presence of antibodies generated against r28-kDa C192S mutant. Antibodies produced against r40-kDa C192S mutant had no significant effect on proteolysis. These data suggest that the presence of the NH2-terminal prosegment prevents generation of functionally active antibodies and indicate that inhibition activity of antibodies most likely depends on their ability to bind the active-site region epitope(s) of the protein. PMID:10456870

  13. Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors

    PubMed Central

    Smith, Robert A.; Gottlieb, Geoffrey S.

    2015-01-01

    ABSTRACT Protease is essential for retroviral replication, and protease inhibitors (PI) are important for treating HIV infection. HIV-2 exhibits intrinsic resistance to most FDA-approved HIV-1 PI, retaining clinically useful susceptibility only to lopinavir, darunavir, and saquinavir. The mechanisms for this resistance are unclear; although HIV-1 and HIV-2 proteases share just 38 to 49% sequence identity, all critical structural features of proteases are conserved. Structural studies have implicated four amino acids in the ligand-binding pocket (positions 32, 47, 76, and 82). We constructed HIV-2ROD9 molecular clones encoding the corresponding wild-type HIV-1 amino acids (I32V, V47I, M76L, and I82V) either individually or together (clone PRΔ4) and compared the phenotypic sensitivities (50% effective concentration [EC50]) of mutant and wild-type viruses to nine FDA-approved PI. Single amino acid replacements I32V, V47I, and M76L increased the susceptibility of HIV-2 to multiple PI, but no single change conferred class-wide sensitivity. In contrast, clone PRΔ4 showed PI susceptibility equivalent to or greater than that of HIV-1 for all PI. We also compared crystallographic structures of wild-type HIV-1 and HIV-2 proteases complexed with amprenavir and darunavir to models of the PRΔ4 enzyme. These models suggest that the amprenavir sensitivity of PRΔ4 is attributable to stabilizing enzyme-inhibitor interactions in the P2 and P2′ pockets of the protease dimer. Together, our results show that the combination of four amino acid changes in HIV-2 protease confer a pattern of PI susceptibility comparable to that of HIV-1, providing a structural rationale for intrinsic HIV-2 PI resistance and resolving long-standing questions regarding the determinants of differential PI susceptibility in HIV-1 and HIV-2. IMPORTANCE Proteases are essential for retroviral replication, and HIV-1 and HIV-2 proteases share a great deal of structural similarity. However, only three of nine

  14. A novel locust (Schistocerca gregaria) serine protease inhibitor with a high affinity for neutrophil elastase

    PubMed Central

    Brillard-Bourdet, Michèle; Hamdaoui, Ahmed; Hajjar, Eric; Boudier, Christian; Reuter, Nathalie; Ehret-Sabatier, Laurence; Bieth, Joseph G.; Gauthier, Francis

    2006-01-01

    We have purified to homogeneity two forms of a new serine protease inhibitor specific for elastase/chymotrypsin from the ovary gland of the desert locust Schistocerca gregaria. This protein, greglin, has 83 amino acid residues and bears putative phosphorylation sites. Amino acid sequence alignments revealed no homology with pacifastin insect inhibitors and only a distant relationship with Kazal-type inhibitors. This was confirmed by computer-based structural studies. The most closely related homologue is a putative gene product from Ciona intestinalis with which it shares 38% sequence homology. Greglin is a fast-acting and tight binding inhibitor of human neutrophil elastase (kass=1.2×107 M−1·s−1, Ki=3.6 nM) and subtilisin. It also binds neutrophil cathepsin G, pancreatic elastase and chymotrypsin with a lower affinity (26 nM≤Ki≤153 nM), but does not inhibit neutrophil protease 3 or pancreatic trypsin. The capacity of greglin to inhibit neutrophil elastase was not significantly affected by exposure to acetonitrile, high temperature (90 °C), low or high pH (2.5–11.0), N-chlorosuccinimide-mediated oxidation or the proteolytic enzymes trypsin, papain and pseudolysin from Pseudomonas aeruginosa. Greglin efficiently inhibits the neutrophil elastase activity of sputum supernatants from cystic fibrosis patients. Its biological function in the locust ovary gland is currently unknown, but its physicochemical properties suggest that it can be used as a template to design a new generation of highly resistant elastase inhibitors for treating inflammatory diseases. PMID:16839309

  15. Putative Lineage of Novel African Usutu Virus, Central Europe

    PubMed Central

    Cadar, Daniel; Bosch, Stefan; Jöst, Hanna; Börstler, Jessica; Garigliany, Mutien-Marie; Becker, Norbert

    2015-01-01

    We characterized the complete genome of a putative novel Usutu virus (USUV) strain (Usutu-BONN) detected in a dead blackbird from Germany. Genomic analysis revealed several unique amino acid substitutions among the polyprotein gene. Phylogenetic analyses demonstrated that Usutu-BONN constitutes a putative novel African USUV lineage, which was probably recently introduced to central Europe. PMID:26291923

  16. HtrA chaperone activity contributes to host cell binding in Campylobacter jejuni

    PubMed Central

    2011-01-01

    Background Acute gastroenteritis caused by the food-borne pathogen Campylobacter jejuni is associated with attachment of bacteria to the intestinal epithelium and subsequent invasion of epithelial cells. In C. jejuni, the periplasmic protein HtrA is required for efficient binding to epithelial cells. HtrA has both protease and chaperone activity, and is important for virulence of several bacterial pathogens. Results The aim of this study was to determine the role of the dual activities of HtrA in host cell interaction of C. jejuni by comparing an htrA mutant lacking protease activity, but retaining chaperone activity, with a ΔhtrA mutant and the wild type strain. Binding of C. jejuni to both epithelial cells and macrophages was facilitated mainly by HtrA chaperone activity that may be involved in folding of outer membrane adhesins. In contrast, HtrA protease activity played only a minor role in interaction with host cells. Conclusion We show that HtrA protease and chaperone activities contribute differently to C. jejuni's interaction with mammalian host cells, with the chaperone activity playing the major role in host cell binding. PMID:21939552

  17. Identification of Putative Fallopian Tube Stem Cells

    PubMed Central

    Snegovskikh, Victoria; Mutlu, Levent; Massasa, Effi

    2014-01-01

    Stem cells are used to repair and regenerate multiple tissues in the adult. We have previously shown that stem cells play a significant role in mediating endometrial repair and tissue regeneration. We hypothesized that the oviduct may possess a similar population of stem cells that contribute to the maintenance of this tissue. Here we identify label-retaining cells (LRCs) in the murine oviduct which indicate the presence of a stem/progenitor cell population in this tissue as well. Two-day-old CD-1 mice were injected intraperitoneally with 5-bromo-2-deoxyuridine (BrdU) or vehicle control. Female animals (n = 36 for each group) were killed at 6 weeks post injection. Reproductive tracts were removed, specimens were embedded in paraffin, and 5-µ sections were prepared. Oviduct was identified by hematoxylin and eosin staining and morphology. Immunofluorescence studies were performed on serial sections tissues (n = 12 per animal) using antibodies against BrdU. Confocal microscopy was used to identify 4′,6-diamidino-2-phenylindole (DAPI)- and BrdU-stained nuclei. In the group of mice exposed to BrdU, we identified a population of LRCs in all specimens and not in controls. The putative stem cells are located at the base of each villi, suggesting the location of the stem cell niche. The number of DAPI-stained nuclei divided by the number of LRCs; LRCs constituted 0.5% of all nucleated cells. The oviduct contains a population of progenitor cells, likely used in the repair and regeneration of fallopian tube. Defective or insufficient stem cell reserve may underlie common tubal diseases, including hydrosalpinx and ectopic pregnancy. PMID:25305130

  18. Interaction specificity between the chaperone and proteolytic components of the cyanobacterial Clp protease.

    PubMed

    Tryggvesson, Anders; Ståhlberg, Frida M; Mogk, Axel; Zeth, Kornelius; Clarke, Adrian K

    2012-09-01

    The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. In plant chloroplasts and cyanobacteria, the essential constitutive Clp protease consists of the Hsp100/ClpC chaperone partnering a proteolytic core of catalytic ClpP and noncatalytic ClpR subunits. In the present study, we have examined putative determinants conferring the highly specific association between ClpC and the ClpP3/R core from the model cyanobacterium Synechococcus elongatus. Two conserved sequences in the N-terminus of ClpR (tyrosine and proline motifs) and one in the N-terminus of ClpP3 (MPIG motif) were identified as being crucial for the ClpC-ClpP3/R association. These N-terminal domains also influence the stability of the ClpP3/R core complex itself. A unique C-terminal sequence was also found in plant and cyanobacterial ClpC orthologues just downstream of the P-loop region previously shown in Escherichia coli to be important for Hsp100 association to ClpP. This R motif in Synechococcus ClpC confers specificity for the ClpP3/R core and prevents association with E. coli ClpP; its removal from ClpC reverses this core specificity. PMID:22657732

  19. Differential regulation of secretory leukocyte protease inhibitor and elafin by progesterone.

    PubMed

    King, Anne E; Morgan, Kevin; Sallenave, Jean-Michel; Kelly, Rodney W

    2003-10-17

    Elafin and secretory leukocyte protease inhibitor (SLPI) are anti-protease and anti-microbial molecules present at mucosal surfaces. Both molecules are expressed in the female reproductive tract where they may be involved in innate immune defence. This study examines the role of progesterone in the regulation of SLPI and elafin. Progesterone treatment increases expression of SLPI mRNA and protein in the T47D breast epithelial cell line and this upregulation is attenuated in the presence of the anti-gestogens, RU486 and ZK98734, confirming the involvement of the nuclear progesterone receptor. A putative progesterone response element has been identified in the SLPI promoter. Progesterone also acts in synergy with the proinflammatory cytokines, IL-1beta and TNFalpha, to increase SLPI. In contrast, progesterone treatment has no direct effect on elafin mRNA expression. In summary, progesterone has a differential effect on SLPI and elafin expression and although both vary within the uterus throughout the menstrual cycle, progesterone is likely to contribute to the direct regulation of SLPI in the female reproductive tract even in the presence of inflammatory agents. PMID:14521952

  20. Protease inhibitor 15, a candidate gene for abdominal aortic internal elastic lamina ruptures in the rat

    PubMed Central

    Falak, Samreen; Schafer, Sebastian; Baud, Amelie; Hummel, Oliver; Schulz, Herbert; Gauguier, Dominique; Osborne-Pellegrin, Mary

    2014-01-01

    The inbred Brown Norway (BN) rat develops spontaneous ruptures of the internal elastic lamina (RIEL) of the abdominal aorta (AA) and iliac arteries. Prior studies with crosses of the BN/Orl RJ (susceptible) and LOU/M (resistant) showed the presence of a significant QTL on chromosome 5 and the production of congenic rats proved the involvement of this locus. In this study, we further dissected the above-mentioned QTL by creating a new panel of LOU.BN(chr5) congenic and subcongenic lines and reduced the locus to 5.2 Mb. Then we studied 1,002 heterogeneous stock (HS) rats, whose phenotyping revealed a low prevalence and high variability for RIEL. High-resolution mapping in the HS panel detected the major locus on chromosome 5 (log P > 35) and refined it to 1.4 Mb. Subsequently, RNA-seq analysis on AA of BN, congenics, and LOU revealed expression differences for only protease inhibitor 15 (Pi15) gene and a putative long intergenic noncoding RNA (lincRNA) within the linkage region. The high abundance of lincRNA with respect to reduced Pi15 expression, in conjunction with exertion of longitudinal strain, may be related to RIEL, indicating the potential importance of proteases in biological processes related to defective aortic internal elastic lamina structure. Similar mechanisms may be involved in aneurysm initiation in the human AA. PMID:24790086

  1. Co-lethality studied as an asset against viral drug escape: the HIV protease case

    PubMed Central

    2010-01-01

    Background Co-lethality, or synthetic lethality is the documented genetic situation where two, separately non-lethal mutations, become lethal when combined in one genome. Each mutation is called a "synthetic lethal" (SL) or a co-lethal. Like invariant positions, SL sets (SL linked couples) are choice targets for drug design against fast-escaping RNA viruses: mutational viral escape by loss of affinity to the drug may induce (synthetic) lethality. Results From an amino acid sequence alignment of the HIV protease, we detected the potential SL couples, potential SL sets, and invariant positions. From the 3D structure of the same protein we focused on the ones that were close to each other and accessible on the protein surface, to possibly bind putative drugs. We aligned 24,155 HIV protease amino acid sequences and identified 290 potential SL couples and 25 invariant positions. After applying the distance and accessibility filter, three candidate drug design targets of respectively 7 (under the flap), 4 (in the cantilever) and 5 (in the fulcrum) amino acid positions were found. Conclusions These three replication-critical targets, located outside of the active site, are key to our anti-escape strategy. Indeed, biological evidence shows that 2/3 of those target positions perform essential biological functions. Their mutational variations to escape antiviral medication could be lethal, thus limiting the apparition of drug-resistant strains. Reviewers This article was reviewed by Arcady Mushegian, Shamil Sunyaev and Claus Wilke. PMID:20565756

  2. A Cysteine Protease Inhibitor Rescues Mice from a Lethal Cryptosporidium parvum Infection

    PubMed Central

    Nath-Chowdhury, Milli; Sajid, Mohammed; Marcus, Victoria; Mashiyama, Susan T.; Sakanari, Judy; Chow, Eric; Mackey, Zachary; Land, Kirkwood M.; Jacobson, Matthew P.; Kalyanaraman, Chakrapani; McKerrow, James H.; Arrowood, Michael J.; Caffrey, Conor R.

    2013-01-01

    Cryptosporidiosis, caused by the protozoan parasite Cryptosporidium parvum, can stunt infant growth and can be lethal in immunocompromised individuals. The most widely used drugs for treating cryptosporidiosis are nitazoxanide and paromomycin, although both exhibit limited efficacy. To investigate an alternative approach to therapy, we demonstrate that the clan CA cysteine protease inhibitor N-methyl piperazine-Phe-homoPhe-vinylsulfone phenyl (K11777) inhibits C. parvum growth in mammalian cell lines in a concentration-dependent manner. Further, using the C57BL/6 gamma interferon receptor knockout (IFN-γR-KO) mouse model, which is highly susceptible to C. parvum, oral or intraperitoneal treatment with K11777 for 10 days rescued mice from otherwise lethal infections. Histologic examination of untreated mice showed intestinal inflammation, villous blunting, and abundant intracellular parasite stages. In contrast, K11777-treated mice (210 mg/kg of body weight/day) showed only minimal inflammation and no epithelial changes. Three putative protease targets (termed cryptopains 1 to 3, or CpaCATL-1, -2, and -3) were identified in the C. parvum genome, but only two are transcribed in infected mammals. A homology model predicted that K11777 would bind to cryptopain 1. Recombinant enzymatically active cryptopain 1 was successfully targeted by K11777 in a competition assay with a labeled active-site-directed probe. K11777 exhibited no toxicity in vitro and in vivo, and surviving animals remained free of parasites 3 weeks after treatment. The discovery that a cysteine protease inhibitor provides potent anticryptosporidial activity in an animal model of infection encourages the investigation and development of this biocide class as a new, and urgently needed, chemotherapy for cryptosporidiosis. PMID:24060869

  3. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds.

    PubMed

    Báez-Santos, Yahira M; St John, Sarah E; Mesecar, Andrew D

    2015-03-01

    Over 10 years have passed since the deadly human coronavirus that causes severe acute respiratory syndrome (SARS-CoV) emerged from the Guangdong Province of China. Despite the fact that the SARS-CoV pandemic infected over 8500 individuals, claimed over 800 lives and cost billions of dollars in economic loss worldwide, there still are no clinically approved antiviral drugs, vaccines or monoclonal antibody therapies to treat SARS-CoV infections. The recent emergence of the deadly human coronavirus that causes Middle East respiratory syndrome (MERS-CoV) is a sobering reminder that new and deadly coronaviruses can emerge at any time with the potential to become pandemics. Therefore, the continued development of therapeutic and prophylactic countermeasures to potentially deadly coronaviruses is warranted. The coronaviral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro), are attractive antiviral drug targets because they are essential for coronaviral replication. Although the primary function of PLpro and 3CLpro are to process the viral polyprotein in a coordinated manner, PLpro has the additional function of stripping ubiquitin and ISG15 from host-cell proteins to aid coronaviruses in their evasion of the host innate immune responses. Therefore, targeting PLpro with antiviral drugs may have an advantage in not only inhibiting viral replication but also inhibiting the dysregulation of signaling cascades in infected cells that may lead to cell death in surrounding, uninfected cells. This review provides an up-to-date discussion on the SARS-CoV papain-like protease including a brief overview of the SARS-CoV genome and replication followed by a more in-depth discussion on the structure and catalytic mechanism of SARS-CoV PLpro, the multiple cellular functions of SARS-CoV PLpro, the inhibition of SARS-CoV PLpro by small molecule inhibitors, and the prospect of inhibiting papain-like protease from other coronaviruses. This paper forms part of a series of

  4. Protein protease inhibitors in insects and comparison with mammalian inhibitors.

    PubMed

    Eguchi, M

    1993-01-01

    1. Studies on insect protein protease inhibitors are summarized. Biochemical, genetic and physiological investigations of the silkworm are performed. 2. In addition, the properties and characteristics of fungal protease inhibitors from the silkworm (Bombyx mori) are described and their importance as defensive functions is emphasized. 3. This review also concerns comparative and evolutionary studies of protease inhibitors from various sources. 4. The biological significance of inhibitors is discussed in view of the extensive experimental results. PMID:8365101

  5. Economic Methods of Ginger Protease'sextraction and Purification

    NASA Astrophysics Data System (ADS)

    Qiao, Yuanyuan; Tong, Junfeng; Wei, Siqing; Du, Xinyong; Tang, Xiaozhen

    This article reports the ginger protease extraction and purification methods from fresh ginger rhizome. As to ginger protease extraction, we adapt the steps of organic solvent dissolving, ammonium sulfate depositing and freeze-drying, and this method can attain crude enzyme powder 0.6% weight of fresh ginger rhizome. The purification part in this study includes two steps: cellulose ion exchange (DEAE-52) and SP-Sephadex 50 chromatography, which can purify crude ginger protease through ion and molecular weight differences respectively.

  6. Modulation of the Bacillus anthracis secretome by the immune inhibitor A1 protease.

    PubMed

    Pflughoeft, Kathryn J; Swick, Michelle C; Engler, David A; Yeo, Hye-Jeong; Koehler, Theresa M

    2014-01-01

    The Bacillus anthracis secretome includes protective antigen, lethal factor, and edema factor, which are the components of anthrax toxin, and other proteins with known or potential roles in anthrax disease. Immune inhibitor A1 (InhA1) is a secreted metalloprotease that is unique to pathogenic members of the Bacillus genus and has been associated with cleavage of host proteins during infection. Here, we report the effect of InhA1 on the B. anthracis secretome. Differential in-gel electrophoresis of proteins present in culture supernatants from a parent strain and an isogenic inhA1-null mutant revealed multiple differences. Of the 1,340 protein spots observed, approximately one-third were less abundant and one-third were more abundant in the inhA1 secretome than in the parent strain secretome. Proteases were strongly represented among those proteins exhibiting a 9-fold or greater change. InhA1 purified from a B. anthracis culture supernatant directly cleaved each of the anthrax toxin proteins as well as an additional secreted protease, Npr599. The conserved zinc binding motif HEXXH of InhA1 (HEYGH) was critical for its proteolytic activity. Our data reveal that InhA1 directly and indirectly modulates the form and/or abundance of over half of all the secreted proteins of B. anthracis. The proteolytic activity of InhA1 on established secreted virulence factors, additional proteases, and other secreted proteins suggests that this major protease plays an important role in virulence not only by cleaving mammalian substrates but also by modulating the B. anthracis secretome itself. PMID:24214942

  7. Synergistic Defensive Function of Raphides and Protease through the Needle Effect

    PubMed Central

    Konno, Kotaro; Inoue, Takashi A.; Nakamura, Masatoshi

    2014-01-01

    Raphides, needle-shaped calcium oxalate crystals in tissues of many plants, have been thought to play defensive roles against herbivores without detailed bioassays for their defensive roles and modes of function using purified raphides. In order to examine the defensive roles and modes of function of raphides in a clear experimental system, we performed bioassays giving the larvae of the Eri silkmoth, Samia ricini (Saturniidae), leaves of their host plant, the castor oil plant, Ricinus communis (Euphorbiaceae), painted with the raphides purified from kiwifruits, Actinidia deliciosa (Actinidiaceae), in presence or absence of cysteine protease, which often coincide with raphides in plant tissues. Raphides alone or cysteine protease alone showed only weak defensive activities around experimental concentrations. However, when raphides and cysteine protease coexisted, they synergistically showed very strong growth-reducing activities, and the mortality of caterpillars was very high. In contrast, amorphous calcium oxalate did not show synergism with cysteine protease on defensive activities, indicating that the needle-shape of raphides is essential for the synergism. The present study provides the first clear experimental evidence for the synergism between raphides and other defensive factors. Further, the study suggests that “the needle effect”, which intensify the bioactivities of other bioactive factors by making holes to the barriers (cell membrane, cuticle, epithelium, the nuclear membrane, etc.) and facilitate the bioactive factors to go through them and reach the targets, is important in the defensive activities of raphides, and possibly in the allergy caused by raphides, and in the carcinogenic activities of other needle-shaped components including asbestos and plant derived silica needles. PMID:24621613

  8. Characterizing structural features of cuticle-degrading proteases from fungi by molecular modeling

    PubMed Central

    Liu, Shu-Qun; Meng, Zhao-Hui; Yang, Jin-Kui; Fu, Yun-Xin; Zhang, Ke-Qin

    2007-01-01

    Background Serine proteases secreted by nematode and insect pathogenic fungi are bio-control agents which have commercial potential for developing into effective bio-pesticides. A thorough understanding of the structural and functional features of these proteases would significantly assist with targeting the design of efficient bio-control agents. Results Structural models of serine proteases PR1 from entomophagous fungus, Ver112 and VCP1 from nematophagous fungi, have been modeled using the homology modeling technique based on the crystal coordinate of the proteinase K. In combination with multiple sequence alignment, these models suggest one similar calcium-binding site and two common disulfide bridges in the three cuticle-degrading enzymes. In addition, the predicted models of the three cuticle-degrading enzymes present an essentially identical backbone topology and similar geometric properties with the exception of a limited number of sites exhibiting relatively large local conformational differences only in some surface loops and the N-, C termini. However, they differ from each other in the electrostatic surface potential, in hydrophobicity and size of the S4 substrate-binding pocket, and in the number and distribution of hydrogen bonds and salt bridges within regions that are part of or in close proximity to the S2-loop. Conclusion These differences likely lead to variations in substrate specificity and catalytic efficiency among the three enzymes. Amino acid polymorphisms in cuticle-degrading enzymes were discussed with respect to functional effects and host preference. It is hoped that these structural models would provide a further basis for exploitation of these serine proteases from pathogenic fungi as effective bio-control agents. PMID:17511867

  9. Role of Protease-Inhibitors in Ocular Diseases.

    PubMed

    Pescosolido, Nicola; Barbato, Andrea; Pascarella, Antonia; Giannotti, Rossella; Genzano, Martina; Nebbioso, Marcella

    2014-01-01

    It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI), metalloproteinase inhibitor (TIMP), maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI), and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models. PMID:25493637

  10. Fibrin(ogen)olytic activity of bumblebee venom serine protease

    SciTech Connect

    Qiu Yuling; Choo, Young Moo; Yoon, Hyung Joo; Jia Jingming; Cui Zheng; Wang Dong; Kim, Doh Hoon; Sohn, Hung Dae; Jin, Byung Rae

    2011-09-01

    Bee venom is a rich source of pharmacologically active components; it has been used as an immunotherapy to treat bee venom hypersensitivity, and venom therapy has been applied as an alternative medicine. Here, we present evidence that the serine protease found in bumblebee venom exhibits fibrin(ogen)olytic activity. Compared to honeybee venom, bumblebee venom contains a higher content of serine protease, which is one of its major components. Venom serine proteases from bumblebees did not cross-react with antibodies against the honeybee venom serine protease. We provide functional evidence indicating that bumblebee (Bombus terrestris) venom serine protease (Bt-VSP) acts as a fibrin(ogen)olytic enzyme. Bt-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. However, Bt-VSP is not a plasminogen activator, and its fibrinolytic activity is less than that of plasmin. Taken together, our results define roles for Bt-VSP as a prothrombin activator, a thrombin-like protease, and a plasmin-like protease. These findings offer significant insight into the allergic reaction sequence that is initiated by bee venom serine protease and its potential usefulness as a clinical agent in the field of hemostasis and thrombosis. - Graphical abstract: Display Omitted Highlights: > Bumblebee venom serine protease (Bt-VSP) is a fibrin(ogen)olytic enzyme. > Bt-VSP activates prothrombin. > Bt-VSP directly degrades fibrinogen into fibrin degradation products. > Bt-VSP is a hemostatically active protein that is a potent clinical agent.

  11. Detergent alkaline proteases: enzymatic properties, genes, and crystal structures.

    PubMed

    Saeki, Katsuhisa; Ozaki, Katsuya; Kobayashi, Tohru; Ito, Susumu

    2007-06-01

    Subtilisin-like serine proteases from bacilli have been used in various industrial fields worldwide, particularly in the production of laundry and automatic dishwashing detergents. They belong to family A of the subtilase superfamily, which is composed of three clans, namely, true subtilisins, high-alkaline proteases, and intracellular proteases. We succeeded in the large-scale production of a high-alkaline protease (M-protease) from alkaliphilic Bacillus clausii KSM-K16, and the enzyme has been introduced into compact heavy-duty laundry detergents. We have also succeeded in the industrial-scale production of a new alkaline protease, KP-43, which was originally resistant to chemical oxidants and to surfactants, produced by alkaliphilic Bacillus sp. strain KSM-KP43 and have incorporated it into laundry detergents. KP-43 and related proteases form a new clan, oxidatively stable proteases, in subtilase family A. In this review, we describe the enzymatic properties, gene sequences, and crystal structures of M-protease, KP-43, and related enzymes. PMID:17630120

  12. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria

    PubMed Central

    Hershey, David M.; Ren, Xuefeng; Melnyk, Ryan A.; Browne, Patrick J.; Ozyamak, Ertan; Jones, Stephanie R.; Chang, Michelle C. Y.; Hurley, James H.; Komeili, Arash

    2016-01-01

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions. By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. Our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization. PMID:26981620

  13. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria

    DOE PAGESBeta

    Hershey, David M.; Ren, Xuefeng; Melnyk, Ryan A.; Browne, Patrick J.; Ozyamak, Ertan; Jones, Stephanie R.; Chang, Michelle C. Y.; Hurley, James H.; Komeili, Arash

    2016-03-16

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies have implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions.more » By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. In conclusion, our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization.« less

  14. Expression and function of a putative cell surface receptor for fibronectin in hamster and human cell lines

    SciTech Connect

    Brown, P.J.; Juliano, R.L.

    1986-10-01

    The authors have previously reported the use of monoclonal antibodies to identify a 140-kD cell surface glycoprotein in mammalian cells that is specifically involved in fibronectin-mediated cell adhesion. They now report the purification of this molecule using immunoaffinity chromatography and the subsequent generation of polyclonal antibodies that selectively immunoprecipitate 140-kD putative fibronectin receptor glycoprotein (gp140) extracted from rodent or human cells; these antibodies also specifically block fibronectin-mediated cell adhesion but not adhesion mediated by other factors in serum. Expression of gp140-like molecules was detected on the surfaces of several adherent human cell lines (HDF, WISH, and EFC) but not on erythrocytes; however, gp140 was also detected on a nonadherent human lymphoid line (DAUDI). Analysis of gp140 on nonreducing SDS gels revealed two closely migrating bands. Protease digestion and peptide mapping suggests that the two bnads are closely related polypeptides.

  15. Heparin Modulates the Endopeptidase Activity of Leishmania mexicana Cysteine Protease Cathepsin L-Like rCPB2.8

    PubMed Central

    Judice, Wagner A. S.; Manfredi, Marcella A.; Souza, Gerson P.; Sansevero, Thiago M.; Almeida, Paulo C.; Shida, Cláudio S.; Gesteira, Tarsis F.; Juliano, Luiz; Westrop, Gareth D.; Sanderson, Sanya J.; Coombs, Graham H.; Tersariol, Ivarne L. S.

    2013-01-01

    Background Cysteine protease B is considered crucial for the survival and infectivity of the Leishmania in its human host. Several microorganism pathogens bind to the heparin-like glycosaminoglycans chains of proteoglycans at host-cell surface to promote their attachment and internalization. Here, we have investigated the influence of heparin upon Leishmania mexicana cysteine protease rCPB2.8 activity. Methodology/Principal Findings The data analysis revealed that the presence of heparin affects all steps of the enzyme reaction: (i) it decreases 3.5-fold the k1 and 4.0-fold the k−1, (ii) it affects the acyl-enzyme accumulation with pronounced decrease in k2 (2.7-fold), and also decrease in k3 (3.5-fold). The large values of ΔG  =  12 kJ/mol for the association and dissociation steps indicate substantial structural strains linked to the formation/dissociation of the ES complex in the presence of heparin, which underscore a conformational change that prevents the diffusion of substrate in the rCPB2.8 active site. Binding to heparin also significantly decreases the α-helix content of the rCPB2.8 and perturbs the intrinsic fluorescence emission of the enzyme. The data strongly suggest that heparin is altering the ionization of catalytic (Cys25)-S−/(His163)-Im+ H ion pair of the rCPB2.8. Moreover, the interaction of heparin with the N-terminal pro-region of rCPB2.8 significantly decreased its inhibitory activity against the mature enzyme. Conclusions/Significance Taken together, depending on their concentration, heparin-like glycosaminoglycans can either stimulate or antagonize the activity of cysteine protease B enzymes during parasite infection, suggesting that this glycoconjugate can anchor parasite cysteine protease at host cell surface. PMID:24278253

  16. Identification of active-site residues in protease 3C of hepatitis A virus by site-directed mutagenesis.

    PubMed Central

    Gosert, R; Dollenmaier, G; Weitz, M

    1997-01-01

    Picornavirus 3C proteases (3Cpro) are cysteine proteases related by amino acid sequence to trypsin-like serine proteases. Comparisons of 3Cpro of hepatitis A virus (HAV) to those of other picornaviruses have resulted in prediction of active-site residues: histidine at position 44 (H44), aspartic acid (D98), and cysteine (C172). To test whether these residues are key members of a putative catalytic triad, oligonucleotide-directed mutagenesis was targeted to 3Cpro in the context of natural polypeptide precursor P3. Autocatalytic processing of the polyprotein containing wild-type or variant 3Cpro was tested by in vivo expression of vaccinia virus-HAV chimeras in an animal cell-T7 hybrid system and by in vitro translation of corresponding RNAs. Comparison with proteins present in HAV-infected cells showed that both expression systems mimicked authentic polyprotein processing. Individual substitutions of H44 by tyrosine and of C172 by glycine or serine resulted in complete loss of the virus-specific proteolytic cascade. In contrast, a P3 polyprotein in which D98 was substituted by asparagine underwent only slightly delayed processing, while an additional substitution of valine (V47) by glycine within putative protein 3A caused a more pronounced loss of processing. Therefore, apparently H44 and C172 are active-site constituents whereas D98 is not. The results, furthermore, suggest that substitution of amino acid residues distant from polyprotein cleavage sites may reduce proteolytic activity, presumably by altering substrate conformation. PMID:9060667

  17. A Neisseria gonorrhoeae Immunoglobulin A1 Protease Mutant Is Infectious in the Human Challenge Model of Urethral Infection

    PubMed Central

    Johannsen, Diana B.; Johnston, David M.; Koymen, Hakan O.; Cohen, Myron S.; Cannon, Janne G.

    1999-01-01

    Many mucosal pathogens, including Neisseria gonorrhoeae, produce proteases that cleave immunoglobulin A (IgA), the predominant immunoglobulin class produced at mucosal surfaces. While considerable circumstantial evidence suggests that IgA1 protease contributes to gonococcal virulence, there is no direct evidence that N. gonorrhoeae requires IgA1 protease activity to infect a human host. We constructed a N. gonorrhoeae iga mutant without introducing new antibiotic resistance markers into the final mutant strain and used human experimental infection to test the ability of the mutant to colonize the male urethra and to cause gonococcal urethritis. Four of the five male volunteers inoculated with the Iga− mutant became infected. In every respect—clinical signs and symptoms, incubation period between inoculation and infection, and the proportion of volunteers infected—the outcome of human experimental infection with FA1090iga was indistinguishable from that previously reported for a variant of parent strain FA1090 matching the mutant in expression of Opa proteins, lipooligosaccharide, and pilin. These results indicate that N. gonorrhoeae does not require IgA1 protease production to cause experimental urethritis in males. PMID:10338512

  18. Cloning and heterologous expression of SS10, a subtilisin-like protease displaying antifungal activity from Trichoderma harzianum.

    PubMed

    Yan, Liu; Qian, Yang

    2009-01-01

    Trichoderma harzianum parasitizes a large variety of phytopathogenic fungi. Trichoderma harzianum mycoparasitic activity depends on the secretion of complex mixtures of hydrolytic enzymes able to degrade the host cell wall. A gene (SS10) encoding a subtilisin-like protease was cloned from T. harzianum T88, a biocontrol agent effective against soil-borne fungal pathogens. The full-length cDNA was isolated by 5' and 3' rapid amplification of the cDNA ends. The coding region of the gene is 1302 bp long, encoding 433 amino acids of a predicted protein with a molecular mass of 45 kDa and a pI of 6.1. Analysis of the deduced amino acid sequence revealed that this protein had homology to the serine proteases of the subtilisin-like superfamily (subtilases) (EC 3.4.21.) and had a predicted active site made up of the catalytic residues Asp 187, His 218 and Ser 376. Northern experiments demonstrated that SS10 was induced in response to different fungal cell walls. Subtilisin-like protease gene SS10 was expressed in Saccharomyces cerevisiae under control of the GAL1 promoter. The enzyme activity culminates (17.8 U mL(-1)) 60 h after induction with galactose. The optimal enzyme reaction temperature was 50 degrees C and the optimal pH was 8. The subtilisin-like protease exerted broad-spectrum antifungal activity against Alternaria alternata, Fusarium oxysporum, Rhizoctonia solani, Sclerotinia sclerotiorum and Cytospora chrysosperma. PMID:19025577

  19. Mutation in promoter region of a serine protease inhibitor confers Perkinsus marinus resistance in the eastern oyster (Crassostrea virginica).

    PubMed

    He, Yan; Yu, Haiyang; Bao, Zhenmin; Zhang, Quanqi; Guo, Ximing

    2012-08-01

    Protease inhibitors from the host may inhibit proteases from invading pathogens and confer resistance. We have previously shown that a single-nucleotide polymorphism (SNP198C) in a serine protease inhibitor gene (cvSI-1) is associated with Perkinsus marinus resistance in the eastern oyster. As SNP198 is synonymous, we studied whether its linkage to polymorphism at the promoter region could explain the resistance. A 631 bp fragment of the promoter region was cloned by genome-walking and resequenced, revealing 22 SNPs and 3 insertion/deletions (indels). A 25 bp indel at position -404 was genotyped along with SNP198 for association analysis using before- and after-mortality samples. After mortalities that were primarily caused by P. marinus, the frequency of deletion allele at -404indel increased by 15.6% (p = 0.0437), while that of SNP198C increased by only 3.4% (p = 0.5756). The resistance alleles at the two loci were coupled in 79.6% of the oysters. Oysters with the deletion allele at -404indel showed significant (p = 0.0189) up-regulation of cvSI-1 expression under P. marinus challenge. Our results suggest that mutation at the promoter region causes increased transcription of cvSI-1, which in turn confers P. marinus resistance in the eastern oyster likely through inhibiting pathogenic proteases from the parasite. PMID:22683517

  20. Analysis of cathepsin and furin proteolytic enzymes involved in viral fusion protein activation in cells of the bat reservoir host.

    PubMed

    El Najjar, Farah; Lampe, Levi; Baker, Michelle L; Wang, Lin-Fa; Dutch, Rebecca Ellis

    2015-01-01

    Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing. PMID:25706132

  1. Analysis of Cathepsin and Furin Proteolytic Enzymes Involved in Viral Fusion Protein Activation in Cells of the Bat Reservoir Host

    PubMed Central

    El Najjar, Farah; Lampe, Levi; Baker, Michelle L.; Wang, Lin-Fa; Dutch, Rebecca Ellis

    2015-01-01

    Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing. PMID:25706132

  2. Origin and Diversification of Meprin Proteases.

    PubMed

    Marín, Ignacio

    2015-01-01

    Meprins are astacin metalloproteases with a characteristic, easily recognizable structure, given that they are the only proteases with both MAM and MATH domains plus a transmembrane region. So far assumed to be vertebrate-specific, it is shown here, using a combination of evolutionary and genomic analyses, that meprins originated before the urochordates/vertebrates split. In particular, three genes encoding structurally typical meprin proteins are arranged in tandem in the genome of the urochordate Ciona intestinalis. Phylogenetic analyses showed that the protease and MATH domains present in the meprin-like proteins encoded by the Ciona genes are very similar in sequence to the domains found in vertebrate meprins, which supports them having a common origin. While many vertebrates have the two canonical meprin-encoding genes orthologous to human MEP1A and MEP1B (which respectively encode for the proteins known as meprin α and meprin β), a single gene has been found so far in the genome of the chondrichthyan fish Callorhinchus milii, and additional meprin-encoding genes are present in some species. Particularly, a group of bony fish species have genes encoding highly divergent meprins, here named meprin-F. Genes encoding meprin-F proteins, derived from MEP1B genes, are abundant in some species, as the Amazon molly, Poecilia formosa, which has 7 of them. Finally, it is confirmed that the MATH domains of meprins are very similar to the ones in TRAF ubiquitin ligases, which suggests that meprins originated when protease and TRAF E3-encoding sequences were combined. PMID:26288188

  3. Reversible Unfolding of Rhomboid Intramembrane Proteases.

    PubMed

    Panigrahi, Rashmi; Arutyunova, Elena; Panwar, Pankaj; Gimpl, Katharina; Keller, Sandro; Lemieux, M Joanne

    2016-03-29

    Denaturant-induced unfolding of helical membrane proteins provides insights into their mechanism of folding and domain organization, which take place in the chemically heterogeneous, anisotropic environment of a lipid membrane. Rhomboid proteases are intramembrane proteases that play key roles in various diseases. Crystal structures have revealed a compact helical bundle with a buried active site, which requires conformational changes for the cleavage of transmembrane substrates. A dimeric form of the rhomboid protease has been shown to be important for activity. In this study, we examine the mechanism of refolding for two distinct rhomboids to gain insight into their secondary structure-activity relationships. Although helicity is largely abolished in the unfolded states of both proteins, unfolding is completely reversible for HiGlpG but only partially reversible for PsAarA. Refolding of both proteins results in reassociation of the dimer, with a 90% regain of catalytic activity for HiGlpG but only a 70% regain for PsAarA. For both proteins, a broad, gradual transition from the native, folded state to the denatured, partly unfolded state was revealed with the aid of circular dichroism spectroscopy as a function of denaturant concentration, thus arguing against a classical two-state model as found for many globular soluble proteins. Thermal denaturation has irreversible destabilizing effects on both proteins, yet reveals important functional details regarding substrate accessibility to the buried active site. This concerted biophysical and functional analysis demonstrates that HiGlpG, with a simple six-transmembrane-segment organization, is more robust than PsAarA, which has seven predicted transmembrane segments, thus rendering HiGlpG amenable to in vitro studies of membrane-protein folding. PMID:27028647

  4. Origin and Diversification of Meprin Proteases

    PubMed Central

    Marín, Ignacio

    2015-01-01

    Meprins are astacin metalloproteases with a characteristic, easily recognizable structure, given that they are the only proteases with both MAM and MATH domains plus a transmembrane region. So far assumed to be vertebrate-specific, it is shown here, using a combination of evolutionary and genomic analyses, that meprins originated before the urochordates/vertebrates split. In particular, three genes encoding structurally typical meprin proteins are arranged in tandem in the genome of the urochordate Ciona intestinalis. Phylogenetic analyses showed that the protease and MATH domains present in the meprin-like proteins encoded by the Ciona genes are very similar in sequence to the domains found in vertebrate meprins, which supports them having a common origin. While many vertebrates have the two canonical meprin-encoding genes orthologous to human MEP1A and MEP1B (which respectively encode for the proteins known as meprin α and meprin β), a single gene has been found so far in the genome of the chondrichthyan fish Callorhinchus milii, and additional meprin-encoding genes are present in some species. Particularly, a group of bony fish species have genes encoding highly divergent meprins, here named meprin-F. Genes encoding meprin-F proteins, derived from MEP1B genes, are abundant in some species, as the Amazon molly, Poecilia formosa, which has 7 of them. Finally, it is confirmed that the MATH domains of meprins are very similar to the ones in TRAF ubiquitin ligases, which suggests that meprins originated when protease and TRAF E3-encoding sequences were combined. PMID:26288188

  5. Chemoproteomic profiling of host and pathogen enzymes active in cholera.

    PubMed

    Hatzios, Stavroula K; Abel, Sören; Martell, Julianne; Hubbard, Troy; Sasabe, Jumpei; Munera, Diana; Clark, Lars; Bachovchin, Daniel A; Qadri, Firdausi; Ryan, Edward T; Davis, Brigid M; Weerapana, Eranthie; Waldor, Matthew K

    2016-04-01

    Activity-based protein profiling (ABPP) is a chemoproteomic tool for detecting active enzymes in complex biological systems. We used ABPP to identify secreted bacterial and host serine hydrolases that are active in animals infected with the cholera pathogen Vibrio cholerae. Four V. cholerae proteases were consistently active in infected rabbits, and one, VC0157 (renamed IvaP), was also active in human choleric stool. Inactivation of IvaP influenced the activity of other secreted V. cholerae and rabbit enzymes in vivo, and genetic disruption of all four proteases increased the abundance of intelectin, an intestinal lectin, and its binding to V. cholerae in infected rabbits. Intelectin also bound to other enteric bacterial pathogens, suggesting that it may constitute a previously unrecognized mechanism of bacterial surveillance in the intestine that is inhibited by pathogen-secreted proteases. Our work demonstrates the power of activity-based proteomics to reveal host-pathogen enzymatic dialog in an animal model of infection. PMID:26900865

  6. Protease expression by microorganisms and its relevance to crucial physiological/pathological events

    PubMed Central

    dos Santos, André Luis Souza

    2011-01-01

    The treatment of infections caused by fungi and trypanosomatids is difficult due to the eukaryotic nature of these microbial cells, which are similar in several biochemical and genetic aspects to host cells. Aggravating this scenario, very few antifungal and anti-trypanosomatidal agents are in clinical use and, therefore, therapy is limited by drug safety considerations and their narrow spectrum of activity, efficacy and resistance. The search for new bioactive agents against fungi and trypanosomatids has been expanded because progress in biochemistry and molecular biology has led to a better understanding of important and essential pathways in these microorganisms including nutrition, growth, proliferation, signaling, differentiation and death. In this context, proteolytic enzymes produced by these eukaryotic microorganisms are appointed and, in some cases, proven to be excellent targets for searching novel natural and/or synthetic pharmacological compounds, in order to cure or prevent invasive fungal/trypanosomatid diseases. With this task in mind, our research group and others have focused on aspartic-type proteases, since the activity of this class of hydrolytic enzymes is directly implicated in several facets of basic biological processes of both fungal and trypanosomatid cells as well as due to the participation in numerous events of interaction between these microorganisms and host structures. In the present paper, a concise revision of the beneficial effects of aspartic protease inhibitors, with emphasis on the aspartic protease inhibitors used in the anti-human immunodeficiency virus therapy, will be presented and discussed using our experience with the following microbial models: the yeast Candida albicans, the filamentous fungus Fonsecaea pedrosoi and the protozoan trypanosomatid Leishmania amazonensis. PMID:21537490

  7. Temporal expression of a membrane-associated protein putatively involved in repression of initiation of DNA replication in Bacillus subtilis.

    PubMed Central

    Eident-Wilkinson, B; Mele, L; Laffan, J; Firshein, W

    1992-01-01

    A Bacillus subtilis membrane-associated protein that binds specifically to the origin region of DNA replication may act as an inhibitor of DNA replication (J. Laffan and W. Firshein, Proc. Natl. Acad. Sci. USA 85:7452-7456, 1988). This protein, originally estimated to be 64 kDa, had a slightly lower molecular size (57 kDa), as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis during these studies. The size difference may be due to processing that results in modification of the protein. The protein can be extracted from both cytosol and membrane fractions, and the amounts in these fractions vary during the developmental cycle of B. subtilis. A complex pattern of expression in which significant levels were detected in spores was revealed; levels decreased dramatically during germination and increased after the first round of DNA replication. The decrease during germination was due to protease activity, as demonstrated by the addition of protease inhibitors and radioactive-labeling chase experiments. During vegetative growth, the protein levels increased until stationary phase, after which there was another decrease during sporulation. The decrease during sporulation may be partially due to sequestering of the protein into forespores, since as the putative repressor protein decreased in the mother cell, it increased in the forespores. However, protease activity was also involved in the decrease in the mother cell. The changes in expression of this protein are consistent with its role as a repressor of initiation of DNA replication. Additional studies, including sequence analysis and further antibody analysis, show that this protein is not a subunit of the pyruvate dehydrogenase complex. This relationship had been a possibility based upon the results of others (H. Hemila, A. Pavla, L. Paulin, S. Arvidson, and I. Palva, J. Bacteriol. 172:5052-5063, 1990). Images PMID:1729239

  8. Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri

    PubMed Central

    Ramírez-Rico, Gerardo; Serrano-Luna, Jesús; Shibayama, Mineko

    2015-01-01

    Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium) from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C) employing conditioned medium (CM) and total crude extracts (TCEs) of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system. PMID:26090408

  9. Iron-Binding Protein Degradation by Cysteine Proteases of Naegleria fowleri.

    PubMed

    Martínez-Castillo, Moisés; Ramírez-Rico, Gerardo; Serrano-Luna, Jesús; Shibayama, Mineko

    2015-01-01

    Naegleria fowleri causes acute and fulminant primary amoebic meningoencephalitis. This microorganism invades its host by penetrating the olfactory mucosa and then traveling up the mesaxonal spaces and crossing the cribriform plate; finally, the trophozoites invade the olfactory bulbs. During its invasion, the protozoan obtains nutrients such as proteins, lipids, carbohydrates, and cationic ions (e.g., iron, calcium, and sodium) from the host. However, the mechanism by which these ions are obtained, particularly iron, is poorly understood. In the present study, we evaluated the ability of N. fowleri to degrade iron-binding proteins, including hololactoferrin, transferrin, ferritin, and hemoglobin. Zymography assays were performed for each substrate under physiological conditions (pH 7 at 37°C) employing conditioned medium (CM) and total crude extracts (TCEs) of N. fowleri. Different degradation patterns with CM were observed for hololactoferrin, transferrin, and hemoglobin; however, CM did not cause ferritin degradation. In contrast, the TCEs degraded only hololactoferrin and transferrin. Inhibition assays revealed that cysteine proteases were involved in this process. Based on these results, we suggest that CM and TCEs of N. fowleri degrade iron-binding proteins by employing cysteine proteases, which enables the parasite to obtain iron to survive while invading the central nervous system. PMID:26090408

  10. Staphylococcus aureus protects its immune-evasion proteins against degradation by neutrophil serine proteases.

    PubMed

    Stapels, D A C; Kuipers, A; von Köckritz-Blickwede, M; Ruyken, M; Tromp, A T; Horsburgh, M J; de Haas, C J C; van Strijp, J A G; van Kessel, K P M; Rooijakkers, S H M

    2016-04-01

    Neutrophils store large quantities of neutrophil serine proteases (NSPs) that contribute, via multiple mechanisms, to antibacterial immune defences. Even though neutrophils are indispensable in fighting Staphylococcus aureus infections, the importance of NSPs in anti-staphylococcal defence is yet unknown. However, the fact that S. aureus produces three highly specific inhibitors for NSPs [the extracellular adherence proteins (EAPs) Eap, EapH1 and EapH2], suggests that these proteases are important for host defences against this bacterium. In this study we demonstrate that NSPs can inactivate secreted virulence factors of S. aureus and that EAP proteins function to prevent this degradation. Specifically, we find that a large group of S. aureus immune-evasion proteins is vulnerable to proteolytic inactivation by NSPs. In most cases, NSP cleavage leads to functional inactivation of virulence proteins. Interestingly, proteins with similar immune-escape functions appeared to have differential cleavage sensitivity towards NSPs. Using targeted mutagenesis and complementation analyses in S. aureus, we demonstrate that all EAP proteins can protect other virulence factors from NSP degradation in complex bacterial supernatants. These findings show that NSPs inactivate S. aureus virulence factors. Moreover, the protection by EAP proteins can explain why this antibacterial function of NSPs was masked in previous studies. Furthermore, our results indicate that therapeutic inactivation of EAP proteins can help to restore the natural host immune defences against S. aureus. PMID:26418545

  11. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity

    SciTech Connect

    Du, Lanying; Kao, Richard Y.; Zhou, Yusen; He, Yuxian; Zhao, Guangyu; Wong, Charlotte; Jiang, Shibo; Yuen, Kwok-Yung; Jin, Dong-Yan; Zheng, Bo-Jian . E-mail: bzheng@hkucc.hku.hk

    2007-07-20

    The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection.

  12. Identification and characterization of a cathepsin L-like cysteine protease from Rhipicephalus (Boophilus) annulatus.

    PubMed

    Saidi, Shahin; Nabian, Sedighe; Ebrahimzade, Elahe; Najafi, Ali; Moghaddam, Mehrdad Moosazadeh; Sazmand, Alireza; Torkzadeh-Mahani, Masoud; Tabrizi, Saeed Sattari

    2016-02-01

    The tick Rhipicephalus (Boophilus) annulatus is one of the most important ectoparasites of bovines and is responsible for the transmission of different pathogens such as Babesia and Anaplasma. Cysteine proteases are involved in several host-tick interactions including invasion of host tissues, immune evasion, pathogen transmission, embryogenesis and blood digestion. In this study, the gene encoding R. annulatus cathepsin L-like enzyme (RaCL1) was cloned into pTZ57R/T vector, sequenced and analyzed using bioinformatics approaches. The nucleotide length of RaCL1 was 999 bp. Bioinformatics analysis showed 332 amino acids with an approximate molecular weight of 36.3 kDa which contained a signal peptide sequence (18 amino acids), pro-region (97 amino acids) and mature enzyme (217 amino acids). Multiple sequence alignment of the RaCL1 revealed high similarity to cathepsin L-like cysteine proteases from other tick species such as Rhipicephalus (Boophilus) microplus and Amblyomma variegatum. Based on bioinformatics analyses, results of this work suggest that RaCL1 can be a suitable candidate for the development of vaccine against R. annulatus. PMID:26597589

  13. Fungal Effector Protein AVR2 Targets Diversifying Defense-Related Cys Proteases of Tomato[W

    PubMed Central

    Shabab, Mohammed; Shindo, Takayuki; Gu, Christian; Kaschani, Farnusch; Pansuriya, Twinkal; Chintha, Raju; Harzen, Anne; Colby, Tom; Kamoun, Sophien; van der Hoorn, Renier A.L.

    2008-01-01

    The interaction between the fungal pathogen Cladosporium fulvum and its host tomato (Solanum lycopersicum) is an ideal model to study suppression of extracellular host defenses by pathogens. Secretion of protease inhibitor AVR2 by C. fulvum during infection suggests that tomato papain-like cysteine proteases (PLCPs) are part of the tomato defense response. We show that the tomato apoplast contains a remarkable diversity of PLCP activities with seven PLCPs that fall into four different subfamilies. Of these PLCPs, transcription of only PIP1 and RCR3 is induced by treatment with benzothiadiazole, which triggers the salicylic acid–regulated defense pathway. Sequencing of PLCP alleles of tomato relatives revealed that only PIP1 and RCR3 are under strong diversifying selection, resulting in variant residues around the substrate binding groove. The doubled number of variant residues in RCR3 suggests that RCR3 is under additional adaptive selection, probably to prevent autoimmune responses. AVR2 selectively inhibits only PIP1 and RCR3, and one of the naturally occurring variant residues in RCR3 affects AVR2 inhibition. The higher accumulation of PIP1 protein levels compared with RCR3 indicates that PIP1 might be the real virulence target of AVR2 and that RCR3 acts as a decoy for AVR2 perception in plants carrying the Cf-2 resistance gene. PMID:18451324

  14. Antagonistic activity expressed by Shigella sonnei: identification of a putative new bacteriocin

    PubMed Central

    Sousa, Mireille Ângela Bernardes; Farias, Luiz de Macêdo; de Oliveira, Patrícia Luciana; Moreira, Jaqueline Silvana; Apolônio, Ana Carolina Morais; Oliveira, Jamil Silvano; Santoro, Marcelo Matos; Mendes, Edilberto Nogueira; Magalhães, Paula Prazeres

    2013-01-01

    Bacteriocins are antibacterial, proteinaceous substances that mediate microbial dynamics. Bacteriocin production is a highly disseminated property among all major lineages of bacteria, including Shigella. In this paper, we addressed the purification and characterisation of a bacteriocin produced by a Shigella sonnei strain (SS9) isolated from a child with acute diarrhoea. The substance was purified through ammonium-sulphate precipitation and sequential steps of chromatography. The intracellular fraction obtained at 75% ammonium sulphate maintained activity following exposure to pH values from 1-11 and storage at -80ºC for more than two years and was inactivated by high temperatures and proteases. The molecular mass of the purified bacteriocin was determined by mass spectrometry to be 18.56 kDa. The N-terminal sequence of the bacteriocin did not match any other antibacterial proteins described. A putative new bacteriocin produced by S. sonnei has been detected. This bacteriocin may represent a newly described protein or a previously described protein with a newly detected function. Considering that SS9 expresses antagonism against other diarrhoeagenic bacteria, the bacteriocin may contribute to S. sonnei virulence and is potentially applicable to either preventing or controlling diarrhoeal disease. PMID:24037194

  15. Emerging pestiviruses infecting domestic and wildlife hosts.

    PubMed

    Ridpath, Julia F

    2015-06-01

    Until the early 1990 s there were just three recognized species in the pestivirus genus, bovine viral diarrhea virus (BVDV), border disease virus (BDV) and classical swine fever virus (CSFV). Subsequently BVDV were divided into two different species, BVDV1 and BVDV2 and four additional putative pestivirus species have been identified, based on phylogenetic analysis. The four putative pestivirus specices, listed in chronological order of published reports, are Giraffe (isolated from one of several giraffes in the Nanyuki District of Kenya suffering from mucosal disease-like symptoms), HoBi (first isolated from fetal bovine serum originating in Brazil and later from samples originating in Southeast Asia), Pronghorn (isolated from an emaciated blind pronghorn antelope in the USA), and Bungowannah (isolated following an outbreak in pigs, resulting in still birth and neonatal death, in Australia). In addition to the emergence of putative new species of pestivirus, changes in host and virulence of recognized or 'classic' pestiviruses have led to reevaluation of disease control programs and management of domestic and wildlife populations. PMID:26050572

  16. A NOVEL APPROACH TO REGULATE NITROGEN MINERALIZATION USING PROTEASE INHIBITORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mineralization of organic N sources by extracellular proteases affects both the availability of inorganic N to plants and losses of N to the environment. We hypothesized that (i) application of purified protease inhibitors would slow down soil N mineralization, and (ii) elevated concentrations of pr...

  17. Effect of proteases on the. beta. -thromboglobulin radioimmunoassay

    SciTech Connect

    Donlon, J.A.; Helgeson, E.A.; Donlon, M.A.

    1985-02-11

    Rat peritoneal mast cells and mast cell granules were evaluated by radioimmunoassay for the presence of ..beta..-thromboglobulin and platelet factor 4. The initial assays indicated that a ..beta..-thromboglobulin cross reacting material was released from mast cells by compound 48/80 in a similar dose-dependent manner as histamine release. The material was also found to be associated with purified granules. However, the use of protease inhibitors in the buffers completely abolished the positive assays. Further evaluation of the effects of various proteases on the ..beta..-thromboglobulin assay indicated that elastase would also generate a false positive assay which could then be neutralized by the use of ..cap alpha../sub 1/-antitrypsin as a protease inhibitor. There was no protease effect on the platelet factor 4 radioimmunoassay which always showed no detectable amounts with mast cells, granules or proteases. These results clearly indicate the artifactual positive assays which can arise when using certain radioimmunoassay tests in the presence of cell proteases. The use of protease inhibitors is a necessary control when applying a radioimmunoassay to a system with potentially active proteases. 24 references, 2 figures, 4 tables.

  18. Broad-Spectrum Allosteric Inhibition of Herpesvirus Proteases

    PubMed Central

    2015-01-01

    Herpesviruses rely on a homodimeric protease for viral capsid maturation. A small molecule, DD2, previously shown to disrupt dimerization of Kaposi’s sarcoma-associated herpesvirus protease (KSHV Pr) by trapping an inactive monomeric conformation and two analogues generated through carboxylate bioisosteric replacement (compounds 2 and 3) were shown to inhibit the associated proteases of all three human herpesvirus (HHV) subfamilies (α, β, and γ). Inhibition data reveal that compound 2 has potency comparable to or better than that of DD2 against the tested proteases. Nuclear magnetic resonance spectroscopy and a new application of the kinetic analysis developed by Zhang and Poorman [Zhang, Z. Y., Poorman, R. A., et al. (1991) J. Biol. Chem. 266, 15591–15594] show DD2, compound 2, and compound 3 inhibit HHV proteases by dimer disruption. All three compounds bind the dimer interface of other HHV proteases in a manner analogous to binding of DD2 to KSHV protease. The determination and analysis of cocrystal structures of both analogues with the KSHV Pr monomer verify and elaborate on the mode of binding for this chemical scaffold, explaining a newly observed critical structure–activity relationship. These results reveal a prototypical chemical scaffold for broad-spectrum allosteric inhibition of human herpesvirus proteases and an approach for the identification of small molecules that allosterically regulate protein activity by targeting protein–protein interactions. PMID:24977643

  19. HCV NS3 protease enhances liver fibrosis via binding to and activating TGF-β type I receptor

    NASA Astrophysics Data System (ADS)

    Sakata, Kotaro; Hara, Mitsuko; Terada, Takaho; Watanabe, Noriyuki; Takaya, Daisuke; Yaguchi, So-Ichi; Matsumoto, Takehisa; Matsuura, Tomokazu; Shirouzu, Mikako; Yokoyama, Shigeyuki; Yamaguchi, Tokio; Miyazawa, Keiji; Aizaki, Hideki; Suzuki, Tetsuro; Wakita, Takaji; Imoto, Masaya; Kojima, Soichi

    2013-11-01

    Viruses sometimes mimic host proteins and hijack the host cell machinery. Hepatitis C virus (HCV) causes liver fibrosis, a process largely mediated by the overexpression of transforming growth factor (TGF)-β and collagen, although the precise underlying mechanism is unknown. Here, we report that HCV non-structural protein 3 (NS3) protease affects the antigenicity and bioactivity of TGF-β2 in (CAGA)9-Luc CCL64 cells and in human hepatic cell lines via binding to TGF-β type I receptor (TβRI). Tumor necrosis factor (TNF)-α facilitates this mechanism by increasing the colocalization of TβRI with NS3 protease on the surface of HCV-infected cells. An anti-NS3 antibody against computationally predicted binding sites for TβRI blocked the TGF-β mimetic activities of NS3 in vitro and attenuated liver fibrosis in HCV-infected chimeric mice. These data suggest that HCV NS3 protease mimics TGF-β2 and functions, at least in part, via directly binding to and activating TβRI, thereby enhancing liver fibrosis.

  20. Crystal versus solution structure of enzymes: NMR spectroscopy of a peptide boronic acid-serine protease complex in the crystalline state.

    PubMed

    Farr-Jones, S; Smith, S O; Kettner, C A; Griffin, R G; Bachovchin, W W

    1989-09-01

    The effectiveness of boronic acids as inhibitors of serine proteases has been widely ascribed to the ability of the boronyl group to form a tetrahedral adduct with the active-site serine that closely mimics the putative tetrahedral intermediate or transition state formed with substrates. However, recent 15N NMR studies of alpha-lytic protease (EC 3.4.21.12) in solution have shown that some boronic acids and peptide boronic acids form adducts with the active-site histidine instead of with the serine. Such histidine-boron adducts have not thus far been reported in x-ray diffraction studies of boronic acid-serine protease complexes. Here, we report an 15N NMR study of the MeOSuc-Ala-Ala-Pro-boroPhe complex of alpha-lytic protease in the crystalline state using magic-angle spinning. Previous 15N NMR studies have shown this complex involves the formation of a histidine-boron bond in solution. The 15N NMR spectra of the crystalline complex are essentially identical to those of the complex in solution, thereby showing that the structure of this complex is the same in solution and in the crystal and that both involve formation of a histidine-boron adduct. PMID:2780549

  1. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition

    PubMed Central

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried

    2015-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions. PMID:26502908

  2. The LasB Elastase of Pseudomonas aeruginosa Acts in Concert with Alkaline Protease AprA To Prevent Flagellin-Mediated Immune Recognition.

    PubMed

    Casilag, Fiordiligie; Lorenz, Anne; Krueger, Jonas; Klawonn, Frank; Weiss, Siegfried; Häussler, Susanne

    2016-01-01

    The opportunistic pathogen Pseudomonas aeruginosa is capable of establishing severe and persistent infections in various eukaryotic hosts. It encodes a wide array of virulence factors and employs several strategies to evade immune detection. In the present study, we screened the Harvard Medical School transposon mutant library of P. aeruginosa PA14 for bacterial factors that modulate interleukin-8 responses in A549 human airway epithelial cells. We found that in addition to the previously identified alkaline protease AprA, the elastase LasB is capable of degrading exogenous flagellin under calcium-replete conditions and prevents flagellin-mediated immune recognition. Our results indicate that the production of two proteases with anti-flagellin activity provides a failsafe mechanism for P. aeruginosa to ensure the maintenance of protease-dependent immune-modulating functions. PMID:26502908

  3. Cathepsin Protease Inhibition Reduces Endometriosis Lesion Establishment.

    PubMed

    Porter, Kristi M; Wieser, Friedrich A; Wilder, Catera L; Sidell, Neil; Platt, Manu O

    2016-05-01

    Endometriosis is a gynecologic disease characterized by the ectopic presence of endometrial tissue on organs within the peritoneal cavity, causing debilitating abdominal pain and infertility. Current treatments alleviate moderate pain symptoms associated with the disorder but exhibit limited ability to prevent new or recurring lesion establishment and growth. Retrograde menstruation has been implicated for introducing endometrial tissue into the peritoneal cavity, but molecular mechanisms underlying attachment and invasion are not fully understood. We hypothesize that cysteine cathepsins, a group of powerful extracellular matrix proteases, facilitate endometrial tissue invasion and endometriosis lesion establishment in the peritoneal wall and inhibiting this activity would decrease endometriosis lesion implantation. To test this, we used an immunocompetent endometriosis mouse model and found that endometriotic lesions exhibited a greater than 5-fold increase in active cathepsins compared to tissue from peritoneal wall or eutopic endometrium, with cathepsins L and K specifically implicated. Human endometriosis lesions also exhibited greater cathepsin activity than adjacent peritoneum tissue, supporting the mouse results. Finally, we tested the hypothesis that inhibiting cathepsin activity could block endometriosis lesion attachment and implantation in vivo. Intraperitoneal injection of the broad cysteine cathepsin inhibitor, E-64, significantly reduced the number of attached endometriosis lesions in our murine model compared to vehicle-treated controls demonstrating that cathepsin proteases contribute to endometriosis lesion establishment, and their inhibition may provide a novel, nonhormonal therapy for endometriosis. PMID:26482207

  4. Allosteric antibody inhibition of human hepsin protease.

    PubMed

    Koschubs, Tobias; Dengl, Stefan; Dürr, Harald; Kaluza, Klaus; Georges, Guy; Hartl, Christiane; Jennewein, Stefan; Lanzendörfer, Martin; Auer, Johannes; Stern, Alvin; Huang, Kuo-Sen; Packman, Kathryn; Gubler, Ueli; Kostrewa, Dirk; Ries, Stefan; Hansen, Silke; Kohnert, Ulrich; Cramer, Patrick; Mundigl, Olaf

    2012-03-15

    Hepsin is a type II transmembrane serine protease that is expressed in several human tissues. Overexpression of hepsin has been found to correlate with tumour progression and metastasis, which is so far best studied for prostate cancer, where more than 90% of such tumours show this characteristic. To enable improved future patient treatment, we have developed a monoclonal humanized antibody that selectively inhibits human hepsin and does not inhibit other related proteases. We found that our antibody, hH35, potently inhibits hepsin enzymatic activity at nanomolar concentrations. Kinetic characterization revealed non-linear, slow, tight-binding inhibition. This correlates with the crystal structure we obtained for the human hepsin-hH35 antibody Fab fragment complex, which showed that the antibody binds hepsin around α3-helix, located far from the active centre. The unique allosteric mode of inhibition of hH35 is distinct from the recently described HGFA (hepatocyte growth factor activator) allosteric antibody inhibition. We further explain how a small change in the antibody design induces dramatic structural rearrangements in the hepsin antigen upon binding, leading to complete enzyme inactivation. PMID:22132769

  5. Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna.

    PubMed

    Schwarzenberger, Anke; Sadler, Thomas; Von Elert, Eric

    2013-10-01

    Herbivore-plant interactions have been well studied in both terrestrial and aquatic ecosystems as they are crucial for the trophic transfer of energy and matter. In nutrient-rich freshwater ecosystems, the interaction between primary producers and herbivores is to a large extent represented by Daphnia and cyanobacteria. The occurrence of cyanobacterial blooms in lakes and ponds has, at least partly, been attributed to cyanotoxins, which negatively affect the major grazer of planktonic cyanobacteria, i.e. Daphnia. Among these cyanotoxins are the widespread protease inhibitors. These inhibitors have been shown (both in vitro and in situ) to inhibit the most important group of digestive proteases in the gut of Daphnia, i.e. trypsins and chymotrypsins, and to reduce Daphnia growth. In this study we grew cultures of the cyanobacterium Microcystis sp. strain BM25 on nutrient-replete, N-depleted or P-depleted medium. We identified three different micropeptins to be the cause for the inhibitory activity of BM25 against chymotrypsins. The micropeptin content depended on nutrient availability: whereas N limitation led to a lower concentration of micropeptins per biomass, P limitation resulted in a higher production of these chymotrypsin inhibitors. The altered micropeptin content of BM25 was accompanied by changed effects on the fitness of Daphnia magna: a higher content of micropeptins led to lower IC50 values for D. magna gut proteases and vice versa. Following expectations, the lower micropeptin content in the N-depleted BM25 caused higher somatic growth of D. magna. Therefore, protease inhibitors can be regarded as a nutrient-dependent defence against grazers. Interestingly, although the P limitation of the cyanobacterium led to a higher micropeptin content, high growth of D. magna was observed when they were fed with P-depleted BM25. This might be due to reduced digestibility of P-depleted cells with putatively thick mucilaginous sheaths. These findings indicate that

  6. Purification and characterization of an alkaline protease from Acetes chinensis

    NASA Astrophysics Data System (ADS)

    Xu, Jiachao; Liu, Xin; Li, Zhaojie; Xu, Jie; Xue, Changhu; Gao, Xin

    2005-07-01

    An alkaline protease from Acetes chinensis was purified and characterized in this study. The steps of purification include ammonium sulfate precipitation, ion-exchange chromatography with Q-sepharose Fast Flow, gel filtration chromatography with S300 and the second ion-exchange chromatography with Q-sepharose Fast Flow. The protease was isolated and purified, which was present and active on protein substrates (azocasein and casein). The specific protease activity was 17.15 folds and the recovery was 4.67. The molecular weight of the protease was estimated at 23.2 kD by SDS-PAGE. With azocasein as the susbstrate, the optimal temperature was 55°C and the optimal pH value was 5.5. Ion Ca2+ could enhance the proteolytic activity of the protease, while Cu2+, EDTA and PMSF could inhibit its activity.

  7. Phosphoramidates as novel activity-based probes for serine proteases.

    PubMed

    Haedke, Ute R; Frommel, Sandra C; Hansen, Fabian; Hahne, Hannes; Kuster, Bernhard; Bogyo, Matthew; Verhelst, Steven H L

    2014-05-26

    Activity-based probes (ABPs) are small molecules that exclusively form covalent bonds with catalytically active enzymes. In the last decade, they have especially been used in functional proteomics studies of proteases. Here, we present phosphoramidate peptides as a novel type of ABP for serine proteases. These molecules can be made in a straightforward manner by standard Fmoc-based solid-phase peptide synthesis, allowing rapid diversification. The resulting ABPs covalently bind different serine proteases, depending on the amino acid recognition element adjacent to the reactive group. A reporter tag enables downstream gel-based analysis or LC-MS/MS-mediated identification of the targeted proteases. Overall, we believe that these readily accessible probes will provide new avenues for the functional study of serine proteases in complex proteomes. PMID:24817682

  8. Fluorous-based Peptide Microarrays for Protease Screening

    PubMed Central

    Collet, Beatrice Y. M.; Nagashima, Tadamichi; Yu, Marvin S.; Pohl, Nicola L. B.

    2009-01-01

    As ever more protease sequences are uncovered through genome sequencing projects, efficient parallel methods to discover the potential substrates of these proteases becomes crucial. Herein we describe the first use of fluorous-based microarrays to probe peptide sequences and begin to define the scope and limitations of fluorous microarray technologies for the screening of proteases. Comparison of a series of serine proteases showed that their ability to cleave peptide substrates in solution was maintained upon immobilization of these substrates onto fluorous-coated glass slides. The fluorous surface did not serve to significantly inactivate the enzymes. However, addition of hydrophilic components to the peptide sequences could induce lower rates of substrate cleavage with enzymes such as chymotrypsin with affinities to hydrophobic moieties. This work represents the first step to creating robust protease screening platforms using noncovalent microarray interface that can easily incorporate a range of compounds on the same slide. PMID:20161483

  9. Alkaline protease production by a strain of marine yeasts

    NASA Astrophysics Data System (ADS)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  10. A Putative Type III Secretion System Effector Encoded by the MA20_12780 Gene in Bradyrhizobium japonicum Is-34 Causes Incompatibility with Rj4 Genotype Soybeans.

    PubMed

    Tsurumaru, Hirohito; Hashimoto, Syougo; Okizaki, Kouhei; Kanesaki, Yu; Yoshikawa, Hirofumi; Yamakawa, Takeo

    2015-09-01

    The nodulation of Bradyrhizobium japonicum Is-34 is restricted by Rj4 genotype soybeans (Glycine max). To identify the genes responsible for this incompatibility, Tn5 mutants of B. japonicum Is-34 that were able to overcome this nodulation restriction were obtained. Analysis of the Tn5 mutants revealed that Tn5 was inserted into a region containing the MA20_12780 gene. In addition, direct disruption of this gene using marker exchange overcame the nodulation restriction by Rj4 genotype soybeans. The MA20_12780 gene has a tts box motif in its upstream region, indicating a possibility that this gene encodes a type III secretion system (T3SS) effector protein. Bioinformatic characterization revealed that the MA20_12780 protein contains the small ubiquitin-like modifier (SUMO) protease domain of the C48 peptidase (ubiquitin-like protease 1 [Ulp1]) family. The results of the present study indicate that a putative T3SS effector encoded by the MA20_12780 gene causes the incompatibility with Rj4 genotype soybeans, and they suggest the possibility that the nodulation restriction of B. japonicum Is-34 may be due to Rj4 genotype soybeans recognizing the putative T3SS effector (MA20_12780 protein) as a virulence factor. PMID:26092458

  11. A Putative Type III Secretion System Effector Encoded by the MA20_12780 Gene in Bradyrhizobium japonicum Is-34 Causes Incompatibility with Rj4 Genotype Soybeans

    PubMed Central

    Hashimoto, Syougo; Okizaki, Kouhei; Kanesaki, Yu; Yoshikawa, Hirofumi; Yamakawa, Takeo

    2015-01-01

    The nodulation of Bradyrhizobium japonicum Is-34 is restricted by Rj4 genotype soybeans (Glycine max). To identify the genes responsible for this incompatibility, Tn5 mutants of B. japonicum Is-34 that were able to overcome this nodulation restriction were obtained. Analysis of the Tn5 mutants revealed that Tn5 was inserted into a region containing the MA20_12780 gene. In addition, direct disruption of this gene using marker exchange overcame the nodulation restriction by Rj4 genotype soybeans. The MA20_12780 gene has a tts box motif in its upstream region, indicating a possibility that this gene encodes a type III secretion system (T3SS) effector protein. Bioinformatic characterization revealed that the MA20_12780 protein contains the small ubiquitin-like modifier (SUMO) protease domain of the C48 peptidase (ubiquitin-like protease 1 [Ulp1]) family. The results of the present study indicate that a putative T3SS effector encoded by the MA20_12780 gene causes the incompatibility with Rj4 genotype soybeans, and they suggest the possibility that the nodulation restriction of B. japonicum Is-34 may be due to Rj4 genotype soybeans recognizing the putative T3SS effector (MA20_12780 protein) as a virulence factor. PMID:26092458

  12. The Proteolytic Activation of (H3N2) Influenza A Virus Hemagglutinin Is Facilitated by Different Type II Transmembrane Serine Proteases

    PubMed Central

    Kühn, Nora; Bergmann, Silke; Kösterke, Nadine; Lambertz, Ruth L. O.; Keppner, Anna; van den Brand, Judith M. A.; Weiß, Siegfried; Hummler, Edith; Hatesuer, Bastian

    2016-01-01

    ABSTRACT Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is necessary for viral activation and infectivity. In humans and mice, members of the type II transmembrane protease family (TTSP), e.g., TMPRSS2, TMPRSS4, and TMPRSS11d (HAT), have been shown to cleave influenza virus HA for viral activation and infectivity in vitro. Recently, we reported that inactivation of a single HA-activating protease gene, Tmprss2, in knockout mice inhibits the spread of H1N1 influenza viruses. However, after infection of Tmprss2 knockout mice with an H3N2 influenza virus, only a slight increase in survival was observed, and mice still lost body weight. In this study, we investigated an additional trypsin-like protease, TMPRSS4. Both TMPRSS2 and TMPRSS4 are expressed in the same cell types of the mouse lung. Deletion of Tmprss4 alone in knockout mice does not protect them from body weight loss and death upon infection with H3N2 influenza virus. In contrast, Tmprss2−/− Tmprss4−/− double-knockout mice showed a remarkably reduced virus spread and lung pathology, in addition to reduced body weight loss and mortality. Thus, our results identified TMPRSS4 as a second host cell protease that, in addition to TMPRSS2, is able to activate the HA of H3N2 influenza virus in vivo. IMPORTANCE Influenza epidemics and recurring pandemics are responsible for significant global morbidity and mortality. Due to high variability of the virus genome, resistance to available antiviral drugs is frequently observed, and new targets for treatment of influenza are needed. Host cell factors essential for processing of the virus hemagglutinin represent very suitable drug targets because the virus is dependent on these host factors for replication. We reported previously that Tmprss2-deficient mice are protected against H1N1 virus infections, but only marginal protection against H3N2 virus infections was observed. Here we show that deletion of two host protease genes, Tmprss2 and

  13. [Tuberculosis in compromised hosts].

    PubMed

    2003-11-01

    Recent development of tuberculosis in Japan tends to converge on a specific high risk group. The proportion of tuberculosis developing particularly from the compromised hosts in the high risk group is especially high. At this symposium, therefore, we took up diabetes mellitus, gastrectomy, dialysis, AIDS and the elderly for discussion. Many new findings and useful reports for practical medical treatment are submitted; why these compromised hosts are predisposed to tuberculosis, tuberculosis diagnostic and remedial notes of those compromised hosts etc. It is an important question for the future to study how to prevent tuberculosis from these compromised hosts. 1. Tuberculosis in diabetes mellitus: aggravation and its immunological mechanism: Kazuyoshi KAWAKAMI (Department of Internal Medicine, Division of Infectious Diseases, Graduate School and Faculty of Medicine, University of the Ryukyus). It has been well documented that diabetes mellitus (DM) is a major aggravating factor in tuberculosis. The onset of this disease is more frequent in DM patients than in individuals with any underlying diseases. However, the precise mechanism of this finding remains to be fully understood. Earlier studies reported that the migration, phagocytosis and bactericidal activity of neutrophils are all impaired in DM patients, which is related to their reduced host defense to infection with extracellular bacteria, such as S. aureus and E. colli. Host defense to mycobacterial infection is largely mediated by cellular immunity, and Th1-related cytokines, such as IFN-gamma and IL-12, play a central role in this response. It is reported that serum level of these cytokines and their production by peripheral blood mononuclear cells (PBMC) are reduced in tuberculosis patients with DM, and this is supposed to be involved in the high incidence of tuberculosis in DM. Our study observed similar findings and furthermore indicated that IFN-gamma and IL-12 production by BCG-stimulated PBMC was lower

  14. Positive selection of digestive Cys proteases in herbivorous Coleoptera.

    PubMed

    Vorster, Juan; Rasoolizadeh, Asieh; Goulet, Marie-Claire; Cloutier, Conrad; Sainsbury, Frank; Michaud, Dominique

    2015-10-01

    Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within -or close to- amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins. PMID:26264818

  15. A symmetric inhibitor binds HIV-1 protease asymmetrically.

    PubMed

    Dreyer, G B; Boehm, J C; Chenera, B; DesJarlais, R L; Hassell, A M; Meek, T D; Tomaszek, T A; Lewis, M

    1993-01-26

    Potential advantages of C2-symmetric inhibitors designed for the symmetric HIV-1 protease include high selectivity, potency, stability, and bioavailability. Pseudo-C2-symmetric monools and C2-symmetric diols, containing central hydroxymethylene and (R,R)-dihydroxyethylene moieties flanked by a variety of hydrophobic P1/P1' side chains, were studied as HIV-1 protease inhibitors. The monools and diols were synthesized in 8-10 steps from D-(+)-arabitol and D-(+)-mannitol, respectively. Monools with ethyl or isobutyl P1/P1' side chains were weak inhibitors of recombinant HIV-1 protease (Ki > 10 microM), while benzyl P1/P1' side chains afforded a moderately potent inhibitor (apparent Ki = 230 nM). Diols were 100-10,000x more potent than analogous monools, and a wider range of P1/P1' side chains led to potent inhibition. Both classes of compounds exhibited lower apparent Ki values under high-salt conditions. Surprisingly, monool and diol HIV-1 protease inhibitors were potent inhibitors of porcine pepsin, a prototypical asymmetric monomeric aspartic protease. These results were evaluated in the context of the pseudosymmetric structure of monomeric aspartic proteases and their evolutionary kinship with the retroviral proteases. The X-ray crystal structure of HIV-1 protease complexed with a symmetric diol was determined at 2.6 A. Contrary to expectations, the diol binds the protease asymmetrically and exhibits 2-fold disorder in the electron density map. Molecular dynamics simulations were conducted beginning with asymmetric and symmetric HIV-1 protease/inhibitor model complexes. A more stable trajectory resulted from the asymmetric complex, in agreement with the observed asymmetric binding mode. A simple four-point model was used to argue more generally that van der Waals and electrostatic force fields can commonly lead to an asymmetric association between symmetric molecules. PMID:8422397

  16. Identification and molecular characterization of five putative toxins from the venom gland of the snake Philodryas chamissonis (Serpentes: Dipsadidae).

    PubMed

    Urra, Félix A; Pulgar, Rodrigo; Gutiérrez, Ricardo; Hodar, Christian; Cambiazo, Verónica; Labra, Antonieta

    2015-12-15

    Philodryas chamissonis is a rear-fanged snake endemic to Chile. Its bite produces mild to moderate symptoms with proteolytic and anti-coagulant effects. Presently, the composition of the venom, as well as, the biochemical and structural characteristics of its toxins, remains unknown. In this study, we cloned and reported the first full-length sequences of five toxin-encoding genes from the venom gland of this species: Type III snake venom metalloprotease (SVMP), snake venom serine protease (SVSP), Cysteine-rich secretory protein (CRISP), α and β subunits of C-type lectin-like protein (CLP) and C-type natriuretic peptide (NP). These genes are highly expressed in the venom gland and their sequences exhibited a putative signal peptide, suggesting that these are components of the venom. These putative toxins had different evolutionary relationships with those reported for some front-fanged snakes, being SVMP, SVSP and CRISP of P. chamissonis closely related to the toxins present in Elapidae species, while NP was more related to those of Viperidae species. In addition, analyses suggest that the α and β subunits of CLP of P. chamissonis might have a α-subunit scaffold in common with Viperidae species, whose highly variable C-terminal region might have allowed the diversification in α and β subunits. Our results provide the first molecular description of the toxins possibly implicated in the envenomation of prey and humans by the bite of P. chamissonis. PMID:26410112

  17. Plasmodium species: master renovators of their host cells.

    PubMed

    de Koning-Ward, Tania F; Dixon, Matthew W A; Tilley, Leann; Gilson, Paul R

    2016-08-01

    Plasmodium parasites, the causative agents of malaria, have developed elaborate strategies that they use to survive and thrive within different intracellular environments. During the blood stage of infection, the parasite is a master renovator of its erythrocyte host cell, and the changes in cell morphology and function that are induced by the parasite promote survival and contribute to the pathogenesis of severe malaria. In this Review, we discuss how Plasmodium parasites use the protein trafficking motif Plasmodium export element (PEXEL), protease-mediated polypeptide processing, a novel translocon termed the Plasmodium translocon of exported proteins (PTEX) and exomembranous structures to export hundreds of proteins to discrete subcellular locations in the host erythrocytes, which enables the parasite to gain access to vital nutrients and to evade the immune defence mechanisms of the host. PMID:27374802

  18. Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    PubMed Central

    Obbard, Darren J; Welch, John J; Little, Tom J

    2009-01-01

    Background Mosquitoes of the Anopheles gambiae species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect Plasmodium development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution. Methods Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the An. gambiae species complex in both East and West Africa. Results Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes. Conclusion It is well known that phylogenetic and population history in the An. gambiae complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the An. gambiae genome are discussed. PMID:19497100

  19. Expression and characterization of group A Streptococcus extracellular cysteine protease recombinant mutant proteins and documentation of seroconversion during human invasive disease episodes.

    PubMed

    Gubba, S; Low, D E; Musser, J M

    1998-02-01

    A recent study with isogenic strains constructed by recombinant DNA strategies unambiguously documented that a highly conserved extracellular cysteine protease expressed by Streptococcus pyogenes (group A Streptococcus [GAS]) is a critical virulence factor in a mouse model of invasive disease (S. Lukomski, S. Sreevatsan, C. Amberg, W. Reichardt, M. Woischnik, A. Podbielski, and J. M. Musser, J. Clin. Invest. 99:2574-2580, 1997). To facilitate further investigations of the streptococcal cysteine protease, recombinant proteins composed of a 40-kDa zymogen containing a C192S amino acid substitution that ablates enzymatic activity, a 28-kDa mature protein with the C192S replacement, and a 12-kDa propeptide were purified from Escherichia coli containing His tag expression vectors. The recombinant C192S zymogen retained apparently normal structural integrity, as assessed by the ability of purified wild-type streptococcal cysteine protease to process the 40-kDa molecule to the 28-kDa mature form. All three recombinant purified proteins retained immunologic reactivity with polyclonal and monoclonal antibodies. Humans with a diverse range of invasive disease episodes (erysipelas, cellulitis, pneumonia, bacteremia, septic arthritis, streptococcal toxic shock syndrome, and necrotizing fasciitis) caused by six distinct M types of GAS seroconverted to the streptococcal cysteine protease. These results demonstrate that this GAS protein is expressed in vivo during the course of human infections and thereby provide additional evidence that the cysteine protease participates in host-pathogen interactions in some patients. PMID:9453639

  20. Expression and Characterization of Group A Streptococcus Extracellular Cysteine Protease Recombinant Mutant Proteins and Documentation of Seroconversion during Human Invasive Disease Episodes

    PubMed Central

    Gubba, Siddeswar; Low, Donald E.; Musser, James M.

    1998-01-01

    A recent study with isogenic strains constructed by recombinant DNA strategies unambiguously documented that a highly conserved extracellular cysteine protease expressed by Streptococcus pyogenes (group A Streptococcus [GAS]) is a critical virulence factor in a mouse model of invasive disease (S. Lukomski, S. Sreevatsan, C. Amberg, W. Reichardt, M. Woischnik, A. Podbielski, and J. M. Musser, J. Clin. Invest. 99:2574–2580, 1997). To facilitate further investigations of the streptococcal cysteine protease, recombinant proteins composed of a 40-kDa zymogen containing a C192S amino acid substitution that ablates enzymatic activity, a 28-kDa mature protein with the C192S replacement, and a 12-kDa propeptide were purified from Escherichia coli containing His tag expression vectors. The recombinant C192S zymogen retained apparently normal structural integrity, as assessed by the ability of purified wild-type streptococcal cysteine protease to process the 40-kDa molecule to the 28-kDa mature form. All three recombinant purified proteins retained immunologic reactivity with polyclonal and monoclonal antibodies. Humans with a diverse range of invasive disease episodes (erysipelas, cellulitis, pneumonia, bacteremia, septic arthritis, streptococcal toxic shock syndrome, and necrotizing fasciitis) caused by six distinct M types of GAS seroconverted to the streptococcal cysteine protease. These results demonstrate that this GAS protein is expressed in vivo during the course of human infections and thereby provide additional evidence that the cysteine protease participates in host-pathogen interactions in some patients. PMID:9453639

  1. Identification and Characterization of Putative Translocated Effector Proteins of the Edwardsiella ictaluri Type III Secretion System.

    PubMed

    Dubytska, Lidiya P; Rogge, Matthew L; Thune, Ronald L

    2016-01-01

    Edwardsiella ictaluri, a major pathogen in channel catfish aquaculture, encodes a type III secretion system (T3SS) that is essential for intracellular replication and virulence. Previous work identified three putative T3SS effectors in E. ictaluri, and in silico analysis of the E. ictaluri genome identified six additional putative effectors, all located on the chromosome outside the T3SS pathogenicity island. To establish active translocation by the T3SS, we constructed translational fusions of each effector to the amino-terminal adenylate cyclase (AC) domain of the Bordetella pertussis adenylate cyclase toxin CyaA. When translocated through the membrane of the Edwardsiella-containing vacuole (ECV), the cyclic AMP produced by the AC domain in the presence of calmodulin in the host cell cytoplasm can be measured. Results showed that all nine effectors were translocated from E. ictaluri in the ECV to the cytoplasm of the host cells in the wild-type strain but not in a T3SS mutant, indicating that translocation is dependent on the T3SS machinery. This confirms that the E. ictaluri T3SS is similar to the Salmonella pathogenicity island 2 T3SS in that it translocates effectors through the membrane of the bacterial vacuole directly into the host cell cytoplasm. Additional work demonstrated that both initial acidification and subsequent neutralization of the ECV were necessary for effector translocation, except for two of them that did not require neutralization. Single-gene mutants constructed for seven of the individual effectors were all attenuated for replication in CCO cells, but only three were replication deficient in head kidney-derived macrophages (HKDM). IMPORTANCE The bacterial pathogen Edwardsiella ictaluri causes enteric septicemia of catfish (ESC), an economically significant disease of farm-raised channel catfish. Commercial catfish production accounts for the majority of the total fin fish aquaculture in the United States, with almost 300,000

  2. Identification and Characterization of Putative Translocated Effector Proteins of the Edwardsiella ictaluri Type III Secretion System

    PubMed Central

    Dubytska, Lidiya P.; Rogge, Matthew L.

    2016-01-01

    ABSTRACT Edwardsiella ictaluri, a major pathogen in channel catfish aquaculture, encodes a type III secretion system (T3SS) that is essential for intracellular replication and virulence. Previous work identified three putative T3SS effectors in E. ictaluri, and in silico analysis of the E. ictaluri genome identified six additional putative effectors, all located on the chromosome outside the T3SS pathogenicity island. To establish active translocation by the T3SS, we constructed translational fusions of each effector to the amino-terminal adenylate cyclase (AC) domain of the Bordetella pertussis adenylate cyclase toxin CyaA. When translocated through the membrane of the Edwardsiella-containing vacuole (ECV), the cyclic AMP produced by the AC domain in the presence of calmodulin in the host cell cytoplasm can be measured. Results showed that all nine effectors were translocated from E. ictaluri in the ECV to the cytoplasm of the host cells in the wild-type strain but not in a T3SS mutant, indicating that translocation is dependent on the T3SS machinery. This confirms that the E. ictaluri T3SS is similar to the Salmonella pathogenicity island 2 T3SS in that it translocates effectors through the membrane of the bacterial vacuole directly into the host cell cytoplasm. Additional work demonstrated that both initial acidification and subsequent neutralization of the ECV were necessary for effector translocation, except for two of them that did not require neutralization. Single-gene mutants constructed for seven of the individual effectors were all attenuated for replication in CCO cells, but only three were replication deficient in head kidney-derived macrophages (HKDM). IMPORTANCE The bacterial pathogen Edwardsiella ictaluri causes enteric septicemia of catfish (ESC), an economically significant disease of farm-raised channel catfish. Commercial catfish production accounts for the majority of the total fin fish aquaculture in the United States, with almost 300,000

  3. Mechanisms Regulating the Degradation of Dentin Matrices by Endogenous Dentin Proteases and their Role in Dental Adhesion. A Review

    PubMed Central

    Sabatini, Camila; Pashley, David H.

    2015-01-01

    Purpose This systematic review provides an overview of the different mechanisms proposed to regulate the degradation of dentin matrices bye host-derived dentin proteases, particularly as it relates to their role in dental adhesion. Methods Significant developments have taken place over the last few years that have contributed to a better understanding of all the factors affecting the durability of adhesive resin restorations. The complexity of dentin-resin interfaces mandates a thorough understanding of all the mechanical, physical and biochemical aspects that play a role in the formation of hybrid layers. The ionic and hydrophilic nature of current dental adhesives yields permeable, unstable hybrid layers susceptible to water sorption, hydrolytic degradation and resin leaching. The hydrolytic activity of host-derived proteases also contributes to the degradation of the resin-dentin bonds. Preservation of the collagen matrix is critical to the improvement of resin-dentin bond durability. Approaches to regulate collagenolytic activity of dentin proteases have been the subject of extensive research in the last few years. A shift has occurred from the use of proteases inhibitors to the use of collagen cross-linking agents. Data provided by fifty-one studies published in peer-reviewed journals between January 1999 and December 2013 was compiled in this systematic review. Results Appraisal of the data provided by the studies included in the present review yielded a summary of the mechanisms which have already proven to be clinically successful and those which need further investigation before new clinical protocols can be adopted. PMID:25831604

  4. The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis.

    PubMed

    Field, Kenneth A; Johnson, Joseph S; Lilley, Thomas M; Reeder, Sophia M; Rogers, Elizabeth J; Behr, Melissa J; Reeder, DeeAnn M

    2015-10-01

    White-nose syndrome (WNS) in North American bats is caused by an invasive cutaneous infection by the psychrophilic fungus Pseudogymnoascus destructans (Pd). We compared transcriptome-wide changes in gene expression using RNA-Seq on wing skin tissue from hibernating little brown myotis (Myotis lucifugus) with WNS to bats without Pd exposure. We found that WNS caused significant changes in gene expression in hibernating bats including pathways involved in inflammation, wound healing, and metabolism. Local acute inflammatory responses were initiated by fungal invasion. Gene expression was increased for inflammatory cytokines, including interleukins (IL) IL-1β, IL-6, IL-17C, IL-20, IL-23A, IL-24, and G-CSF and chemokines, such as Ccl2 and Ccl20. This pattern of gene expression changes demonstrates that WNS is accompanied by an innate anti-fungal host response similar to that caused by cutaneous Candida albicans infections. However, despite the apparent production of appropriate chemokines, immune cells such as neutrophils and T cells do not appear to be recruited. We observed upregulation of acute inflammatory genes, including prostaglandin G/H synthase 2 (cyclooxygenase-2), that generate eicosanoids and other nociception mediators. We also observed differences in Pd gene expression that suggest host-pathogen interactions that might determine WNS progression. We identified several classes of potential virulence factors that are expressed in Pd during WNS, including secreted proteases that may mediate tissue invasion. These results demonstrate that hibernation does not prevent a local inflammatory response to Pd infection but that recruitment of leukocytes to the site of infection does not occur. The putative virulence factors may provide novel targets for treatment or prevention of WNS. These observations support a dual role for inflammation during WNS; inflammatory responses provide protection but excessive inflammation may contribute to mortality, either by

  5. The White-Nose Syndrome Transcriptome: Activation of Anti-fungal Host Responses in Wing Tissue of Hibernating Little Brown Myotis

    PubMed Central

    Field, Kenneth A.; Johnson, Joseph S.; Lilley, Thomas M.; Reeder, Sophia M.; Rogers, Elizabeth J.; Behr, Melissa J.; Reeder, DeeAnn M.

    2015-01-01

    White-nose syndrome (WNS) in North American bats is caused by an invasive cutaneous infection by the psychrophilic fungus Pseudogymnoascus destructans (Pd). We compared transcriptome-wide changes in gene expression using RNA-Seq on wing skin tissue from hibernating little brown myotis (Myotis lucifugus) with WNS to bats without Pd exposure. We found that WNS caused significant changes in gene expression in hibernating bats including pathways involved in inflammation, wound healing, and metabolism. Local acute inflammatory responses were initiated by fungal invasion. Gene expression was increased for inflammatory cytokines, including interleukins (IL) IL-1β, IL-6, IL-17C, IL-20, IL-23A, IL-24, and G-CSF and chemokines, such as Ccl2 and Ccl20. This pattern of gene expression changes demonstrates that WNS is accompanied by an innate anti-fungal host response similar to that caused by cutaneous Candida albicans infections. However, despite the apparent production of appropriate chemokines, immune cells such as neutrophils and T cells do not appear to be recruited. We observed upregulation of acute inflammatory genes, including prostaglandin G/H synthase 2 (cyclooxygenase-2), that generate eicosanoids and other nociception mediators. We also observed differences in Pd gene expression that suggest host-pathogen interactions that might determine WNS progression. We identified several classes of potential virulence factors that are expressed in Pd during WNS, including secreted proteases that may mediate tissue invasion. These results demonstrate that hibernation does not prevent a local inflammatory response to Pd infection but that recruitment of leukocytes to the site of infection does not occur. The putative virulence factors may provide novel targets for treatment or prevention of WNS. These observations support a dual role for inflammation during WNS; inflammatory responses provide protection but excessive inflammation may contribute to mortality, either by

  6. PEGylated substrates of NSP4 protease: A tool to study protease specificity

    NASA Astrophysics Data System (ADS)

    Wysocka, Magdalena; Gruba, Natalia; Grzywa, Renata; Giełdoń, Artur; Bąchor, Remigiusz; Brzozowski, Krzysztof; Sieńczyk, Marcin; Dieter, Jenne; Szewczuk, Zbigniew; Rolka, Krzysztof; Lesner, Adam

    2016-03-01

    Herein we present the synthesis of a novel type of peptidomimetics composed of repeating diaminopropionic acid residues modified with structurally diverse heterobifunctional polyethylene glycol chains (abbreviated as DAPEG). Based on the developed compounds, a library of fluorogenic substrates was synthesized. Further library deconvolution towards human neutrophil serine protease 4 (NSP4) yielded highly sensitive and selective internally quenched peptidomimetic substrates. In silico analysis of the obtained peptidomimetics revealed the presence of an interaction network with distant subsites located on the enzyme surface.

  7. CREST - a large and diverse superfamily of putative transmembrane hydrolases

    PubMed Central

    2011-01-01

    Background A number of membrane-spanning proteins possess enzymatic activity and catalyze important reactions involving proteins, lipids or other substrates located within or near lipid bilayers. Alkaline ceramidases are seven-transmembrane proteins that hydrolyze the amide bond in ceramide to form sphingosine. Recently, a group of putative transmembrane receptors called progestin and adipoQ receptors (PAQRs) were found to be distantly related to alkaline ceramidases, raising the possibility that they may also function as membrane enzymes. Results Using sensitive similarity search methods, we identified statistically significant sequence similarities among several transmembrane protein families including alkaline ceramidases and PAQRs. They were unified into a large and diverse superfamily of putative membrane-bound hydrolases called CREST (alkaline ceramidase, PAQR receptor, Per1, SID-1 and TMEM8). The CREST superfamily embraces a plethora of cellular functions and biochemical activities, including putative lipid-modifying enzymes such as ceramidases and the Per1 family of putative phospholipases involved in lipid remodeling of GPI-anchored proteins, putative hormone receptors, bacterial hemolysins, the TMEM8 family of putative tumor suppressors, and the SID-1 family of putative double-stranded RNA transporters involved in RNA interference. Extensive similarity searches and clustering analysis also revealed several groups of proteins with unknown function in the CREST superfamily. Members of the CREST superfamily share seven predicted core transmembrane segments with several conserved sequence motifs. Conclusions Universal conservation of a set of histidine and aspartate residues across all groups in the CREST superfamily, coupled with independent discoveries of hydrolase activities in alkaline ceramidases and the Per1 family as well as results from previous mutational studies of Per1, suggests that the majority of CREST members are metal-dependent hydrolases

  8. Highly potent fibrinolytic serine protease from Streptomyces.

    PubMed

    Uesugi, Yoshiko; Usuki, Hirokazu; Iwabuchi, Masaki; Hatanaka, Tadashi

    2011-01-01

    We introduce a highly potent fibrinolytic serine protease from Streptomyces omiyaensis (SOT), which belongs to the trypsin family. The fibrinolytic activity of SOT was examined using in vitro assays and was compared with those of known fibrinolytic enzymes such as plasmin, tissue-type plasminogen activator (t-PA), urokinase, and nattokinase. Compared to other enzymes, SOT showed remarkably higher hydrolytic activity toward mimic peptides of fibrin and plasminogen. The fibrinolytic activity of SOT is about 18-fold higher than that of plasmin, and is comparable to that of t-PA by fibrin plate assays. Furthermore, SOT had some plasminogen activator-like activity. Results show that SOT and nattokinase have very different fibrinolytic and fibrinogenolytic modes, engendering significant synergetic effects of SOT and nattokinase on fibrinolysis. These results suggest that SOT presents important possibilities for application in the therapy of thrombosis. PMID:22112764

  9. Laundry detergent compatibility of the alkaline protease from Bacillus cereus.

    PubMed

    Banik, Rathindra Mohan; Prakash, Monika

    2004-01-01

    The endogenous protease activity in various commercially available laundry detergents of international companies was studied. The maximum protease activity was found at 50 degrees C in pH range 10.5-11.0 in all the tested laundry detergents. The endogenous protease activity in the tested detergents retained up to 70% on incubation at 40 degrees C for 1 h, whereas less than 30% activity was only found on incubation at 50 degrees C for 1 h. The alkaline protease from an alkalophilic strain of Bacillus cereus was studied for its compatibility in commercial detergents. The cell free fermented broth from shake flask culture of the organism showed maximum activity at pH 10.5 and 50 degrees C. The protease from B. cereus showed much higher residual activity (more than 80%) on incubation with laundry detergents at 50 degrees C for 1 h or longer. The protease enzyme from B. cereus was found to be superior over the endogenous proteases present in the tested commercial laundry detergents in comparison to the enzyme stability during the washing at higher temperature, e.g., 40-50 degrees C. PMID:15293947

  10. Protease production by Streptococcus sanguis associated with subacute bacterial endocarditis.

    PubMed Central

    Straus, D C

    1982-01-01

    A viridans streptococcus (Streptococcus sanguis biotype II) isolated from the blood of a patient with subacute bacterial endocarditis was examined for protease production. In broth culture, extracellular proteolytic enzymes were not produced by this organism until after the early exponential phase of growth, with maximal protease production occurring during the stationary phase. Four distinct proteases were isolated and purified from the supernatant fluids of stationary-phase cultures, employing a combination of ion-exchange column chromatography, gel filtration column chromatography, and polyacrylamide gel electrophoresis. All four proteases could be eluted from a diethylaminoethyl cellulose column at a sodium chloride gradient concentration of 0.25 M but were separable by gel filtration chromatography on a Sephadex G-100 column. They varied in molecular weights as determined by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis from approximately 13,000 to 230,000. All four proteases had pH optima of between 8.0 and 9.0, and two of the proteases were active against casein, human serum albumin, and gelatin but were not active against elastin and collagen. The remaining two proteases were able to degrade only casein and gelatin. These results show that S. sanguis is able to excrete maximal levels of potentially destructive enzymes when the organisms are not actively multiplying. This finding may explain some of the damage caused in heart tissue by these organisms during subacute bacterial endocarditis. Images PMID:6759404

  11. Screening and characterization of protease producing actinomycetes from marine saltern.

    PubMed

    Suthindhiran, Krish; Jayasri, Mangalam Achuthananda; Dipali, Dipa; Prasar, Apurva

    2014-10-01

    In the course of systematic screening program for bioactive actinomycetes, an alkaline protease producing halophilic strain Actinopolyspora sp. VITSDK2 was isolated from marine saltern, Southern India. The strain was identified as Actinopolyspora based on its phenotypic and phylogenetic characters. The protease was partially purified using ammonium sulfate precipitation and subsequently by DEAE cellulose column chromatography. The enzyme was further purified using HPLC and the molecular weight was found to be 22 kDa as determined by SDS-PAGE analysis. The purified protease exhibited pH stability in a wide range of 4-12 with optimum at 10.0. The enzyme was found to be stable between 25 and 80 °C and displayed a maximum activity at 60 °C. The enzyme activity was increased marginally in presence of Mn(2+) , Mg(2+) , and Ca(2+) and decreased in presence of Cu(2+) . PMSF and DFP completely inhibited the activity suggesting it belongs to serine protease. Further, the proteolytic activity was abolished in presence of N-tosyl-L-lysine chloromethyl ketone suggesting this might be chymotrypsin-like serine protease. The protease was 96% active when kept for 10 days at room temperature. The results indicate that the enzyme belong to chymotrypsin-like serine protease exhibiting both pH and thermostability, which can be used for various applications in industries. PMID:24136565

  12. Exploring a new serine protease from Cucumis sativus L.

    PubMed

    Nafeesa, Zohara; Shivalingu, B R; Vivek, H K; Priya, B S; Swamy, S Nanjunda

    2015-03-01

    Coagulation is an important physiological process in hemostasis which is activated by sequential action of proteases. This study aims to understand the involvement of aqueous fruit extract of Cucumis sativus L. (AqFEC) European burp less variety in blood coagulation cascade. AqFEC hydrolyzed casein in a dose-dependent manner. The presence of protease activity was further confirmed by casein zymography which revealed the possible presence of two high molecular weight protease(s). The proteolytic activity was inhibited only by phenyl methyl sulphonyl fluoride suggesting the presence of serine protease(s). In a dose-dependent manner, AqFEC also hydrolysed Aα and Bβ subunits of fibrinogen, whereas it failed to degrade the γ subunit of fibrinogen even at a concentration as high as 100 μg and incubation time up to 4 h. AqFEC reduced the clotting time of citrated plasma by 87.65%. The protease and fibrinogenolytic activity of AqFEC suggests its possible role in stopping the bleeding and ensuing wound healing process. PMID:25577345

  13. Characterization of protease IV expression in Pseudomonas aeruginosa clinical isolates.

    PubMed

    Conibear, Tim C R; Willcox, Mark D P; Flanagan, Judith L; Zhu, Hua

    2012-02-01

    Expression of protease IV by Pseudomonas aeruginosa during ocular infections contributes significantly to tissue damage. However, several P. aeruginosa strains isolated from ocular infections or inflammatory events produce very low levels of protease IV. The aim of the present study was to characterize, genetically and phenotypically, the presence and expression of the protease IV gene in a group of clinical isolates that cause adverse ocular events of varying degrees, and to elucidate the possible control mechanisms of expression associated with this virulence factor. Protease IV gene sequences from seven clinical isolates of P. aeruginosa were determined and compared to P. aeruginosa strains PAO1 and PA103-29. Production and enzyme activity of protease IV were measured in test strains and compared to that of quorum-sensing gene (lasRI) mutants and the expression of other virulence factors. Protease IV gene sequence similarities between the isolates were 97.5-99.5 %. The strains were classified into two distinct phylogenetic groups that correlated with the presence of exo-enzymes from type three secretion systems (TTSS). Protease IV concentrations produced by PAOΔlasRI mutants and the two clinical isolates with a lasRI gene deficiency were restored to levels comparable to strain PAO1 following complementation of the quorum-sensing gene deficiencies. The protease IV gene is highly conserved in P. aeruginosa clinical isolates that cause a range of adverse ocular events. Observed variations within the gene sequence appear to correlate with presence of specific TTSS genes. Protease IV expression was shown to be regulated by the Las quorum-sensing system. PMID:21921113

  14. A putative hybrid swarm within Oonopsis foliosa (Asteraceae: Astereae)

    USGS Publications Warehouse

    Hughes, J.F.; Brown, G.K.

    2004-01-01

    Oo??nopsis foliosa var. foliosa and var. monocephala are endemic to short-grass steppe of southeastern Colorado and until recently were considered geographically disjunct. The only known qualitative feature separating these 2 varieties is floral head type; var. foliosa has radiate heads, whereas var. monocephala heads are discoid. Sympatry between these varieties is restricted to a small area in which a range of parental types and intermediate head morphologies is observed. We used distribution mapping, morphometric analyses, chromosome cytology, and pollen stainability to characterize the sympatric zone. Morphometrics confirms that the only discrete difference between var. foliosa and var. monocephala is radiate versus discoid heads, respectively. The outer florets of putative hybrid individuals ranged from conspicuously elongated yet radially symmetric disc-floret corollas, to elongated radially asymmetric bilabiate- or deeply cleft corollas, to stunted ray florets with appendages remnant of corolla lobes. Chromosome cytology of pollen mother cells from both putative parental varieties and a series of intermediate morphological types collected at the sympatric zone reveal evidence of translocation heterozygosity. Pollen stainability shows no significant differences in viability between the parental varieties and putative hybrids. The restricted distribution of putative hybrids to a narrow zone of sympatry between the parental types and the presence of meiotic chromosome-pairing anomalies in these intermediate plants are consistent with a hybrid origin. The high stainability of putative-hybrid pollen adds to a growing body of evidence that hybrids are not universally unfit.

  15. Borrelia burgdorferi, Host-Derived Proteases, and the Blood-Brain Barrier

    PubMed Central

    Grab, Dennis J.; Perides, George; Dumler, J. Stephen; Kim, Kee Jun; Park, Jinho; Kim, Yuri V.; Nikolskaia, Olga; Choi, Kyoung Seong; Stins, Monique F.; Kim, Kwang Sik

    2005-01-01

    Neurological manifestations of Lyme disease in humans are attributed in part to penetration of the blood-brain barrier (BBB) and invasion of the central nervous system (CNS) by Borrelia burgdorferi. However, how the spirochetes cross the BBB remains an unresolved issue. We examined the traversal of B. burgdorferi across the human BBB and systemic endothelial cell barriers using in vitro model systems constructed of human brain microvascular endothelial cells (BMEC) and EA.hy 926, a human umbilical vein endothelial cell (HUVEC) line grown on Costar Transwell inserts. These studies showed that B. burgdorferi differentially crosses human BMEC and HUVEC and that the human BMEC form a barrier to traversal. During the transmigration by the spirochetes, it was found that the integrity of the endothelial cell monolayers was maintained, as assessed by transendothelial electrical resistance measurements at the end of the experimental period, and that B. burgdorferi appeared to bind human BMEC by their tips near or at cell borders, suggesting a paracellular route of transmigration. Importantly, traversal of B. burgdorferi across human BMEC induces the expression of plasminogen activators, plasminogen activator receptors, and matrix metalloproteinases. Thus, the fibrinolytic system linked by an activation cascade may lead to focal and transient degradation of tight junction proteins that allows B. burgdorferi to invade the CNS. PMID:15664945

  16. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens.

    PubMed

    Marchesan, J; Jiao, Y Z; Schaff, R A; Hao, J; Morelli, T; Kinney, J S; Gerow, E; Sheridan, R; Rodrigues, V; Paster, B J; Inohara, N; Giannobile, W V

    2016-06-01

    Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). PMID:26177212

  17. Protease inhibition as new therapeutic strategy for GI diseases

    PubMed Central

    Vergnolle, Nathalie

    2016-01-01

    The GI tract is the most exposed organ to proteases, both in physiological and pathophysiological conditions. For digestive purposes, the lumen of the upper GI tract contains large amounts of pancreatic proteases, but studies have also demonstrated increased proteolytic activity into mucosal tissues (both in the upper and lower GI tract), associated with pathological conditions. This review aims at outlining the evidences for dysregulated proteolytic homeostasis in GI diseases and the pathogenic mechanisms of increased proteolytic activity. The therapeutic potential of protease inhibition in GI diseases is discussed, with a particular focus on IBDs, functional GI disorders and colorectal cancer. PMID:27196587

  18. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    PubMed Central

    2011-01-01

    Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome) in the malaria parasite Plasmodium falciparum and its sibling species [1-3], providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database [4], and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H) system [5], blood stage microarray experiments [6-8], proteomics [9-12], literature text mining, and sequence homology analysis. Seventy-seven (77) out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs). These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins), range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide processing, cell cycle

  19. In vitro digestion with proteases producing MHC class II ligands.

    PubMed

    Tohmé, Mira; Maschalidi, Sophia; Manoury, Bénédicte

    2013-01-01

    Proteases generate peptides that bind to MHC class II molecules to interact with a wide diversity of CD4(+) T cells. They are expressed in dedicated organelles: endosomes and lysosomes of professional antigen presenting cells (pAPCs) such as B cells, macrophages, and dendritic cells. The identification of endosomal proteases which produce antigenic peptides is important, for example, for better vaccination and to prevent autoimmune diseases. Here, we describe a panel of technics (in vitro digestion assays of protein with recombinant proteases or purified endosomes/lysosomes, T cell stimulation) to monitor the production of MHC class II ligands. PMID:23329510

  20. Protease inhibition as new therapeutic strategy for GI diseases.

    PubMed

    Vergnolle, Nathalie

    2016-07-01

    The GI tract is the most exposed organ to proteases, both in physiological and pathophysiological conditions. For digestive purposes, the lumen of the upper GI tract contains large amounts of pancreatic proteases, but studies have also demonstrated increased proteolytic activity into mucosal tissues (both in the upper and lower GI tract), associated with pathological conditions. This review aims at outlining the evidences for dysregulated proteolytic homeostasis in GI diseases and the pathogenic mechanisms of increased proteolytic activity. The therapeutic potential of protease inhibition in GI diseases is discussed, with a particular focus on IBDs, functional GI disorders and colorectal cancer. PMID:27196587

  1. Detection of Legume Protease Inhibitors by the Gel-X-ray Film Contact Print Technique

    ERIC Educational Resources Information Center

    Mulimani, Veerappa H.; Sudheendra, Kulkarni; Giri, Ashok P.

    2002-01-01

    Redgram (Cajanus cajan L.) extracts have been analyzed for the protease inhibitors using a new, sensitive, simple, and rapid method for detection of electrophoretically separated protease inhibitors. The detection involves equilibrating the gel successively in the protease assay buffer and protease solution, rinsing the gel in assay buffer, and…

  2. Protease inhibitor expression in soybean roots exhibiting susceptible and resistance reactions to soybean cyst nematode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protease inhibitors play a role in regulating proteases during cellular development and in plant defense against insects and nematodes. We identified, cloned and sequenced cDNAs encoding six protease inhibitors expressed in soybean roots infected with soybean cyst nematode. Four of these protease in...

  3. 21 CFR 184.1027 - Mixed carbohydrase and protease enzyme product.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Mixed carbohydrase and protease enzyme product... Substances Affirmed as GRAS § 184.1027 Mixed carbohydrase and protease enzyme product. (a) Mixed carbohydrase and protease enzyme product is an enzyme preparation that includes carbohydrase and protease...

  4. Interaction of Autographa californica Multiple Nucleopolyhedrovirus Cathepsin Protease Progenitor (proV-CATH) with Insect Baculovirus Chitinase as a Mechanism for proV-CATH Cellular Retention▿†

    PubMed Central

    Hodgson, Jeffrey J.; Arif, Basil M.; Krell, Peter J.

    2011-01-01

    The insect baculovirus chitinase (CHIA) and cathepsin protease (V-CATH) enzymes cause terminal host insect liquefaction, enhancing the dissemination of progeny virions away from the host cadavers. Regulated and delayed cellular release of these host tissue-degrading enzymes ensures that liquefaction starts only after optimal viral replication has occurred. Baculoviral CHIA remains intracellular due to its C-terminal KDEL endoplasmic reticulum (ER) retention motif. However, the mechanism for cellular retention of the inactive V-CATH progenitor (proV-CATH) has not yet been determined. Signal peptide cleavage occurs upon cotranslational ER import of the v-cath-expressed protein, and ER-resident CHIA is needed for the folding of proV-CATH. Although this implies that CHIA and proV-CATH bind each other in the ER, the putative CHIA–proV-CATH interaction has not been experimentally verified. We demonstrate that the amino-terminal 22 amino acids (aa) of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) preproV-CATH are responsible for the entry of proV-CATH into the ER. Furthermore, the CHIA–green fluorescent protein (GFP) and proV-CATH-red fluorescent protein (RFP) fusion proteins colocalize in the ER. Using monomeric RFP (mRFP)-based bimolecular fluorescence complementation (BiFC), we determined that CHIA and proV-CATH interact directly with each other in the ER during virus replication. Moreover, reciprocal Ni/His pulldowns of His-tagged proteins confirmed the CHIA–proV-CATH interaction biochemically. The reciprocal copurification of CHIA and proV-CATH suggests a specific CHIA–proV-CATH interaction and corroborates our BiFC data. Deletion of the CHIA KDEL motif allowed for premature CHIA secretion from cells, and proV-CATH was similarly prematurely secreted from cells along with ΔKDEL-CHIA. These data suggest that CHIA and proV-CATH interact directly with each other and that this interaction aids the cellular retention of proV-CATH. PMID:21289117

  5. Microsporidia-Host Interactions

    PubMed Central

    Szumowski, Suzannah C.; Troemel, Emily R.

    2015-01-01

    Microsporidia comprise one of the largest groups of obligate intracellular pathogens and can infect virtually all animals, but host response to these fungal-related microbes has been poorly understood. Several new studies of the host transcriptional response to microsporidia infection have found infection-induced regulation of genes involved in innate immunity, ubiquitylation, metabolism, and hormonal signaling. In addition, microsporidia have recently been shown to exploit host recycling endocytosis for exit from intestinal cells, and to interact with host degradation pathways. Microsporidia infection has also been shown to profoundly affect behavior in insect hosts. Altogether, these and other recent findings are providing much-needed insight into the underlying mechanisms of microsporidia interaction with host animals. PMID:25847674

  6. Putative identification of expressed genes associated with attachment of the zebra mussel (Dreissena polymorpha).

    PubMed

    Xu, Wei; Faisal, Mohamed

    2008-01-01

    Because of its aggressive growth and firm attachment to substrata, the zebra mussel (Dreissena polymorpha) has caused severe economic and ecological problems since its invasion into North America. The nature and details of attachment of this nuisance mollusc remains largely unexplored. Byssus, a special glandular apparatus located at the root of the foot of the mussel produces threads and plates through which firm attachment of the mollusc to underwater objects takes place. In an attempt to better understand the adhesion mechanism of the zebra mussel, the suppression subtractive hybridization (SSH) assay was employed to produce a cDNA library with genes unique to the foot of the mussel. Analysis of the SSH cDNA library revealed the presence of 750 new expressed sequence tags (ESTs) including 304 contigs and 446 singlets. Using BLAST search, 365 zebra mussel ESTs showed homology to other gene sequences with putative functions. The putative functions of the homologues included proteins involved in byssal thread formation in zebra and blue mussels, exocrine gland secretion, host defence, and house keeping. The generated data provide, for the first time, some useful insights into the foot structure of the zebra mussel and its underwater adhesion. PMID:18330781

  7. First detection of circovirus-like sequences in amphibians and novel putative circoviruses in fishes.

    PubMed

    Tarján, Zoltán László; Pénzes, Judit J; Tóth, Róza P; Benkő, Mária

    2014-03-01

    The negative samples of a collection, established originally for seeking new adeno- and herpesviruses in lower vertebrates, were screened for the pres-ence of circoviruses by a consensus nested PCR targeting the gene coding for the replication-associated protein. Six fish samples representing five species, namely asp (Aspius aspius), roach (Rutilus rutilus), common bream (Abramis brama), round goby (Neogobius melanostomus) and monkey goby (Neogobius fluviatilis), as well as three frog samples were found positive for circoviral DNA. Sequence analysis of the amplicons indicated the presence of three novel putative circo-like viruses and a circovirus in Hungarian fishes and one novel circovirus in a common toad (Bufo bufo), and another one in a dead and an alive specimen of green tree frog (Litoria caerulea), respectively. In phylogeny reconstruction, the putative bream circovirus clustered together with circoviruses discovered in other cyprinid fishes recently. Three other piscine circoviral sequences appeared closest to sequences derived from different environmental samples. Surprisingly, the nucleotide sequence derived from two fish samples (a bream and a monkey goby) proved to be from porcine circovirus 2 (PCV2), almost identical to a sequence detected in Sweden previously. This is the first report on the detection of PCV2 in fish and circoviral DNA in amphibian hosts. PMID:24334078

  8. An assemblage of divergent variants of a novel putative closterovirus from American persimmon.

    PubMed

    Ito, Takao; Sato, Akihiko; Suzaki, Koichi

    2015-08-01

    Deep-sequencing analysis of nucleic acids extracted from leaf tissue of an American persimmon (Diospyros virginiana L.) and subsequent-sequencing analyses uncovered at least four distinct closterovirus-like molecules. Two complete genomes of 18,569 and 18,030 nucleotides (nt) and partial genomes of 4,899 and 9,019 nt were determined. The two complete genomes encoded 11 potential open reading frames and the characteristic organization of closteroviruses. Among the four genomes, the putative heat shock protein 70 homolog (HSP70h), RNA-dependent RNA polymerase, and coat protein showed 82-85, 72-91, and 84-87 % amino acid sequence identities, respectively. These results suggested that the four identified viruses could be divergent variants in a single host plant. The phylogenetic tree based on HSP70h showed that their closest relative, although distant, is Olive leaf yellowing-associated virus, a putative unassigned member of the family Closteroviridae. The name Persimmon virus B was proposed for this new virus, representing another unassigned member of the family. PMID:25921465

  9. Glob-Hosts

    Energy Science and Technology Software Center (ESTSC)

    2007-08-31

    The glob-hosts utility manipulates hostlist strings in UNIX shell scripts. Hostlists are a parseable string representatin of list of hosts, which compress nicely when a group of hosts are named with contiguous numeric suffixes. For example, the hosts blue1, blue2, and blue3 can be represented by the hostlist string "blue1, blue2, blue3" or equivalently "blue[1-3]". The globhost utility cn peform the following operations on a hostlist string: count, size, expand, nth, union, minus, intersection, andmore » exclude.« less

  10. Antimicrobial Peptide Conformation as a Structural Determinant of Omptin Protease Specificity

    PubMed Central

    Brannon, John R.; Thomassin, Jenny-Lee; Gruenheid, Samantha

    2015-01-01

    ABSTRACT Bacterial proteases contribute to virulence by cleaving host or bacterial proteins to promote survival and dissemination. Omptins are a family of proteases embedded in the outer membrane of Gram-negative bacteria that cleave various substrates, including host antimicrobial peptides, with a preference for cleaving at dibasic motifs. OmpT, the enterohemorrhagic Escherichia coli (EHEC) omptin, cleaves and inactivates the human cathelicidin LL-37. Similarly, the omptin CroP, found in the murine pathogen Citrobacter rodentium, which is used as a surrogate model to study human-restricted EHEC, cleaves the murine cathelicidin-related antimicrobial peptide (CRAMP). Here, we compared the abilities of OmpT and CroP to cleave LL-37 and CRAMP. EHEC OmpT degraded LL-37 and CRAMP at similar rates. In contrast, C. rodentium CroP cleaved CRAMP more rapidly than LL-37. The different cleavage rates of LL-37 and CRAMP were independent of the bacterial background and substrate sequence specificity, as OmpT and CroP have the same preference for cleaving at dibasic sites. Importantly, LL-37 was α-helical and CRAMP was unstructured under our experimental conditions. By altering the α-helicity of LL-37 and CRAMP, we found that decreasing LL-37 α-helicity increased its rate of cleavage by CroP. Conversely, increasing CRAMP α-helicity decreased its cleavage rate. This structural basis for CroP substrate specificity highlights differences between the closely related omptins of C. rodentium and E. coli. In agreement with previous studies, this difference in CroP and OmpT substrate specificity suggests that omptins evolved in response to the substrates present in their host microenvironments. IMPORTANCE Omptins are recognized as key virulence factors for various Gram-negative pathogens. Their localization to the outer membrane, their active site facing the extracellular environment, and their unique catalytic mechanism make them attractive targets for novel therapeutic strategies

  11. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival.

    PubMed

    Kugadas, Abirami; Lamont, Elise A; Bannantine, John P; Shoyama, Fernanda M; Brenner, Evan; Janagama, Harish K; Sreevatsan, Srinand

    2016-01-01

    The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc(2) 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted. PMID:27597934

  12. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival

    PubMed Central

    Kugadas, Abirami; Lamont, Elise A.; Bannantine, John P.; Shoyama, Fernanda M.; Brenner, Evan; Janagama, Harish K.; Sreevatsan, Srinand

    2016-01-01

    The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc2 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted. PMID:27597934

  13. GlyGly-CTERM and Rhombosortase: A C-Terminal Protein Processing Signal in a Many-to-One Pairing with a Rhomboid Family Intramembrane Serine Protease

    PubMed Central

    Haft, Daniel H.; Varghese, Neha

    2011-01-01

    The rhomboid family of serine proteases occurs in all domains of life. Its members contain at least six hydrophobic membrane-spanning helices, with an active site serine located deep within the hydrophobic interior of the plasma membrane. The model member GlpG from Escherichia coli is heavily studied through engineered mutant forms, varied model substrates, and multiple X-ray crystal studies, yet its relationship to endogenous substrates is not well understood. Here we describe an apparent membrane anchoring C-terminal homology domain that appears in numerous genera including Shewanella, Vibrio, Acinetobacter, and Ralstonia, but excluding Escherichia and Haemophilus. Individual genomes encode up to thirteen members, usually homologous to each other only in this C-terminal region. The domain's tripartite architecture consists of motif, transmembrane helix, and cluster of basic residues at the protein C-terminus, as also seen with the LPXTG recognition sequence for sortase A and the PEP-CTERM recognition sequence for exosortase. Partial Phylogenetic Profiling identifies a distinctive rhomboid-like protease subfamily almost perfectly co-distributed with this recognition sequence. This protease subfamily and its putative target domain are hereby renamed rhombosortase and GlyGly-CTERM, respectively. The protease and target are encoded by consecutive genes in most genomes with just a single target, but far apart otherwise. The signature motif of the Rhombo-CTERM domain, often SGGS, only partially resembles known cleavage sites of rhomboid protease family model substrates. Some protein families that have several members with C-terminal GlyGly-CTERM domains also have additional members with LPXTG or PEP-CTERM domains instead, suggesting there may be common themes to the post-translational processing of these proteins by three different membrane protein superfamilies. PMID:22194940

  14. Expressed sequence tags reveal genetic diversity and putative virulence factors of the pathogenic oomycete Pythium insidiosum.

    PubMed

    Krajaejun, Theerapong; Khositnithikul, Rommanee; Lerksuthirat, Tassanee; Lowhnoo, Tassanee; Rujirawat, Thidarat; Petchthong, Thanom; Yingyong, Wanta; Suriyaphol, Prapat; Smittipat, Nat; Juthayothin, Tada; Phuntumart, Vipaporn; Sullivan, Thomas D

    2011-07-01

    Oomycetes are unique eukaryotic microorganisms that share a mycelial morphology with fungi. Many oomycetes are pathogenic to plants, and a more limited number are pathogenic to animals. Pythium insidiosum is the only oomycete that is capable of infecting both humans and animals, and causes a life-threatening infectious disease, called "pythiosis". In the majority of pythiosis patients life-long handicaps result from the inevitable radical excision of infected organs, and many die from advanced infection. Better understanding P. insidiosum pathogenesis at molecular levels could lead to new forms of treatment. Genetic and genomic information is lacking for P. insidiosum, so we have undertaken an expressed sequence tag (EST) study, and report on the first dataset of 486 ESTs, assembled into 217 unigenes. Of these, 144 had significant sequence similarity with known genes, including 47 with ribosomal protein homology. Potential virulence factors included genes involved in antioxidation, thermal adaptation, immunomodulation, and iron and sterol binding. Effectors resembling pathogenicity factors of plant-pathogenic oomycetes were also discovered, such as, a CBEL-like protein (possible involvement in host cell adhesion and hemagglutination), a putative RXLR effector (possibly involved in host cell modulation) and elicitin-like (ELL) proteins. Phylogenetic analysis mapped P. insidiosum ELLs to several novel clades of oomycete elicitins (ELIs), and homology modeling predicted that P. insidiosum ELLs should bind sterols. Most of the P. insidiosum ESTs showed homology to sequences in the genome or EST databases of other oomycetes, but one putative gene, with unknown function, was found to be unique to P. insidiosum. The EST dataset reported here represents the first steps in identifying genes of P. insidiosum and beginning transcriptome analysis. This genetic information will facilitate understanding of pathogenic mechanisms of this devastating pathogen. PMID:21724174

  15. Shedding of TRAP by a Rhomboid Protease from the Malaria Sporozoite Surface Is Essential for Gliding Motility and Sporozoite Infectivity

    PubMed Central

    Ejigiri, Ijeoma; Ragheb, Daniel R. T.; Pino, Paco; Coppi, Alida; Bennett, Brandy Lee; Soldati-Favre, Dominique; Sinnis, Photini

    2012-01-01

    Plasmodium sporozoites, the infective stage of the malaria parasite, move by gliding motility, a unique form of locomotion required for tissue migration and host cell invasion. TRAP, a transmembrane protein with extracellular adhesive domains and a cytoplasmic tail linked to the actomyosin motor, is central to this process. Forward movement is achieved when TRAP, bound to matrix or host cell receptors, is translocated posteriorly. It has been hypothesized that these adhesive interactions must ultimately be disengaged for continuous forward movement to occur. TRAP has a canonical rhomboid-cleavage site within its transmembrane domain and mutations were introduced into this sequence to elucidate the function of TRAP cleavage and determine the nature of the responsible protease. Rhomboid cleavage site mutants were defective in TRAP shedding and displayed slow, staccato motility and reduced infectivity. Moreover, they had a more dramatic reduction in infectivity after intradermal inoculation compared to intravenous inoculation, suggesting that robust gliding is critical for dermal exit. The intermediate phenotype of the rhomboid cleavage site mutants suggested residual, albeit inefficient cleavage by another protease. We therefore generated a mutant in which both the rhomboid-cleavage site and the alternate cleavage site were altered. This mutant was non-motile and non-infectious, demonstrating that TRAP removal from the sporozoite surface functions to break adhesive connections between the parasite and extracellular matrix or host cell receptors, which in turn is essential for motility and invasion. PMID:22911675

  16. Effects of Mutational Loss of Specific Intracellular Proteases on the Sporulation of Bacillus subtilis

    PubMed Central

    Hageman, James H.; Carlton, Bruce C.

    1973-01-01

    Two protease-deficient mutants of Bacillus subtilis 168 (Trp−) were isolated and compared with the parental strain with respect to production of intracellular proteases and sporulation. A mutant lacking the metal-requiring “neutral” protease intracellularly sporulated as well as the parental strain. A second mutant, deficient in an as yet uncharacterized intracellular protease, failed to sporulate normally. It is proposed that this new protease is also involved in intracellular protein turnover. Images PMID:4196247

  17. Mini review: ATP-dependent proteases in bacteria.

    PubMed

    Bittner, Lisa-Marie; Arends, Jan; Narberhaus, Franz

    2016-08-01

    AAA(+) proteases are universal barrel-like and ATP-fueled machines preventing the accumulation of aberrant proteins and regulating the proteome according to the cellular demand. They are characterized by two separate operating units, the ATPase and peptidase domains. ATP-dependent unfolding and translocation of a substrate into the proteolytic chamber is followed by ATP-independent degradation. This review addresses the structure and function of bacterial AAA(+) proteases with a focus on the ATP-driven mechanisms and the coordinated movements in the complex mainly based on the knowledge of ClpXP. We conclude by discussing strategies how novel protease substrates can be trapped by mutated AAA(+) protease variants. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 505-517, 2016. PMID:26971705

  18. A new cuticle scale hydrolysing protease from Beauveria brongniartii.

    PubMed

    Erlacher, A; Sousa, F; Schroeder, M; Jus, S; Kokol, V; Cavaco-Paulo, A; Guebitz, G M

    2006-05-01

    From a screening for the production of new proteases specific for cuticle scales, Beauveria brongniartii was selected producing an alkaline Ca(++) dependent protease. The purified had a molecular weight of 27 kDa and a pI value of 8.0. Substrate specificities of model substrates (wool with partially removed cuticles treated with SDS) were analyzed by protein release, dissolved organic carbon (DOC) and nitrogen analysis. The C/N ratio of released material turned out to be a good parameter to determine the site of action of proteases on fibres. Compared to other enzymes, the fungal protease preferentially hydrolyzed cuticle scales and has thus a potential for anti-shrinking pre-treatment of wool fabrics. PMID:16791724

  19. Improving Viral Protease Inhibitors to Counter Drug Resistance.

    PubMed

    Kurt Yilmaz, Nese; Swanstrom, Ronald; Schiffer, Celia A

    2016-07-01

    Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design. PMID:27090931

  20. Structure of the N-terminal fragment of Escherichia coli Lon protease

    SciTech Connect

    Li, Mi; Gustchina, Alla; Rasulova, Fatima S.; Melnikov, Edward E.; Maurizi, Michael R.; Rotanova, Tatyana V.; Dauter, Zbigniew; Wlodawer, Alexander

    2010-08-01

    The medium-resolution structure of the N-terminal fragment of E. coli Lon protease shows that this part of the enzyme consists of two compact domains and a very long α-helix. The structure of a recombinant construct consisting of residues 1–245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 Å resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very long C-terminal α-helix. The structure of the first subdomain (residues 1–117), which consists mostly of β-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.

  1. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications.

    PubMed

    Hua, Yinan; Nair, Sreejayan

    2015-02-01

    Cardiovascular disease is the leading cause of death in the U.S. and other developed countries. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is a major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or over-express proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better

  2. Current strategies for probing substrate specificity of proteases.

    PubMed

    Poreba, M; Drag, M

    2010-01-01

    In this review we describe in detail the available technologies used for investigating the substrate specificity of proteases. Critical comparison of the available detection methods and their choice for certain type of screening is discussed. We present successful strategies along with appropriate examples for the design and synthesis of combinatorial libraries of substrates using both chemical and biological approaches. Proteomic tools for the identification of natural substrates of proteases are also discussed. PMID:20939826

  3. Characterization of the immunoglobulin A protease of Ureaplasma urealyticum.

    PubMed Central

    Spooner, R K; Russell, W C; Thirkell, D

    1992-01-01

    Ureaplasma urealyticum strains of all serotypes express a specific human immunoglobulin A1 protease that cleaves immunoglobulin A1 to produce intact Fab and Fc fragments. The use of a variety of inhibitors suggests that the enzyme is a serine protease. N-terminal sequencing of the Fc digestion product showed that the enzyme cleaves between the proline and threonine residues 235 and 236 in the hinge region of the heavy chain of immunoglobulin A1. Images PMID:1587621

  4. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications

    PubMed Central

    Hua, Yinan; Nair, Sreejayan

    2014-01-01

    Cardiovascular disease is the leading cause of death in the U.S. and other developed country. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechanisms are far from clear. Proteases are enzymes that break down proteins, many of which have been implicated in various diseases including cardiac disease. Matrix metalloproteinase (MMP), calpain, cathepsin and caspase are among the major proteases involved in cardiac remodeling. Recent studies have also implicated proteases in the pathogenesis of cardiometabolic disease. Elevated expression and activities of proteases in atherosclerosis, coronary heart disease, obesity/insulin-associated heart disease as well as hypertensive heart disease have been documented. Furthermore, transgenic animals that are deficient in or overexpress proteases allow scientists to understand the causal relationship between proteases and cardiometabolic disease. Mechanistically, MMPs and cathepsins exert their effect on cardiometabolic diseases mainly through modifying the extracellular matrix. However, MMP and cathepsin are also reported to affect intracellular proteins, by which they contribute to the development of cardiometabolic diseases. On the other hand, activation of calpain and caspases has been shown to influence intracellular signaling cascade including the NF-κB and apoptosis pathways. Clinically, proteases are reported to function as biomarkers of cardiometabolic diseases. More importantly, the inhibitors of proteases are credited with beneficial cardiometabolic profile, although the exact molecular mechanisms underlying these salutary effects are still under investigation. A better

  5. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities

    PubMed Central

    Mielech, Anna M.; Kilianski, Andy; Baez-Santos, Yahira M.; Mesecar, Andrew D.; Baker, Susan C.

    2014-01-01

    Coronaviruses encode papain-like proteases (PLpro) that are often multifunctional enzymes with protease activity to process the viral replicase polyprotein and deubiquitinating (DUB)/deISGylating activity, which is hypothesized to modify the innate immune response to infection. Here, we investigate the predicted DUB activity of the PLpro domain of the recently described Middle East Respiratory Syndrome Coronavirus (MERS-CoV). We found that expression of MERS-CoV PLpro reduces the levels of ubiquitinated and ISGylated host cell proteins; consistent with multifunctional PLpro activity. Further, we compared the ability of MERS-CoV PLpro and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) PLpro to block innate immune signaling of proinflammatory cytokines. We show that expression of SARS-CoV and MERS-CoV PLpros blocks upregulation of cytokines CCL5, IFN-β and CXCL10 in stimulated cells. Overall these results indicate that the PLpro domains of MERS-CoV and SARS-CoV have the potential to modify the innate immune response to viral infection and contribute to viral pathogenesis. PMID:24503068

  6. The Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases.

    PubMed

    Pruneda, Jonathan N; Durkin, Charlotte H; Geurink, Paul P; Ovaa, Huib; Santhanam, Balaji; Holden, David W; Komander, David

    2016-07-21

    Pathogenic bacteria rely on secreted effector proteins to manipulate host signaling pathways, often in creative ways. CE clan proteases, specific hydrolases for ubiquitin-like modifications (SUMO and NEDD8) in eukaryotes, reportedly serve as bacterial effector proteins with deSUMOylase, deubiquitinase, or, even, acetyltransferase activities. Here, we characterize bacterial CE protease activities, revealing K63-linkage-specific deubiquitinases in human pathogens, such as Salmonella, Escherichia, and Shigella, as well as ubiquitin/ubiquitin-like cross-reactive enzymes in Chlamydia, Rickettsia, and Xanthomonas. Five crystal structures, including ubiquitin/ubiquitin-like complexes, explain substrate specificities and redefine relationships across the CE clan. Importantly, this work identifies novel family members and provides key discoveries among previously reported effectors, such as the unexpected deubiquitinase activity in Xanthomonas XopD, contributed by an unstructured ubiquitin binding region. Furthermore, accessory domains regulate properties such as subcellular localization, as exemplified by a ubiquitin-binding domain in Salmonella Typhimurium SseL. Our work both highlights and explains the functional adaptations observed among diverse CE clan proteins. PMID:27425412

  7. The Malarial Serine Protease SUB1 Plays an Essential Role in Parasite Liver Stage Development

    PubMed Central

    Suarez, Catherine; Volkmann, Katrin; Gomes, Ana Rita; Billker, Oliver; Blackman, Michael J.

    2013-01-01

    Transmission of the malaria parasite to its vertebrate host involves an obligatory exoerythrocytic stage in which extensive asexual replication of the parasite takes place in infected hepatocytes. The resulting liver schizont undergoes segmentation to produce thousands of daughter merozoites. These are released to initiate the blood stage life cycle, which causes all the pathology associated with the disease. Whilst elements of liver stage merozoite biology are similar to those in the much better-studied blood stage merozoites, little is known of the molecular players involved in liver stage merozoite production. To facilitate the study of liver stage biology we developed a strategy for the rapid production of complex conditional alleles by recombinase mediated engineering in Escherichia coli, which we used in combination with existing Plasmodium berghei deleter lines expressing Flp recombinase to study subtilisin-like protease 1 (SUB1), a conserved Plasmodium serine protease previously implicated in blood stage merozoite maturation and egress. We demonstrate that SUB1 is not required for the early stages of intrahepatic growth, but is essential for complete development of the liver stage schizont and for production of hepatic merozoites. Our results indicate that inhibitors of SUB1 could be used in prophylactic approaches to control or block the clinically silent pre-erythrocytic stage of the malaria parasite life cycle. PMID:24348254

  8. Cwp84, a Clostridium difficile cysteine protease, exhibits conformational flexibility in the absence of its propeptide

    SciTech Connect

    Bradshaw, William J.; Roberts, April K.; Shone, Clifford C.; Acharya, K. Ravi

    2015-02-19

    Two structures of Cwp84, a cysteine protease from the S-layer of C. difficile, are presented after propeptide cleavage. They reveal the movement of three loops, two in the active-site groove and one on the surface of the lectin-like domain, exposing a hydrophobic pocket. In recent decades, the global healthcare problems caused by Clostridium difficile have increased at an alarming rate. A greater understanding of this antibiotic-resistant bacterium, particularly with respect to how it interacts with the host, is required for the development of novel strategies for fighting C. difficile infections. The surface layer (S-layer) of C. difficile is likely to be of significant importance to host–pathogen interactions. The mature S-layer is formed by a proteinaceous array consisting of multiple copies of a high-molecular-weight and a low-molecular-weight S-layer protein. These components result from the cleavage of SlpA by Cwp84, a cysteine protease. The structure of a truncated Cwp84 active-site mutant has recently been reported and the key features have been identified, providing the first structural insights into the role of Cwp84 in the formation of the S-layer. Here, two structures of Cwp84 after propeptide cleavage are presented and the three conformational changes that are observed are discussed. These changes result in a reconfiguration of the active site and exposure of the hydrophobic pocket.

  9. The HtrA-Like Protease CD3284 Modulates Virulence of Clostridium difficile

    PubMed Central

    Bakker, Dennis; Buckley, Anthony M.; de Jong, Anne; van Winden, Vincent J. C.; Verhoeks, Joost P. A.; Kuipers, Oscar P.; Douce, Gillian R.; Kuijper, Ed J.

    2014-01-01

    In the past decade, Clostridium difficile has emerged as an important gut pathogen. Symptoms of C. difficile infection range from mild diarrhea to pseudomembranous colitis. Besides the two main virulence factors toxin A and toxin B, other virulence factors are likely to play a role in the pathogenesis of the disease. In other Gram-positive and Gram-negative pathogenic bacteria, conserved high-temperature requirement A (HtrA)-like proteases have been shown to have a role in protein homeostasis and quality control. This affects the functionality of virulence factors and the resistance of bacteria to (host-induced) environmental stresses. We found that the C. difficile 630 genome encodes a single HtrA-like protease (CD3284; HtrA) and have analyzed its role in vivo and in vitro through the creation of an isogenic ClosTron-based htrA mutant of C. difficile strain 630Δerm (wild type). In contrast to the attenuated phenotype seen with htrA deletion in other pathogens, this mutant showed enhanced virulence in the Golden Syrian hamster model of acute C. difficile infection. Microarray data analysis showed a pleiotropic effect of htrA on the transcriptome of C. difficile, including upregulation of the toxin A gene. In addition, the htrA mutant showed reduced spore formation and adherence to colonic cells. Together, our data show that htrA can modulate virulence in C. difficile. PMID:25047848

  10. Impact of the Pla protease substrate α2-antiplasmin on the progression of primary pneumonic plague.

    PubMed

    Eddy, Justin L; Schroeder, Jay A; Zimbler, Daniel L; Bellows, Lauren E; Lathem, Wyndham W

    2015-12-01

    Many pathogens usurp the host hemostatic system during infection to promote pathogenesis. Yersinia pestis, the causative agent of plague, expresses the plasminogen activator protease Pla, which has been shown in vitro to target and cleave multiple proteins within the fibrinolytic pathway, including the plasmin inhibitor α2-antiplasmin (A2AP). It is not known, however, if Pla inactivates A2AP in vivo; the role of A2AP during respiratory Y. pestis infection is not known either. Here, we show that Y. pestis does not appreciably cleave A2AP in a Pla-dependent manner in the lungs during experimental pneumonic plague. Furthermore, following intranasal infection with Y. pestis, A2AP-deficient mice exhibit no difference in survival time, bacterial burden in the lungs, or dissemination from wild-type mice. Instead, we found that in the absence of Pla, A2AP contributes to the control of the pulmonary inflammatory response during infection by reducing neutrophil recruitment and cytokine production, resulting in altered immunopathology of the lungs compared to A2AP-deficient mice. Thus, our data demonstrate that A2AP is not significantly affected by the Pla protease during pneumonic plague, and although A2AP participates in immune modulation in the lungs, it has limited impact on the course or ultimate outcome of the infection. PMID:26438794

  11. Tryptogalinin Is a Tick Kunitz Serine Protease Inhibitor with a Unique Intrinsic Disorder

    PubMed Central

    Valdés, James J.; Schwarz, Alexandra; Cabeza de Vaca, Israel; Calvo, Eric; Pedra, Joao H. F.

    2013-01-01

    Background A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins) to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions. Results We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for β-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for β-tryptase. Using homology-based modeling (and other protein prediction programs) we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases). Conclusions By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level. PMID:23658744

  12. Neutrophil proteases alter the interleukin-22-receptor-dependent lung antimicrobial defence.

    PubMed

    Guillon, Antoine; Jouan, Youenn; Brea, Deborah; Gueugnon, Fabien; Dalloneau, Emilie; Baranek, Thomas; Henry, Clémence; Morello, Eric; Renauld, Jean-Christophe; Pichavant, Muriel; Gosset, Philippe; Courty, Yves; Diot, Patrice; Si-Tahar, Mustapha

    2015-09-01

    Chronic obstructive pulmonary disease (COPD) is punctuated by episodes of infection-driven acute exacerbations. Despite the life-threatening nature of these exacerbations, the underlying mechanisms remain unclear, although a high number of neutrophils in the lungs of COPD patients is known to correlate with poor prognosis. Interleukin (IL)-22 is a cytokine that plays a pivotal role in lung antimicrobial defence and tissue protection. We hypothesised that neutrophils secrete proteases that may have adverse effects in COPD, by altering the IL-22 receptor (IL-22R)-dependent signalling.Using in vitro and in vivo approaches as well as reverse transcriptase quantitative PCR, flow cytometry and/or Western blotting techniques, we first showed that pathogens such as the influenza virus promote IL-22R expression in human bronchial epithelial cells, whereas Pseudomonas aeruginosa, bacterial lipopolysaccharide or cigarette smoke do not. Most importantly, neutrophil proteases cleave IL-22R and impair IL-22-dependent immune signalling and expression of antimicrobial effectors such as β-defensin-2. This proteolysis resulted in the release of a soluble fragment of IL-22R, which was detectable both in cellular and animal models as well as in sputa from COPD patients with acute exacerbations.Hence, our study reveals an unsuspected regulation by the proteolytic action of neutrophil enzymes of IL-22-dependent lung host response. This process probably enhances pathogen replication, and ultimately COPD exacerbations. PMID:26250498

  13. Autocatalytic processing of m-AAA protease subunits in mitochondria.

    PubMed

    Koppen, Mirko; Bonn, Florian; Ehses, Sarah; Langer, Thomas

    2009-10-01

    m-AAA proteases are ATP-dependent proteolytic machines in the inner membrane of mitochondria which are crucial for the maintenance of mitochondrial activities. Conserved nuclear-encoded subunits, termed paraplegin, Afg3l1, and Afg3l2, form various isoenzymes differing in their subunit composition in mammalian mitochondria. Mutations in different m-AAA protease subunits are associated with distinct neuronal disorders in human. However, the biogenesis of m-AAA protease complexes or of individual subunits is only poorly understood. Here, we have examined the processing of nuclear-encoded m-AAA protease subunits upon import into mitochondria and demonstrate autocatalytic processing of Afg3l1 and Afg3l2. The mitochondrial processing peptidase MPP generates an intermediate form of Afg3l2 that is matured autocatalytically. Afg3l1 or Afg3l2 are also required for maturation of newly imported paraplegin subunits after their cleavage by MPP. Our results establish that mammalian m-AAA proteases can act as processing enzymes in vivo and reveal overlapping activities of Afg3l1 and Afg3l2. These findings might be of relevance for the pathogenesis of neurodegenerative disorders associated with mutations in different m-AAA protease subunits. PMID:19656850

  14. The Crystal Structure of GXGD Membrane Protease FlaK

    SciTech Connect

    J Hu; Y Xue; S Lee; Y Ha

    2011-12-31

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  15. The crystal structure of GXGD membrane protease FlaK

    SciTech Connect

    Hu, Jian; Xue, Yi; Lee, Sangwon; Ha, Ya

    2011-09-20

    The GXGD proteases are polytopic membrane proteins with catalytic activities against membrane-spanning substrates that require a pair of aspartyl residues. Representative members of the family include preflagellin peptidase, type 4 prepilin peptidase, presenilin and signal peptide peptidase. Many GXGD proteases are important in medicine. For example, type 4 prepilin peptidase may contribute to bacterial pathogenesis, and mutations in presenilin are associated with Alzheimer's disease. As yet, there is no atomic-resolution structure in this protease family. Here we report the crystal structure of FlaK, a preflagellin peptidase from Methanococcus maripaludis, solved at 3.6 {angstrom} resolution. The structure contains six transmembrane helices. The GXGD motif and a short transmembrane helix, helix 4, are positioned at the centre, surrounded by other transmembrane helices. The crystal structure indicates that the protease must undergo conformational changes to bring the GXGD motif and a second essential aspartyl residue from transmembrane helix 1 into close proximity for catalysis. A comparison of the crystal structure with models of presenilin derived from biochemical analysis reveals three common transmembrane segments that are similarly arranged around the active site. This observation reinforces the idea that the prokaryotic and human proteases are evolutionarily related. The crystal structure presented here provides a framework for understanding the mechanism of the GXGD proteases, and may facilitate the rational design of inhibitors that target specific members of the family.

  16. Insights into the Cyanobacterial Deg/HtrA Proteases

    PubMed Central

    Cheregi, Otilia; Wagner, Raik; Funk, Christiane

    2016-01-01

    Proteins are the main machinery for all living processes in a cell; they provide structural elements, regulate biochemical reactions as enzymes, and are the interface to the outside as receptors and transporters. Like any other machinery proteins have to be assembled correctly and need maintenance after damage, e.g., caused by changes in environmental conditions, genetic mutations, and limitations in the availability of cofactors. Proteases and chaperones help in repair, assembly, and folding of damaged and misfolded protein complexes cost-effective, with low energy investment compared with neo-synthesis. Despite their importance for viability, the specific biological role of most proteases in vivo is largely unknown. Deg/HtrA proteases, a family of serine-type ATP-independent proteases, have been shown in higher plants to be involved in the degradation of the Photosystem II reaction center protein D1. The objective of this review is to highlight the structure and function of their cyanobacterial orthologs. Homology modeling was used to find specific features of the SynDeg/HtrA proteases of Synechocystis sp. PCC 6803. Based on the available data concerning their location and their physiological substrates we conclude that these Deg proteases not only have important housekeeping and chaperone functions within the cell, but also are needed for remodeling the cell exterior. PMID:27252714

  17. Isolation and molecular characterisation of alkaline protease producing Bacillus thuringiensis.

    PubMed

    Agasthya, Annapurna S; Sharma, Naresh; Mohan, Anand; Mahal, Prabhpreet

    2013-05-01

    Proteases are of particular interest because of their action on insoluble keratin substrates and generally on a broad range of protein substrates. Proteases are one of the most important groups of industrial enzymes used in detergent, protein, brewing, meat, photographic, leather, dairy, pharmaceutical and food industry. In the present study, the organism isolated from the protein rich soil sample was identified by biochemical and molecular characterisation as Bacillus thuringiensis and further optimum conditions for alkaline protease synthesis were determined. The growth conditions for B. thuringiensis was optimised by inoculating into yeast extract casein medium at different pH and incubating at different temperatures. The maximum protease production occurred at pH 8 and at 37 °C. B. thuringiensis showed proteolytic activity at various culture conditions. Optimum conditions for the protease activity were found to be 47 °C and pH 8. In the later stage, the blood removing action of crude and partially purified protease was found to be effective within 25 min in the presence of commercial detergents indicating the possible use of this enzyme in detergent industry. Enzyme also showed good activity against hair substrate keratin and can be used for dehairing. PMID:22826099

  18. Delay of Iris flower senescence by protease inhibitors.

    PubMed

    Pak, Caroline; van Doorn, Wouter G

    2005-02-01

    Visible senescence of the flag tepals in Iris x hollandica (cv. Blue Magic) was preceded by a large increase in endoprotease activity. Just before visible senescence about half of total endoprotease activity was apparently due to cysteine proteases, somewhat less than half to serine proteases, with a minor role of metalloproteases. Treatment of isolated tepals with the purported serine protease inhibitors AEBSF [4-(2-aminoethyl)-benzenesulfonyl fluoride] or DFP (diisopropyl-fluorophosphate) prevented the increase in endoprotease activity and considerably delayed or prevented the normal senescence symptoms. The specific cysteine protease-specific E-64d reduced maximum endoprotease activity by 30%, but had no effect on the time to visible senescence. Zinc chloride and aprotinin reduced maximum endoprotease activity by c. 50 and 40%, respectively, and slightly delayed visible senescence. A proteasome inhibitor (Z-leu-leu-Nva-H) slightly delayed tepal senescence, which indicates that protein degradation in the proteasome may play a role in induction of the visible senescence symptoms. It is concluded that visible senescence is preceded by large-scale protein degradation, which is apparently mainly due to cysteine- and serine protease activity, and that two (unspecific) inhibitors of serine proteases considerably delay the senescence symptoms. PMID:15720658

  19. Characterizing Protease Specificity: How Many Substrates Do We Need?

    PubMed Central

    Schauperl, Michael; Fuchs, Julian E.; Waldner, Birgit J.; Huber, Roland G.; Kramer, Christian; Liedl, Klaus R.

    2015-01-01

    Calculation of cleavage entropies allows to quantify, map and compare protease substrate specificity by an information entropy based approach. The metric intrinsically depends on the number of experimentally determined substrates (data points). Thus a statistical analysis of its numerical stability is crucial to estimate the systematic error made by estimating specificity based on a limited number of substrates. In this contribution, we show the mathematical basis for estimating the uncertainty in cleavage entropies. Sets of cleavage entropies are calculated using experimental cleavage data and modeled extreme cases. By analyzing the underlying mathematics and applying statistical tools, a linear dependence of the metric in respect to 1/n was found. This allows us to extrapolate the values to an infinite number of samples and to estimate the errors. Analyzing the errors, a minimum number of 30 substrates was found to be necessary to characterize substrate specificity, in terms of amino acid variability, for a protease (S4-S4’) with an uncertainty of 5 percent. Therefore, we encourage experimental researchers in the protease field to record specificity profiles of novel proteases aiming to identify at least 30 peptide substrates of maximum sequence diversity. We expect a full characterization of protease specificity helpful to rationalize biological functions of proteases and to assist rational drug design. PMID:26559682

  20. Effect of protease inhibitors on the sense of taste.

    PubMed

    Schiffman, S S; Zervakis, J; Heffron, S; Heald, A E

    1999-10-01

    The purpose of this study was to investigate the taste properties of protease inhibitors which are essential components of drug regimes used to treat human immunodeficiency virus (HIV) infection. In this study, the taste properties of four protease inhibitors (indinavir, ritonavir, saquinavir, and nelfinavir) were investigated in unmedicated HIV-infected patients and healthy controls. Three of the four protease inhibitors (indinavir, ritonavir, and saquinavir) were found to be predominantly bitter (with additional qualities of medicinal, metallic, astringent, sour, and burning). Nelfinavir was found to be relatively tasteless. HIV-infected and uninfected control subjects detected protease inhibitors at similar concentrations, but HIV-infected subjects perceived suprathreshold concentrations as more bitter than controls. Detection thresholds ranged from 0.0061 mM for saquinavir in HIV-infected patients to 0.0702 mM for ritonavir in uninfected control subjects. Suprathreshold studies indicated that protease inhibitors modified the taste perception of a variety of other taste compounds. These results are consistent with clinical findings that protease inhibitors produce taste complaints that can impact patient compliance. PMID:10501290

  1. Protease inhibitors decrease the resistance of Vitaceae to Plasmopara viticola.

    PubMed

    Gindro, Katia; Berger, Valentine; Godard, Sophie; Voinesco, Francine; Schnee, Sylvain; Viret, Olivier; Alonso-Villaverde, Virginia

    2012-11-01

    Plasmopara viticola must successfully infect susceptible grapevine cultivars to complete its biological cycle. In resistant grapevine varieties, P. viticola is blocked by the activation of defense mechanisms; these defense mechanisms produce hypersensitive reactions, which are related to programmed cell death. In animals, programmed cell death is dependent on caspase activities. In plants, different caspase-like proteases assume the same functions. To examine the roles of caspase-like proteases in P. viticola-grapevine interactions, three varieties of grapevine with different levels of P. viticola resistance were chosen. These grapevine varieties were treated with either PMSF, a serine protease inhibitor, or E-64, a cysteine protease inhibitor. The development of the pathogen was followed microscopically, and the plant defense reactions were estimated through stilbene quantification. Both protease inhibitor treatments increased the infection rate in the resistant and immune varieties, diminished the production of toxic stilbenes and changed the level of the plants' susceptibility to the pathogen. In particular, after either protease treatment, the cultivar that was originally immune became resistant (hyphae and haustoria were observed), the resistant cultivar reached the level of a susceptible cultivar (sporulation was observed) and the susceptible cultivar became more sensitive (P. viticola colonized the entirety of the leaf mesophyll). PMID:22906813

  2. Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron.

    PubMed

    Kuehn, Claudia; Duch, Carsten

    2013-03-01

    Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike-initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with > 4,000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provide only an estimate of putative input synapse distributions, the data indicate that inhibitory and excitatory synapses were located preferentially on different dendritic domains of MN5 and, thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that, in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies. PMID:23279094

  3. Amblyomma americanum tick saliva serine protease inhibitor 6 is a cross-class inhibitor of serine proteases and papain-like cysteine proteases that delays plasma clotting and inhibits platelet aggregation

    PubMed Central

    Mulenga, A.; Kim, T.; Ibelli, A. M. G.

    2013-01-01

    We previously demonstrated that Amblyomma americanum tick serine protease inhibitor 6 (AamS6) was secreted into the host during tick feeding and that both its mRNA and protein were ubiquitously and highly expressed during the first 3 days of tick feeding. This study demonstrates that AamS6 is a cross-class inhibitor of both serine- and papain-like cysteine proteases that has apparent antihaemostatic functions. Consistent with the typical inhibitory serpin characteristics, enzyme kinetics analyses revealed that Pichia pastoris-expressed recombinant (r) AamS6 reduced initial velocities of substrate hydrolysis (V0) and/or maximum enzyme velocity (Vmax) of trypsin, chymotrypsin, elastase, chymase, and papain in a dose–response manner. We speculate that rAamS6 inhibited plasmin in a temporary fashion in that while rAamS6 reduced V0 of plasmin by up to ~53%, it had no effect on Vmax. Our data also suggest that rAmS6 has minimal or no apparent effect on V0 or Vmax of thrombin, factor Xa, and kallikrein. We speculate that AamS6 is apparently involved in facilitating blood meal feeding in that various amounts of rAamS6 reduced platelet aggregation by up to ~47% and delayed plasma clotting time in the recalcification time assay by up to ~210 s. AamS6 is most likely not involved with the tick’s evasion of the host’s complement defense mechanism, in that rAamS6 did not interfere with the complement activation pathway. Findings in this study are discussed in the context of expanding our understanding of tick proteins that control bloodmeal feeding and hence tick-borne disease transmission by ticks. PMID:23521000

  4. Ferric Uptake Regulator Fur Control of Putative Iron Acquisition Systems in Clostridium difficile

    PubMed Central

    Ellermeier, Craig D.

    2015-01-01

    ABSTRACT Clostridium difficile is an anaerobic, Gram-positive, spore-forming opportunistic pathogen and is the most common cause of hospital-acquired infectious diarrhea. Although iron acquisition in the host is a key to survival of bacterial pathogens, high levels of intracellular iron can increase oxidative damage. Therefore, expression of iron acquisition mechanisms is tightly controlled by transcriptional regulators. We identified a C. difficile homologue of the master bacterial iron regulator Fur. Using targetron mutagenesis, we generated a fur insertion mutant of C. difficile. To identify the genes regulated by Fur in C. difficile, we used microarray analysis to compare transcriptional differences between the fur mutant and the wild type when grown in high-iron medium. The fur mutant had increased expression of greater than 70 transcriptional units. Using quantitative reverse transcriptase PCR (qRT-PCR), we analyzed several of the Fur-regulated genes identified by the microarray and verified that they are both iron and Fur regulated in C. difficile. Among those Fur- and iron-repressed genes were C. difficile genes encoding 7 putative cation transport systems of different classes. We found that Fur was able to bind the DNA upstream of three Fur-repressed genes in electrophoretic mobility shift assays. We also demonstrate that expression of Fur-regulated putative iron acquisition systems was increased during C. difficile infection using the hamster model. Our data suggest that C. difficile expresses multiple iron transport mechanisms in response iron depletion in vitro and in vivo. IMPORTANCE Clostridium difficile is the most common cause of hospital-acquired infectious diarrhea and has been recently classified as an “urgent” antibiotic resistance threat by the CDC. To survive and cause disease, most bacterial pathogens must acquire the essential enzymatic cofactor iron. While import of adequate iron is essential for most bacterial growth, excess

  5. PEGylated substrates of NSP4 protease: A tool to study protease specificity.

    PubMed

    Wysocka, Magdalena; Gruba, Natalia; Grzywa, Renata; Giełdoń, Artur; Bąchor, Remigiusz; Brzozowski, Krzysztof; Sieńczyk, Marcin; Dieter, Jenne; Szewczuk, Zbigniew; Rolka, Krzysztof; Lesner, Adam

    2016-01-01

    Herein we present the synthesis of a novel type of peptidomimetics composed of repeating diaminopropionic acid residues modified with structurally diverse heterobifunctional polyethylene glycol chains (abbreviated as DAPEG). Based on the developed compounds, a library of fluorogenic substrates was synthesized. Further library deconvolution towards human neutrophil serine protease 4 (NSP4) yielded highly sensitive and selective internally quenched peptidomimetic substrates. In silico analysis of the obtained peptidomimetics revealed the presence of an interaction network with distant subsites located on the enzyme surface. PMID:26955973

  6. PEGylated substrates of NSP4 protease: A tool to study protease specificity

    PubMed Central

    Wysocka, Magdalena; Gruba, Natalia; Grzywa, Renata; Giełdoń, Artur; Bąchor, Remigiusz; Brzozowski, Krzysztof; Sieńczyk, Marcin; Dieter, Jenne; Szewczuk, Zbigniew; Rolka, Krzysztof; Lesner, Adam

    2016-01-01

    Herein we present the synthesis of a novel type of peptidomimetics composed of repeating diaminopropionic acid residues modified with structurally diverse heterobifunctional polyethylene glycol chains (abbreviated as DAPEG). Based on the developed compounds, a library of fluorogenic substrates was synthesized. Further library deconvolution towards human neutrophil serine protease 4 (NSP4) yielded highly sensitive and selective internally quenched peptidomimetic substrates. In silico analysis of the obtained peptidomimetics revealed the presence of an interaction network with distant subsites located on the enzyme surface. PMID:26955973

  7. Bartonella henselae AS A PUTATIVE CAUSE OF CONGENITAL CHOLESTASIS

    PubMed Central

    VELHO, Paulo Eduardo Neves Ferreira; BELLOMO-BRANDÃO, Maria Ângela; DRUMMOND, Marina Rovani; MAGALHÃES, Renata Ferreira; HESSEL, Gabriel; BARJAS-CASTRO, Maria de Lourdes; ESCANHOELA, Cecília Amélia Fazzio; NEGRO, Gilda Maria Barbaro DEL; OKAY, Thelma Suely

    2016-01-01

    SUMMARY Severe anemia and cholestatic hepatitis are associated with bartonella infections. A putative vertical Bartonella henselae infection was defined on the basis of ultrastructural and molecular analyses in a three-year-old child with anemia, jaundice and hepatosplenomegaly since birth. Physicians should consider bartonellosis in patients with anemia and hepatitis of unknown origin. PMID:27410916

  8. DIFFERENTIAL GENE EXPRESSION OF PUTATIVE VIRULENCE GENES IN Flavobacterium columnare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A shot-gun genomic library of the Flavobacterium columnare ALG-530 virulent strain has been constructed and more than 3,000 clones have been sequenced to date (800 contigs). Based on sequence identity with putative known virulence genes from related species, seven genes were selected for differentia...

  9. Developing putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content data

    EPA Science Inventory

    Developing putative AOPs from high content data Shannon M. Bell1,2, Stephen W. Edwards2 1 Oak Ridge Institute for Science and Education 2 Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development,...

  10. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  11. Protease Production by Different Thermophilic Fungi

    NASA Astrophysics Data System (ADS)

    Macchione, Mariana M.; Merheb, Carolina W.; Gomes, Eleni; da Silva, Roberto

    A comparative study was carried out to evaluate protease production in solid-state fermentation (SSF) and submerged fermentation (SmF) by nine different thermophilic fungi — Thermoascus aurantiacus Miehe, Thermomyces lanuginosus, T. lanuginosus TO.03, Aspergillus flavus 1.2, Aspergillus sp. 13.33, Aspergillus sp. 13.34, Aspergillus s