Science.gov

Sample records for putative sensor kinase

  1. Phosphate Concentration and the Putative Sensor Kinase Protein CckA Modulate Cell Lysis and Release of the Rhodobacter capsulatus Gene Transfer Agent

    PubMed Central

    Westbye, A. B.; Leung, M. M.; Florizone, S. M.; Taylor, T. A.; Johnson, J. A.; Fogg, P. C.

    2013-01-01

    The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a bacteriophage-like genetic element with the sole known function of horizontal gene transfer. Homologues of RcGTA genes are present in many members of the alphaproteobacteria and may serve an important role in microbial evolution. Transcription of RcGTA genes is induced as cultures enter the stationary phase; however, little is known about cis-active sequences. In this work, we identify the promoter of the first gene in the RcGTA structural gene cluster. Additionally, gene transduction frequency depends on the growth medium, and the reason for this is not known. We report that millimolar concentrations of phosphate posttranslationally inhibit the lysis-dependent release of RcGTA from cells in both a complex medium and a defined medium. Furthermore, we found that cell lysis requires the genes rcc00555 and rcc00556, which were expressed and studied in Escherichia coli to determine their predicted functions as an endolysin and holin, respectively. Production of RcGTA is regulated by host systems, including a putative histidine kinase, CckA, and we found that CckA is required for maximal expression of rcc00555 and for maturation of RcGTA to yield gene transduction-functional particles. PMID:23995641

  2. A regulatory cascade involving AarG, a putative sensor kinase, controls the expression of the 2'-N-acetyltransferase and an intrinsic multiple antibiotic resistance (Mar) response in Providencia stuartii.

    PubMed

    Rather, P N; Paradise, M R; Parojcic, M M; Patel, S

    1998-06-01

    A recessive mutation, aarG1, has been identified that resulted in an 18-fold increase in the expression of beta-galactosidase from an aac(2')-lacZ fusion. Transcriptional fusions and Northern blot analysis demonstrated that the aarG1 allele also resulted in a large increase in the expression of aarP, a gene encoding a transcriptional activator of aac(2')-Ia. The effects of aarG1 on aac(2')-Ia expression were mediated by aarP-dependent and -independent mechanisms. The aarG1 allele also resulted in a multiple antibiotic resistance (Mar) phenotype, which included increased chloramphenicol, tetracycline and fluoroquinolone resistance. This Mar phenotype also resulted from aarP-dependent and -independent mechanisms. Sequence analysis of the aarG locus revealed the presence of two open reading frames, designated aarR and aarG, organized in tandem. The putative AarR protein displayed 75% amino acid identity to the response regulator PhoP, and the AarG protein displayed 57% amino acid identity to the sensor kinase PhoQ. The aarG1 mutation, a C to T substitution, resulted in a threonine to isoleucine substitution at position 279 (T279I) in the putative sensor kinase. The AarG product was functionally similar to PhoQ, as it was able to restore wild-type levels of maganin resistance to a Salmonella typhimurium phoQ mutant. However, expression of the aarP and aac(2')-Ia genes was not significantly affected by the levels of Mg2+ or Ca2+, suggesting that aarG senses a signal other than divalent cations. PMID:9680222

  3. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho.

    PubMed Central

    Matsui, T; Amano, M; Yamamoto, T; Chihara, K; Nakafuku, M; Ito, M; Nakano, T; Okawa, K; Iwamatsu, A; Kaibuchi, K

    1996-01-01

    The small GTP binding protein Rho is implicated in cytoskeletal responses to extracellular signals such as lysophosphatidic acid to form stress fibers and focal contacts. Here we have purified a Rho-interacting protein with a molecular mass of approximately 164 kDa (p164) from bovine brain. This protein bound to GTPgammaS (a non-hydrolyzable GTP analog).RhoA but not to GDP.RhoA or GTPgammaS.RhoA with a mutation in the effector domain (RhoAA37).p164 had a kinase activity which was specifically stimulated by GTPgammaS.RhoA. We obtained the cDNA encoding p164 on the basis of its partial amino acid sequences and named it Rho-associated kinase (Rho-kinase). Rho-kinase has a catalytic domain in the N-terminal portion, a coiled coil domain in the middle portion and a zinc finger-like motif in the C-terminal portion. The catalytic domain shares 72% sequence homology with that of myotonic dystrophy kinase and the coiled coil domain contains a Rho-interacting interface. When COS7 cells were cotransfected with Rho-kinase and activated RhoA, some Rho-kinase was recruited to membranes. Thus it is likely that Rho-kinase is a putative target serine/threonine kinase for Rho and serves as a mediator of the Rho-dependent signaling pathway. Images PMID:8641286

  4. SUT2, a Putative Sucrose Sensor in Sieve Elements

    PubMed Central

    Barker, Laurence; Kühn, Christina; Weise, Andreas; Schulz, Alexander; Gebhardt, Christiane; Hirner, Brigitte; Hellmann, Hanjo; Schulze, Waltraud; Ward, John M.; Frommer, Wolf B.

    2000-01-01

    In leaves, sucrose uptake kinetics involve high- and low-affinity components. A family of low- and high-affinity sucrose transporters (SUT) was identified. SUT1 serves as a high-affinity transporter essential for phloem loading and long-distance transport in solanaceous species. SUT4 is a low-affinity transporter with an expression pattern overlapping that of SUT1. Both SUT1 and SUT4 localize to enucleate sieve elements of tomato. New sucrose transporter–like proteins, named SUT2, from tomato and Arabidopsis contain extended cytoplasmic domains, thus structurally resembling the yeast sugar sensors SNF3 and RGT2. Features common to these sensors are low codon bias, environment of the start codon, low expression, and lack of detectable transport activity. In contrast to LeSUT1, which is induced during the sink-to-source transition of leaves, SUT2 is more highly expressed in sink than in source leaves and is inducible by sucrose. LeSUT2 protein colocalizes with the low- and high-affinity sucrose transporters in sieve elements of tomato petioles, indicating that multiple SUT mRNAs or proteins travel from companion cells to enucleate sieve elements. The SUT2 gene maps on chromosome V of potato and is linked to a major quantitative trait locus for tuber starch content and yield. Thus, the putative sugar sensor identified colocalizes with two other sucrose transporters, differs from them in kinetic properties, and potentially regulates the relative activity of low- and high-affinity sucrose transport into sieve elements. PMID:10899981

  5. Crystal Structures of Putative Sugar Kinases from Synechococcus Elongatus PCC 7942 and Arabidopsis Thaliana

    PubMed Central

    Xie, Yuan; Li, Mei; Chang, Wenrui

    2016-01-01

    The genome of the Synechococcus elongatus strain PCC 7942 encodes a putative sugar kinase (SePSK), which shares 44.9% sequence identity with the xylulose kinase-1 (AtXK-1) from Arabidopsis thaliana. Sequence alignment suggests that both kinases belong to the ribulokinase-like carbohydrate kinases, a sub-family of FGGY family carbohydrate kinases. However, their exact physiological function and real substrates remain unknown. Here we solved the structures of SePSK and AtXK-1 in both their apo forms and in complex with nucleotide substrates. The two kinases exhibit nearly identical overall architecture, with both kinases possessing ATP hydrolysis activity in the absence of substrates. In addition, our enzymatic assays suggested that SePSK has the capability to phosphorylate D-ribulose. In order to understand the catalytic mechanism of SePSK, we solved the structure of SePSK in complex with D-ribulose and found two potential substrate binding pockets in SePSK. Using mutation and activity analysis, we further verified the key residues important for its catalytic activity. Moreover, our structural comparison with other family members suggests that there are major conformational changes in SePSK upon substrate binding, facilitating the catalytic process. Together, these results provide important information for a more detailed understanding of the cofactor and substrate binding mode as well as the catalytic mechanism of SePSK, and possible similarities with its plant homologue AtXK-1. PMID:27223615

  6. Cloning, purification and preliminary crystallographic analysis of a putative pyridoxal kinase from Bacillus subtilis

    SciTech Connect

    Newman, Joseph A.; Das, Sanjan K.; Sedelnikova, Svetlana E.; Rice, David W.

    2006-10-01

    A putative pyridoxal kinase from B. subtilis has been cloned, overexpressed, purified and crystallized and data have been collected to 2.8 Å resolution. Pyridoxal kinases (PdxK) are able to catalyse the phosphorylation of three vitamin B{sub 6} precursors, pyridoxal, pyridoxine and pyridoxamine, to their 5′-phosphates and play an important role in the vitamin B{sub 6} salvage pathway. Recently, the thiD gene of Bacillus subtilis was found to encode an enzyme which has the activity expected of a pyridoxal kinase despite its previous assignment as an HMPP kinase owing to higher sequence similarity. As such, this enzyme would appear to represent a new class of ‘HMPP kinase-like’ pyridoxal kinases. B. subtilis thiD has been cloned and the protein has been overexpressed in Escherichia coli, purified and subsequently crystallized in a binary complex with ADP and Mg{sup 2+}. X-ray diffraction data have been collected from crystals to 2.8 Å resolution at 100 K. The crystals belong to a primitive tetragonal system, point group 422, and analysis of the systematic absences suggest that they belong to one of the enantiomorphic pair of space groups P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2. Consideration of the space-group symmetry and unit-cell parameters (a = b = 102.9, c = 252.6 Å, α = β = γ = 90°) suggest that the crystals contain between three and six molecules in the asymmetric unit. A full structure determination is under way to provide insights into aspects of the enzyme mechanism and substrate specificity.

  7. PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM IS IDENTIFIED AS THE 70-KILODALTON HEAT SHOCK PROTEIN HSPA2

    EPA Science Inventory

    THE PUTATIVE CREATINE KINASE M-ISOFORM IN HUMAN SPERM
    IS IDENTIFIED AS THE 70 kDa HEAT SHOCK PROTEIN HSPA2

    * Gabor Huszar1, Kathryn Stone2, David Dix3 and Lynne Vigue1
    1The Sperm Physiology Laboratory, Department of Obstetrics and Gynecology, 2 W.M. Keck Foundatio...

  8. Identification and Characterization of a Putative Arginine Kinase Homolog from Myxococcus xanthus Required for Fruiting Body Formation and Cell Differentiation

    PubMed Central

    Bragg, Jonathan; Rajkovic, Andrei; Anderson, Chance; Curtis, Rachael; Van Houten, Jason; Begres, Brittany; Naples, Colin; Snider, Mark; Fraga, Dean

    2012-01-01

    Arginine kinases catalyze the reversible transfer of a high-energy phosphoryl group from ATP to l-arginine to form phosphoarginine, which is used as an energy buffer in insects, crustaceans, and some unicellular organisms. It plays an analogous role to that of phosphocreatine in vertebrates. Recently, putative arginine kinases were identified in several bacterial species, including the social Gram-negative soil bacterium Myxococcus xanthus. It is still unclear what role these proteins play in bacteria and whether they have evolved to acquire novel functions in the species in which they are found. In this study, we biochemically purified and characterized a putative M. xanthus arginine kinase, Ark, and demonstrated that it has retained the ability to catalyze the phosphorylation of arginine by using ATP. We also constructed a null mutation in the ark gene and demonstrated its role in both certain stress responses and development. PMID:22389486

  9. Phosphatidylinositol-3-kinase as a putative target for anticancer action of clotrimazole.

    PubMed

    Furtado, Cristiane M; Marcondes, Mariah C; Carvalho, Renato S; Sola-Penna, Mauro; Zancan, Patricia

    2015-05-01

    Clotrimazole (CTZ) has been proposed as an antitumoral agent because of its properties that inhibit glycolytic enzymes and detach them from the cytoskeleton. However, the broad effects of the drug, e.g., acting on different enzymes and pathways, indicate that CTZ might also affect several signaling pathways. In this study, we show that CTZ interferes with the human breast cancer cell line MCF-7 after a short incubation period (4 h), thereby diminishing cell viability, promoting apoptosis, depolarizing mitochondria, inhibiting key glycolytic regulatory enzymes, decreasing the intracellular ATP content, and permeating plasma membranes. CTZ treatment also interferes with autophagy. Moreover, when the incubation is performed under hypoxic conditions, certain effects of CTZ are enhanced, such as phosphatidylinositol-3-phosphate kinase (PI3K), which is inhibited upon CTZ treatment; this inhibition is potentiated under hypoxia. CTZ-induced PI3K inhibition is not caused by upstream effects of CTZ because the drug does not affect the interaction of the PI3K regulatory subunit and the insulin receptor substrate (IRS)-1. Additionally, CTZ directly inhibits human purified PI3K in a dose-dependent and reversible manner. Pharmacologic and in silico results suggest that CTZ may bind to the PI3K catalytic site. Therefore, we conclude that PI3K is a novel, putative target for the antitumoral effects of CTZ, interfering with autophagy, apoptosis, cell division and viability. PMID:25794423

  10. Enhancing the Identification of Phosphopeptides from Putative Basophilic Kinase Substrates Using Ti (IV) Based IMAC Enrichment*

    PubMed Central

    Zhou, Houjiang; Low, Teck Y.; Hennrich, Marco L.; van der Toorn, Henk; Schwend, Thomas; Zou, Hanfa; Mohammed, Shabaz; Heck, Albert J. R.

    2011-01-01

    Metal and metal oxide chelating-based phosphopeptide enrichment technologies provide powerful tools for the in-depth profiling of phosphoproteomes. One weakness inherent to current enrichment strategies is poor binding of phosphopeptides containing multiple basic residues. The problem is exacerbated when strong cation exchange (SCX) is used for pre-fractionation, as under low pH SCX conditions phosphorylated peptides with multiple basic residues elute with the bulk of the tryptic digest and therefore require more stringent enrichment. Here, we report a systematic evaluation of the characteristics of a novel phosphopeptide enrichment approach based on a combination of low pH SCX and Ti4+-immobilized metal ion affinity chromatography (IMAC) comparing it one-to-one with the well established low pH SCX-TiO2 enrichment method. We also examined the effect of 1,1,1,3,3,3-hexafluoroisopropanol (HFP), trifluoroacetic acid (TFA), or 2,5-dihydroxybenzoic acid (DHB) in the loading buffer, as it has been hypothesized that high levels of TFA and the perfluorinated solvent HFP improve the enrichment of phosphopeptides containing multiple basic residues. We found that Ti4+-IMAC in combination with TFA in the loading buffer, outperformed all other methods tested, enabling the identification of around 5000 unique phosphopeptides containing multiple basic residues from 400 μg of a HeLa cell lysate digest. In comparison, ∼2000 unique phosphopeptides could be identified by Ti4+-IMAC with HFP and close to 3000 by TiO2. We confirmed, by motif analysis, the basic phosphopeptides enrich the number of putative basophilic kinases substrates. In addition, we performed an experiment using the SCX/Ti4+-IMAC methodology alongside the use of collision-induced dissociation (CID), higher energy collision induced dissociation (HCD) and electron transfer dissociation with supplementary activation (ETD) on considerably more complex sample, consisting of a total of 400 μg of triple dimethyl labeled

  11. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens.

    PubMed

    Velikova, Nadya; Fulle, Simone; Manso, Ana Sousa; Mechkarska, Milena; Finn, Paul; Conlon, J Michael; Oggioni, Marco Rinaldo; Wells, Jerry M; Marina, Alberto

    2016-01-01

    Novel antibacterials are urgently needed to address the growing problem of bacterial resistance to conventional antibiotics. Two-component systems (TCS) are widely used by bacteria to regulate gene expression in response to various environmental stimuli and physiological stress and have been previously proposed as promising antibacterial targets. TCS consist of a sensor histidine kinase (HK) and an effector response regulator. The HK component contains a highly conserved ATP-binding site that is considered to be a promising target for broad-spectrum antibacterial drugs. Here, we describe the identification of putative HK autophosphorylation inhibitors following two independent experimental approaches: in vitro fragment-based screen via differential scanning fluorimetry and in silico structure-based screening, each followed up by the exploration of analogue compounds as identified by ligand-based similarity searches. Nine of the tested compounds showed antibacterial effect against multi-drug resistant clinical isolates of bacterial pathogens and include three novel scaffolds, which have not been explored so far in other antibacterial compounds. Overall, putative HK autophosphorylation inhibitors were found that together provide a promising starting point for further optimization as antibacterials. PMID:27173778

  12. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens

    PubMed Central

    Velikova, Nadya; Fulle, Simone; Manso, Ana Sousa; Mechkarska, Milena; Finn, Paul; Conlon, J. Michael; Oggioni, Marco Rinaldo; Wells, Jerry M.; Marina, Alberto

    2016-01-01

    Novel antibacterials are urgently needed to address the growing problem of bacterial resistance to conventional antibiotics. Two-component systems (TCS) are widely used by bacteria to regulate gene expression in response to various environmental stimuli and physiological stress and have been previously proposed as promising antibacterial targets. TCS consist of a sensor histidine kinase (HK) and an effector response regulator. The HK component contains a highly conserved ATP-binding site that is considered to be a promising target for broad-spectrum antibacterial drugs. Here, we describe the identification of putative HK autophosphorylation inhibitors following two independent experimental approaches: in vitro fragment-based screen via differential scanning fluorimetry and in silico structure-based screening, each followed up by the exploration of analogue compounds as identified by ligand-based similarity searches. Nine of the tested compounds showed antibacterial effect against multi-drug resistant clinical isolates of bacterial pathogens and include three novel scaffolds, which have not been explored so far in other antibacterial compounds. Overall, putative HK autophosphorylation inhibitors were found that together provide a promising starting point for further optimization as antibacterials. PMID:27173778

  13. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea

    SciTech Connect

    Stein, J.C.; Howlett, B.; Boyes, D.C.; Nasrallah, M.E.; Nasrallah, J.B. )

    1991-10-01

    Self-recognition between pollen and stigma during pollination in Brassica oleracea is genetically controlled by the multiallelic self-incompatibility locus (S). The authors describe the S receptor kinase (SRK) gene, a previously uncharacterized gene that residues at the S locus. The nucleotide sequences of genomic DNA and of cDNAs corresponding to SRK predict a putative transmembrane receptor having serine/threonine-specific protein kinase activity. Its extracellular domain exhibits striking homology to the secreted product of the S-locus genotypes are highly polymorphic and have apparently evolved in unison with genetically linked alleles of SLG. SRK directs the synthesis of several alternative transcripts, which potentially encode different protein products, and these transcripts were detected exclusively in reproductive organs. The identification of SRK may provide new perspectives into the signal transduction mechanism underlying pollen recognition.

  14. Myxococcus xanthus mokA Encodes a Histidine Kinase-Response Regulator Hybrid Sensor Required for Development and Osmotic Tolerance

    PubMed Central

    Kimura, Yoshio; Nakano, Hiromi; Terasaka, Hideaki; Takegawa, Kaoru

    2001-01-01

    A gene, mokA, encoding a protein with similarities to histidine kinase-response regulator hybrid sensor, was cloned from a Myxococcus xanthus genomic library. The predicted mokA gene product was found to contain three domains: an amino-terminal input domain, a central transmitter domain, and a carboxy-terminal receiver domain. mokA mutants placed under starvation conditions exhibited reduced sporulation. Mutation of mokA also caused marked growth retardation at high osmolarity. These results indicated that M. xanthus MokA is likely a transmembrane sensor that is required for development and osmotic tolerance. The putative function of MokA is similar to that of the hybrid histidine kinase, DokA, of the eukaryotic slime mold Dictyostelium discoideum. PMID:11157925

  15. HRR25, a putative protein kinase from budding yeast: Association with repair of damaged DNA

    SciTech Connect

    Hoekstra, M.F.; Ou, A.C.; DeMaggio, A.J.; Burbee, D.G. ); Liskay, R.M. ); Heffron, F. )

    1991-08-30

    In simple eukaryotes, protein kinases regulate mitotic and meiotic cell cycles, the response to polypeptide pheromones, and the initiation of nuclear DNA synthesis. The protein HRR25 from the budding yeast Saccharomyces cerevisiae was defined by the mutation hrr25-1. This mutation resulted in sensitivity to continuous expression of the HO double-strand endonuclease, to methyl methanesulfonate, and to x-irradiation. Homozygotes of hrr25-1 were unable to sporulate and disruption and deletion of HRR25 interfered with mitotic and meiotic cell division. Sequence analysis revealed two distinctive regions in the protein. The NH{sub 2}-terminus of HRR25 contains the hallmark features of protein kinases, whereas the COOH-terminus is rich in proline and glutamine. Mutations in HRR25 at conserved residues found in all protein kinases inactivated the gene, and these mutants exhibited the hrr25 null phenotypes. Taken together, the hrr25 mutant phenotypes and the features of the gene product indicate that HRR25 is a distinctive member of the protein kinase superfamily.

  16. Functional characterization of PCRK1, a putative protein kinase with a role in immunity

    PubMed Central

    Sreekanta, Suma; Haruta, Miyoshi; Minkoff, Benjamin B; Glazebrook, Jane

    2015-01-01

    In Arabidopsis, defense signaling is triggered by the perception of conserved molecular patterns by pattern recognition receptors (PRRs). Signal transduction from the PRRs requires members of a family of Receptor-Like Cytoplasmic Kinases (RLCKs). Previously, we described one such RLCK, PTI Compromised Receptor-Like Cytoplasmic Kinase 1 (PCRK1) that is important for immunity induced by Microbe Associated Molecular Patterns (MAMPs) as well as Damage Associated Molecular Patterns (DAMPs). In this study, we measured the growth of Pma ES4326 in double mutants carrying pcrk1 together with the salicylic acid (SA) biosynthesis mutation sid2–2 or the jasmonic acid (JA) receptor mutation coi1–1, showing that the function of PCRK1 is SA independent but may be partially dependent on JA. Mutation of phosphorylated serine residues S232, S233 and S237 compromised the immune signaling function of PCRK1. PMID:26237268

  17. Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain.

    PubMed

    Huala, E; Oeller, P W; Liscum, E; Han, I S; Larsen, E; Briggs, W R

    1997-12-19

    The NPH1 (nonphototropic hypocotyl 1) gene encodes an essential component acting very early in the signal-transduction chain for phototropism. Arabidopsis NPH1 contains a serine-threonine kinase domain and LOV1 and LOV2 repeats that share similarity (36 to 56 percent) with Halobacterium salinarium Bat, Azotobacter vinelandii NIFL, Neurospora crassa White Collar-1, Escherichia coli Aer, and the Eag family of potassium-channel proteins from Drosophila and mammals. Sequence similarity with a known (NIFL) and a suspected (Aer) flavoprotein suggests that NPH1 LOV1 and LOV2 may be flavin-binding domains that regulate kinase activity in response to blue light-induced redox changes. PMID:9405347

  18. Phosphatase and tensin homolog-induced putative kinase 1 and Parkin in diabetic heart: Role of mitophagy.

    PubMed

    Tang, Ying; Liu, Jiankang; Long, Jiangang

    2015-05-01

    Diabetes is an independent risk factor for cardiovascular morbidity and mortality. Diabetes-associated cardiac pathophysiology is recognized to be due to reasons including metabolic consequences on the myocardium. The heart is a highly energy-demanding tissue, with mitochondria supplying over 90% of adenosine triphosphate. The involvement of mitochondrial dysfunction in diabetes-related cardiac pathogenesis has been studied. Phosphatase and tensin homolog-induced putative kinase 1 (PINK1) and Parkin, initially identified to be associated with the pathogenesis of a familiar form of Parkinson's disease, have recently been recognized to play a critical role in mediating cardiomyocytes' adaption to stresses. Extensive studies have suggested PINK1 and Parkin as key regulators of mitophagy. In the present review article, we will first summarize the new findings on PINK1/Parkin acting in cardioprotection, and then discuss the potential role of PINK1/Parkin in diabetic heart by mediating mitophagy. PMID:25969707

  19. Role of a geminivirus AV2 protein putative protein kinase C motif on subcellular localization and pathogenicity.

    PubMed

    Chowda-Reddy, R V; Achenjang, Fidelis; Felton, Christian; Etarock, Marie T; Anangfac, Marie-Therese; Nugent, Patricia; Fondong, Vincent N

    2008-07-01

    Virus-derived genes or genome fragments are increasingly being used to generate transgenic plants with resistance to plant viruses. There is need to rapidly investigate these genes in plants using transient expression prior to using them as transgenes since they may be pathogenic to plants. In this study, we investigated the AV2 protein encoded by East African cassava mosaic Cameroon virus, a virus associated with a cassava disease epidemic in western Africa. For subcellular localization, AV2 was fused to the yellow fluorescent protein (YFP) and expressed in Nicotiana benthamiana. Confocal analyses showed that AV2-YFP localizes mainly in the cytoplasm. Because it overlaps with the coat protein gene and therefore could be used to generate transgenic plants for resistance to geminiviruses, we investigated its pathogenesis in N. benthamiana by using the Potato virus X (PVX) vector. The chimeric virus PVX-AV2 induced a mild mottling in infected plants and was shown to suppress virus-induced gene silencing (VIGS). Using point mutations, we show here that AV2 pathogenicity is dependent on a conserved putative protein kinase C (PKC) phosphorylation motif. Because of its pathogenicity and ability to suppress RNA silencing, AV2 transgenic plants will less likely provide a control to geminiviruses, indeed it may weaken the resistance of the plant. We therefore suggest the use of the AV2 putative PKC mutants to generate transgenic plants. PMID:18405995

  20. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps.

    PubMed

    Scherzer, Sönke; Böhm, Jennifer; Krol, Elzbieta; Shabala, Lana; Kreuzer, Ines; Larisch, Christina; Bemm, Felix; Al-Rasheid, Khaled A S; Shabala, Sergey; Rennenberg, Heinz; Neher, Erwin; Hedrich, Rainer

    2015-06-01

    The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K(+) uptake system in the Venus flytrap. In search of K(+) transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K(+)-transporter genes into Xenopus oocytes, however, both putative K(+) transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K(+) transporter 1 (AKT1), we coexpressed the putative K(+) transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K(+) uptake. DmKT1 was found to be a K(+)-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around -120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K(+), reducing its concentration from millimolar levels down to trace levels. PMID:25997445

  1. Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps

    PubMed Central

    Scherzer, Sönke; Böhm, Jennifer; Krol, Elzbieta; Shabala, Lana; Kreuzer, Ines; Larisch, Christina; Bemm, Felix; Al-Rasheid, Khaled A. S.; Shabala, Sergey; Rennenberg, Heinz; Neher, Erwin; Hedrich, Rainer

    2015-01-01

    The Darwin plant Dionaea muscipula is able to grow on mineral-poor soil, because it gains essential nutrients from captured animal prey. Given that no nutrients remain in the trap when it opens after the consumption of an animal meal, we here asked the question of how Dionaea sequesters prey-derived potassium. We show that prey capture triggers expression of a K+ uptake system in the Venus flytrap. In search of K+ transporters endowed with adequate properties for this role, we screened a Dionaea expressed sequence tag (EST) database and identified DmKT1 and DmHAK5 as candidates. On insect and touch hormone stimulation, the number of transcripts of these transporters increased in flytraps. After cRNA injection of K+-transporter genes into Xenopus oocytes, however, both putative K+ transporters remained silent. Assuming that calcium sensor kinases are regulating Arabidopsis K+ transporter 1 (AKT1), we coexpressed the putative K+ transporters with a large set of kinases and identified the CBL9-CIPK23 pair as the major activating complex for both transporters in Dionaea K+ uptake. DmKT1 was found to be a K+-selective channel of voltage-dependent high capacity and low affinity, whereas DmHAK5 was identified as the first, to our knowledge, proton-driven, high-affinity potassium transporter with weak selectivity. When the Venus flytrap is processing its prey, the gland cell membrane potential is maintained around −120 mV, and the apoplast is acidified to pH 3. These conditions in the green stomach formed by the closed flytrap allow DmKT1 and DmHAK5 to acquire prey-derived K+, reducing its concentration from millimolar levels down to trace levels. PMID:25997445

  2. Characterization of the RcsC sensor kinase from Erwinia amylovora and other enterobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RcsC is a hybrid sensor kinase which contains a sensor domain, a histidine kinase domain and a receiver domain. We have previously demonstrated that, while the Erwinia amylovora rcsC mutant produces more amylovoran than the wild type strain in vitro, the mutant remains avirulent on both immature pea...

  3. Two putative protein-tyrosine kinases identified by application of the polymerase chain reaction.

    PubMed Central

    Wilks, A F

    1989-01-01

    The pivotal role that protein-tyrosine kinases (PTKs) play in the growth regulation of eukaryotic cells is manifest in the frequent appearance of members of the PTK family as growth factor receptors or as the transforming agents of acutely transforming retroviruses. A feature common to all members of the PTK family is a highly conserved catalytic domain which is characteristic of the group as a whole and whose activity appears to be tightly regulated within the cell by other domains of the PTK. Degenerate oligonucleotide probes corresponding to two invariant amino acid sequence motifs within the catalytic domains of all PTK family members were synthesized and employed in the polymerase chain reaction (PCR) to amplify cDNA sequences between them. An M13 PCR library was produced in this way from cDNA prepared against mRNA from the murine hemopoietic cell line FDC-P1. The PCR library was then screened by DNA sequencing for PTK-related sequences. Two sequences were identified that, on the basis of sequence comparison with known PTKs, may encode representatives of a new class of PTK. Images PMID:2466296

  4. The sensor kinase DcuS of Escherichia coli: two stimulus input sites and a merged signal pathway in the DctA/DcuS sensor unit.

    PubMed

    Witan, Julian; Monzel, Christian; Scheu, Patrick D; Unden, Gottfried

    2012-11-01

    The membrane-integral sensor kinase DcuS of Escherichia coli consists of a periplasmically located sensory PAS(P) domain, transmembrane helices TM1 and TM2, a cytoplasmic PAS(C) domain and the kinase domain. Stimulus (C(4)-dicarboxylate) binding at PAS(P) is required to stimulate phosphorylation of the kinase domain, resulting in phosphoryl transfer to the response regulator DcuR. PAS(C) functions as a signaling device or a relay in signal transfer from TM2 to the kinase. Phosphorylated DcuR induces the expression of the target genes. Sensing by DcuS requires the presence of the C(4)-dicarboxylate transporter DctA during aerobic growth. DctA forms a sensor unit with DcuS, and a short C-terminal sequence of DctA forming the putative helix 8b is required for interaction with DcuS. Helix 8b contains a LDXXXLXXXL motif that is essential for function and interaction. DcuS requires the PAS(C) domain for signal perception from DctA. Thus, DcuS and DctA form a DctA/DcuS sensory unit, and DcuS perceives stimuli from two different sites (PAS(P) and DctA). The signal transfer pathways are supposed to merge at PAS(C). The fumarate/succinate antiporter DcuB takes over the role as a co-sensor of DcuS under anaerobic growth conditions. PMID:23109544

  5. Crystal Structure of a Histidine Kinase Sensor Domain with Similarity to Periplasmic Binding Proteins

    SciTech Connect

    Cheung, J.; Le-Khac, M; Hendrickson, W

    2009-01-01

    Histidine kinase receptors are elements of the two-component signal transduction systems commonly found in bacteria and lower eukaryotes, where they are crucial for environmental adaption through the coupling of extracellular changes to intracellular responses. The typical two-component system consists of a membrane-spanning histidine kinase sensor and a cytoplasmic response regulator. In the calssic system, extracellular signals such as small molecule ligands and ions are detected by the periplasmic sensor domain of the histidine kinase receptor, which modulates the catalytic activity of the cytoplasmic histidine kinase domain and promotes ATP-dependent autophosphorylation of a conserved histidine residue. G. sulfurreducens genomic DNA was used.

  6. CHARACTERIZATION AND FUNCTIONAL STUDY OF A PUTATIVE JUVENILE HORMONE DIOL KINASE IN THE COLORADO POTATO BEETLE Leptinotarsa decemlineata (Say).

    PubMed

    Fu, Kai-Yun; Lü, Feng-Gong; Guo, Wen-Chao; Li, Guo-Qing

    2015-11-01

    Juvenile hormone diol kinase (JHDK) is an enzyme involved in JH degradation. In the present article, a putative JHDK cDNA (LdJHDK) was cloned from the Colorado potato beetle Leptinotarsa decemlineata. The cDNA consists of 814 bp, containing a 555 bp open reading frame encoding a 184 amino acid protein. LdJHDK reveals a high degree of identity to the previously reported insect JHDKs. It possesses three conserved purine nucleotide-binding elements, and contains three EF-hand motifs (helix-loop-helix structural domains). LdJHDK mRNA was mainly detected in hindgut and Malpighian tubules. Besides, a trace amount of LdJHDK mRNA was also found in thoracic muscles, brain-corpora cardiaca-corpora allata complex, foregut, midgut, ventral ganglia, fat body, epidermis, and hemocytes. Moreover, LdJHDK was expressed throughout all developmental stages. Within the first, second, and third larval instar, the expression levels of LdJHDK were higher just before and right after the molt, and were lower in the intermediate instar. In the fourth larval instar, the highest peak of LdJHDK occurred 56 h after ecdysis. Ingestion of double-stranded RNA (dsRNA) against LdJHDK successfully knocked down the target gene, increased JH titer, and significantly upregulated LdKr-h1 mRNA level. Knockdown of LdJHDK significantly impaired adult emergence. Thus, we provide a line of experimental evidence in L. decemlineata to support that LdJHDK encodes function protein involved in JH degradation. PMID:26280246

  7. Functional analysis of the fission yeast Prp4 protein kinase involved in pre-mRNA splicing and isolation of a putative mammalian homologue.

    PubMed Central

    Gross, T; Lützelberger, M; Weigmann, H; Klingenhoff, A; Shenoy, S; Käufer, N F

    1997-01-01

    The prp4 gene of Schizosaccharomyces pombe encodes a protein kinase. A physiological substrate is not yet known. A mutational analysis of prp4 revealed that the protein consists of a short N-terminal domain, containing several essential motifs, which is followed by the kinase catalytic domain comprising the C-terminus of the protein. Overexpression of N-terminal mutations disturbs mitosis and produces elongated cells, Using a PCR approach, we isolated a putative homologue of Prp4 from human and mouse cells. The mammalian kinase domain is 53% identical to the kinase domain of Prp4. The short N-terminal domains share <20% identical amino acids, but contain conserved motifs. A fusion protein consisting of the N-terminal region from S. pombe followed by the mammalian kinase domain complements a temperature-sensitive prp4 mutation of S. pombe. Prp4 and the recombinant yeast/mouse protein kinase phosphorylate the human SR splicing factor ASF/SF2 in vitro in its RS domain. PMID:9102632

  8. Kinase Substrate Sensor (KISS), a mammalian in situ protein interaction sensor.

    PubMed

    Lievens, Sam; Gerlo, Sarah; Lemmens, Irma; De Clercq, Dries J H; Risseeuw, Martijn D P; Vanderroost, Nele; De Smet, Anne-Sophie; Ruyssinck, Elien; Chevet, Eric; Van Calenbergh, Serge; Tavernier, Jan

    2014-12-01

    Probably every cellular process is governed by protein-protein interaction (PPIs), which are often highly dynamic in nature being modulated by in- or external stimuli. Here we present KISS, for KInase Substrate Sensor, a mammalian two-hybrid approach designed to map intracellular PPIs and some of the dynamic features they exhibit. Benchmarking experiments indicate that in terms of sensitivity and specificity KISS is on par with other binary protein interaction technologies while being complementary with regard to the subset of PPIs it is able to detect. We used KISS to evaluate interactions between different types of proteins, including transmembrane proteins, expressed at their native subcellular location. In situ analysis of endoplasmic reticulum stress-induced clustering of the endoplasmic reticulum stress sensor ERN1 and ligand-dependent β-arrestin recruitment to GPCRs illustrated the method's potential to study functional PPI modulation in complex cellular processes. Exploring its use as a tool for in cell evaluation of pharmacological interference with PPIs, we showed that reported effects of known GPCR antagonists and PPI inhibitors are properly recapitulated. In a three-hybrid setup, KISS was able to map interactions between small molecules and proteins. Taken together, we established KISS as a sensitive approach for in situ analysis of protein interactions and their modulation in a changing cellular context or in response to pharmacological challenges. PMID:25154561

  9. Ligand-Induced Asymmetry in Histidine Sensor Kinase Complex Regulates Quorum Sensing

    SciTech Connect

    Neiditch,M.; Federle, M.; Pompeani, A.; Kelly, R.; Swem, D.; Jeffrey, P.; Bassler, B.; Hughson, F.

    2006-01-01

    Bacteria sense their environment using receptors of the histidine sensor kinase family, but how kinase activity is regulated by ligand binding is not well understood. Autoinducer-2 (AI-2), a secreted signaling molecule originally identified in studies of the marine bacterium Vibrio harveyi, regulates quorum-sensing responses and allows communication between different bacterial species. AI-2 signal transduction in V. harveyi requires the integral membrane receptor LuxPQ, comprised of periplasmic binding protein (LuxP) and histidine sensor kinase (LuxQ) subunits. Combined X-ray crystallographic and functional studies show that AI-2 binding causes a major conformational change within LuxP, which in turn stabilizes a quaternary arrangement in which two LuxPQ monomers are asymmetrically associated. We propose that formation of this asymmetric quaternary structure is responsible for repressing the kinase activity of both LuxQ subunits and triggering the transition of V. harveyi into quorum-sensing mode.

  10. [Characterization of a putative S locus encoded receptor protein kinase and its role in self-incompatibility

    SciTech Connect

    Not Available

    1993-01-01

    The serine/threonine protein kinase (SRK) protein was predicted to be similar to the growth factor receptor tyrosine kinases in animals but its amino acid sequence of the catalytic domain is more similar to that of the catalytic domains of protein serine/threonine kinases than to protein tyrosine kinases. We have shown that the SRK protein has intrinsic scrine/threonine kinase activity. We subcloned the protein kinase-homologous domain of the SRK[sub 6] cDNA into the bacterial expression vector pGEX-3X and we have constructed a second plasmid identical to the first except that it carried a conservative mutation that substituted Arg for the Lys[sup 524] codon of SRK6 This lysine corresponds to the ATP-binding site, is essential in protein kinases, and is a common target for site-directed mutagenesis as a means to obtain kinase-defective proteins. Cultures bearing the wild-type and mutant SRK catalytic domains each produced an approximately 64 kD protein that reacted with anti-SRK6 antibodies. Following pulse-labeling with [sup 32]P we found that the wild-type SRK6 protein but not the mutant form was detectably phosphorylated. Phosphoamino acid analysis of the affinity purified [sup 32]p-labeled GST-SRK6 fusion protein demonstrated that SRK was phosphorylated predominantly on semine and to a lesser extent on threonine, but not on tyrosine. Thus, SRK6 is a functional serine/threonine protein kinase.

  11. The KLP-7 Residue S546 Is a Putative Aurora Kinase Site Required for Microtubule Regulation at the Centrosome in C. elegans

    PubMed Central

    Han, Xue; Adames, Kelly; Sykes, Ellen M. E.; Srayko, Martin

    2015-01-01

    Regulation of microtubule dynamics is essential for many cellular processes, including proper assembly and function of the mitotic spindle. The kinesin-13 microtubule-depolymerizing enzymes provide one mechanism to regulate microtubule behaviour temporally and spatially. Vertebrate MCAK locates to chromatin, kinetochores, spindle poles, microtubule tips, and the cytoplasm, implying that the regulation of kinesin-13 activity and subcellular targeting is complex. Phosphorylation of kinesin-13 by Aurora kinase inhibits microtubule depolymerization activity and some Aurora phosphorylation sites on kinesin-13 are required for subcellular localization. Herein, we determine that a C. elegans deletion mutant klp-7(tm2143) causes meiotic and mitotic defects that are consistent with an increase in the amount of microtubules in the cytoplasmic and spindle regions of meiotic embryos, and an increase in microtubules emanating from centrosomes. We show that KLP-7 is phosphorylated by Aurora A and Aurora B kinases in vitro, and that the phosphorylation by Aurora A is stimulated by TPXL-1. Using a structure-function approach, we establish that one putative Aurora kinase site, S546, within the C-terminal part of the core domain is required for the function, but not subcellular localization, of KLP-7 in vivo. Furthermore, FRAP analysis reveals microtubule-dependent differences in the turnover of KLP-7(S546A) and KLP-7(S546E) mutant proteins at the centrosome, suggesting a possible mechanism for the regulation of KLP-7 by Aurora kinase. PMID:26168236

  12. Structural Characterization of the Predominant Family of Histidine Kinase Sensor Domains

    SciTech Connect

    Zhang, Z.; Hendrickson, W

    2010-01-01

    Histidine kinase (HK) receptors are used ubiquitously by bacteria to monitor environmental changes, and they are also prevalent in plants, fungi, and other protists. Typical HK receptors have an extracellular sensor portion that detects a signal, usually a chemical ligand, and an intracellular transmitter portion that includes both the kinase domain itself and the site for histidine phosphorylation. While kinase domains are highly conserved, sensor domains are diverse. HK receptors function as dimers, but the molecular mechanism for signal transduction across cell membranes remains obscure. In this study, eight crystal structures were determined from five sensor domains representative of the most populated family, family HK1, found in a bioinformatic analysis of predicted sensor domains from transmembrane HKs. Each structure contains an inserted repeat of PhoQ/DcuS/CitA (PDC) domains, and similarity between sequence and structure is correlated across these and other double-PDC sensor proteins. Three of the five sensors crystallize as dimers that appear to be physiologically relevant, and comparisons between ligated structures and apo-state structures provide insights into signal transmission. Some HK1 family proteins prove to be sensors for chemotaxis proteins or diguanylate cyclase receptors, implying a combinatorial molecular evolution.

  13. A phosphatidylinositol (PI) kinase gene family in Dictyostelium discoideum: biological roles of putative mammalian p110 and yeast Vps34p PI 3-kinase homologs during growth and development.

    PubMed Central

    Zhou, K; Takegawa, K; Emr, S D; Firtel, R A

    1995-01-01

    Three groups of phosphatidylinositol (PI) kinases convert PI into PI(3)phosphate, PI(4)phosphate, PI(4,5) bisphosphate, and PI(3,4,5)trisphosphate. These phosphoinositides have been shown to function in vesicle-mediated protein sorting, and they serve as second-messenger signaling molecules for regulating cell growth. To further elucidate the mechanism of regulation and function of phosphoinositides, we cloned genes encoding five putative PI kinases from Dictyostelium discoideum. Database analysis indicates that D. discoideum PIK1 (DdPIK1), -2, and -3 are most closely related to the mammalian p110 PI 3-kinase, DdPIK5 is closest to the yeast Vps34p PI 3-kinase, and DdPIK4 is most homologous to PI 4-kinases. Together with other known PI kinases, a superfamily of PI kinase genes has been defined, with all of the encoded proteins sharing a common highly conserved catalytic core domain. DdPIK1, -2, and -3 may have redundant functions because disruption of any single gene had no effect on D. discoideum growth or development. However, strains in which both of the two most highly related genes, DdPIK1 and DdPIK2, were disrupted showed both growth and developmental defects, while double knockouts of DdPIK1 and DdPIK3 and DdPIK2 and DdPIK3 appear to be lethal. The delta Ddpik1 delta Ddpik2 null cells were smaller than wild-type cells and grew slowly both in association with bacteria and in axenic medium when attached to petri plates but were unable to grow in suspension in axenic medium. When delta Ddpik1 delta Ddpik2 null cells were plated for multicellular development, they formed aggregates having multiple tips and produced abnormal fruiting bodies. Antisense expression of DdPIK5 (a putative homolog of the Saccharomyces cerevisiae VPS34) led to a defect in the growth of D. discoideum cells on bacterial lawns and abnormal development. DdPIK5 complemented the temperature-sensitive growth defect of a Schizosaccharomyces pombe delta Svps34 mutant strain, suggesting DdPIK5

  14. Artificial mutants generated by the insertion of random oligonucleotides into the putative nucleoside binding site of the HSV-1 thymidine kinase gene

    SciTech Connect

    Dube, D.K.; Parker, J.D.; French, D.C.; Cahill, D.S.; Dube, S.; Horwitz, M.S.Z.; Munir, K.M.; Loeb, L.A. )

    1991-12-24

    The authors have obtained 42 active artificial mutants of HSV-1 thymidine kinase by replacing codons 166 and 167 with random nucleotide sequences. Codons 166 and 167 are within the putative nucleoside binding site in the HSV-1 tk gene. The spectrum of active mutations indicates that neither Ile{sup 166} nor Ala{sup 167} is absolutely required for thymidine kinase activity. Each of these amino acids can be replaced by some but not all of the 19 other amino acids. The active mutants can be classified as high activity or low activity on two bases: (1) growth of Escherichia coli KY895 in the presence of thymidine and (2) uptake of thymidine by this strain, when harboring plasmids with the random insertions. E. coli KY895 harboring high-activity plasmids or wild-type plasmids can grow in the presence of low amounts of thymidine but are unable to grow in the presence of high amounts of thymidine. The high-activity plasmids also have an enhanced ({sup 3}H)dT uptake. The amounts of thymidine kinase activity in vitro in unfractionated extracts do not correlate with either growth at low thymidine concentration or the rate of thymidine uptake. Heat inactivation studies indicate that the mutant enzymes are without exception more temperature-sensitive than the wild-type enzyme. This thermolability could account for the less than expected thymidine kinase activity in the extracts and suggests that amino acid substitutions at Ile{sup 166} and Ala{sup 167} have produced major changes in protein stability.

  15. Characterization of a putative S-locus encoded receptor protein kinase and its role in self-incompatibility. Progress report

    SciTech Connect

    Nasrallah, J.B.

    1994-05-01

    The major results of our research effort include the determination of the S-Receptor Kinase (SRK) gene structure, the demonstration of S-haplotype-associated SRK polymorphisms and possible co-evolution of SRK and SLG, the characterization of the temporal and spatial expression patterns of SRK, and the demonstration that SRK has intrinsic serine/threonine kinase activity. Our results have indicated that SLG originated from an SRK-like gene by a gene duplication event and suggested a possible molecular basis for leaky S haplotypes. The data have allowed us to develop a model of self-incompatibility based on the interaction of SRK and SLG and the activation of SRK in response to self-pollination. More generally, the information that we have obtained is potentially relevant to understanding mechanisms of signalling inplants. Thus, the interaction of membrane-based receptor protein kinases with secreted forms of their extracellular domains may represent a generalized mechanism by which receptors signal across the plant cell wall.

  16. The Putative Mevalonate Diphosphate Decarboxylase from Picrophilus torridus Is in Reality a Mevalonate-3-Kinase with High Potential for Bioproduction of Isobutene

    PubMed Central

    Hall, Stephen J.; Eastham, Graham; Licence, Peter; Stephens, Gill

    2015-01-01

    Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important platform chemical. The putative homologue from Picrophilus torridus has been identified as a highly efficient variant in a number of patents, but its detailed characterization has not been reported. In this study, we have successfully purified and characterized the putative MVD from P. torridus. We discovered that it is not a decarboxylase per se but an ATP-dependent enzyme, mevalonate-3-kinase (M3K), which catalyzes the phosphorylation of MVA to mevalonate-3-phosphate. The enzyme's potential in isobutene formation is due to the conversion of 3-HIV to an unstable 3-phosphate intermediate that undergoes consequent spontaneous decarboxylation to form isobutene. Isobutene production rates were as high as 507 pmol min−1 g cells−1 using Escherichia coli cells expressing the enzyme and 2,880 pmol min−1 mg protein−1 with the purified histidine-tagged enzyme, significantly higher than reported previously. M3K is a key enzyme of the novel MVA pathway discovered very recently in Thermoplasma acidophilum. We suggest that P. torridus metabolizes MVA by the same pathway. PMID:25636853

  17. Characterization of the RcsC sensor kinase from Erwinia amylovora and other Enterobacteria.

    PubMed

    Wang, Dongping; Korban, Schuyler S; Pusey, P Lawrence; Zhao, Youfu

    2011-06-01

    RcsC is a hybrid sensor kinase which contains a sensor domain, a histidine kinase domain, and a receiver domain. We have previously demonstrated that, although the Erwinia amylovora rcsC mutant produces more amylovoran than the wild-type (WT) strain in vitro, the mutant remains nonpathogenic on both immature pear fruit and apple plants. In this study, we have comparatively characterized the Erwinia RcsC and its homologs from various enterobacteria. Results demonstrate that expression of the Erwinia rcsC gene suppresses amylovoran production in various amylovoran overproducing WT and mutant strains, thus suggesting the presence of a net phosphatase activity of Erwinia RcsC. Findings have also demonstrated that rcsC homologs from other enterobacteria could not rescue amylovoran production of the Erwinia rcsC mutant in vitro. However, virulence of the Erwinia rcsC mutant is partially restored by rcsC homologs from Pantoea stewartii, Yersinia pestis, and Salmonella enterica but not from Escherichia coli on apple shoots. Domain-swapping experiments have indicated that replacement of the E. coli RcsC sensor domain by those of Erwinia and Yersinia spp. partially restores virulence of the Erwinia rcsC mutant, whereas chimeric constructs containing the sensor domain of E. coli RcsC could not rescue virulence of the Erwinia rcsC mutant on apple. Interestingly, only chimeric constructs containing the histidine kinase and receiver domains of Erwinia RcsC are fully capable of rescuing amylovoran production. These results suggest that the sensor domain of RcsC may be important in regulating bacterial virulence, whereas the activity of the histidine kinase and receiver domains of Erwinia RcsC may be essential for amylovoran production in vitro. PMID:21261468

  18. The structure of putative N-acetyl glutamate kinase from Thermus thermophilus reveals an intermediate active site conformation of the enzyme.

    PubMed

    Sundaresan, Ramya; Ragunathan, Preethi; Kuramitsu, Seiki; Yokoyama, Shigeyuki; Kumarevel, Thirumananseri; Ponnuraj, Karthe

    2012-04-13

    The de novo biosynthesis of arginine in microorganisms and plants is accomplished via several enzymatic steps. The enzyme N-acetyl glutamate kinase (NAGK) catalyzes the phosphorylation of the γ-COO(-) group of N-acetyl-L-glutamate (NAG) by adenosine triphosphate (ATP) which is the second rate limiting step in arginine biosynthesis pathway. Here we report the crystal structure of putative N-acetyl glutamate kinase (NAGK) from Thermus thermophilus HB8 (TtNAGK) determined at 1.92Å resolution. The structural analysis of TtNAGK suggests that the dimeric quaternary state of the enzyme and arginine insensitive nature are similar to mesophilic Escherichia coli NAGK. These features are significantly different from its thermophilic homolog Thermatoga maritima NAGK which is hexameric and arginine-sensitive. TtNAGK is devoid of its substrates but contains two sulfates at the active site. Very interestingly the active site of the enzyme adopts a conformation which is not completely open or closed and likely represents an intermediate stage in the catalytic cycle unlike its structural homologs, which all exist either in the open or closed conformation. Engineering arginine biosynthesis pathway enzymes for the production of l-arginine is an important industrial application. The structural comparison of TtNAGK with EcNAGK revealed the structural basis of thermostability of TtNAGK and this information could be very useful to generate mutants of NAGK with increased overall stability. PMID:22452987

  19. Multiple signals modulate the activity of the complex sensor kinase TodS

    PubMed Central

    Silva-Jiménez, Hortencia; Ortega, Álvaro; García-Fontana, Cristina; Ramos, Juan Luis; Krell, Tino

    2015-01-01

    The reason for the existence of complex sensor kinases is little understood but thought to lie in the capacity to respond to multiple signals. The complex, seven-domain sensor kinase TodS controls in concert with the TodT response regulator the expression of the toluene dioxygenase pathway in Pseudomonas putida F1 and DOT-T1E. We have previously shown that some aromatic hydrocarbons stimulate TodS activity whereas others behave as antagonists. We show here that TodS responds in addition to the oxidative agent menadione. Menadione but no other oxidative agent tested inhibited TodS activity in vitro and reduced PtodX expression in vivo. The menadione signal is incorporated by a cysteine-dependent mechanism. The mutation of the sole conserved cysteine of TodS (C320) rendered the protein insensitive to menadione. We evaluated the mutual opposing effects of toluene and menadione on TodS autophosphorylation. In the presence of toluene, menadione reduced TodS activity whereas toluene did not stimulate activity in the presence of menadione. It was shown by others that menadione increases expression of glucose metabolism genes. The opposing effects of menadione on glucose and toluene metabolism may be partially responsible for the interwoven regulation of both catabolic pathways. This work provides mechanistic detail on how complex sensor kinases integrate different types of signal molecules. PMID:24986263

  20. Absence of catalytic domain in a putative protein kinase C (PkcA) suppresses tip dominance in Dictyostelium discoideum.

    PubMed

    Mohamed, Wasima; Ray, Sibnath; Brazill, Derrick; Baskar, Ramamurthy

    2015-09-01

    A number of organisms possess several isoforms of protein kinase C but little is known about the significance of any specific isoform during embryogenesis and development. To address this we characterized a PKC ortholog (PkcA; DDB_G0288147) in Dictyostelium discoideum. pkcA expression switches from prestalk in mound to prespore in slug, indicating a dynamic expression pattern. Mutants lacking the catalytic domain of PkcA (pkcA(-)) did not exhibit tip dominance. A striking phenotype of pkcA- was the formation of an aggregate with a central hollow, and aggregates later fragmented to form small mounds, each becoming a fruiting body. Optical density wave patterns of cAMP in the late aggregates showed several cAMP wave generation centers. We attribute these defects in pkcA(-) to impaired cAMP signaling, altered cell motility and decreased expression of the cell adhesion molecules - CadA and CsaA. pkcA(-) slugs showed ectopic expression of ecmA in the prespore region. Further, the use of a PKC-specific inhibitor, GF109203X that inhibits the activity of catalytic domain phenocopied pkcA(-). PMID:26183108

  1. Overexpression of GbRLK, a putative receptor-like kinase gene, improved cotton tolerance to Verticillium wilt

    PubMed Central

    Jun, Zhao; Zhang, Zhiyuan; Gao, Yulong; Zhou, Lei; Fang, Lei; Chen, Xiangdong; Ning, Zhiyuan; Chen, Tianzi; Guo, Wangzhen; Zhang, Tianzhen

    2015-01-01

    Verticillium dahliae is a causative fungal pathogen and only a few genes have been identified that exhibit critical roles in disease resistance and few has shown positive effects on the resistance to Verticillium wilt in transgenic cotton. We cloned a receptor-like kinase gene (GbRLK) induced by Verticillium dahliae (VD) in the disease-resistant cotton Gossypium barbadense cv. Hai7124. Northern blotting revealed that the GbRLK was induced by VD at 96 h after inoculation. The functional GbRLK is from D subgenome since a single base deletion results in a frameshift or dysfunctional homologue in the A subgenome in tetraploid cotton. To verify the function of GbRLK, we developed the overexpression transgenic GbRLK cotton and Arabidopsis lines, and found that they all showed the higher resistance to Verticillium in the greenhouse and field trial. The results of the expression profile using transgenic and non-transgenic Arabidopsis thaliana revealed that the GbRLK regulated expressions of a series genes associated with biotic and abiotic stresses. Therefore, we propose that the increased resistance to Verticillium dahliae infection in transgnic plants could result from reduction in the damage of water loss and regulation of defense gene expression. PMID:26446555

  2. Evaluation of Immune Responses in Mice after DNA Immunization with Putative Toxoplasma gondii Calcium-Dependent Protein Kinase 5

    PubMed Central

    Zhang, Nian-Zhang; Xu, Ying; Chen, Jia; Wang, Jin-Lei; Tian, Wei-Peng

    2014-01-01

    Toxoplasma gondii can cause serious public health problems and economic losses worldwide. Calcium-dependent protein kinases (CDPKs) are key mediators of T. gondii signaling pathways and are implicated as important virulence factors. In the present study, we cloned a novel T. gondii CDPK gene, named TgCDPK5, and constructed the eukaryotic expression vector pVAX-CDPK5. Then, we evaluated the immune protection induced by pVAX-CDPK5 in Kunming mice. After injection of pVAX-CDPK5 intramuscularly, immune responses, determined with lymphoproliferative assays and cytokine and antibody measurements, were monitored, and mouse survival times and brain cyst formation were evaluated following challenges with the T. gondii RH strain (genotype I) and the PRU strain (genotype II). pVAX-CDPK5 effectively induced immune responses with increased specific antibodies, a predominance of IgG2a production, and a strong lymphocyte proliferative response. The levels of gamma interferon (IFN-γ), interleukin 2 (IL-2), and IL-12(p70) and the percentages of CD3+ CD4+ and CD3+ CD8+ cells in mice vaccinated with pVAX-CDPK5 were significantly increased. However, IL-4 and IL-10 were not produced in the vaccinated mice. These results demonstrate that pVAX-CDPK5 can elicit strong humoral and cellular Th1 immune responses. The survival time of immunized mice challenged with the T. gondii RH strain (8.67 ± 4.34 days) was slightly, but not significantly, longer than that in the control groups within 7 days (P > 0.05). The numbers of brain cysts in the mice in the pVAX-CDPK5 group were reduced by ∼40% compared with those in the control groups (P < 0.05), which provides a foundation for the further development of effective subunit vaccines against T. gondii. PMID:24789795

  3. Structural Analysis of Sensor Domains from the TMAO-Responsive Histidine Kinase Receptor TorS.

    SciTech Connect

    Moore, J.; Hendrickson, W

    2009-01-01

    Histidine kinase receptors respond to diverse signals and mediate signal transduction across the plasma membrane in all prokaryotes and certain eukaryotes. Each receptor is part of a two-component system that regulates a particular cellular process. Organisms that use trimethylamine-N-oxide (TMAO) as a terminal electron acceptor typically control their anaerobic respiration through the TMAO reductase (Tor) pathway, which the TorS histidine kinase activates when sensing TMAO in the environment. We have determined crystal structures for the periplasmic sensor domains of TorS receptors from Escherichia coli and Vibrio parahaemolyticus. TorS sensor domains have a novel fold consisting of a membrane-proximal right-handed four-helical bundle and a membrane-distal left-handed four-helical bundle, but conformational dispositions differ significantly in the two structures. Isolated TorS sensor domains dimerize in solution; and from comparisons with dimeric NarX and Tar sensors, we postulate that signaling through TorS dimers involves a piston-type displacement between helices.

  4. Putative role of protein kinase C in neurotoxic inflammation mediated by extracellular heat shock protein 70 after ischemia-reperfusion

    PubMed Central

    2014-01-01

    Background Sterile inflammation occurs in the absence of live pathogens and is an unavoidable consequence of ischemia-reperfusion (IR) injury in the central nervous system (CNS). It is known that toll-like receptor 4 (Tlr4) contributes to damage and sterile inflammation in the CNS mediated by IR. However, the mechanism of Tlr4 activation under sterile conditions in ischemic tissue is poorly understood. We performed this study to clarify the mechanism. To this end, we focused on the extracellular heat shock protein 70 (Hsp70), the prototypic Tlr4 ligand. Methods Tlr4-, Myd88- and Trif-knockout animals, as well as C57BL/6 mice, were used for the wild type control. For the in vivo study, we used a mouse model of retinal IR injury. To test the role of protein kinase C (PKC) in IR injury, IR retinas were treated with the PKC inhibitors (polymyxin B and Gö6976) and retinal damage was evaluated by directly counting neurons in the ganglion cell layer of flat-mounted retinas seven days after IR. Primary retinal neurons (retinal ganglion cells) and glial cells were used for in vitro experiments. Quantitative RT-PCR, ELISA and western blot analysis were used to study the production of pro-inflammatory factors in IR retinas and in primary cell cultures. Results We found significant accumulation of extracellular Hsp70 in a model of retinal IR injury. We noted that PKC was involved in Tlr4 signaling, and found that PKC inhibitors promoted neuroprotection by reducing pro-inflammatory activity in ischemic tissue. To put all of the pieces in the signaling cascade together, we performed an in vitro study. We found that PKC was critical to mediate the Hsp70-dependent pro-inflammatory response. At the same time, the contamination of Hsp70 preparations with low-dose endotoxin was not critical to mediate the production of pro-inflammatory factors. We found that extracellular Hsp70 can promote neuronal death at least, by mediating production of cytotoxic levels of tumor necrosis factor

  5. Phosphatase and tensin homologue (PTEN)-induced putative kinase 1 reduces pancreatic β-cells apoptosis in glucotoxicity through activation of autophagy.

    PubMed

    Zhang, Juan; Chen, Ke; Wang, Linghao; Wan, Xinxin; Shrestha, Chandrama; Zhou, Jingsong; Mo, Zhaohui

    2016-08-01

    Chronic elevated glucose is harmful to pancreatic β-cells, resulting in pancreatic β-cells dysfunction and apoptosis. Understanding the molecular mechanisms associated with β-cells survival is pivotal for the prevention of β-cells injury caused by glucotoxicity. The role of Phosphatase and tensin homologue (PTEN)-induced putative kinase 1 (PINK1) in the fate of pancreatic β-cells constantly exposed to high glucose was studied. Sustained high glucose increased PINK1 protein expression both in rat pancreatic β-cells and INS-1 β-cells, and that this increase can be inhibited by PINK1 knockdown and further enhanced by PINK1 over-expression. PINK1 deficiency aggravated glucotoxicity-induced pancreatic β-cells apoptosis and inhibition of autophagy whereas PINK1 could reverse these adverse effects. This study provides fundamental data supporting the potential protective role of PINK1 as a new therapeutic target necessary to preserve β-cells survival under non-physiological hyperglycemia conditions. PMID:27233610

  6. Recruitment and activation of the ATM kinase in the absence of DNA damage sensors

    PubMed Central

    Hartlerode, Andrea J.; Morgan, Mary J.; Wu, Yipin; Buis, Jeffrey; Ferguson, David O.

    2015-01-01

    Two kinases, ATM and DNA-PKcs, control rapid responses to DNA double-strand breaks (DSBs). The paradigm for ATM control is recruitment and activation by the Mre11–Rad50–NBS1 (MRN) sensor complex, whereas DNA-PKcs requires the sensor Ku (Ku70–Ku80). Using Mus musculus cells harboring targeted mutant alleles of Mre11 and/or Ku70, together with pharmacologic kinase inhibition we demonstrate that ATM can in fact be activated by DSBs in the absence of MRN. When MRN is deficient, DNA-PKcs efficiently substitutes for ATM in facilitating local chromatin responses. Strikingly, in the absence of both MRN and Ku, ATM is recruited to chromatin, phosphorylates H2AX, and triggers the G2/M cell cycle checkpoint, but DNA repair functions of MRN are not restored. This implies that a complex interplay between sensors plays a significant role in ATM control, rather than straightforward recruitment and activation by MRN. PMID:26280532

  7. Roles of PTEN-induced putative kinase 1 and dynamin-related protein 1 in transient global ischemia-induced hippocampal neuronal injury

    SciTech Connect

    Chen, Shang-Der; Lin, Tsu-Kung; Yang, Ding-I.; Lee, Su-Ying; Shaw, Fu-Zen; Liou, Chia-Wei; Chuang, Yao-Chung

    2015-05-01

    Recent studies showed that increased mitochondrial fission is an early event of cell death during cerebral ischemia and dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, which may be regulated by PTEN-induced putative kinase 1 (PINK1), a mitochondrial serine/threonine-protein kinase thought to protect cells from stress-induced mitochondrial dysfunction and regulate mitochondrial fission. However, the roles of PINK1 and Drp1 in hippocampal injury caused by transient global ischemia (TGI) remain unknown. We therefore tested the hypothesis that TGI may induce PINK1 causing downregulation of Drp1 phosphorylation to enhance hippocampal neuronal survival, thus functioning as an endogenous neuroprotective mechanism. We found progressively increased PINK1 expression in the hippocampal CA1 subfield1-48 h following TGI, reaching the maximal level at 4 h. Despite lack of changes in the expression level of total Drp1 and phosphor-Drp1 at Ser637, TGI induced a time-dependent increase of Drp1 phosphorlation at Ser616 that peaked after 24 h. Notably, PINK1-siRNA increased p-Drp1(Ser616) protein level in hippocampal CA1 subfield 24 h after TGI. The PINK1 siRNA also aggravated the TGI-induced oxidative DNA damage with an increased 8-hydroxy-deoxyguanosine (8-OHdG) content in hippocampal CA1 subfield. Furthermore, PINK1 siRNA also augmented TGI-induced apoptosis as evidenced by the increased numbers of TUNEL-positive staining and enhanced DNA fragmentation. These findings indicated that PINK1 is an endogenous protective mediator vital for neuronal survival under ischemic insult through regulating Drp1 phosphorylation at Ser616. - Highlights: • Transient global ischemia increases expression of PINK1 and p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA decreases PINK1 expression but increases p-Drp1 at Ser616 in hippocampal CA1 subfield. • PINK1-siRNA augments oxidative stress and neuronal damage in hippocampal CA1 subfield.

  8. A calcium and free fatty acid-modulated protein kinase as putative effector of the fusicoccin 14-3-3 receptor.

    PubMed Central

    van der Hoeven, P C; Siderius, M; Korthout, H A; Drabkin, A V; de Boer, A H

    1996-01-01

    A protein kinase that is activated by calcium and cis-unsaturated fatty acids has been characterized from oat (Avena sativa L.) root plasma membranes. The kinase phosphorylates a synthetic peptide with a motif (-R-T-L-S-) that can be phosphorylated by both protein kinase C (PKC) and calcium-dependent protein kinase (CDPK)-type kinases. Calphostin C and chelerythrine, two PKC inhibitors, completely inhibited the kinase activity with values of inhibitor concentration for 50% inhibition of 0.7 and 30 microns, respectively. At low Ca2+ concentrations cis-unsaturated fatty acids (linolenic acid, linoleic acid, arachidonic acid, and oleic acid) stimulated the kinase activity almost 10-fold. The two inhibitors of the kinase, calphostin C and chelerythrin, strongly reduced the fusicoccin (FC)-induced H+ extrusion, and the activators of the kinase, the cis-unsaturated fatty acids, prevented [3H]FC binding to the FC 14-3-3 receptor. CDPK antibodies cross-reacted with a 43-kD band in the plasma membrane and in a purified FC receptor fraction. A polypeptide with the same apparent molecular mass was recognized by a synthetic peptide that has a sequence homologous to the annexin-like domain from barely 14-3-3. The possibility of the involvement of a kinase, with properties from both CDPK and PKC, and a phospholipase A2 in the FC Signal transduction pathway is discussed. PMID:8754686

  9. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont

    PubMed Central

    Norsworthy, Allison N.; Visick, Karen L.

    2015-01-01

    Summary Cells acclimate to fluctuating environments by utilizing sensory circuits. One common sensory pathway used by bacteria is two-component signaling (TCS), composed of an environmental sensor (the sensor kinase, SK) and a cognate, intracellular effector (the response regulator, RR). The squid symbiont Vibrio fischeri uses an elaborate TCS phosphorelay containing a hybrid SK, RscS, and two RRs, SypE and SypG, to control biofilm formation and host colonization. Here, we found that another hybrid SK, SypF, was essential for biofilms by functioning downstream of RscS to directly control SypE and SypG. Surprisingly, although wild-type SypF functioned as a SK in vitro, this activity was dispensable for colonization. In fact, only a single non-enzymatic domain within SypF, the HPt domain, was critical in vivo. Remarkably, this domain within SypF interacted with RscS to permit a bypass of RscS’s own HPt domain and SypF’s enzymatic function. This represents the first in vivo example of a functional SK that exploits the enzymatic activity of another SK, an adaptation that demonstrates the elegant plasticity in the arrangement of TCS regulators. PMID:25586643

  10. Characterization of the sensor domain of QseE histidine kinase from Escherichia coli.

    PubMed

    Yeo, Kwon Joo; Park, Jin-Wan; Kim, Eun-Hee; Jeon, Young Ho; Hwang, Kwang Yeon; Cheong, Hae-Kap

    2016-10-01

    In enterohemorrhagic Escherichia coli (EHEC), the QseEF two-component system causes attaching and effacing (AE) lesion on epithelial cells. QseE histidine kinase senses the host hormone epinephrine, sulfate, and phosphate; it also regulates QseF response regulator, which activates LEE gene that encodes AE lesion. In order to understand the recognition of ligand molecules and signal transfer mechanism in pathogenic bacteria, structural studies of the sensor domain of QseE of Escherichia coli should be conducted. In this study, we describe the overexpression, purification, and structural and biophysical properties of the sensor domain of QseE. The fusion protein had a 6×His tag at its N-terminus; this protein was overexpressed as inclusion bodies in E. coli BL21 (DE3). The protein was denatured in 7M guanidine hydrochloride and refolded by dialysis. The purification of the refolded protein was carried out using Ni-NTA affinity column and size-exclusion chromatography. Thereafter, the characteristics of the refolded protein were determined from NMR, CD, and MALS spectroscopies. In a pH range of 7.4-5.0, the folded protein existed in a monomeric form with a predominantly helical structure. (1)H-(15)N HSQC NMR spectra shows that approximately 93% backbone amide peaks are detected at pH 5.0, suggesting that the number of backbone signals is sufficient for NMR studies. These data might provide an opportunity for structural and functional studies of the sensor domain of QseE. PMID:27371359

  11. Stable Isotope Metabolic Labeling-based Quantitative Phosphoproteomic Analysis of Arabidopsis Mutants Reveals Ethylene-regulated Time-dependent Phosphoproteins and Putative Substrates of Constitutive Triple Response 1 Kinase*

    PubMed Central

    Yang, Zhu; Guo, Guangyu; Zhang, Manyu; Liu, Claire Y.; Hu, Qin; Lam, Henry; Cheng, Han; Xue, Yu; Li, Jiayang; Li, Ning

    2013-01-01

    Ethylene is an important plant hormone that regulates numerous cellular processes and stress responses. The mode of action of ethylene is both dose- and time-dependent. Protein phosphorylation plays a key role in ethylene signaling, which is mediated by the activities of ethylene receptors, constitutive triple response 1 (CTR1) kinase, and phosphatase. To address how ethylene alters the cellular protein phosphorylation profile in a time-dependent manner, differential and quantitative phosphoproteomics based on 15N stable isotope labeling in Arabidopsis was performed on both one-minute ethylene-treated Arabidopsis ethylene-overly-sensitive loss-of-function mutant rcn1-1, deficient in PP2A phosphatase activity, and a pair of long-term ethylene-treated wild-type and loss-of-function ethylene signaling ctr1-1 mutants, deficient in mitogen-activated kinase kinase kinase activity. In total, 1079 phosphopeptides were identified, among which 44 were novel. Several one-minute ethylene-regulated phosphoproteins were found from the rcn1-1. Bioinformatic analysis of the rcn1-1 phosphoproteome predicted nine phosphoproteins as the putative substrates for PP2A phosphatase. In addition, from CTR1 kinase-enhanced phosphosites, we also found putative CTR1 kinase substrates including plastid transcriptionally active protein and calcium-sensing receptor. These regulatory proteins are phosphorylated in the presence of ethylene. Analysis of ethylene-regulated phosphosites using the group-based prediction system with a protein–protein interaction filter revealed a total of 14 kinase–substrate relationships that may function in both CTR1 kinase- and PP2A phosphatase-mediated phosphor-relay pathways. Finally, several ethylene-regulated post-translational modification network models have been built using molecular systems biology tools. It is proposed that ethylene regulates the phosphorylation of arginine/serine-rich splicing factor 41, plasma membrane intrinsic protein 2A, light

  12. [Characterization of a putative S locus encoded receptor protein kinase and its role in self-incompatibility]. Progress report, January 1993

    SciTech Connect

    Not Available

    1993-06-01

    The serine/threonine protein kinase (SRK) protein was predicted to be similar to the growth factor receptor tyrosine kinases in animals but its amino acid sequence of the catalytic domain is more similar to that of the catalytic domains of protein serine/threonine kinases than to protein tyrosine kinases. We have shown that the SRK protein has intrinsic scrine/threonine kinase activity. We subcloned the protein kinase-homologous domain of the SRK{sub 6} cDNA into the bacterial expression vector pGEX-3X and we have constructed a second plasmid identical to the first except that it carried a conservative mutation that substituted Arg for the Lys{sup 524} codon of SRK6 This lysine corresponds to the ATP-binding site, is essential in protein kinases, and is a common target for site-directed mutagenesis as a means to obtain kinase-defective proteins. Cultures bearing the wild-type and mutant SRK catalytic domains each produced an approximately 64 kD protein that reacted with anti-SRK6 antibodies. Following pulse-labeling with {sup 32}P we found that the wild-type SRK6 protein but not the mutant form was detectably phosphorylated. Phosphoamino acid analysis of the affinity purified {sup 32}p-labeled GST-SRK6 fusion protein demonstrated that SRK was phosphorylated predominantly on semine and to a lesser extent on threonine, but not on tyrosine. Thus, SRK6 is a functional serine/threonine protein kinase.

  13. The sensor kinase MprB is required for Rhodococcus equi virulence.

    PubMed

    MacArthur, Iain; Parreira, Valeria R; Lepp, Dion; Mutharia, Lucy M; Vazquez-Boland, José A; Prescott, John F

    2011-01-10

    Rhodococcus equi is a soil bacterium and, like Mycobacterium tuberculosis, a member of the mycolata. Through possession of a virulence plasmid, it has the ability to infect the alveolar macrophages of foals, resulting in pyogranulomatous bronchopneumonia. The virulence plasmid has an orphan two-component system (TCS) regulatory gene, orf8, mutation of which completely attenuates virulence. This study attempted to find the cognate sensor kinase (SK) of orf8. Annotation of the R. equi strain 103 genome identified 23 TCSs encoded on the chromosome, which were used in a DNA microarray to compare TCS gene transcription in murine macrophage-like cells to growth in vitro. This identified six SKs as significantly up-regulated during growth in macrophages. Mutants of these SKs were constructed and their ability to persist in macrophages was determined with one SK, MprB, found to be required for intracellular survival. The attenuation of the mprB- mutant, and its complementation, was confirmed in a mouse virulence assay. In silico analysis of the R. equi genome sequence identified an MprA binding box motif homologous to that of M. tuberculosis, on mprA, pepD, sigB and sigE. The results of this study also show that R. equi responds to the macrophage environment differently from M. tuberculosis. MprB is the first SK identified as required for R. equi virulence and intracellular survival. PMID:20637548

  14. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models.

    PubMed

    Pchejetski, Dimitri; Golzio, Muriel; Bonhoure, Elisabeth; Calvet, Cyril; Doumerc, Nicolas; Garcia, Virginie; Mazerolles, Catherine; Rischmann, Pascal; Teissié, Justin; Malavaud, Bernard; Cuvillier, Olivier

    2005-12-15

    Systemic chemotherapy was considered of modest efficacy in prostate cancer until the recent introduction of taxanes. We took advantage of the known differential effect of camptothecin and docetaxel on human PC-3 and LNCaP prostate cancer cells to determine their effect on sphingosine kinase-1 (SphK1) activity and subsequent ceramide/sphingosine 1-phosphate (S1P) balance in relation with cell survival. In vitro, docetaxel and camptothecin induced strong inhibition of SphK1 and elevation of the ceramide/S1P ratio only in cell lines sensitive to these drugs. SphK1 overexpression in both cell lines impaired the efficacy of chemotherapy by decreasing the ceramide/S1P ratio. Alternatively, silencing SphK1 by RNA interference or pharmacologic inhibition induced apoptosis coupled with ceramide elevation and loss of S1P. The differential effect of both chemotherapeutics was confirmed in an orthotopic PC-3/green fluorescent protein model established in nude mice. Docetaxel induced a stronger SphK1 inhibition and ceramide/S1P ratio elevation than camptothecin. This was accompanied by a smaller tumor volume and the reduced occurrence and number of metastases. SphK1-overexpressing PC-3 cells implanted in animals developed remarkably larger tumors and resistance to docetaxel treatment. These results provide the first in vivo demonstration of SphK1 as a sensor of chemotherapy. PMID:16357178

  15. Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: structure of one sensor domain from a histidine kinase and another from a chemotaxis protein.

    PubMed

    Pokkuluri, P Raj; Dwulit-Smith, Jeff; Duke, Norma E; Wilton, Rosemarie; Mack, Jamey C; Bearden, Jessica; Rakowski, Ella; Babnigg, Gyorgy; Szurmant, Hendrik; Joachimiak, Andrzej; Schiffer, Marianne

    2013-10-01

    Anaeromyxobacter dehalogenans is a δ-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP proteins have a sensor domain in the periplasm. These proteins most likely contribute to adaptation to the organism's surroundings. We predicted their three-dimensional folds and determined the structures of two of the periplasmic sensor domains by X-ray diffraction. Most of the domains are predicted to have either PAS-like or helical bundle structures, with two predicted to have solute-binding protein fold, and another predicted to have a 6-phosphogluconolactonase like fold. Atomic structures of two sensor domains confirmed the respective fold predictions. The Adeh_2942 sensor (HK) was found to have a helical bundle structure, and the Adeh_3718 sensor (MCP) has a PAS-like structure. Interestingly, the Adeh_3718 sensor has an acetate moiety bound in a binding site typical for PAS-like domains. Future work is needed to determine whether Adeh_3718 is involved in acetate sensing by A. dehalogenans. PMID:23897711

  16. Balance between Coiled-Coil Stability and Dynamics Regulates Activity of BvgS Sensor Kinase in Bordetella

    PubMed Central

    Lesne, E.; Krammer, E.-M.; Dupre, E.; Locht, C.; Lensink, M. F.

    2016-01-01

    ABSTRACT The two-component system BvgAS controls the expression of the virulence regulon of Bordetella pertussis. BvgS is a prototype of bacterial sensor kinases with extracytoplasmic Venus flytrap perception domains. Following its transmembrane segment, BvgS harbors a cytoplasmic Per-Arnt-Sim (PAS) domain and then a predicted 2-helix coiled coil that precede the dimerization-histidine-phosphotransfer domain of the kinase. BvgS homologs have a similar domain organization, or they harbor only a predicted coiled coil between the transmembrane and the dimerization-histidine-phosphotransfer domains. Here, we show that the 2-helix coiled coil of BvgS regulates the enzymatic activity in a mechanical manner. Its marginally stable hydrophobic interface enables a switch between a state of great rotational dynamics in the kinase mode and a more rigid conformation in the phosphatase mode in response to signal perception by the periplasmic domains. We further show that the activity of BvgS is controlled in the same manner if its PAS domain is replaced with the natural α-helical sequences of PAS-less homologs. Clamshell motions of the Venus flytrap domains trigger the shift of the coiled coil’s dynamics. Thus, we have uncovered a general mechanism of regulation for the BvgS family of Venus flytrap-containing two-component sensor kinases. PMID:26933056

  17. The Brucella abortus virulence regulator, LovhK, is a sensor kinase in the general stress response signaling pathway

    PubMed Central

    Kim, Hye-Sook; Willett, Jonathan W.; Jain-Gupta, Neeta; Fiebig, Aretha; Crosson, Sean

    2014-01-01

    Summary In the intracellular pathogen Brucella abortus, the general stress response (GSR) signaling system determines survival under acute stress conditions in vitro, and is required for long-term residence in a mammalian host. To date, the identity of the Brucella sensor kinase(s) that function to perceive stress and directly activate GSR signaling have remained undefined. We demonstrate that the flavin-binding sensor histidine kinase, LovhK (bab2_0652), functions as a primary B. abortus GSR sensor. LovhK efficiently and specifically phosphorylates the central GSR regulator, PhyR, and activates transcription of a set of genes that closely overlaps the known B. abortus GSR regulon. Deletion of lovhK severely compromises cell survival under defined oxidative and acid stress conditions. We further show that lovhK is required for cell survival during the early phase of mammalian cell infection and for establishment of long-term residence in a mouse infection model. Finally, we present evidence that particular regions of primary structure within the two N-terminal PAS domains of LovhK have distinct sensory roles under specific environmental conditions. This study elucidates new molecular components of a conserved signaling pathway that regulates B. abortus stress physiology and infection biology. PMID:25257300

  18. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors.

    PubMed

    Riehl, Brandon D; Lee, Jeong Soon; Ha, Ligyeom; Lim, Jung Yul

    2015-03-01

    The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morphology. Using these tools, we investigated MSC migration under flow-induced shear and tested the molecular mechanism with stable knockdown of focal adhesion kinase (FAK) and RhoA kinase (ROCK). Under steady flow, MSCs migrated following the flow direction in a shear stress magnitude-dependent manner, as assessed by root mean square displacement and mean square displacement, motility coefficient and confinement ratio. Silencing FAK in MSCs suppressed morphology adaptation capability and reduced cellular motility for both static and flow conditions. Interestingly, ROCK silencing significantly increased migration tendency especially under flow. Blocking ROCK, which is known to reduce cytoskeletal tension, may lower the resistance to skeletal remodelling during the flow-induced migration. Our data thus propose a potentially differential role of focal adhesion and cytoskeletal tension signalling elements in MSC migration under flow shear. PMID:25589570

  19. Fluid-flow-induced mesenchymal stem cell migration: role of focal adhesion kinase and RhoA kinase sensors

    PubMed Central

    Riehl, Brandon D.; Lee, Jeong Soon; Ha, Ligyeom; Lim, Jung Yul

    2015-01-01

    The study of mesenchymal stem cell (MSC) migration under flow conditions with investigation of the underlying molecular mechanism could lead to a better understanding and outcome in stem-cell-based cell therapy and regenerative medicine. We used peer-reviewed open source software to develop methods for efficiently and accurately tracking, measuring and processing cell migration as well as morphology. Using these tools, we investigated MSC migration under flow-induced shear and tested the molecular mechanism with stable knockdown of focal adhesion kinase (FAK) and RhoA kinase (ROCK). Under steady flow, MSCs migrated following the flow direction in a shear stress magnitude-dependent manner, as assessed by root mean square displacement and mean square displacement, motility coefficient and confinement ratio. Silencing FAK in MSCs suppressed morphology adaptation capability and reduced cellular motility for both static and flow conditions. Interestingly, ROCK silencing significantly increased migration tendency especially under flow. Blocking ROCK, which is known to reduce cytoskeletal tension, may lower the resistance to skeletal remodelling during the flow-induced migration. Our data thus propose a potentially differential role of focal adhesion and cytoskeletal tension signalling elements in MSC migration under flow shear. PMID:25589570

  20. The Hybrid Sensor Kinase RscS Integrates Positive and Negative Signals To Modulate Biofilm Formation in Vibrio fischeri▿

    PubMed Central

    Geszvain, Kati; Visick, Karen L.

    2008-01-01

    Overexpression of the Vibrio fischeri sensor kinase RscS induces expression of the syp (symbiosis polysaccharide) gene cluster and promotes biofilm phenotypes such as wrinkled colony morphology, pellicle formation, and surface adherence. RscS is predicted to be a hybrid sensor kinase with a histidine kinase/ATPase (HATPase) domain, a receiver (Rec) domain, and a histidine phosphotransferase (Hpt) domain. Bioinformatic analysis also revealed the following three potential signal detection domains within RscS: two transmembrane helices forming a transmembrane region (TMR), a large periplasmic (PP) domain, and a cytoplasmic PAS domain. In this work, we genetically dissected the contributions of these domains to RscS function. Substitutions within the carboxy-terminal domain supported identification of RscS as a hybrid sensor kinase; disruption of both the HATPase and Rec domains eliminated induction of syp transcription, wrinkled colony morphology, pellicle formation, and surface adherence, while disruption of Hpt resulted in decreased activity. The PAS domain was also critical for RscS activity; substitutions in PAS resulted in a loss of activity. Generation of a cytoplasmic, N-terminal deletion derivative of RscS resulted in a partial loss of activity, suggesting a role for localization to the membrane and/or sequences within the TMR and PP domain. Finally, substitutions within the first transmembrane helix of the TMR and deletions within the PP domain both resulted in increased activity. Thus, RscS integrates both inhibitory and stimulatory signals from the environment to regulate biofilm formation by V. fischeri. PMID:18441062

  1. Sensor Kinase PA4398 Modulates Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa PA14

    PubMed Central

    Strehmel, Janine; Neidig, Anke; Nusser, Michael; Geffers, Robert; Brenner-Weiss, Gerald

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that is able to sense and adapt to numerous environmental stimuli by the use of transcriptional regulators, including two-component regulatory systems. In this study, we demonstrate that the sensor kinase PA4398 is involved in the regulation of swarming motility and biofilm formation in P. aeruginosa PA14. A PA4398− mutant strain was considerably impaired in swarming motility, while biofilm formation was increased by approximately 2-fold. The PA4398− mutant showed no changes in growth rate, rhamnolipid synthesis, or the production of the Pel exopolysaccharide but exhibited levels of the intracellular second messenger cyclic dimeric GMP (c-di-GMP) 50% higher than those in wild-type cells. The role of PA4398 in gene regulation was investigated by comparing the PA4398− mutant to the wild-type strain by using microarray analysis, which demonstrated that 64 genes were up- or downregulated more than 1.5-fold (P < 0.05) under swarming conditions. In addition, more-sensitive real-time PCR studies were performed on genes known to be involved in c-di-GMP metabolism. Among the dysregulated genes were several involved in the synthesis and degradation of c-di-GMP or in the biosynthesis, transport, or function of the iron-scavenging siderophores pyoverdine and pyochelin, in agreement with the swarming phenotype observed. By analyzing additional mutants of selected pyoverdine- and pyochelin-related genes, we were able to show that not only pvdQ but also pvdR, fptA, pchA, pchD, and pchH are essential for the normal swarming behavior of P. aeruginosa PA14 and may also contribute to the swarming-deficient phenotype of the PA4398− mutant in addition to elevated c-di-GMP levels. PMID:25501476

  2. Sensor kinase PA4398 modulates swarming motility and biofilm formation in Pseudomonas aeruginosa PA14.

    PubMed

    Strehmel, Janine; Neidig, Anke; Nusser, Michael; Geffers, Robert; Brenner-Weiss, Gerald; Overhage, Joerg

    2015-02-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that is able to sense and adapt to numerous environmental stimuli by the use of transcriptional regulators, including two-component regulatory systems. In this study, we demonstrate that the sensor kinase PA4398 is involved in the regulation of swarming motility and biofilm formation in P. aeruginosa PA14. APA4398 mutant strain was considerably impaired in swarming motility, while biofilm formation was increased by approximately 2-fold. The PA4398 mutant showed no changes in growth rate, rhamnolipid synthesis, or the production of the Pel exopolysaccharide but exhibited levels of the intracellular second messenger cyclic dimeric GMP (c-di-GMP) 50% higher than those in wild-type cells. The role of PA4398 in gene regulation was investigated by comparing the PA4398 mutant to the wildtype strain by using microarray analysis, which demonstrated that 64 genes were up- or downregulated more than 1.5-fold (P<0.05) under swarming conditions. In addition, more-sensitive real-time PCR studies were performed on genes known to be involved in c-di-GMP metabolism. Among the dysregulated genes were several involved in the synthesis and degradation of c-di-GMP or in the biosynthesis, transport, or function of the iron-scavenging siderophores pyoverdine and pyochelin, in agreement with the swarming phenotype observed. By analyzing additional mutants of selected pyoverdine- and pyochelin-related genes,we were able to show that not only pvdQ but also pvdR, fptA, pchA, pchD, and pchH are essential for the normal swarming behavior of P. aeruginosa PA14 and may also contribute to the swarming-deficient phenotype of the PA4398 mutant in addition to elevated c-di-GMP levels. PMID:25501476

  3. Coumarin as attractive casein kinase 2 (CK2) inhibitor scaffold: an integrate approach to elucidate the putative binding motif and explain structure-activity relationships.

    PubMed

    Chilin, Adriana; Battistutta, Roberto; Bortolato, Andrea; Cozza, Giorgio; Zanatta, Samuele; Poletto, Giorgia; Mazzorana, Marco; Zagotto, Giuseppe; Uriarte, Eugenio; Guiotto, Adriano; Pinna, Lorenzo A; Meggio, Flavio; Moro, Stefano

    2008-02-28

    Casein kinase 2 (CK2) is an ubiquitous, essential, and highly pleiotropic protein kinase whose abnormally high constitutive activity is suspected to underlie its pathogenic potential in neoplasia and other diseases. Recently, using different virtual screening approaches, we have identified several novel CK2 inhibitors. In particular, we have discovered that coumarin moiety can be considered an attractive CK2 inhibitor scaffold. In the present work, we have synthetized and tested a small library of coumarins (more than 60), rationalizing the observed structure-activity relationship. Moreover, the most promising inhibitor, 3,8-dibromo-7-hydroxy-4-methylchromen-2-one (DBC), has been also crystallized in complex with CK2, and the experimental binding mode has been used to derive a linear interaction energy (LIE) model. PMID:18251491

  4. Cooperation of Secondary Transporters and Sensor Kinases in Transmembrane Signalling: The DctA/DcuS and DcuB/DcuS Sensor Complexes of Escherichia coli.

    PubMed

    Unden, G; Wörner, S; Monzel, C

    2016-01-01

    Many membrane-bound sensor kinases require accessory proteins for function. The review describes functional control of membrane-bound sensors by transporters. The C4-dicarboxylate sensor kinase DcuS requires the aerobic or anaerobic C4-dicarboxylate transporters DctA or DcuB, respectively, for function and forms DctA/DcuS or DcuB/DcuS sensor complexes. Free DcuS is in the permanent (ligand independent) ON state. The DctA/DcuS and DcuB/DcuS complexes, on the other hand, control expression in response to C4-dicarboxylates. In DctA/DcuS, helix 8b of DctA and the PASC domain of DcuS are involved in interaction. The stimulus is perceived by the extracytoplasmic sensor domain (PASP) of DcuS. The signal is transmitted across the membrane by a piston-type movement of TM2 of DcuS which appears to be pulled (by analogy to the homologous citrate sensor CitA) by compaction of PASP after C4-dicarboxylate binding. In the cytoplasm, the signal is perceived by the PASC domain of DcuS. PASC inhibits together with DctA the kinase domain of DcuS which is released after C4-dicarboxylate binding. DcuS exhibits two modes for regulating expression of target genes. At higher C4-dicarboxylate levels, DcuS is part of the DctA/DcuS complex and in the C4-dicarboxylate-responsive form which stimulates expression of target genes in response to the concentration of the C4-dicarboxylates (catabolic use of C4-dicarboxylates, mode I regulation). At limiting C4-dicarboxylate concentrations (≤0.05mM), expression of DctA drops and free DcuS appears. Free DcuS is in the permanent ON state (mode II regulation) and stimulates low level (C4-dicarboxylate independent) DctA synthesis for DctA/DcuS complex formation and anabolic C4-dicarboxylate uptake. PMID:27134023

  5. Structure of the Pseudokinase VRK3 Reveals a Degraded Catalytic Site, a Highly Conserved Kinase Fold, and a Putative Regulatory Binding Site

    PubMed Central

    Scheeff, Eric D.; Eswaran, Jeyanthy; Bunkoczi, Gabor; Knapp, Stefan; Manning, Gerard

    2009-01-01

    Summary About 10% of all protein kinases are predicted to be enzymatically inactive pseudokinases, but the structural details of kinase inactivation have remained unclear. We present the first structure of a pseudokinase, VRK3, and that of its closest active relative, VRK2. Profound changes to the active site region underlie the loss of catalytic activity, and VRK3 cannot bind ATP because of residue substitutions in the binding pocket. However, VRK3 still shares striking structural similarity with VRK2, and appears to be locked in a pseudoactive conformation. VRK3 also conserves residue interactions that are surprising in the absence of enzymatic function; these appear to play important architectural roles required for the residual functions of VRK3. Remarkably, VRK3 has an “inverted” pattern of sequence conservation: although the active site is poorly conserved, portions of the molecular surface show very high conservation, suggesting that they form key interactions that explain the evolutionary retention of VRK3. PMID:19141289

  6. Putative Stress Sensors WscA and WscB Are Involved in Hypo-Osmotic and Acidic pH Stress Tolerance in Aspergillus nidulans ▿ †

    PubMed Central

    Futagami, Taiki; Nakao, Seiki; Kido, Yayoi; Oka, Takuji; Kajiwara, Yasuhiro; Takashita, Hideharu; Omori, Toshiro; Furukawa, Kensuke; Goto, Masatoshi

    2011-01-01

    Wsc proteins have been identified in fungi and are believed to be stress sensors in the cell wall integrity (CWI) signaling pathway. In this study, we characterized the sensor orthologs WscA and WscB in Aspergillus nidulans. Using hemagglutinin-tagged WscA and WscB, we showed both Wsc proteins to be N- and O-glycosylated and localized in the cell wall and membrane, implying that they are potential cell surface sensors. The wscA disruptant (ΔwscA) strain was characterized by reduced colony and conidia formation and a high frequency of swollen hyphae under hypo-osmotic conditions. The deficient phenotype of the ΔwscA strain was facilitated by acidification, but not by alkalization or antifungal agents. In contrast, osmotic stabilization restored the normal phenotype in the ΔwscA strain. A similar inhibition was observed in the wscB disruptant strain, but to a lesser extent. In addition, a double wscA and wscB disruptant (ΔwscA ΔwscB) strain was viable, but its growth was inhibited to a greater degree, indicating that the functions of the products of these genes are redundant. Transcription of α-1,3-glucan synthase genes (agsA and agsB) was significantly altered in the wscA disruptant strain, resulting in an increase in the amount of alkali-soluble cell wall glucan compared to that in the wild-type (wt) strain. An increase in mitogen-activated protein kinase (MpkA) phosphorylation was observed as a result of wsc disruption. Moreover, the transient transcriptional upregulation of the agsB gene via MpkA signaling was observed in the ΔwscA ΔwscB strain to the same degree as in the wt strain. These results indicate that A. nidulans Wsc proteins have a different sensing spectrum and downstream signaling pathway than those in the yeast Saccharomyces cerevisiae and that they play an important role in CWI under hypo-osmotic and acidic pH conditions. PMID:21926329

  7. The Lipid Kinase PI5P4Kβ Is an Intracellular GTP Sensor for Metabolism and Tumorigenesis.

    PubMed

    Sumita, Kazutaka; Lo, Yu-Hua; Takeuchi, Koh; Senda, Miki; Kofuji, Satoshi; Ikeda, Yoshiki; Terakawa, Jumpei; Sasaki, Mika; Yoshino, Hirofumi; Majd, Nazanin; Zheng, Yuxiang; Kahoud, Emily Rose; Yokota, Takehiro; Emerling, Brooke M; Asara, John M; Ishida, Tetsuo; Locasale, Jason W; Daikoku, Takiko; Anastasiou, Dimitrios; Senda, Toshiya; Sasaki, Atsuo T

    2016-01-21

    While cellular GTP concentration dramatically changes in response to an organism's cellular status, whether it serves as a metabolic cue for biological signaling remains elusive due to the lack of molecular identification of GTP sensors. Here we report that PI5P4Kβ, a phosphoinositide kinase that regulates PI(5)P levels, detects GTP concentration and converts them into lipid second messenger signaling. Biochemical analyses show that PI5P4Kβ preferentially utilizes GTP, rather than ATP, for PI(5)P phosphorylation, and its activity reflects changes in direct proportion to the physiological GTP concentration. Structural and biological analyses reveal that the GTP-sensing activity of PI5P4Kβ is critical for metabolic adaptation and tumorigenesis. These results demonstrate that PI5P4Kβ is the missing GTP sensor and that GTP concentration functions as a metabolic cue via PI5P4Kβ. The critical role of the GTP-sensing activity of PI5P4Kβ in cancer signifies this lipid kinase as a cancer therapeutic target. PMID:26774281

  8. Identification of putative pathogenic microRNA and its downstream targets in anaplastic lymphoma kinase-negative anaplastic large cell lymphoma.

    PubMed

    Mehrotra, Meenakshi; Medeiros, L Jeffrey; Luthra, Rajyalakshmi; Sargent, Rachel L; Yao, Hui; Barkoh, Bedia A; Singh, Rajesh; Patel, Keyur P

    2014-10-01

    Anaplastic large cell lymphomas (ALCL) are tumors of T/null-cell lineage characterized by uniform CD30 expression. The 2008 World Health Organization classification subdivided ALCLs into 2 groups: anaplastic lymphoma kinase (ALK)-positive (established entity) and ALK-negative (proposed new entity) ALCL. The genetic basis for the pathogenesis of newly categorized ALK- ALCL is poorly understood. In this study, we used microRNA microarray analysis to identify differentially expressed microRNAs in ALK+ and ALK- ALCL. ALK- ALCL showed significantly higher expression of miR-155 (0.888 ± 0.228) compared with ALK+ ALCL (0.0565 ± 0.009) on microarray and by quantitative real-time polymerase chain reaction in ALK- ALCL compared with ALK+ ALCL (P < .05) with a strong correlation between the 2 platforms (R = 0.9, P < .0003). A novel in situ hybridization method allows direct visualization of expression patterns and relative quantitation of miR-155 (mean score, 2.3 versus 1.3; P = .01) for the first time in tissue sections of ALCL. Among computationally predicted targets of miR-155, we identified ZNF652 (r = -0.57, P = .05), BACH1 (r = 0.88, P = .02), RBAK (r = 0.81, P = .05), TRIM32 (r = 0.92, P = .01), E2F2 (r = 0.81, P = .05), and TP53INP1 (r = -0.31, P = .03) as genes whose expression by quantitative real-time polymerase chain reaction correlated significantly with the level of miR-155 in ALCL tumor tissue. PMID:25128227

  9. The Extracytoplasmic Linker Peptide of the Sensor Protein SaeS Tunes the Kinase Activity Required for Staphylococcal Virulence in Response to Host Signals

    PubMed Central

    Bae, Taeok

    2015-01-01

    Bacterial pathogens often employ two-component systems (TCSs), typically consisting of a sensor kinase and a response regulator, to control expression of a set of virulence genes in response to changing host environments. In Staphylococcus aureus, the SaeRS TCS is essential for in vivo survival of the bacterium. The intramembrane-sensing histidine kinase SaeS contains, along with a C-terminal kinase domain, a simple N-terminal domain composed of two transmembrane helices and a nine amino acid-long extracytoplasmic linker peptide. As a molecular switch, SaeS maintains low but significant basal kinase activity and increases its kinase activity in response to inducing signals such as human neutrophil peptide 1 (HNP1). Here we show that the linker peptide of SaeS controls SaeS’s basal kinase activity and that the amino acid sequence of the linker peptide is highly optimized for its function. Without the linker peptide, SaeS displays aberrantly elevated kinase activity even in the absence of the inducing signal, and does not respond to HNP1. Moreover, SaeS variants with alanine substitution of the linker peptide amino acids exhibit altered basal kinase activity and/or irresponsiveness to HNP1. Biochemical assays reveal that those SaeS variants have altered autokinase and phosphotransferase activities. Finally, animal experiments demonstrate that the linker peptide-mediated fine tuning of SaeS kinase activity is critical for survival of the pathogen. Our results indicate that the function of the linker peptide in SaeS is a highly evolved feature with very optimized amino acid sequences, and we propose that, in other SaeS-like intramembrane sensing histidine kinases, the extracytoplasmic linker peptides actively fine-control their kinases. PMID:25849574

  10. Screening for resistance against Pseudomonas syringae in rice-FOX Arabidopsis lines identified a putative receptor-like cytoplasmic kinase gene that confers resistance to major bacterial and fungal pathogens in Arabidopsis and rice

    PubMed Central

    Dubouzet, Joseph G; Maeda, Satoru; Sugano, Shoji; Ohtake, Miki; Hayashi, Nagao; Ichikawa, Takanari; Kondou, Youichi; Kuroda, Hirofumi; Horii, Yoko; Matsui, Minami; Oda, Kenji; Hirochika, Hirohiko; Takatsuji, Hiroshi; Mori, Masaki

    2011-01-01

    Approximately 20 000 of the rice-FOX Arabidopsis transgenic lines, which overexpress 13 000 rice full-length cDNAs at random in Arabidopsis, were screened for bacterial disease resistance by dip inoculation with Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). The identities of the overexpressed genes were determined in 72 lines that showed consistent resistance after three independent screens. Pst DC3000 resistance was verified for 19 genes by characterizing other independent Arabidopsis lines for the same genes in the original rice-FOX hunting population or obtained by reintroducing the genes into ecotype Columbia by floral dip transformation. Thirteen lines of these 72 selections were also resistant to the fungal pathogen Colletotrichum higginsianum. Eight genes that conferred resistance to Pst DC3000 in Arabidopsis have been introduced into rice for overexpression, and transformants were evaluated for resistance to the rice bacterial pathogen, Xanthomonas oryzae pv. oryzae. One of the transgenic rice lines was highly resistant to Xanthomonas oryzae pv. oryzae. Interestingly, this line also showed remarkably high resistance to Magnaporthe grisea, the fungal pathogen causing rice blast, which is the most devastating rice disease in many countries. The causal rice gene, encoding a putative receptor-like cytoplasmic kinase, was therefore designated as BROAD-SPECTRUM RESISTANCE 1. Our results demonstrate the utility of the rice-FOX Arabidopsis lines as a tool for the identification of genes involved in plant defence and suggest the presence of a defence mechanism common between monocots and dicots. PMID:20955180

  11. Divergent distribution of the sensor kinase CosS in non-thermophilic Campylobacter species and its functional incompatibility with the Campylobacter jejuni CosR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two-component signal transduction system is commonly composed of a sensor histidine kinase and a response regulator, modulating gene expression in response to environmental changes through a phosphorylation-dependent process. CosR is an OmpR-type response regulator essential for the viability of Cam...

  12. A role for the sensor kinase PlrS in controlling the response of Bordetella bronchiseptica to increased CO2 levels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of Bordetella bronchiseptica to colonize the rodent respiratory tract requires the sensor kinase PlrS, which is presumably part of a two-component regulatory system. Microarray analysis revealed that PlrS influences the expression of several genes required for virulence, including those ...

  13. Vacuolar CBL-CIPK12 Ca(2+)-sensor-kinase complexes are required for polarized pollen tube growth.

    PubMed

    Steinhorst, Leonie; Mähs, Anette; Ischebeck, Till; Zhang, Chunxia; Zhang, Xinxin; Arendt, Sibylle; Schültke, Stefanie; Heilmann, Ingo; Kudla, Jörg

    2015-06-01

    Polarized tip growth is a fundamental process of specialized eukaryotic cells like neuronal axons, fungal hyphae, and plant root hairs and pollen tubes. In pollen tubes, a tip-focused oscillating Ca(2+) gradient governs ions fluxes, vesicle transport, and cytoskeleton dynamics to ensure proper polarized cell growth [1, 2]. While a crucial role of vacuolar Ca(2+) signaling is established for cellular movements like guard cell dynamics [3-5], its contribution to polarized growth remains to be defined. Here we identified the two closely related tonoplast-localized Ca(2+)-sensor proteins CBL2 and CBL3 as crucial regulators of vacuolar dynamics and polarized pollen tube growth. Overexpression of CBL2 or CBL3 in Arabidopsis and tobacco pollen tubes affected vacuolar morphology, pollen germination, and tube growth, but did not alter actin organization, PI(4,5)P2 distribution, or tip-focused Ca(2+) oscillations. Similarly, loss of function of each single Ca(2+) sensor and cbl2/cbl3 double mutants exhibited impaired pollen tube growth in vitro and in vivo. Both Ca(2+) sensors interacted with the kinase CIPK12, which translocated from the cytoplasm to the vacuolar membrane upon this interaction. Also, overexpression of CIPK12 induced severe vacuolar phenotypes, and loss of function of CIPK12 lead to impairment of polar growth. Remarkably, co-expression of CBL2 or CBL3 with CIPK12 resulted in a phosphorylation-dependent, massively enhanced vacuolar inflation and further disruption of polar growth. Together, these findings identify an essential role of the vacuole and vacuolar Ca(2+) signaling for polarized tip growth. We propose that a faithfully balanced activity of Ca(2+)-activated CBL2/3-CIPK12 complexes fulfills fundamental functions to enable the fast growth of pollen tubes in higher plants. PMID:25936548

  14. Death-associated protein kinase as a sensor of mitochondrial membrane potential: role of lysosome in mitochondrial toxin-induced cell death.

    PubMed

    Shang, Tiesong; Joseph, Joy; Hillard, Cecilia J; Kalyanaraman, B

    2005-10-14

    We have investigated here the mechanism of dephosphorylation and activation of death-associated protein kinase (DAPK) and the role of lysosome in neuroblastoma cells (SH-SY5Y) treated with mitochondrial toxins, such as MPP(+) and rotenone. Mitochondrial respiratory chain inhibitors and uncouplers decreased mitochondrial membrane potential leading to DAPK dephosphorylation and activation. The class III phosphoinositide 3-kinase inhibitors attenuated DAPK dephosphorylation induced by mitochondrial toxins. Complex I inhibition by mitochondrial toxins (e.g. MPP(+)) resulted in mitochondrial swelling and lysosome reduction. Inhibition of class III phosphoinositide 3-kinase attenuated MPP(+)-induced lysosome reduction and cell death. The role of DAPK as a sensor of mitochondrial membrane potential in mitochondrial diseases was addressed. PMID:16085644

  15. Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions

    PubMed Central

    Hussain, Rohanah; Harding, Stephen E.; Hughes, Charlotte S.; Ma, Pikyee; Patching, Simon G.; Edara, Shalini; Siligardi, Giuliano; Henderson, Peter J.F.; Phillips-Jones, Mary K.

    2016-01-01

    This article reviews current methods for the reliable heterologous overexpression in Escherichia coli and purification of milligram quantities of bacterial membrane sensor kinase (MSK) proteins belonging to the two-component signal transduction family of integral membrane proteins. Many of these methods were developed at Leeds alongside Professor Steve Baldwin to whom this review is dedicated. It also reviews two biophysical methods that we have adapted successfully for studies of purified MSKs and other membrane proteins–synchrotron radiation circular dichroism (SRCD) spectroscopy and analytical ultracentrifugation (AUC), both of which are non-immobilization and matrix-free methods that require no labelling strategies. Other techniques such as isothermal titration calorimetry (ITC) also share these features but generally require high concentrations of material. In common with many other biophysical techniques, both of these biophysical methods provide information regarding membrane protein conformation, oligomerization state and ligand binding, but they possess the additional advantage of providing direct assessments of whether ligand binding interactions are accompanied by conformational changes. Therefore, both methods provide a powerful means by which to identify and characterize inhibitor binding and any associated protein conformational changes, thereby contributing valuable information for future drug intervention strategies directed towards bacterial MSKs. PMID:27284046

  16. Purification of bacterial membrane sensor kinases and biophysical methods for determination of their ligand and inhibitor interactions.

    PubMed

    Hussain, Rohanah; Harding, Stephen E; Hughes, Charlotte S; Ma, Pikyee; Patching, Simon G; Edara, Shalini; Siligardi, Giuliano; Henderson, Peter J F; Phillips-Jones, Mary K

    2016-06-15

    This article reviews current methods for the reliable heterologous overexpression in Escherichia coli and purification of milligram quantities of bacterial membrane sensor kinase (MSK) proteins belonging to the two-component signal transduction family of integral membrane proteins. Many of these methods were developed at Leeds alongside Professor Steve Baldwin to whom this review is dedicated. It also reviews two biophysical methods that we have adapted successfully for studies of purified MSKs and other membrane proteins-synchrotron radiation circular dichroism (SRCD) spectroscopy and analytical ultracentrifugation (AUC), both of which are non-immobilization and matrix-free methods that require no labelling strategies. Other techniques such as isothermal titration calorimetry (ITC) also share these features but generally require high concentrations of material. In common with many other biophysical techniques, both of these biophysical methods provide information regarding membrane protein conformation, oligomerization state and ligand binding, but they possess the additional advantage of providing direct assessments of whether ligand binding interactions are accompanied by conformational changes. Therefore, both methods provide a powerful means by which to identify and characterize inhibitor binding and any associated protein conformational changes, thereby contributing valuable information for future drug intervention strategies directed towards bacterial MSKs. PMID:27284046

  17. Crystal Structures of C4-Dicarboxylate Ligand Complexes with Sensor Domains of Histidine Kinases DcuS and DctB

    SciTech Connect

    Cheung, J.; Hendrickson, W

    2008-01-01

    Two-component signaling systems allow bacteria to adapt to changing environments. Typically, a chemical or other stimulus is detected by the periplasmic sensor domain of a transmembrane histidine kinase sensor, which in turn relays a signal through a phosphotransfer cascade to the cognate cytoplasmic response regulator. Such systems lead ultimately to changes in gene expression or cell motility. Mechanisms of ligand binding and signal transduction through the cell membrane in histidine kinases are not fully understood. In an effort to further understand such processes, we have solved the crystal structures of the periplasmic sensor domains of Escherichia coli DcuS and of Vibrio cholerae DctB in complex with the respective cognate ligands, malate and succinate. Both proteins are involved in the regulation of the transport and metabolism of C{sub 4-}dicarboxylates, but they are not highly related by sequence similarity. Our work reveals that despite disparate sizes, both structures contain a similar characteristic {alpha}/{beta} PDC (PhoQ-DcuS-CitA) sensor-domain fold and display similar modes of ligand binding, suggesting similar mechanisms of function.

  18. Signal Transduction by BvgS Sensor Kinase: BINDING OF MODULATOR NICOTINATE AFFECTS THE CONFORMATION AND DYNAMICS OF THE ENTIRE PERIPLASMIC MOIETY.

    PubMed

    Dupré, Elian; Lesne, Elodie; Guérin, Jérémy; Lensink, Marc F; Verger, Alexis; de Ruyck, Jérôme; Brysbaert, Guillaume; Vezin, Hervé; Locht, Camille; Antoine, Rudy; Jacob-Dubuisson, Françoise

    2015-09-18

    The two-component sensory transduction system BvgAS controls the virulence regulon of the whooping-cough agent Bordetella pertussis. The periplasmic moiety of the homodimeric sensor kinase BvgS is composed of four bilobed Venus flytrap (VFT) perception domains followed by α helices that extend into the cytoplasmic membrane. In the virulent phase, the default state of B. pertussis, the cytoplasmic enzymatic moiety of BvgS acts as kinase by autophosphorylating and transferring the phosphoryl group to the response regulator BvgA. Under laboratory conditions, BvgS shifts to phosphatase activity in response to modulators, notably nicotinate ions. Here we characterized the effects of nicotinate and related modulators on the BvgS periplasmic moiety by using site-directed mutagenesis and in silico and biophysical approaches. Modulators bind with low affinity to BvgS in the VFT2 cavity. Electron paramagnetic resonance shows that their binding globally affects the conformation and dynamics of the periplasmic moiety. Specific amino acid substitutions designed to slacken interactions within and between the VFT lobes prevent BvgS from responding to nicotinate, showing that BvgS shifts from kinase to phosphatase activity in response to this modulator via a tense transition state that involves a large periplasmic structural block. We propose that this transition enables the transmembrane helices to adopt a distinct conformation that sets the cytoplasmic enzymatic moiety in the phosphatase mode. The bona fide, in vivo VFT ligands that remain to be identified are likely to trigger similar effects on the transmembrane and cytoplasmic moieties. This mechanism may be relevant to the other VFT-containing sensor kinases homologous to BvgS. PMID:26203186

  19. Ultrafast ligand dynamics in the heme-based GAF sensor domains of the histidine kinases DosS and DosT from Mycobacterium tuberculosis.

    PubMed

    Vos, Marten H; Bouzhir-Sima, Latifa; Lambry, Jean-Christophe; Luo, Hao; Eaton-Rye, Julian J; Ioanoviciu, Alexandra; Ortiz de Montellano, Paul R; Liebl, Ursula

    2012-01-10

    The transcriptional regulator DosR from M. tuberculosis plays a crucial role in the virulence to dormancy transition of the pathogen. DosR can be activated by DosT and DosS, two histidine kinases with heme-containing sensor GAF domains, capable of diatomic ligand binding. To investigate the initial processes occurring upon ligand dissociation, we performed ultrafast time-resolved absorption spectroscopy of the isolated sensor domains ligated with O(2), NO, and CO. The results reveal a relatively closed heme pocket for both proteins. For DosT the yield of O(2) escape from the heme pocket on the picoseconds time scale upon photodissociation was found to be very low (1.5%), similar to other heme-based oxygen sensor proteins, implying that this sensor acts as an effective O(2) trap. Remarkably, this yield is an order of magnitude higher in DosS (18%). For CO, by contrast, the fraction of CO rebinding within the heme pocket is higher in DosS. Experiments with mutant DosT sensor domains and molecular dynamics simulations indicate an important role in ligand discrimination of the distal tyrosine, present in both proteins, which forms a hydrogen bond with heme-bound O(2). We conclude that despite their similarity, DosT and DosS display ligand-specific different primary dynamics during the initial phases of intraprotein signaling. The distal tyrosine, present in both proteins, plays an important role in these processes. PMID:22142262

  20. Ultrafast ligand dynamics in the heme-based GAF sensor domains of the histidine kinases DosS and DosT from Mycobacterium tuberculosis†

    PubMed Central

    Vos, Marten H.; Bouzhir-Sima, Latifa; Lambry, Jean-Christophe; Luo, Hao; Eaton-Rye, Julian J.; Ioanoviciu, Alexandra; Ortiz de Montellano, Paul R.; Liebl, Ursula

    2011-01-01

    The transcriptional regulator DosR from M. tuberculosis plays a crucial role in the virulence to dormancy transition of the pathogen. DosR can be activated by DosT and DosS, two histidine kinases with heme-containing sensor GAF domains, capable of diatomic ligand binding, To investigate the initial processes occurring upon ligand dissociation, we performed ultrafast time-resolved absorption spectroscopy of the isolated sensor domains ligated with O2, NO and CO. The results reveal a relatively closed heme pocket for both proteins. For DosT the yield of O2 escape from the heme pocket on the picoseconds timescale upon photodissociation was found to be very low (1.5%), similar to other heme-based oxygen sensor proteins, implying that this sensor acts as an effective O2 trap. Remarkably, this yield is an order of magnitude higher in DosS (18%). For CO, by contrast, the fraction of CO rebinding within the heme pocket is higher in DosS. Experiments with mutant DosT sensor domains and molecular dynamics simulations indicate an important role in ligand discrimination of the distal tyrosine, present in both proteins, which forms a hydrogen bond with heme-bound O2. We conclude that despite their similarity, DosT and DosS display ligand-specific different primary dynamics during the initial phases of intra-protein signaling. The distal tyrosine, present in both proteins, plays an important role in these processes. PMID:22142262

  1. Backbone chemical shift assignments for the sensor domain of the Burkholderia pseudomallei histidine kinase RisS: "missing" resonances at the dimer interface.

    PubMed

    Buchko, Garry W; Edwards, Thomas E; Hewitt, Stephen N; Phan, Isabelle Q H; Van Voorhis, Wesley C; Miller, Samuel I; Myler, Peter J

    2015-10-01

    Using a deuterated sample, all the observable backbone (1)H(N), (15)N, (13)C(a), and (13)C' chemical shifts for the dimeric, periplasmic sensor domain of the Burkholderia pseudomallei histidine kinase RisS were assigned. Approximately one-fifth of the amide resonances are "missing" in the (1)H-(15)N HSQC spectrum and map primarily onto α-helices at the dimer interface observed in a crystal structure suggesting this region either undergoes intermediate timescale motion (μs-ms) and/or is heterogeneous. PMID:25957069

  2. Serotype- and strain- dependent contribution of the sensor kinase CovS of the CovRS two-component system to Streptococcus pyogenes pathogenesis

    PubMed Central

    2010-01-01

    Background The Streptococcus pyogenes (group A streptococci, GAS) two-component signal transduction system CovRS has been described to be important for pathogenesis of this exclusively human bacterial species. If this system acts uniquely in all serotypes is currently unclear. Presence of serotype- or strain-dependent regulatory circuits and polarity is an emerging scheme in Streptococcus pyogenes pathogenesis. Thus, the contribution of the sensor kinase (CovS) of the global regulatory two-component signal transduction system CovRS on pathogenesis of several M serotypes was investigated. Results CovS mutation uniformly repressed capsule expression and hampered keratinocyte adherence in all tested serotypes. However, a serotype- and even strain-dependent contribution on survival in whole human blood and biofilm formation was noted, respectively. Conclusions These data provide new information on the action of the CovS sensor kinase and revealed that its activity on capsule expression and keratinocyte adherence is uniform across serotypes, whereas the influence on biofilm formation and blood survival is serotype or even strain dependent. This adds the CovRS system to a growing list of serotype-specific acting regulatory loci in S. pyogenes. PMID:20113532

  3. Validation of Cis and Trans Modes in Multistep Phosphotransfer Signaling of Bacterial Tripartite Sensor Kinases by Using Phos-Tag SDS-PAGE

    PubMed Central

    Kinoshita-Kikuta, Emiko; Kinoshita, Eiji; Eguchi, Yoko; Koike, Tohru

    2016-01-01

    Tripartite sensor kinases (TSKs) have three phosphorylation sites on His, Asp, and His residues, which are conserved in a histidine kinase (HK) domain, a receiver domain, and a histidine-containing phosphotransmitter (HPt) domain, respectively. By means of a three-step phosphorelay, TSKs convey a phosphoryl group from the γ-phosphate group of ATP to the first His residue in the HK domain, then to the Asp residue in the receiver domain, and finally to the second His residue in the HPt domain. Although TSKs generally form homodimers, it was unknown whether the mode of phosphorylation in each step was intramolecular (cis) or intermolecular (trans). To examine this mode, we performed in vitro complementation analyses using Ala-substituted mutants of the ATP-binding region and three phosphorylation sites of recombinant ArcB, EvgS, and BarA TSKs derived from Escherichia coli. Phosphorylation profiles of these kinases, determined by using Phos-tag SDS-PAGE, showed that the sequential modes of the three-step phosphoryl-transfer reactions of ArcB, EvgS, and BarA are all different: cis-trans-trans, cis-cis-cis, and trans-trans-trans, respectively. The inclusion of a trans mode is consistent with the need to form a homodimer; the fact that all the steps for EvgS have cis modes is particularly interesting. Phos-tag SDS-PAGE therefore provides a simple method for identifying the unique and specific phosphotransfer mode for a given kinase, without taking complicated intracellular elements into consideration. PMID:26828204

  4. HAMP Domain Rotation and Tilting Movements Associated with Signal Transduction in the PhoQ Sensor Kinase

    PubMed Central

    Matamouros, Susana; Hager, Kyle R.

    2015-01-01

    ABSTRACT HAMP domains are α-helical coiled coils that often transduce signals from extracytoplasmic sensing domains to cytoplasmic domains. Limited structural information has resulted in hypotheses that specific HAMP helix movement changes downstream enzymatic activity. These hypotheses were tested by mutagenesis and cysteine cross-linking analysis of the PhoQ histidine kinase, essential for resistance to antimicrobial peptides in a variety of enteric pathogens. These results support a mechanistic model in which periplasmic signals which induce an activation state generate a rotational movement accompanied by a tilt in α-helix 1 which activates kinase activity. Biochemical data and a high-confidence model of the PhoQ cytoplasmic domain indicate a possible physical interaction of the HAMP domain with the catalytic domain as necessary for kinase repression. These results support a model of PhoQ activation in which changes in the periplasmic domain lead to conformational movements in the HAMP domain helices which disrupt interaction between the HAMP and the catalytic domains, thus promoting increased kinase activity. PMID:26015499

  5. A PAS domain with an oxygen labile [4Fe-4S](2+) cluster in the oxygen sensor kinase NreB of Staphylococcus carnosus.

    PubMed

    Müllner, Martin; Hammel, Oliver; Mienert, Bernd; Schlag, Steffen; Bill, Eckhard; Unden, Gottfried

    2008-12-30

    The cytoplasmic histidine sensor kinase NreB of Staphylococcus carnosus responds to O(2) and controls together with the response regulator NreC the expression of genes of nitrate/nitrite respiration. nreBC homologous genes were found in Staphylococcus strains and Bacillus clausii, and a modified form was found in some Lactobacillus strains. NreB contains a sensory domain with similarity to heme B binding PAS domains. Anaerobically prepared NreB of S. carnosus exhibited a (diamagnetic) [4Fe-4S](2+) cluster when assessed by Mossbauer spectroscopy. Upon reaction with air, the cluster was degraded with a half-life of approximately 2.5 min. No significant amounts of Mossbauer or EPR detectable intermediates were found during the decay, but magnetic Mossbauer spectra revealed formation of diamagnetic [2Fe-2S](2+) clusters. After extended exposure to air, NreB was devoid of a FeS cluster. Photoreduction with deazaflavin produced small amounts of [4Fe-4S](+), which were degraded subsequently. The magnetically perturbed Mossbauer spectrum of the [4Fe-4S](2+) cluster corroborated the S = 0 spin state and revealed uniform electric field gradient tensors of the iron sites, suggesting full delocalization of the valence electrons and binding of each of the Fe ions by four S ligands, including the ligand to the protein. Mutation of each of the four Cys residues inactivated NreB function in vivo in accordance with their role as ligands. [4Fe-4S](2+) cluster-containing NreB had high kinase activity. Exposure to air decreased the kinase activity and content of the [4Fe-4S](2+) cluster with similar half-lives. We conclude that the sensory domain of NreB represents a new type of PAS domain containing a [4Fe-4S](2+) cluster for sensing and function. PMID:19102705

  6. Transmembrane signaling in the sensor kinase DcuS of Escherichia coli: A long-range piston-type displacement of transmembrane helix 2

    PubMed Central

    Monzel, Christian; Unden, Gottfried

    2015-01-01

    The C4-dicarboxylate sensor kinase DcuS is membrane integral because of the transmembrane (TM) helices TM1 and TM2. Fumarate-induced movement of the helices was probed in vivo by Cys accessibility scanning at the membrane–water interfaces after activation of DcuS by fumarate at the periplasmic binding site. TM1 was inserted with amino acid residues 21–41 in the membrane in both the fumarate-activated (ON) and inactive (OFF) states. In contrast, TM2 was inserted with residues 181–201 in the OFF state and residues 185–205 in the ON state. Replacement of Trp 185 by an Arg residue caused displacement of TM2 toward the outside of the membrane and a concomitant induction of the ON state. Results from Cys cross-linking of TM2/TM2′ in the DcuS homodimer excluded rotation; thus, data from accessibility changes of TM2 upon activation, either by ligand binding or by mutation of TM2, and cross-linking of TM2 and the connected region in the periplasm suggest a piston-type shift of TM2 by four residues to the periplasm upon activation (or fumarate binding). This mode of function is supported by the suggestion from energetic calculations of two preferred positions for TM2 insertion in the membrane. The shift of TM2 by four residues (or 4–6 Å) toward the periplasm upon activation is complementary to the periplasmic displacement of 3–4 Å of the C-terminal part of the periplasmic ligand-binding domain upon ligand occupancy in the citrate-binding domain in the homologous CitA sensor kinase. PMID:26283365

  7. Transmembrane signaling in the sensor kinase DcuS of Escherichia coli: A long-range piston-type displacement of transmembrane helix 2.

    PubMed

    Monzel, Christian; Unden, Gottfried

    2015-09-01

    The C4-dicarboxylate sensor kinase DcuS is membrane integral because of the transmembrane (TM) helices TM1 and TM2. Fumarate-induced movement of the helices was probed in vivo by Cys accessibility scanning at the membrane-water interfaces after activation of DcuS by fumarate at the periplasmic binding site. TM1 was inserted with amino acid residues 21-41 in the membrane in both the fumarate-activated (ON) and inactive (OFF) states. In contrast, TM2 was inserted with residues 181-201 in the OFF state and residues 185-205 in the ON state. Replacement of Trp 185 by an Arg residue caused displacement of TM2 toward the outside of the membrane and a concomitant induction of the ON state. Results from Cys cross-linking of TM2/TM2' in the DcuS homodimer excluded rotation; thus, data from accessibility changes of TM2 upon activation, either by ligand binding or by mutation of TM2, and cross-linking of TM2 and the connected region in the periplasm suggest a piston-type shift of TM2 by four residues to the periplasm upon activation (or fumarate binding). This mode of function is supported by the suggestion from energetic calculations of two preferred positions for TM2 insertion in the membrane. The shift of TM2 by four residues (or 4-6 Å) toward the periplasm upon activation is complementary to the periplasmic displacement of 3-4 Å of the C-terminal part of the periplasmic ligand-binding domain upon ligand occupancy in the citrate-binding domain in the homologous CitA sensor kinase. PMID:26283365

  8. The KdpD Sensor Kinase of Escherichia coli Responds to Several Distinct Signals To Turn on Expression of the Kdp Transport System

    PubMed Central

    2015-01-01

    ABSTRACT Kdp, one of three saturable K+ uptake systems in Escherichia coli, is the system with the highest affinity for K+ and the only one whose expression is strongly controlled by medium K+ concentration. Expression is controlled by a two-component system of KdpD, the sensor kinase, and KdpE, the response regulator. There is general agreement that expression occurs when the growth rate of cells begins to become limited by K+ availability. How K+ limitation results in expression has been controversial. Studying the roles of the major components of the growth medium shows that KdpD senses at least two distinct signals inside the cell, those of Na+ and NH4+, and it probably senses other monovalent cations in the cell. KdpD does not sense turgor. IMPORTANCE The expression of the Kdp K+ transport system of E. coli occurs when cells become limited in their growth rate by the availability of K+. Cells sense limited K+ and try to compensate by taking up other monovalent cations, particularly Na+ and NH4+. These cations are sensed in the cytoplasm by the KdpD response regulator, presumably to stimulate its kinase activity. It is shown that KdpD does not sense turgor, as was suggested earlier. PMID:26350129

  9. Structural characterization and modeling of the Borrelia burgdorferi hybrid histidine kinase Hk1 periplasmic sensor: A system for sensing small molecules associated with tick feeding.

    PubMed

    Bauer, William J; Luthra, Amit; Zhu, Guangyu; Radolf, Justin D; Malkowski, Michael G; Caimano, Melissa J

    2015-10-01

    Two-component signal transduction systems are the primary mechanisms by which bacteria perceive and respond to changes in their environment. The Hk1/Rrp1 two-component system (TCS) in Borrelia burgdorferi consists of a hybrid histidine kinase and a response regulator with diguanylate cyclase activity, respectively. Phosphorylated Rrp1 catalyzes the synthesis of c-di-GMP, a second messenger associated with bacterial life-style control networks. Spirochetes lacking either Hk1 or Rrp1 are virulent in mice but destroyed within feeding ticks. Activation of Hk1 by exogenous stimuli represents the seminal event for c-di-GMP signaling. We reasoned that structural characterization of Hk1's sensor would provide insights into the mechanism underlying signal transduction and aid in the identification of activating ligands. The Hk1 sensor is composed of three ligand-binding domains (D1-3), each with homology to periplasmic solute-binding proteins (PBPs) typically associated with ABC transporters. Herein, we determined the structure for D1, the most N-terminal PBP domain. As expected, D1 displays a bilobed Venus Fly Trap-fold. Similar to the prototypical sensor PBPs HK29S from Geobacter sulfurreducens and VFT2 from Bordetella pertussis, apo-D1 adopts a closed conformation. Using complementary approaches, including SAXS, we established that D1 forms a dimer in solution. The D1 structure enabled us to model the D2 and D3 domains. Differences in the ligand-binding pockets suggest that each PBP recognizes a different ligand. The ability of Hk1 to recognize multiple stimuli provides spirochetes with a means of distinguishing between the acquisition and transmission blood meals and generate a graded output response that is reflective of the perceived environmental threats. PMID:26321039

  10. Bitter melon juice activates cellular energy sensor AMP-activated protein kinase causing apoptotic death of human pancreatic carcinoma cells

    PubMed Central

    Agarwal, Rajesh

    2013-01-01

    Prognosis of pancreatic cancer is extremely poor, suggesting critical needs for additional drugs to improve disease outcome. In this study, we examined efficacy and associated mechanism of a novel agent bitter melon juice (BMJ) against pancreatic carcinoma cells both in culture and nude mice. BMJ anticancer efficacy was analyzed in human pancreatic carcinoma BxPC-3, MiaPaCa-2, AsPC-1 and Capan-2 cells by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide, cell death enzyme-linked immunosorbent assay and annexin/propidium iodide assays. BMJ effect on apoptosis regulators was assessed by immunoblotting. In vivo BMJ efficacy was evaluated against MiaPaCa-2 tumors in nude mice, and xenograft was analyzed for biomarkers by immunohistochemistry (IHC). Results showed that BMJ (2–5% v/v) decreases cell viability in all four pancreatic carcinoma cell lines by inducing strong apoptotic death. At molecular level, BMJ caused caspases activation, altered expression of Bcl-2 family members and cytochrome-c release into the cytosol. Additionally, BMJ decreased survivin and X-linked inhibitor of apoptosis protein but increased p21, CHOP and phosphorylated mitogen-activated protein kinases (extracellular signal-regulated kinase 1/2 and p38) levels. Importantly, BMJ activated adenosine monophosphate-activated protein kinase (AMPK), a biomarker for cellular energy status, and an AMPK inhibitor (Compound C) reversed BMJ-induced caspase-3 activation suggesting activated AMPK involvement in BMJ-induced apoptosis. In vivo, oral administration of lyophilized BMJ (5mg in 100 µl water/day/mouse) for 6 weeks inhibited MiaPaCa-2 tumor xenograft growth by 60% (P < 0.01) without noticeable toxicity in nude mice. IHC analyses of MiaPaCa-2 xenografts showed that BMJ also inhibits proliferation, induces apoptosis and activates AMPK in vivo. Overall, BMJ exerts strong anticancer efficacy against human pancreatic carcinoma cells, both in vitro and in vivo, suggesting its clinical

  11. HIV and Cocaine Impact Glial Metabolism: Energy Sensor AMP-activated protein kinase Role in Mitochondrial Biogenesis and Epigenetic Remodeling.

    PubMed

    Samikkannu, Thangavel; Atluri, Venkata S R; Nair, Madhavan P N

    2016-01-01

    HIV infection and cocaine use have been identified as risk factors for triggering neuronal dysfunction. In the central nervous system (CNS), energy resource and metabolic function are regulated by astroglia. Glia is the major reservoir of HIV infection and disease progression in CNS. However, the role of cocaine in accelerating HIV associated energy deficit and its impact on neuronal dysfunction has not been elucidated yet. The aim of this study is to elucidate the molecular mechanism of HIV associated neuropathogenesis in cocaine abuse and how it accelerates the energy sensor AMPKs and its subsequent effect on mitochondrial oxidative phosphorylation (OXPHOS), BRSKs, CDC25B/C, MAP/Tau, Wee1 and epigenetics remodeling complex SWI/SNF. Results showed that cocaine exposure during HIV infection significantly increased the level of p24, reactive oxygen species (ROS), ATP-utilization and upregulated energy sensor AMPKs, CDC25B/C, MAP/Tau and Wee1 protein expression. Increased ROS production subsequently inhibits OCR/ECAR ratio and OXPHOS, and eventually upregulate epigenetics remodeling complex SWI/SNF in CHME-5 cells. These results suggest that HIV infection induced energy deficit and metabolic dysfunction is accelerated by cocaine inducing energy sensor AMPKs, mitochondrial biogenesis and chromatin remodeling complex SWI/SNF activation, which may lead to neuroAIDS disease progression. PMID:27535703

  12. HIV and Cocaine Impact Glial Metabolism: Energy Sensor AMP-activated protein kinase Role in Mitochondrial Biogenesis and Epigenetic Remodeling

    PubMed Central

    Samikkannu, Thangavel; Atluri, Venkata S. R.; Nair, Madhavan P. N.

    2016-01-01

    HIV infection and cocaine use have been identified as risk factors for triggering neuronal dysfunction. In the central nervous system (CNS), energy resource and metabolic function are regulated by astroglia. Glia is the major reservoir of HIV infection and disease progression in CNS. However, the role of cocaine in accelerating HIV associated energy deficit and its impact on neuronal dysfunction has not been elucidated yet. The aim of this study is to elucidate the molecular mechanism of HIV associated neuropathogenesis in cocaine abuse and how it accelerates the energy sensor AMPKs and its subsequent effect on mitochondrial oxidative phosphorylation (OXPHOS), BRSKs, CDC25B/C, MAP/Tau, Wee1 and epigenetics remodeling complex SWI/SNF. Results showed that cocaine exposure during HIV infection significantly increased the level of p24, reactive oxygen species (ROS), ATP-utilization and upregulated energy sensor AMPKs, CDC25B/C, MAP/Tau and Wee1 protein expression. Increased ROS production subsequently inhibits OCR/ECAR ratio and OXPHOS, and eventually upregulate epigenetics remodeling complex SWI/SNF in CHME-5 cells. These results suggest that HIV infection induced energy deficit and metabolic dysfunction is accelerated by cocaine inducing energy sensor AMPKs, mitochondrial biogenesis and chromatin remodeling complex SWI/SNF activation, which may lead to neuroAIDS disease progression. PMID:27535703

  13. Insight into the sporulation phosphorelay: crystal structure of the sensor domain of Bacillus subtilis histidine kinase, KinD.

    PubMed

    Wu, R; Gu, M; Wilton, R; Babnigg, G; Kim, Y; Pokkuluri, P R; Szurmant, H; Joachimiak, A; Schiffer, M

    2013-05-01

    The Bacillus subtilis KinD signal-transducing histidine kinase is a part of the sporulation phosphorelay known to regulate important developmental decisions such as sporulation and biofilm formation. We have determined crystal structures of the extracytoplasmic sensing domain of KinD, which was copurified and crystallized with a pyruvate ligand. The structure of a ligand-binding site mutant was also determined; it was copurified and crystallized with an acetate ligand. The structure of the KinD extracytoplasmic segment is similar to that of several other sensing domains of signal transduction proteins and is composed of tandem Per-Arnt-Sim (PAS)-like domains. The KinD ligand-binding site is located on the membrane distal PAS-like domain and appears to be highly selective; a single mutation, R131A, abolishes pyruvate binding and the mutant binds acetate instead. Differential scanning fluorimetry, using a variety of monocarboxylic and dicarboxylic acids, identified pyruvate, propionate, and butyrate but not lactate, acetate, or malate as KinD ligands. A recent report found that malate induces biofilm formation in a KinD-dependent manner. It was suggested that malate might induce a metabolic shift and increased secretion of the KinD ligand of unknown identity. The structure and binding assays now suggests that this ligand is pyruvate and/or other small monocarboxylic acids. In summary, this study gives a first insight into the identity of a molecular ligand for one of the five phosphorelay kinases of B. subtilis. PMID:23436677

  14. An Analysis of the Solution Structure and Signaling Mechanism of LovK, a Sensor Histidine Kinase Integrating Light and Redox Signals

    SciTech Connect

    Purcell, Erin B.; McDonald, Claudia A.; Palfey, Bruce A.; Crosson, Sean

    2010-12-07

    Flavin-binding LOV domains are broadly conserved in plants, fungi, archaea, and bacteria. These {approx}100-residue photosensory modules are generally encoded within larger, multidomain proteins that control a range of blue light-dependent physiologies. The bacterium Caulobacter crescentus encodes a soluble LOV-histidine kinase, LovK, that regulates the adhesive properties of the cell. Full-length LovK is dimeric as are a series of systematically truncated LovK constructs containing only the N-terminal LOV sensory domain. Nonconserved sequence flanking the LOV domain functions to tune the signaling lifetime of the protein. Size exclusion chromatography and small-angle X-ray scattering (SAXS) demonstrate that the LOV sensor domain does not undergo a large conformational change in response to photon absorption. However, limited proteolysis identifies a sequence flanking the C-terminus of the LOV domain as a site of light-induced change in protein conformation and dynamics. On the basis of SAXS envelope reconstruction and bioinformatic prediction, we propose this dynamic region of structure is an extended C-terminal coiled coil that links the LOV domain to the histidine kinase domain. To test the hypothesis that LOV domain signaling is affected by cellular redox state in addition to light, we measured the reduction potential of the LovK FMN cofactor. The measured potential of -258 mV is congruent with the redox potential of Gram-negative cytoplasm during logarithmic growth (-260 to -280 mV). Thus, a fraction of LovK in the cytosol may be in the reduced state under typical growth conditions. Chemical reduction of the FMN cofactor of LovK attenuates the light-dependent ATPase activity of the protein in vitro, demonstrating that LovK can function as a conditional photosensor that is regulated by the oxidative state of the cellular environment.

  15. The Sensor Histidine Kinase RgfC Affects Group B Streptococcal Virulence Factor Expression Independent of Its Response Regulator RgfA

    PubMed Central

    Gendrin, Claire; Lembo, Annalisa; Whidbey, Christopher; Burnside, Kellie; Berry, Jessica; Ngo, Lisa; Banerjee, Anirban; Xue, Liang; Arrington, Justine; Doran, Kelly S.; Tao, W. Andy

    2015-01-01

    Group B streptococci (GBS; Streptococcus agalactiae) are beta-hemolytic, Gram-positive bacteria that are common asymptomatic colonizers of healthy adults. However, these opportunistic bacteria also cause invasive infections in human newborns and in certain adult populations. To adapt to the various environments encountered during its disease cycle, GBS encodes a number of two-component signaling systems. Previous studies have indicated that the TCS comprising the sensor histidine kinase RgfC and the response regulator RgfA mediate GBS binding to extracellular matrix components, such as fibrinogen. However, in certain GBS clinical isolates, a point mutation in rgfA results in premature truncation of the response regulator. The truncated RgfA protein lacks the C-terminal DNA binding domain necessary for promoter binding and gene regulation. Here, we show that deletion of rgfC in GBS strains lacking a functional RgfA increased systemic infection. Furthermore, infection with the rgfC mutant increased induction of proinflammatory signaling pathways in vivo. Phosphoproteomic analysis revealed that 19 phosphopeptides corresponding to 12 proteins were differentially phosphorylated at aspartate, cysteine, serine, threonine, or tyrosine residues in the rgfC mutant. This included aspartate phosphorylation of a tyrosine kinase, CpsD, and a transcriptional regulator. Consistent with this observation, microarray analysis of the rgfC mutant indicated that >200 genes showed altered expression compared to the isogenic wild-type strain and included transcriptional regulators, transporters, and genes previously associated with GBS pathogenesis. Our observations suggest that in the absence of RgfA, nonspecific RgfC signaling affects the expression of virulence factors and GBS pathogenesis. PMID:25561709

  16. The sensor histidine kinase RgfC affects group B streptococcal virulence factor expression independent of its response regulator RgfA.

    PubMed

    Gendrin, Claire; Lembo, Annalisa; Whidbey, Christopher; Burnside, Kellie; Berry, Jessica; Ngo, Lisa; Banerjee, Anirban; Xue, Liang; Arrington, Justine; Doran, Kelly S; Tao, W Andy; Rajagopal, Lakshmi

    2015-03-01

    Group B streptococci (GBS; Streptococcus agalactiae) are beta-hemolytic, Gram-positive bacteria that are common asymptomatic colonizers of healthy adults. However, these opportunistic bacteria also cause invasive infections in human newborns and in certain adult populations. To adapt to the various environments encountered during its disease cycle, GBS encodes a number of two-component signaling systems. Previous studies have indicated that the TCS comprising the sensor histidine kinase RgfC and the response regulator RgfA mediate GBS binding to extracellular matrix components, such as fibrinogen. However, in certain GBS clinical isolates, a point mutation in rgfA results in premature truncation of the response regulator. The truncated RgfA protein lacks the C-terminal DNA binding domain necessary for promoter binding and gene regulation. Here, we show that deletion of rgfC in GBS strains lacking a functional RgfA increased systemic infection. Furthermore, infection with the rgfC mutant increased induction of proinflammatory signaling pathways in vivo. Phosphoproteomic analysis revealed that 19 phosphopeptides corresponding to 12 proteins were differentially phosphorylated at aspartate, cysteine, serine, threonine, or tyrosine residues in the rgfC mutant. This included aspartate phosphorylation of a tyrosine kinase, CpsD, and a transcriptional regulator. Consistent with this observation, microarray analysis of the rgfC mutant indicated that >200 genes showed altered expression compared to the isogenic wild-type strain and included transcriptional regulators, transporters, and genes previously associated with GBS pathogenesis. Our observations suggest that in the absence of RgfA, nonspecific RgfC signaling affects the expression of virulence factors and GBS pathogenesis. PMID:25561709

  17. A calcium sensor – protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species

    PubMed Central

    Beckmann, Linda; Edel, Kai H.; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca2+) signaling is a universal mechanism of signal transduction and involves Ca2+ signal formation and decoding of information by Ca2+ binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca2+ binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca2+ signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca2+ signaling specificity. PMID:27538881

  18. A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species.

    PubMed

    Beckmann, Linda; Edel, Kai H; Batistič, Oliver; Kudla, Jörg

    2016-01-01

    Calcium (Ca(2+)) signaling is a universal mechanism of signal transduction and involves Ca(2+) signal formation and decoding of information by Ca(2+) binding proteins. Calcineurin B-like proteins (CBLs), which upon Ca(2+) binding activate CBL-interacting protein kinases (CIPKs) regulate a multitude of physiological processes in plants. Here, we combine phylogenomics and functional analyses to investigate the occurrence and structural conservation of CBL and CIPK proteins in 26 species representing all major clades of eukaryotes. We demonstrate the presence of at least singular CBL-CIPK pairs in representatives of Archaeplastida, Chromalveolates and Excavates and their general absence in Opisthokonta and Amoebozoa. This denotes CBL-CIPK complexes as evolutionary ancient Ca(2+) signaling modules that likely evolved in the ancestor of all Bikonta. Furthermore, we functionally characterize the CBLs and CIPK from the parabasalid human pathogen Trichomonas vaginalis. Our results reveal strict evolutionary conservation of functionally important structural features, preservation of biochemical properties and a remarkable cross-kingdom protein-protein interaction potential between CBLs and CIPKs from Arabidopsis thaliana and T. vaginalis. Together our findings suggest an ancient evolutionary origin of a functional CBL-CIPK signaling module close to the root of eukaryotic evolution and provide insights into the initial evolution of signaling networks and Ca(2+) signaling specificity. PMID:27538881

  19. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions*

    PubMed Central

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P.; Burgoyne, Robert D.; Mayans, Olga; Derrick, Jeremy P.; Lian, Lu-Yun

    2015-01-01

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca2+-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca2+/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca2+/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178–Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca2+/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178–Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. PMID:25979333

  20. Structural Studies on the Extracellular Domain of Sensor Histidine Kinase YycG from Staphylococcus aureus and Its Functional Implications.

    PubMed

    Kim, Truc; Choi, Jongkeun; Lee, Sangho; Yeo, Kwon Joo; Cheong, Hae-Kap; Kim, Kyeong Kyu

    2016-07-31

    Bacterial two-component signal transduction systems are used to adapt to fluctuations in the environment. YycG, a key two-component histidine kinase in Staphylococcus aureus, plays an essential role in cell viability and regulates cell wall metabolism, biofilm formation, virulence, and antibiotic resistance. For these reasons, YycG is considered a compelling target for the development of novel antibiotics. However, to date, the signaling mechanism of YycG and its stimulus are poorly understood mainly because of a lack of structural information on YycG. To address this deficiency, we determined the crystal structure of the extracellular domain of S. aureus YycG (YycGex) at 2.0-Å resolution. The crystal structure indicated two subunits with an extracellular Per-Arnt-Sim (PAS) topology packed into a dimer with interloop interactions. Disulfide scanning using cysteine-substituted mutants revealed that YycGex possessed dimeric interfaces not only in the loop but also in the helix α1. Cross-linking studies using intact YycG demonstrated that it was capable of forming high molecular weight oligomers on the cell membrane. Furthermore, we also observed that two auxiliary proteins of YycG, YycH and YycI, cooperatively interfered with the multimerization of YycG. From these results, we propose that signaling through YycG is regulated by multimerization and binding of YycH and YycI. These structural studies, combined with biochemical analyses, provide a better understanding of the signaling mechanism of YycG, which is necessary for developing novel antibacterial drugs targeting S. aureus. PMID:27389096

  1. Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply

    SciTech Connect

    Spoden, Gilles A.; Tumorvirology Research Group, Tyrolean Cancer Research Institute, Medical University Innsbruck, Innrain 66, 6020 Innsbruck ; Rostek, Ursula; Lechner, Stefan; Mitterberger, Maria; Mazurek, Sybille; ScheBo Biotech AG, Netanyastrasse 3, 35394 Giessen ; Zwerschke, Werner; Tumorvirology Research Group, Tyrolean Cancer Research Institute, Medical University Innsbruck, Innrain 66, 6020 Innsbruck

    2009-10-01

    The glycolytic key regulator pyruvate kinase M2 (M2-PK or PKM2) can switch between a highly active tetrameric and an inactive dimeric form. The transition between the two conformations regulates the glycolytic flux in tumor cells. We developed specific M2-PK-binding peptide aptamers which inhibit M2-PK, but not the 96% homologous M1-PK isoenzyme. In this study we demonstrate that, at normal blood glucose concentrations, peptide aptamer-mediated inhibition of M2-PK induces a significant decrease of the population doubling (PDL rate) and cell proliferation rate as well as an increase in cell size, whereas under glucose restriction an increase in PDL and cell proliferation rates but a decrease in cell size was observed. Moreover, M2-PK inhibition rescues cells from glucose starvation-induced apoptotic cell death by increasing the metabolic activity. These findings suggest that M2-PK is a metabolic sensor which regulates cell proliferation, cell growth and apoptotic cell death in a glucose supply-dependent manner.

  2. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae.

    PubMed

    Yamamoto, Shouji; Mitobe, Jiro; Ishikawa, Takahiko; Wai, Sun Nyunt; Ohnishi, Makoto; Watanabe, Haruo; Izumiya, Hidemasa

    2014-01-01

    In Vibrio cholerae, 41 chitin-inducible genes, including the genes involved in natural competence for DNA uptake, are governed by the orphan two-component system (TCS) sensor kinase ChiS. However, the mechanism by which ChiS controls the expression of these genes is currently unknown. Here, we report the involvement of a novel transcription factor termed 'TfoS' in this process. TfoS is a transmembrane protein that contains a large periplasmic domain and a cytoplasmic AraC-type DNA-binding domain, but lacks TCS signature domains. Inactivation of tfoS abolished natural competence as well as transcription of the tfoR gene encoding a chitin-induced small RNA essential for competence gene expression. A TfoS fragment containing the DNA-binding domain specifically bound to and activated transcription from the tfoR promoter. Intracellular TfoS levels were unaffected by disruption of chiS and coexpression of TfoS and ChiS in Escherichia coli recovered transcription of the chromosomally integrated tfoR::lacZ gene, suggesting that TfoS is post-translationally modulated by ChiS during transcriptional activation; however, this regulation persisted when the canonical phosphorelay residues of ChiS were mutated. The results presented here suggest that ChiS operates a chitin-induced non-canonical signal transduction cascade through TfoS, leading to transcriptional activation of tfoR. PMID:24236404

  3. Oligomeric sensor kinase DcuS in the membrane of Escherichia coli and in proteoliposomes: chemical cross-linking and FRET spectroscopy.

    PubMed

    Scheu, Patrick D; Liao, Yun-Feng; Bauer, Julia; Kneuper, Holger; Basché, Thomas; Unden, Gottfried; Erker, Wolfgang

    2010-07-01

    DcuS is the membrane-integral sensor histidine kinase of the DcuSR two-component system in Escherichia coli that responds to extracellular C(4)-dicarboxylates. The oligomeric state of full-length DcuS was investigated in vitro and in living cells by chemical cross-linking and by fluorescence resonance energy transfer (FRET) spectroscopy. The FRET results were quantified by an improved method using background-free spectra of living cells for determining FRET efficiency (E) and donor fraction {f(D) = (donor)/[(donor) + (acceptor)]}. Functional fusions of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) variants of green fluorescent protein to DcuS were used for in vivo FRET measurements. Based on noninteracting membrane proteins and perfectly interacting proteins (a CFP-YFP fusion), the results of FRET of cells coexpressing DcuS-CFP and DcuS-YFP were quantitatively evaluated. In living cells and after reconstitution of purified recombinant DcuS in proteoliposomes, DcuS was found as a dimer or higher oligomer, independent of the presence of an effector. Chemical cross-linking with disuccinimidyl suberate showed tetrameric, in addition to dimeric, DcuS in proteoliposomes and in membranes of bacteria, whereas purified DcuS in nondenaturing detergent was mainly monomeric. The presence and amount of tetrameric DcuS in vivo and in proteoliposomes was not dependent on the concentration of DcuS. Only membrane-embedded DcuS (present in the oligomeric state) is active in (auto)phosphorylation. Overall, the FRET and cross-linking data demonstrate the presence in living cells, in bacterial membranes, and in proteoliposomes of full-length DcuS protein in an oligomeric state, including a tetramer. PMID:20453099

  4. A Single Amino Acid Replacement in the Sensor Kinase LiaS Contributes to a Carrier Phenotype in Group A Streptococcus

    PubMed Central

    Jewell, Brittany E.; Yelamanchili, Dedipya; Olsen, Randall J.; Musser, James M.

    2015-01-01

    Despite the high frequency of asymptomatic carriage of bacterial pathogens, we understand little about the bacterial molecular genetic underpinnings of this phenomenon. To obtain new information about the molecular genetic mechanisms underlying carriage of group A Streptococcus (GAS), we performed whole-genome sequencing of GAS strains recovered from a single individual during acute pharyngitis and subsequent asymptomatic carriage. We discovered that compared to the initial infection isolate, the strain recovered during asymptomatic carriage contained three single nucleotide polymorphisms, one of which was in a highly conserved region of a gene encoding a sensor kinase, liaS, resulting in an arginine-to-glycine amino acid replacement at position 135 of LiaS (LiaSR135G). Using gene replacement, we demonstrate that introduction of the carrier allele (liaSR135G) into a serotype-matched invasive strain increased mouse nasopharyngeal colonization and adherence to cultured human epithelial cells. The carrier mutation also resulted in a reduced ability to grow in human blood and reduced virulence in a mouse model of necrotizing fasciitis. Repair of the mutation in the GAS carrier strain restored virulence and decreased adherence to cultured human epithelial cells. We also provide evidence that the carrier mutation alters the GAS transcriptome, including altered transcription of GAS virulence genes, providing a potential mechanism for the pleiotropic phenotypic effects. Our data obtained using isogenic strains suggest that the liaSR135G mutation in the carrier strain contributes to the transition from disease to asymptomatic carriage and provides new information about this poorly described regulatory system in GAS. PMID:26283331

  5. δ-Opioid receptors stimulate the metabolic sensor AMP-activated protein kinase through coincident signaling with G(q/11)-coupled receptors.

    PubMed

    Olianas, Maria C; Dedoni, Simona; Olianas, Alessandra; Onali, Pierluigi

    2012-02-01

    AMP-activated protein kinase (AMPK) and δ-opioid receptors (DORs) are both involved in controlling cell survival, energy metabolism, and food intake, but little is known on the interaction between these two signaling molecules. Here we show that activation of human DORs stably expressed in Chinese hamster ovary (CHO) cells increased AMPK activity and AMPK phosphorylation on Thr172. DOR-induced AMPK phosphorylation was prevented by pertussis toxin, reduced by protein kinase A (PKA) activators, and unaffected by PKA, transforming growth factor-β-activated kinase 1, mitogen-activated protein kinase, and protein kinase C inhibitors. Conversely, the DOR effect was reduced by Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK) inhibition, apyrase treatment, G(q/11) antagonism, and blockade of P2 purinergic receptors. Apyrase treatment also depressed DOR stimulation of intracellular Ca(2+) concentration, whereas P2 receptor antagonism blocked DOR stimulation of inositol phosphate accumulation. In SH-SY5Y neuroblastoma cells and primary olfactory bulb neurons, DOR activation failed to affect AMPK phosphorylation per se but potentiated the stimulation by either muscarinic agonists or 2-methyl-thio-ADP. Sequestration of G protein βγ subunits (Gβγ) blocked the DOR potentiation of AMPK phosphorylation induced by oxotremorine-M. In CHO cells, the AMPK activator 5-aminoimidazole-4-carboxamide1-β-D-ribonucleoside stimulated AMPK phosphorylation and glucose uptake, whereas pharmacological inhibition of AMPK, expression of a dominant-negative mutant of AMPKα1, and P2Y receptor blockade reduced DOR-stimulated glucose uptake. The data indicate that in different cell systems, DOR activation up-regulates AMPK through a Gβγ-dependent synergistic interaction with G(q/11)-coupled receptors, potentiating Ca(2+) release and CaMKKβ-dependent AMPK phosphorylation. In CHO cells, this coincident signaling mechanism is involved in DOR-induced glucose uptake. PMID:22031472

  6. A receptor-like kinase from Arabidopsis thaliana is a calmodulin-binding protein.

    PubMed Central

    Charpenteau, Martine; Jaworski, Krzysztof; Ramirez, Bertha C; Tretyn, Andrzej; Ranjeva, Raoul; Ranty, Benoît

    2004-01-01

    Screening a cDNA expression library with a radiolabelled calmodulin (CaM) probe led to the isolation of AtCaMRLK, a receptor-like kinase (RLK) of Arabidopsis thaliana. AtCaMRLK polypeptide sequence shows a modular organization consisting of the four distinctive domains characteristic of receptor kinases: an amino terminal signal sequence, a domain containing seven leucine-rich repeats, a single putative membrane-spanning segment and a protein kinase domain. Using truncated versions of the protein and a synthetic peptide, we demonstrated that a region of 23 amino acids, located near the kinase domain of AtCaMRLK, binds CaM in a calcium-dependent manner. Real-time binding experiments showed that AtCaMRLK interacted in vitro with AtCaM1, a canonical CaM, but not with AtCaM8, a divergent isoform of the Ca2+ sensor. The bacterially expressed kinase domain of the protein was able to autophosphorylate and to phosphorylate the myelin basic protein, using Mn2+ preferentially to Mg2+ as an ion activator. Site-directed mutagenesis of the conserved lysine residue (Lys423) to alanine, in the kinase subdomain II, resulted in a complete loss of kinase activity. CaM had no influence on the autophosphorylation activity of AtCaMRLK. AtCaMRLK was expressed in reproductive and vegetative tissues of A. thaliana, except in leaves. Disruption in the AtCaMRLK coding sequence by insertion of a DsG transposable element in an Arabidopsis mutant did not generate a discernible phenotype. The CaM-binding motif of AtCaMRLK was found to be conserved in several other members of the plant RLK family, suggesting a role for Ca2+/CaM in the regulation of RLK-mediated pathways. PMID:14720124

  7. Activation of ATP binding for the autophosphorylation of DosS, a Mycobacterium tuberculosis histidine kinase lacking an ATP lid motif.

    PubMed

    Cho, Ha Yeon; Lee, Young-Hoon; Bae, Young-Seuk; Kim, Eungbin; Kang, Beom Sik

    2013-05-01

    The sensor histidine kinases of Mycobacterium tuberculosis, DosS and DosT, are responsible for sensing hypoxic conditions and consist of sensor and kinase cores responsible for accepting signals and phosphorylation activity, respectively. The kinase core contains a dimerization and histidine phosphate-accepting (DHp) domain and an ATP binding domain (ABD). The 13 histidine kinase genes of M. tuberculosis can be grouped based on the presence or absence of the ATP lid motif and F box (elements known to play roles in ATP binding) in their ABDs; DosS and DosT have ABDs lacking both these elements, and the crystal structures of their ABDs indicated that they were unsuitable for ATP binding, as a short loop covers the putative ATP binding site. Although the ABD alone cannot bind ATP, the kinase core is functional in autophosphorylation. Appropriate spatial arrangement of the ABD and DHp domain within the kinase core is required for both autophosphorylation and ATP binding. An ionic interaction between Arg(440) in the DHp domain and Glu(537) in the short loop of the ABD is available and may open the ATP binding site, by repositioning the short loop away from the site. Mutations at Arg(440) and Glu(537) reduce autophosphorylation activity. Unlike other histidine kinases containing an ATP lid, which protects bound ATP, DosS is unable to accept ATP until the ABD is properly positioned relative to the histidine; this may prevent unexpected ATP reactions. ATP binding can, therefore, function as a control mechanism for histidine kinase activity. PMID:23486471

  8. Heme-based Globin-coupled Oxygen Sensors: Linking Oxygen Binding to Functional Regulation of Diguanylate Cyclase, Histidine Kinase, and Methyl-accepting Chemotaxis*

    PubMed Central

    Martínková, Markéta; Kitanishi, Kenichi; Shimizu, Toru

    2013-01-01

    An emerging class of novel heme-based oxygen sensors containing a globin fold binds and senses environmental O2 via a heme iron complex. Structure-function relationships of oxygen sensors containing a heme-bound globin fold are different from those containing heme-bound PAS and GAF folds. It is thus worth reconsidering from an evolutionary perspective how heme-bound proteins with a globin fold similar to that of hemoglobin and myoglobin could act as O2 sensors. Here, we summarize the molecular mechanisms of heme-based oxygen sensors containing a globin fold in an effort to shed light on the O2-sensing properties and O2-stimulated catalytic enhancement observed for these proteins. PMID:23928310

  9. A Receptor-Like Kinase, Related to Cell Wall Sensor of Higher Plants, is Required for Sexual Reproduction in the Unicellular Charophycean Alga, Closterium peracerosum-strigosum-littorale Complex.

    PubMed

    Hirano, Naoko; Marukawa, Yuka; Abe, Jun; Hashiba, Sayuri; Ichikawa, Machiko; Tanabe, Yoichi; Ito, Motomi; Nishii, Ichiro; Tsuchikane, Yuki; Sekimoto, Hiroyuki

    2015-07-01

    Here, we cloned the CpRLK1 gene, which encodes a receptor-like protein kinase expressed during sexual reproduction, from the heterothallic Closterium peracerosum-strigosum-littorale complex, one of the closest unicellular alga to land plants. Mating-type plus (mt(+)) cells with knockdown of CpRLK1 showed reduced competence for sexual reproduction and formed an abnormally enlarged conjugation papilla after pairing with mt(-) cells. The knockdown cells were unable to release a naked gamete, which is indispensable for zygote formation. We suggest that the CpRLK1 protein is an ancient cell wall sensor that now functions to regulate osmotic pressure in the cell to allow proper gamete release. PMID:25941232

  10. Phosphorylation of Calcineurin B-like (CBL) Calcium Sensor Proteins by Their CBL-interacting Protein Kinases (CIPKs) Is Required for Full Activity of CBL-CIPK Complexes toward Their Target Proteins*

    PubMed Central

    Hashimoto, Kenji; Eckert, Christian; Anschütz, Uta; Scholz, Martin; Held, Katrin; Waadt, Rainer; Reyer, Antonella; Hippler, Michael; Becker, Dirk; Kudla, Jörg

    2012-01-01

    Calcineurin B-like proteins (CBLs) represent a family of calcium sensor proteins that interact with a group of serine/threonine kinases designated as CBL-interacting protein kinases (CIPKs). CBL-CIPK complexes are crucially involved in relaying plant responses to many environmental signals and in regulating ion fluxes. However, the biochemical characterization of CBL-CIPK complexes has so far been hampered by low activities of recombinant CIPKs. Here, we report on an efficient wheat germ extract-based in vitro transcription/translation protocol that yields active full-length wild-type CIPK proteins. We identified a conserved serine residue within the C terminus of CBLs as being phosphorylated by their interacting CIPKs. Remarkably, our studies revealed that CIPK-dependent CBL phosphorylation is strictly dependent on CBL-CIPK interaction via the CIPK NAF domain. The phosphorylation status of CBLs does not appear to influence the stability, localization, or CIPK interaction of these calcium sensor proteins in general. However, proper phosphorylation of CBL1 is absolutely required for the in vivo activation of the AKT1 K+ channel by CBL1-CIPK23 and CBL9-CIPK23 complexes in oocytes. Moreover, we show that by combining CBL1, CIPK23, and AKT1, we can faithfully reconstitute CBL-dependent enhancement of phosphorylation of target proteins by CIPKs in vitro. In addition, we report that phosphorylation of CBL1 by CIPK23 is also required for the CBL1-dependent enhancement of CIPK23 activity toward its substrate. Together, these data identify a novel general regulatory mechanism of CBL-CIPK complexes in that CBL phosphorylation at their flexible C terminus likely provokes conformational changes that enhance specificity and activity of CBL-CIPK complexes toward their target proteins. PMID:22253446

  11. DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase

    PubMed Central

    2014-01-01

    Background Two-component systems have emerged as compelling targets for antibacterial drug design for a number of reasons including the distinct histidine phosphorylation property of their constituent sensor kinases. The DevR-DevS/DosT two component system of Mycobacterium tuberculosis (M. tb) is essential for survival under hypoxia, a stress associated with dormancy development in vivo. In the present study a combinatorial peptide phage display library was screened for DevS histidine kinase interacting peptides with the aim of isolating inhibitors of DevR-DevS signaling. Results DevS binding peptides were identified from a phage display library after three rounds of panning using DevS as bait. The peptides showed sequence similarity with conserved residues in the N-terminal domain of DevR and suggested that they may represent interacting surfaces between DevS and DevR. Two DevR mimetic peptides were found to specifically inhibit DevR-dependent transcriptional activity and restrict the hypoxic survival of M. tb. The mechanism of peptide action is majorly attributed to an inhibition of DevS autokinase activity. Conclusions These findings demonstrate that DevR mimetic peptides impede DevS activation and that intercepting DevS activation at an early step in the signaling cascade impairs M. tb survival in a hypoxia persistence model. PMID:25048654

  12. The Tomato Calcium Sensor Cbl10 and Its Interacting Protein Kinase Cipk6 Define a Signaling Pathway in Plant Immunity[C][W

    PubMed Central

    de la Torre, Fernando; Gutiérrez-Beltrán, Emilio; Pareja-Jaime, Yolanda; Chakravarthy, Suma; Martin, Gregory B.; del Pozo, Olga

    2013-01-01

    Ca2+ signaling is an early and necessary event in plant immunity. The tomato (Solanum lycopersicum) kinase Pto triggers localized programmed cell death (PCD) upon recognition of Pseudomonas syringae effectors AvrPto or AvrPtoB. In a virus-induced gene silencing screen in Nicotiana benthamiana, we independently identified two components of a Ca2+-signaling system, Cbl10 (for calcineurin B-like protein) and Cipk6 (for calcineurin B-like interacting protein kinase), as their silencing inhibited Pto/AvrPto-elicited PCD. N. benthamiana Cbl10 and Cipk6 are also required for PCD triggered by other plant resistance genes and virus, oomycete, and nematode effectors and for host susceptibility to two P. syringae pathogens. Tomato Cipk6 interacts with Cbl10 and its in vitro kinase activity is enhanced in the presence of Cbl10 and Ca2+, suggesting that tomato Cbl10 and Cipk6 constitute a Ca2+-regulated signaling module. Overexpression of tomato Cipk6 in N. benthamiana leaves causes accumulation of reactive oxygen species (ROS), which requires the respiratory burst homolog RbohB. Tomato Cbl10 and Cipk6 interact with RbohB at the plasma membrane. Finally, Cbl10 and Cipk6 contribute to ROS generated during effector-triggered immunity in the interaction of P. syringae pv tomato DC3000 and N. benthamiana. We identify a role for the Cbl/Cipk signaling module in PCD, establishing a mechanistic link between Ca2+ and ROS signaling in plant immunity. PMID:23903322

  13. The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus

    PubMed Central

    Jeong, Do-Won; Cho, Hoonsik; Jones, Marcus B.; Shatzkes, Kenneth; Sun, Fei; Ji, Quanjiang; Liu, Qian; Peterson, Scott N.; He, Chuan; Bae, Taeok

    2012-01-01

    Summary In bacterial two-component regulatory systems (TCSs), dephosphorylation of phosphorylated response regulators is essential for resetting the activated systems to the pre-activation state. However, in the SaeRS TCS, a major virulence TCS of Staphylococcus aureus, the mechanism for dephosphorylation of the response regulator SaeR has not been identified. Here we report that two auxiliary proteins from the sae operon, SaeP and SaeQ, form a protein complex with the sensor kinase SaeS and activate the sensor kinase’s phosphatase activity. Efficient activation of the phosphatase activity required the presence of both SaeP and SaeQ. When SaeP and SaeQ were ectopically expressed, the expression of coagulase, a sae target with low affinity for phosphorylated SaeR, was greatly reduced, while the expression of alpha-hemolysin, a sae target with high affinity for phosphorylated SaeR, was not, demonstrating a differential effect of SaePQ on sae target gene expression. When expression of SaePQ was abolished, most sae target genes were induced at an elevated level. Since the expression of SaeP and SaeQ is induced by the SaeRS TCS, these results suggest that the SaeRS TCS returns to the pre-activation state by a negative feedback mechanism. PMID:22882143

  14. Mutational analysis of the Escherichia coli PhoQ sensor kinase: differences with the Salmonella enterica serovar Typhimurium PhoQ protein and in the mechanism of Mg2+ and Ca2+ sensing.

    PubMed

    Regelmann, Adam G; Lesley, Joseph A; Mott, Christina; Stokes, Lissette; Waldburger, Carey D

    2002-10-01

    The PhoP-PhoQ two-component system plays a role in Mg2+ homeostasis and/or the virulence properties of a number of bacterial species. A Salmonella enterica serovar Typhimurium PhoQ sensor kinase mutant, in which the threonine at residue 48 in the periplasmic sensor domain is changed to an isoleucine, was shown previously to result in elevated expression of PhoP-activated genes and to affect mouse virulence, epithelial cell invasion, and sensitivity to macrophage killing. We characterized a complete set of proteins having amino acid substitutions at position 48 in the closely related Escherichia coli PhoQ protein. Numerous mutant proteins having amino acid substitutions with side chains of various sizes and characters displayed signaling phenotypes similar to that of the wild-type protein, indicating that interactions mediated by the wild-type threonine side chain are not required for normal protein function. Changes to amino acids with aromatic side chains had little impact on signaling in response to extracellular Mg2+ but resulted in reduced sensitivity to extracellular Ca2+, suggesting that the mechanisms of signal transduction in response to these two divalent cations are different. Surprisingly, the Ile48 protein displayed a defective phenotype rather than the hyperactive phenotype seen with the S. enterica serovar Typhimurium protein. We also describe a mutant PhoQ protein lacking the extracellular sensor domain with a defect in the ability to activate PhoP. The defect does not appear to be due to reduced autokinase activity but rather appears to be due to an effect on the stability of the aspartyl-phosphate bond of phospho-PhoP. PMID:12218035

  15. Structural identification of putative USPs in Catharanthus roseus.

    PubMed

    Bahieldin, Ahmed; Atef, Ahmed; Shokry, Ahmed M; Al-Karim, Saleh; Al Attas, Sanaa G; Gadallah, Nour O; Edris, Sherif; Al-Kordy, Magdy A; Omer, Abdulkader M Shaikh; Sabir, Jamal S M; Ramadan, Ahmed M; Al-Hajar, Abdulrahman S M; Makki, Rania M; Hassan, Sabah M; El-Domyati, Fotouh M

    2015-10-01

    Nucleotide sequences of the C. roseus SRA database were assembled and translated in order to detect putative universal stress proteins (USPs). Based on the known conserved USPA domain, 24 Pfam putative USPA proteins in C. roseus were detected and arranged in six architectures. The USPA-like domain was detected in all architectures, while the protein kinase-like (or PK-like), (tyr)PK-like and/or U-box domains are shown downstream it. Three other domains were also shown to coexist with the USPA domain in C. roseus putative USPA sequences. These domains are tetratricopeptide repeat (or TPR), apolipophorin III (or apoLp-III) and Hsp90 co-chaperone Cdc37. Subsequent analysis divided USPA-like domains based on the ability to bind ATP. The multiple sequence alignment indicated the occurrence of eight C. roseus residues of known features of the bacterial 1MJH secondary structure. The data of the phylogenetic tree indicated several distinct groups of USPA-like domains confirming the presence of high level of sequence conservation between the plant and bacterial USPA-like sequences. PMID:26318047

  16. Identification of four plastid-localized protein kinases.

    PubMed

    Richter, Andreas S; Gartmann, Hans; Fechler, Mona; Rödiger, Anja; Baginsky, Sacha; Grimm, Bernhard

    2016-06-01

    In chloroplasts, protein phosphorylation regulates important processes, including metabolism, photosynthesis, gene expression, and signaling. Because the hitherto known plastid protein kinases represent only a fraction of existing kinases, we aimed at the identification of novel plastid-localized protein kinases that potentially phosphorylate enzymes of the tetrapyrrole biosynthesis (TBS) pathway. We screened publicly available databases for proteins annotated as putative protein kinase family proteins with predicted chloroplast localization. Additionally, we analyzed chloroplast fractions which were separated by sucrose density gradient centrifugation by mass spectrometry. We identified four new candidates for protein kinases, which were confirmed to be plastid localized by expression of GFP-fusion proteins in tobacco leaves. A phosphorylation assay with the purified kinases confirmed the protein kinase activity for two of them. PMID:27214872

  17. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  18. Inverse modulation of the energy sensor Snf1-related protein kinase 1 on hypoxia adaptation and salt stress tolerance in Arabidopsis thaliana.

    PubMed

    Im, Jong Hee; Cho, Young-Hee; Kim, Geun-Don; Kang, Geun-Ho; Hong, Jung-Woo; Yoo, Sang-Dong

    2014-10-01

    Terrestrial plants are exposed to complex stresses of high salt-induced abscisic acid (ABA) and submergence-induced hypoxia when seawater floods fields. Many studies have investigated plant responses to individual stress conditions, but not so much for coupled or sequentially imposed stresses. We examined molecular regulatory mechanisms of gene expression underlying the cellular responses involved in crosstalk between salt and hypoxia stresses. Salt/ABA- and AtMYC2-dependent induction of a synthetic ABA-responsive element and the native RD22 promoters were utilized in our cell-based functional assays. Such promoter-based reporter induction was largely inhibited by hypoxia and hypoxia-inducible AKIN10 activity. Biochemical analyses showed that AKIN10 negatively modulates AtMYC2 protein accumulation via proteasome activity upon AKIN10 kinase activity-dependent protein modification. Further genetic analysis using transgenic plants expressing AKIN10 provided evidence that AKIN10 activity undermined AtMYC2-dependent salt tolerance. Our findings unravel a novel molecular interaction between the key signalling constituents leading crosstalk between salt and hypoxia stresses in Arabidopsis thaliana under the detrimental condition of submergence in saltwater. PMID:24890857

  19. Mitogen-activated protein kinase cascades in Vitis vinifera

    PubMed Central

    Çakır, Birsen; Kılıçkaya, Ozan

    2015-01-01

    Protein phosphorylation is one of the most important mechanisms to control cellular functions in response to external and endogenous signals. Mitogen-activated protein kinases (MAPK) are universal signaling molecules in eukaryotes that mediate the intracellular transmission of extracellular signals resulting in the induction of appropriate cellular responses. MAPK cascades are composed of four protein kinase modules: MAPKKK kinases (MAPKKKKs), MAPKK kinases (MAPKKKs), MAPK kinases (MAPKKs), and MAPKs. In plants, MAPKs are activated in response to abiotic stresses, wounding, and hormones, and during plant pathogen interactions and cell division. In this report, we performed a complete inventory of MAPK cascades genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with MAPK, MAPK kinases, MAPK kinase kinases and MAPK kinase kinase kinase kinase members of Arabidopsis thaliana, we revealed the existence of 14 MAPKs, 5 MAPKKs, 62 MAPKKKs, and 7 MAPKKKKs in Vitis vinifera. We identified orthologs of V. vinifera putative MAPKs in different species, and ESTs corresponding to members of MAPK cascades in various tissues. This work represents the first complete inventory of MAPK cascades in V. vinifera and could help elucidate the biological and physiological functions of these proteins in V. vinifera. PMID:26257761

  20. pH-dependent structural change of the extracellular sensor domain of the DraK histidine kinase from Streptomyces coelicolor

    SciTech Connect

    Yeo, Kwon Joo; Kim, Eun Hye; Hwang, Eunha; Han, Young-Hyun; Eo, Yumi; Kim, Hyun Jung; Kwon, Ohsuk; Hong, Young-Soo; Cheong, Chaejoon; Cheong, Hae-Kap

    2013-02-15

    Highlights: ► We described the biochemical and biophysical properties of the extracellular sensory domain (ESD) of DraK histidine kinase. ► The ESD of DraK showed a reversible pH-dependent conformational change in a wide pH range. ► The E83 is an important residue for the pH-dependent conformational change. -- Abstract: Recently, the DraR/DraK (Sco3063/Sco3062) two-component system (TCS) of Streptomycescoelicolor has been reported to be involved in the differential regulation of antibiotic biosynthesis. However, it has not been shown that under which conditions and how the DraR/DraK TCS is activated to initiate the signal transduction process. Therefore, to understand the sensing mechanism, structural study of the sensory domain of DraK is highly required. Here, we report the biochemical and biophysical properties of the extracellular sensory domain (ESD) of DraK. We observed a reversible pH-dependent conformational change of the ESD in a pH range of 2.5–10. Size-exclusion chromatography and AUC (analytical ultracentrifugation) data indicated that the ESD is predominantly monomeric in solution and exists in equilibrium between monomer and dimer states in acidic condition. Using NMR (nuclear magnetic resonance) and CD (circular dichroism) spectroscopy, our findings suggest that the structure of the ESD at low pH is more structured than that at high pH. In particular, the glutamate at position 83 is an important residue for the pH-dependent conformational change. These results suggest that this pH-dependent conformational change of ESD may be involved in signal transduction process of DraR/DraK TCS.

  1. Chemical sensors

    SciTech Connect

    Janata, J.; Josowicz, M.; DeVaney, D.M. )

    1994-06-15

    This review of chemical sensors contains the following topics of interest: books and reviews; reviews of sensors by their type; fabrication and selectivity; data processing; thermal sensors; mass sensors (fabrication, gas sensors, and liquid sensors); electrochemical sensors (potentiometric sensors, amperometric sensors, and conductometric sensors); and optical sensors (fabrication, liquid sensors, biosensors, and gas sensors). 795 refs., 1 tab.

  2. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid.

    PubMed

    Maierhofer, Tobias; Diekmann, Marion; Offenborn, Jan Niklas; Lind, Christof; Bauer, Hubert; Hashimoto, Kenji; S Al-Rasheid, Khaled A; Luan, Sheng; Kudla, Jörg; Geiger, Dietmar; Hedrich, Rainer

    2014-09-01

    Under drought stress, abscisic acid (ABA) triggers closure of leaf cell pores called stomata, which are formed by two specialized cells called guard cells in plant epidermis. Two pathways downstream of ABA stimulate phosphorylation of the S-type anion channels SLAC1 (slow anion channel associated 1) and SLAH3 (SLAC1 homolog 3), which causes these channels to open, reducing guard cell volume and triggering stomatal closure. One branch involves OST1 (open stomata 1), a calcium-independent SnRK2-type kinase, and the other branch involves calcium-dependent protein kinases of the CPK (calcium-dependent protein kinase) family. We used coexpression analyses in Xenopus oocytes to show that the calcineurin B-like (CBL) calcium sensors CBL1 and CBL9 and their interacting protein kinase CIPK23 also triggered SLAC1 and SLAH3 opening. We analyzed whether regulation of SLAC1 opening by these different families of kinases involved the same or different sites on SLAC1 by measuring channel conductance of SLAC1 with mutations in the putative phosphorylation sites in the amino or carboxyl termini coexpressed with specific kinases in Xenopus oocytes. SLAC1 mutants lacking the OST1-phosphorylated site were still activated by CPK or by CBL/CIPK complexes. Phosphorylation and activation of SLAC1 by any of the kinases were inhibited by the phosphatase ABI1 (ABA insensitive 1), which is inactivated in response to ABA signaling. These findings identified CBL/CIPK complexes as potential regulators of stomatal aperture through S-type anion channels and indicated that phosphorylation at distinct sites enables SLAC1 activation by both calcium-dependent and calcium-independent pathways downstream of ABA. PMID:25205850

  3. Abundant Intergenic TAACTGA Direct Repeats and Putative Alternate RNA Polymerase β′ Subunits in Marine Beggiatoaceae Genomes: Possible Regulatory Roles and Origins

    PubMed Central

    MacGregor, Barbara J.

    2015-01-01

    The genome sequences of several giant marine sulfur-oxidizing bacteria present evidence of a possible post-transcriptional regulatory network that may have been transmitted to or from two distantly related bacteria lineages. The draft genome of a Cand. “Maribeggiatoa” filament from the Guaymas Basin (Gulf of California, Mexico) seafloor contains 169 sets of TAACTGA direct repeats and one indirect repeat, with two to six copies per set. Related heptamers are rarely or never found as direct repeats. TAACTGA direct repeats are also found in some other Beggiatoaceae, Thiocystis violascens, a range of Cyanobacteria, and five Bacteroidetes. This phylogenetic distribution suggests they may have been transmitted horizontally, but no mechanism is evident. There is no correlation between total TAACTGA occurrences and repeats per genome. In most species the repeat units are relatively short, but longer arrays of up to 43 copies are found in several Bacteroidetes and Cyanobacteria. The majority of TAACTGA repeats in the Cand. “Maribeggiatoa” Orange Guaymas (BOGUAY) genome are within several nucleotides upstream of a putative start codon, suggesting they may be binding sites for a post-transcriptional regulator. Candidates include members of the ribosomal protein S1, Csp (cold shock protein), and Csr (carbon storage regulator) families. No pattern was evident in the predicted functions of the open reading frames (ORFs) downstream of repeats, but some encode presumably essential products such as ribosomal proteins. Among these is an ORF encoding a possible alternate or modified RNA polymerase beta prime subunit, predicted to have the expected subunit interaction domains but lacking most catalytic residues. A similar ORF was found in the Thioploca ingrica draft genome, but in no others. In both species they are immediately upstream of putative sensor kinase genes with nearly identical domain structures. In the marine Beggiatoaceae, a role for the TAACTGA repeats in

  4. Abundant Intergenic TAACTGA Direct Repeats and Putative Alternate RNA Polymerase β' Subunits in Marine Beggiatoaceae Genomes: Possible Regulatory Roles and Origins.

    PubMed

    MacGregor, Barbara J

    2015-01-01

    The genome sequences of several giant marine sulfur-oxidizing bacteria present evidence of a possible post-transcriptional regulatory network that may have been transmitted to or from two distantly related bacteria lineages. The draft genome of a Cand. "Maribeggiatoa" filament from the Guaymas Basin (Gulf of California, Mexico) seafloor contains 169 sets of TAACTGA direct repeats and one indirect repeat, with two to six copies per set. Related heptamers are rarely or never found as direct repeats. TAACTGA direct repeats are also found in some other Beggiatoaceae, Thiocystis violascens, a range of Cyanobacteria, and five Bacteroidetes. This phylogenetic distribution suggests they may have been transmitted horizontally, but no mechanism is evident. There is no correlation between total TAACTGA occurrences and repeats per genome. In most species the repeat units are relatively short, but longer arrays of up to 43 copies are found in several Bacteroidetes and Cyanobacteria. The majority of TAACTGA repeats in the Cand. "Maribeggiatoa" Orange Guaymas (BOGUAY) genome are within several nucleotides upstream of a putative start codon, suggesting they may be binding sites for a post-transcriptional regulator. Candidates include members of the ribosomal protein S1, Csp (cold shock protein), and Csr (carbon storage regulator) families. No pattern was evident in the predicted functions of the open reading frames (ORFs) downstream of repeats, but some encode presumably essential products such as ribosomal proteins. Among these is an ORF encoding a possible alternate or modified RNA polymerase beta prime subunit, predicted to have the expected subunit interaction domains but lacking most catalytic residues. A similar ORF was found in the Thioploca ingrica draft genome, but in no others. In both species they are immediately upstream of putative sensor kinase genes with nearly identical domain structures. In the marine Beggiatoaceae, a role for the TAACTGA repeats in translational

  5. Design and synthesis of inositolphosphoglycan putative insulin mediators.

    PubMed

    López-Prados, Javier; Cuevas, Félix; Reichardt, Niels-Christian; de Paz, José-Luis; Morales, Ezequiel Q; Martín-Lomas, Manuel

    2005-03-01

    The binding modes of a series of molecules, containing the glucosamine (1-->6) myo-inositol structural motif, into the ATP binding site of the catalytic subunit of cAMP-dependent protein kinase (PKA) have been analysed using molecular docking. These calculations predict that the presence of a phosphate group at the non-reducing end in pseudodisaccharide and pseudotrisaccharide structures properly orientate the molecule into the binding site and that pseudotrisaccharide structures present the best shape complementarity. Therefore, pseudodisaccharides and pseudotrisaccharides have been synthesised from common intermediates using effective synthetic strategies. On the basis of this synthetic chemistry, the feasibility of constructing small pseudotrisaccharide libraries on solid-phase using the same intermediates has been explored. The results from the biological evaluation of these molecules provide additional support to an insulin-mediated signalling system which involves the intermediacy of inositolphosphoglycans as putative insulin mediators. PMID:15731862

  6. Overactivation of the protein kinase C-signaling pathway suppresses the defects of cells lacking the Rho3/Rho4-GAP Rgd1p in Saccharomyces cerevisiae.

    PubMed Central

    de Bettignies, G; Thoraval, D; Morel, C; Peypouquet, M F; Crouzet, M

    2001-01-01

    The nonessential RGD1 gene encodes a Rho-GTPase activating protein for the Rho3 and Rho4 proteins in Saccharomyces cerevisiae. Previous studies have revealed genetic interactions between RGD1 and the SLG1 and MID2 genes, encoding two putative sensors for cell integrity signaling, and VRP1 encoding an actin and myosin interacting protein involved in polarized growth. To better understand the role of Rgd1p, we isolated multicopy suppressor genes of the cell lethality of the double mutant rgd1Delta mid2Delta. RHO1 and RHO2 encoding two small GTPases, MKK1 encoding one of the MAP-kinase kinases in the protein kinase C (PKC) pathway, and MTL1, a MID2-homolog, were shown to suppress the rgd1Delta defects strengthening the functional links between RGD1 and the cell integrity pathway. Study of the transcriptional activity of Rlm1p, which is under the control of Mpk1p, the last kinase of the PKC pathway, and follow-up of the PST1 transcription, which is positively regulated by Rlm1p, indicate that the lack of RGD1 function diminishes the PKC pathway activity. We hypothesize that the rgd1Delta inactivation, at least through the hyperactivation of the small GTPases Rho3p and Rho4p, alters the secretory pathway and/or the actin cytoskeleton and decreases activity of the PKC pathway. PMID:11779787

  7. Protein kinase A signalling in Schistosoma mansoni cercariae and schistosomules.

    PubMed

    Hirst, Natasha L; Lawton, Scott P; Walker, Anthony J

    2016-06-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A regulates multiple processes in eukaryotes by phosphorylating diverse cellular substrates, including metabolic and signalling enzymes, ion channels and transcription factors. Here we provide insight into protein kinase A signalling in cercariae and 24h in vitro cultured somules of the blood parasite, Schistosoma mansoni, which causes human intestinal schistosomiasis. Functional mapping of activated protein kinase A using anti-phospho protein kinase A antibodies and confocal laser scanning microscopy revealed activated protein kinase A in the central and peripheral nervous system, oral-tip sensory papillae, oesophagus and excretory system of intact cercariae. Cultured 24h somules, which biologically represent the skin-resident stage of the parasite, exhibited similar activation patterns in oesophageal and nerve tissues but also displayed striking activation at the tegument and activation in a region resembling the germinal 'stem' cell cluster. The adenylyl cyclase activator, forskolin, stimulated somule protein kinase A activation and produced a hyperkinesia phenotype. The biogenic amines, serotonin and dopamine known to be present in skin also induced protein kinase A activation in somules, whereas neuropeptide Y or [Leu(31),Pro(34)]-neuropeptide Y attenuated protein kinase A activation. However, neuropeptide Y did not block the forskolin-induced somule hyperkinesia. Bioinformatic investigation of potential protein associations revealed 193 medium confidence and 59 high confidence protein kinase A interacting partners in S. mansoni, many of which possess putative protein kinase A phosphorylation sites. These data provide valuable insight into the intricacies of protein kinase A signalling in S. mansoni and a framework for further physiological investigations into the roles of protein kinase A in schistosomes, particularly in the context of interactions between the parasite and the host. PMID:26777870

  8. Binding of Cyclic Di-AMP to the Staphylococcus aureus Sensor Kinase KdpD Occurs via the Universal Stress Protein Domain and Downregulates the Expression of the Kdp Potassium Transporter

    PubMed Central

    Moscoso, Joana A.; Schramke, Hannah; Tosi, Tommaso; Dehbi, Amina; Jung, Kirsten

    2015-01-01

    ABSTRACT Nucleotide signaling molecules are important intracellular messengers that regulate a wide range of biological functions. The human pathogen Staphylococcus aureus produces the signaling nucleotide cyclic di-AMP (c-di-AMP). This molecule is common among Gram-positive bacteria and in many organisms is essential for survival under standard laboratory growth conditions. In this study, we investigated the interaction of c-di-AMP with the S. aureus KdpD protein. The sensor kinase KdpD forms a two-component signaling system with the response regulator KdpE and regulates the expression of the kdpDE genes and the kdpFABC operon coding for the Kdp potassium transporter components. Here we show that the S. aureus KdpD protein binds c-di-AMP specifically and with an affinity in the micromolar range through its universal stress protein (USP) domain. This domain is located within the N-terminal cytoplasmic region of KdpD, and amino acids of a conserved SXS-X20-FTAXY motif are important for this binding. We further show that KdpD2, a second KdpD protein found in some S. aureus strains, also binds c-di-AMP, and our bioinformatics analysis indicates that a subclass of KdpD proteins in c-di-AMP-producing bacteria has evolved to bind this signaling nucleotide. Finally, we show that c-di-AMP binding to KdpD inhibits the upregulation of the kdpFABC operon under salt stress, thus indicating that c-di-AMP is a negative regulator of potassium uptake in S. aureus. IMPORTANCE Staphylococcus aureus is an important human pathogen and a major cause of food poisoning in Western countries. A common method for food preservation is the use of salt to drive dehydration. This study sheds light on the regulation of potassium uptake in Staphylococcus aureus, an important aspect of this bacterium's ability to tolerate high levels of salt. We show that the signaling nucleotide c-di-AMP binds to a regulatory component of the Kdp potassium uptake system and that this binding has an inhibitory

  9. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    PubMed

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching. PMID:25731909

  10. Reevaluation of Phosphorylation Sites in the Parkinson Disease-associated Leucine-rich Repeat Kinase 2*

    PubMed Central

    Li, Xiaojie; Moore, Darren J.; Xiong, Yulan; Dawson, Ted M.; Dawson, Valina L.

    2010-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as an important cause of late-onset, autosomal dominant familial Parkinson disease and contribute to sporadic Parkinson disease. LRRK2 is a large complex protein with multiple functional domains, including a Roc-GTPase, protein kinase, and multiple protein-protein interaction domains. Previous studies have suggested an important role for kinase activity in LRRK2-induced neuronal toxicity and inclusion body formation. Disease-associated mutations in LRRK2 also tend to increase kinase activity. Thus, enhanced kinase activity may therefore underlie LRRK2-linked disease. Similar to the closely related mixed-lineage kinases, LRRK2 can undergo autophosphorylation in vitro. Three putative autophosphorylation sites (Thr-2031, Ser-2032, and Thr-2035) have been identified within the activation segment of the LRRK2 kinase domain based on sequence homology to mixed-lineage kinases. Phosphorylation at one or more of these sites is critical for the kinase activity of LRRK2. Sensitive phopho-specific antibodies to each of these three sites have been developed and validated by ELISA, dot-blot, and Western blot analysis. Using these antibodies, we have found that all three putative sites are phosphorylated in LRRK2, and Ser-2032 and Thr-2035 are the two important sites that regulate LRRK2 kinase activity. PMID:20595391

  11. Toddlers' Duration of Attention toward Putative Threat

    ERIC Educational Resources Information Center

    Kiel, Elizabeth J.; Buss, Kristin A.

    2011-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk of developing anxious behavior, toddlers' attention toward a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined…

  12. The Predikin webserver: improved prediction of protein kinase peptide specificity using structural information

    PubMed Central

    Saunders, Neil F. W.

    2008-01-01

    The Predikin webserver allows users to predict substrates of protein kinases. The Predikin system is built from three components: a database of protein kinase substrates that links phosphorylation sites with specific protein kinase sequences; a perl module to analyse query protein kinases and a web interface through which users can submit protein kinases for analysis. The Predikin perl module provides methods to (i) locate protein kinase catalytic domains in a sequence, (ii) classify them by type or family, (iii) identify substrate-determining residues, (iv) generate weighted scoring matrices using three different methods, (v) extract putative phosphorylation sites in query substrate sequences and (vi) score phosphorylation sites for a given kinase, using optional filters. The web interface provides user-friendly access to each of these functions and allows users to obtain rapidly a set of predictions that they can export for further analysis. The server is available at http://predikin.biosci.uq.edu.au. PMID:18477637

  13. A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses.

    PubMed

    Sun, XiaoLi; Sun, Mingzhe; Luo, Xiao; Ding, XiaoDong; Ji, Wei; Cai, Hua; Bai, Xi; Liu, XiaoFei; Zhu, YanMing

    2013-06-01

    Receptor such as protein kinases are proposed to work as sensors to initiate signaling cascades in higher plants. However, little is known about the precise functions of receptor such as protein kinases in abiotic stress response in plants, especially in wild soybean. Here, we focused on characterization of the biological functions of a receptor-like cytoplasmic serine/threonine protein kinase gene, GsRLCK, which was previously identified as a putative salt-alkali stress-related gene from the transcriptome profiles of Glycine soja. Bioinformatic analysis showed that GsRLCK protein contained a conserved kinase catalytic domain and two transmembrane domains at the N-terminus, but no typical extracellular domain. Consistently, GsRLCK-eGFP fusion protein was observed on the plasma membrane, but eGFP alone was distributing throughout the cytoplasm in onion epidermal cells. Quantitative real-time PCR analysis revealed the induced expression of GsRLCK by ABA, salt, alkali, and drought stresses. However, the expression levels of GsRLCK seemed to be similar in different tissues, except soybean pod. Phenotypic assays demonstrated that GsRLCK overexpression decreased ABA sensitivity and altered expression levels of ABA-responsive genes. Furthermore, we also found that GsRLCK conferred increased tolerance to salt and drought stresses and increased expression levels of a handful of stress-responsive genes, when overexpressing in Arabidopsis. In a word, we gave exact evidence that GsRLCK was a novel receptor-like cytoplasmic protein kinase and played a crucial role in plant responses to ABA, salt, and drought stresses. PMID:23494614

  14. Putative Drugs and Targets for Bipolar Disorder

    PubMed Central

    Zarate, Carlos A.; Manji, Husseini K.

    2009-01-01

    Current pharmacotherapy for bipolar disorder (BPD) is generally unsatisfactory for a large number of patients. Even with adequate modern bipolar pharmacological therapies, many afflicted individuals continue to have persistent mood episode relapses, residual symptoms, functional impairment and psychosocial disability. Creating novel therapeutics for BPD is urgently needed. Promising drug targets and compounds for BPD worthy of further study involve the following systems: purinergic, dynorphin opioid neuropeptide, cholinergic (muscarinic and nicotinic), melatonin and serotonin (5-HT2C receptor), glutamatergic, hypothalamic-pituitary adrenal (HPA) axis have all been implicated. Intracellular pathways and targets worthy of further study include glycogen synthase kinase-3 protein, protein kinase C, arachidonic acid cascade. PMID:18704977

  15. Putative BRAF activating fusion in a medullary thyroid cancer

    PubMed Central

    Kasaian, Katayoon; Wiseman, Sam M.; Walker, Blair A.; Schein, Jacqueline E.; Hirst, Martin; Moore, Richard A.; Mungall, Andrew J.; Marra, Marco A.; Jones, Steven J.M.

    2016-01-01

    Medullary thyroid cancer (MTC) is a malignancy of the calcitonin-producing parafollicular cells of the thyroid gland. Surgery is the only curative treatment for this cancer. External beam radiation therapy is reserved for adjuvant treatment of MTC with aggressive features. Targeted therapeutics vandetanib and cabozantinib are approved for the treatment of aggressive and metastatic tumors that are not amenable to surgery. The use of these multikinase inhibitors are supported by the observed overactivation of the RET oncoprotein in a large subpopulation of MTCs. However, not all patients carry oncogenic alterations of this kinase. Hence, there is still a need for comprehensive molecular characterization of MTC utilizing whole-genome and transcriptome-sequencing methodologies with the aim of identifying targetable mutations. Here, we describe the genomic profiles of two medullary thyroid cancers and report the presence of a putative oncogenic BRAF fusion in one. Such alterations, previously observed in other malignancies and known targets of available drugs, can benefit patients who currently have no treatment options. PMID:27148585

  16. Putative BRAF activating fusion in a medullary thyroid cancer.

    PubMed

    Kasaian, Katayoon; Wiseman, Sam M; Walker, Blair A; Schein, Jacqueline E; Hirst, Martin; Moore, Richard A; Mungall, Andrew J; Marra, Marco A; Jones, Steven J M

    2016-03-01

    Medullary thyroid cancer (MTC) is a malignancy of the calcitonin-producing parafollicular cells of the thyroid gland. Surgery is the only curative treatment for this cancer. External beam radiation therapy is reserved for adjuvant treatment of MTC with aggressive features. Targeted therapeutics vandetanib and cabozantinib are approved for the treatment of aggressive and metastatic tumors that are not amenable to surgery. The use of these multikinase inhibitors are supported by the observed overactivation of the RET oncoprotein in a large subpopulation of MTCs. However, not all patients carry oncogenic alterations of this kinase. Hence, there is still a need for comprehensive molecular characterization of MTC utilizing whole-genome and transcriptome-sequencing methodologies with the aim of identifying targetable mutations. Here, we describe the genomic profiles of two medullary thyroid cancers and report the presence of a putative oncogenic BRAF fusion in one. Such alterations, previously observed in other malignancies and known targets of available drugs, can benefit patients who currently have no treatment options. PMID:27148585

  17. The evolution of putative starch-binding domains.

    PubMed

    Machovic, Martin; Janecek, Stefan

    2006-11-27

    The present bioinformatics analysis was focused on the starch-binding domains (SBDs) and SBD-like motifs sequentially related to carbohydrate-binding module (CBM) families CBM20 and CBM21. Originally, these SBDs were known from microbial amylases only. At present homologous starch- and glycogen-binding domains (or putative SBD sequences) have been recognised in various plant and animal proteins. The sequence comparison clearly showed that the SBD-like sequences in genethonin-1, starch synthase III and glucan branching enzyme should possess the real SBD function since the two tryptophans (or at least two aromatics) of the typical starch-binding site 1 are conserved in their sequences. The same should apply also for the sequences corresponding with the so-called KIS-domain of plant AKINbetagamma protein that is a homologue of the animal AMP-activated protein kinase (AMPK). The evolutionary tree classified the compared SBDs into three distinct groups: (i) the family CBM20 (the motifs from genethonins, laforins, starch excess 4 protein, beta-subunits of the animal AMPK and all plant and yeast homologues, and eventually from amylopullulanases); (ii) the family CBM21 (the motifs from regulatory subunits of protein phosphatase 1 together with those from starch synthase III); and (iii) the (CBM20+CBM21)-related group (the motifs from the pullulanase subfamily consisting of pullulanase, branching enzyme, isoamylase and maltooligosyl trehalohydrolase). PMID:17084392

  18. Cellular trafficking of the IL-1RI-associated kinase-1 requires intact kinase activity

    SciTech Connect

    Boel, Gaby-Fleur . E-mail: boel@mail.dife.de; Jurrmann, Nadine; Brigelius-Flohe, Regina

    2005-06-24

    Upon stimulation of cells with interleukin-1 (IL-1) the IL-1 receptor type I (IL-1RI) associated kinase-1 (IRAK-1) transiently associates to and dissociates from the IL-1RI and thereafter translocates into the nucleus. Here we show that nuclear translocation of IRAK-1 depends on its kinase activity since translocation was not observed in EL-4 cells overexpressing a kinase negative IRAK-1 mutant (EL-4{sup IRAK-1-K239S}). IRAK-1 itself, an endogenous substrate with an apparent molecular weight of 24 kDa (p24), and exogenous substrates like histone and myelin basic protein are phosphorylated by nuclear located IRAK-1. Phosphorylation of p24 cannot be detected in EL-4{sup IRAK-1-K239S} cells. IL-1-dependent recruitment of IRAK-1 to the IL-1RI and subsequent phosphorylation of IRAK-1 is a prerequisite for nuclear translocation of IRAK-1. It is therefore concluded that intracellular localization of IRAK-1 depends on its kinase activity and that IRAK-1 may also function as a kinase in the nucleus as shown by a new putative endogenous substrate.

  19. Prokaryotic Diacylglycerol Kinase and Undecaprenol Kinase

    PubMed Central

    Van Horn, Wade D.; Sanders, Charles R.

    2013-01-01

    Prokaryotic diacylglycerol kinase (DAGK) and undecaprenol kinase (UDPK) are the lone members of a family of multispan membrane enzymes that are very small, lack relationships to any other family of proteins—including water soluble kinases, and that exhibit an unusual structure and active site architecture. Escherichia coli DAGK plays an important role in recycling diacylglycerol produced as a byproduct of biosynthesis of molecules located in the periplasmic space. UDPK seems to play an analogous role in Gram-positive bacteria, where its importance is evident by the fact that UDPK is essential for biofilm formation by the oral pathogen Streptococcus mutans. DAGK has also long served as a model system for studies of membrane protein biocatalysis, folding, stability, and structure. This review explores our current understanding of the microbial physiology, enzymology, structural biology, and folding of the prokaryotic diacylglycerol kinase family, which is based on over 40 years of studies. PMID:22224599

  20. Magnetism and the putative early Martian life

    NASA Astrophysics Data System (ADS)

    Rochette, P.

    2001-08-01

    A short critical review is provided on three questions linking magnetism and the putative early Mars life. Was there a large internal Martian magnetic field, during which period, and is it a requisite for life? What is the origin of the paleomagnetic signal of Martian meteorites, including ALH84001? What is the present credibility of the case for fossil bacterial magnetite grains in ALH84001?

  1. Protein Kinases and Addiction

    PubMed Central

    Lee, Anna M.; Messing, Robert O.

    2011-01-01

    Although drugs of abuse have different chemical structures and interact with different protein targets, all appear to usurp common neuronal systems that regulate reward and motivation. Addiction is a complex disease that is thought to involve drug-induced changes in synaptic plasticity due to alterations in cell signaling, gene transcription, and protein synthesis. Recent evidence suggests that drugs of abuse interact with and change a common network of signaling pathways that include a subset of specific protein kinases. The best studied of these kinases are reviewed here and include extracellular signal-regulated kinase, cAMP-dependent protein kinase, cyclin-dependent protein kinase 5, protein kinase C, calcium/calmodulin-dependent protein kinase II, and Fyn tyrosine kinase. These kinases have been implicated in various aspects of drug addiction including acute drug effects, drug self-administration, withdrawal, reinforcement, sensitization, and tolerance. Identifying protein kinase substrates and signaling pathways that contribute to the addicted state may provide novel approaches for new pharma-cotherapies to treat drug addiction. PMID:18991950

  2. AraPerox. A Database of Putative Arabidopsis Proteins from Plant Peroxisomes1[w

    PubMed Central

    Reumann, Sigrun; Ma, Changle; Lemke, Steffen; Babujee, Lavanya

    2004-01-01

    To identify unknown proteins from plant peroxisomes, the Arabidopsis genome was screened for proteins with putative major or minor peroxisome targeting signals type 1 or 2 (PTS1 or PTS2), as defined previously (Reumann S [2004] Plant Physiol 135: 783–800). About 220 and 60 proteins were identified that carry a putative PTS1 or PTS2, respectively. To further support postulated targeting to peroxisomes, several prediction programs were applied and the putative targeting domains analyzed for properties conserved in peroxisomal proteins and for PTS conservation in homologous plant expressed sequence tags. The majority of proteins with a major PTS and medium to high overall probability of peroxisomal targeting represent novel nonhypothetical proteins and include several enzymes involved in β-oxidation of unsaturated fatty acids and branched amino acids, and 2-hydroxy acid oxidases with a predicted function in fatty acid α-oxidation, as well as NADP-dependent dehydrogenases and reductases. In addition, large protein families with many putative peroxisomal isoforms were recognized, including acyl-activating enzymes, GDSL lipases, and small thioesterases. Several proteins are homologous to prokaryotic enzymes of a novel aerobic hybrid degradation pathway for aromatic compounds and proposed to be involved in peroxisomal biosynthesis of plant hormones like jasmonic acid, auxin, and salicylic acid. Putative regulatory proteins of plant peroxisomes include protein kinases, small heat shock proteins, and proteases. The information on subcellular targeting prediction, homology, and in silico expression analysis for these Arabidopsis proteins has been compiled in the public database AraPerox to accelerate discovery and experimental investigation of novel metabolic and regulatory pathways of plant peroxisomes. PMID:15333753

  3. Evidence that a kinase distinct from protein kinase C and phosphatidylinositol 3-kinase mediates ligation-dependent serine/threonine phosphorylation of the T-lymphocyte co-stimulatory molecule CD28.

    PubMed Central

    Parry, R V; Olive, D; Westwick, J; Sansom, D M; Ward, S G

    1997-01-01

    The CD28 cytoplasmic tail contains several potential phosphorylation sites for the serine/threonine kinase protein kinase C (PKC) and/or proline-directed serine/threonine kinases, such as extracellular signal-regulated kinases. We demonstrate that ligation of CD28 by B7.1 results in strong serine/threonine phosphorylation of CD28. It is unlikely that ligation-stimulated phosphorylation of CD28 is mediated via activation of PKC, since it was not prevented by pre-treatment of Jurkat cells with inhibitors of PKC, and it was not mimicked by treatment with PKC activators such as PMA. Nevertheless, despite for lack of detectable effects of PMA treatment on CD28 phosphorylation, PMA did partially inhibit the association of CD28 with the putative signalling molecule phosphatidylinositol 3-kinase (PI 3-kinase) and the subsequent accumulation of PtdIns(3,4,5)P3. PI 3-kinase exhibits dual specificity as both a lipid kinase and a protein serine kinase, and site-specific mutagenesis of the Tyr173 residue in the CD28 cytoplasmic tail, which abolishes CD28 coupling to PI 3-kinase [Pages, Ragueneau, Rottapel, Truneh, Nunes, Imbert and Olive (1994) Nature (London) 369, 327-329], also prevents ligation-stimulated phosphorylation of CD28. However, the two PI 3-kinase inhibitors wortmannin and LY294002 had no effect on phosphorylation of CD28 after ligation by B7.1. This study therefore demonstrates that (1) a CD28-activated serine/threonine kinase distinct from both PKC and PI 3-kinase mediates ligation-stimulated CD28 phosphorylation, and (2) the PMA-stimulated down-regulation of the coupling of CD28 to PI 3-kinase is not due to PMA-stimulated phosphorylation of CD28. PMID:9337876

  4. KEA: kinase enrichment analysis

    PubMed Central

    Lachmann, Alexander; Ma'ayan, Avi

    2009-01-01

    Motivation: Multivariate experiments applied to mammalian cells often produce lists of proteins/genes altered under treatment versus control conditions. Such lists can be projected onto prior knowledge of kinase–substrate interactions to infer the list of kinases associated with a specific protein list. By computing how the proportion of kinases, associated with a specific list of proteins/genes, deviates from an expected distribution, we can rank kinases and kinase families based on the likelihood that these kinases are functionally associated with regulating the cell under specific experimental conditions. Such analysis can assist in producing hypotheses that can explain how the kinome is involved in the maintenance of different cellular states and can be manipulated to modulate cells towards a desired phenotype. Summary: Kinase enrichment analysis (KEA) is a web-based tool with an underlying database providing users with the ability to link lists of mammalian proteins/genes with the kinases that phosphorylate them. The system draws from several available kinase–substrate databases to compute kinase enrichment probability based on the distribution of kinase–substrate proportions in the background kinase–substrate database compared with kinases found to be associated with an input list of genes/proteins. Availability: The KEA system is freely available at http://amp.pharm.mssm.edu/lib/kea.jsp Contact: avi.maayan@mssm.edu PMID:19176546

  5. Biochemical and Structural Insights into Doublecortin-like Kinase Domain 1.

    PubMed

    Patel, Onisha; Dai, Weiwen; Mentzel, Mareike; Griffin, Michael D W; Serindoux, Juliette; Gay, Yoann; Fischer, Stefanie; Sterle, Shoukat; Kropp, Ashleigh; Burns, Christopher J; Ernst, Matthias; Buchert, Michael; Lucet, Isabelle S

    2016-09-01

    Doublecortin-like kinase 1 (DCLK1) is a serine/threonine kinase that belongs to the family of microtubule-associated proteins. Originally identified for its role in neurogenesis, DCLK1 has recently been shown to regulate biological processes outside of the CNS. DCLK1 is among the 15 most common putative driver genes for gastric cancers and is highly mutated across various other human cancers. However, our present understanding of how DCLK1 dysfunction leads to tumorigenesis is limited. Here, we provide evidence that DCLK1 kinase activity negatively regulates microtubule polymerization. We present the crystal structure of the DCLK1 kinase domain at 1.7 Å resolution, providing detailed insight into the ATP-binding site that will serve as a framework for future drug design. This structure also allowed for the mapping of cancer-causing mutations within the kinase domain, suggesting that a loss of kinase function may contribute to tumorigenesis. PMID:27545623

  6. Site-directed mutagenesis of Lys-174, Asp-179 and Asp-191 in the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.

    PubMed Central

    Bertrand, L; Deprez, J; Vertommen, D; Di Pietro, A; Hue, L; Rider, M H

    1997-01-01

    In a structural model of the 2-kinase domain of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase based on the analogy with adenylate kinase, Lys-174, Asp-179 and Asp-191 residues are located in the putative active site. Asp-179 and Asp-191 are conserved in all known 6-phosphofructo-2-kinase sequences. In contrast, Lys-174 is conserved except in a yeast isoenzyme, fbp26, where it is replaced by glycine. Yeast fbp26 possesses fructose-2,6-bisphosphatase activity, but is devoid of 6-phosphofructo-2-kinase activity. Mutation of Asp-179 and Asp-191 of the rat liver isoenzyme to alanine increased the Km of 6-phosphofructo-2-kinase for fructose 6-phosphate 2000- and 1000-fold respectively, whereas mutation of Lys-174 to glycine decreased the Vmax of 6-phosphofructo-2-kinase more than 4000-fold. In contrast, none of the mutations affected the kinetic parameters of fructose-2,6-bisphosphatase. CD and fluorescence measurements indicated that the mutations had no effect on the structure and stability of the recombinant proteins. The results show that Asp-179 and Asp-191 participate in fructose 6-phosphate binding, whereas Lys-174 is important for catalysis. Therefore the natural mutation of Lys-174 to glycine in the fbp26 yeast isoenzyme could explain the lack of 6-phosphofructo-2-kinase activity. These results support a novel 6-phosphofructo-2-kinase structure model based on adenylate kinase. PMID:9032446

  7. Expression of a gibberellin-induced leucine-rich repeat receptor-like protein kinase in deepwater rice and its interaction with kinase-associated protein phosphatase

    SciTech Connect

    Knaap, E. van der; Sauter, M.; Kende, H. . DOE Plant Research Lab.); Song, W.Y.; Ruan, D.L.; Ronald, P.C. . Dept. of Plant Pathology)

    1999-06-01

    The authors identified in deepwater rice (Oryza sativa L.) a gene encoding a leucine-rich repeat receptor-like transmembrane protein kinase, OsTMK (O. sativa transmembrane kinase). The transcript levels of OsTMK increased in the rice internode in response to gibberellin. Expression of OsTMK was especially high in regions undergoing cell division and elongation. The kinase domain of OsTMK was enzymatically active autophosphorylating on serine and threonine residues. A cDNA encoding a rice ortholog of a kinase-associated type 2C protein phosphatase (OsKAPP) was cloned. KAPPs are putative downstream components in kinase-mediated signal transduction pathways. The kinase interaction domain of OsKAPP was phosphorylated in vitro by the kinase domain of OsTMK. RNA gel-blot analysis indicated that the expression of OsTMK and OsKAPP was similar in different tissues of the rice plant. In protein-binding assays, OsKAPP interacted with a receptor-like protein kinase, RLK5 of Arabidopsis, but not with the protein kinase domains of the rice and maize receptor-like protein kinases Xa21 and ZmPK1, respectively.

  8. Putative Excitatory and Putative Inhibitory Inputs Localize to Different Dendritic Domains in a Drosophila Flight Motoneuron

    PubMed Central

    Kuehn, Claudia; Duch, Carsten

    2012-01-01

    Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the targeting of input synapses to specific parts of their dendrites. However, only few examples exist where dendritic architecture can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical, and confocal laser scanning methods this study estimates the location of the spike initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with more than 4000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provided only an estimate of putative input synapse distributions, the data indicated that inhibitory and excitatory synapses were targeted preferentially to different dendritic domains of MN5, and thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies. PMID:23279094

  9. Cellular compartmentation of energy metabolism: creatine kinase microcompartments and recruitment of B-type creatine kinase to specific subcellular sites.

    PubMed

    Schlattner, Uwe; Klaus, Anna; Ramirez Rios, Sacnicte; Guzun, Rita; Kay, Laurence; Tokarska-Schlattner, Malgorzata

    2016-08-01

    There is an increasing body of evidence for local circuits of ATP generation and consumption that are largely independent of global cellular ATP levels. These are mostly based on the formation of multiprotein(-lipid) complexes and diffusion limitations existing in cells at different levels of organization, e.g., due to the viscosity of the cytosolic medium, macromolecular crowding, multiple and bulky intracellular structures, or controlled permeability across membranes. Enzymes generating ATP or GTP are found associated with ATPases and GTPases enabling the direct fueling of these energy-dependent processes, and thereby implying that it is the local and not the global concentration of high-energy metabolites that is functionally relevant. A paradigm for such microcompartmentation is creatine kinase (CK). Cytosolic and mitochondrial isoforms of CK constitute a well established energy buffering and shuttling system whose functions are very much based on local association of CK isoforms with ATP-providing and ATP-consuming processes. Here we review current knowledge on the subcellular localization and direct protein and lipid interactions of CK isoforms, in particular about cytosolic brain-type CK (BCK) much less is known compared to muscle-type CK (MCK). We further present novel data on BCK, based on three different experimental approaches: (1) co-purification experiments, suggesting association of BCK with membrane structures such as synaptic vesicles and mitochondria, involving hydrophobic and electrostatic interactions, respectively; (2) yeast-two-hybrid analysis using cytosolic split-protein assays and the identifying membrane proteins VAMP2, VAMP3 and JWA as putative BCK interaction partners; and (3) phosphorylation experiments, showing that the cellular energy sensor AMP-activated protein kinase (AMPK) is able to phosphorylate BCK at serine 6 to trigger BCK localization at the ER, in close vicinity of the highly energy-demanding Ca(2+) ATPase pump. Thus

  10. Ten Putative Contributors to the Obesity Epidemic

    PubMed Central

    McAllister, Emily J.; Dhurandhar, Nikhil V.; Keith, Scott W.; Aronne, Louis J.; Barger, Jamie; Baskin, Monica; Benca, Ruth M.; Biggio, Joseph; Boggiano, Mary M.; Eisenmann, Joe C.; Elobeid, Mai; Fontaine, Kevin R.; Gluckman, Peter; Hanlon, Erin C.; Katzmarzyk, Peter; Pietrobelli, Angelo; Redden, David T.; Ruden, Douglas M.; Wang, Chenxi; Waterland, Robert A.; Wright, Suzanne M.; Allison, David B.

    2010-01-01

    The obesity epidemic is a global issue and shows no signs of abating, while the cause of this epidemic remains unclear. Marketing practices of energy-dense foods and institutionally-driven declines in physical activity are the alleged perpetrators for the epidemic, despite a lack of solid evidence to demonstrate their causal role. While both may contribute to obesity, we call attention to their unquestioned dominance in program funding and public efforts to reduce obesity, and propose several alternative putative contributors that would benefit from equal consideration and attention. Evidence for microorganisms, epigenetics, increasing maternal age, greater fecundity among people with higher adiposity, assortative mating, sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, reduction in variability of ambient temperatures, and intrauterine and intergenerational effects, as contributing factors to the obesity epidemic are reviewed herein. While the evidence is strong for some contributors such as pharmaceutical-induced weight gain, it is still emerging for other reviewed factors. Considering the role of such putative etiological factors of obesity may lead to comprehensive, cause specific, and effective strategies for prevention and treatment of this global epidemic. PMID:19960394

  11. From Phosphosites to Kinases.

    PubMed

    Munk, Stephanie; Refsgaard, Jan C; Olsen, Jesper V; Jensen, Lars J

    2016-01-01

    Kinases play a pivotal role in propagating the phosphorylation-mediated signaling networks in living cells. With the overwhelming quantities of phosphoproteomics data being generated, the number of identified phosphorylation sites (phosphosites) is ever increasing. Often, proteomics investigations aim to understand the global signaling modulation that takes place in different biological conditions investigated. For phosphoproteomics data, identifying the kinases central to mediating this response is key. This has prompted several efforts to catalogue the immense amounts of phosphorylation data and known or predicted kinases responsible for the modifications. However, barely 20 % of the known phosphosites are assigned to a kinase, initiating various bioinformatics efforts that attempt to predict the responsible kinases. These algorithms employ different approaches to predict kinase consensus sequence motifs, mostly based on large scale in vivo and in vitro experiments. The context of the kinase and the phosphorylated proteins in a biological system is equally important for predicting association between the enzymes and substrates, an aspect that is also being tackled with available bioinformatics tools. This chapter summarizes the use of the larger phosphorylation databases, and approaches that can be applied to predict kinases that phosphorylate individual sites or that are globally modulated in phosphoproteomics datasets. PMID:26584935

  12. Nitric Oxide Induction of Parkin Translocation in PTEN-induced Putative Kinase 1 (PINK1) Deficiency

    PubMed Central

    Han, Ji-Young; Kang, Min-Ji; Kim, Kyung-Hee; Han, Pyung-Lim; Kim, Hyun-Seok; Ha, Ji-Young; Son, Jin H.

    2015-01-01

    The failure to trigger mitophagy is implicated in the pathogenesis of familial Parkinson disease that is caused by PINK1 or Parkin mutations. According to the prevailing PINK1-Parkin signaling model, mitophagy is promoted by the mitochondrial translocation of Parkin, an essential PINK1-dependent step that occurs via a previously unknown mechanism. Here we determined that critical concentrations of NO was sufficient to induce the mitochondrial translocation of Parkin even in PINK1 deficiency, with apparent increased interaction of full-length PINK1 accumulated during mitophagy, with neuronal nitric oxide synthase (nNOS). Specifically, optimum levels of NO enabled PINK1-null dopaminergic neuronal cells to regain the mitochondrial translocation of Parkin, which appeared to be significantly suppressed by nNOS-null mutation. Moreover, nNOS-null mutation resulted in the same mitochondrial electron transport chain (ETC) enzyme deficits as PINK1-null mutation. The involvement of mitochondrial nNOS activation in mitophagy was further confirmed by the greatly increased interactions of full-length PINK1 with nNOS, accompanied by mitochondrial accumulation of phospho-nNOS (Ser1412) during mitophagy. Of great interest is that the L347P PINK1 mutant failed to bind to nNOS. The loss of nNOS phosphorylation and Parkin accumulation on PINK1-deficient mitochondria could be reversed in a PINK1-dependent manner. Finally, non-toxic levels of NO treatment aided in the recovery of PINK1-null dopaminergic neuronal cells from mitochondrial ETC enzyme deficits. In summary, we demonstrated the full-length PINK1-dependent recruitment of nNOS, its activation in the induction of Parkin translocation, and the feasibility of NO-based pharmacotherapy for defective mitophagy and ETC enzyme deficits in Parkinson disease. PMID:25716315

  13. Preliminary X-ray crystallographic analysis of SMU.573, a putative sugar kinase from Streptococcus mutans

    SciTech Connect

    Zhou, Yan-Feng; Li, Lan-Fen; Yang, Cheng; Su, Xiao-Dong

    2008-01-01

    SMU.573 from S. mutans was expressed in E. coli and crystallized. The crystals belong to space group I4 and 2.5 Å resolution diffraction data were collected at an in-house chromium radiation source. SMU.573 from Streptococcus mutans is a structurally and functionally uncharacterized protein that was selected for structural biology studies. Native and SeMet-labelled proteins were expressed with an N-His tag in Escherichia coli BL21 (DE3) and purified by Ni{sup 2+}-chelating and size-exclusion chromatography. Crystals of the SeMet-labelled protein were obtained by the hanging-drop vapour-diffusion method and a 2.5 Å resolution diffraction data set was collected using an in-house chromium radiation source. The crystals belong to space group I4, with unit-cell parameters a = b = 96.53, c = 56.26 Å, α = β = γ = 90°.

  14. Novel P-TEN-induced putative kinase 1 (PINK1) variant in Indian Parkinson's disease patient.

    PubMed

    Halder, Tamali; Raj, Janak; Sharma, Vivek; Das, Parimal

    2015-09-25

    Loss-of-function mutation in PINK1 is known for causing autosomal recessive early onset Parkinsonism accounting approximately 6.5% of PD cases. Recently, PINK1 has also been shown to cause Parkinson's disease (PD) in eastern India. Present study is aimed to see its contribution in north-Indian PD patients. A total of 106 PD patients and 60 ethnically matched healthy controls were included in the study. All the patients were screened for mutation in PINK1 by direct DNA sequence analysis of the PCR amplicons covering all exons and exon-intron boundaries. Identified novel variant was reconfirmed by DNA sequencing of 10 randomly selected TA clones containing the variant amplicon. In vitro functional assay of the mutant protein was performed by transfecting COS-7 cell line with wild type and mutant (created by site-directed-mutagenesis) cDNA construct of PINK1 fused to N' terminal GFP followed by western blot analysis. Two potentially pathogenic, one being novel (p.Q267X) and 6 other apparently non-pathogenic variants were identified. Western blot analysis reveals production of truncated PINK1 fusion protein of ∼55kDa in p.Q267X mutant instead of 82/93kDa of wild type PINK1 fusion protein (molecular weight of GFP is ∼27kDa). Our study concludes that PINK1 variants are prevalent for causing Parkinson's disease (PD) in India, as revealed by the occurrence of 1.8% (2/106) in PD patients from north Indian population. The novel homozygous variant of PINK1 (c.799C>T) reported here is the plausible cause for disease manifestation in this patient. Future study, however, would be helpful to understand the functional mechanism how this premature PINK1 protein (p.Q267X) responds to cellular stress leading to the PD pathophysiology. PMID:26282903

  15. Protein kinase Cδ regulates vaccinia-related kinase 1 in DNA damage–induced apoptosis

    PubMed Central

    Park, Choon-Ho; Choi, Bo-Hwa; Jeong, Min-Woo; Kim, Sangjune; Kim, Wanil; Song, Yun Seon; Kim, Kyong-Tai

    2011-01-01

    Vaccinia-related kinase 1 (VRK1) is a novel serine/threonine kinase that plays an important role in cell proliferation. However, little is known about the upstream regulators of VRK1 activity. Here we provide evidence for a role of protein kinase Cδ (PKCδ) in the regulation of murine VRK1. We show that PKCδ interacts with VRK1, phosphorylates the Ser-355 residue in the putative regulatory region, and negatively regulates its kinase activity in vitro. Intriguingly, PKCδ-induced cell death was facilitated by phosphorylation of VRK1 when cells were exposed to a DNA-damaging agent. In addition, p53 played a critical role in the regulation of DNA damage–induced cell death accompanied by PKCδ-mediated modulation of VRK1. In p53-deficient cells, PKCδ-mediated phosphorylation of VRK1 had no effect on cell viability. However, cells overexpressing p53 exhibited significant reduction of cell viability when cotransfected with both VRK1 and PKCδ. Taken together, these results indicate that PKCδ regulates phosphorylation and down-regulation of VRK1, thereby contributing to cell cycle arrest and apoptotic cell death in a p53-dependent manner. PMID:21346188

  16. The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis

    PubMed Central

    Gerwig, Jan; Kiley, Taryn B.; Gunka, Katrin; Stanley-Wall, Nicola

    2014-01-01

    The Gram-positive soil bacterium Bacillus subtilis is able to choose between motile and sessile lifestyles. The sessile way of life, also referred to as biofilm, depends on the formation of an extracellular polysaccharide matrix and some extracellular proteins. Moreover, a significant proportion of cells in a biofilm form spores. The first two genes of the 15-gene operon for extracellular polysaccharide synthesis, epsA and epsB, encode a putative transmembrane modulator protein and a putative protein tyrosine kinase, respectively, with similarity to the TkmA/PtkA modulator/kinase couple. Here we show that the putative kinase EpsB is required for the formation of structured biofilms. However, an epsB mutant is still able to form biofilms. As shown previously, a ptkA mutant is also partially defective in biofilm formation, but this defect is related to spore formation in the biofilm. The absence of both kinases resulted in a complete loss of biofilm formation. Thus, EpsB and PtkA fulfil complementary functions in biofilm formation. The activity of bacterial protein tyrosine kinases depends on their interaction with modulator proteins. Our results demonstrate the specific interaction between the putative kinase EpsB and its modulator protein EpsA and suggest that EpsB activity is stimulated by its modulator EpsA. PMID:24493247

  17. The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis.

    PubMed

    Gerwig, Jan; Kiley, Taryn B; Gunka, Katrin; Stanley-Wall, Nicola; Stülke, Jörg

    2014-04-01

    The Gram-positive soil bacterium Bacillus subtilis is able to choose between motile and sessile lifestyles. The sessile way of life, also referred to as biofilm, depends on the formation of an extracellular polysaccharide matrix and some extracellular proteins. Moreover, a significant proportion of cells in a biofilm form spores. The first two genes of the 15-gene operon for extracellular polysaccharide synthesis, epsA and epsB, encode a putative transmembrane modulator protein and a putative protein tyrosine kinase, respectively, with similarity to the TkmA/PtkA modulator/kinase couple. Here we show that the putative kinase EpsB is required for the formation of structured biofilms. However, an epsB mutant is still able to form biofilms. As shown previously, a ptkA mutant is also partially defective in biofilm formation, but this defect is related to spore formation in the biofilm. The absence of both kinases resulted in a complete loss of biofilm formation. Thus, EpsB and PtkA fulfil complementary functions in biofilm formation. The activity of bacterial protein tyrosine kinases depends on their interaction with modulator proteins. Our results demonstrate the specific interaction between the putative kinase EpsB and its modulator protein EpsA and suggest that EpsB activity is stimulated by its modulator EpsA. PMID:24493247

  18. Receptor Tyrosine Kinase and Tyrosine Kinase Inhibitors

    PubMed Central

    Mirshafiey, Abbas; Ghalamfarsa, Ghasem; Asghari, Babak

    2014-01-01

    Receptor tyrosine kinases (RTKs) are essential components of signal transduction pathways that mediate cell-to-cell communication and their function as relay points for signaling pathways. They have a key role in numerous processes that control cellular proliferation and differentiation, regulate cell growth and cellular metabolism, and promote cell survival and apoptosis. Recently, the role of RTKs including TCR, FLT-3, c-Kit, c-Fms, PDGFR, ephrin, neurotrophin receptor, and TAM receptor in autoimmune disorder, especially rheumatoid arthritis and multiple sclerosis has been suggested. In multiple sclerosis pathogenesis, RTKs and their tyrosine kinase enzymes are selective important targets for tyrosine kinase inhibitor (TKI) agents. TKIs, compete with the ATP binding site of the catalytic domain of several tyrosine kinases, and act as small molecules that have a favorable safety profile in disease treatment. Up to now, the efficacy of TKIs in numerous animal models of MS has been demonstrated, but application of these drugs in human diseases should be tested in future clinical trials. PMID:25337443

  19. Structural basis for cytokinin recognition by Arabidopsis thaliana histidine kinase 4

    PubMed Central

    Hothorn, Michael; Dabi, Tsegaye; Chory, Joanne

    2011-01-01

    Cytokinins are classic plant hormones that orchestrate growth, development and the integrity of stem cell populations. Cytokinin receptors are eukaryotic sensor histidine kinases that are activated both by naturally occurring adenine-type cytokinins and by urea-based synthetic compounds. Crystal structures of the Arabidopsis histidine kinase 4 sensor domain in complex with different cytokinin ligands now rationalize the hormone-binding specificity of the receptor and may spur the design of novel cytokinin ligands. PMID:21964459

  20. Functional Analysis and Phosphorylation Site Mapping of Leucine-Rich Repeat Receptor-Like Kinases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The completed genome sequences of Arabidopsis thaliana and rice have revealed very large multi-gene families encoding predicted proteins with an organization of functional domains similar to that of animal receptor kinases, including a putative extracellular ligand-binding domain, a single-pass tran...

  1. Pyruvate kinase blood test

    MedlinePlus

    ... break down faster than normal, a condition called hemolytic anemia . This test helps diagnose pyruvate kinase deficiency (PKD) . ... Pa: Elsevier Saunders; 2011:chap 32. Gallagher PG. Hemolytic anemias: red cell membrane and metabolic defects In: Goldman ...

  2. Mycobacterium tuberculosis Serine/Threonine Protein Kinases

    PubMed Central

    PRISIC, SLADJANA; HUSSON, ROBERT N.

    2014-01-01

    The Mycobacterium tuberculosis genome encodes 11 serine/threonine protein kinases (STPKs). A similar number of two-component systems are also present, indicating that these two signal transduction mechanisms are both important in the adaptation of this bacterial pathogen to its environment. The M. tuberculosis phosphoproteome includes hundreds of Ser- and Thr-phosphorylated proteins that participate in all aspects of M. tuberculosis biology, supporting a critical role for the STPKs in regulating M. tuberculosis physiology. Nine of the STPKs are receptor type kinases, with an extracytoplasmic sensor domain and an intracellular kinase domain, indicating that these kinases transduce external signals. Two other STPKs are cytoplasmic and have regulatory domains that sense changes within the cell. Structural analysis of some of the STPKs has led to advances in our understanding of the mechanisms by which these STPKs are activated and regulated. Functional analysis has provided insights into the effects of phosphorylation on the activity of several proteins, but for most phosphoproteins the role of phosphorylation in regulating function is unknown. Major future challenges include characterizing the functional effects of phosphorylation for this large number of phosphoproteins, identifying the cognate STPKs for these phosphoproteins, and determining the signals that the STPKs sense. Ultimately, combining these STPK-regulated processes into larger, integrated regulatory networks will provide deeper insight into M. tuberculosis adaptive mechanisms that contribute to tuberculosis pathogenesis. Finally, the STPKs offer attractive targets for inhibitor development that may lead to new therapies for drug-susceptible and drug-resistant tuberculosis. PMID:25429354

  3. SUMOylation regulates the SNF1 protein kinase

    PubMed Central

    Simpson-Lavy, Kobi J.; Johnston, Mark

    2013-01-01

    The AMP-activated protein kinase (AMPK) is a major stress sensor of mammalian cells. AMPK’s homolog in the yeast Saccharomyces cerevisiae, the SNF1 protein kinase, is a central regulator of carbon metabolism that inhibits the Snf3/Rgt2-Rgt1 glucose sensing pathway and activates genes involved in respiration. We present evidence that glucose induces modification of the Snf1 catalytic subunt of SNF1 with the small ubiquitin-like modifier protein SUMO, catalyzed by the SUMO (E3) ligase Mms21. Our results suggest that SUMOylation of Snf1 inhibits its function in two ways: by interaction of SUMO attached to lysine 549 with a SUMO-interacting sequence motif located near the active site of Snf1, and by targeting Snf1 for destruction via the Slx5-Slx8 (SUMO-directed) ubiquitin ligase. These findings reveal another way SNF1 function is regulated in response to carbon source. PMID:24108357

  4. The Biogeography of Putative Microbial Antibiotic Production.

    PubMed

    Morlon, Hélène; O'Connor, Timothy K; Bryant, Jessica A; Charkoudian, Louise K; Docherty, Kathryn M; Jones, Evan; Kembel, Steven W; Green, Jessica L; Bohannan, Brendan J M

    2015-01-01

    Understanding patterns in the distribution and abundance of functional traits across a landscape is of fundamental importance to ecology. Mapping these distributions is particularly challenging for species-rich groups with sparse trait measurement coverage, such as flowering plants, insects, and microorganisms. Here, we use likelihood-based character reconstruction to infer and analyze the spatial distribution of unmeasured traits. We apply this framework to a microbial dataset comprised of 11,732 ketosynthase alpha gene sequences extracted from 144 soil samples from three continents to document the spatial distribution of putative microbial polyketide antibiotic production. Antibiotic production is a key competitive strategy for soil microbial survival and performance. Additionally, novel antibiotic discovery is highly relevant to human health, making natural antibiotic production by soil microorganisms a major target for bioprospecting. Our comparison of trait-based biogeographical patterns to patterns based on taxonomy and phylogeny is relevant to our basic understanding of microbial biogeography as well as the pressing need for new antibiotics. PMID:26102275

  5. The Biogeography of Putative Microbial Antibiotic Production

    PubMed Central

    Bryant, Jessica A.; Charkoudian, Louise K.; Docherty, Kathryn M.; Jones, Evan; Kembel, Steven W.; Green, Jessica L.; Bohannan, Brendan J. M.

    2015-01-01

    Understanding patterns in the distribution and abundance of functional traits across a landscape is of fundamental importance to ecology. Mapping these distributions is particularly challenging for species-rich groups with sparse trait measurement coverage, such as flowering plants, insects, and microorganisms. Here, we use likelihood-based character reconstruction to infer and analyze the spatial distribution of unmeasured traits. We apply this framework to a microbial dataset comprised of 11,732 ketosynthase alpha gene sequences extracted from 144 soil samples from three continents to document the spatial distribution of putative microbial polyketide antibiotic production. Antibiotic production is a key competitive strategy for soil microbial survival and performance. Additionally, novel antibiotic discovery is highly relevant to human health, making natural antibiotic production by soil microorganisms a major target for bioprospecting. Our comparison of trait-based biogeographical patterns to patterns based on taxonomy and phylogeny is relevant to our basic understanding of microbial biogeography as well as the pressing need for new antibiotics. PMID:26102275

  6. Magnetic Pulse Affects a Putative Magnetoreceptor Mechanism

    PubMed Central

    Davila, Alfonso F.; Winklhofer, Michael; Shcherbakov, Valera P.; Petersen, Nikolai

    2005-01-01

    Clusters of superparamagnetic (SP) magnetite crystals have recently been identified in free nerve endings in the upper-beak skin of homing pigeons and are interpreted as being part of a putative magnetoreceptor system. Motivated by these findings, we developed a physical model that accurately predicts the dynamics of interacting SP clusters in a magnetic field. The main predictions are: 1), under a magnetic field, a group of SP clusters self-assembles into a chain-like structure that behaves like a compass needle under slowly rotating fields; 2), in a frequently changing field as encountered by a moving bird, a stacked chain is a structurally more stable configuration than a single chain; 3), chain-like structures of SP clusters disrupt under strong fields applied at oblique angles; and 4), reassemble on a timescale of hours to days (assuming a viscosity of the cell plasma η ∼ 1 P). Our results offer a novel mechanism for magnetic field perception and are in agreement with the response of birds observed after magnetic-pulse treatments, which have been conducted in the past to specifically test if ferrimagnetic material is involved in magnetoreception, but which have defied explanation so far. Our theoretical results are supported by experiments on a technical SP model system using a high-speed camera. We also offer new predictions that can be tested experimentally. PMID:15863473

  7. Toddlers’ Duration of Attention towards Putative Threat

    PubMed Central

    Kiel, Elizabeth J.; Buss, Kristin A.

    2010-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk for developing anxious behavior, toddlers’ attention towards a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined how attention towards an angry-looking gorilla mask in a room with alternative opportunities for play in 24-month-old toddlers predicted social inhibition when children entered kindergarten. Analyses examined attention to threat above and beyond and in interaction with both proximity to the mask and fear of novelty observed in other situations. Attention to threat interacted with proximity to the mask to predict social inhibition, such that attention to threat most strongly predicted social inhibition when toddlers stayed furthest from the mask. This relation occurred above and beyond the predictive relation between fear of novelty and social inhibition. Results are discussed within the broader literature of anxiety development and attentional processes in young children. PMID:21373365

  8. Biogenic Origin for Earth's Oldest Putative Microfossils

    SciTech Connect

    De Gregorio, B.; Sharp, T; Flynn, G; Wirick, S; Hervig, R

    2009-01-01

    Carbonaceous microbe-like features preserved within a local chert unit of the 3.5 Ga old Apex Basalt in Western Australia may represent some of the oldest evidence of life on Earth. However, the biogenicity of these putative microfossils has been called into question, primarily because the sample collection locality is a black, carbon-rich, brecciated chert dike representing an Archean submarine hydrothermal spring, suggesting a formation via an abiotic organic synthesis mechanism. Here we describe the macromolecular hydrocarbon structure, carbon bonding, functional group chemistry, and biotic element abundance of carbonaceous matter associated with these filamentous features. These characteristics are similar to those of biogenic kerogen from the ca. 1.9 Ga old Gunflint Formation. Although an abiotic origin cannot be entirely ruled out, it is unlikely that known abiotic synthesis mechanisms could recreate both the structural and compositional complexity of this ancient carbonaceous matter. Thus, we find that a biogenic origin for this material is more likely, implying that the Apex microbe-like features represent authentic biogenic organic matter.

  9. Activity-based kinase profiling of approved tyrosine kinase inhibitors.

    PubMed

    Kitagawa, Daisuke; Yokota, Koichi; Gouda, Masaki; Narumi, Yugo; Ohmoto, Hiroshi; Nishiwaki, Eiji; Akita, Kensaku; Kirii, Yasuyuki

    2013-02-01

    The specificities of nine approved tyrosine kinase inhibitors (imatinib, dasatinib, nilotinib, gefitinib, erlotinib, lapatinib, sorafenib, sunitinib, and pazopanib) were determined by activity-based kinase profiling using a large panel of human recombinant active kinases. This panel consisted of 79 tyrosine kinases, 199 serine/threonine kinases, three lipid kinases, and 29 disease-relevant mutant kinases. Many potential targets of each inhibitor were identified by kinase profiling at the K(m) for ATP. In addition, profiling at a physiological ATP concentration (1 mm) was carried out, and the IC(50) values of the inhibitors against each kinase were compared with the estimated plasma-free concentration (calculated from published pharmacokinetic parameters of plasma C(trough) and C(max) values). This analysis revealed that the approved kinase inhibitors were well optimized for their target kinases. This profiling also implicates activity at particular off-target kinases in drug side effects. Thus, large-scale kinase profiling at both K(m) and physiological ATP concentrations could be useful in characterizing the targets and off-targets of kinase inhibitors. PMID:23279183

  10. Mycobacterium tuberculosis MtrB Sensor Kinase Interactions with FtsI and Wag31 Proteins Reveal a Role for MtrB Distinct from That Regulating MtrA Activities

    PubMed Central

    Plocinska, Renata; Martinez, Luis; Gorla, Purushotham; Pandeeti, Emmanuel; Sarva, Krishna; Blaszczyk, Ewelina; Dziadek, Jaroslaw

    2014-01-01

    The septal association of Mycobacterium tuberculosis MtrB, the kinase partner of the MtrAB two-component signal transduction system, is necessary for the optimal expression of the MtrA regulon targets, including ripA, fbpB, and ftsI, which are involved in cell division and cell wall synthesis. Here, we show that MtrB, irrespective of its phosphorylation status, interacts with Wag31, whereas only phosphorylation-competent MtrB interacts with FtsI. We provide evidence that FtsI depletion compromises the MtrB septal assembly and MtrA regulon expression; likewise, the absence of MtrB compromises FtsI localization and, possibly, FtsI activity. We conclude from these results that FtsI and MtrB are codependent for their activities and that FtsI functions as a positive modulator of MtrB activation and MtrA regulon expression. In contrast to FtsI, Wag31 depletion does not affect MtrB septal assembly and MtrA regulon expression, whereas the loss of MtrB increased Wag31 localization and the levels of PknA/PknB (PknA/B) serine-threonine protein kinase-mediated Wag31 phosphorylation. Interestingly, we found that FtsI decreased levels of phosphorylated Wag31 (Wag31∼P) and that MtrB interacted with PknA/B. Overall, our results indicate that MtrB interactions with FtsI, Wag31, and PknA/B are required for its optimal localization, MtrA regulon expression, and phosphorylation of Wag31. Our results emphasize a new role for MtrB in cell division and cell wall synthesis distinct from that regulating the MtrA phosphorylation activities. PMID:25225272

  11. A kinome wide screen identifies novel kinases involved in regulation of monoamine transporter function.

    PubMed

    Vuorenpää, Anne; Ammendrup-Johnsen, Ina; Jørgensen, Trine N; Gether, Ulrik

    2016-09-01

    The high affinity transporters for the monoamine neurotransmitters, dopamine, norepinephrine, and serotonin, play a key role in controlling monoaminergic neurotransmission. It is believed that the transporters (DAT, NET and SERT, respectively) are subject to tight regulation by the cellular signaling machinery to maintain monoaminergic homeostasis. Kinases constitute a pivotal role in cellular signaling, however, the regulation of monoamine transporters by the entire ensemble of kinases is unknown. Here, we perform a whole human kinome RNA interference screen to identify novel kinases involved in regulation of monoamine transporter function and surface expression. A primary screen in HEK 293 cells stably expressing DAT or SERT with siRNAs against 573 human kinases revealed 93 kinases putatively regulating transporter function. All 93 hits, which also included kinases previously implicated in monoamine transporter regulation, such as Protein kinase B (Akt) and mitogen-activated protein kinases (MAPK), were validated with a new set of siRNAs in a secondary screen. In this screen we assessed both changes in uptake and surface expression leading to selection of 11 kinases for further evaluation in HEK 293 cells transiently expressing DAT, SERT or NET. Subsequently, three kinases; salt inducible kinase 3 (SIK3), cAMP-dependent protein kinase catalytic subunit alpha (PKA C-α) and protein kinase X-linked (PrKX); were selected for additional exploration in catecholaminergic CATH.a differentiated cells (CAD) and rat chromocytoma (PC12) cells. Whereas SIK3 likely transcriptionally regulated expression of the three transfected transporters, depletion of PKA C-α was shown to decrease SERT function. Depletion of PrKX caused decreased surface expression and function of DAT without changing protein levels, suggesting that PrKX stabilizes the transporter at the cell surface. Summarized, our data provide novel insight into kinome regulation of the monoamine transporters and

  12. 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region.

    PubMed Central

    Sithanandam, G; Latif, F; Duh, F M; Bernal, R; Smola, U; Li, H; Kuzmin, I; Wixler, V; Geil, L; Shrestha, S

    1996-01-01

    NotI linking clones, localized to the human chromosome 3p21.3 region and homozygously deleted in small cell lung cancer cell lines NCI-H740 and NCI-H1450, were used to search for a putative tumor suppressor gene(s). One of these clones, NL1G210, detected a 2.5-kb mRNA in all examined human tissues, expression being especially high in the heart and skeletal muscle. Two overlapping cDNA clones containing the entire open reading frame were isolated from a human heart cDNA library and fully characterized. Computer analysis and a search of the GenBank database to reveal high sequence identity of the product of this gene to serine-threonine kinases, especially to mitogen-activated protein kinase-activated protein kinase 2, a recently described substrate of mitogen-activated kinases. Sequence identitiy was 72% at the nucleotide level and 75% at the amino acid level, strongly suggesting that this protein is a serine-threonine kinase. Here we demonstrate that the new gene, referred to as 3pK (for chromosome 3p kinase), in fact encodes a mitogen-activated protein kinase-regulated protein serine-threonine kinase with a novel substrate specificity. PMID:8622688

  13. Cloning and molecular characterization of a putative voltage-gated sodium channel gene in the crayfish.

    PubMed

    Coskun, Cagil; Purali, Nuhan

    2016-06-01

    Voltage-gated sodium channel genes and associated proteins have been cloned and studied in many mammalian and invertebrate species. However, there is no data available about the sodium channel gene(s) in the crayfish, although the animal has frequently been used as a model to investigate various aspects of neural cellular and circuit function. In the present work, by using RNA extracts from crayfish abdominal ganglia samples, the complete open reading frame of a putative sodium channel gene has firstly been cloned and molecular properties of the associated peptide have been analyzed. The open reading frame of the gene has a length of 5793 bp that encodes for the synthesis of a peptide, with 1930 amino acids, that is 82% similar to the α-peptide of a sodium channel in a neighboring species, Cancer borealis. The transmembrane topology analysis of the crayfish peptide indicated a pattern of four folding domains with several transmembrane segments, as observed in other known voltage-gated sodium channels. Upon analysis of the obtained sequence, functional regions of the putative sodium channel responsible for the selectivity filter, inactivation gate, voltage sensor, and phosphorylation have been predicted. The expression level of the putative sodium channel gene, as defined by a qPCR method, was measured and found to be the highest in nervous tissue. PMID:27032955

  14. Allosteric Small-Molecule Inhibitors of the AKT Kinase

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    This research addresses computational design of small druglike molecules for possible anticancer applications. AKT and SGK are kinases that control important cellular functions. They are highly homologous, having similar activators and targets. Cancers with increased SGK activity may develop resistance to AKT-specific inhibitors. Our goal was to design new molecules that would bind both AKT and SGK, thus preventing the development of drug resistance. Most kinase inhibitors target the kinase ATP-binding site. However, the high similarity in this site among kinases makes it difficult to target specifically. Furthermore, mutations in this site can cause resistance to ATP-competitive kinase inhibitors. We used existing AKT inhibitors as initial templates to design molecules that could potentially bind the allosteric sites of both AKT and SGK. Molecules with no implicit toxicities and optimal drug-like properties were used for docking studies. Binding energies of the stable complexes that the designed molecules formed with AKT and SGK were calculated. Possible applications of the designed putative inhibitors against cancers with overexpressed AKT/SGK is discussed.

  15. Two-Component Signal Transduction Systems of Desulfovibrio Vulgaris: Structural and Phylogenetic Analysis and Deduction of Putative Cognate Pairs

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Wu, Gang; Brockman, Fred J.

    2006-01-20

    ABSTRACT-Two-component signal transduction systems (TCSTS) composed of sensory histidine kinases (HK) and response regulators (RR), constitute a key element of the mechanism by which bacteria sense and respond to changes in environments. A large number of TCSTSs including 59 putative HKs and 55 RRs were identified from the Desulfovibrio vulgaris genome, indicating their important roles in regulation of cellular metabolism. In this study, the structural and phylogenetic analysis of all putative TCSTSs in D. vulgaris was performed. The results showed D. vulgaris contained an unexpectedly large number of hybrid-type HKs, implying that multiple-step phosphorelay may be a common signal transduction mechanism in D. vulgaris. Most TCSTS components of D. vulgaris were found clustered into several subfamilies previously recognized in other bacteria and extensive co-evolution between D. vulgaris HKs and RRs was observed, suggesting that the concordance of HKs and RRs in cognate phylogenetic groups could be indicative of cognate TCSTSs...

  16. Putative Lineage of Novel African Usutu Virus, Central Europe

    PubMed Central

    Cadar, Daniel; Bosch, Stefan; Jöst, Hanna; Börstler, Jessica; Garigliany, Mutien-Marie; Becker, Norbert

    2015-01-01

    We characterized the complete genome of a putative novel Usutu virus (USUV) strain (Usutu-BONN) detected in a dead blackbird from Germany. Genomic analysis revealed several unique amino acid substitutions among the polyprotein gene. Phylogenetic analyses demonstrated that Usutu-BONN constitutes a putative novel African USUV lineage, which was probably recently introduced to central Europe. PMID:26291923

  17. Identification of Putative Fallopian Tube Stem Cells

    PubMed Central

    Snegovskikh, Victoria; Mutlu, Levent; Massasa, Effi

    2014-01-01

    Stem cells are used to repair and regenerate multiple tissues in the adult. We have previously shown that stem cells play a significant role in mediating endometrial repair and tissue regeneration. We hypothesized that the oviduct may possess a similar population of stem cells that contribute to the maintenance of this tissue. Here we identify label-retaining cells (LRCs) in the murine oviduct which indicate the presence of a stem/progenitor cell population in this tissue as well. Two-day-old CD-1 mice were injected intraperitoneally with 5-bromo-2-deoxyuridine (BrdU) or vehicle control. Female animals (n = 36 for each group) were killed at 6 weeks post injection. Reproductive tracts were removed, specimens were embedded in paraffin, and 5-µ sections were prepared. Oviduct was identified by hematoxylin and eosin staining and morphology. Immunofluorescence studies were performed on serial sections tissues (n = 12 per animal) using antibodies against BrdU. Confocal microscopy was used to identify 4′,6-diamidino-2-phenylindole (DAPI)- and BrdU-stained nuclei. In the group of mice exposed to BrdU, we identified a population of LRCs in all specimens and not in controls. The putative stem cells are located at the base of each villi, suggesting the location of the stem cell niche. The number of DAPI-stained nuclei divided by the number of LRCs; LRCs constituted 0.5% of all nucleated cells. The oviduct contains a population of progenitor cells, likely used in the repair and regeneration of fallopian tube. Defective or insufficient stem cell reserve may underlie common tubal diseases, including hydrosalpinx and ectopic pregnancy. PMID:25305130

  18. Current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  19. Targeting the Pim kinases in multiple myeloma

    PubMed Central

    Keane, N A; Reidy, M; Natoni, A; Raab, M S; O'Dwyer, M

    2015-01-01

    Multiple myeloma (MM) is a plasma cell malignancy that remains incurable. Novel treatment strategies to improve survival are urgently required. The Pims are a small family of serine/threonine kinases with increased expression across the hematological malignancies. Pim-2 shows highest expression in MM and constitutes a promising therapeutic target. It is upregulated by the bone marrow microenvironment to mediate proliferation and promote MM survival. Pim-2 also has a key role in the bone destruction typically seen in MM. Additional putative roles of the Pim kinases in MM include trafficking of malignant cells, promoting oncogenic signaling in the hypoxic bone marrow microenvironment and mediating resistance to therapy. A number of Pim inhibitors are now under development with lead compounds entering the clinic. The ATP-competitive Pim inhibitor LGH447 has recently been reported to have single agent activity in MM. It is anticipated that Pim inhibition will be of clinical benefit in combination with standard treatments and/or with novel drugs targeting other survival pathways in MM. PMID:26186558

  20. Phosphatidylinositol kinase from rabbit reticulocytes

    SciTech Connect

    Tuazon, P.T.; Heng, A.B.W.; Traugh, J.A.

    1986-05-01

    Phosphatidylinositol (PI) kinase was isolated from the postribosomal supernatant of rabbit reticulocytes. This activity was identified by the formation of a product that comigrated with phosphatidylinositol-4-phosphate (PIP) when purified PI was phosphorylated in the presence of (/sup 32/P)ATP and Mg/sup 2 +/. Three major peaks of PI kinase activity were resolved by chromatography on DEAE-cellulose. The first peak eluted at 50-100 mM NaCl together with several serine protein kinases, casein kinase (CK) I and protease activated kinase (PAK) I and II. The PI kinase was subsequently separated from the protein kinases by chromatography on phosphocellulose. The second peak eluted at 125-160 mM NaCl and contained another lipid kinase activity that produced a product which comigrated with phosphatidic acid on thin layer chromatography. The third peak, which eluted at 165-200 mM NaCl, partly comigrated with casein kinase (CK) II and an active protein kinase(s) which phosphorylated mixed histone and histone I. CK II and the histone kinase activities were also separated by chromatography on phosphocelluslose. The different forms of PI kinase were characterized and compared with respect to substrate and salt requirements.

  1. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Linn, Anning

    1996-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK.

  2. Bistability of a coupled Aurora B kinase-phosphatase system in cell division.

    PubMed

    Zaytsev, Anatoly V; Segura-Peña, Dario; Godzi, Maxim; Calderon, Abram; Ballister, Edward R; Stamatov, Rumen; Mayo, Alyssa M; Peterson, Laura; Black, Ben E; Ataullakhanov, Fazly I; Lampson, Michael A; Grishchuk, Ekaterina L

    2016-01-01

    Aurora B kinase, a key regulator of cell division, localizes to specific cellular locations, but the regulatory mechanisms responsible for phosphorylation of substrates located remotely from kinase enrichment sites are unclear. Here, we provide evidence that this activity at a distance depends on both sites of high kinase concentration and the bistability of a coupled kinase-phosphatase system. We reconstitute this bistable behavior and hysteresis using purified components to reveal co-existence of distinct high and low Aurora B activity states, sustained by a two-component kinase autoactivation mechanism. Furthermore, we demonstrate these non-linear regimes in live cells using a FRET-based phosphorylation sensor, and provide a mechanistic theoretical model for spatial regulation of Aurora B phosphorylation. We propose that bistability of an Aurora B-phosphatase system underlies formation of spatial phosphorylation patterns, which are generated and spread from sites of kinase autoactivation, thereby regulating cell division. PMID:26765564

  3. Germinal Center Kinases SmKIN3 and SmKIN24 Are Associated with the Sordaria macrospora Striatin-Interacting Phosphatase and Kinase (STRIPAK) Complex

    PubMed Central

    Frey, Stefan; Reschka, Eva J.; Pöggeler, Stefanie

    2015-01-01

    The striatin-interacting phosphatase and kinase (STRIPAK) complex is composed of striatin, protein phosphatase PP2A and protein kinases that regulate development in animals and fungi. In the filamentous ascomycete Sordaria macrospora, it is required for fruiting-body development and cell fusion. Here, we report on the presence and function of STRIPAK-associated kinases in ascomycetes. Using the mammalian germinal center kinases (GCKs) MST4, STK24, STK25 and MINK1 as query, we identified the two putative homologs SmKIN3 and SmKIN24 in S. macrospora. A BLASTP search revealed that both kinases are conserved among filamentous ascomycetes. The physical interaction of the striatin homolog PRO11 with SmKIN3 and SmKIN24 were verified by yeast two-hybrid (Y2H) interaction studies and for SmKIN3 by co-Immunoprecipitation (co-IP). In vivo localization found that both kinases were present at the septa and deletion of both Smkin3 and Smkin24 led to abnormal septum distribution. While deletion of Smkin3 caused larger distances between adjacent septa and increased aerial hyphae, deletion of Smkin24 led to closer spacing of septa and to sterility. Although phenotypically distinct, both kinases appear to function independently because the double-knockout strain ΔSmkin3/ΔSmkin24 displayed the combined phenotypes of each single-deletion strain. PMID:26418262

  4. The kinase domain of mitochondrial PINK1 faces the cytoplasm

    PubMed Central

    Zhou, Chun; Huang, Yong; Shao, Yufang; May, Jessica; Prou, Delphine; Perier, Celine; Dauer, William; Schon, Eric A.; Przedborski, Serge

    2008-01-01

    Mutations in PTEN-induced putative kinase 1 (PINK1) are a cause of autosomal recessive familial Parkinson's disease (PD). Efforts in deducing the PINK1 signaling pathway have been hindered by controversy around its subcellular and submitochondrial localization and the authenticity of its reported substrates. We show here that this mitochondrial protein exhibits a topology in which the kinase domain faces the cytoplasm and the N-terminal tail is inside the mitochondria. Although deletion of the transmembrane domain disrupts this topology, common PD-linked PINK1 mutations do not. These results are critical in rectifying the location and orientation of PINK1 in mitochondria, and they should help decipher its normal physiological function and potential pathogenic role in PD. PMID:18687899

  5. Epidermal growth factor receptor kinase domain mutations are rare in salivary gland carcinomas

    PubMed Central

    Dahse, R; Driemel, O; Schwarz, S; Dahse, J; Kromeyer-Hauschild, K; Berndt, A; Kosmehl, H

    2009-01-01

    Activating mutations within the epidermal growth factor (EGFR) tyrosine kinase domain identify non-small cell lung cancer patients with improved clinical response to tyrosine kinase inhibitor therapy. Recently, we identified two EGFR mutations in a cohort of 25 salivary gland carcinomas (SGCs) by screening the tumour samples for the both most common hotspot mutations in exons 19 and 21 by allele-specific PCR. Here, we present a comprehensive sequencing analysis of the entire critical EGFR tyrosine kinase domain in 65 SGC of the main histopathological types. We found EGFR mutations in the tyrosine kinase domain to be a rare event in SGCs. No additional mutations other than the two known exon 19 deletions (c.2235_2249del15) in a mucoepidermoid carcinoma and an adenoid cystic carcinoma have been detected. Other putative predictive markers for EGFR-targeted therapy in SGCs might be relevant and should be investigated. PMID:19174819

  6. Targeting cancer with kinase inhibitors

    PubMed Central

    Gross, Stefan; Rahal, Rami; Stransky, Nicolas; Lengauer, Christoph; Hoeflich, Klaus P.

    2015-01-01

    Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors. We also describe the substantial progress that has been made in designing next-generation inhibitors to circumvent on-target resistance mechanisms, as well as ongoing strategies for combining kinase inhibitors in the clinic. Last, there are numerous prospects for the discovery of novel kinase targets, and we explore cancer immunotherapy as a new and promising research area for studying kinase biology. PMID:25932675

  7. The General Amino Acid Permease FfGap1 of Fusarium fujikuroi Is Sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 Kinase-Independent Manner

    PubMed Central

    Pfannmüller, Andreas; Wagner, Dominik; Sieber, Christian; Schönig, Birgit; Boeckstaens, Mélanie; Marini, Anna Maria; Tudzynski, Bettina

    2015-01-01

    The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to

  8. The General Amino Acid Permease FfGap1 of Fusarium fujikuroi Is Sorted to the Vacuole in a Nitrogen-Dependent, but Npr1 Kinase-Independent Manner.

    PubMed

    Pfannmüller, Andreas; Wagner, Dominik; Sieber, Christian; Schönig, Birgit; Boeckstaens, Mélanie; Marini, Anna Maria; Tudzynski, Bettina

    2015-01-01

    The rice pathogenic fungus Fusarium fujikuroi is well known for the production of a broad spectrum of secondary metabolites (SMs) such as gibberellic acids (GAs), mycotoxins and pigments. The biosynthesis of most of these SMs strictly depends on nitrogen availability and of the activity of permeases of nitrogen sources, e.g. the ammonium and amino acid permeases. One of the three ammonium permeases, MepB, was recently shown to act not only as a transporter but also as a nitrogen sensor affecting the production of nitrogen-repressed SMs. Here we describe the identification of a general amino acid permease, FfGap1, among the 99 putative amino acid permeases (AAPs) in the genome of F. fujikuroi. FfGap1 is able to fully restore growth of the yeast gap1∆ mutant on several amino acids including citrulline and tryptophane. In S. cerevisiae, Gap1 activity is regulated by shuttling between the plasma membrane (nitrogen limiting conditions) and the vacuole (nitrogen sufficiency), which we also show for FfGap1. In yeast, the Npr1 serine/threonine kinase stabilizes the Gap1 position at the plasma membrane. Here, we identified and characterized three NPR1-homologous genes, encoding the putative protein kinases FfNpr1-1, FfNpr1-2 and FfNpr1-3 with significant similarity to yeast Npr1. Complementation of the yeast npr1Δ mutant with each of the three F. fujikuroi NPR1 homologues, resulted in partial restoration of ammonium, arginine and proline uptake by FfNPR1-1 while none of the three kinases affect growth on different nitrogen sources and nitrogen-dependent sorting of FfGap1 in F. fujikuroi. However, exchange of the putative ubiquitin-target lysine 9 (K9A) and 15 (K15A) residues of FfGap1 resulted in extended localization to the plasma membrane and increased protein stability independently of nitrogen availability. These data suggest a similar regulation of FfGap1 by nitrogen-dependent ubiquitination, but differences regarding the role of Fusarium Npr1 homologues compared to

  9. Mycobacterium Cytidylate Kinase Appears to Be an Undruggable Target.

    PubMed

    Craig, Justin K; Risler, Jenni K; Loesch, Kimberly A; Dong, Wen; Baker, Dwight; Barrett, Lynn K; Subramanian, Sandhya; Samudrala, Ram; Van Voorhis, Wesley C

    2016-08-01

    New and improved drugs against tuberculosis are urgently needed as multi-drug-resistant forms of the disease become more prevalent. Mycobacterium tuberculosis cytidylate kinase is an attractive target for screening due to its essentiality and different substrate specificity to the human orthologue. However, we selected the Mycobacterium smegmatis cytidylate kinase for screening because of the availability of high-resolution X-ray crystallographic data defining its structure and the high likelihood of active site structural similarity to the M. tuberculosis orthologue. We report the development and implementation of a high-throughput luciferase-based activity assay and screening of 19,920 compounds derived from small-molecule libraries and an in silico screen predicting likely inhibitors of the cytidylate kinase enzyme. Hit validation included a counterscreen for luciferase inhibitors that would result in false positives in the initial screen. Results of this counterscreen ruled out all of the putative cytidylate kinase inhibitors identified in the initial screening, leaving no compounds as candidates for drug development. Although a negative result, this study indicates that this important drug target may in fact be undruggable and serve as a warning for future investigations. PMID:27146385

  10. Photoelastic sensors

    SciTech Connect

    Kulakov, G.I.

    1985-07-01

    This paper presents the result of a study of photoelastic sensors which makes it possible to explain many mechanical and physical features of the operation of annular photoelastic borehole sensors and to plan ways of utilizing these features for interpreting the sensor readings.

  11. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2005-03-08

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  12. Oncoprotein protein kinase

    DOEpatents

    Davis, Roger; Derijard, Benoit; Karin, Michael; Hibi, Masahiko; Lin, Anning

    2005-01-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  13. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1999-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  14. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  15. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1998-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  16. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning; Davis, Roger; Derijard, Benoit

    2003-02-04

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  17. Oncoprotein protein kinase

    DOEpatents

    Karin, M.; Hibi, M.; Lin, A.

    1997-02-25

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE is disclosed. The polypeptide has serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences. The method of detection of JNK is also provided. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites. 44 figs.

  18. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    1997-01-01

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  19. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Lin, Anning

    1999-11-30

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  20. Oncoprotein protein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2004-03-16

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  1. Cyclin-dependent kinases

    PubMed Central

    2014-01-01

    Summary Cyclin-dependent kinases (CDKs) are protein kinases characterized by needing a separate subunit - a cyclin - that provides domains essential for enzymatic activity. CDKs play important roles in the control of cell division and modulate transcription in response to several extra- and intracellular cues. The evolutionary expansion of the CDK family in mammals led to the division of CDKs into three cell-cycle-related subfamilies (Cdk1, Cdk4 and Cdk5) and five transcriptional subfamilies (Cdk7, Cdk8, Cdk9, Cdk11 and Cdk20). Unlike the prototypical Cdc28 kinase of budding yeast, most of these CDKs bind one or a few cyclins, consistent with functional specialization during evolution. This review summarizes how, although CDKs are traditionally separated into cell-cycle or transcriptional CDKs, these activities are frequently combined in many family members. Not surprisingly, deregulation of this family of proteins is a hallmark of several diseases, including cancer, and drug-targeted inhibition of specific members has generated very encouraging results in clinical trials. PMID:25180339

  2. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    PubMed

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. PMID:27226575

  3. A High-Throughput Radiometric Kinase Assay.

    PubMed

    Duong-Ly, Krisna C; Peterson, Jeffrey R

    2016-01-01

    Aberrant kinase signaling has been implicated in a number of diseases. While kinases have become attractive drug targets, only a small fraction of human protein kinases have validated inhibitors. Screening of libraries of compounds against a kinase or kinases of interest is routinely performed during kinase inhibitor development to identify promising scaffolds for a particular target and to identify kinase targets for compounds of interest. Screening of more focused compound libraries may also be conducted in the later stages of inhibitor development to improve potency and optimize selectivity. The dot blot kinase assay is a robust, high-throughput kinase assay that can be used to screen a number of small-molecule compounds against one kinase of interest or several kinases. Here, a protocol for a dot blot kinase assay used for measuring insulin receptor kinase activity is presented. This protocol can be readily adapted for use with other protein kinases. PMID:26501904

  4. CREST - a large and diverse superfamily of putative transmembrane hydrolases

    PubMed Central

    2011-01-01

    Background A number of membrane-spanning proteins possess enzymatic activity and catalyze important reactions involving proteins, lipids or other substrates located within or near lipid bilayers. Alkaline ceramidases are seven-transmembrane proteins that hydrolyze the amide bond in ceramide to form sphingosine. Recently, a group of putative transmembrane receptors called progestin and adipoQ receptors (PAQRs) were found to be distantly related to alkaline ceramidases, raising the possibility that they may also function as membrane enzymes. Results Using sensitive similarity search methods, we identified statistically significant sequence similarities among several transmembrane protein families including alkaline ceramidases and PAQRs. They were unified into a large and diverse superfamily of putative membrane-bound hydrolases called CREST (alkaline ceramidase, PAQR receptor, Per1, SID-1 and TMEM8). The CREST superfamily embraces a plethora of cellular functions and biochemical activities, including putative lipid-modifying enzymes such as ceramidases and the Per1 family of putative phospholipases involved in lipid remodeling of GPI-anchored proteins, putative hormone receptors, bacterial hemolysins, the TMEM8 family of putative tumor suppressors, and the SID-1 family of putative double-stranded RNA transporters involved in RNA interference. Extensive similarity searches and clustering analysis also revealed several groups of proteins with unknown function in the CREST superfamily. Members of the CREST superfamily share seven predicted core transmembrane segments with several conserved sequence motifs. Conclusions Universal conservation of a set of histidine and aspartate residues across all groups in the CREST superfamily, coupled with independent discoveries of hydrolase activities in alkaline ceramidases and the Per1 family as well as results from previous mutational studies of Per1, suggests that the majority of CREST members are metal-dependent hydrolases

  5. Redox Regulation of Protein Kinases

    PubMed Central

    Truong, Thu H.; Carroll, Kate S.

    2015-01-01

    Protein kinases represent one of the largest families of genes found in eukaryotes. Kinases mediate distinct cellular processes ranging from proliferation, differentiation, survival, and apoptosis. Ligand-mediated activation of receptor kinases can lead to the production of endogenous H2O2 by membrane-bound NADPH oxidases. In turn, H2O2 can be utilized as a secondary messenger in signal transduction pathways. This review presents an overview of the molecular mechanisms involved in redox regulation of protein kinases and its effects on signaling cascades. In the first half, we will focus primarily on receptor tyrosine kinases (RTKs), whereas the latter will concentrate on downstream non-receptor kinases involved in relaying stimulant response. Select examples from the literature are used to highlight the functional role of H2O2 regarding kinase activity, as well as the components involved in H2O2 production and regulation during cellular signaling. In addition, studies demonstrating direct modulation of protein kinases by H2O2 through cysteine oxidation will be emphasized. Identification of these redox-sensitive residues may help uncover signaling mechanisms conserved within kinase subfamilies. In some cases, these residues can even be exploited as targets for the development of new therapeutics. Continued efforts in this field will further basic understanding of kinase redox regulation, and delineate the mechanisms involved in physiologic and pathological H2O2 responses. PMID:23639002

  6. Structural Analysis of Ligand Stimulation of the Histidine Kinase NarX

    SciTech Connect

    Cheung, J.; Hendrickson, W

    2009-01-01

    Histidine kinase receptors are a large family of membrane-spanning proteins found in many prokaryotes and some eukaryotes. They are a part of two-component signal transduction systems, which each comprise a sensor kinase and a response regulator and are involved with the regulation of many cellular processes. NarX is a histidine kinase receptor that responds to nitrate and nitrite to effect regulation of anaerobic respiration in various bacteria. We present high-resolution X-ray crystal structures of the periplasmic sensor domain from Escherichia coli NarX in a complex with nitrate and in the apo state. Our analysis reveals that nitrate-binding induces conformation changes that result in a piston-type displacement between the N- and C-terminal helices of the periplasmic domain. Such conformational changes might represent a conserved mechanism of signaling in histidine kinases by which ligand binding is communicated across the lipid bilayer.

  7. Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein

    SciTech Connect

    Kitano-Takahashi, Michiko; Morita, Hiroyuki; Kondo, Shin; Tomizawa, Kayoko; Kato, Ryohei; Tanio, Michikazu; Shirota, Yoshiko; Takahashi, Hiroshi; Sugio, Shigetoshi; Kohno, Toshiyuki

    2007-07-01

    The kinase domain (residues 1–331) of human tau-tubulin kinase 2 was expressed in insect cells, purified and crystallized. Diffraction data have been collected to 2.9 Å resolution. Tau-tubulin kinase 2 (TTBK2) is a Ser/Thr kinase that putatively phosphorylates residues Ser208 and Ser210 (numbered according to a 441-residue human tau isoform) in tau protein. Functional analyses revealed that a recombinant kinase domain (residues 1–331) of human TTBK2 expressed in insect cells with a baculovirus overexpression system retains kinase activity for tau protein. The kinase domain of TTBK2 was crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55.6, b = 113.7, c = 117.3 Å, α = β = γ = 90.0°. Diffraction data were collected to 2.9 Å resolution using synchrotron radiation at BL24XU of SPring-8.

  8. Identifying Human Kinase-Specific Protein Phosphorylation Sites by Integrating Heterogeneous Information from Various Sources

    PubMed Central

    Li, Tingting; Du, Pufeng; Xu, Nanfang

    2010-01-01

    Phosphorylation is an important type of protein post-translational modification. Identification of possible phosphorylation sites of a protein is important for understanding its functions. Unbiased screening for phosphorylation sites by in vitro or in vivo experiments is time consuming and expensive; in silico prediction can provide functional candidates and help narrow down the experimental efforts. Most of the existing prediction algorithms take only the polypeptide sequence around the phosphorylation sites into consideration. However, protein phosphorylation is a very complex biological process in vivo. The polypeptide sequences around the potential sites are not sufficient to determine the phosphorylation status of those residues. In the current work, we integrated various data sources such as protein functional domains, protein subcellular location and protein-protein interactions, along with the polypeptide sequences to predict protein phosphorylation sites. The heterogeneous information significantly boosted the prediction accuracy for some kinase families. To demonstrate potential application of our method, we scanned a set of human proteins and predicted putative phosphorylation sites for Cyclin-dependent kinases, Casein kinase 2, Glycogen synthase kinase 3, Mitogen-activated protein kinases, protein kinase A, and protein kinase C families (avaiable at http://cmbi.bjmu.edu.cn/huphospho). The predicted phosphorylation sites can serve as candidates for further experimental validation. Our strategy may also be applicable for the in silico identification of other post-translational modification substrates. PMID:21085571

  9. The ANKK1 kinase gene and psychiatric disorders.

    PubMed

    Ponce, Guillermo; Pérez-González, Rocío; Aragüés, María; Palomo, Tomás; Rodríguez-Jiménez, Roberto; Jiménez-Arriero, Miguel Angel; Hoenicka, Janet

    2009-07-01

    The TaqIA single nucleotide polymorphism (SNP, rs1800497), which is located in the gene that codes for the putative kinase ANKK1 (ANKK1) near the termination codon of the D2 dopamine receptor gene (DRD2; chromosome 11q22-q23), is the most studied genetic variation in a broad range of psychiatric disorders and personality traits. A large number of individual genetic association studies have found that the TaqIA SNP is linked to alcoholism and antisocial traits. In addition, it has also been related to other conditions such as schizophrenia, eating disorders, and some behavioral childhood disorders. The TaqIA A1 allele is mainly associated with addictions, antisocial disorders, eating disorders, and attention-deficit/hyperactivity disorders, while the A2 allele occurs more frequently in schizophrenic and obsessive-compulsive patients. Current data show that the TaqIA polymorphism may be a marker of both DRD2 and ANKK1 genetic variants. ANKK1 would belong to a family of kinases involved in signal transduction. This raises the question of whether signaling players intervene in the pathophysiology of psychiatric disorders. Basic research on the ANKK1 protein and its putative interaction with the D2 dopamine receptor could shed light on this issue. PMID:19526298

  10. Tonoplast-Bound Protein Kinase Phosphorylates Tonoplast Intrinsic Protein 1

    PubMed Central

    Johnson, Kenneth D.; Chrispeels, Maarten J.

    1992-01-01

    Tonoplast intrinsic protein (TIP) is a member of a family of putative membrane channels found in bacteria, animals, and plants. Plants have seed-specific, vegetative/reproductive organ-specific, and water-stress-induced forms of TIP. Here, we report that the seed-specific TIP is a phosphoprotein whose phosphorylation can be monitored in vivo by allowing bean cotyledons to take up [32P]orthophosphate and in vitro by incubating purified tonoplasts with γ-labeled [32P]ATP. Characterization of the in vitro phosphorylation of TIP indicates that a membrane-bound protein kinase phosphorylates TIP in a Ca2+-dependent manner. The capacity of the isolated tonoplast membranes to phosphorylate TIP declined markedly during seed germination, and this decline occurred well before the development-mediated decrease in TIP occurs. Phosphoamino acid analysis of purified, radiolabeled TIP showed that serine is the major, if not only, phosphorylated residue, and cyanogen bromide cleavage yielded a single radioactive peptide peak on a reverse-phase high-performance liquid chromatogram. Estimation of the molecular mass of the cyanogen bromide phosphopeptide by laser desorption mass spectroscopy led to its identification as the hydrophilic N-terminal domain of TIP. The putative phosphate-accepting serine residue occurs in a consensus phosphorylation site for serine/threonine protein kinases. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:16653198

  11. A putative hybrid swarm within Oonopsis foliosa (Asteraceae: Astereae)

    USGS Publications Warehouse

    Hughes, J.F.; Brown, G.K.

    2004-01-01

    Oo??nopsis foliosa var. foliosa and var. monocephala are endemic to short-grass steppe of southeastern Colorado and until recently were considered geographically disjunct. The only known qualitative feature separating these 2 varieties is floral head type; var. foliosa has radiate heads, whereas var. monocephala heads are discoid. Sympatry between these varieties is restricted to a small area in which a range of parental types and intermediate head morphologies is observed. We used distribution mapping, morphometric analyses, chromosome cytology, and pollen stainability to characterize the sympatric zone. Morphometrics confirms that the only discrete difference between var. foliosa and var. monocephala is radiate versus discoid heads, respectively. The outer florets of putative hybrid individuals ranged from conspicuously elongated yet radially symmetric disc-floret corollas, to elongated radially asymmetric bilabiate- or deeply cleft corollas, to stunted ray florets with appendages remnant of corolla lobes. Chromosome cytology of pollen mother cells from both putative parental varieties and a series of intermediate morphological types collected at the sympatric zone reveal evidence of translocation heterozygosity. Pollen stainability shows no significant differences in viability between the parental varieties and putative hybrids. The restricted distribution of putative hybrids to a narrow zone of sympatry between the parental types and the presence of meiotic chromosome-pairing anomalies in these intermediate plants are consistent with a hybrid origin. The high stainability of putative-hybrid pollen adds to a growing body of evidence that hybrids are not universally unfit.

  12. MAP kinase dynamics in yeast.

    PubMed

    van Drogen, F; Peter, M

    2001-09-01

    MAP kinase pathways play key roles in cellular responses towards extracellular signals. In several cases, the three core kinases interact with a scaffold molecule, but the function of these scaffolds is poorly understood. They have been proposed to contribute to signal specificity, signal amplification, or subcellular localization of MAP kinases. Several MAP kinases translocate to the nucleus in response to their activation, suggesting that nuclear transport may provide a regulatory mechanism. Here we describe new applications for Fluorescence Recovery After Photobleaching (FRAP) and Fluorescence Loss In Photobleaching (FLIP), to study dynamic translocations of MAPKs between different subcellular compartments. We have used these methods to measure the nuclear/cytoplasmic dynamics of several yeast MAP kinases, and in particular to address the role of scaffold proteins for MAP-kinase signaling. PMID:11730324

  13. CLAVATA1 Dominant-Negative Alleles Reveal Functional Overlap between Multiple Receptor Kinases That Regulate Meristem and Organ Development

    PubMed Central

    Diévart, Anne; Dalal, Monica; Tax, Frans E.; Lacey, Alexzandria D.; Huttly, Alison; Li, Jianming; Clark, Steven E.

    2003-01-01

    The CLAVATA1 (CLV1) receptor kinase controls stem cell number and differentiation at the Arabidopsis shoot and flower meristems. Other components of the CLV1 signaling pathway include the secreted putative ligand CLV3 and the receptor-like protein CLV2. We report evidence indicating that all intermediate and strong clv1 alleles are dominant negative and likely interfere with the activity of unknown receptor kinase(s) that have functional overlap with CLV1. clv1 dominant-negative alleles show major differences from dominant-negative alleles characterized to date in animal receptor kinase signaling systems, including the lack of a dominant-negative effect of kinase domain truncation and the ability of missense mutations in the extracellular domain to act in a dominant-negative manner. We analyzed chimeric receptor kinases by fusing CLV1 and BRASSINOSTEROID INSENSITIVE1 (BRI1) coding sequences and expressing these in clv1 null backgrounds. Constructs containing the CLV1 extracellular domain and the BRI1 kinase domain were strongly dominant negative in the regulation of meristem development. Furthermore, we show that CLV1 expressed within the pedicel can partially replace the function of the ERECTA receptor kinase. We propose the presence of multiple receptors that regulate meristem development in a functionally related manner whose interactions are driven by the extracellular domains and whose activation requires the kinase domain. PMID:12724544

  14. Graphene oxide-peptide nanocomplex as a versatile fluorescence probe of protein kinase activity based on phosphorylation protection against carboxypeptidase digestion.

    PubMed

    Zhou, Jiang; Xu, Xiahong; Liu, Wei; Liu, Xin; Nie, Zhou; Qing, Meng; Nie, Lihua; Yao, Shouzhuo

    2013-06-18

    The research on complicated kinomics and kinase-target drug discovery requires the development of simple, cost-effective, and multiplex kinase assays. Herein, we propose a novel and versatile biosensing platform for the detection of protein kinase activity based on graphene oxide (GO)-peptide nanocomplex and phosphorylation-induced suppression of carboxypeptidase Y (CPY) cleavage. Kinase-catalyzed phosphorylation protects the fluorophore-labeled peptide probe against CPY digestion and induces the formation of a GO/peptide nanocomplex resulting in fluorescence quenching, while the nonphosphopeptide is degraded by CPY to release free fluorophore as well as restore fluorescence. This GO-based nanosensor has been successfully applied to sensitively detect two model kinases, casein kinase (CKII) and cAMP-dependent protein kinase (PKA) with low detection limits of 0.0833 mU/μL and 0.134 mU/μL, respectively. The feasibility of this GO-based sensor was further demonstrated by the assessment of kinase inhibition by staurosporine and H-89, in vitro kinase assay in cell lysates, and simultaneous detection of CKII and PKA activity. Moreover, the GO-based fluorescence anisotropy (FA) kinase assay has been also developed using GO as a FA signal amplifier. The proposed sensor is homogeneous, facile, universal, label-free, and applicable for multiplexed kinase assay, presenting a promising method for kinase-related biochemical fundamental research and inhibitor screening. PMID:23734972

  15. Phosphatidylinositol 3-kinase in myogenesis.

    PubMed

    Kaliman, P; Zorzano, A

    1997-08-01

    Phosphatidylinositol 3-kinase (PI 3-kinase) has been cloned and characterized in a wide range of organisms. PI 3-kinases are activated by a diversity of extracellular stimuli and are involved in multiple cell processes such as cell proliferation, protein trafficking, cell motility, differentiation, regulation of cytoskeletal structure, and apoptosis. It has recently been shown that PI 3-kinase is a crucial second messenger in the signaling of myogenesis. Two structurally unrelated highly specific inhibitors of PI 3-kinase-wortmannin and LY294002-block the morphological and biochemical differentiation program of different skeletal-muscle cell models. Moreover, L6E9 myoblasts overexpressing a dominant-negative mutant of PI 3-kinase p85 regulatory subunit (Δp85) are unable to differentiate. Furthermore, PI 3-kinase is specifically involved in the insulinlike growth factor (IGF)-dependent myogenic pathway. Indeed, the ability of IGF-I, des-1,3-IGF-I, and IGF-II to promote cell fusion and muscle-specific protein expression is impaired after treatment with PI 3-kinase inhibitors or in cells overexpressing Δp85. The identification of additional key downstream elements of the IGF/PI 3-kinase myogenic cascade is crucial to a detailed understanding of the process of muscle differentiation and may generate new tools for skeletal and cardiac muscle regeneration therapies. (Trends Cardiovasc Med 1997;7:198-202). © 1997, Elsevier Science Inc. PMID:21235885

  16. [Kinase inhibitors and their resistance].

    PubMed

    Togashi, Yosuke; Nishio, Kazuto

    2015-08-01

    Kinase cascades are involved in all stages of tumorigenesis through modulation of transformation and differentiation, cell-cycle progression, and motility. Advances in molecular targeted drug development allow the design and synthesis of inhibitors targeting cancer-associated signal transduction pathways. Potent selective inhibitors with low toxicity can benefit patients especially with several malignancies harboring an oncogenic driver addictive signal. This article evaluates information on solid tumor-related kinase signals and inhibitors, including receptor tyrosine kinase or serine/threonine kinase signals that lead to successful application in clinical settings. In addition, the resistant mechanisms to the inhibitors is summarized. PMID:26281685

  17. Glucose kinases from Streptomyces peucetius var. caesius.

    PubMed

    Ruiz-Villafán, Beatriz; Rodríguez-Sanoja, Romina; Aguilar-Osorio, Guillermo; Gosset, Guillermo; Sanchez, Sergio

    2014-07-01

    Glucose kinases (Glks) are enzymes of the glycolytic pathway involved in glucose phosphorylation. These enzymes can use various phosphoryl donors such as ATP, ADP, and polyphosphate. In several streptomycetes, ATP-glucose kinase (ATP-Glk) has been widely studied and regarded as the main glucose phosphorylating enzyme and is likely a regulatory protein in carbon catabolite repression. In cell extracts from the doxorubicin overproducing strain Streptomyces peucetius var. caesius, grown in glucose, a polyphosphate-dependent Glk (Pp-Glk) was detected by zymogram. Maximum activity was observed during the stationary growth phase (48 h) of cells grown in 100 mM glucose. No activity was detected when 20 mM glutamate was used as the only carbon source, supporting a role for glucose in inducing this enzyme. Contrary to wild-type strains of Streptomyces coelicolor, Streptomyces lividans, and Streptomyces thermocarboxydus K-155, S. peucetius var. caesius produced 1.8 times more Pp-Glk than ATP-Glk. In addition, this microorganism produced five and four times more Pp-Glk and anthracyclines, respectively, than its wild-type S. peucetius parent strain, supporting a role for this enzyme in antibiotic production in the overproducer strain. A cloned 726-bp DNA fragment from S. peucetius var. caesius encoded a putative Pp-Glk, with amino acid identities between 83 and 87 % to orthologous sequences from the above-cited streptomycetes. The cloned fragment showed the polyphosphate-binding sequences GXDIGGXXIK, TXGTGIGSA, and KEX(4)SWXXWA. Sequences for the Zn-binding motif were not detected in this fragment, suggesting that Pp-Glk is not related to the Glk ROK family of proteins. PMID:24687748

  18. Effects of hydrogen sulfide on the heme coordination structure and catalytic activity of the globin-coupled oxygen sensor AfGcHK.

    PubMed

    Fojtikova, Veronika; Bartosova, Martina; Man, Petr; Stranava, Martin; Shimizu, Toru; Martinkova, Marketa

    2016-08-01

    AfGcHK is a globin-coupled histidine kinase that is one component of a two-component signal transduction system. The catalytic activity of this heme-based oxygen sensor is due to its C-terminal kinase domain and is strongly stimulated by the binding of O2 or CO to the heme Fe(II) complex in the N-terminal oxygen sensing domain. Hydrogen sulfide (H2S) is an important gaseous signaling molecule and can serve as a heme axial ligand, but its interactions with heme-based oxygen sensors have not been studied as extensively as those of O2, CO, and NO. To address this knowledge gap, we investigated the effects of H2S binding on the heme coordination structure and catalytic activity of wild-type AfGcHK and mutants in which residues at the putative O2-binding site (Tyr45) or the heme distal side (Leu68) were substituted. Adding Na2S to the initial OH-bound 6-coordinate Fe(III) low-spin complexes transformed them into SH-bound 6-coordinate Fe(III) low-spin complexes. The Leu68 mutants also formed a small proportion of verdoheme under these conditions. Conversely, when the heme-based oxygen sensor EcDOS was treated with Na2S, the initially formed Fe(III)-SH heme complex was quickly converted into Fe(II) and Fe(II)-O2 complexes. Interestingly, the autophosphorylation activity of the heme Fe(III)-SH complex was not significantly different from the maximal enzyme activity of AfGcHK (containing the heme Fe(III)-OH complex), whereas in the case of EcDOS the changes in coordination caused by Na2S treatment led to remarkable increases in catalytic activity. PMID:27395436

  19. The putative HORMA domain protein Atg101 dimerizes and is required for starvation-induced and selective autophagy in Drosophila.

    PubMed

    Hegedűs, Krisztina; Nagy, Péter; Gáspári, Zoltán; Juhász, Gábor

    2014-01-01

    The large-scale turnover of intracellular material including organelles is achieved by autophagy-mediated degradation in lysosomes. Initiation of autophagy is controlled by a protein kinase complex consisting of an Atg1-family kinase, Atg13, FIP200/Atg17, and the metazoan-specific subunit Atg101. Here we show that loss of Atg101 impairs both starvation-induced and basal autophagy in Drosophila. This leads to accumulation of protein aggregates containing the selective autophagy cargo ref(2)P/p62. Mapping experiments suggest that Atg101 binds to the N-terminal HORMA domain of Atg13 and may also interact with two unstructured regions of Atg1. Another HORMA domain-containing protein, Mad2, forms a conformational homodimer. We show that Drosophila Atg101 also dimerizes, and it is predicted to fold into a HORMA domain. Atg101 interacts with ref(2)P as well, similar to Atg13, Atg8a, Atg16, Atg18, Keap1, and RagC, a known regulator of Tor kinase which coordinates cell growth and autophagy. These results raise the possibility that the interactions and dimerization of the putative HORMA domain protein Atg101 play critical roles in starvation-induced autophagy and proteostasis, by promoting the formation of protein aggregate-containing autophagosomes. PMID:24895579

  20. Sensor web

    NASA Technical Reports Server (NTRS)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  1. Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism.

    PubMed Central

    Lu, Q; Inouye, M

    1996-01-01

    Nucleoside diphosphate (NDP) kinase is a ubiquitous nonspecific enzyme that evidently is designed to catalyze in vivo ATP-dependent synthesis of ribo- and deoxyribonucleoside triphosphates from the corresponding diphosphates. Because Escherichia coli contains only one copy of ndk, the structural gene for this enzyme, we were surprised to find that ndk disruption yields bacteria that are still viable. These mutant cells contain a protein with a small amount NDP kinase activity. The protein responsible for this activity was purified and identified as adenylate kinase. This enzyme, also called myokinase, catalyzes the reversible ATP-dependent synthesis of ADP from AMP. We found that this enzyme from E. coli as well as from higher eukaryotes has a broad substrate specificity displaying dual enzymatic functions. Among the nucleoside monophosphate kinases tested, only adenylate kinase was found to have NDP kinase activity. To our knowledge, this is the first report of NDP kinase activity associated with adenylate kinase. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8650159

  2. Selective anticancer activity of a hexapeptide with sequence homology to a non-kinase domain of Cyclin Dependent Kinase 4

    PubMed Central

    2011-01-01

    biomarker and a putative functional site for kinase-unrelated activities of Cdk4. PMID:21668989

  3. Cellular reprogramming through mitogen-activated protein kinases

    PubMed Central

    Lee, Justin; Eschen-Lippold, Lennart; Lassowskat, Ines; Böttcher, Christoph; Scheel, Dierk

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554) in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins) as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression—including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding, and degradation) steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes. PMID:26579181

  4. Putative excitatory and putative inhibitory inputs are localised in different dendritic domains in a Drosophila flight motoneuron.

    PubMed

    Kuehn, Claudia; Duch, Carsten

    2013-03-01

    Input-output computations of individual neurons may be affected by the three-dimensional structure of their dendrites and by the location of input synapses on specific parts of their dendrites. However, only a few examples exist of dendritic architecture which can be related to behaviorally relevant computations of a neuron. By combining genetic, immunohistochemical and confocal laser scanning methods this study estimates the location of the spike-initiating zone and the dendritic distribution patterns of putative synaptic inputs on an individually identified Drosophila flight motorneuron, MN5. MN5 is a monopolar neuron with > 4,000 dendritic branches. The site of spike initiation was estimated by mapping sodium channel immunolabel onto geometric reconstructions of MN5. Maps of putative excitatory cholinergic and of putative inhibitory GABAergic inputs on MN5 dendrites were created by charting tagged Dα7 nicotinic acetylcholine receptors and Rdl GABAA receptors onto MN5 dendritic surface reconstructions. Although these methods provide only an estimate of putative input synapse distributions, the data indicate that inhibitory and excitatory synapses were located preferentially on different dendritic domains of MN5 and, thus, computed mostly separately. Most putative inhibitory inputs were close to spike initiation, which was consistent with sharp inhibition, as predicted previously based on recordings of motoneuron firing patterns during flight. By contrast, highest densities of putative excitatory inputs at more distant dendritic regions were consistent with the prediction that, in response to different power demands during flight, tonic excitatory drive to flight motoneuron dendrites must be smoothly translated into different tonic firing frequencies. PMID:23279094

  5. Temperature Sensor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Weed Instrument Inc. produces a line of thermocouples - temperature sensors - for a variety of industrial and research uses. One of the company's newer products is a thermocouple specially designed for high accuracy at extreme temperatures above 3,000 degrees Fahrenheit. Development of sensor brought substantial increases in Weed Instrument sales and employment.

  6. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  7. Chemical sensors

    SciTech Connect

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section.

  8. Mechanism of Focal Adhesion Kinase Mechanosensing.

    PubMed

    Zhou, Jing; Aponte-Santamaría, Camilo; Sturm, Sebastian; Bullerjahn, Jakob Tómas; Bronowska, Agnieszka; Gräter, Frauke

    2015-11-01

    Mechanosensing at focal adhesions regulates vital cellular processes. Here, we present results from molecular dynamics (MD) and mechano-biochemical network simulations that suggest a direct role of Focal Adhesion Kinase (FAK) as a mechano-sensor. Tensile forces, propagating from the membrane through the PIP2 binding site of the FERM domain and from the cytoskeleton-anchored FAT domain, activate FAK by unlocking its central phosphorylation site (Tyr576/577) from the autoinhibitory FERM domain. Varying loading rates, pulling directions, and membrane PIP2 concentrations corroborate the specific opening of the FERM-kinase domain interface, due to its remarkably lower mechanical stability compared to the individual alpha-helical domains and the PIP2-FERM link. Analyzing downstream signaling networks provides further evidence for an intrinsic mechano-signaling role of FAK in broadcasting force signals through Ras to the nucleus. This distinguishes FAK from hitherto identified focal adhesion mechano-responsive molecules, allowing a new interpretation of cell stretching experiments. PMID:26544178

  9. Mechanism of Focal Adhesion Kinase Mechanosensing

    PubMed Central

    Sturm, Sebastian; Bullerjahn, Jakob Tómas; Bronowska, Agnieszka; Gräter, Frauke

    2015-01-01

    Mechanosensing at focal adhesions regulates vital cellular processes. Here, we present results from molecular dynamics (MD) and mechano-biochemical network simulations that suggest a direct role of Focal Adhesion Kinase (FAK) as a mechano-sensor. Tensile forces, propagating from the membrane through the PIP2 binding site of the FERM domain and from the cytoskeleton-anchored FAT domain, activate FAK by unlocking its central phosphorylation site (Tyr576/577) from the autoinhibitory FERM domain. Varying loading rates, pulling directions, and membrane PIP2 concentrations corroborate the specific opening of the FERM-kinase domain interface, due to its remarkably lower mechanical stability compared to the individual alpha-helical domains and the PIP2-FERM link. Analyzing downstream signaling networks provides further evidence for an intrinsic mechano-signaling role of FAK in broadcasting force signals through Ras to the nucleus. This distinguishes FAK from hitherto identified focal adhesion mechano-responsive molecules, allowing a new interpretation of cell stretching experiments. PMID:26544178

  10. Bartonella henselae AS A PUTATIVE CAUSE OF CONGENITAL CHOLESTASIS

    PubMed Central

    VELHO, Paulo Eduardo Neves Ferreira; BELLOMO-BRANDÃO, Maria Ângela; DRUMMOND, Marina Rovani; MAGALHÃES, Renata Ferreira; HESSEL, Gabriel; BARJAS-CASTRO, Maria de Lourdes; ESCANHOELA, Cecília Amélia Fazzio; NEGRO, Gilda Maria Barbaro DEL; OKAY, Thelma Suely

    2016-01-01

    SUMMARY Severe anemia and cholestatic hepatitis are associated with bartonella infections. A putative vertical Bartonella henselae infection was defined on the basis of ultrastructural and molecular analyses in a three-year-old child with anemia, jaundice and hepatosplenomegaly since birth. Physicians should consider bartonellosis in patients with anemia and hepatitis of unknown origin. PMID:27410916

  11. DIFFERENTIAL GENE EXPRESSION OF PUTATIVE VIRULENCE GENES IN Flavobacterium columnare

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A shot-gun genomic library of the Flavobacterium columnare ALG-530 virulent strain has been constructed and more than 3,000 clones have been sequenced to date (800 contigs). Based on sequence identity with putative known virulence genes from related species, seven genes were selected for differentia...

  12. Developing putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content dataDeveloping putative AOPs from high content data

    EPA Science Inventory

    Developing putative AOPs from high content data Shannon M. Bell1,2, Stephen W. Edwards2 1 Oak Ridge Institute for Science and Education 2 Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development,...

  13. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  14. Architecture of the mammalian pituitary cholinergic system with observations on a putative blood acetylcholine sensor.

    PubMed

    Caffe, A R

    1996-04-01

    Acetylcholine (ACh) plays an important role in pituitary gland function. Little is known, however, about the source and trajectory of pituitary ACh, the location of pituitary cholinergic receptors, and the pathways along which the release of pituitary ACh is controlled. Therefore choline acetyltransferase (CHAT) immunoreactive profiles have been investigated in the rat median eminence and pituitary. Furthermore, both muscarinic- (mAChRp-L) and nicotinic receptor proteinlike (nAChRp-L) immunoreactivity have been examined in the rat, rabbit, and cat pituitary. The results have demonstrated that the rat pituitary ChAT network is composed of neurons in the hypothalamic arcuate nucleus and a great number of terminals in the median eminence. In the pituitary, ChAT immunolabeled profiles were virtually absent. This suggests that much of the ACh acting on pituitary cells is released as a humoral factor from the median eminence. All the examined animals expressed mAChRp-L immunostained endocrine cells in the intermediate lobe. Apart from this, marked species differences in AChRp-L immunolabeled profiles have been found. In addition, strong mAChRp-L immunoreactive rod to cone-shaped bodies were detected associated with blood vessels of the anterior and intermediate lobes in the rat and rabbit, but not in the cat. The immunolabeling was present in particles on the body plasma membrane. These characteristics suggest that the function of these structures might be to sense pituitary blood ACh levels. Consequently the name blood acetylcholine reading bodies (BARBs) was adopted to indicate these structures. It is proposed that the BARBs may play a role in the feedback control of ACh release from the median eminence. PMID:8861775

  15. Intramolecular conformational changes optimize protein kinase C signaling.

    PubMed

    Antal, Corina E; Violin, Jonathan D; Kunkel, Maya T; Skovsø, Søs; Newton, Alexandra C

    2014-04-24

    Optimal tuning of enzyme signaling is critical for cellular homeostasis. We use fluorescence resonance energy transfer reporters in live cells to follow conformational transitions that tune the affinity of a multidomain signal transducer, protein kinase C (PKC), for optimal response to second messengers. This enzyme comprises two diacylglycerol sensors, the C1A and C1B domains, that have a sufficiently high intrinsic affinity for ligand so that the enzyme would be in a ligand-engaged, active state if not for mechanisms that mask its domains. We show that both diacylglycerol sensors are exposed in newly synthesized PKC and that conformational transitions following priming phosphorylations mask the domains so that the lower affinity sensor, the C1B domain, is the primary diacylglycerol binder. The conformational rearrangements of PKC serve as a paradigm for how multimodule transducers optimize their dynamic range of signaling. PMID:24631122

  16. Evidence that phytochrome functions as a protein kinase in plant light signalling

    PubMed Central

    Shin, Ah-Young; Han, Yun-Jeong; Baek, Ayoung; Ahn, Taeho; Kim, Soo Young; Nguyen, Thai Son; Son, Minky; Lee, Keun Woo; Shen, Yu; Song, Pill-Soon; Kim, Jeong-Il

    2016-01-01

    It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants. PMID:27173885

  17. Evidence that phytochrome functions as a protein kinase in plant light signalling.

    PubMed

    Shin, Ah-Young; Han, Yun-Jeong; Baek, Ayoung; Ahn, Taeho; Kim, Soo Young; Nguyen, Thai Son; Son, Minky; Lee, Keun Woo; Shen, Yu; Song, Pill-Soon; Kim, Jeong-Il

    2016-01-01

    It has been suggested that plant phytochromes are autophosphorylating serine/threonine kinases. However, the biochemical properties and functional roles of putative phytochrome kinase activity in plant light signalling are largely unknown. Here, we describe the biochemical and functional characterization of Avena sativa phytochrome A (AsphyA) as a potential protein kinase. We provide evidence that phytochrome-interacting factors (PIFs) are phosphorylated by phytochromes in vitro. Domain mapping of AsphyA shows that the photosensory core region consisting of PAS-GAF-PHY domains in the N-terminal is required for the observed kinase activity. Moreover, we demonstrate that transgenic plants expressing mutant versions of AsphyA, which display reduced activity in in vitro kinase assays, show hyposensitive responses to far-red light. Further analysis reveals that far-red light-induced phosphorylation and degradation of PIF3 are significantly reduced in these transgenic plants. Collectively, these results suggest a positive relationship between phytochrome kinase activity and photoresponses in plants. PMID:27173885

  18. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases

    PubMed Central

    Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A.; Baena-González, Elena

    2014-01-01

    The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems. PMID:24904600

  19. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases.

    PubMed

    Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A; Baena-González, Elena

    2014-01-01

    The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems. PMID:24904600

  20. MAP kinase-interacting kinases--emerging targets against cancer.

    PubMed

    Diab, Sarah; Kumarasiri, Malika; Yu, Mingfeng; Teo, Theodosia; Proud, Christopher; Milne, Robert; Wang, Shudong

    2014-04-24

    Mitogen-activated protein kinase (MAPK)-interacting kinases (Mnks) regulate the initiation of translation through phosphorylation of eukaryotic initiation factor 4E (eIF4E). Mnk-mediated eIF4E activation promotes cancer development and progression. While the phosphorylation of eIF4E is necessary for oncogenic transformation, the kinase activity of Mnks seems dispensable for normal development. For this reason, pharmacological inhibition of Mnks could represent an ideal mechanism-based and nontoxic therapeutic strategy for cancer treatment. In this review, we discuss the current understanding of Mnk biological roles, structures, and functions, as well as clinical implications. Importantly, we propose different strategies for identification of highly selective small molecule inhibitors of Mnks, including exploring a structural feature of their kinase domain, DFD motif, which is unique within the human kinome. We also argue that a combined targeting of Mnks and other pathways should be considered given the complexity of cancer. PMID:24613018

  1. Characterization of a putative S locus encoded receptor protein and its role in self-incompatibility

    SciTech Connect

    Not Available

    1991-01-01

    Monoclonal antibodies (MAb) were raised against purified SLSG and polyclonal antisera were raised against purified trpE/SLR1 fusion proteins. MAbH8 reacts with a protein epitope on SLSG. MAbH8 and the anit-SLR1 antisera were used with immunogold labeling to show SLSG and SLR1 proteins are localized in papillar cell walls in the stigma. MAbH8 reacts with SLSG from CRM+ cells but not CRM-cells; amino acid sequence identity between the two classes was only 65%, vs. 80% within the CRM+ class. SLSG is necessary but not sufficient for self-incompatibility. Variable molecular weight (MW) SLSG proteins are derived from the same SLG gene. MW variations in both SLSG and SLR1 are due to changes in glycosylation and phosphorylation state. SLSG is not detectable in mature pollen, but is expressed during microspore development. Using a SLG probe, a gene for a putative receptor with protein kinase activity was identified.

  2. Sensor technology

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.

    1988-01-01

    The objective is to provide necessary expertise and technology to advance space remote sensing of terrestrial, planetary, and galactic phenomena through the use of electromagnetic and electro-optic properties of gas, liquid, and solid state materials technology. The Sensor Technology Program is divided into two subprograms: a base research and development part and a Civil Space Technology Initiative (CSTI) part. The base research and development consists of research on artificially grown materials such as quantum well and superlattice structure with the potential for new and efficient means for detecting electromagnetic phenomena. Research is also being done on materials and concepts for detector components and devices for measuring high energy phenomena such as UV, X-, and gamma rays that are required observables in astrophysis and solar physics missions. The CSTI program is more mission driven and is balanced among four major disciplines: detector sensors; submillimeter wave sensors; LIDAR/DIAL sensors; and cooler technology.

  3. Wireless sensor

    DOEpatents

    Lamberti, Vincent E.; Howell, JR, Layton N.; Mee, David K.; Sepaniak, Michael J.

    2016-02-09

    Disclosed is a sensor for detecting a target material. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon exposure to vapor or liquid from the target material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The target material is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the changes in the tensile stress.

  4. Vibration sensors

    NASA Astrophysics Data System (ADS)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  5. Putative melatonin receptors in a human biological clock

    SciTech Connect

    Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.; Stopa, E.G.

    1988-10-07

    In vitro autoradiography with /sup 125/I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific /sup 125/I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific /sup 125/I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completely inhibited specific /sup 125/I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.

  6. Crystal Structure of the FERM Domain of Focal Adhesion Kinase

    SciTech Connect

    Ceccarelli,D.; Song, H.; Poy, F.; Schaller, M.; Eck, M.

    2006-01-01

    Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that localizes to focal adhesions in adherent cells. Through phosphorylation of proteins assembled at the cytoplasmic tails of integrins, FAK promotes signaling events that modulate cellular growth, survival, and migration. The amino-terminal region of FAK contains a region of sequence homology with band 4.1 and ezrin/radixin/moesin (ERM) proteins termed a FERM domain. FERM domains are found in a variety of signaling and cytoskeletal proteins and are thought to mediate intermolecular interactions with partner proteins and phospholipids at the plasma membrane and intramolecular regulatory interactions. Here we report two crystal structures of an NH2-terminal fragment of avian FAK containing the FERM domain and a portion of the regulatory linker that connects the FERM and kinase domains. The tertiary folds of the three subdomains (F1, F2, and F3) are similar to those of known FERM structures despite low sequence conservation. Differences in the sequence and relative orientation of the F3 subdomain alters the nature of the interdomain interface, and the phosphoinositide binding site found in ERM family FERM domains is not present in FAK. A putative protein interaction site on the F3 lobe is masked by the proximal region of the linker. Additionally, in one structure the adjacent Src SH3 and SH2 binding sites in the linker associate with the surfaces of the F3 and F1 lobes, respectively. These structural features suggest the possibility that protein interactions of the FAK FERM domain can be regulated by binding of Src kinases to the linker segment.

  7. Neuronal migration and protein kinases

    PubMed Central

    Ohshima, Toshio

    2015-01-01

    The formation of the six-layered structure of the mammalian cortex via the inside-out pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues such as Reelin induce intracellular signaling cascades through the protein phosphorylation. Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and adhesion properties. Protein phosphorylation regulates these processes. Moreover, the balance between phosphorylation and dephosphorylation is modified by extracellular cues. Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps. In this review, I shall give an overview the roles of protein kinases in neuronal migration. PMID:25628530

  8. Protein Crystals of Raf Kinase

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image shows crystals of the protein raf kinase grown on Earth (photo a) and on USML-2 (photo b). The space-grown crystals are an order of magnitude larger. Principal Investigator: Dan Carter of New Century Pharmaceuticals

  9. Isolation of chloroplastic phosphoglycerate kinase

    SciTech Connect

    Macioszek, J.; Anderson, L.E. ); Anderson, J.B. )

    1990-09-01

    We report here a method for the isolation of high specific activity phosphoglycerate kinase (EC 2.7.2.3) from chloroplasts. The enzyme has been purified over 200-fold from pea (Pisum sativum L.) stromal extracts to apparent homogeneity with 23% recovery. Negative cooperativity is observed with the two enzyme phosphoglycerate kinase/glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) couple restored from the purified enzymes when NADPH is the reducing pyridine nucleotide, consistent with earlier results obtained with crude chloroplastic extracts. Michaelis Menten kinetics are observed when 3-phosphoglycerate is held constant and phosphoglycerate kinase is varied, which suggests that phosphoglycerate kinase-bound 1,3-bisphosphoglycerate may be the preferred substrate for glyceraldehyde-3-P dehydrogenase in the chloroplast.

  10. STIMULATION OF MUSCLE PROTEIN SYNTHESIS BY GLUCOSE IN NEONATES IS AMP KINASE INDEPENDENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muscle protein synthesis is elevated in the neonate, in part due to an elevated response to the rise in amino acids and insulin after a meal. Recent evidence suggests that glucose may also play a role in the regulation of protein synthesis. AMP kinase has been recognized as an energy sensor and a ...

  11. Tyrosine kinase gene rearrangements in epithelial malignancies

    PubMed Central

    Shaw, Alice T.; Hsu, Peggy P.; Awad, Mark M.; Engelman, Jeffrey A.

    2014-01-01

    Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as ‘druggable’ targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours. PMID:24132104

  12. Research sensors

    NASA Astrophysics Data System (ADS)

    Englund, David R.

    1988-05-01

    The work described is part of a program (Englund and Seasholtz, 1988) to develop sensors and sensing techniques for research applications on aircraft turbine engines. In general, the sensors are used to measure the environment at a given location within a turbine engine or to measure the response of an engine component to the imposed environment. Locations of concern are generally in the gas path and, for the most part, are within the hot section. Specific parameters of concern are dynamic gas temperature, heat flux, airfoil surface temperature, and strain on airfoils and combustor liners. To minimize the intrusiveness of surface-mounted sensors, a considerable effort was expended to develop thin-film sensors for surface temperature, strain, and heat flux measurements. In addition, an optical system for viewing the interior of an operating combustor was developed. Most of the work described is sufficiently advanced that the sensors were used and useful data were obtained. The notable exception is the work to develop a high-temperature static strain measuring capability; the work is still in progress.

  13. A biochemical and genetic study of Leishmania donovani pyruvate kinase.

    PubMed

    Sandoval, Will; Isea, Raúl; Rodriguez, Evelyn; Ramirez, Jose Luis

    2008-11-15

    Here we present a biochemical and molecular biology study of the enzyme pyruvate kinase (PYK) from the parasitic protozoa Leishmania donovani. The PYK gene was cloned, mutagenised and over expressed and its kinetic parameters determined. Like in other kinetoplastids, L. donovani PYK is allosterically stimulated by the effector fructose 2,6 biphosphate and not by fructose 1,6 biphosphate. When the putative effector binding site of L. donovani PYK was mutagenised, we obtained two mutants with extreme kinetic behavior: Lys453Leu, which retained a sigmoidal kinetics and was little affected by the effector; and His480Gln, which deployed a hyperbolic kinetics that was not changed by the addition of the effector. Molecular Dynamics (MD) studies revealed that the mutations not only altered the effector binding site of L. donovani PYK but also changed the folding of its domain C. PMID:18725273

  14. Multi-kinase inhibitors, AURKs and cancer.

    PubMed

    Cicenas, Jonas; Cicenas, Erikas

    2016-05-01

    Inhibitors that impact function of kinases are valuable both for the biological research as well as therapy of kinase-associated diseases, such as different cancers. There are quite a number of inhibitors, which are quite specific for certain kinases and several of them are either already approved for the cancer therapy or are in clinical studies of various phases. However, that does not mean that each single kinase inhibitor is suitable for targeted therapy. Some of them are not effective others might be toxic or fail some other criteria for the use in vivo. On the other hand, even in case of successful therapy, many responders eventually develop resistance to the inhibitors. The limitations of various single kinase inhibitors can be fought using compounds which target multiple kinases. This tactics can increase effectiveness of the inhibitors by the synergistic effect or help to diminish the likelihood of drug resistance. To date, several families of kinases are quite popular targets of the inhibition in cancers, such as tyrosine kinases, cycle-dependent kinases, mitogen-activated protein kinases, phosphoinositide 3-kinases as well as their pathway "players" and aurora kinases. Aurora kinases play an important role in the control of the mitosis and are often altered in diverse human cancers. Here, we will describe the most interesting multi-kinase inhibitors which inhibit aurora kinases among other targets and their use in preclinical and clinical cancer studies. PMID:27038473

  15. Characterization of polynucleotide kinase/phosphatase enzymes from Mycobacteriophages omega and Cjw1 and vibriophage KVP40.

    PubMed

    Zhu, Hui; Yin, Shenmin; Shuman, Stewart

    2004-06-18

    Coliphage T4 Pnkp is a bifunctional polynucleotide 5'-kinase/3'-phosphatase that catalyzes the end-healing steps of a RNA repair pathway. Here we show that mycobacteriophages Omega and Cjw1 and vibriophage KVP40 also encode bifunctional Pnkp enzymes consisting of a proximal 5'-kinase module with an essential P-loop motif, GXGK(S/T), and a distal 3'-phosphatase module with an essential acyl-phosphatase motif, DX- DGT. Biochemical characterization of the viral Pnkp proteins reveals several shared features, including an alkaline pH optimum for the kinase component, an intrinsic RNA kinase activity, and a homotetrameric or homodimeric quaternary structure, that distinguish them from the monomeric DNA-specific phosphatase/kinase enzymes found in mammals and fission yeast. Whereas the phage 5'-kinases differ from each other in their preferences for phosphorylation of 5' overhangs, blunt ends, or recessed ends, none of them displays the preference for recessed ends reported for mammalian DNA kinase. We hypothesize that Pnkp provides phages that have it with a means to evade an RNA-damaging antiviral host response. Genetic complementation of the essential end-healing steps of yeast tRNA splicing by the Omega and Cjw1 Pnkp enzymes establishes their capacity to perform RNA repair reactions in vivo. A supportive correlation is that Omega and Cjw1, which are distinguished from other mycobacteriophages by their possession of a Pnkp enzyme, are also unique among the mycobacteriophages in their specification of putative RNA ligases. PMID:15056675

  16. Conserved autophosphorylation pattern in activation loops and juxtamembrane regions of Mycobacterium tuberculosis Ser/Thr protein kinases.

    PubMed

    Durán, Rosario; Villarino, Andrea; Bellinzoni, Marco; Wehenkel, Annemarie; Fernandez, Pablo; Boitel, Brigitte; Cole, Stewart T; Alzari, Pedro M; Cerveñansky, Carlos

    2005-08-01

    The identification of phosphorylation sites in proteins provides a powerful tool to study signal transduction pathways and to establish interaction networks involving signaling elements. Using different strategies to identify phosphorylated residues, we report here mass spectrometry studies of the entire intracellular regions of four 'receptor-like' protein kinases from Mycobacterium tuberculosis (PknB, PknD, PknE, and PknF), each consisting of an N-terminal kinase domain and a juxtamembrane region of varying length (26-100 residues). The enzymes were observed to incorporate different numbers of phosphates, from five in PknB up to 11 in PknD or PknE, and all detected sites were dephosphorylated by the cognate mycobacterial phosphatase PstP. Comparison of the phosphorylation patterns reveals two recurrent clusters of pThr/pSer residues, respectively, in their activation loops and juxtamembrane regions, which have a distinct effect on kinase activity. All studied kinases have at least two conserved phosphorylated residues in their activation loop and mutations of these residues in PknB significantly decreased the kinase activity, whereas deletion of the entire juxtamembrane regions in PknB and PknF had little effect on their activities. These results reinforce the hypothesis that mycobacterial kinase regulation includes a conserved activation loop mechanism, and suggest that phosphorylation sites in the juxtamembrane region might be involved in putative kinase-mediated signaling cascades. PMID:15967413

  17. Water Sensors

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.

  18. Identification of novel putative regulatory genes induced during alfalfa nodule development with a cold-plaque screening procedure.

    PubMed

    Frugier, F; Kondorosi, A; Crespi, M

    1998-05-01

    Until now very few plant genes with possible regulatory functions during nodule development have been isolated. We have used a modified cold-plaque screening method to identify new transcripts expressed at low levels that are induced during nodulation. Several clones were isolated and characterized by their mRNA expression patterns during nodule development and in spontaneous nodules. Sequence homology with known genes of other organisms indicated that transcripts corresponded to (i) "basic" genes probably required during the growth of the nodule organ (e.g., structural proteins), (ii) genes related to the metabolic adaptations taking place during nodule morphogenesis and function (e.g., carbonic anhydrase), and (iii) genes containing regulatory motifs and/or homologies (three clones out of the 20 identified). The latter genes encode a zinc-finger-containing protein, a putative protein kinase, and a Wilm's tumor (WT) suppressor homologue, respectively. Expression of the kinase and WT suppressor homologues was induced early in nodulation, although the latter was activated transiently. Accumulation of the Zn-finger gene transcripts was detected at a later stage of development and seems to be regulated in a complex manner. Hence, using a cold-plaque screening procedure, we could identify genes that may play regulatory roles in the signal transduction pathways activated during nodule development. PMID:9574504

  19. Inhibition of spontaneous receptor phosphorylation by residues in a putative alpha-helix in the KIT intracellular juxtamembrane region.

    PubMed

    Ma, Y; Cunningham, M E; Wang, X; Ghosh, I; Regan, L; Longley, B J

    1999-05-01

    KIT receptor kinase activity is repressed, prior to stem cell factor binding, by unknown structural constraints. Using site-directed mutagenesis, we examined the role of KIT intracellular juxtamembrane residues Met-552 through Ile-563 in controlling receptor autophosphorylation. Alanine substitution for Tyr-553, Trp-557, Val-559, or Val-560, all sitting along the hydrophobic side of an amphipathic alpha-helix (Tyr-553-Ile-563) predicted by the Chou-Fasman algorithm, resulted in substantially increased spontaneous receptor phosphorylation, revealing inhibitory roles for these residues. Alanine substitution for other residues, most of which are on the hydrophilic side of the helix, caused no or slightly increased basal receptor phosphorylation. Converting Tyr-553 or Trp-557 to phenylalanine generated slight or no elevation, respectively, in basal KIT phosphorylation, indicating that the phenyl ring of Tyr-553 and the hydrophobicity of Trp-557 are critical for the inhibition. Although alanine substitution for Lys-558 had no effect on receptor phosphorylation, its substitution with proline produced high spontaneous receptor phosphorylation, suggesting that the predicted alpha-helical conformation is involved in the inhibition. A synthetic peptide comprising Tyr-553 through Ile-563 showed circular dichroism spectra characteristic of alpha-helix, supporting the structural prediction. Thus, the KIT intracellular juxtamembrane region contains important residues which, in a putative alpha-helical conformation, exert inhibitory control on the kinase activity of ligand-unoccupied receptor. PMID:10224103

  20. Microcantilever sensors

    SciTech Connect

    Thundat, T.; Warmack, R.J.; Oden, P.I. |; Dasktos, P.G.; Chen, G.Y. |

    1996-04-01

    Novel sensors based on bending and resonance frequency changes of (coated silicon) microcantilevers are discussed. Adsorption-induced resonance frequency changes of microcantilevers can be due to a combination of mass loading and change of spring constant resulting from adsorption of chemicals on the surface. Cantilevers also undergo static bending due to adsorption-induced differential surface stress if the adsorption is confined to one surface. Hence cantilever deflection as well as resonance frequency change can be used as the basis for development of novel chemcal sensors.

  1. Characterization of a tomato protein kinase gene induced by infection by Potato spindle tuber viroid.

    PubMed

    Hammond, R W; Zhao, Y

    2000-09-01

    Viroids--covalently closed, circular RNA molecules in the size range of 250 to 450 nucleotides-are the smallest known infectious agents and cause a number of diseases of crop plants. Viroids do not encode proteins and replicate within the nucleus without a helper virus. In many cases, viroid infection results in symptoms of stunting, epinasty, and vein clearing. In our study of the molecular basis of the response of tomato cv. Rutgers to infection by Potato spindle tuber viroid (PSTVd), we have identified a specific protein kinase gene, pkv, that is transcriptionally activated in plants infected with either the intermediate or severe strain of PSTVd, at a lower level in plants inoculated with a mild strain, and not detectable in mock-inoculated plants. A full-length copy of the gene encoding the 55-kDa PKV (protein kinase viroid)-induced protein has been isolated and sequence analysis revealed significant homologies to cyclic nucleotide-dependent protein kinases. Although the sequence motifs in the catalytic domain suggest that it is a serine/threonine protein kinase, the recombinant PKV protein autophosphorylates in vitro on serine and tyrosine residues, suggesting that it is a putative member of the class of dual-specificity protein kinases. PMID:10975647

  2. Wounding Induces the Rapid and Transient Activation of a Specific MAP Kinase Pathway.

    PubMed Central

    Bogre, L.; Ligterink, W.; Meskiene, I.; Barker, P. J.; Heberle-Bors, E.; Huskisson, N. S.; Hirt, H.

    1997-01-01

    Mechanical injury in plants induces responses that are involved not only in healing but also in defense against a potential pathogen. To understand the intracellular signaling mechanism of wounding, we have investigated the involvement of protein kinases. Using specific antibodies, we showed that wounding alfalfa leaves specifically induces the transient activation of the p44MMK4 kinase, which belongs to the family of mitogen-activated protein kinases. Whereas activation of the MMK4 pathway is a post-translational process and was not blocked by [alpha]-amanitin and cycloheximide, inactivation depends on de novo transcription and translation of a protein factor(s). After wound-induced activation, the MMK4 pathway was subject to a refractory period of 25 min, during which time restimulation was not possible, indicating that the inactivation mechanism is only transiently active. After activation of the p44MMK4 kinase by wounding, transcript levels of the MMK4 gene increased, suggesting that the MMK4 gene may be a direct target of the MMK4 pathway. In contrast, transcripts of the wound-inducible MsWIP gene, encoding a putative proteinase inhibitor, were detected only several hours after wounding. Abscisic acid, methyl jasmonic acid, and electrical activity are known to mediate wound signaling in plants. However, none of these factors was able to activate the p44MMK4 kinase in the absence of wounding, suggesting that the MMK4 pathway acts independently of these signals. PMID:12237344

  3. A computational workflow for the design of irreversible inhibitors of protein kinases.

    PubMed

    Del Rio, Alberto; Sgobba, Miriam; Parenti, Marco Daniele; Degliesposti, Gianluca; Forestiero, Rosetta; Percivalle, Claudia; Conte, Pier Franco; Freccero, Mauro; Rastelli, Giulio

    2010-03-01

    Design of irreversible inhibitors is an emerging and relatively less explored strategy for the design of protein kinase inhibitors. In this paper, we present a computational workflow that was specifically conceived to assist such design. The workflow takes the form of a multi-step procedure that includes: the creation of a database of already known reversible inhibitors of protein kinases, the selection of the most promising scaffolds that bind one or more desired kinase templates, the modification of the scaffolds by introduction of chemically reactive groups (suitable cysteine traps) and the final evaluation of the reversible and irreversible protein-ligand complexes with molecular dynamics simulations and binding free energy predictions. Most of these steps were automated. In order to prove that this is viable, the workflow was tested on a database of known inhibitors of ERK2, a protein kinase possessing a cysteine in the ATP site. The modeled ERK2-ligand complexes and the values of the estimated binding free energies of the putative ligands provide useful indicators of their aptitude to bind reversibly and irreversibly to the protein kinase. Moreover, the computational data are used to rank the ligands according to their computed binding free energies and their ability to bind specific protein residues in the reversible and irreversible complexes, thereby providing a useful decision-making tool for each step of the design. In this work we present the overall procedure and the first proof of concept results. PMID:20306284

  4. A lipid-regulated docking site on vinculin for protein kinase C.

    PubMed

    Ziegler, Wolfgang H; Tigges, Ulrich; Zieseniss, Anke; Jockusch, Brigitte M

    2002-03-01

    During cell spreading, binding of actin-organizing proteins to acidic phospholipids and phosphorylation are important for localization and activity of these proteins at nascent cell-matrix adhesion sites. Here, we report on a transient interaction between the lipid-dependent protein kinase Calpha and vinculin, an early component of these sites, during spreading of HeLa cells on collagen. In vitro binding of protein kinase Calpha to vinculin tail was found dependent on free calcium and acidic phospholipids but independent of a functional kinase domain. The interaction was enhanced by conditions that favor the oligomerization of vinculin. Phosphorylation by protein kinase Calpha reached 1.5 mol of phosphate/mol of vinculin tail and required the C-terminal hydrophobic hairpin, a putative phosphatidylinositol 4,5-bisphosphate-binding site. Mass spectroscopy of peptides derived from in vitro phosphorylated vinculin tail identified phosphorylation of serines 1033 and 1045. Inhibition of C-terminal phospholipid binding at the vinculin tail by mutagenesis or deletion reduced the rate of phosphorylation to < or =50%. We suggest a possible mechanism whereby phospholipid-regulated conformational changes in vinculin may lead to exposure of a docking site for protein kinase Calpha and subsequent phosphorylation of vinculin and/or vinculin interaction partners, thereby affecting the formation of cell adhesion complexes. PMID:11741957

  5. Central Role of Pyruvate Kinase in Carbon Co-catabolism of Mycobacterium tuberculosis.

    PubMed

    Noy, Tahel; Vergnolle, Olivia; Hartman, Travis E; Rhee, Kyu Y; Jacobs, William R; Berney, Michael; Blanchard, John S

    2016-03-25

    Mycobacterium tuberculosis (Mtb) displays a high degree of metabolic plasticity to adapt to challenging host environments. Genetic evidence suggests thatMtbrelies mainly on fatty acid catabolism in the host. However,Mtbalso maintains a functional glycolytic pathway and its role in the cellular metabolism ofMtbhas yet to be understood. Pyruvate kinase catalyzes the last and rate-limiting step in glycolysis and theMtbgenome harbors one putative pyruvate kinase (pykA, Rv1617). Here we show thatpykAencodes an active pyruvate kinase that is allosterically activated by glucose 6-phosphate (Glc-6-P) and adenosine monophosphate (AMP). Deletion ofpykApreventsMtbgrowth in the presence of fermentable carbon sources and has a cidal effect in the presence of glucose that correlates with elevated levels of the toxic catabolite methylglyoxal. Growth attenuation was also observed in media containing a combination of short chain fatty acids and glucose and surprisingly, in media containing odd and even chain fatty acids alone. Untargeted high sensitivity metabolomics revealed that inactivation of pyruvate kinase leads to accumulation of phosphoenolpyruvate (P-enolpyruvate), citrate, and aconitate, which was consistent with allosteric inhibition of isocitrate dehydrogenase by P-enolpyruvate. This metabolic block could be relieved by addition of the α-ketoglutarate precursor glutamate. Taken together, our study identifies an essential role of pyruvate kinase in preventing metabolic block during carbon co-catabolism inMtb. PMID:26858255

  6. Discovering the first tyrosine kinase

    PubMed Central

    Hunter, Tony

    2015-01-01

    In the middle of the 20th century, animal tumor viruses were heralded as possible models for understanding human cancer. By the mid-1970s, the molecular basis by which tumor viruses transform cells into a malignant state was beginning to emerge as the first viral genomic sequences were reported and the proteins encoded by their transforming genes were identified and characterized. This was a time of great excitement and rapid progress. In 1978, prompted by the discovery from Ray Erikson’s group that the Rous sarcoma virus (RSV) v-Src–transforming protein had an associated protein kinase activity specific for threonine, my group at the Salk Institute set out to determine whether the polyomavirus middle T-transforming protein had a similar kinase activity. Here, I describe the experiments that led to the identification of a kinase activity associated with middle T antigen and our serendipitous discovery that this activity was specific for tyrosine in vitro, and how this in turn led to the fortuitous observation that the v-Src–associated kinase activity was also specific for tyrosine. Our finding that v-Src increased the level of phosphotyrosine in cellular proteins in RSV-transformed cells confirmed that v-Src is a tyrosine kinase and transforms cells by phosphorylating proteins on tyrosine. My colleague Bart Sefton and I reported these findings in the March issue of PNAS in 1980. Remarkably, all of the experiments in this paper were accomplished in less than one month. PMID:26130799

  7. Gas sensor

    DOEpatents

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  8. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1991-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

  9. Chemical sensor

    NASA Technical Reports Server (NTRS)

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  10. Sensor apparatus

    DOEpatents

    Deason, Vance A [Idaho Falls, ID; Telschow, Kenneth L [Idaho Falls, ID

    2009-12-22

    A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

  11. Modelling the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase on adenylate kinase.

    PubMed Central

    Bertrand, L; Vertommen, D; Depiereux, E; Hue, L; Rider, M H; Feytmans, E

    1997-01-01

    Simultaneous multiple alignment of available sequences of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase revealed several segments of conserved residues in the 2-kinase domain. The sequence of the kinase domain was also compared with proteins of known three-dimensional structure. No similarity was found between the kinase domain of 6-phosphofructo-2-kinase and 6-phosphofructo-1-kinase. This questions the modelling of the 2-kinase domain on bacterial 6-phosphofructo-1-kinase that has previously been proposed [Bazan, Fletterick and Pilkis (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9642-9646]. However, sequence similarities were found between the 2-kinase domain and several nucleotide-binding proteins, the most similar being adenylate kinase. A structural model of the 2-kinase domain based on adenylate kinase is proposed. It accommodates all the results of site-directed mutagenesis studies carried out to date on residues in the 2-kinase domain. It also allows residues potentially involved in catalysis and/or substrate binding to be predicted. PMID:9032445

  12. Phosphorylation of Alzheimer disease amyloid precursor peptide by protein kinase C and Ca sup 2+ /calmodulin-dependent protein kinase II

    SciTech Connect

    Gandy, S.; Czernik, A.J.; Greengard, P. )

    1988-08-01

    The amino acid sequence of the Alzheimer disease amyloid precursor (ADAP) has been deduced from the corresponding cDNA, and hydropathy analysis of the sequence suggest a receptor-like structure with a single transmembrane domain. The putative cytoplasmic domain of ADAP contains potential sites for serine and threonine phosphorylation. In the present study, synthetic peptides derived from this domain were used as model substrates for various purified protein kinases. Protein kinase C rapidly catalyzed the phosphorylation of a peptide corresponding to amino acid residues 645-661 of ADAP. Ca{sup 2+}/calmodulin-dependent protein kinase II phosphorylated ADAP peptide (645-661) on Thr-654 and Ser-655. Using rat cerebral cortex synaptosomes prelabeled with {sup 32}P{sub i}, a {sup 32}P-labeled phosphoprotein of {approx}135 kDa was immunoprecipitated by using antisera prepared against ADAP peptide(597-624), consistent with the possibility that the holoform of ADAP in rat brain is a phosphoprotein. Based on analogy with the effect of phosphorylation by protein kinase C of juxtamembrane residues in the cytoplasmic domain of the epidermal growth factor receptor and the interleukin 2 receptor, phosphorylation of ADAP may target it for internalization.

  13. A novel method to identify protein kinase substrates: eEF2 kinase is phosphorylated and inhibited by SAPK4/p38δ

    PubMed Central

    Knebel, Axel; Morrice, Nick; Cohen, Philip

    2001-01-01

    We have developed a method of general application for identifying putative substrates of protein kinases in cell extracts. Using this procedure, we identified the physiological substrates of several mitogen-activated protein kinase kinases and an authentic substrate of stress-activated protein kinase (SAPK) 2a/p38. A 120 kDa protein was detected in skeletal muscle extracts that was phosphorylated rapidly by SAPK4/p38δ, but poorly by SAPK2/p38, SAPK3/p38γ, SAPK1/JNK or extracellular signal-regulated kinase 2 (ERK2). It was purified and identified as eukaryotic elongation factor 2 kinase (eEF2K). SAPK4/p38δ phosphorylated eEF2K at Ser359 in vitro, causing its inactivation. eEF2K became phosphorylated at Ser359 and its substrate eEF2 became dephosphorylated (activated) when KB cells were exposed to anisomycin, an agonist that activates all SAPKs, including SAPK4/p38δ. The anisomycin-induced phosphorylation of Ser359 was unaffected by SB 203580, U0126 or rapamycin, and was prevented by overexpression of a catalytically inactive SAPK4/p38δ mutant, suggesting that SAPK4/p38δ may mediate the inhibition of eEF2K by this stress. The phosphorylation of eEF2K at Ser359 was also induced by insulin-like growth factor-1. However, this was blocked by rapamycin, indicating that Ser359 is targeted by at least two signalling pathways. PMID:11500363

  14. Predikin and PredikinDB: a computational framework for the prediction of protein kinase peptide specificity and an associated database of phosphorylation sites

    PubMed Central

    Saunders, Neil FW; Brinkworth, Ross I; Huber, Thomas; Kemp, Bruce E; Kobe, Bostjan

    2008-01-01

    Background We have previously described an approach to predicting the substrate specificity of serine-threonine protein kinases. The method, named Predikin, identifies key conserved substrate-determining residues in the kinase catalytic domain that contact the substrate in the region of the phosphorylation site and so determine the sequence surrounding the phosphorylation site. Predikin was implemented originally as a web application written in Javascript. Results Here, we describe a new version of Predikin, completely revised and rewritten as a modular framework that provides multiple enhancements compared with the original. Predikin now consists of two components: (i) PredikinDB, a database of phosphorylation sites that links substrates to kinase sequences and (ii) a Perl module, which provides methods to classify protein kinases, reliably identify substrate-determining residues, generate scoring matrices and score putative phosphorylation sites in query sequences. The performance of Predikin as measured using receiver operator characteristic (ROC) graph analysis equals or surpasses that of existing comparable methods. The Predikin website has been redesigned to incorporate the new features. Conclusion New features in Predikin include the use of SQL queries to PredikinDB to generate predictions, scoring of predictions, more reliable identification of substrate-determining residues and putative phosphorylation sites, extended options to handle protein kinase and substrate data and an improved web interface. The new features significantly enhance the ability of Predikin to analyse protein kinases and their substrates. Predikin is available at . PMID:18501020

  15. Hundreds of putatively functional small open reading frames in Drosophila

    PubMed Central

    2011-01-01

    Background The relationship between DNA sequence and encoded information is still an unsolved puzzle. The number of protein-coding genes in higher eukaryotes identified by genome projects is lower than was expected, while a considerable amount of putatively non-coding transcription has been detected. Functional small open reading frames (smORFs) are known to exist in several organisms. However, coding sequence detection methods are biased against detecting such very short open reading frames. Thus, a substantial number of non-canonical coding regions encoding short peptides might await characterization. Results Using bio-informatics methods, we have searched for smORFs of less than 100 amino acids in the putatively non-coding euchromatic DNA of Drosophila melanogaster, and initially identified nearly 600,000 of them. We have studied the pattern of conservation of these smORFs as coding entities between D. melanogaster and Drosophila pseudoobscura, their presence in syntenic and in transcribed regions of the genome, and their ratio of conservative versus non-conservative nucleotide changes. For negative controls, we compared the results with those obtained using random short sequences, while a positive control was provided by smORFs validated by proteomics data. Conclusions The combination of these analyses led us to postulate the existence of at least 401 functional smORFs in Drosophila, with the possibility that as many as 4,561 such functional smORFs may exist. PMID:22118156

  16. Categorization of Putative Factors Against Rhopalosiphum padi (L.) (Heteroptera: Aphididae).

    PubMed

    Zeb, Qamar; Rondon, Silvia I; Naeem, Mohammad; Khan, Shah Alam; Goyer, Aymeric; Vleet, Steve Van; Corp, Mary K

    2016-02-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.) (Heteroptera: Aphididae), causes heavy losses to wheat crops worldwide by direct damage and virus transmission. This study was conducted to identify putative resistance mechanisms in four wheat varieties (Bobtail, Ladd, Stephens, and Skiles) and one advanced line (YS434)where R. padi was subjected to choice and no-choice tests. Antixenosis, antibiosis and tolerance studies were conducted in controlled environmental conditions at temperature of 20±5°C, 50–65% RH, and a photoperiod of 14:10 (L:D) h. Based on the antixenosis test, the variety Skiles was found susceptible to R. padi, while the line YS434 showed a significant level of resistance; the varieties Bobtail, Ladd, and Stephens showed intermediate response. In the antibiosis experiment, R. padi produced less progeny on the variety Skiles as compared with other varieties, but the developmental time for nymphs was also significantly shorter on Skiles and recorded higher intrinsic rate of natural increase (r(m)) values as compared with the varieties YS434, Bobtail, and Ladd. In the tolerance tests, the variety Ladd showed significantly lower tolerance index value than YS434, followed by Skiles, Bobtail, and Stephens. The plant resistance index value was greater for the variety Ladd, followed by Stephens, YS434, and Bobtail. In conclusion, this study provides baseline information that will contribute to the identification of putative resistance factors for a future breeding program against this aphid. PMID:26568060

  17. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    SciTech Connect

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  18. Evidence for a putative biomarker for substance dependence.

    PubMed

    Taylor, Jeanette; James, Lisa M

    2009-09-01

    Electrodermal response modulation (ERM) reflects the reduction in skin conductance response to an aversive stimulus that is temporally predictable relative to when it is unpredictable. Poor ERM is associated with substance dependence (SD). It was hypothesized that ERM is a putative biomarker for SD rather than for externalizing disorders generally. Participants included 83 controls (no SD, antisocial personality disorder [PD] or borderline PD), 52 participants with SD only (SD and no PD), 12 with PD only (antisocial and/or borderline PD and no SD), and 35 comorbid (having SD and PD). Diagnoses at definite and probable certainty levels were used and were determined by semistructured clinical interviews. ERM was calculated from skin conductance responses to predictable and unpredictable 2-s 110-dB white noise blasts. As expected, the SD-only and comorbid groups had significantly lower ERM scores than the control group, which did not differ significantly from the PD-only group. Results provide preliminary evidence that ERM is a putative biomarker for SD. Future research should examine cognitive correlates of ERM in an effort to understand why it relates to SD. PMID:19769433

  19. Tuberculosis and nature's pharmacy of putative anti-tuberculosis agents.

    PubMed

    Chinsembu, Kazhila C

    2016-01-01

    Due to the growing problem of drug resistant Mycobacterium tuberculosis strains, coupled with the twinning of tuberculosis (TB) to human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS), the burden of TB is now difficult to manage. Therefore, new antimycobacterial agents are being sought from natural sources. This review focuses on natural antimycobacterial agents from endophytes and medicinal plants of Africa, Europe, Asia, South America and Canada. In the countries mentioned in this review, numerous plant species display putative anti-TB activity. Several antimycobacterial chemical compounds have also been isolated, including: ellagitannin punicalagin, allicin, anthraquinone glycosides, iridoids, phenylpropanoids, beta-sitosterol, galanthimine, crinine, friedelin, gallic acid, ellagic acids, anthocyanidin, taraxerol, termilignan B, arjunic acid, glucopyranosides, 1-epicatechol, leucopelargonidol, hydroxybenzoic acids, benzophenanthridine alkaloids, neolignans, and decarine. These compounds may provide leads to novel and more efficacious drugs to lessen the global burden of TB and drug-resistant M. tuberculosis strains. If there is a long-term remedy for TB, it must lie in nature's pharmacy of putative antimycobacterial agents. PMID:26464047

  20. Brain response to putative pheromones in homosexual men.

    PubMed

    Savic, Ivanka; Berglund, Hans; Lindström, Per

    2005-05-17

    The testosterone derivative 4,16-androstadien-3-one (AND) and the estrogen-like steroid estra-1,3,5(10),16-tetraen-3-ol (EST) are candidate compounds for human pheromones. AND is detected primarily in male sweat, whereas EST has been found in female urine. In a previous positron emission tomography study, we found that smelling AND and EST activated regions covering sexually dimorphic nuclei of the anterior hypothalamus, and that this activation was differentiated with respect to sex and compound. In the present study, the pattern of activation induced by AND and EST was compared among homosexual men, heterosexual men, and heterosexual women. In contrast to heterosexual men, and in congruence with heterosexual women, homosexual men displayed hypothalamic activation in response to AND. Maximal activation was observed in the medial preoptic area/anterior hypothalamus, which, according to animal studies, is highly involved in sexual behavior. As opposed to putative pheromones, common odors were processed similarly in all three groups of subjects and engaged only the olfactory brain (amygdala, piriform, orbitofrontal, and insular cortex). These findings show that our brain reacts differently to the two putative pheromones compared with common odors, and suggest a link between sexual orientation and hypothalamic neuronal processes. PMID:15883379

  1. Chloroplast diversity in a putative hybrid swarm of Ponderosae (Pinaceae).

    PubMed

    Epperson, Bryan K; Telewski, Frank W; Willyard, Ann

    2009-03-01

    The Ponderosae subsection of the genus Pinus contains numerous taxa in disjunct mountain ranges of southern Arizona and New Mexico, differing for several leaf and cone traits, key among which is the number of leaf needles per fascicle. Trees with three needles are often found together with trees having five needles and mixed numbers. One taxonomic hypothesis is that there are swarms of hybrids between P. ponderosa and P. arizonica. A second hypothesis is that there are spatial mixtures of two separate taxa, five-needle P. arizonica and a "taxon X" containing three needle and mixed needle trees. We genotyped chloroplasts in one putative hybrid swarm on Mt. Lemmon using microsatellite markers and show that cpDNA is almost completely differentiated between two separate morphotypes corresponding to P. arizonica and "taxon X." Little if any introgression has occurred on Mt. Lemmon, and the simplest explanation is that little or no effective hybridization has occurred. Further results indicate that not only is taxon X not of hybrid origin, it is more closely related to nonregional Ponderosae other than P. ponderosa and P. arizonica. The results further suggest that other putative hybrid swarms in the region are also spatial mixtures of distinct taxa. PMID:21628225

  2. The WNKs: atypical protein kinases with pleiotropic actions

    PubMed Central

    McCormick, James A.; Ellison, David H.

    2011-01-01

    WNKs are serine/threonine kinases that comprise a unique branch of the kinome. They are so-named owing to the unusual placement of an essential catalytic lysine. WNKs have now been identified in diverse organisms. In humans and other mammals, four genes encoding WNKs. WNKs are widely expressed at the message level, although data on protein expression is more limited. Soon after the WNKs were identified, mutations in genes encoding WNK 1 and 4 were determined to cause the human disease, Familial Hyperkalemic Hypertension (also known as pseudohypoaldosteronism II, or Gordon’s Syndrome). For this reason, a major focus of investigation has been to dissect the role of WNK kinases in renal regulation of ion transport. More recently, a different mutation in WNK1 was identified as the cause of hereditary sensory and autonomic neuropathy type II (HSANII), an early-onset autosomal disease of peripheral sensory nerves. Thus, the WNKs represent an important family of potential targets for the treatment of human disease, and further elucidation of their physiological actions outside of the kidney and brain is necessary. In this review, we describe the gene structure and mechanisms regulating expression and activity of the WNKs. Subsequently, we outline substrates and targets of WNKs, and effects of WNKs on cellular physiology, both in the kidney and elsewhere. Next, consequences of these effects on integrated physiological function are outlined. Finally, we discuss the known and putative pathophysiological relevance of the WNKs. PMID:21248166

  3. Rapid discovery of putative protein biomarkers of traumatic brain injury by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry.

    PubMed

    Haskins, William E; Kobeissy, Firas H; Wolper, Regina A; Ottens, Andrew K; Kitlen, Jason W; McClung, Scott H; O'Steen, Barbara E; Chow, Marjorie M; Pineda, Jose A; Denslow, Nancy D; Hayes, Ronald L; Wang, Kevin K W

    2005-06-01

    We report the rapid discovery of putative protein biomarkers of traumatic brain injury (TBI) by SDS-PAGE-capillary liquid chromatography-tandem mass spectrometry (SDS-PAGE-Capillary LC-MS(2)). Ipsilateral hippocampus (IH) samples were collected from naive rats and rats subjected to controlled cortical impact (a rodent model of TBI). Protein database searching with 15,558 uninterpreted MS(2) spectra, collected in 3 days via data-dependent capillary LC-MS(2) of pooled cyanine dye-labeled samples separated by SDS-PAGE, identified more than 306 unique proteins. Differential proteomic analysis revealed differences in protein sequence coverage for 170 mammalian proteins (57 in naive only, 74 in injured only, and 39 of 64 in both), suggesting these are putative biomarkers of TBI. Confidence in our results was obtained by the presence of several known biomarkers of TBI (including alphaII-spectrin, brain creatine kinase, and neuron-specific enolase) in our data set. These results show that SDS-PAGE prior to in vitro proteolysis and capillary LC-MS(2) is a promising strategy for the rapid discovery of putative protein biomarkers associated with a specific physiological state (i.e., TBI) without a priori knowledge of the molecules involved. PMID:15941373

  4. Simultaneous Protein Expression and Modification: An Efficient Approach for Production of Unphosphorylated and Biotinylated Receptor Tyrosine Kinases by Triple Infection in the Baculovirus Expression System

    PubMed Central

    Erdmann, Dirk; Zimmermann, Catherine; Fontana, Patrizia; Hau, Jean-Christophe; De Pover, Alain; Chène, Patrick

    2010-01-01

    Protein kinases can adopt multiple protein conformations depending on their activation status. Recently, in drug discovery, a paradigm shift has been initiated, moving from inhibition of fully activated, phosphorylated kinases to targeting the inactive, unphosphorylated forms. For identification and characterization of putative inhibitors, also interacting with the latent kinase conformation outside of the kinase domain, highly purified and homogeneous protein preparations of unphosphorylated kinases are essential. The kinetic parameters of nonphosphorylated kinases cannot be assessed easily by standard kinase enzyme assays as a result of their intrinsic autophosphorylation activity. Kinetic binding rate constants of inhibitor-protein interactions can be measured by biophysical means upon protein immobilization on chips. Protein immobilization can be achieved under mild conditions by binding biotinylated proteins to streptavidin-coated chips, exploiting the strong and highly specific streptavidin–biotin interaction. In the work reported here, the cytoplasmic domains of insulin receptor and insulin-like growth factor-1 receptor fused to a biotin ligase recognition sequence were coexpressed individually with the phosphatase YopH and the biotin-protein ligase BirA upon triple infection in insect cells. Tandem affinity purification yielded pure cytoplasmic kinase domains as judged by gel electrophoresis and HPLC. Liquid chromatography-mass spectrometry analysis showed the absence of any protein phosphorylation. Coexpression of BirA led to quantitative and site-specific biotinylation of the kinases, which had no influence on the catalytic activity of the kinases, as demonstrated by the identical phosphorylation pattern upon autoactivation and by enzymatic assay. This coexpression approach should be applicable to other protein kinases as well and should greatly facilitate the production of protein kinases in their phosphorylated and unphosphorylated state suitable for

  5. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    PubMed Central

    Pietsch, Christof; Sreenivasulu, Nese; Wobus, Ulrich; Röder, Marion S

    2009-01-01

    Background Barley (Hordeum vulgare L.) seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference expression map of regulators

  6. ESTs Analysis Reveals Putative Genes Involved in Symbiotic Seed Germination in Dendrobium officinale

    PubMed Central

    Zhao, Ming-Ming; Zhang, Gang; Zhang, Da-Wei; Hsiao, Yu-Yun; Guo, Shun-Xing

    2013-01-01

    Dendrobiumofficinale (Orchidaceae) is one of the world’s most endangered plants with great medicinal value. In nature, D. officinale seeds must establish symbiotic relationships with fungi to germinate. However, the molecular events involved in the interaction between fungus and plant during this process are poorly understood. To isolate the genes involved in symbiotic germination, a suppression subtractive hybridization (SSH) cDNA library of symbiotically germinated D. officinale seeds was constructed. From this library, 1437 expressed sequence tags (ESTs) were clustered to 1074 Unigenes (including 902 singletons and 172 contigs), which were searched against the NCBI non-redundant (NR) protein database (E-value cutoff, e-5). Based on sequence similarity with known proteins, 579 differentially expressed genes in D. officinale were identified and classified into different functional categories by Gene Ontology (GO), Clusters of orthologous Groups of proteins (COGs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression levels of 15 selected genes emblematic of symbiotic germination were confirmed via real-time quantitative PCR. These genes were classified into various categories, including defense and stress response, metabolism, transcriptional regulation, transport process and signal transduction pathways. All transcripts were upregulated in the symbiotically germinated seeds (SGS). The functions of these genes in symbiotic germination were predicted. Furthermore, two fungus-induced calcium-dependent protein kinases (CDPKs), which were upregulated 6.76- and 26.69-fold in SGS compared with un-germinated seeds (UGS), were cloned from D. officinale and characterized for the first time. This study provides the first global overview of genes putatively involved in D. officinale symbiotic seed germination and provides a foundation for further functional research regarding symbiotic relationships in orchids. PMID:23967335

  7. A Mathematical Exploration of MAP Kinase Behavior

    NASA Astrophysics Data System (ADS)

    Adams, Rhys; Balazsi, Gabor

    2008-03-01

    Mitogen-Activated Protein (MAP) kinase pathways are highly conserved from yeast to humans and are implicated in cell survival and cell death. Signaling through these pathways starts with the phosphorylation of the most upstream component (MAP kinase kinase kinase, MAPKKK), continues with phosphorylation of a MAP kinase kinase (MAPKK), and ends with phosphorylation of the target MAP kinase (MAPK). Theoretical studies over the past few decades have generated important insights into the dynamical behavior and signal processing capability of these pathways, including bistability, oscillations, signal amplification, etc. Prompted by the possibility of complex behavior in simpler signaling units than a full MAP kinase pathway, we investigate the possibility of In-Band Detection (IBD) within a single step of the cascade. We show that a basal rate of target phosphorylation can lead to IBD in a simpler system than the one described before, and define a precise relationship between the various reaction rates that is necessary to obtain IBD.

  8. MAP kinase cascades: scaffolding signal specificity.

    PubMed

    van Drogen, Frank; Peter, Matthias

    2002-01-22

    Scaffold proteins organize many MAP kinase pathways by interacting with several components of these cascades. Recent studies suggest that scaffold proteins provide local activation platforms that contribute to signal specificity by insulating different MAP kinase pathways. PMID:11818078

  9. Pressure sensor

    SciTech Connect

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  10. Corrosion sensor

    DOEpatents

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  11. Corrosion sensor

    DOEpatents

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  12. Sensor assembly

    DOEpatents

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  13. Gas Sensor

    NASA Technical Reports Server (NTRS)

    1990-01-01

    High Technology Sensors, Inc.'s Model SS-250 carbon dioxide detector uses a patented semiconductor optical source that efficiently creates infrared radiation, which is focused through an airway on a detector. Carbon dioxide passing through the airway absorbs the radiation causing the detector to generate a signal. The small size and low power requirements of the SS-250 make it attractive for incorporation in a variety of medical instruments.

  14. Chemical sensors

    DOEpatents

    Lowell, Jr., James R.; Edlund, David J.; Friesen, Dwayne T.; Rayfield, George W.

    1992-01-01

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

  15. Chemical sensors

    DOEpatents

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  16. Position sensor

    NASA Technical Reports Server (NTRS)

    Auer, Siegfried (Inventor)

    1988-01-01

    A radiant energy angle sensor is provided wherein the sensitive portion thereof comprises a pair of linear array detectors with each detector mounted normal to the other to provide X and Y channels and a pair of slits spaced from the pair of linear arrays with each of the slits positioned normal to its associated linear array. There is also provided electrical circuit means connected to the pair of linear array detectors and to separate X and Y axes outputs.

  17. Exceptional error minimization in putative primordial genetic codes

    PubMed Central

    2009-01-01

    Background The standard genetic code is redundant and has a highly non-random structure. Codons for the same amino acids typically differ only by the nucleotide in the third position, whereas similar amino acids are encoded, mostly, by codon series that differ by a single base substitution in the third or the first position. As a result, the code is highly albeit not optimally robust to errors of translation, a property that has been interpreted either as a product of selection directed at the minimization of errors or as a non-adaptive by-product of evolution of the code driven by other forces. Results We investigated the error-minimization properties of putative primordial codes that consisted of 16 supercodons, with the third base being completely redundant, using a previously derived cost function and the error minimization percentage as the measure of a code's robustness to mistranslation. It is shown that, when the 16-supercodon table is populated with 10 putative primordial amino acids, inferred from the results of abiotic synthesis experiments and other evidence independent of the code's evolution, and with minimal assumptions used to assign the remaining supercodons, the resulting 2-letter codes are nearly optimal in terms of the error minimization level. Conclusion The results of the computational experiments with putative primordial genetic codes that contained only two meaningful letters in all codons and encoded 10 to 16 amino acids indicate that such codes are likely to have been nearly optimal with respect to the minimization of translation errors. This near-optimality could be the outcome of extensive early selection during the co-evolution of the code with the primordial, error-prone translation system, or a result of a unique, accidental event. Under this hypothesis, the subsequent expansion of the code resulted in a decrease of the error minimization level that became sustainable owing to the evolution of a high-fidelity translation system

  18. M-CSF receptor mutations in hereditary diffuse leukoencephalopathy with spheroids impair not only kinase activity but also surface expression

    SciTech Connect

    Hiyoshi, Masateru; Hashimoto, Michihiro; Yukihara, Mamiko; Bhuyan, Farzana; Suzu, Shinya

    2013-11-01

    Highlights: •Many mutations were identified in Fms as a putative genetic cause of HDLS. •All of the mutations tested severely impair the kinase activity. •Most of the mutations also impair the trafficking to the cell surface. •These defects further suggest that HDLS is caused by a loss of Fms function. -- Abstract: The tyrosine kinase Fms, the cell surface receptor for M-CSF and IL-34, is critical for microglial proliferation and differentiation in the brain. Recently, a number of mutations have been identified in Fms as a putative genetic cause of hereditary diffuse leukoencephalopathy with spheroids (HDLS), implying an important role of microglial dysfunction in HDLS pathogenesis. In this study, we initially confirmed that 11 mutations, which reside within the ATP-binding or major tyrosine kinase domain, caused a severe impairment of ligand-induced Fms auto-phosphorylation. Intriguingly, we found that 10 of the 11 mutants also showed a weak cell surface expression, which was associated with a concomitant increase in the low molecular weight hypo-N-glycosylated immature gp130Fms-like species. Indeed, the mutant proteins heavily accumulated to the Golgi-like perinuclear regions. These results indicate that all of the Fms mutations tested severely impair the kinase activity and most of the mutations also impair the trafficking to the cell surface, further suggesting that HDLS is caused by the loss of Fms function.

  19. The SH3 regulatory domain of the hematopoietic cell kinase Hck binds ELMO via its polyproline motif.

    PubMed

    Awad, Rida; Sévajol, Marion; Ayala, Isabel; Chouquet, Anne; Frachet, Philippe; Gans, Pierre; Reiser, Jean-Baptiste; Kleman, Jean-Philippe

    2015-01-01

    Eukaryotic EnguLfment and cell MOtility (ELMO) proteins form an evolutionary conserved family of regulators involved in small GTPase dependent actin remodeling processes that regulates the guanine exchange factor activity of some of the Downstream Of CrK (DOCK) family members. Gathered data strongly suggest that DOCK activation by ELMO and the subsequent signaling result from a subtle balance in the binding of partners to ELMO. Among its putative upward modulators, the Hematopoietic cell kinase (Hck), a member of the Src kinase superfamily, has been identified as a binding partner and a specific tyrosine kinase for ELMO1. Indeed, Hck is implicated in distinct molecular signaling pathways governing phagocytosis, cell adhesion, and migration of hematopoietic cells. Although ELMO1 has been shown to interact with the regulatory Src Homology 3 (SH3) domain of Hck, no direct evidence indicating the mode of interaction between Hck and ELMO1 have been provided in the literature. In the present study, we report convergent pieces of evidence that demonstrate the specific interaction between the SH3 domain of Hck and the polyproline motif of ELMO1. Our results also suggest that the tyrosine-phosphorylation state of ELMO1 tail might act as a putative modulator of Hck kinase activity towards ELMO1 that in turn participates in DOCK180 activation and further triggers subsequent signaling towards actin remodeling. PMID:25737835

  20. The SH3 regulatory domain of the hematopoietic cell kinase Hck binds ELMO via its polyproline motif

    PubMed Central

    Awad, Rida; Marion, Sévajol; Isabel, Ayala; Anne, Chouquet; Philippe, Frachet; Pierre, Gans; Jean-Baptiste, Reiser; Jean-Philippe, Kleman

    2015-01-01

    Eukaryotic EnguLfment and cell MOtility (ELMO) proteins form an evolutionary conserved family of regulators involved in small GTPase dependent actin remodeling processes that regulates the guanine exchange factor activity of some of the Downstream Of CrK (DOCK) family members. Gathered data strongly suggest that DOCK activation by ELMO and the subsequent signaling result from a subtle balance in the binding of partners to ELMO. Among its putative upward modulators, the Hematopoietic cell kinase (Hck), a member of the Src kinase superfamily, has been identified as a binding partner and a specific tyrosine kinase for ELMO1. Indeed, Hck is implicated in distinct molecular signaling pathways governing phagocytosis, cell adhesion, and migration of hematopoietic cells. Although ELMO1 has been shown to interact with the regulatory Src Homology 3 (SH3) domain of Hck, no direct evidence indicating the mode of interaction between Hck and ELMO1 have been provided in the literature. In the present study, we report convergent pieces of evidence that demonstrate the specific interaction between the SH3 domain of Hck and the polyproline motif of ELMO1. Our results also suggest that the tyrosine-phosphorylation state of ELMO1 tail might act as a putative modulator of Hck kinase activity towards ELMO1 that in turn participates in DOCK180 activation and further triggers subsequent signaling towards actin remodeling. PMID:25737835

  1. In Vivo Inhibition of RIPK2 Kinase Alleviates Inflammatory Disease*

    PubMed Central

    Tigno-Aranjuez, Justine T.; Benderitter, Pascal; Rombouts, Frederik; Deroose, Frederik; Bai, XiaoDong; Mattioli, Benedetta; Cominelli, Fabio; Pizarro, Theresa T.; Hoflack, Jan; Abbott, Derek W.

    2014-01-01

    The RIPK2 kinase transduces signaling downstream of the intracellular peptidoglycan sensors NOD1 and NOD2 to promote a productive inflammatory response. However, excessive NOD2 signaling has been associated with numerous diseases, including inflammatory bowel disease (IBD), sarcoidosis and inflammatory arthritis, making pharmacologic inhibition of RIPK2 an appealing strategy. In this work, we report the generation, identification, and evaluation of novel RIPK2 specific inhibitors. These compounds potently inhibit the RIPK2 tyrosine kinase activity in in vitro biochemical assays and cellular assays, as well as effectively reduce RIPK2-mediated effects in an in vivo peritonitis model. In conjunction with the development of these inhibitors, we have also defined a panel of genes whose expression is regulated by RIPK2 kinase activity. Such RIPK2 activation markers may serve as a useful tool for predicting settings likely to benefit from RIPK2 inhibition. Using these markers and the FDA-approved RIPK2 inhibitor Gefitinib, we show that pharmacologic RIPK2 inhibition drastically improves disease in a spontaneous model of Crohn Disease-like ileitis. Furthermore, using novel RIPK2-specific inhibitors, we show that cellular recruitment is inhibited in an in vivo peritonitis model. Altogether, the data presented in this work provides a strong rationale for further development and optimization of RIPK2-targeted pharmaceuticals and diagnostics. PMID:25213858

  2. Cell fate regulation governed by a repurposed bacterial histidine kinase

    SciTech Connect

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; Mathews, Irimpan I.; Blair, Jimmy A.; Deacon, Ashley M.; Shapiro, Lucy; Stock, Ann M.

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.

  3. Cell Fate Regulation Governed by a Repurposed Bacterial Histidine Kinase

    PubMed Central

    Mann, Thomas H.; Mathews, Irimpan I.; Blair, Jimmy A.; Deacon, Ashley M.; Shapiro, Lucy

    2014-01-01

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK∼P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation. PMID:25349992

  4. Cell fate regulation governed by a repurposed bacterial histidine kinase

    DOE PAGESBeta

    Childers, W. Seth; Xu, Qingping; Mann, Thomas H.; Mathews, Irimpan I.; Blair, Jimmy A.; Deacon, Ashley M.; Shapiro, Lucy; Stock, Ann M.

    2014-10-28

    One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK~P over DivK, which is modulated by an allosteric intramolecular interactionmore » between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.« less

  5. A comprehensive protein–protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1

    PubMed Central

    DeMille, Desiree; Bikman, Benjamin T.; Mathis, Andrew D.; Prince, John T.; Mackay, Jordan T.; Sowa, Steven W.; Hall, Tacie D.; Grose, Julianne H.

    2014-01-01

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein–protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase–deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. PMID:24850888

  6. An Asymmetry-to-Symmetry Switch in Signal Transmission by the Histidine Kinase Receptor for TMAO

    SciTech Connect

    Moore, Jason O.; Hendrickson, Wayne A.

    2012-06-28

    The osmoregulator trimethylamine-N-oxide (TMAO), commonplace in aquatic organisms, is used as the terminal electron acceptor for respiration in many bacterial species. The TMAO reductase (Tor) pathway for respiratory catalysis is controlled by a receptor system that comprises the TMAO-binding protein TorT, the sensor histidine kinase TorS, and the response regulator TorR. Here we study the TorS/TorT sensor system to gain mechanistic insight into signaling by histidine kinase receptors. We determined crystal structures for complexes of TorS sensor domains with apo TorT and with TorT (TMAO); we characterized TorS sensor associations with TorT in solution; we analyzed the thermodynamics of TMAO binding to TorT-TorS complexes; and we analyzed in vivo responses to TMAO through the TorT/TorS/TorR system to test structure-inspired hypotheses. TorS-TorT(apo) is an asymmetric 2:2 complex that binds TMAO with negative cooperativity to form a symmetric active kinase.

  7. An Asymmetry-to-Symmetry Switch in Signal Transmission by the Histidine Kinase Receptor for TMAO

    PubMed Central

    Moore, Jason O.; Hendrickson, Wayne A.

    2012-01-01

    Summary The osmoregulator trimethylamine-N-oxide (TMAO), commonplace in aquatic organisms, is used as the terminal electron acceptor for respiration in many bacterial species. The TMAO reductase (Tor) pathway for respiratory catalysis is controlled by a receptor system that comprises the TMAO-binding protein TorT, the sensor histidine kinase TorS and the response regulator TorR. Here we study the TorS/TorT sensor system to gain mechanistic insight into signaling by histidine kinase receptors. We determined crystal structures for complexes of TorS sensor domains with apo TorT and with TorT(TMAO); we characterized TorS sensor associations with TorT in solution; we analyzed the thermodynamics of TMAO binding to TorT-TorS complexes; and we analyzed in vivo responses to TMAO through the TorT/TorS/TorR system to test structure-inspired hypotheses. TorS-TorT(apo) is an asymmetric 2:2 complex that binds TMAO with negative cooperativity to form a symmetric active kinase. PMID:22483119

  8. Putative Genes Involved in Saikosaponin Biosynthesis in Bupleurum Species

    PubMed Central

    Lin, Tsai-Yun; Chiou, Chung-Yi; Chiou, Shu-Jiau

    2013-01-01

    Alternative medicinal agents, such as the herb Bupleurum, are increasingly used in modern medicine to supplement synthetic drugs. First, we present a review of the currently known effects of triterpene saponins-saikosaponins of Bupleurum species. The putative biosynthetic pathway of saikosaponins in Bupleurum species is summarized, followed by discussions on identification and characterization of genes involved in the biosynthesis of saikosaponins. The purpose is to provide a brief review of gene extraction, functional characterization of isolated genes and assessment of expression patterns of genes encoding enzymes in the process of saikosaponin production in Bupleurum species, mainly B. kaoi. We focus on the effects of MeJA on saikosaponin production, transcription patterns of genes involved in biosynthesis and on functional depiction. PMID:23783277

  9. Mycobacteriophage putative GTPase-activating protein can potentiate antibiotics.

    PubMed

    Yan, Shuangquan; Xu, Mengmeng; Duan, Xiangke; Yu, Zhaoxiao; Li, Qiming; Xie, Longxiang; Fan, Xiangyu; Xie, Jianping

    2016-09-01

    The soaring incidences of infection by antimicrobial resistant (AR) pathogens and shortage of effective antibiotics with new mechanisms of action have renewed interest in phage therapy. This scenario is exemplified by resistant tuberculosis (TB), caused by resistant Mycobacterium tuberculosis. Mycobacteriophage SWU1 A321_gp67 encodes a putative GTPase-activating protein. Mycobacterium smegmatis with gp67 overexpression showed changed colony formation and biofilm morphology and supports the efficacy of streptomycin and capreomycin against Mycobacterium. gp67 down-regulated the transcription of genes involved in cell wall and biofilm development. To our knowledge, this is the first report to show that phage protein in addition to lysin or recombination components can synergize with existing antibiotics. Phage components might represent a promising new clue for better antibiotic potentiators. PMID:27345061

  10. Putative regulatory factors associated with intramuscular fat content.

    PubMed

    Cesar, Aline S M; Regitano, Luciana C A; Koltes, James E; Fritz-Waters, Eric R; Lanna, Dante P D; Gasparin, Gustavo; Mourão, Gerson B; Oliveira, Priscila S N; Reecy, James M; Coutinho, Luiz L

    2015-01-01

    Intramuscular fat (IMF) content is related to insulin resistance, which is an important prediction factor for disorders, such as cardiovascular disease, obesity and type 2 diabetes in human. At the same time, it is an economically important trait, which influences the sensorial and nutritional value of meat. The deposition of IMF is influenced by many factors such as sex, age, nutrition, and genetics. In this study Nellore steers (Bos taurus indicus subspecies) were used to better understand the molecular mechanisms involved in IMF content. This was accomplished by identifying differentially expressed genes (DEG), biological pathways and putative regulatory factors. Animals included in this study had extreme genomic estimated breeding value (GEBV) for IMF. RNA-seq analysis, gene set enrichment analysis (GSEA) and co-expression network methods, such as partial correlation coefficient with information theory (PCIT), regulatory impact factor (RIF) and phenotypic impact factor (PIF) were utilized to better understand intramuscular adipogenesis. A total of 16,101 genes were analyzed in both groups (high (H) and low (L) GEBV) and 77 DEG (FDR 10%) were identified between the two groups. Pathway Studio software identified 13 significantly over-represented pathways, functional classes and small molecule signaling pathways within the DEG list. PCIT analyses identified genes with a difference in the number of gene-gene correlations between H and L group and detected putative regulatory factors involved in IMF content. Candidate genes identified by PCIT include: ANKRD26, HOXC5 and PPAPDC2. RIF and PIF analyses identified several candidate genes: GLI2 and IGF2 (RIF1), MPC1 and UBL5 (RIF2) and a host of small RNAs, including miR-1281 (PIF). These findings contribute to a better understanding of the molecular mechanisms that underlie fat content and energy balance in muscle and provide important information for the production of healthier beef for human consumption. PMID:26042666

  11. Putative Regulatory Factors Associated with Intramuscular Fat Content

    PubMed Central

    Cesar, Aline S. M.; Regitano, Luciana C. A.; Koltes, James E.; Fritz-Waters, Eric R.; Lanna, Dante P. D.; Gasparin, Gustavo; Mourão, Gerson B.; Oliveira, Priscila S. N.; Reecy, James M.; Coutinho, Luiz L.

    2015-01-01

    Intramuscular fat (IMF) content is related to insulin resistance, which is an important prediction factor for disorders, such as cardiovascular disease, obesity and type 2 diabetes in human. At the same time, it is an economically important trait, which influences the sensorial and nutritional value of meat. The deposition of IMF is influenced by many factors such as sex, age, nutrition, and genetics. In this study Nellore steers (Bos taurus indicus subspecies) were used to better understand the molecular mechanisms involved in IMF content. This was accomplished by identifying differentially expressed genes (DEG), biological pathways and putative regulatory factors. Animals included in this study had extreme genomic estimated breeding value (GEBV) for IMF. RNA-seq analysis, gene set enrichment analysis (GSEA) and co-expression network methods, such as partial correlation coefficient with information theory (PCIT), regulatory impact factor (RIF) and phenotypic impact factor (PIF) were utilized to better understand intramuscular adipogenesis. A total of 16,101 genes were analyzed in both groups (high (H) and low (L) GEBV) and 77 DEG (FDR 10%) were identified between the two groups. Pathway Studio software identified 13 significantly over-represented pathways, functional classes and small molecule signaling pathways within the DEG list. PCIT analyses identified genes with a difference in the number of gene-gene correlations between H and L group and detected putative regulatory factors involved in IMF content. Candidate genes identified by PCIT include: ANKRD26, HOXC5 and PPAPDC2. RIF and PIF analyses identified several candidate genes: GLI2 and IGF2 (RIF1), MPC1 and UBL5 (RIF2) and a host of small RNAs, including miR-1281 (PIF). These findings contribute to a better understanding of the molecular mechanisms that underlie fat content and energy balance in muscle and provide important information for the production of healthier beef for human consumption. PMID:26042666

  12. The Putative Use of Lithium in Alzheimer's Disease.

    PubMed

    Morris, Gerwyn; Berk, Michael

    2016-01-01

    Alzheimer`s disease is a progressive neurodegenerative illness characterized by the invariant existence of β-amyloid plaques and neurofibrillary tangles. Presently approved pharmaceutical approaches offer only marginal efficacy and as yet there is no effective treatment which reverses or arrests the disease. Thus far, drugs targeting any single aspect of disease pathology have proved to be a failure or at best provided very slight clinical benefit. The consistent failure of drugs targeting aspects of the Aβ cascade has questioned the causal role of this pathway. There is a growing appreciation that the pathogenesis of the illness is multifactorial with Amyloid Beta, Phosphorylated Tau (ptau), inflammation, mitochondrial dysfunction, calcium dyshomeostasis, heavy metal imbalances, and GSK-3 interact in a highly complex manner to provoke a selfsustaining spiraling cascade of pathology, driving disease progression. In the light of such complex pathology, the failure of drugs aimed a targeting single molecules is not surprising as such approaches are usually ineffective against other complex diseases with a multifactorial pathogenesis. Combination therapies or multi target drugs might be more effective in controlling such illnesses. The putative neuroprotective effects of Lithium are achieved via the positive modulation of numerous homeostatic mechanisms regulating autophagy, oxidative stress, inflammation, and mitochondrial dysfunction likely achieved by inhibiting GSK-3 and inositol-145 triphosphate. Data regarding efficacy in human trials and animal models of AD are mixed, but recent data using "microdose" lithium in mild cognitive impairment is encouraging, hence lithium could be a putative multi target treatment in these patients. However, additional well designed long-term trials are needed to confirm its efficacy and safety, given that long term use is necessary to achieve reasonable therapeutic benefit. PMID:26892287

  13. Are Putative Periodontal Pathogens Reliable Diagnostic Markers?▿

    PubMed Central

    Riep, Birgit; Edesi-Neuß, Lilian; Claessen, Friderike; Skarabis, Horst; Ehmke, Benjamin; Flemmig, Thomas F.; Bernimoulin, Jean-Pierre; Göbel, Ulf B.; Moter, Annette

    2009-01-01

    Periodontitis is one of the most common chronic inflammatory diseases. A number of putative bacterial pathogens have been associated with the disease and are used as diagnostic markers. In the present study, we compared the prevalence of oral bacterial species in the subgingival biofilm of generalized aggressive periodontitis (GAP) (n = 44) and chronic periodontitis (CP) (n = 46) patients with that of a periodontitis-resistant control group (PR) (n = 21). The control group consisted of subjects at least 65 years of age with only minimal or no periodontitis and no history of periodontal treatment. A total of 555 samples from 111 subjects were included in this study. The samples were analyzed by PCR of 16S rRNA gene fragments and subsequent dot blot hybridization using oligonucleotide probes specific for Aggregatibacter (Actinobacillus) actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, a Treponema denticola-like phylogroup (Treponema phylogroup II), Treponema lecithinolyticum, Campylobacter rectus, Fusobacterium spp., and Fusobacterium nucleatum, as well as Capnocytophaga ochracea. Our data confirm a high prevalence of the putative periodontal pathogens P. gingivalis, P. intermedia, and T. forsythia in the periodontitis groups. However, these species were also frequently detected in the PR group. For most of the species tested, the prevalence was more associated with increased probing depth than with the subject group. T. lecithinolyticum was the only periodontopathogenic species showing significant differences both between GAP and CP patients and between GAP patients and PR subjects. C. ochracea was associated with the PR subjects, regardless of the probing depth. These results indicate that T. lecithinolyticum may be a diagnostic marker for GAP and C. ochracea for periodontal health. They also suggest that current presumptions of the association of specific bacteria with periodontal health and disease require further

  14. Astrocytes in the optic nerve head express putative mechanosensitive channels

    PubMed Central

    Choi, Hee Joo; Sun, Daniel

    2015-01-01

    Purpose To establish whether optic nerve head astrocytes express candidate molecules to sense tissue stretch. Methods We used conventional PCR, quantitative PCR, and single-cell reverse transcription PCR (RT–PCR) to assess the expression of various members of the transient receptor potential (TRP) channel family and of the recently characterized mechanosensitive channels Piezo1 and 2 in optic nerve head tissue and in single, isolated astrocytes. Results Most TRP subfamilies (TRPC, TRPM, TRPV, TRPA, and TRPP) and Piezo1 and 2 were expressed in the optic nerve head of the mouse. Quantitative real-time PCR analysis showed that TRPC1, TRPM7, TRPV2, TRPP2, and Piezo1 are the dominant isoforms in each subfamily. Single-cell RT–PCR revealed that many TRP isoforms, TRPC1–2, TRPC6, TRPV2, TRPV4, TRPM2, TRPM4, TRPM6–7, TRPP1–2, and Piezo1–2, are expressed in astrocytes of the optic nerve head, and that most astrocytes express TRPC1 and TRPP1–2. Comparisons of the TRPP and Piezo expression levels between different tissue regions showed that Piezo2 expression was higher in the optic nerve head and the optic nerve proper than in the brain and the corpus callosum. TRPP2 also showed higher expression in the optic nerve head. Conclusions Astrocytes in the optic nerve head express multiple putative mechanosensitive channels, in particular the recently identified channels Piezo1 and 2. The expression of putative mechanosensitive channels in these cells may contribute to their responsiveness to traumatic or glaucomatous injury. PMID:26236150

  15. Cryptic Species in Putative Ancient Asexual Darwinulids (Crustacea, Ostracoda)

    PubMed Central

    Schön, Isa; Pinto, Ricardo L.; Halse, Stuart; Smith, Alison J.; Martens, Koen; Birky, C. William

    2012-01-01

    Background Fully asexually reproducing taxa lack outcrossing. Hence, the classic Biological Species Concept cannot be applied. Methodology/Principal Findings We used DNA sequences from the mitochondrial COI gene and the nuclear ITS2 region to check species boundaries according to the evolutionary genetic (EG) species concept in five morphospecies in the putative ancient asexual ostracod genera, Penthesilenula and Darwinula, from different continents. We applied two methods for detecting cryptic species, namely the K/θ method and the General Mixed Yule Coalescent model (GMYC). We could confirm the existence of species in all five darwinulid morphospecies and additional cryptic diversity in three morphospecies, namely in Penthesilenula brasiliensis, Darwinula stevensoni and in P. aotearoa. The number of cryptic species within one morphospecies varied between seven (P. brasiliensis), five to six (D. stevensoni) and two (P. aotearoa), respectively, depending on the method used. Cryptic species mainly followed continental distributions. We also found evidence for coexistence at the local scale for Brazilian cryptic species of P. brasiliensis and P. aotearoa. Our ITS2 data confirmed that species exist in darwinulids but detected far less EG species, namely two to three cryptic species in P. brasiliensis and no cryptic species at all in the other darwinulid morphospecies. Conclusions/Significance Our results clearly demonstrate that both species and cryptic diversity can be recognized in putative ancient asexual ostracods using the EG species concept, and that COI data are more suitable than ITS2 for this purpose. The discovery of up to eight cryptic species within a single morphospecies will significantly increase estimates of biodiversity in this asexual ostracod group. Which factors, other than long-term geographic isolation, are important for speciation processes in these ancient asexuals remains to be investigated. PMID:22802945

  16. A novel calmodulin-β-PIX interaction and its implication in receptor tyrosine kinase regulation.

    PubMed

    Singh, Vinay K; Munro, Kim; Jia, Zongchao

    2012-09-01

    Calmodulin (CaM), a ubiquitous calcium-binding protein, regulates numerous cellular processes, primarily in response to calcium flux. We have identified and characterized a novel interaction between CaM and β-p21-activated kinase interacting exchange factor (β-PIX), a putative guanine exchange factor implicated in cell signaling, using affinity pull-down assays, co-immunoprecipitation, co-localization and circular dichroism studies. Fluorescence-based titration and isothermal titration calorimetry experiments revealed a Ca(2+)-dependent binding mechanism (K(D)≤10μM). Further, we show that CaM participates in a multi-protein complex involving β-PIX and E3 ubiquitin ligase c-Cbl (casitas B-cell lymphoma), which may play a critical role in receptor tyrosine kinase regulation and downstream signaling. PMID:22588125

  17. New partners and phosphorylation sites of focal adhesion kinase identified by mass spectrometry.

    PubMed

    Masdeu, Maria del Mar; Armendáriz, Beatriz G; Soriano, Eduardo; Ureña, Jesús Mariano; Burgaya, Ferran

    2016-07-01

    The regulation of focal adhesion kinase (FAK) involves phosphorylation and multiple interactions with other signaling proteins. Some of these pathways are relevant for nervous system functions such as branching, axonal guidance, and plasticity. In this study, we screened mouse brain to identify FAK-interactive proteins and phosphorylatable residues as a first step to address the neuronal functions of this kinase. Using mass spectrometry analysis, we identified new phosphorylated sites (Thr 952, Thr 1048, and Ser 1049), which lie in the FAT domain; and putative new partners for FAK, which include cytoskeletal proteins such as drebrin and MAP 6, adhesion regulators such as neurabin-2 and plakophilin 1, and synapse-associated proteins such as SynGAP and a NMDA receptor subunit. Our findings support the participation of brain-localized FAK in neuronal plasticity. PMID:27033120

  18. Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential.

    PubMed

    Wehenkel, Annemarie; Bellinzoni, Marco; Graña, Martin; Duran, Rosario; Villarino, Andrea; Fernandez, Pablo; Andre-Leroux, Gwénaëlle; England, Patrick; Takiff, Howard; Cerveñansky, Carlos; Cole, Stewart T; Alzari, Pedro M

    2008-01-01

    Reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes, not only in eukaryotes but also in bacteria. A growing body of evidence suggests that Ser/Thr phosphorylation play important roles in the physiology and virulence of Mycobacterium tuberculosis, the etiological agent of tuberculosis. This pathogen uses 'eukaryotic-like' Ser/Thr protein kinases and phosphatases not only to regulate many intracellular metabolic processes, but also to interfere with signaling pathways of the infected host cell. Disrupting such processes by means of selective inhibitors may thus provide new pharmaceutical weapons to combat the disease. Here we review the current knowledge on Ser/Thr protein kinases and phosphatases in M. tuberculosis, their regulation mechanisms and putative substrates, and we explore their therapeutic potential as possible targets for the development of new anti-mycobacterial compounds. PMID:17869195

  19. Protein kinase A dependent membrane protein phosphorylation and chloride conductance in endosomal vesicles from kidney cortex

    SciTech Connect

    Reenstra, W.W.; Bae, H.R.; Verkman, A.S. Univ. of California, San Francisco ); Sabolic, I. Harvard Medical School, Charlestown, MA )

    1992-01-14

    Regulation of Cl conductance by protein kinase A action, cell-free measurements of Cl transport and membrane protein phosphorylation were carried out in apical endocytic vesicles from rabbit kidney proximal tubule. Cl transport was measured by a stopped-flow quenching assay in endosomes labeled in vivo with the fluorescent Cl indicator 6-methoxy-N-(3-sulfopropyl)quinolinium. Phosphorylation was studied in a purified endosomal preparation by SDS-PAGE and autoradiography of membrane proteins labeled by ({gamma}-{sup 32}P)ATP. These results suggest that, in a cell-free system, protein kinase A increases Cl conductance in endosomes from kidney proximal tubule by a phosphorylation mechanism. The labeled protein has a size similar to that of the 64-kDa putative kidney Cl channel reported by Landry et al. but is much smaller than the {approximately}170-kDa cystic fibrosis transmembrane conductance regulatory protein.

  20. Attenuation of pattern recognition receptor signaling is mediated by a MAP kinase kinase kinase.

    PubMed

    Mithoe, Sharon C; Ludwig, Christina; Pel, Michiel J C; Cucinotta, Mara; Casartelli, Alberto; Mbengue, Malick; Sklenar, Jan; Derbyshire, Paul; Robatzek, Silke; Pieterse, Corné M J; Aebersold, Ruedi; Menke, Frank L H

    2016-03-01

    Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN-SENSITIVE 2 (FLS2) induces the activation of mitogen-activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin-triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7-mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex. PMID:26769563

  1. Src kinase regulation by phosphorylation and dephosphorylation

    SciTech Connect

    Roskoski, Robert . E-mail: biocrr@lsuhsc.edu

    2005-05-27

    Src and Src-family protein-tyrosine kinases are regulatory proteins that play key roles in cell differentiation, motility, proliferation, and survival. The initially described phosphorylation sites of Src include an activating phosphotyrosine 416 that results from autophosphorylation, and an inhibiting phosphotyrosine 527 that results from phosphorylation by C-terminal Src kinase (Csk) and Csk homologous kinase. Dephosphorylation of phosphotyrosine 527 increases Src kinase activity. Candidate phosphotyrosine 527 phosphatases include cytoplasmic PTP1B, Shp1 and Shp2, and transmembrane enzymes include CD45, PTP{alpha}, PTP{epsilon}, and PTP{lambda}. Dephosphorylation of phosphotyrosine 416 decreases Src kinase activity. Thus far PTP-BL, the mouse homologue of human PTP-BAS, has been shown to dephosphorylate phosphotyrosine 416 in a regulatory fashion. The platelet-derived growth factor receptor protein-tyrosine kinase mediates the phosphorylation of Src Tyr138; this phosphorylation has no direct effect on Src kinase activity. The platelet-derived growth factor receptor and the ErbB2/HER2 growth factor receptor protein-tyrosine kinases mediate the phosphorylation of Src Tyr213 and activation of Src kinase activity. Src kinase is also a substrate for protein-serine/threonine kinases including protein kinase C (Ser12), protein kinase A (Ser17), and CDK1/cdc2 (Thr34, Thr46, and Ser72). Of the three protein-serine/threonine kinases, only phosphorylation by CDK1/cdc2 has been demonstrated to increase Src kinase activity. Although considerable information on the phosphoprotein phosphatases that catalyze the hydrolysis of Src phosphotyrosine 527 is at hand, the nature of the phosphatases that mediate the hydrolysis of phosphotyrosine 138 and 213, and phosphoserine and phosphothreonine residues has not been determined.

  2. Bistability of a coupled Aurora B kinase-phosphatase system in cell division

    PubMed Central

    Zaytsev, Anatoly V; Segura-Peña, Dario; Godzi, Maxim; Calderon, Abram; Ballister, Edward R; Stamatov, Rumen; Mayo, Alyssa M; Peterson, Laura; Black, Ben E; Ataullakhanov, Fazly I; Lampson, Michael A; Grishchuk, Ekaterina L

    2016-01-01

    Aurora B kinase, a key regulator of cell division, localizes to specific cellular locations, but the regulatory mechanisms responsible for phosphorylation of substrates located remotely from kinase enrichment sites are unclear. Here, we provide evidence that this activity at a distance depends on both sites of high kinase concentration and the bistability of a coupled kinase-phosphatase system. We reconstitute this bistable behavior and hysteresis using purified components to reveal co-existence of distinct high and low Aurora B activity states, sustained by a two-component kinase autoactivation mechanism. Furthermore, we demonstrate these non-linear regimes in live cells using a FRET-based phosphorylation sensor, and provide a mechanistic theoretical model for spatial regulation of Aurora B phosphorylation. We propose that bistability of an Aurora B-phosphatase system underlies formation of spatial phosphorylation patterns, which are generated and spread from sites of kinase autoactivation, thereby regulating cell division. DOI: http://dx.doi.org/10.7554/eLife.10644.001 PMID:26765564

  3. The JAK kinases: not just another kinase drug discovery target.

    PubMed

    Wilks, Andrew F

    2008-08-01

    There are four members of the JAK family of protein tyrosine kinases (PTKs) in the human genome. Since their discovery in 1989, great strides have been made in the understanding of their role in normal intracellular signalling. Importantly, their roles in pathologies ranging from cancer to immune deficiencies have placed them front and centre as potential drug targets. The recent discovery of the role of activating mutations in the kinase-like domain (KLD) of JAK2 in the development of polycythemia rubra vera, and the elaboration of KLD mutation as a broader mechanism by which cells might become hyperproliferative has sparked enormous interest in the development of JAK selective drug candidates. I review herein the progress that has been made in the discovery of JAK-targeted inhibitors, and discuss the challenges that face the development of these drugs for use in the clinic. PMID:18721891

  4. Protein Kinase A: A Master Kinase of Granulosa Cell Differentiation

    PubMed Central

    Puri, Pawan; Little-Ihrig, Lynda; Chandran, Uma; Law, Nathan C.; Hunzicker-Dunn, Mary; Zeleznik, Anthony J.

    2016-01-01

    Activation of protein kinase A (PKA) by follicle stimulating hormone (FSH) transduces the signal that drives differentiation of ovarian granulosa cells (GCs). An unresolved question is whether PKA is sufficient to initiate the complex program of GC responses to FSH. We compared signaling pathways and gene expression profiles of GCs stimulated with FSH or expressing PKA-CQR, a constitutively active mutant of PKA. Both FSH and PKA-CQR stimulated the phosphorylation of proteins known to be involved in GC differentiation including CREB, ß-catenin, AKT, p42/44 MAPK, GAB2, GSK-3ß, FOXO1, and YAP. In contrast, FSH stimulated the phosphorylation of p38 MAP kinase but PKA-CQR did not. Microarray analysis revealed that 85% of transcripts that were up-regulated by FSH were increased to a comparable extent by PKA-CQR and of the transcripts that were down-regulated by FSH, 76% were also down-regulated by PKA-CQR. Transcripts regulated similarly by FSH and PKA-CQR are involved in steroidogenesis and differentiation, while transcripts more robustly up-regulated by PKA-CQR are involved in ovulation. Thus, PKA, under the conditions of our experimental approach appears to function as a master upstream kinase that is sufficient to initiate the complex pattern of intracellular signaling pathway and gene expression profiles that accompany GC differentiation. PMID:27324437

  5. Cloning and expression analyses of Sucrose non-fermenting-1-Related Kinase 1 (SnRK1b) gene during development of sorghum and maize endosperm, and its implicated role in sugar-to-starch metabolic transition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A full-length cDNA clone, SbSnRK1b (1530 bp, GenBank accession no. EF544393), encoding a putative serine/threonine protein kinase homologue of yeast (Saccharomyces cerevisiae) SNF1, was isolated from developing endosperm of sorghum [Sorghum bicolor (Moench) L.]. Multiple sequence alignment data show...

  6. Influenza sensor

    DOEpatents

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2003-09-30

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  7. Influenza Sensor

    DOEpatents

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2006-03-28

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  8. Influenza Sensor

    DOEpatents

    Swanson, Basil I.; Song, Xuedong; Unkefer, Clifford; Silks, III, Louis A.; Schmidt, Jurgen G.

    2005-05-17

    A sensor for the detection of tetrameric multivalent neuraminidase within a sample is disclosed, where a positive detection indicates the presence of a target virus within the sample. Also disclosed is a trifunctional composition of matter including a trifunctional linker moiety with groups bonded thereto including (a) an alkyl chain adapted for attachment to a substrate, (b) a fluorescent moiety capable of generating a fluorescent signal, and (c) a recognition moiety having a spacer group of a defined length thereon, the recognition moiety capable of binding with tetrameric multivalent neuraminidase.

  9. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  10. Activation of phosphatidylinositol 3-kinase by insulin.

    PubMed Central

    Ruderman, N B; Kapeller, R; White, M F; Cantley, L C

    1990-01-01

    Insulin action appears to require the protein-tyrosine kinase domain of the beta subunit of the insulin receptor. Despite this, the identities and biochemical functions of the cellular targets of this tyrosine kinase are unknown. A phosphatidylinositol 3-kinase (PI 3-kinase) that phosphorylates the D-3 position of the inositol ring associates with several protein-tyrosine kinases. Here we report that PI 3-kinase activity is immunoprecipitated from insulin-stimulated CHO cells by antiphosphotyrosine and anti-insulin receptor antibodies. Insulin as low as 0.3 nM increased immunoprecipitable PI 3-kinase activity within 1 min. Increases in activity were much greater in CHO cells expressing the human insulin receptor (100,000 receptors per cell) than in control CHO cells (2000 receptors per cell). During insulin stimulation, various lipid products of the PI 3-kinase either appeared or increased in quantity in intact cells, suggesting that the appearance of immunoprecipitable PI 3-kinase reflects an increase in its activity in vivo. These results indicate that insulin at physiological concentrations regulates the PI 3-kinase and suggest that this regulation involves a physical association between the insulin receptor and the PI 3-kinase and tyrosyl phosphorylation. Images PMID:2154747

  11. Regulation and function of yeast PAS kinase

    PubMed Central

    Grose, Julianne H.; Sundwall, Eleanor; Rutter, Jared

    2016-01-01

    The inability to coordinate cellular metabolic processes with the cellular and organismal nutrient environment leads to a variety of disorders, including diabetes and obesity. Nutrient-sensing protein kinases, such as AMPK and mTOR, play a pivotal role in metabolic regulation and are promising therapeutic targets for the treatment of disease. In this Extra View, we describe another member of the nutrient-sensing protein kinase group, PAS kinase, which plays a role in the regulation of glucose utilization in both mammals and yeast. PAS kinase deficient mice are resistant to high fat diet-induced weight gain, insulin resistance and hepatic triglyceride hyperaccumulation, suggesting a role for PAS kinase in the regulation of glucose and lipid metabolism in mammals. Likewise, PAS kinase deficient yeast display altered glucose partitioning, favoring glycogen biosynthesis at the expense of cell wall biosynthesis. As a result, PAS kinase deficient yeast are sensitive to cell wall perturbing agents. This partitioning of glucose in response to PAS kinase activation is due to phosphorylation of Ugp1, the enzyme primarily responsible for UDP-glucose production. The two yeast PAS kinase homologs, Psk1 and Psk2, are activated by two stimuli, cell integrity stress and nonfermentative carbon sources. We review what is known about yeast PAS kinase and describe a genetic screen that may help elucidate pathways involved in PAS kinase activation and function. PMID:19440050

  12. Design of Targeted Inhibitors of Polo-like Kinase 1 (Plk1)

    NASA Astrophysics Data System (ADS)

    Dalafave, D. S.

    2011-03-01

    Computational design of small molecule inhibitors of Polo-like Kinase 1 (Plk1) is presented. Plk1, which regulates cell cycle, is often overexpressed in cancers. Its downregulation was shown to inhibit cancer progression. Most inhibitors of kinases' interact with the highly conserved ATP binding site. This makes the development of Plk1-specific inhibitors challenging, since different kinases have similar ATP sites. However, Plk1 also contains the polo-box domain (PBD), which is absent from other kinases. In this study, the PBD site was used as a target for designed Plk1 inhibitors. Common structural features of experimentally known Plk1 ligands were first identified. The information was used to design putative small molecules that specifically bonded Plk1. Druglikeness and possible toxicities of the designed molecules were determined. Molecules with no implied toxicities and optimal druglikeness were used for docking studies. The docking studies identified several molecules that made stable complexes with the Plk1 PBD site. Possible utilization of the designed molecules in drugs against cancers with overexpressed Plk1 is discussed.

  13. Intra- and Interprotein Phosphorylation between Two-hybrid Histidine Kinases Controls Myxococcus xanthus Developmental Progression*

    PubMed Central

    Schramm, Andreas; Lee, Bongsoo; Higgs, Penelope I.

    2012-01-01

    Histidine-aspartate phosphorelay signaling systems are used to couple stimuli to cellular responses. A hallmark feature is the highly modular signal transmission modules that can form both simple “two-component” systems and sophisticated multicomponent systems that integrate stimuli over time and space to generate coordinated and fine-tuned responses. The deltaproteobacterium Myxococcus xanthus contains a large repertoire of signaling proteins, many of which regulate its multicellular developmental program. Here, we assign an orphan hybrid histidine protein kinase, EspC, to the Esp signaling system that negatively regulates progression through the M. xanthus developmental program. The Esp signal system consists of the hybrid histidine protein kinase, EspA, two serine/threonine protein kinases, and a putative transport protein. We demonstrate that EspC is an essential component of this system because ΔespA, ΔespC, and ΔespA ΔespC double mutants share an identical developmental phenotype. Neither substitution of the phosphoaccepting histidine residue nor deletion of the entire catalytic ATPase domain in EspC produces an in vivo mutant developmental phenotype. In contrast, substitution of the receiver phosphoaccepting residue yields the null phenotype. Although the EspC histidine kinase can efficiently autophosphorylate in vitro, it does not act as a phosphodonor to its own receiver domain. Our in vitro and in vivo analyses suggest the phosphodonor is instead the EspA histidine kinase. We propose EspA and EspC participate in a novel hybrid histidine protein kinase signaling mechanism involving both inter- and intraprotein phosphotransfer. The output of this signaling system appears to be the combined phosphorylated state of the EspA and EspC receiver modules. This system regulates the proteolytic turnover of MrpC, an important regulator of the developmental program. PMID:22661709

  14. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    SciTech Connect

    Li, Feifei; Jiang, Yinan; Zheng, Qiping; Yang, Xiaoming; Wang, Siying

    2011-01-07

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involved in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.

  15. Microcantilever sensor

    DOEpatents

    Thundat, Thomas G.; Wachter, Eric A.

    1998-01-01

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere.

  16. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  17. Force sensor

    DOEpatents

    Grahn, Allen R.

    1993-01-01

    A force sensor and related method for determining force components. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  18. Force sensor

    DOEpatents

    Grahn, A.R.

    1993-05-11

    A force sensor and related method for determining force components is described. The force sensor includes a deformable medium having a contact surface against which a force can be applied, a signal generator for generating signals that travel through the deformable medium to the contact surface, a signal receptor for receiving the signal reflected from the contact surface, a generation controller, a reception controller, and a force determination apparatus. The signal generator has one or more signal generation regions for generating the signals. The generation controller selects and activates the signal generation regions. The signal receptor has one or more signal reception regions for receiving signals and for generating detections signals in response thereto. The reception controller selects signal reception regions and detects the detection signals. The force determination apparatus measures signal transit time by timing activation and detection and, optionally, determines force components for selected cross-field intersections. The timer which times by activation and detection can be any means for measuring signal transit time. A cross-field intersection is defined by the overlap of a signal generation region and a signal reception region.

  19. Microcantilever sensor

    DOEpatents

    Thundat, T.G.; Wachter, E.A.

    1998-02-17

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.

  20. A Putative Homologue of CDC20/CDH1 in the Malaria Parasite Is Essential for Male Gamete Development

    PubMed Central

    Guttery, David S.; Ferguson, David J. P.; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M.; Brady, Declan; Nieduszynski, Conrad A.; Janse, Chris J.; Holder, Anthony A.; Tobin, Andrew B.; Tewari, Rita

    2012-01-01

    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both

  1. A putative homologue of CDC20/CDH1 in the malaria parasite is essential for male gamete development.

    PubMed

    Guttery, David S; Ferguson, David J P; Poulin, Benoit; Xu, Zhengyao; Straschil, Ursula; Klop, Onny; Solyakov, Lev; Sandrini, Sara M; Brady, Declan; Nieduszynski, Conrad A; Janse, Chris J; Holder, Anthony A; Tobin, Andrew B; Tewari, Rita

    2012-02-01

    Cell-cycle progression is governed by a series of essential regulatory proteins. Two major regulators are cell-division cycle protein 20 (CDC20) and its homologue, CDC20 homologue 1 (CDH1), which activate the anaphase-promoting complex/cyclosome (APC/C) in mitosis, and facilitate degradation of mitotic APC/C substrates. The malaria parasite, Plasmodium, is a haploid organism which, during its life-cycle undergoes two stages of mitosis; one associated with asexual multiplication and the other with male gametogenesis. Cell-cycle regulation and DNA replication in Plasmodium was recently shown to be dependent on the activity of a number of protein kinases. However, the function of cell division cycle proteins that are also involved in this process, such as CDC20 and CDH1 is totally unknown. Here we examine the role of a putative CDC20/CDH1 in the rodent malaria Plasmodium berghei (Pb) using reverse genetics. Phylogenetic analysis identified a single putative Plasmodium CDC20/CDH1 homologue (termed CDC20 for simplicity) suggesting that Plasmodium APC/C has only one regulator. In our genetic approach to delete the endogenous cdc20 gene of P. berghei, we demonstrate that PbCDC20 plays a vital role in male gametogenesis, but is not essential for mitosis in the asexual blood stage. Furthermore, qRT-PCR analysis in parasite lines with deletions of two kinase genes involved in male sexual development (map2 and cdpk4), showed a significant increase in cdc20 transcription in activated gametocytes. DNA replication and ultra structural analyses of cdc20 and map2 mutants showed similar blockage of nuclear division at the nuclear spindle/kinetochore stage. CDC20 was phosphorylated in asexual and sexual stages, but the level of modification was higher in activated gametocytes and ookinetes. Changes in global protein phosphorylation patterns in the Δcdc20 mutant parasites were largely different from those observed in the Δmap2 mutant. This suggests that CDC20 and MAP2 are both

  2. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B

    PubMed Central

    Jiang, Bing-Hua; Aoki, Masahiro; Zheng, Jenny Z.; Li, Jian; Vogt, Peter K.

    1999-01-01

    The oncogene p3k, coding for a constitutively active form of phosphatidylinositol 3-kinase (PI 3-kinase), strongly activates myogenic differentiation. Inhibition of endogenous PI 3-kinase activity with the specific inhibitor LY294002, or with dominant-negative mutants of PI 3-kinase, interferes with myotube formation and with the expression of muscle-specific proteins. Here we demonstrate that a downstream target of PI 3-kinase, serine-threonine kinase Akt, plays an important role in myogenic differentiation. Expression of constitutively active forms of Akt dramatically enhances myotube formation and expression of the muscle-specific proteins MyoD, creatine kinase, myosin heavy chain, and desmin. Transdominant negative forms of Akt inhibit myotube formation and the expression of muscle-specific proteins. The inhibition of myotube formation and the reduced expression of muscle-specific proteins caused by the PI 3-kinase inhibitor LY294002 are completely reversed by constitutively active forms of Akt. Wild-type cellular Akt effects a partial reversal of LY294002-induced inhibition of myogenic differentiation. This result suggests that Akt can substitute for PI 3-kinase in the stimulation of myogenesis; Akt may be an essential downstream component of PI 3-kinase-induced muscle differentiation. PMID:10051597

  3. Oncoprotein protein kinase antibody kit

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2008-12-23

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD as determined by reducing SDS-PAGE, having serine and threonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  4. Optically diffracting hydrogels for screening kinase activity in vitro and in cell lysate: impact of material and solution properties.

    PubMed

    MacConaghy, Kelsey I; Chadly, Duncan M; Stoykovich, Mark P; Kaar, Joel L

    2015-03-17

    Optically diffracting films based on hydrogel-encapsulated crystalline colloidal arrays have considerable utility as sensors for detecting enzymaticphosphorylation and, thus, in screening small molecule modulators of kinases. In this work, we have investigated the impact of hydrogel properties, as well as the role of the ionic character of the surrounding environment, on the optical sensitivity of kinase responsive crystalline colloidal array-containing hydrogels. In agreement with a model of hydrogel swelling, the optical sensitivity of such materials increased as the shear modulus and the Flory-Huggins interaction parameter between polymer and solvent decreased. Additionally, elimination of extraneous charges in the polymer backbone by exploiting azide-alkyne click chemistry to functionalize the hydrogels with a peptide substrate for protein kinase A further enhanced the sensitivity of the optically diffracting films. Increasing peptide concentration and, in turn, immobilized charge within the hydrogel network was shown to increase the optical response over a range of ionic strength conditions. Ultimately, we showed that, by tuning the hydrogel and solution properties, as little as 0.1 U/μL protein kinase A could be detected in short reaction times (i.e., 2 h), which is comparable to conventional biochemical kinase assays. We further showed that this approach can be used to detect protein kinase A activity in lysate from HEK293 cells. The sensitivity of the resulting films, coupled with the advantages of photonic crystal based sensors (e.g., label free detection), makes this approach highly attractive for screening enzymatic phosphorylation. PMID:25714913

  5. The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals

    PubMed Central

    Pan, Zezheng; Sun, Mengli; Liang, Xia; Li, Jia; Zhou, Fangyue; Zhong, Zhisheng; Zheng, Yuehui

    2016-01-01

    The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years. PMID:26788065

  6. The Controversy, Challenges, and Potential Benefits of Putative Female Germline Stem Cells Research in Mammals.

    PubMed

    Pan, Zezheng; Sun, Mengli; Liang, Xia; Li, Jia; Zhou, Fangyue; Zhong, Zhisheng; Zheng, Yuehui

    2016-01-01

    The conventional view is that female mammals lose their ability to generate new germ cells after birth. However, in recent years, researchers have successfully isolated and cultured a type of germ cell from postnatal ovaries in a variety of mammalian species that have the abilities of self-proliferation and differentiation into oocytes, and this finding indicates that putative germline stem cells maybe exist in the postnatal mammalian ovaries. Herein, we review the research history and discovery of putative female germline stem cells, the concept that putative germline stem cells exist in the postnatal mammalian ovary, and the research progress, challenge, and application of putative germline stem cells in recent years. PMID:26788065

  7. Mevalonate kinase deficiency: current perspectives

    PubMed Central

    Favier, Leslie A; Schulert, Grant S

    2016-01-01

    Mevalonate kinase deficiency (MKD) is a recessively inherited autoinflammatory disorder with a spectrum of manifestations, including the well-defined clinical phenotypes of hyperimmunoglobulinemia D and periodic fever syndrome and mevalonic aciduria. Patients with MKD have recurrent attacks of hyperinflammation associated with fever, abdominal pain, arthralgias, and mucocutaneous lesions, and more severely affected patients also have dysmorphisms and central nervous system anomalies. MKD is caused by mutations in the gene encoding mevalonate kinase, with the degree of residual enzyme activity largely determining disease severity. Mevalonate kinase is essential for the biosynthesis of nonsterol isoprenoids, which mediate protein prenylation. Although the precise pathogenesis of MKD remains unclear, increasing evidence suggests that deficiency in protein prenylation leads to innate immune activation and systemic hyperinflammation. Given the emerging understanding of MKD as an autoinflammatory disorder, recent treatment approaches have largely focused on cytokine-directed biologic therapy. Herein, we review the current genetic and pathologic understanding of MKD, its various clinical phenotypes, and the evolving treatment approach for this multifaceted disorder. PMID:27499643

  8. High-Throughput Kinase Profiling: A More Efficient Approach towards the Discovery of New Kinase Inhibitors

    PubMed Central

    Miduturu, Chandrasekhar V.; Deng, Xianming; Kwiatkowski, Nicholas; Yang, Wannian; Brault, Laurent; Filippakopoulos, Panagis; Chung, Eunah; Yang, Qingkai; Schwaller, Juerg; Knapp, Stefan; King, Randall W.; Lee, Jiing-Dwan; Herrgard, Sanna; Zarrinkar, Patrick; Gray, Nathanael S.

    2011-01-01

    SUMMARY Selective protein kinase inhibitors have only been developed against a small number of kinase targets. Here we demonstrate that “high-throughput kinase profiling” is an efficient method for the discovery of lead compounds for established as well as unexplored kinase targets. We screened a library of 118 compounds constituting two distinct scaffolds (furan-thiazolidinediones and pyrimido-diazepines) against a panel of 353 kinases. A distinct kinase selectivity profile was observed for each scaffold. Selective inhibitors were identified with submicromolar cellular activity against PIM1, ERK5, ACK1, MPS1/PLK1–3 and Aurora A,B kinases. In addition, we identified potent inhibitors for so far unexplored kinases such as DRAK1, HIPK2 and DCAMKL1 that await further evaluation. This inhibitor-centric approach permits comprehensive assessment of a scaffold of interest and represents an efficient and general strategy for identifying new selective kinase inhibitors. PMID:21802008

  9. The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation

    PubMed Central

    Moens, Ugo; Kostenko, Sergiy; Sveinbjørnsson, Baldur

    2013-01-01

    Mitogen-activated protein kinase (MAPK) pathways are implicated in several cellular processes including proliferation, differentiation, apoptosis, cell survival, cell motility, metabolism, stress response and inflammation. MAPK pathways transmit and convert a plethora of extracellular signals by three consecutive phosphorylation events involving a MAPK kinase kinase, a MAPK kinase, and a MAPK. In turn MAPKs phosphorylate substrates, including other protein kinases referred to as MAPK-activated protein kinases (MAPKAPKs). Eleven mammalian MAPKAPKs have been identified: ribosomal-S6-kinases (RSK1-4), mitogen- and stress-activated kinases (MSK1-2), MAPK-interacting kinases (MNK1-2), MAPKAPK-2 (MK2), MAPKAPK-3 (MK3), and MAPKAPK-5 (MK5). The role of these MAPKAPKs in inflammation will be reviewed. PMID:24705157

  10. A Putative Multiple-Demand System in the Macaque Brain

    PubMed Central

    Bell, Andrew H.; Buckley, Mark J.; Mitchell, Anna S.; Sallet, Jerome; Duncan, John

    2016-01-01

    In humans, cognitively demanding tasks of many types recruit common frontoparietal brain areas. Pervasive activation of this “multiple-demand” (MD) network suggests a core function in supporting goal-oriented behavior. A similar network might therefore be predicted in nonhuman primates that readily perform similar tasks after training. However, an MD network in nonhuman primates has not been described. Single-cell recordings from macaque frontal and parietal cortex show some similar properties to human MD fMRI responses (e.g., adaptive coding of task-relevant information). Invasive recordings, however, come from limited prespecified locations, so they do not delineate a macaque homolog of the MD system and their positioning could benefit from knowledge of where MD foci lie. Challenges of scanning behaving animals mean that few macaque fMRI studies specifically contrast levels of cognitive demand, so we sought to identify a macaque counterpart to the human MD system using fMRI connectivity in 35 rhesus macaques. Putative macaque MD regions, mapped from frontoparietal MD regions defined in humans, were found to be functionally connected under anesthesia. To further refine these regions, an iterative process was used to maximize their connectivity cross-validated across animals. Finally, whole-brain connectivity analyses identified voxels that were robustly connected to MD regions, revealing seven clusters across frontoparietal and insular cortex comparable to human MD regions and one unexpected cluster in the lateral fissure. The proposed macaque MD regions can be used to guide future electrophysiological investigation of MD neural coding and in task-based fMRI to test predictions of similar functional properties to human MD cortex. SIGNIFICANCE STATEMENT In humans, a frontoparietal “multiple-demand” (MD) brain network is recruited during a wide range of cognitively demanding tasks. Because this suggests a fundamental function, one might expect a similar

  11. A Screen for Novel Phosphoinositide 3-kinase Effector Proteins*

    PubMed Central

    Dixon, Miles J.; Gray, Alexander; Boisvert, François-Michel; Agacan, Mark; Morrice, Nicholas A.; Gourlay, Robert; Leslie, Nicholas R.; Downes, C. Peter; Batty, Ian H.

    2011-01-01

    Class I phosphoinositide 3-kinases exert important cellular effects through their two primary lipid products, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2). As few molecular targets for PtdIns(3,4)P2 have yet been identified, a screen for PI 3-kinase-responsive proteins that is selective for these is described. This features a tertiary approach incorporating a unique, primary recruitment of target proteins in intact cells to membranes selectively enriched in PtdIns(3,4)P2. A secondary purification of these proteins, optimized using tandem pleckstrin homology domain containing protein-1 (TAPP-1), an established PtdIns(3,4)P2 selective ligand, yields a fraction enriched in proteins of potentially similar lipid binding character that are identified by liquid chromatography-tandem MS. Thirdly, this approach is coupled to stable isotope labeling with amino acids in cell culture using differential isotope labeling of cells stimulated in the absence and presence of the PI 3-kinase inhibitor wortmannin. This provides a ratio-metric readout that distinguishes authentically responsive components from copurifying background proteins. Enriched fractions thus obtained from astrocytoma cells revealed a subset of proteins that exhibited ratios indicative of their initial, cellular responsiveness to PI 3-kinase activation. The inclusion among these of tandem pleckstrin homology domain containing protein-1, three isoforms of Akt, switch associated protein-70, early endosome antigen-1 and of additional proteins expressing recognized lipid binding domains demonstrates the utility of this strategy and lends credibility to the novel candidate proteins identified. The latter encompass a broad set of proteins that include the gene product of TBC1D2A, a putative Rab guanine nucleotide triphosphatase activating protein (GAP) and IQ motif containing GAP1, a potential tumor promoter. A sequence comparison of the former protein indicates

  12. ChiS histidine kinase negatively regulates the production of chitinase ChiC in Streptomyces peucetius.

    PubMed

    Rabbind Singh, Amrathlal; Senthamaraikannan, Paranthaman; Thangavel, Chitra; Danda, Ravikanth; Pandian, Shunmugiah Karutha; Dharmalingam, Kuppamuthu

    2014-01-01

    Computational analysis of sequence homology of the chiSRC gene cluster, encoding a chitinase in Streptomyces peucetius, showed that the gene cluster could be a two-component regulon comprising a sensor kinase (chiS) and a response regulator (chiR). To prove that the ChiSRC is an authentic two-component system, the chiS gene was cloned and expressed in E.coli and the purified protein was used for biochemical analysis. In this report, we provide biochemical evidence to show that the sensor kinase encoded by chiS gene indeed is a histidine kinase capable of autophosphorylation and the histidine 144 residue of the ChiS protein is the phosphate acceptor. An insertion mutation at the chiS locus led to overproduction chitinase protein in S. peucetius implying that the chiC gene is negatively regulated by the two-component system. PMID:23972296

  13. Sensors, Update 1

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    1996-12-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Treatments include current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Furthermore, the sensor market as well as peripheral aspects such as standards are covered. Each volume is divided into four sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides an overview of suppliers and market trends for a particular section, and Sensor Standards, reviews recent legislation and requirements for sensors. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  14. Mass Sensor

    SciTech Connect

    Adams, B.E.

    2001-01-18

    The purpose of this CRADA was to use Honeywell's experience in low temperature cofire ceramics and traditional ceramics to assemble a relatively low-cost, mass-producible miniature mass analyzer. The specific design, given to us by Mass Sensors, LLC, was used to test for helium. The direct benefit for the participant was to have a prototype unit assembled for the purpose of proof of concept and the ability to secure venture capital investors. From that, the company would begin producing their own product for sale. The consumer/taxpayer benefits come from the wide variety of industries that can utilize this technology to improve quality of life. Medical industry can use this technology to improve diagnostic ability; manufacturing industry can use it for improved air, water, and soil monitoring to minimize pollution; and the law enforcement community can use this technology for identification of substances. These are just a few examples of the benefit of this technology. The benefits to DOE were in the area of process improvement for cofire and ceramic materials. From this project we demonstrated nonlinear thickfilm fine lines and spaces that were 5-mil wide with 5-mil spaces; determined height-to diameter-ratios for punched and filled via holes; demonstrated the ability to punch and fill 5-mil microvias; developed and demonstrated the capability to laser cut difficult geometries in 40-mil ceramic; developed and demonstrated coupling LTCC with standard alumina and achieving hermetic seals; developed and demonstrated three-dimensional electronic packaging concepts; and demonstrated printing variable resistors within 1% of the nominal value and within a tightly defined ratio. The capability of this device makes it invaluable for many industries. The device could be used to monitor air samples around manufacturing plants. It also could be used for monitoring automobile exhaust, for doing blood gas analysis, for sampling gases being emitted by volcanoes, for studying

  15. Rapid Discrimination Among Putative Mechanistic Models of Biochemical Systems

    PubMed Central

    Lomnitz, Jason G.; Savageau, Michael A.

    2016-01-01

    An overarching goal in molecular biology is to gain an understanding of the mechanistic basis underlying biochemical systems. Success is critical if we are to predict effectively the outcome of drug treatments and the development of abnormal phenotypes. However, data from most experimental studies is typically noisy and sparse. This allows multiple potential mechanisms to account for experimental observations, and often devising experiments to test each is not feasible. Here, we introduce a novel strategy that discriminates among putative models based on their repertoire of qualitatively distinct phenotypes, without relying on knowledge of specific values for rate constants and binding constants. As an illustration, we apply this strategy to two synthetic gene circuits exhibiting anomalous behaviors. Our results show that the conventional models, based on their well-characterized components, cannot account for the experimental observations. We examine a total of 40 alternative hypotheses and show that only 5 have the potential to reproduce the experimental data, and one can do so with biologically relevant parameter values. PMID:27578053

  16. The inducible CAM plants in putative lunar lander experiments

    NASA Astrophysics Data System (ADS)

    Burlak, Olexii; Zaetz, Iryna; Soldatkin, Olexii; Rogutskyy, Ivan; Danilchenko, Boris; Mikheev, Olexander; de Vera, Jean-Pierre; Vidmachenko, Anatolii; Foing, Bernard H.; Kozyrovska, Natalia

    Precursory lunar lander experiments on growing plants in locker-based chambers will increase our understanding of effect of lunar conditions on plant physiology. The inducible CAM (Cras-sulacean Acid Metabolism)-plants are reasonable model for a study of relationships between environmental challenges and changes in plant/bacteria gene expression. In inducible CAM-plants the enzymatic machinery for the environmentally activated CAM switches on from a C3-to a full-CAM mode of photosynthesis in response to any stresses (Winter et al., 2008). In our study, Kalanchoe spp. are shown to be promising candidates for putative lunar experiments as resistant to irradiation and desiccation, especially after inoculation with a bacterial consortium (Boorlak et al., 2010). Within frames of the experiment we expect to get information about the functional activity of CAM-plants, in particular, its organogenesis, photosystem, the circadian regulation of plant metabolism on the base of data gaining with instrumental indications from expression of the reporter genes fused to any genes involved in vital functions of the plant (Kozyrovska et al., 2009). References 1. Winter K., Garcia M., Holtum J. (2008) J. Exp. Bot. 59(7):1829-1840 2. Bourlak O., Lar O., Rogutskyy I., Mikheev A., Zaets I., Chervatyuk N., de Vera J.-P., Danilchenko A.B. Foing B.H., zyrovska N. (2010) Space Sci. Technol. 3. Kozyrovska N.O., Vidmachenko A.P., Foing B.H. et al. Exploration/call/estec/ESA. 2009.

  17. Flamingo cadherin: a putative host receptor for Streptococcus pneumoniae.

    PubMed

    Blau, Karin; Portnoi, Maxim; Shagan, Marilou; Kaganovich, Antonina; Rom, Slava; Kafka, Daniel; Chalifa Caspi, Vered; Porgador, Angel; Givon-Lavi, Noga; Gershoni, Jonathan M; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2007-06-15

    Streptococcus pneumoniae fructose bisphosphate aldolase (FBA) is a cell wall-localized lectin. We demonstrate that recombinant (r) FBA and anti-rFBA antibodies inhibit encapsulated and unencapsulated S. pneumoniae serotype 3 adherence to A549 type II lung carcinoma epithelial cells. A random combinatorial peptide library expressed by filamentous phage was screened with rFBA. Eleven of 30 rFBA-binding phages inhibited 90% of S. pneumoniae adhesion to A549 cells. The insert peptide sequence of 9 of these phages matched the Flamingo cadherin receptor (FCR) when aligned against the human genome. A peptide comprising a putative FBA-binding region of FCR (FCRP) inhibited 2 genetically and capsularly unrelated pairs of encapsulated and unencapsulated S. pneumoniae strains from binding to A549 cells. Moreover, FCRP inhibited S. pneumoniae nasopharyngeal and lung colonization and, possibly, pneumonia development in the mouse intranasal inoculation model system. These data indicate that FBA is an S. pneumoniae adhesin and that FCR is its host receptor. PMID:17492599

  18. Formation of putative chloroplast cytochromes in isolated developing pea chloroplasts

    SciTech Connect

    Thaver, S.S.; Bhava, D.; Castelfranco, P.A.

    1986-04-01

    In addition to chlorophyll-protein complexes, other proteins were labeled when isolated developing pea chloroplasts were incubated with (/sup 14/C)-5-aminolevulinic acid (/sup 14/C)-ALA. The major labeled band (M/sub r/ = 43 kDa by LDS-PAGE) was labeled even in the presence of chloramphenicol. Heme-dependent peroxidase activity (as detected by the tetramethyl benzidine-H/sub 2/O/sub 2/ stain) was not visibly associated with this band. The radioactive band was stable to heat, 5% HCl in acetone, and was absent if the incubation with (/sup 14/C)-5-aminolevulinic acid was carried out in the presence of N-methyl protoporphyrin IX dimethyl ester (a specific inhibitor of ferrochelatase). Organic solvent extraction procedures for the enrichment of cytochrome f from chloroplast membranes also extracted this unknown labeled product. It was concluded that this labeled product was probably a c-type cytochrome. The effect of exogenous iron, iron chelators, gabaculine (an inhibitor of ALA synthesis) and other incubation conditions upon the in vitro formation of putative chloroplast cytochromes will be discussed.

  19. Ameloblastin as a putative marker of specific bone compartments.

    PubMed

    Jacques, Jaime; Hotton, Dominique; Asselin, Audrey; De la Dure-Molla, Muriel; Coudert, Amélie E; Isaac, Juliane; Berdal, Ariane

    2014-08-01

    Ameloblastin (AMBN), a member of the enamel matrix protein family, has been recently identified as integral part of the skeleton beyond the enamel. However, the specific role of endogenous AMBN in bone tissue is not fully elucidated. This study aims at investigating mRNA expression of AMBN in wild-type mice in different bone sites from early embryonic to adult stages. AMBN mRNA expression started at pre-dental stages in mouse embryos (E10.5) in both head and body parts. Using laser capture microdissection on 3-day-old mice, we showed an unambiguous mRNA expression of AMBN in extra-dental tissue (mandible bone). Screening of AMBN mRNA expression in adult mice (15-week-old) revealed that mRNA expression of AMBN varied according to the bone site; a higher mRNA levels in mandibular and frontal bone compartments were observed when compared to tibia and occipital bones. These results strongly suggest that AMBN expression may be regulated in a site-specific manner and identify AMBN as a putative in vivo marker of the site-specific fingerprint of bone organs. PMID:25158194

  20. Hematopoietic activity in putative mouse primordial germ cell populations.

    PubMed

    Scaldaferri, Maria Lucia; Klinger, Francesca Gioia; Farini, Donatella; Di Carlo, Anna; Carsetti, Rita; Giorda, Ezio; De Felici, Massimo

    2015-05-01

    In the present paper, starting from the observation of heterogeneous expression of the GOF-18ΔPE-GFP Pou5f1 (Oct3/4) transgene in putative mouse PGC populations settled in the aorta-gonad-mesonephros (AGM) region, we identified various OCT3/4 positive populations showing distinct expression of PGC markers (BLIMP-1, AP, TG-1, STELLA) and co-expressing several proteins (CD-34, CD-41, FLK-1) and genes (Brachyury, Hox-B4, Scl/Tal-1 and Gata-2) of hematopoietic precursors. Moreover, we found that Oct3/4-GFP(weak) CD-34(weak/high) cells possess robust hematopoietic colony forming activity (CFU) in vitro. These data indicate that the cell population usually considered PGCs moving toward the gonadal ridges encompasses a subset of cells co-expressing several germ cell and hematopoietic markers and possessing hematopoietic activity. These results are discussed within of the current model of germline segregation. PMID:25684074

  1. Generating Recombinant Antibodies against Putative Biomarkers of Retinal Injury

    PubMed Central

    Kierny, Michael R.; Cunningham, Thomas D.; Bouhenni, Rachida A.; Edward, Deepak P.; Kay, Brian K.

    2015-01-01

    Candidate biomarkers, indicative of disease or injury, are beginning to overwhelm the process of validation through immunological means. Recombinant antibodies developed through phage-display offer an alternative means of generating monoclonal antibodies faster than traditional immunization of animals. Peptide segments of putative biomarkers of laser induced injury in the rabbit, discovered through mass spectrometry, were used as targets for a selection against a library of phage-displayed human single-chain variable fragment (scFv) antibodies. Highly specific antibodies were isolated to four of these unique peptide sequences. One antibody against the retinal protein, Guanine Nucleotide-Binding Protein Beta 5 (GBB5), had a dissociation constant ~300 nM and recognized the full-length endogenous protein in retinal homogenates of three different animal species by western blot. Alanine scanning of the peptide target identified three charged and one hydrophobic amino acid as the critical binding residues for two different scFvs. To enhance the utility of the reagent, one scFv was dimerized through a Fragment-crystallizable hinge region (i.e., Fc) and expressed in HEK-293 cells. This dimeric reagent yielded a 25-fold lower detection limit in western blots. PMID:25902199

  2. Inhalation of two putative Gulf War toxins by mice.

    PubMed

    Repine, John E; Wilson, Paul; Elkins, Nancy; Klawitter, Jelena; Christians, Uwe; Peters, Ben; Smith, Dwight M

    2016-06-01

    We employed our inhalation methodology to examine whether biomarkers of inflammation and oxidative stress would be produced in mice following inhalation of aerosols containing carbonaceous particles or the vapor of pesticides prevalent during the first Gulf War. Exposure to two putative Gulf War Illness toxins, fine airborne particles and the pesticide malathion, increased biomarkers of inflammation and oxidative stress in Friend virus B (FVB) female mice. Mice inhaling particles 24 h before had increased lung lavage and plasma Leukotriene B4 (LTB4) (a biomarker of inflammation) and PGF2α (a biomarker of oxidative stress) levels, lung lavage protein and lung lavage lactic dehydrogenase (LDH) levels. These changes were a function of particle density and exposure time. Compared to particle inhalation, mice inhaling malathion 24 h before had small increase in plasma LTB4 and PGF2α levels but no increase in lung lavage LTB4, lung lavage protein, lung lavage LDH, and lung lavage alveolar macrophage (AM) levels compared to unexposed control mice. AM from particle-exposed mice contained phagocytosed particles, while AM from malathion-exposed mice showed no abnormalities. Our results indicate that inhaling particles or malathion can alter inflammatory and oxidative biomarkers in mice and raise the possibility that these toxins may have altered inflammation and oxidative stress biomarkers in Gulf War-exposed individuals. PMID:26950528

  3. Phytophthora infestans specific phosphorylation patterns and new putative control targets.

    PubMed

    Frades, Itziar; Andreasson, Erik

    2016-04-01

    In this study we applied biomathematical searches of gene regulatory mechanisms to learn more about oomycete biology and to identify new putative targets for pesticides or biological control against Phytophthora infestans. First, oomycete phylum-specific phosphorylation motifs were found by discriminative n-gram analysis. We found 11.600 P. infestans specific n-grams, mapping 642 phosphoproteins. The most abundant group among these related to phosphatidylinositol metabolism. Due to the large number of possible targets found and our hypothesis that multi-level control is a sign of usefulness as targets for intervention, we identified overlapping targets with a second screen. This was performed to identify proteins dually regulated by small RNA and phosphorylation. We found 164 proteins to be regulated by both sRNA and phosphorylation and the dominating functions where phosphatidylinositol signalling/metabolism, endocytosis, and autophagy. Furthermore we performed a similar regulatory study and discriminative n-gram analysis of proteins with no clear orthologs in other species and proteins that are known to be unique to P. infestans such as the RxLR effectors, Crinkler (CRN) proteins and elicitins. We identified CRN proteins with specific phospho-motifs present in all life stages. PITG_12626, PITG_14042 and PITG_23175 are CRN proteins that have species-specific phosphorylation motifs and are subject to dual regulation. PMID:27020162

  4. Structure of inositol monophosphatase, the putative target of lithium therapy.

    PubMed Central

    Bone, R; Springer, J P; Atack, J R

    1992-01-01

    Inositol monophosphatase (EC 3.1.3.25), the putative molecular site of action of lithium therapy for manic-depressive illness, plays a key role in the phosphatidylinositol signaling pathway by catalyzing the hydrolysis of inositol monophosphates. To provide a structural basis from which to design better therapeutic agents for manic-depressive illness, the structure of human inositol monophosphatase has been determined to 2.1-A resolution by using x-ray crystallography. The enzyme exists as a dimer of identical subunits, each folded into a five-layered sandwich of three pairs of alpha-helices and two beta-sheets. Sulfate and an inhibitory lanthanide cation (Gd3+) are bound at identical sites on each subunit and establish the positions of the active sites. Each site is located in a large hydrophilic cavern that is at the base of the two central helices where several segments of secondary structure intersect. Comparison of the phosphatase aligned sequences of several diverse genes with the phosphatase structure suggests that the products of these genes and the phosphatase form a structural family with a conserved metal binding site. Images PMID:1332026

  5. ErbB2, EphrinB1, Src Kinase and PTPN13 Signaling Complex Regulates MAP Kinase Signaling in Human Cancers

    PubMed Central

    Vermeer, Paola D.; Bell, Megan; Lee, Kimberly; Vermeer, Daniel W.; Wieking, Byrant G.; Bilal, Erhan; Bhanot, Gyan; Drapkin, Ronny I.; Ganesan, Shridar; Klingelhutz, Aloysius J.; Hendriks, Wiljan J.; Lee, John H.

    2012-01-01

    In non-cancerous cells, phosphorylated proteins exist transiently, becoming de-phosphorylated by specific phosphatases that terminate propagation of signaling pathways. In cancers, compromised phosphatase activity and/or expression occur and contribute to tumor phenotype. The non-receptor phosphatase, PTPN13, has recently been dubbed a putative tumor suppressor. It decreased expression in breast cancer correlates with decreased overall survival. Here we show that PTPN13 regulates a new signaling complex in breast cancer consisting of ErbB2, Src, and EphrinB1. To our knowledge, this signaling complex has not been previously described. Co-immunoprecipitation and localization studies demonstrate that EphrinB1, a PTPN13 substrate, interacts with ErbB2. In addition, the oncogenic V660E ErbB2 mutation enhances this interaction, while Src kinase mediates EphrinB1 phosphorylation and subsequent MAP Kinase signaling. Decreased PTPN13 function further enhances signaling. The association of oncogene kinases (ErbB2, Src), a signaling transmembrane ligand (EphrinB1) and a phosphatase tumor suppressor (PTPN13) suggest that EphrinB1 may be a relevant therapeutic target in breast cancers harboring ErbB2-activating mutations and decreased PTPN13 expression. PMID:22279592

  6. Integration of Apoptosis Signal-Regulating Kinase 1-Mediated Stress Signaling with the Akt/Protein Kinase B-IκB Kinase Cascade

    PubMed Central

    Puckett, Mary C.; Goldman, Erinn H.; Cockrell, Lisa M.; Huang, Bei; Kasinski, Andrea L.; Du, Yuhong; Wang, Cun-Yu; Lin, Anning; Ichijo, Hidenori; Khuri, Fadlo

    2013-01-01

    Cellular processes are tightly controlled through well-coordinated signaling networks that respond to conflicting cues, such as reactive oxygen species (ROS), endoplasmic reticulum (ER) stress signals, and survival factors to ensure proper cell function. We report here a direct interaction between inhibitor of κB kinase (IKK) and apoptosis signal-regulating kinase 1 (ASK1), unveiling a critical node at the junction of survival, inflammation, and stress signaling networks. IKK can be activated by growth factor stimulation or tumor necrosis factor alpha engagement. IKK forms a complex with and phosphorylates ASK1 at a sensor site, Ser967, leading to the recruitment of 14-3-3, counteracts stress signal-triggered ASK1 activation, and suppresses ASK1-mediated functions. An inhibitory role of IKK in JNK signaling has been previously reported to depend on NF-κB-mediated gene expression. Our data suggest that IKK has a dual role: a transcription-dependent and a transcription-independent action in controlling the ASK1-JNK axis, coupling IKK to ROS and ER stress response. Direct phosphorylation of ASK1 by IKK also defines a novel IKK phosphorylation motif. Because of the intimate involvement of ASK1 in diverse diseases, the IKK/ASK1 interface offers a promising target for therapeutic development. PMID:23530055

  7. Stochastic detection of Pim protein kinases reveals electrostatically enhanced association of a peptide substrate

    PubMed Central

    Harrington, Leon; Cheley, Stephen; Alexander, Leila T.; Knapp, Stefan; Bayley, Hagan

    2013-01-01

    In stochastic sensing, the association and dissociation of analyte molecules is observed as the modulation of an ionic current flowing through a single engineered protein pore, enabling the label-free determination of rate and equilibrium constants with respect to a specific binding site. We engineered sensors based on the staphylococcal α-hemolysin pore to allow the single-molecule detection and characterization of protein kinase–peptide interactions. We enhanced this approach by using site-specific proteolysis to generate pores bearing a single peptide sensor element attached by an N-terminal peptide bond to the trans mouth of the pore. Kinetics and affinities for the Pim protein kinases (Pim-1, Pim-2, and Pim-3) and cAMP-dependent protein kinase were measured and found to be independent of membrane potential and in good agreement with previously reported data. Kinase binding exhibited a distinct current noise behavior that forms a basis for analyte discrimination. Finally, we observed unusually high association rate constants for the interaction of Pim kinases with their consensus substrate Pimtide (∼107 to 108 M–1⋅s–1), the result of electrostatic enhancement, and propose a cellular role for this phenomenon. PMID:24194548

  8. Allosteric Activation of Bacterial Response Regulators: the Role of the Cognate Histidine Kinase Beyond Phosphorylation

    PubMed Central

    Trajtenberg, Felipe; Albanesi, Daniela; Ruétalo, Natalia; Botti, Horacio; Mechaly, Ariel E.; Nieves, Marcos; Aguilar, Pablo S.; Cybulski, Larisa; Larrieux, Nicole; de Mendoza, Diego

    2014-01-01

    ABSTRACT Response regulators are proteins that undergo transient phosphorylation, connecting specific signals to adaptive responses. Remarkably, the molecular mechanism of response regulator activation remains elusive, largely because of the scarcity of structural data on multidomain response regulators and histidine kinase/response regulator complexes. We now address this question by using a combination of crystallographic data and functional analyses in vitro and in vivo, studying DesR and its cognate sensor kinase DesK, a two-component system that controls membrane fluidity in Bacillus subtilis. We establish that phosphorylation of the receiver domain of DesR is allosterically coupled to two distinct exposed surfaces of the protein, controlling noncanonical dimerization/tetramerization, cooperative activation, and DesK binding. One of these surfaces is critical for both homodimerization- and kinase-triggered allosteric activations. Moreover, DesK induces a phosphorylation-independent activation of DesR in vivo, uncovering a novel and stringent level of specificity among kinases and regulators. Our results support a model that helps to explain how response regulators restrict phosphorylation by small-molecule phosphoryl donors, as well as cross talk with noncognate sensors. PMID:25406381

  9. Novel Protein Kinases Ark1p and Prk1p Associate with and Regulate the Cortical Actin Cytoskeleton in Budding Yeast

    PubMed Central

    Cope, M.Jamie T.V.; Yang, Shirley; Shang, Ching; Drubin, David G.

    1999-01-01

    Ark1p (actin regulating kinase 1) was identified as a yeast protein that binds to Sla2p, an evolutionarily conserved cortical actin cytoskeleton protein. Ark1p and a second yeast protein, Prk1p, contain NH2-terminal kinase domains that are 70% identical. Together with six other putative kinases from a number of organisms, these proteins define a new protein kinase family that we have named the Ark family. Lack of both Ark1p and Prk1p resulted in the formation of large cytoplasmic actin clumps and severe defects in cell growth. These defects were rescued by wild-type, but not by kinase-dead versions of the proteins. Elevated levels of either Ark1p or Prk1p caused a number of actin and cell morphological defects that were not observed when the kinase-dead versions were overexpressed instead. Ark1p and Prk1p were shown to localize to actin cortical patches, making these two kinases the first signaling proteins demonstrated to be patch components. These results suggest that Ark1p and Prk1p may be downstream effectors of signaling pathways that control actin patch organization and function. Furthermore, results of double-mutant analyses suggest that Ark1p and Prk1p function in overlapping but distinct pathways that regulate the cortical actin cytoskeleton. PMID:10087264

  10. Structure of the two-domain hexameric APS kinase from Thiobacillus denitrificans: structural basis for the absence of ATP sulfurylase activity

    SciTech Connect

    Gay, Sean C.; Segel, Irwin H.; Fisher, Andrew J.

    2009-10-01

    APS kinase from Thiobacillus denitrificans contains an inactive N-terminal ATP sulfurylase domain. The structure presented unveils the first hexameric assembly for an APS kinase, and reveals that structural changes in the N-terminal domain disrupt the ATP sulfurylase active site thus prohibiting activity. The Tbd-0210 gene of the chemolithotrophic bacterium Thiobacillus denitrificans is annotated to encode a 60.5 kDa bifunctional enzyme with ATP sulfurylase and APS kinase activity. This putative bifunctional enzyme was cloned, expressed and structurally characterized. The 2.95 Å resolution X-ray crystal structure reported here revealed a hexameric assembly with D{sub 3} symmetry. Each subunit contains a large N-terminal sulfurylase-like domain and a C-terminal APS kinase domain reminiscent of the two-domain fungal ATP sulfurylases of Penicillium chrysogenum and Saccharomyces cerevisiae, which also exhibit a hexameric assembly. However, the T. denitrificans enzyme exhibits numerous structural and sequence differences in the N-terminal domain that render it inactive with respect to ATP sulfurylase activity. Surprisingly, the C-terminal domain does indeed display APS kinase activity, indicating that this gene product is a true APS kinase. Therefore, these results provide the first structural insights into a unique hexameric APS kinase that contains a nonfunctional ATP sulfurylase-like domain of unknown function.

  11. Labeling and Identification of Direct Kinase Substrates

    PubMed Central

    Carlson, Scott M.; White, Forest M.

    2013-01-01

    Identifying kinase substrates is an important step in mapping signal transduction pathways, but remains a difficult and time-consuming process. Analog-sensitive kinases (AS-kinases) have been used to selectively tag and identify direct kinase substrates in lysates from whole cells. In this approach a gamma-thiol ATP-analog and AS-kinase are used to selectively thiophosphorylate target proteins. Thiophosphate is used as a chemical handle to purify peptides from a tryptic digest, and target proteins are identified by liquid chromatography and tandem mass spectrometry (LC-MS/MS). Here, we describe an updated strategy for labeling AS-kinase substrates, solid-phase capture of thiophosphorylated peptides, incorporation of stable-isotopic labeling in cell culture (SILAC) for filtering nonspecific background peptides, enrichment of phosphorylated target peptides to identify low-abundance targets, and analysis by LC-MS/MS. PMID:22669844

  12. Receptor Tyrosine Kinases in Drosophila Development

    PubMed Central

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  13. Putative Risk Factors in Developmental Dyslexia: A Case-Control Study of Italian Children

    ERIC Educational Resources Information Center

    Mascheretti, Sara; Marino, Cecilia; Simone, Daniela; Quadrelli, Ermanno; Riva, Valentina; Cellino, Maria Rosaria; Maziade, Michel; Brombin, Chiara; Battaglia, Marco

    2015-01-01

    Although dyslexia runs in families, several putative risk factors that cannot be immediately identified as genetic predict reading disability. Published studies analyzed one or a few risk factors at a time, with relatively inconsistent results. To assess the contribution of several putative risk factors to the development of dyslexia, we conducted…

  14. Long Wavelength Monitoring of Protein Kinase Activity

    PubMed Central

    Oien, Nathan P.; Nguyen, Luong T.; Jernigan, Finith E.; Priestman, Melanie A.

    2014-01-01

    A family of long wavelength protein kinase fluorescent reporters is described in which the probing wavelength is pre-programmed using readily available fluorophores. These agents can assess protein kinase activity within the optical window of tissue, as exemplified by monitoring endogenous cAMP-dependent protein kinase activity (1) in erythrocyte lysates and (2) in intact erythrocytes using a light-activatable reporter. PMID:24604833

  15. Computational analysis of AnmK-like kinase: New insights into the cell wall metabolism of fungi.

    PubMed

    Dai, Jianghong; Qu, Hong; Yu, Zhisheng; Yang, Jiangke; Zhang, Hongxun

    2015-08-21

    1,6-Anhydro-N-acetylmuramic acid kinase (AnmK) is the unique enzyme that marks the recycling of the cell wall of Escherichia coli. Here, 81 fungal AnmK-like kinase sequences from 57 fungal species were searched in the NCBI database and a phylogenetic tree was constructed. The three-dimensional structure of an AnmK-like kinase, levoglucosan kinase (LGK) of the yeast Lipomyces starkeyi, was modeled; molecular docking revealed that AnmK and LGK are conserved proteins, and 187Asp, 212Asp are enzymatic residues, respectively. Analysis suggests that 1,6-anhydro-N-acetylglucosamine (anhGlcNAc) and/or 1,6-anhydro-β-d-glucosamine (anhGlcN) would be the appropriate substrates of AnmK-like kinases. Also, the counterparts of other characteristic enzymes of cell wall recycling of bacteria were found in fungi. Taken together, it is proposed that a putative recycling of anhGlcNAc/anhGlcN, which is associated with the hydrolysis of cell walls, exists in fungi. This computational analysis will provide new insights into the metabolism of fungal cell walls. PMID:25979372

  16. CD45, CD148, and Lyp/Pep: Critical Phosphatases Regulating Src Family Kinase Signaling Networks in Immune Cells

    PubMed Central

    Hermiston, Michelle L.; Zikherman, Julie; Zhu, Jing W.

    2009-01-01

    Summary Reciprocal regulation of tyrosine phosphorylation by protein tyrosine kinases and phosphatases is central to normal immune cell function. Disruption of the equilibrium between protein tyrosine kinase and phosphatase activity can result in immunodeficiency, autoimmunity, or malignancy. Src family kinases play a central role in both immune cell function and disease due to their proximal position in numerous signal transduction cascades including those emanating from integrin, T and B cell antigen receptors, Fc, growth factor, and cytokine receptors. Given that tight regulation of Src family kinase activity is critical for appropriate responses to stimulation of these various signaling pathways, it is perhaps not surprising that multiple protein tyrosine phosphatases are involved in their regulation. Here, we focus on the role of three phosphatases, CD45, CD148, and LYP/PEP, which are critical regulators of src family kinase activity in hematopoietic cells. We review our current understanding of their structures, expression, functions in different hematopoietic cell subsets, regulation, and putative roles in disease. Finally, we discuss remaining questions that must be addressed if we are to have a clearer understanding of the coordinated regulation of tyrosine phosphorylation and signaling networks in hematopoietic cells and how they could potentially be manipulated therapeutically in disease. PMID:19290935

  17. Characterization of a low molecular mass autophosphorylating protein in cultured sugarcane cells and its identification as a nucleoside diphosphate kinase.

    PubMed Central

    Moisyadi, S; Dharmasiri, S; Harrington, H M; Lukas, T J

    1994-01-01

    A low molecular mass (18 kD) phosphoprotein (pp18) was characterized and purified from cultured sugarcane (Saccharum officinarum L.) cell line H50-7209. Autophosphorylation assays were used to detect pp18 after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Only pp18 was detected by a brief in situ phosphorylation method, whereas additional putative protein kinases were detected by an extended method. pp18 was present in both microsomal membrane and soluble fractions and exhibited anomalous turnover of 32P label during in vitro phosphorylation experiments with highest levels present at shorter incubation times. Two major isoforms of the protein were identified in two-dimensional isoelectric focusing/SDS-PAGE of crude extracts and microsomal fractions. The levels of pp18 were enhanced approximately 4-fold by heat shock at 36 degrees C and the elevated pp18 decayed after heat shock was discontinued. pp18 was purified to apparent homogeneity, could be phosphorylated on serine residues, and also exhibited kinase-like activity toward histone H1. The amino acid sequence obtained from a cyanogen bromide digest was greater than 80% identical to nucleoside diphosphate (NDP) kinases from a variety of organisms. Biochemical analysis of the purified protein confirmed the identity as NDP kinase. Thus, NDP kinase appears to be modulated by heat shock in plants. PMID:8016268

  18. Identification of Putative Natriuretic Hormones Isolated from Human Urine

    PubMed Central

    Kramer, Herbert J.

    2015-01-01

    This brief review describes some representative methodological approaches to the isolation of putative endogenous inhibitors of epithelial sodium transport – i.e., as ouabain-like factors (OLF) that inhibit the sodium transport enzyme Na-K-ATPase or inhibit the epithelial sodium channel (ENaC). Gel chromatography and reverse-phase (RP)-high performance liquid chromatography (HPLC) of lyophilized and reconstituted 24 h-urine from salt-loaded healthy humans led to two active fractions, a hydrophilic OLF-1 and a lipophilic OLF-2, whose mass (Ms)-spectroscopic data indicate a Mr of 391 (1, 2). Further identification was attempted by Ms-, infrared (IR)-, ultraviolet (UV)-, and 1H-NMR-spectroscopy. OLF-1 and OLF-2 may be closely related if not identical to (di)ascorbic acid or its salts such as vanadium (V)-Vv-diascorbate with Mr 403 (3) and VIV-diascorbate. OLF-1 and Vv-diascorbate are about 10-fold stronger inhibitors of Na-K-ATPase than OLF-2 and VIV-diascorbate, respectively. In conscious rats, i.v. infusion of OLF-1 and OLF-2 resulted in a strong natriuresis. In a similar study, Cain et al. (4) isolated a sodium transport inhibitor from the urine of uremic patients by gel chromatography and RP-HPLC. In uremic rats, a natriuretic response to the injection of the active material was found. Xanthurenic acid 8-O-β-d-glucoside (Mr 368) and xanthurenic acid 8-O-sulfate (Mr 284) were identified as endogenous inhibitors of sodium transport acting, e.g., by ENaC blockade. No definite relation to blood pressure, body fluid volume, or sodium balance has been reported for any of these above factors, and further studies to identify the natriuretic and/or ouabain-like compound(s) or hormone(s) will be needed. PMID:26052310

  19. Credibility Analysis of Putative Disease-Causing Genes Using Bioinformatics

    PubMed Central

    Abel, Olubunmi; Powell, John F.; Andersen, Peter M.; Al-Chalabi, Ammar

    2013-01-01

    Background Genetic studies are challenging in many complex diseases, particularly those with limited diagnostic certainty, low prevalence or of old age. The result is that genes may be reported as disease-causing with varying levels of evidence, and in some cases, the data may be so limited as to be indistinguishable from chance findings. When there are large numbers of such genes, an objective method for ranking the evidence is useful. Using the neurodegenerative and complex disease amyotrophic lateral sclerosis (ALS) as a model, and the disease-specific database ALSoD, the objective is to develop a method using publicly available data to generate a credibility score for putative disease-causing genes. Methods Genes with at least one publication suggesting involvement in adult onset familial ALS were collated following an exhaustive literature search. SQL was used to generate a score by extracting information from the publications and combined with a pathogenicity analysis using bioinformatics tools. The resulting score allowed us to rank genes in order of credibility. To validate the method, we compared the objective ranking with a rank generated by ALS genetics experts. Spearman's Rho was used to compare rankings generated by the different methods. Results The automated method ranked ALS genes in the following order: SOD1, TARDBP, FUS, ANG, SPG11, NEFH, OPTN, ALS2, SETX, FIG4, VAPB, DCTN1, TAF15, VCP, DAO. This compared very well to the ranking of ALS genetics experts, with Spearman's Rho of 0.69 (P = 0.009). Conclusion We have presented an automated method for scoring the level of evidence for a gene being disease-causing. In developing the method we have used the model disease ALS, but it could equally be applied to any disease in which there is genotypic uncertainty. PMID:23755159

  20. NMDA antagonist properties of the putative antiaddictive drug, ibogaine.

    PubMed

    Popik, P; Layer, R T; Fossom, L H; Benveniste, M; Geter-Douglass, B; Witkin, J M; Skolnick, P

    1995-11-01

    Both anecdotal reports in humans and preclinical studies indicate that ibogaine interrupts addiction to a variety of abused substances including alcohol, opiates, nicotine and stimulants. Based on the similarity of these therapeutic claims to recent preclinical studies demonstrating that N-methyl-D-aspartate (NMDA) antagonists attenuate addiction-related phenomena, we examined the NMDA antagonist properties of ibogaine. Pharmacologically relevant concentrations of ibogaine produce a voltage-dependent block of NMDA receptors in hippocampal cultures (Ki, 2.3 microM at -60 mV). Consistent with this observation, ibogaine competitively inhibits [3H]1-[1-(2-thienyl)-cyclohexyl]piperidine binding to rat forebrain homogenates (Ki, 1.5 microM) and blocks glutamate-induced cell death in neuronal cultures (IC50, 4.5 microM). Moreover, at doses previously reported to interfere with drug-seeking behaviors, ibogaine substitutes as a discriminative stimulus (ED50, 64.9 mg/kg) in mice trained to discriminate the prototypic voltage-dependent NMDA antagonist, dizocilpine (0.17 mg/kg), from saline. Consistent with previous reports, ibogaine reduced naloxone-precipitated jumping in morphine-dependent mice (ED50, 72 mg/kg). Although pretreatment with glycine did not affect naloxone-precipitated jumping in morphine-dependent mice, it abolished the ability of ibogaine to block naloxone-precipitated jumping. Taken together, these findings link the NMDA antagonist actions of ibogaine to a putative "antiaddictive" property of this alkaloid, its ability to reduce the expression of morphine dependence. PMID:7473163

  1. Molecular diagnosis of putative Stargardt disease probands by exome sequencing

    PubMed Central

    2012-01-01

    Background The commonest genetic form of juvenile or early adult onset macular degeneration is Stargardt Disease (STGD) caused by recessive mutations in the gene ABCA4. However, high phenotypic and allelic heterogeneity and a small but non-trivial amount of locus heterogeneity currently impede conclusive molecular diagnosis in a significant proportion of cases. Methods We performed whole exome sequencing (WES) of nine putative Stargardt Disease probands and searched for potentially disease-causing genetic variants in previously identified retinal or macular dystrophy genes. Follow-up dideoxy sequencing was performed for confirmation and to screen for mutations in an additional set of affected individuals lacking a definitive molecular diagnosis. Results Whole exome sequencing revealed seven likely disease-causing variants across four genes, providing a confident genetic diagnosis in six previously uncharacterized participants. We identified four previously missed mutations in ABCA4 across three individuals. Likely disease-causing mutations in RDS/PRPH2, ELOVL, and CRB1 were also identified. Conclusions Our findings highlight the enormous potential of whole exome sequencing in Stargardt Disease molecular diagnosis and research. WES adequately assayed all coding sequences and canonical splice sites of ABCA4 in this study. Additionally, WES enables the identification of disease-related alleles in other genes. This work highlights the importance of collecting parental genetic material for WES testing as the current knowledge of human genome variation limits the determination of causality between identified variants and disease. While larger sample sizes are required to establish the precision and accuracy of this type of testing, this study supports WES for inherited early onset macular degeneration disorders as an alternative to standard mutation screening techniques. PMID:22863181

  2. Identification of Putative Natriuretic Hormones Isolated from Human Urine.

    PubMed

    Kramer, Herbert J

    2015-01-01

    This brief review describes some representative methodological approaches to the isolation of putative endogenous inhibitors of epithelial sodium transport - i.e., as ouabain-like factors (OLF) that inhibit the sodium transport enzyme Na-K-ATPase or inhibit the epithelial sodium channel (ENaC). Gel chromatography and reverse-phase (RP)-high performance liquid chromatography (HPLC) of lyophilized and reconstituted 24 h-urine from salt-loaded healthy humans led to two active fractions, a hydrophilic OLF-1 and a lipophilic OLF-2, whose mass (Ms)-spectroscopic data indicate a Mr of 391 (1, 2). Further identification was attempted by Ms-, infrared (IR)-, ultraviolet (UV)-, and (1)H-NMR-spectroscopy. OLF-1 and OLF-2 may be closely related if not identical to (di)ascorbic acid or its salts such as vanadium (V)-V(v)-diascorbate with Mr 403 (3) and V(IV)-diascorbate. OLF-1 and V(v)-diascorbate are about 10-fold stronger inhibitors of Na-K-ATPase than OLF-2 and V(IV)-diascorbate, respectively. In conscious rats, i.v. infusion of OLF-1 and OLF-2 resulted in a strong natriuresis. In a similar study, Cain et al. (4) isolated a sodium transport inhibitor from the urine of uremic patients by gel chromatography and RP-HPLC. In uremic rats, a natriuretic response to the injection of the active material was found. Xanthurenic acid 8-O-β-d-glucoside (Mr 368) and xanthurenic acid 8-O-sulfate (Mr 284) were identified as endogenous inhibitors of sodium transport acting, e.g., by ENaC blockade. No definite relation to blood pressure, body fluid volume, or sodium balance has been reported for any of these above factors, and further studies to identify the natriuretic and/or ouabain-like compound(s) or hormone(s) will be needed. PMID:26052310

  3. Tec family kinases in inflammation and disease.

    PubMed

    Horwood, Nicole J; Urbaniak, Ania M; Danks, Lynett

    2012-04-01

    Over the last decade, the Tec family of nonreceptor tyrosine kinases (Btk, Tec, Bmx, Itk, and Rlk) have been shown to play a key role in inflammation and bone destruction. Bruton's tyrosine kinase (Btk) has been the most widely studied due to the critical role of this kinase in B-cell development and recent evidence showing that blocking Btk signaling is effective in ameliorating lymphoma progression and experimental arthritis. This review will examine the role of TFK in myeloid cell function and the potential of targeting these kinases as a therapeutic intervention in autoimmune disorders such as rheumatoid arthritis. PMID:22449071

  4. MST kinases in development and disease

    PubMed Central

    2015-01-01

    The mammalian MST kinase family, which is related to the Hippo kinase in Drosophila melanogaster, includes five related proteins: MST1 (also called STK4), MST2 (also called STK3), MST3 (also called STK24), MST4, and YSK1 (also called STK25 or SOK1). MST kinases are emerging as key signaling molecules that influence cell proliferation, organ size, cell migration, and cell polarity. Here we review the regulation and function of these kinases in normal physiology and pathologies, including cancer, endothelial malformations, and autoimmune disease. PMID:26370497

  5. Comparative Analysis of Putative Orthologues of Mitochondrial Import Motor Subunit: Pam18 and Pam16 in Plants

    PubMed Central

    Chen, Xuejin; Ghazanfar, Bushra; Khan, Abdul Rehman; Hayat, Sikandar; Cheng, Zhihui

    2013-01-01

    Pam18/Tim14 and Pam16/Tim16, highly conserved proteins among eukaryotes, are two essential subunits of protein import motors localized in the inner mitochondrial membrane. The heterodimer formed by Pam18 and Pam16 via their J-type domains serves a regulatory function in protein translocation. Here, we report that thirty-one Pam18 and twenty-six Pam16 putative orthologues in twelve plant species were identified and analyzed through bioinformatics strategy. Results data revealed that Pam18 and Pam16 were also highly conserved among plants including their J-type domains within the hydrophilic region. Key amino acid residues and an HPD motif of Pam18 were identical among the orthologues except OsPam18L5. N-myristoylation sites of Pam18 and casein kinase II phosphorylation sites of Pam 16 were more abundant, which might be important functional sites. Some Pam18 and Pam16 proteins contained a transmembrane region at the N-terminal region. Sub-cellular prediction results indicated that many orthologues localized at mitochondria. Gene expression analyses revealed that Pam18 and Pam16 in Arabidopsis might play roles in senescence and abiotic stress responses. Our detailed study provides a better understanding of Pam18 and Pam16 in plant kingdom. PMID:24194927

  6. Identification and functional analysis of a new putative caveolin-3 variant found in a patient with sudden unexplained death

    PubMed Central

    2014-01-01

    Background Sudden cardiac death (SCD) is the clinical outcome of a lethal arrhythmia that can develop on the background of unrecognized channelopathies or cardiomyopathies. Several susceptibility genes have been identified for the congenital forms of these cardiac diseases, including caveolin-3 (Cav-3) gene. In the heart Cav-3 is the main component of caveolae, plasma membrane domains that regulate multiple cellular processes highly relevant for cardiac excitability, such as trafficking, calcium homeostasis, signal transduction and cellular response to injury. Here we characterized a new putative Cav-3 variant, Cav-3 V82I, found in a patient with SCD. Results In heterologous systems Cav-3 V82I was expressed at significantly higher level than Cav-3 WT and accumulated within the cells. Cells expressing Cav-3 V82I exhibited a decreased activation of extracellular-signal-regulated kinases (ERKs) and were more vulnerable to sub-lethal osmotic stress. Conclusion Considering that abnormal loss of myocytes can play a mechanistic role in lethal cardiac diseases, we suggest that the detrimental effect of Cav-3 V82I variant on cell viability may participate in determining the susceptibility to cardiac death. PMID:24917393

  7. Focal adhesion kinase is involved in mechanosensing during fibroblast migration

    NASA Technical Reports Server (NTRS)

    Wang, H. B.; Dembo, M.; Hanks, S. K.; Wang, Y.

    2001-01-01

    Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase localized at focal adhesions and is believed to mediate adhesion-stimulated effects. Although ablation of FAK impairs cell movement, it is not clear whether FAK might be involved in the guidance of cell migration, a role consistent with its putative regulatory function. We have transfected FAK-null fibroblasts with FAK gene under the control of the tetracycline repression system. Cells were cultured on flexible polyacrylamide substrates for the detection of traction forces and the application of mechanical stimulation. Compared with control cells expressing wild-type FAK, FAK-null cells showed a decrease in migration speed and directional persistence. In addition, whereas FAK-expressing cells responded to exerted forces by reorienting their movements and forming prominent focal adhesions, FAK-null cells failed to show such responses. Furthermore, FAK-null cells showed impaired responses to decreases in substrate flexibility, which causes control cells to generate weaker traction forces and migrate away from soft substrates. Cells expressing Y397F FAK, which cannot be phosphorylated at a key tyrosine site, showed similar defects in migration pattern and force-induced reorientation as did FAK-null cells. However, other aspects of F397-FAK cells, including the responses to substrate flexibility and the amplification of focal adhesions upon mechanical stimulation, were similar to that of control cells. Our results suggest that FAK plays an important role in the response of migrating cells to mechanical input. In addition, phosphorylation at Tyr-397 is required for some, but not all, of the functions of FAK in cell migration.

  8. A new “angle” on kinase inhibitor design: Prioritizing amphosteric activity above kinase inhibition

    PubMed Central

    Meyerowitz, Justin G; Weiss, William A; Gustafson, W Clay

    2015-01-01

    The MYCN oncoprotein has remained an elusive target for decades. We recently reported a new class of kinase inhibitors designed to disrupt the conformation of Aurora kinase A enough to block its kinase-independent interaction with MYCN, resulting in potent degradation of MYCN. These studies provide proof-of-principle for a new method of targeting enzyme activity-independent functions of kinases and other enzymes. PMID:27308435

  9. AMP-activated Protein Kinase Up-regulates Mitogen-activated Protein (MAP) Kinase-interacting Serine/Threonine Kinase 1a-dependent Phosphorylation of Eukaryotic Translation Initiation Factor 4E.

    PubMed

    Zhu, Xiaoqing; Dahlmans, Vivian; Thali, Ramon; Preisinger, Christian; Viollet, Benoit; Voncken, J Willem; Neumann, Dietbert

    2016-08-12

    AMP-activated protein kinase (AMPK) is a molecular energy sensor that acts to sustain cellular energy balance. Although AMPK is implicated in the regulation of a multitude of ATP-dependent cellular processes, exactly how these processes are controlled by AMPK as well as the identity of AMPK targets and pathways continues to evolve. Here we identify MAP kinase-interacting serine/threonine protein kinase 1a (MNK1a) as a novel AMPK target. Specifically, we show AMPK-dependent Ser(353) phosphorylation of the human MNK1a isoform in cell-free and cellular systems. We show that AMPK and MNK1a physically interact and that in vivo MNK1a-Ser(353) phosphorylation requires T-loop phosphorylation, in good agreement with a recently proposed structural regulatory model of MNK1a. Our data suggest a physiological role for MNK1a-Ser(353) phosphorylation in regulation of the MNK1a kinase, which correlates with increased eIF4E phosphorylation in vitro and in vivo. PMID:27413184

  10. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    PubMed Central

    Dzeja, Petras; Terzic, Andre

    2009-01-01

    Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7) are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network. PMID:19468337

  11. Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans.

    PubMed

    Ashenberg, Orr; Keating, Amy E; Laub, Michael T

    2013-04-12

    Bacteria frequently use two-component signal transduction pathways to sense and respond to environmental and intracellular stimuli. Upon receipt of a stimulus, a homodimeric sensor histidine kinase autophosphorylates and then transfers its phosphoryl group to a cognate response regulator. The autophosphorylation of histidine kinases has been reported to occur both in cis and in trans, but the molecular determinants dictating which mechanism is employed are unknown. Based on structural considerations, one model posits that the handedness of a loop at the base of the helical dimerization domain plays a critical role. Here, we tested this model by replacing the loop from Escherichia coli EnvZ, which autophosphorylates in trans, with the loop from three PhoR orthologs that autophosphorylate in cis. These chimeric kinases autophosphorylated in cis, indicating that this small loop is sufficient to determine autophosphorylation mechanism. Further, we report that the mechanism of autophosphorylation is conserved in orthologous sets of histidine kinases despite highly dissimilar loop sequences. These findings suggest that histidine kinases are under selective pressure to maintain their mode of autophosphorylation, but they can do so with a wide range of sequences. PMID:23333741

  12. Sensor response rate accelerator

    DOEpatents

    Vogt, Michael C.

    2002-01-01

    An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

  13. Sensitive kinase assay linked with phosphoproteomics for identifying direct kinase substrates.

    PubMed

    Xue, Liang; Wang, Wen-Horng; Iliuk, Anton; Hu, Lianghai; Galan, Jacob A; Yu, Shuai; Hans, Michael; Geahlen, Robert L; Tao, W Andy

    2012-04-10

    Our understanding of the molecular control of many disease pathologies requires the identification of direct substrates targeted by specific protein kinases. Here we describe an integrated proteomic strategy, termed kinase assay linked with phosphoproteomics, which combines a sensitive kinase reaction with endogenous kinase-dependent phosphoproteomics to identify direct substrates of protein kinases. The unique in vitro kinase reaction is carried out in a highly efficient manner using a pool of peptides derived directly from cellular kinase substrates and then dephosphorylated as substrate candidates. The resulting newly phosphorylated peptides are then isolated and identified by mass spectrometry. A further comparison of these in vitro phosphorylated peptides with phosphopeptides derived from endogenous proteins isolated from cells in which the kinase is either active or inhibited reveals new candidate protein substrates. The kinase assay linked with phosphoproteomics strategy was applied to identify unique substrates of spleen tyrosine kinase (Syk), a protein-tyrosine kinase with duel properties of an oncogene and a tumor suppressor in distinctive cell types. We identified 64 and 23 direct substrates of Syk specific to B cells and breast cancer cells, respectively. Both known and unique substrates, including multiple centrosomal substrates for Syk, were identified, supporting a unique mechanism that Syk negatively affects cell division through its centrosomal kinase activity. PMID:22451900

  14. EDITORIAL: Humidity sensors Humidity sensors

    NASA Astrophysics Data System (ADS)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  15. Fiber optic sensors

    NASA Technical Reports Server (NTRS)

    Hesse, J.; Sohler, W.

    1984-01-01

    A survey of the developments in the field of fiber optics sensor technology is presented along with a discussion of the advantages of optical measuring instruments as compared with electronic sensors. The two primary types of fiber optics sensors, specifically those with multiwave fibers and those with monowave fibers, are described. Examples of each major sensor type are presented and discussed. Multiwave detectors include external and internal fiber optics sensors. Among the monowave detectors are Mach-Zender interferometers, Michelson interferometers, Sagnac interferometers (optical gyroscopes), waveguide resonators, and polarimeter sensors. Integrated optical sensors and their application in spectroscopy are briefly discussed.

  16. Crossflow vorticity sensor

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J. (Inventor); Carraway, Debra L. (Inventor); Holmes, Harlan K. (Inventor); Moore, Thomas C. (Inventor)

    1988-01-01

    A crossflow vorticity sensor for the detection of crossflow vorticity characteristics is described. The sensor is comprised of crossflow sensors which are noninvasively adhered to a swept wing laminar surface either singularly, in multi-element strips, in polar patterns, or in orthogonal patterns. These crossflow sensors are comprised of hot-film sensor elements which operate as a constant temperature anemometer circuit to detect heat transfer rate changes. Accordingly, crossflow vorticity characteristics are determined via cross-correlation. In addition, the crossflow sensors have a thickness which does not exceed a maximum value h in order to avoid contamination of downstream crossflow sensors.

  17. A Novel Protein Kinase-Like Domain in a Selenoprotein, Widespread in the Tree of Life

    PubMed Central

    Dudkiewicz, Małgorzata; Szczepińska, Teresa; Grynberg, Marcin; Pawłowski, Krzysztof

    2012-01-01

    structural domain, with a putative kinase function assigned, expands the known kinome and deserves experimental determination of its biological role within the cell-signaling network. PMID:22359664

  18. Distinct functions of the dual leucine zipper kinase depending on its subcellular localization.

    PubMed

    Wallbach, Manuel; Duque Escobar, Jorge; Babaeikelishomi, Rohollah; Stahnke, Marie-Jeannette; Blume, Roland; Schröder, Sabine; Kruegel, Jenny; Maedler, Kathrin; Kluth, Oliver; Kehlenbach, Ralph H; Miosge, Nicolai; Oetjen, Elke

    2016-04-01

    The dual leucine zipper kinase DLK induces β-cell apoptosis by inhibiting the transcriptional activity conferred by the β-cell protective transcription factor cAMP response element binding protein CREB. This action might contribute to β-cell loss and ultimately diabetes. Within its kinase domain DLK shares high homology with the mixed lineage kinase (MLK) 3, which is activated by tumor necrosis factor (TNF) α and interleukin (IL)-1β, known prediabetic signals. In the present study, the regulation of DLK in β-cells by these cytokines was investigated. Both, TNFα and IL-1β induced the nuclear translocation of DLK. Mutations within a putative nuclear localization signal (NLS) prevented basal and cytokine-induced nuclear localization of DLK and binding to the importin receptor importin α, thereby demonstrating a functional NLS within DLK. DLK NLS mutants were catalytically active as they phosphorylated their down-stream kinase c-Jun N-terminal kinase to the same extent as DLK wild-type but did neither inhibit CREB-dependent gene transcription nor transcription conferred by the promoter of the anti-apoptotic protein BCL-xL. In addition, the β-cell apoptosis-inducing effect of DLK was severely diminished by mutation of its NLS. In a murine model of prediabetes, enhanced nuclear DLK was found. These data demonstrate that DLK exerts distinct functions, depending on its subcellular localization and thus provide a novel level of regulating DLK action. Furthermore, the prevention of the nuclear localization of DLK as induced by prediabetic signals with consecutive suppression of β-cell apoptosis might constitute a novel target in the therapy of diabetes mellitus. PMID:26776303

  19. Crystal structure of brain-type creatine kinase at 1.41 A resolution.

    PubMed Central

    Eder, M.; Schlattner, U.; Becker, A.; Wallimann, T.; Kabsch, W.; Fritz-Wolf, K.

    1999-01-01

    Excitable cells and tissues like muscle or brain show a highly fluctuating consumption of ATP, which is efficiently regenerated from a large pool of phosphocreatine by the enzyme creatine kinase (CK). The enzyme exists in tissue--as well as compartment-specific isoforms. Numerous pathologies are related to the CK system: CK is found to be overexpressed in a wide range of solid tumors, whereas functional impairment of CK leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. The crystal structure of chicken cytosolic brain-type creatine kinase (BB-CK) has been solved to 1.41 A resolution by molecular replacement. It represents the most accurately determined structure in the family of guanidino kinases. Except for the N-terminal region (2-12), the structures of both monomers in the biological dimer are very similar and closely resemble those of the other known structures in the family. Specific Ca2+-mediated interactions, found between two dimers in the asymmetric unit, result in structurally independent heterodimers differing in their N-terminal conformation and secondary structure. The high-resolution structure of BB-CK presented in this work will assist in designing new experiments to reveal the molecular basis of the multiple isoform-specific properties of CK, especially regarding different subcellular locations and functional interactions with other proteins. The rather similar fold shared by all known guanidino kinase structures suggests a model for the transition state complex of BB-CK analogous to the one of arginine kinase (AK). Accordingly, we have modeled a putative conformation of CK in the transition state that requires a rigid body movement of the entire N-terminal domain by rms 4 A from the structure without substrates. PMID:10595529

  20. Diacylglycerol kinases in membrane trafficking

    PubMed Central

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    Diacylglycerol kinases (DGKs) belong to a family of cytosolic kinases that regulate the phosphorylation of diacylglycerol (DAG), converting it into phosphatidic acid (PA). There are 10 known mammalian DGK isoforms, each with a different tissue distribution and substrate specificity. These differences allow regulation of cellular responses by fine-tuning the delicate balance of cellular DAG and PA. DGK isoforms are best characterized as mediators of signal transduction and immune function. However, since recent studies reveal that DAG and PA are also involved in the regulation of endocytic trafficking, it is therefore anticipated that DGKs also plays an important role in membrane trafficking. In this review, we summarize the literature discussing the role of DGK isoforms at different stages of endocytic trafficking, including endocytosis, exocytosis, endocytic recycling, and transport from/to the Golgi apparatus. Overall, these studies contribute to our understanding of the involvement of PA and DAG in endocytic trafficking, an area of research that is drawing increasing attention in recent years. PMID:27057419

  1. Rho Kinases and Cardiac Remodeling.

    PubMed

    Shimizu, Toru; Liao, James K

    2016-06-24

    Hypertensive cardiac remodeling is characterized by left ventricular hypertrophy and interstitial fibrosis, which can lead to heart failure with preserved ejection fraction. The Rho-associated coiled-coil containing kinases (ROCKs) are members of the serine/threonine protein kinase family, which mediates the downstream effects of the small GTP-binding protein RhoA. There are 2 isoforms: ROCK1 and ROCK2. They have different functions in different types of cells and tissues. There is growing evidence that ROCKs contribute to the development of cardiovascular diseases, including cardiac fibrosis, hypertrophy, and subsequent heart failure. Recent experimental studies using ROCK inhibitors, such as fasudil, have shown the benefits of ROCK inhibition in cardiac remodeling. Mice lacking each ROCK isoform also exhibit reduced myocardial fibrosis in a variety of pathological models of cardiac remodeling. Indeed, clinical studies with fasudil have suggested that ROCKs could be potential novel therapeutic targets for cardiovascular diseases. In this review, we summarize the current understanding of the roles of ROCKs in the development of cardiac fibrosis and hypertrophy and discuss their therapeutic potential for deleterious cardiac remodeling. (Circ J 2016; 80: 1491-1498). PMID:27251065

  2. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the

  3. Sensors, Update 2

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    1996-10-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Furthermore, the sensor market as well as peripheral aspects such as standards are covered. Each volume is divided into four sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  4. Advanced Sensor Concepts

    NASA Technical Reports Server (NTRS)

    Alhorn, D. C.; Howard, D. E.; Smith, D. A.

    2005-01-01

    The Advanced Sensor Concepts project was conducted under the Center Director's Discretionary Fund at the Marshall Space Flight Center. Its objective was to advance the technology originally developed for the Glovebox Integrated Microgravity Isolation Technology project. The objective of this effort was to develop and test several new motion sensors. To date, the investigators have invented seven new technologies during this endeavor and have conceived several others. The innovative basic sensor technology is an absolute position sensor. It employs only two active components, and it is simple, inexpensive, reliable, repeatable, lightweight, and relatively unobtrusive. Two sensors can be utilized in the same physical space to achieve redundancy. The sensor has micrometer positional accuracy and can be configured as a two- or three-dimensional sensor. The sensor technology has the potential to pioneer a new class of linear and rotary sensors. This sensor is the enabling technology for autonomous assembly of modular structures in space and on extraterrestrial locations.

  5. Sensor sentinel computing device

    DOEpatents

    Damico, Joseph P.

    2016-08-02

    Technologies pertaining to authenticating data output by sensors in an industrial environment are described herein. A sensor sentinel computing device receives time-series data from a sensor by way of a wireline connection. The sensor sentinel computing device generates a validation signal that is a function of the time-series signal. The sensor sentinel computing device then transmits the validation signal to a programmable logic controller in the industrial environment.

  6. Target of Rapamycin Regulates Development and Ribosomal RNA Expression through Kinase Domain in Arabidopsis1[W][OA

    PubMed Central

    Ren, Maozhi; Qiu, Shuqing; Venglat, Prakash; Xiang, Daoquan; Feng, Li; Selvaraj, Gopalan; Datla, Raju

    2011-01-01

    Target of rapamycin (TOR) is a central regulator of cell growth, cell death, nutrition, starvation, hormone, and stress responses in diverse eukaryotes. However, very little is known about TOR signaling and the associated functional domains in plants. We have taken a genetic approach to dissect TOR functions in Arabidopsis (Arabidopsis thaliana) and report here that the kinase domain is essential for the role of TOR in embryogenesis and 45S rRNA expression. Twelve new T-DNA insertion mutants, spanning 14.2 kb of TOR-encoding genomic region, have been characterized. Nine of these share expression of defective kinase domain and embryo arrest at 16 to 32 cell stage. However, three T-DNA insertion lines affecting FATC domain displayed normal embryo development, indicating that FATC domain was dispensable in Arabidopsis. Genetic complementation showed that the TOR kinase domain alone in tor-10/tor-10 mutant background can rescue early embryo lethality and restore normal development. Overexpression of full-length TOR or kinase domain in Arabidopsis displayed developmental abnormalities in meristem, leaf, root, stem, flowering time, and senescence. We further show that TOR, especially the kinase domain, plays a role in ribosome biogenesis by activating 45S rRNA production. Of the six putative nuclear localization sequences in the kinase domain, nuclear localization sequence 6 was identified to confer TOR nuclear targeting in transient expression assays. Chromatin immunoprecipitation studies revealed that the HEAT repeat domain binds to 45S rRNA promoter and the 5′ external transcribed spacer elements motif. Together, these results show that TOR controls the embryogenesis, postembryonic development, and 45S rRNA production through its kinase domain in Arabidopsis. PMID:21266656

  7. Malaria Parasite-Infected Erythrocytes Secrete PfCK1, the Plasmodium Homologue of the Pleiotropic Protein Kinase Casein Kinase 1.

    PubMed

    Dorin-Semblat, Dominique; Demarta-Gatsi, Claudia; Hamelin, Romain; Armand, Florence; Carvalho, Teresa Gil; Moniatte, Marc; Doerig, Christian

    2015-01-01

    Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite's life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion. PMID:26629826

  8. Malaria Parasite-Infected Erythrocytes Secrete PfCK1, the Plasmodium Homologue of the Pleiotropic Protein Kinase Casein Kinase 1

    PubMed Central

    Dorin-Semblat, Dominique; Demarta-Gatsi, Claudia; Hamelin, Romain; Armand, Florence; Carvalho, Teresa Gil; Moniatte, Marc; Doerig, Christian

    2015-01-01

    Casein kinase 1 (CK1) is a pleiotropic protein kinase implicated in several fundamental processes of eukaryotic cell biology. Plasmodium falciparum encodes a single CK1 isoform, PfCK1, that is expressed at all stages of the parasite’s life cycle. We have previously shown that the pfck1 gene cannot be disrupted, but that the locus can be modified if no loss-of-function is incurred, suggesting an important role for this kinase in intra-erythrocytic asexual proliferation. Here, we report on the use of parasite lines expressing GFP- or His-tagged PfCK1 from the endogenous locus to investigate (i) the dynamics of PfCK1 localisation during the asexual cycle in red blood cells, and (ii) potential interactors of PfCK1, so as to gain insight into the involvement of the enzyme in specific cellular processes. Immunofluorescence analysis reveals a dynamic localisation of PfCK1, with evidence for a pool of the enzyme being directed to the membrane of the host erythrocyte in the early stages of infection, followed by a predominantly intra-parasite localisation in trophozoites and schizonts and association with micronemes in merozoites. Furthermore, we present strong evidence that a pool of enzymatically active PfCK1 is secreted into the culture supernatant, demonstrating that PfCK1 is an ectokinase. Our interactome experiments and ensuing kinase assays using recombinant PfCK1 to phosphorylate putative interactors in vitro suggest an involvement of PfCK1 in many cellular processes such as mRNA splicing, protein trafficking, ribosomal, and host cell invasion. PMID:26629826

  9. Sensor Authentication in Collaborating Sensor Networks

    SciTech Connect

    Bielefeldt, Jake Uriah

    2014-11-01

    In this thesis, we address a new security problem in the realm of collaborating sensor networks. By collaborating sensor networks, we refer to the networks of sensor networks collaborating on a mission, with each sensor network is independently owned and operated by separate entities. Such networks are practical where a number of independent entities can deploy their own sensor networks in multi-national, commercial, and environmental scenarios, and some of these networks will integrate complementary functionalities for a mission. In the scenario, we address an authentication problem wherein the goal is for the Operator Oi of Sensor Network Si to correctly determine the number of active sensors in Network Si. Such a problem is challenging in collaborating sensor networks where other sensor networks, despite showing an intent to collaborate, may not be completely trustworthy and could compromise the authentication process. We propose two authentication protocols to address this problem. Our protocols rely on Physically Unclonable Functions, which are a hardware based authentication primitive exploiting inherent randomness in circuit fabrication. Our protocols are light-weight, energy efficient, and highly secure against a number of attacks. To the best of our knowledge, ours is the first to addresses a practical security problem in collaborating sensor networks.

  10. Mind Operational Semantics and Brain Operational Architectonics: A Putative Correspondence

    PubMed Central

    Benedetti, Giulio; Marchetti, Giorgio; Fingelkurts, Alexander A; Fingelkurts, Andrew A

    2010-01-01

    ) of different complexity within OA’s theory: EOMC could correspond to simple OMs, correlators to complex OMs and the correlational network to a set of simple and complex OMs. Finally, a set of experiments is proposed to verify the putative correspondence between OS and OA and prove the existence of an integrated continuum between brain and mind. PMID:21113277

  11. Putative functions of extracellular matrix glycoproteins in secondary palate morphogenesis

    PubMed Central

    d'Amaro, Rocca; Scheidegger, Rolf; Blumer, Susan; Pazera, Pawel; Katsaros, Christos; Graf, Daniel; Chiquet, Matthias

    2012-01-01

    Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves are coordinated by growth and transcription factors, and mutations in these can cause malformations. Among the effector genes for growth factor signaling are extracellular matrix (ECM) glycoproteins. These provide substrates for cell adhesion (e.g., fibronectin, tenascins), but also regulate growth factor availability (e.g., fibrillins). Cleft palate in Bmp7 null mouse embryos is caused by a delay in palatal shelf elevation. In contrast, palatal shelves of Tgf-β3 knockout mice elevate normally, but a cleft develops due to their failure to fuse. However, nothing is known about a possible functional interaction between specific ECM proteins and Tgf-β/Bmp family members in palatogenesis. To start addressing this question, we studied the mRNA and protein distribution of relevant ECM components during secondary palate development, and compared it to growth factor expression in wildtypewild type and mutant mice. We found that fibrillin-2 (but not fibrillin-1) mRNA appeared in the mesenchyme of elevated palatal shelves adjacent to the midline epithelial cells, which were positive for Tgf-β3 mRNA. Moreover, midline epithelial cells started expressing fibronectin upon contact of the two palatal shelves. These findings support the hypothesis that fibrillin-2 and fibronectin are involved in regulating the activity of Tgf-β3 at the fusing midline. In addition, we observed that tenascin-W (but not tenascin-C) was misexpressed in palatal shelves of Bmp7-deficient mouse embryos. In contrast to tenascin-C, tenascin-W secretion was strongly induced by Bmp7 in embryonic cranial fibroblasts in vitro. These results are consistent with a putative function for tenascin-W as a target of Bmp7 signaling during palate elevation. Our results indicate that distinct ECM proteins are important for morphogenesis of the secondary palate, both as downstream effectors and as regulators of Tgf

  12. Putative cryomagma interaction with aerosols deposit at Titan's surface

    NASA Astrophysics Data System (ADS)

    Coll, Patrice; Navarro-Gonzalez, Rafael; Raulin, Francois; Coscia, David; Ramirez, Sandra I.; Buch, Arnaud; Szopa, Cyril; Poch, Olivier; Cabane, Michel; Brassé, Coralie

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan’s atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma [1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan aerosol analogues, that have been qualified as representative of Titan’s aerosols [2]. Indeed the first results obtained by the ACP experiment onboard Huygens probe revealed that the main products obtained after thermolysis of Titan’s collected aerosols, were ammonia (NH3) and hydrogen cyanide (HCN). Then performing a direct comparison of the volatiles produced after a thermal treatment done in conditions similar to the ones used by the ACP experiment, we may estimate that the tholins we used are relevant to chemical analogues of Titan’s aerosols, and to note free of oxygen. Taking into account recent studies proposing that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less [3]), and assuming the presence of specific gas species [4, 5], in particular CO2 and H2S, trapped in likely internal ocean, we determine a new probable composition of the cryomagma which could potentially interact with deposited Titan’s aerosols. We then carried out different hydrolyses, taking into account this composition, and we established the influence of the hydrolysis temperature on the organic molecules production. References: [1] Mitri et al., 2008. Resurfacing of Titan by ammonia-water cryomagma. Icarus. 196, 216-224. [2] Coll et al. 2013, Can laboratory tholins mimic the chemistry producing Titan's aerosols? A review in light of ACP experimental results, Planetary and Space Science 77, 91-103. [3] Tobie et al. 2012. Titan’s Bulk Composition Constrained by Cassini-Huygens: implication for internal outgassing. The

  13. Putative functions of extracellular matrix glycoproteins in secondary palate morphogenesis.

    PubMed

    d'Amaro, Rocca; Scheidegger, Rolf; Blumer, Susan; Pazera, Pawel; Katsaros, Christos; Graf, Daniel; Chiquet, Matthias

    2012-01-01

    Cleft palate is a common birth defect in humans. Elevation and fusion of paired palatal shelves are coordinated by growth and transcription factors, and mutations in these can cause malformations. Among the effector genes for growth factor signaling are extracellular matrix (ECM) glycoproteins. These provide substrates for cell adhesion (e.g., fibronectin, tenascins), but also regulate growth factor availability (e.g., fibrillins). Cleft palate in Bmp7 null mouse embryos is caused by a delay in palatal shelf elevation. In contrast, palatal shelves of Tgf-β3 knockout mice elevate normally, but a cleft develops due to their failure to fuse. However, nothing is known about a possible functional interaction between specific ECM proteins and Tgf-β/Bmp family members in palatogenesis. To start addressing this question, we studied the mRNA and protein distribution of relevant ECM components during secondary palate development, and compared it to growth factor expression in wildtypewild type and mutant mice. We found that fibrillin-2 (but not fibrillin-1) mRNA appeared in the mesenchyme of elevated palatal shelves adjacent to the midline epithelial cells, which were positive for Tgf-β3 mRNA. Moreover, midline epithelial cells started expressing fibronectin upon contact of the two palatal shelves. These findings support the hypothesis that fibrillin-2 and fibronectin are involved in regulating the activity of Tgf-β3 at the fusing midline. In addition, we observed that tenascin-W (but not tenascin-C) was misexpressed in palatal shelves of Bmp7-deficient mouse embryos. In contrast to tenascin-C, tenascin-W secretion was strongly induced by Bmp7 in embryonic cranial fibroblasts in vitro. These results are consistent with a putative function for tenascin-W as a target of Bmp7 signaling during palate elevation. Our results indicate that distinct ECM proteins are important for morphogenesis of the secondary palate, both as downstream effectors and as regulators of Tgf

  14. Photochemical chromophore isomerization in histidine kinase rhodopsin HKR1.

    PubMed

    Luck, Meike; Bruun, Sara; Keidel, Anke; Hegemann, Peter; Hildebrandt, Peter

    2015-04-28

    Histidine kinase rhodopsin 1 is a photoreceptor in green algae functioning as a UV-light sensor. It switches between a UV-absorbing state (Rh-UV) and a blue-absorbing state (Rh-Bl) with a protonated retinal Schiff base (RSB) cofactor in a mixture of 13-trans,15-anti and 13-cis,15-syn isomers. The present spectroscopic study now shows that cofactor-protein assembly stabilizes the protonated 13-trans,15-anti RSB isomer. Formation of the active photoswitch requires the photoinduced conversion to Rh-UV. The transitions between the Rh-Bl isomers and the deprotonated 13-cis,15-anti and 13-trans,15-syn isomers of Rh-UV proceed via multiple photoisomerizations of one or simultaneously two double bonds. PMID:25836735

  15. Nuclear and nucleolar localization signals and their targeting function in phosphatidylinositol 4-kinase PI4K230

    SciTech Connect

    Kakuk, Annamaria; Friedlaender, Elza; Vereb, Gyoergy; Lisboa, Duarte; Bagossi, Peter; Toth, Gabor; Gergely, Pal; Vereb, Gyoergy

    2008-08-01

    PI4K230, an isoform of phosphatidylinositol 4-kinase, known primarily as a cytoplasmic membrane-bound enzyme, was detected recently also in the nucleolus of several cells. Here we provide mechanistic insight on the targeting function of its putative nuclear localization signal (NLS) sequences using molecular modeling, digitonin-permeabilized HeLa cells and binding to various importins. The synthetic sequence {sup 916}NFNHIHKRIRRVADKYLSG{sup 934} comprising a putative monopartite NLS (NLS1), targeted covalently bound fluorescent BSA to the nucleoplasm via classical importin {alpha}/{beta} mechanism employing importins {alpha}1 and {alpha}3 but not {alpha}5. This transport was inhibited by wheat germ agglutinin and GTP{gamma}S. The sequence {sup 1414}SKKTNRGSQLHKYYMKRRTL{sup 1433}, a putative bipartite NLS (NLS2) proved ineffective in nuclear targeting if conjugated to fluorescently labeled BSA. Nonetheless, NLS2 or either of its basic clusters directed to the nucleolus soybean trypsin inhibitor that can pass the nuclear pore complex passively; moreover, an expressed 58 kDa fragment of PI4K230 (AA1166-1667) comprising NLS2 was also imported into the nucleus by import factors of reticulocyte lysate or by importin {alpha}1/{beta} or {alpha}3/{beta} complexes and localized to the nucleolus. We conclude that the putative bipartite NLS itself is a nucleolar targeting signal, and for nuclear import PI4K230 requires a larger sequence around it or, alternatively, the monopartite NLS.

  16. Cys-scanning Disulfide crosslinking and Bayesian modeling probe the transmembrane signaling mechanism of the histidine kinase, PhoQ

    PubMed Central

    Molnar, Kathleen S; Bonomi, Massimiliano; Pellarin, Riccardo; Clinthorne, Graham D; Gonzalez, Gabriel; Goldberg, Shalom D; Goulian, Mark; Sali, Andrej; DeGrado, William F

    2014-01-01

    Summary Bacteria transduce signals across the membrane using two-component systems (TCSs), consisting of a membrane-spanning sensor histidine kinase and a cytoplasmic response regulator. In Gram negative bacteria, the PhoPQ TCS senses cations and antimicrobial peptides, yet little is known about the structural changes involved in transmembrane signaling. We construct a model of PhoQ signal transduction using Bayesian inference, based on disulfide crosslinking data and homologous crystal structures. The data are incompatible with a single conformation but are instead consistent with two interconverting structures. These states differ in membrane depth of the periplasmic acidic patch and the reciprocal displacement of diagonal helices along the dimer interface. Studies of multiple histidine kinases suggest this repacking might be a common mode of signal transduction in sensor His-kinase receptors. Since a similar scissors model has been ruled out in CheA-linked chemoreceptors, the new evidence suggests that sensor His-kinase and CheA-linked receptors possess different signaling mechanisms. PMID:25087511

  17. Receptor Tyrosine Kinases with Intracellular Pseudokinase Domains

    PubMed Central

    Mendrola, Jeannine M.; Shi, Fumin; Park, Jin H.; Lemmon, Mark A.

    2013-01-01

    As with other groups of protein kinases, approximately 10% of the receptor tyrosine kinases (RTKs) in the human proteome contain intracellular pseudokinases that lack one or more conserved catalytically important residues. These include ErbB3, a member of the epidermal growth factor receptor (EGFR) family, and a series of unconventional Wnt receptors. We recently showed that, despite its reputation as a pseudokinase, the ErbB3 tyrosine kinase domain (TKD) does retain significant – albeit weak – kinase activity. This led us to suggest that a subgroup of RTKs may be able to signal even with very inefficient kinases. Recent work suggests that this is not the case, however. Other pseudokinase RTKs have not revealed significant kinase activity, and mutations that impair ErbB3’s weak kinase activity have not so far been found to exhibit signaling defects. These findings therefore point to models in which the TKDs of pseudokinase RTKs participate in receptor signaling by allosterically regulating associated kinases (such as ErbB3 regulation of ErbB2) and/or function as regulated ‘scaffolds’ for other intermolecular interactions central to signal propagation. Further structural and functional studies – particularly of the pseudokinase RTKs involved in Wnt signaling – are required to shed new light on these intriguing signaling mechanisms. PMID:23863174

  18. Genetics Home Reference: pyruvate kinase deficiency

    MedlinePlus

    ... National (UK) Information Centre for Metabolic Diseases National Organization for Rare Disorders (NORD): Pyruvate Kinase Deficiency Genetic Testing Registry (1 link) Pyruvate kinase deficiency of red cells Scientific articles on PubMed (1 link) PubMed OMIM (1 link) ...

  19. Calmodulin binds to and inhibits the activity of phosphoglycerate kinase.

    PubMed

    Myre, Michael A; O'Day, Danton H

    2004-09-17

    Phosphoglycerate kinase (PGK) functions as a cytoplasmic ATP-generating glycolytic enzyme, a nuclear mediator in DNA replication and repair, a stimulator of Sendai virus transcription and an extracellular disulfide reductase in angiogenesis. Probing of a developmental expression library from Dictyostelium discoideum with radiolabelled calmodulin led to the isolation of a cDNA encoding a putative calmodulin-binding protein (DdPGK) with 68% sequence similarity to human PGK. Dictyostelium, rabbit and yeast PGKs bound to calmodulin-agarose in a calcium-dependent manner while DdPGK constructs lacking the calmodulin-binding domain (209KPFLAILGGAKVSDKIKLIE228) failed to bind. The calmodulin-binding domain shows 80% identity between diverse organisms and is situated beside the hinge and within the ATP binding domain adjacent to nine mutations associated with PGK deficiency. Calmodulin addition inhibits yeast PGK activity in vitro while the calmodulin antagonist W-7 abrogates this inhibition. Together, these data suggest that PGK activity may be negatively regulated by calcium and calmodulin signalling in eukaryotic cells. PMID:15363631

  20. Aurora Kinase Inhibitors: Current Status and Outlook

    PubMed Central

    Bavetsias, Vassilios; Linardopoulos, Spiros

    2015-01-01

    The Aurora kinase family comprises of cell cycle-regulated serine/threonine kinases important for mitosis. Their activity and protein expression are cell cycle regulated, peaking during mitosis to orchestrate important mitotic processes including centrosome maturation, chromosome alignment, chromosome segregation, and cytokinesis. In humans, the Aurora kinase family consists of three members; Aurora-A, Aurora-B, and Aurora-C, which each share a conserved C-terminal catalytic domain but differ in their sub-cellular localization, substrate specificity, and function during mitosis. In addition, Aurora-A and Aurora-B have been found to be overexpressed in a wide variety of human tumors. These observations led to a number of programs among academic and pharmaceutical organizations to discovering small molecule Aurora kinase inhibitors as anti-cancer drugs. This review will summarize the known Aurora kinase inhibitors currently in the clinic, and discuss the current and future directions. PMID:26734566

  1. Cysteine redox sensor in PKGIa enables oxidant-induced activation.

    PubMed

    Burgoyne, Joseph R; Madhani, Melanie; Cuello, Friederike; Charles, Rebecca L; Brennan, Jonathan P; Schröder, Ewald; Browning, Darren D; Eaton, Philip

    2007-09-01

    Changes in the concentration of oxidants in cells can regulate biochemical signaling mechanisms that control cell function. We have found that guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase (PKG) functions directly as a redox sensor. The Ialpha isoform, PKGIalpha, formed an interprotein disulfide linking its two subunits in cells exposed to exogenous hydrogen peroxide. This oxidation directly activated the kinase in vitro, and in rat cells and tissues. The affinity of the kinase for substrates it phosphorylates was enhanced by disulfide formation. This oxidation-induced activation represents an alternate mechanism for regulation along with the classical activation involving nitric oxide and cGMP. This mechanism underlies cGMP-independent vasorelaxation in response to oxidants in the cardiovascular system and provides a molecular explantion for how hydrogen peroxide can operate as an endothelium-derived hyperpolarizing factor. PMID:17717153

  2. Sensors, Update 12

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Fedder, Gary K.; Korvink, Jan G.

    2003-04-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  3. Sensors, Update 8

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    2001-02-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections: Sensor Technology reviews highlights in applied and basic research, while Sensor Applications covers new or improved applications of sensors, and Sensor Markets provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be invaluable to scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  4. Sensors, Update 11

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Fedder, Gary K.; Korvink, Jan G.

    2003-03-01

    Sensors Update ensures that you stay at the cutting edge of the field, presenting the current highlights of sensor and related microelectromechanical systems technology. Coverage includes most recent developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles based on micro- and nanotechnology. Each volume is divided into three sections: Sensor Technology reviews highlights in applied and basic research, Sensor Applications covers new or improved applications of sensors and Sensor Markets provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update is of must-have value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  5. Sensors, Update 10

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Fedder, Gary K.; Korvink, Jan G.

    2002-04-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  6. Sensors, Update 9

    NASA Astrophysics Data System (ADS)

    Baltes, Henry; Göpel, Wolfgang; Hesse, Joachim

    2001-10-01

    Sensors Update ensures that you stay at the cutting edge of the field. Built upon the series Sensors, it presents an overview of highlights in the field. Coverage includes current developments in materials, design, production, and applications of sensors, signal detection and processing, as well as new sensing principles. Each volume is divided into three sections. Sensor Technology, reviews highlights in applied and basic research, Sensor Applications, covers new or improved applications of sensors, Sensor Markets, provides a survey of suppliers and market trends for a particular area. With this unique combination of information in each volume, Sensors Update will be of value for scientists and engineers in industry and at universities, to sensors developers, distributors, and users.

  7. Cloning, expression and characterization of a gene encoding mitogen activated protein kinase 2 (MPK2) from Tetrahymena thermophila.

    PubMed

    Arslanyolu, Muhittin; Yıldız, Mehmet Taha

    2014-08-01

    Environmental effects and mitogens determine cell phenotype in eukaryotes mainly through MAPK pathways. However, MAPK signaling pathways in T. thermophila have not been studied comprehensively. This study aims to express recombinant MPK2, a MAPK from T. thermophila, in E. coli to characterize its kinase activity. MPK2 was cloned by RT-PCR using degenerate oligonucleotide primers and RACE method. The full-length cDNA of the MPK2 gene is 1705bp that includes 1281bp ORF coding for a putative protein of 426 amino acids having a mass of 50.2kDa. The putative MPK2 protein contains all eleven conserved subdomains that are characteristics of serine/threonine protein kinases, and a TDY motif, which is a putative dual phosphorylation site common in Protista. MPK2 displays highest 48% overall identity to human ERK5 (MAPK7). The expression vector pGEX4T-1-MPK2 was constructed by inserting the coding region of MPK2 cDNA into pGEX4T-1 after introducing the nine point mutations, and then transformed into E. coli BL21(DE3). Autophosphorylation of 76kDa GST-MPK2 at tyrosine residues was confirmed not only by Western blot using anti-phosphotyrosine monoclonal antibody but also by in vitro kinase assay. GST-MPK2 was also able to phosphorylate the artificial substrate myelin basic protein. This study concludes that the free-living unicellular protist T. thermophila MPK2 has commonly conserved MAPK enzyme features, possibly involved in the regulation of cell survival responding to abiotic or biotic stressors, and the production and movement of haploid gametic nuclei between pairs during conjugation. PMID:24858074

  8. Multiple Functions of Let-23, a Caenorhabditis Elegans Receptor Tyrosine Kinase Gene Required for Vulval Induction

    PubMed Central

    Aroian, R. V.; Sternberg, P. W.

    1991-01-01

    The let-23 gene, which encodes a putative tyrosine kinase of the epidermal growth factor (EGF) receptor subfamily, has multiple functions during Caenorhabditis elegans development. We show that let-23 function is required for vulval precursor cells (VPCs) to respond to the signal that induces vulval differentiation: a complete loss of let-23 function results in no induction. However, some let-23 mutations that genetically reduce but do not eliminate let-23 function result in VPCs apparently hypersensitive to inductive signal: as many as five of six VPCs can adopt vulval fates, in contrast to the three that normally do. These results suggest that the let-23 receptor tyrosine kinase controls two opposing pathways, one that stimulates vulval differentiation and another that negatively regulates vulval differentiation. Furthermore, analysis of 16 new let-23 mutations indicates that the let-23 kinase functions in at least five tissues. Since various let-23 mutant phenotypes can be obtained independently, the let-23 gene is likely to have tissue-specific functions. PMID:2071015

  9. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  10. Sphingosine kinase regulation and cardioprotection

    PubMed Central

    Karliner, Joel S.

    2009-01-01

    Activation of sphingosine kinase/sphingosine-1-phosphate (SK/S1P)-mediated signalling has been recognized as critical for cardioprotection in response to acute ischaemia/reperfusion injury. Incubation of S1P with cultured cardiac myocytes subjected to hypoxia or treatment of isolated hearts either before ischaemia or at the onset of reperfusion (pharmacologic pre- or postconditioning) results in reduced myocyte injury. Synthetic agonists active at S1P receptors mimic these responses. Gene-targeted mice null for the SK1 isoform whose hearts are subjected to ischaemia/reperfusion injury exhibit increased infarct size and respond poorly either to ischaemic pre- or postconditioning. Measurements of cardiac SK activity and S1P parallel these observations. Ischaemic postconditioning combined with sphingosine and S1P rescues the heart from prolonged ischaemia. These observations may have considerable relevance for future therapeutic approaches to acute and chronic myocardial injury. PMID:19017750

  11. Silicon sensor integration to form smart sensors

    NASA Astrophysics Data System (ADS)

    Gourdeas, Leon; James, Daniel A.; Thiel, David V.; See, Le Lian

    2002-11-01

    The use of silicon-based sensors requires the addition of external support electronics to allow for compatibility with external logging and display instruments. The development of a smart sensor technology, where the support electronics are incorporated into the sensor allows for a simpler interface. To achieve this integration techniques are required for the connection of substrate sensors with drive and support circuitry (operational amplifiers and CMOS circuitry), for effective encapsulation into a single packaged device. In this paper a literature review of basic peripheral and internal interconnect techniques is presented. Three techniques for interconnects were experimentally investigated (wraparound, thermomigration and etched micro via"s) using in-house fabrication equipment and the results presented and discussed. An integrated "smart" light sensor was constructed by forming a schotkey diode on n-type silicon. The sensor was integrated with a commercially available LM324 quad operational amplifier die and etched micro via`s were used to connect between the electronics on one side and the silicon sensor on the other side so forming a smart sensor. The light level sensor was calibrated and tested for suitability as a solar intensity monitor.

  12. Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain.

    PubMed

    Rinaldi, Jimena; Arrar, Mehrnoosh; Sycz, Gabriela; Cerutti, María Laura; Berguer, Paula M; Paris, Gastón; Estrín, Darío Ariel; Martí, Marcelo Adrián; Klinke, Sebastián; Goldbaum, Fernando Alberto

    2016-03-27

    In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK. PMID:26851072

  13. Insulin-induced Drosophila S6 kinase activation requires phosphoinositide 3-kinase and protein kinase B.

    PubMed Central

    Lizcano, Jose M; Alrubaie, Saif; Kieloch, Agnieszka; Deak, Maria; Leevers, Sally J; Alessi, Dario R

    2003-01-01

    An important mechanism by which insulin regulates cell growth and protein synthesis is through activation of the p70 ribosomal S6 protein kinase (S6K). In mammalian cells, insulin-induced PI3K (phosphoinositide 3-kinase) activation, generates the lipid second messenger PtdIns(3,4,5) P (3), which is thought to play a key role in triggering the activation of S6K. Although the major components of the insulin-signalling pathway are conserved in Drosophila, recent studies suggested that S6K activation does not require PI3K in this system. To investigate further the role of dPI3K (Drosophila PI3K) in dS6K (Drosophila S6K) activation, we examined the effect of two structurally distinct PI3K inhibitors on insulin-induced dS6K activation in Kc167 and S2 Drosophila cell lines. We found that both inhibitors prevented insulin-stimulated phosphorylation and activation of dS6K. To investigate further the role of the dPI3K pathway in regulating dS6K activation, we also used dsRNAi (double-stranded RNA-mediated interference) to decrease expression of dPI3K and the PtdIns(3,4,5) P (3) phosphatase dPTEN ( Drosophila phosphatase and tensin homologue deleted on chromosome 10) in Kc167 and S2 cells. Knock-down of dPI3K prevented dS6K activation, whereas knock-down of dPTEN, which would be expected to increase PtdIns(3,4,5) P (3) levels, stimulated dS6K activity. Moreover, when the expression of the dPI3K target, dPKB (Drosophila protein kinase B), was decreased to undetectable levels, we found that insulin could no longer trigger dS6K activation. This observation provides the first direct demonstration that dPKB is required for insulin-stimulated dS6K activation. We also present evidence that the amino-acid-induced activation of dS6K in the absence of insulin, thought to be mediated by dTOR (Drosophila target of rapamycin), which is unaffected by the inhibition of dPI3K by wortmannin. The results of the present study support the view that, in Drosophila cells, dPI3K and dPKB, as well d

  14. Synthesis, molecular docking and Brugia malayi thymidylate kinase (BmTMK) enzyme inhibition study of novel derivatives of [6]-shogaol.

    PubMed

    Singh, Vinay Kr; Doharey, Pawan K; Kumar, Vikash; Saxena, J K; Siddiqi, M I; Rathaur, Sushma; Narender, Tadigoppula

    2015-03-26

    [6]-Shogaol (1) was isolated from Zingiber officinale. Twelve novel compounds have been synthesized and evaluated for their Brugia malayi thymidylate kinase (BmTMK) inhibition activity, which plays important role for the DNA synthesis in parasite. [6]-Shogaol (1) and shogaol with thymine head group (2), 5-bromouracil head group (3), adenine head group (4) and 2-amino-3-methylpyridine head group (5) showed potential inhibitory effect on BmTMK activity. Further molecular docking studies were carried out to explore the putative binding mode of compounds 1-5. PMID:25659753

  15. Xenopus Cds1 Is Regulated by DNA-Dependent Protein Kinase and ATR during the Cell Cycle Checkpoint Response to Double-Stranded DNA Ends

    PubMed Central

    McSherry, Troy D.; Mueller, Paul R.

    2004-01-01

    The checkpoint kinase Cds1 (Chk2) plays a key role in cell cycle checkpoint responses with functions in cell cycle arrest, DNA repair, and induction of apoptosis. Proper regulation of Cds1 is essential for appropriate cellular responses to checkpoint-inducing insults. While the kinase ATM has been shown to be important in the regulation of human Cds1 (hCds1), here we report that the kinases ATR and DNA-dependent protein kinase (DNA-PK) play more significant roles in the regulation of Xenopus Cds1 (XCds1). Under normal cell cycle conditions, nonactivated XCds1 constitutively associates with a Xenopus ATR complex. The association of XCds1 with this complex does not require a functional forkhead activation domain but does require a putative SH3 binding region that is found in XCds1. In response to double-stranded DNA ends, the amino terminus of XCds1 is rapidly phosphorylated in a sequential pattern. First DNA-PK phosphorylates serine 39, a site not previously recognized as important in Cds1 regulation. Xenopus ATM, ATR, and/or DNA-PK then phosphorylate three consensus serine/glutamine sites. Together, these phosphorylations have the dual function of inducing dissociation from the ATR complex and independently promoting the full activation of XCds1. Thus, the checkpoint-mediated activation of XCds1 requires phosphorylation by multiple phosphoinositide 3-kinase-related kinases, protein-protein dissociation, and autophosphorylation. PMID:15509799

  16. Transcript Abundance of Putative Lipid Phosphate Phosphatases During Development of Trypanosoma brucei in the Tsetse Fly.

    PubMed

    Alves e Silva, Thiago Luiz; Savage, Amy F; Aksoy, Serap

    2016-04-01

    African trypanosomes (Trypanosoma brucei spp.) cause devastating diseases in sub-Saharan Africa. Trypanosomes differentiate repeatedly during development in tsetse flies before gaining mammalian infectivity in fly salivary glands. Lipid phosphate phosphatases (LPPs) are involved in diverse biological processes, such as cell differentiation and cell migration. Gene sequences encoding two putative T. brucei LPP proteins were used to search the T. brucei genome, revealing two additional putative family members. Putative structural features and transcript abundance during parasite development in tsetse fly were characterized. Three of the four LPP proteins are predicted to have six transmembrane domains, while the fourth shows only one. Semiquantitative gene expression revealed differential regulation of LPPs during parasite development. Transcript abundance for three of the four putative LPP genes was elevated in parasites infecting salivary glands, but not mammalian-infective metacyclic cells in fly saliva, indicating a potential role of this family in parasite establishment in tsetse salivary glands. PMID:26856918

  17. Acoustic particle acceleration sensors

    SciTech Connect

    Franklin, J.B.; Barry, P.J.

    1996-04-01

    A crossed dipole array provides a directional receiving capability in a relatively small sensor package and is therefore very attractive for many applications in acoustics. Particle velocity measurements on two axes perpendicular to each other are required to provide the dipole signals. These can be obtained directly using particle velocity sensors or via simple transfer functions using acceleration and displacement sensors. Also, the derivative of the acoustic pressure with respect to space provides a signal proportional to the particle acceleration and gives rise to the pressure gradient sensor. Each of these sensors has strengths and drawbacks depending on the frequency regime of interest, the noise background, and whether a point or a line configuration of dipole sensors is desired. In this paper, the performance of acceleration sensors is addressed using a sensor concept developed at DREA. These sensors exploit bending stresses in a cantilever beam of piezoelectric material to obtain wide bandwidth and high sensitivity. Models which predict the acceleration sensitivity, pressure sensitivity, and natural frequency for this type of sensor are described. Experimental results obtained using several different versions of these sensors are presented and compared with theory. The predicted performance of acceleration sensors are compared with that of pressure gradient arrays and particle velocity sensors. {copyright} {ital 1996 American Institute of Physics.}

  18. Phosphoinositide 3-kinase-gamma induces Xenopus oocyte maturation via lipid kinase activity.

    PubMed Central

    Hehl, S; Stoyanov, B; Oehrl, W; Schönherr, R; Wetzker, R; Heinemann, S H

    2001-01-01

    Type-I phosphoinositide 3-kinases (PI3Ks) were characterized as a group of intracellular signalling proteins expressing both protein and lipid kinase activities. Recent studies implicate PI3Ks as mediators of oocyte maturation, but the molecular mechanisms are poorly defined. Here we used the Xenopus oocyte expression system as a model to investigate a possible contribution of the gamma-isoform of PI3K (PI3Kgamma) in the different pathways leading to cell-cycle progression by monitoring the time course of germinal vesicle breakdown (GVBD). Expression of a constitutive active PI3Kgamma (PI3Kgamma-CAAX) induced GVBD and increased the levels of phosphorylated Akt/protein kinase B and mitogen-activated protein kinase (MAPK). Furthermore, PI3Kgamma-CAAX accelerated progesterone-induced GVBD, but had no effect on GVBD induced by insulin. The effects of PI3Kgamma-CAAX could be suppressed by pre-incubation of the oocytes with LY294002, PD98059 or roscovitine, inhibitors of PI3K, MEK (MAPK/extracellular-signal-regulated protein kinase kinase) and cdc2/cyclin B kinase, respectively. Mutants of PI3Kgamma-CAAX, in which either lipid kinase or both lipid and protein kinase activities were altered or eliminated, did not induce significant GVBD. Our data demonstrate that expression of PI3Kgamma in Xenopus oocytes accelerates their progesterone-induced maturation and that lipid kinase activity is required to induce this effect. PMID:11736661

  19. Mitotic regulation by NIMA-related kinases

    PubMed Central

    O'Regan, Laura; Blot, Joelle; Fry, Andrew M

    2007-01-01

    The NIMA-related kinases represent a family of serine/threonine kinases implicated in cell cycle control. The founding member of this family, the NIMA kinase of Aspergillus nidulans, as well as the fission yeast homologue Fin1, contribute to multiple aspects of mitotic progression including the timing of mitotic entry, chromatin condensation, spindle organization and cytokinesis. Mammals contain a large family of eleven NIMA-related kinases, named Nek1 to Nek11. Of these, there is now substantial evidence that Nek2, Nek6, Nek7 and Nek9 also regulate mitotic events. At least three of these kinases, as well as NIMA and Fin1, have been localized to the microtubule organizing centre of their respective species, namely the centrosome or spindle pole body. Here, they have important functions in microtubule organization and mitotic spindle assembly. Other Nek kinases have been proposed to play microtubule-dependent roles in non-dividing cells, most notably in regulating the axonemal microtubules of cilia and flagella. In this review, we discuss the evidence that NIMA-related kinases make a significant contribution to the orchestration of mitotic progression and thereby protect cells from chromosome instability. Furthermore, we highlight their potential as novel chemotherapeutic targets. PMID:17727698

  20. Dynamic architecture of a protein kinase

    PubMed Central

    McClendon, Christopher L.; Kornev, Alexandr P.; Gilson, Michael K.; Taylor, Susan S.

    2014-01-01

    Protein kinases are dynamically regulated signaling proteins that act as switches in the cell by phosphorylating target proteins. To establish a framework for analyzing linkages between structure, function, dynamics, and allostery in protein kinases, we carried out multiple microsecond-scale molecular-dynamics simulations of protein kinase A (PKA), an exemplar active kinase. We identified residue–residue correlated motions based on the concept of mutual information and used the Girvan–Newman method to partition PKA into structurally contiguous “communities.” Most of these communities included 40–60 residues and were associated with a particular protein kinase function or a regulatory mechanism, and well-known motifs based on sequence and secondary structure were often split into different communities. The observed community maps were sensitive to the presence of different ligands and provide a new framework for interpreting long-distance allosteric coupling. Communication between different communities was also in agreement with the previously defined architecture of the protein kinase core based on the “hydrophobic spine” network. This finding gives us confidence in suggesting that community analyses can be used for other protein kinases and will provide an efficient tool for structural biologists. The communities also allow us to think about allosteric consequences of mutations that are linked to disease. PMID:25319261

  1. [Mitogen-activated protein kinases in atherosclerosis].

    PubMed

    Bryk, Dorota; Olejarz, Wioletta; Zapolska-Downar, Danuta

    2014-01-01

    Intracellular signalling cascades, in which MAPK (mitogen-activated protein kinases) intermediate, are responsible for a biological response of a cell to an external stimulus. MAP kinases, which include ERK1/2 (extracellular signalling-regulated kinase), JNK (c-Jun N-terminal kinase) and p 38 MAPK, regulate the activity of many proteins, enzymes and transcription factors and thus have a wide spectrum of biological effects. Many basic scientific studies have defined numerous details of their pathway organization and activation. There are also more and more studies suggesting that individual MAP kinases probably play an important role in the pathogenesis of atherosclerosis. They may mediate inflammatory processes, endothelial cell activation, monocyte/macrophage recruitment and activation, smooth muscle cell proliferation and T-lymphocyte differentiation, all of which represent crucial mechanisms involved in pathogenesis of atherosclerosis. The specific inhibition of an activity of the respective MAP kinases may prove a new therapeutic approach to attenuate atherosclerotic plaque formation in the future. In this paper, we review the current state of knowledge concerning MAP kinase-dependent cellular and molecular mechanisms underlying atherosclerosis. PMID:24491891

  2. Heat Perception and Aversive Learning in Honey Bees: Putative Involvement of the Thermal/Chemical Sensor AmHsTRPA

    PubMed Central

    Junca, Pierre; Sandoz, Jean-Christophe

    2015-01-01

    The recent development of the olfactory conditioning of the sting extension response (SER) has provided new insights into the mechanisms of aversive learning in honeybees. Until now, very little information has been gained concerning US detection and perception. In the initial version of SER conditioning, bees learned to associate an odor CS with an electric shock US. Recently, we proposed a modified version of SER conditioning, in which thermal stimulation with a heated probe is used as US. This procedure has the advantage of allowing topical US applications virtually everywhere on the honeybee body. In this study, we made use of this possibility and mapped thermal responsiveness on the honeybee body, by measuring workers' SER after applying heat on 41 different structures. We then show that bees can learn the CS-US association even when the heat US is applied on body structures that are not prominent sensory organs, here the vertex (back of the head) and the ventral abdomen. Next, we used a neuropharmalogical approach to evaluate the potential role of a recently described Transient Receptor Potential (TRP) channel, HsTRPA, on peripheral heat detection by bees. First, we applied HsTRPA activators to assess if such activation is sufficient for triggering SER. Second, we injected HsTRPA inhibitors to ask whether interfering with this TRP channel affects SER triggered by heat. These experiments suggest that HsTRPA may be involved in heat detection by bees, and represent a potential peripheral detection system in thermal SER conditioning. PMID:26635613

  3. Regulatory Implications of Structural Changes in Tyr201 of the Oxygen Sensor Protein FixL.

    PubMed

    Yamawaki, Takeo; Ishikawa, Haruto; Mizuno, Misao; Nakamura, Hiro; Shiro, Yoshitsugu; Mizutani, Yasuhisa

    2016-07-26

    FixL is a heme-based oxygen-sensing histidine kinase that induces the expression of nitrogen fixation genes under hypoxic conditions. Oxygen dissociation from heme iron in the sensor domain of FixL initiates protein conformational changes that are transmitted to the histidine kinase domain, activating autophosphorylation activity. Conversely, oxygen binding inhibits FixL kinase activity. It is essential to elucidate the changes that occur in the protein structure upon this oxygen dissociation for understanding of the allosteric transduction mechanism. We measured ultraviolet resonance Raman spectra of FixL and its mutants for deoxy, oxy, and carbonmonoxy forms to examine the changes in protein structure upon oxygen dissociation. The observed spectral changes indicated that Tyr201 and its neighboring residues undergo structural changes upon oxygen dissociation. Kinase assays showed that substitution of Tyr201 significantly decreased the inhibition of kinase activity upon oxygen binding. These data mean that weakening of the hydrogen bond of Tyr201 that is induced by oxygen dissociation is essential for inhibition of kinase activity. We also observed spectral changes in Tyr residues in the kinase domain upon oxygen dissociation from FixL, which is the first observation of oxygen-dependent structural changes in the kinase domain of FixL. The observed structural changes support the allosteric transduction pathway of FixL which we proposed previously [ Yano, S., Ishikawa, H., Mizuno, M., Nakamura, H., Shiro, Y., and Mizutani, Y. ( 2013 ) J. Phys. Chem. B 117 , 15786 - 15791 ]. PMID:27367650

  4. Structural connectivity patterns associated with the putative visual word form area and children's reading ability.

    PubMed

    Fan, Qiuyun; Anderson, Adam W; Davis, Nicole; Cutting, Laurie E

    2014-10-24

    With the advent of neuroimaging techniques, especially functional MRI (fMRI), studies have mapped brain regions that are associated with good and poor reading, most centrally a region within the left occipito-temporal/fusiform region (L-OT/F) often referred to as the visual word form area (VWFA). Despite an abundance of fMRI studies of the putative VWFA, research about its structural connectivity has just started. Provided that the putative VWFA may be connected to distributed regions in the brain, it remains unclear how this network is engaged in constituting a well-tuned reading circuitry in the brain. Here we used diffusion MRI to study the structural connectivity patterns of the putative VWFA and surrounding areas within the L-OT/F in children with typically developing (TD) reading ability and with word recognition deficits (WRD; sometimes referred to as dyslexia). We found that L-OT/F connectivity varied along a posterior-anterior gradient, with specific structural connectivity patterns related to reading ability in the ROIs centered upon the putative VWFA. Findings suggest that the architecture of the putative VWFA connectivity is fundamentally different between TD and WRD, with TD showing greater connectivity to linguistic regions than WRD, and WRD showing greater connectivity to visual and parahippocampal regions than TD. Findings thus reveal clear structural abnormalities underlying the functional abnormalities in the putative VWFA in WRD. PMID:25152466

  5. Fiber optic chemical sensors

    NASA Astrophysics Data System (ADS)

    Jung, Chuck C.; McCrae, David A.; Saaski, Elric W.

    1998-09-01

    This paper provides a broad overview of the field of fiber optic chemical sensors. Several different types of fiber optic sensors and probes are described, and references are cited for each category discussed.

  6. Functional analysis of anomeric sugar kinases.

    PubMed

    Conway, Louis P; Voglmeir, Josef

    2016-09-01

    Anomeric sugar kinases perform fundamental roles in the metabolism of carbohydrates. Under- or overexpression of these enzymes, or mutations causing functional impairments can give rise to diseases such as galactosaemia and so the study of this class of kinase is of critical importance. In addition, anomeric sugar kinases which are naturally promiscuous, or have been artificially made so, may find application in the synthesis of libraries of drug candidates (for example, antibiotics), and natural or unnatural oligosaccharides and glycoconjugates. In this review, we provide an overview of the biological functions of these enzymes, the tools which have been developed to investigate them, and the current frontiers in their study. PMID:27351442

  7. Differential AMP-activated Protein Kinase (AMPK) Recognition Mechanism of Ca2+/Calmodulin-dependent Protein Kinase Kinase Isoforms.

    PubMed

    Fujiwara, Yuya; Kawaguchi, Yoshinori; Fujimoto, Tomohito; Kanayama, Naoki; Magari, Masaki; Tokumitsu, Hiroshi

    2016-06-24

    Ca(2+)/calmodulin-dependent protein kinase kinase β (CaMKKβ) is a known activating kinase for AMP-activated protein kinase (AMPK). In vitro, CaMKKβ phosphorylates Thr(172) in the AMPKα subunit more efficiently than CaMKKα, with a lower Km (∼2 μm) for AMPK, whereas the CaMKIα phosphorylation efficiencies by both CaMKKs are indistinguishable. Here we found that subdomain VIII of CaMKK is involved in the discrimination of AMPK as a native substrate by measuring the activities of various CaMKKα/CaMKKβ chimera mutants. Site-directed mutagenesis analysis revealed that Leu(358) in CaMKKβ/Ile(322) in CaMKKα confer, at least in part, a distinct recognition of AMPK but not of CaMKIα. PMID:27151216

  8. CFTR: a hub for kinases and crosstalk of cAMP and Ca2+.

    PubMed

    Kunzelmann, Karl; Mehta, Anil

    2013-09-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR). The resulting disease is pleiotropic consistent with the idea that CFTR acts as a node within a network of signalling proteins. CFTR is not only a regulator of multiple transport proteins and controlled by numerous kinases but also participates in many signalling pathways that are disrupted after expression of its commonest mutant (F508del-CFTR). It operates in membrane compartments creating a scaffold for cytoskeletal elements, surface receptors, kinases and phosphodiesterases. CFTR is exposed to membrane-local second messengers such that a CFTR-interacting, low cellular energy sensor kinase (AMP- and ADP-activated kinase, AMPK) signals through a high energy phosphohistidine protein kinase (nucleoside diphosphate kinase, NDPK). CFTR also translocates a Ca(2+)-dependent adenylate cyclase to its proximity so that a rigid separation between cAMP-dependent and Ca(2+)-dependent regulation of Cl(-) transport becomes obsolete. In the presence of wild-type CFTR, parallel activation of CFTR and outwardly rectifying anoctamin 6 Cl(-) channels is observed, while the Ca(2+)-activated anoctamin 1 Cl(-) channel is inhibited. In contrast, in CF cells, CFTR is missing/mislocalized and the outwardly rectifying chloride channel is attenuated while Ca(2+)-dependent Cl(-) secretion (anoctamin 1) appears upregulated. Additionally, we consider the idea that F508del-CFTR when trapped in the endoplasmic reticulum augments IP3-mediated Ca(2+) release by providing a shunt pathway for Cl(-). CFTR and the IP3 receptor share the characteristic that they both assemble their partner proteins to increase the plasticity of their hub responses. In CF, the CFTR hub fails to form at the plasma membrane, with widespread detrimental consequences for cell signalling. PMID:23895508

  9. Giant magnetoresistive sensor

    DOEpatents

    Stearns, Daniel G.; Vernon, Stephen P.; Ceglio, Natale M.; Hawryluk, Andrew M.

    1999-01-01

    A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

  10. Fiber optic geophysical sensors

    DOEpatents

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  11. Secure Sensor Platform

    Energy Science and Technology Software Center (ESTSC)

    2010-08-25

    The Secure Sensor Platform (SSP) software provides a framework of functionality to support the development of low-power autonomous sensors for nuclear safeguards. This framework provides four primary functional blocks of capabilities required to implement autonomous sensors. The capabilities are: communications, security, power management, and cryptography. Utilizing this framework establishes a common set of functional capabilities for seamless interoperability of any sensor based upon the SSP concept.

  12. Acoustic Humidity Sensor

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy; Kwack, Eug Y.; Venkateshan, Shakkottai

    1990-01-01

    Industrial humidity sensor measures volume fraction of water in air via its effect on speed of sound. Only portion of sensor exposed to sensed atmosphere is pair of stainless-steel tubes, one containing dry air and other containing moist air. Counters measure intervals between reflected pulses. Sensor rugged enough for use in harsh environments like those used to control drying of paper in paper mills, where most humidity sensors do not survive.

  13. Digital Sensor Technology

    SciTech Connect

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  14. Sensor readout detector circuit

    DOEpatents

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  15. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  16. Sensor readout detector circuit

    DOEpatents

    Chu, Dahlon D.; Thelen, Jr., Donald C.

    1998-01-01

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems.

  17. Touch Sensor for Robots

    NASA Technical Reports Server (NTRS)

    Primus, H. C.

    1986-01-01

    Touch sensor for robot hands provides information about shape of grasped object and force exerted by gripper on object. Pins projecting from sensor create electrical signals when pressed. When grasped object depresses pin, it contacts electrode under it, connecting electrode to common electrode. Sensor indicates where, and how firmly, gripper has touched object.

  18. Sensors for Entertainment

    PubMed Central

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-01-01

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored. PMID:27428981

  19. Automotive vehicle sensors

    SciTech Connect

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  20. Sensors for Entertainment.

    PubMed

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-01-01

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored. PMID:27428981

  1. Sensor-Failure Simulator

    NASA Technical Reports Server (NTRS)

    Melcher, Kevin J.; Delaat, John C.; Merrill, Walter C.; Oberle, Lawrence G.; Sadler, Gerald G.

    1988-01-01

    Outputs of defective sensors simulated for studies of reliability of control systems. Real-time sensor-failure simulator (SFS) designed and built for use with Advance Detection, Isolation, and Accommodation (ADIA) program. Equipment consists of IBM PC/XT computer and associated analog circuitry. User defines failure scenarios to determine which sensor signals fail and method(s) used to simulate failure.

  2. Sensor system scaling issues

    SciTech Connect

    Canavan, G.H.

    1996-07-01

    A model for IR sensor performance is used to compare estimates of sensor cost effectiveness. Although data from aircraft sensors indicate a weaker scaling, their agreement is adequate to support the assessment of the benefits of operating up to the maximum altitude of most current UAVs.

  3. Micro sun sensor

    NASA Technical Reports Server (NTRS)

    Liebe, C. C.; Mobasser, S.; Wrigley, C. J.; Bae, Y.; Howard, A.; Schroeder, J.

    2002-01-01

    A new generation of sun sensors is emerging. These sun sensors utilize an imaging detector and the sun sensor determines the sun angles based on an image of fringes or centroids on the detector plane. Typically determines the sun angle in two axes.

  4. Photoelectric sensor with PSD

    NASA Astrophysics Data System (ADS)

    Zhao, Yuan; Dai, Yong-Jiang; Cai, Xi-Ping; Li, Chun-Fei

    1991-12-01

    The photoelectric sensor with the Position Sensitive Detector (PSD) for Rendezvous and Docking (RVD) is described. The principle of measuring relative position and attitude of the target spacecraft by the sensor is given. Measuring the target by the principle, the experiment result is presented. The result indicates that it is practical using PSD as photoelectric sensor for RVD in close range.

  5. Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase

    NASA Technical Reports Server (NTRS)

    Shimizu, M.; Wang, W.; Walch, E. T.; Dunne, P. W.; Epstein, H. F.

    2000-01-01

    Myotonic dystrophy protein kinase (DMPK) is a serine-threonine protein kinase encoded by the myotonic dystrophy (DM) locus on human chromosome 19q13.3. It is a close relative of other kinases that interact with members of the Rho family of small GTPases. We show here that the actin cytoskeleton-linked GTPase Rac-1 binds to DMPK, and coexpression of Rac-1 and DMPK activates its transphosphorylation activity in a GTP-sensitive manner. DMPK can also bind Raf-1 kinase, the Ras-activated molecule of the MAP kinase pathway. Purified Raf-1 kinase phosphorylates and activates DMPK. The interaction of DMPK with these distinct signals suggests that it may play a role as a nexus for cross-talk between their respective pathways and may partially explain the remarkable pleiotropy of DM.

  6. The TMK1 gene from Arabidopsis codes for a protein with structural and biochemical characteristics of a receptor protein kinase.

    PubMed Central

    Chang, C; Schaller, G E; Patterson, S E; Kwok, S F; Meyerowitz, E M; Bleecker, A B

    1992-01-01

    Genomic and cDNA clones that code for a protein with structural and biochemical properties similar to the receptor protein kinases from animals were obtained from Arabidopsis. Structural features of the predicted polypeptide include an amino-terminal membrane targeting signal sequence, a region containing blocks of leucine-rich repeat elements, a single putative membrane spanning domain, and a characteristic serine/threonine-specific protein kinase domain. The gene coding for this receptor-like transmembrane kinase was designated TMK1. Portions of the TMK1 gene were expressed in Escherichia coli, and antibodies were raised against the recombinant polypeptides. These antibodies immunodecorated a 120-kD polypeptide present in crude extracts and membrane preparations. The immunodetectable band was present in extracts from leaf, stem, root, and floral tissues. The kinase domain of TMK1 was expressed as a fusion protein in E. coli, and the purified fusion protein was found capable of autophosphorylation on serine and threonine residues. The possible role of the TMK1 gene product in transmembrane signaling is discussed. PMID:1332795

  7. Identification of the human pim-1 gene product as a 33-kilodalton cytoplasmic protein with tyrosine kinase activity

    SciTech Connect

    Telerman, A.; Amson, R.; Zakut-Houri, R.; Givol, D.

    1988-04-01

    The human pim-1 gene was recently identified as a new putative oncogene located on chromosome 6p21, a region showing karyotypic abnormalities in particular leukemias. In the present work the authors characterized the pim protein product. In vitro translation of positively selected poly(A)/sup +/ mRNA indicates that this gene encodes a 33-kilodalton protein. Anti-pim antibodies were raised against a fused TrpE-pim protein induced in a bacterial expression vector. This antibody immunoprecipitated a 33-kilodalton protein from in vivo (/sup 35/S)methionine-labeled K562 and KCl myelogenous origin cell lines. This protein was localized to the cytoplasm, and in vivo labeling as well as in vitro kinase assay suggests that it is a phosphoprotein with tyrosine kinase activity. This was further confirmed by performing autophosphorylation directly on a p33/sup pim/-containing gel band cut out after sodium dodecyl sulfate-polyacrylamide gel electrphoresis. The results imply that the tyrosine kinase activity of pim can be recovered after boiling the pim-1 protein in sample buffer: a feature not described yet for this class of protein. These results suggest that pim-1 is a new member of the subgroup of oncogenes encoding tyrosine kinases.

  8. Mouse ULK2, a novel member of the UNC-51-like protein kinases: unique features of functional domains.

    PubMed

    Yan, J; Kuroyanagi, H; Tomemori, T; Okazaki, N; Asato, K; Matsuda, Y; Suzuki, Y; Ohshima, Y; Mitani, S; Masuho, Y; Shirasawa, T; Muramatsu, M

    1999-10-21

    The UNC-51 serine/threonine kinase of C. elegans plays an essential role in axonal elongation, and unc-51 mutants exhibit uncoordinated movements. We have previously identified mouse and human cDNAs encoding UNC-51-like kinase (ULK1). Here we report the identification and characterization of the second murine member of this kinase family, ULK2. Mouse ULK2 cDNA encodes a putative polypeptide of 1033 aa which has an overall 52% and 33% amino acid identity to ULK1 and UNC-51, respectively. ULKs and UNC-51 share a typical domain structure of an amino-terminal kinase domain, a central proline/serine rich (PS) domain, and a carboxy-terminal (C) domain. Northern blot analysis showed that ULK2 mRNA is widely expressed in adult tissues. In situ hybridization analysis indicated that ULK2 mRNA is ubiquitously localized in premature as well as mature neurons in developing nervous system. ULK2 gene was mapped to mouse chromosome 11B1.3 and rat chromosome 10q23 by FISH. HA-tagged ULK2 expressed in COS7 cells had an apparent molecular size of approximately 150 kDa and was autophosphorylated in vitro. Truncation mutants suggested that the autophosphorylation occurs in the PS domain. Although expression of ULK2 failed to rescue unc-51 mutant of C. elegans, a series of ULK2/UNC-51 chimeric kinases revealed that function of the kinase and PS domains are conserved among species, while the C domain acts in a species-specific manner. These results suggest that ULK2 is involved in a previously uncharacterized signaling pathway in mammalian cells. PMID:10557072

  9. TDP-43 Phosphorylation by casein kinase Iε promotes oligomerization and enhances toxicity in vivo.

    PubMed

    Choksi, Darshana K; Roy, Bidisha; Chatterjee, Shreyasi; Yusuff, Tanzeen; Bakhoum, Mathieu F; Sengupta, Urmi; Ambegaokar, Suren; Kayed, Rakez; Jackson, George R

    2014-02-15

    Dominant mutations in transactive response DNA-binding protein-43 (TDP-43) cause amyotrophic lateral sclerosis. TDP-43 inclusions occur in neurons, glia and muscle in this disease and in sporadic and inherited forms of frontotemporal lobar degeneration. Cytoplasmic localization, cleavage, aggregation and phosphorylation of TDP-43 at the Ser409/410 epitope have been associated with disease pathogenesis. TDP-43 aggregation is not a common feature of mouse models of TDP-43 proteinopathy, and TDP-43 is generally not thought to acquire an amyloid conformation or form fibrils. A number of putative TDP-43 kinases have been identified, but whether any of these functions to regulate TDP-43 phosphorylation or toxicity in vivo is not known. Here, we demonstrate that human TDP-43(Q331K) undergoes cytoplasmic localization and aggregates when misexpressed in Drosophila when compared with wild-type and M337V forms. Coexpression of Q331K with doubletime (DBT), the fly homolog of casein kinase Iε (CKIε), enhances toxicity. There is at best modest basal phosphorylation of misexpressed human TDP-43 in Drosophila, but coexpression with DBT increases Ser409/410 phosphorylation of all TDP-43 isoforms tested. Phosphorylation of TDP-43 in the fly is specific for DBT, as it is not observed using the validated tau kinases GSK-3β, PAR-1/MARK2 or CDK5. Coexpression of DBT with TDP-43(Q331K) enhances the formation of high-molecular weight oligomeric species coincident with enhanced toxicity, and treatment of recombinant oligomeric TDP-43 with rat CKI strongly enhances its toxicity in mammalian cell culture. These data identify CKIε as a potent TDP-43 kinase in vivo and implicate oligomeric species as the toxic entities in TDP-43 proteinopathies. PMID:24105464

  10. Pantothenate kinase-associated neurodegeneration.

    PubMed

    Hartig, Monika B; Prokisch, Holger; Meitinger, Thomas; Klopstock, Thomas

    2012-08-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a hereditary progressive disorder and the most frequent form of neurodegeneration with brain iron accumulation (NBIA). PKAN patients present with a progressive movement disorder, dysarthria, cognitive impairment and retinitis pigmentosa. In magnetic resonance imaging, PKAN patients exhibit the pathognonomic "eye of the tiger" sign in the globus pallidus which corresponds to iron accumulation and gliosis as shown in neuropathological examinations. The discovery of the disease causing mutations in PANK2 has linked the disorder to coenzyme A (CoA) metabolism. PANK2 is the only one out of four PANK genes encoding an isoform which localizes to mitochondria. At least two other NBIA genes (PLA2G6, C19orf12) encode proteins that share with PANK2 a mitochondrial localization and all are suggested to play a role in lipid homeostasis. With no causal therapy available for PKAN until now, only symptomatic treatment is possible. A multi-centre retrospective study with bilateral pallidal deep brain stimulation in patients with NBIA revealed a significant improvement of dystonia. Recently, studies in the PANK Drosophila model "fumble" revealed improvement by the compound pantethine which is hypothesized to feed an alternate CoA biosynthesis pathway. In addition, pilot studies with the iron chelator deferiprone that crosses the blood brain barrier showed a good safety profile and some indication of efficacy. An adequately powered randomized clinical trial will start in 2012. This review summarizes clinical presentation, neuropathology and pathogenesis of PKAN. PMID:22515741

  11. Genetics Home Reference: mevalonate kinase deficiency

    MedlinePlus

    ... cytoskeleton), gene activity (expression), and protein production and modification. Most MVK gene mutations that cause mevalonate kinase ... What are the different ways in which a genetic condition can be inherited? More about Inheriting Genetic ...

  12. How versatile are inositol phosphate kinases?

    PubMed Central

    Shears, Stephen B

    2004-01-01

    This review assesses the extent and the significance of catalytic versatility shown by several inositol phosphate kinases: the inositol phosphate multikinase, the reversible Ins(1,3,4) P (3)/Ins(3,4,5,6) P (4) kinase, and the kinases that synthesize diphosphoinositol polyphosphates. Particular emphasis is placed upon data that are relevant to the situation in vivo. It will be shown that catalytic promiscuity towards different inositol phosphates is not typically an evolutionary compromise, but instead is sometimes exploited to facilitate tight regulation of physiological processes. This multifunctionality can add to the complexity with which inositol signalling pathways interact. This review also assesses some proposed additional functions for the catalytic domains, including transcriptional regulation, protein kinase activity and control by molecular 'switching', all in the context of growing interest in 'moonlighting' (gene-sharing) proteins. PMID:14567754

  13. Pyruvate kinase and the "high ATP syndrome".

    PubMed Central

    Staal, G E; Jansen, G; Roos, D

    1984-01-01

    The erythrocytes of a patient with the so-called "high ATP syndrome" were characterized by a high ATP content and low 2,3-diphosphoglycerate level. The pyruvate kinase activity was specifically increased (about twice the normal level). After separation of the erythrocytes according to age by discontinuous Percoll density centrifugation, the pyruvate kinase activity was found to be increased in all Percoll fractions. Pyruvate kinase of the patient's cells was characterized by a decreased K0.5 for the substrate phosphoenolpyruvate and no inhibition by ATP. The Michaelis constant (Km) value for ADP, the nucleotide specificity, the thermostability, pH optimum, and immunological specific activity were normal. It is concluded that the high pyruvate kinase activity is due to a shift in the R(elaxed) in equilibrium T(ight) equilibrium to the R(elaxed) form. PMID:6736249

  14. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  15. Virtual Sensor Test Instrumentation

    NASA Technical Reports Server (NTRS)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  16. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues

    PubMed Central

    Mann, Thomas H.; Seth Childers, W.; Blair, Jimmy A.; Eckart, Michael R.; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  17. Cellular and Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in Cancer

    PubMed Central

    Yee, Nelson S.; Kazi, Abid A.; Yee, Rosemary K.

    2014-01-01

    The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed cation-permeable ion channel with intrinsic kinase activity that plays important roles in various physiological functions. Biochemical and electrophysiological studies, in combination with molecular analyses of TRPM7, have generated insights into its functions as a cellular sensor and transducer of physicochemical stimuli. Accumulating evidence indicates that TRPM7 channel-kinase is essential for cellular processes, such as proliferation, survival, differentiation, growth, and migration. Experimental studies in model organisms, such as zebrafish, mouse, and frog, have begun to elucidate the pleiotropic roles of TRPM7 during embryonic development from gastrulation to organogenesis. Aberrant expression and/or activity of the TRPM7 channel-kinase have been implicated in human diseases including a variety of cancer. Studying the functional roles of TRPM7 and the underlying mechanisms in normal cells and developmental processes is expected to help understand how TRPM7 channel-kinase contributes to pathogenesis, such as malignant neoplasia. On the other hand, studies of TRPM7 in diseases, particularly cancer, will help shed new light in the normal functions of TRPM7 under physiological conditions. In this article, we will provide an updated review of the structural features and biological functions of TRPM7, present a summary of current knowledge of its roles in development and cancer, and discuss the potential of TRPM7 as a clinical biomarker and therapeutic target in malignant diseases. PMID:25079291

  18. Targeted Activation of Conventional and Novel Protein Kinases C through Differential Translocation Patterns

    PubMed Central

    Hui, Xin; Reither, Gregor; Kaestner, Lars

    2014-01-01

    Activation of the two ubiquitous families of protein kinases, protein kinase A (PKA) and protein kinase C (PKC), is thought to be independently coupled to stimulation of Gαs and Gαq, respectively. Live-cell confocal imaging of protein kinase C fluorescent protein fusion constructs revealed that simultaneous activation of Gαs and Gαq resulted in a differential translocation of the conventional PKCα to the plasma membrane while the novel PKCδ was recruited to the membrane of the endoplasmic reticulum (ER). We demonstrate that the PKCδ translocation was driven by a novel Gαs-cyclic AMP-EPAC-RAP-PLCε pathway resulting in specific diacylglycerol production at the membrane of the ER. Membrane-specific phosphorylation sensors revealed that directed translocation resulted in phosphorylation activity confined to the target membrane. Specific stimulation of PKCδ caused phosphorylation of the inositol-1,4,5-trisphosphate receptor and dampening of global Ca2+ signaling revealed by graded flash photolysis of caged inositol-1,4,5-trisphosphate. Our data demonstrate a novel signaling pathway enabling differential decoding of incoming stimuli into PKC isoform-specific membrane targeting, significantly enhancing the versatility of cyclic AMP signaling, thus demonstrating the possible interconnection between the PKA and PKC pathways traditionally treated independently. We thus provide novel and elementary understanding and insights into intracellular signaling events. PMID:24732802

  19. A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues.

    PubMed

    Mann, Thomas H; Seth Childers, W; Blair, Jimmy A; Eckart, Michael R; Shapiro, Lucy

    2016-01-01

    All cells must integrate sensory information to coordinate developmental events in space and time. The bacterium Caulobacter crescentus uses two-component phospho-signalling to regulate spatially distinct cell cycle events through the master regulator CtrA. Here, we report that CckA, the histidine kinase upstream of CtrA, employs a tandem-PAS domain sensor to integrate two distinct spatiotemporal signals. Using CckA reconstituted on liposomes, we show that one PAS domain modulates kinase activity in a CckA density-dependent manner, mimicking the stimulation of CckA kinase activity that occurs on its transition from diffuse to densely packed at the cell poles. The second PAS domain interacts with the asymmetrically partitioned second messenger cyclic-di-GMP, inhibiting kinase activity while stimulating phosphatase activity, consistent with the selective inactivation of CtrA in the incipient stalked cell compartment. The integration of these spatially and temporally regulated signalling events within a single signalling receptor enables robust orchestration of cell-type-specific gene regulation. PMID:27117914

  20. Kinase-interacting substrate screening is a novel method to identify kinase substrates

    PubMed Central

    Amano, Mutsuki; Hamaguchi, Tomonari; Shohag, Md. Hasanuzzaman; Kozawa, Kei; Kato, Katsuhiro; Zhang, Xinjian; Yura, Yoshimitsu; Matsuura, Yoshiharu; Kataoka, Chikako; Nishioka, Tomoki

    2015-01-01

    Protein kinases play pivotal roles in numerous cellular functions; however, the specific substrates of each protein kinase have not been fully elucidated. We have developed a novel method called kinase-interacting substrate screening (KISS). Using this method, 356 phosphorylation sites of 140 proteins were identified as candidate substrates for Rho-associated kinase (Rho-kinase/ROCK2), including known substrates. The KISS method was also applied to additional kinases, including PKA, MAPK1, CDK5, CaMK1, PAK7, PKN, LYN, and FYN, and a lot of candidate substrates and their phosphorylation sites were determined, most of which have not been reported previously. Among the candidate substrates for Rho-kinase, several functional clusters were identified, including the polarity-associated proteins, such as Scrib. We found that Scrib plays a crucial role in the regulation of subcellular contractility by assembling into a ternary complex with Rho-kinase and Shroom2 in a phosphorylation-dependent manner. We propose that the KISS method is a comprehensive and useful substrate screen for various kinases. PMID:26101221

  1. Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry.

    PubMed

    Müller, André C; Giambruno, Roberto; Weißer, Juliane; Májek, Peter; Hofer, Alexandre; Bigenzahn, Johannes W; Superti-Furga, Giulio; Jessen, Henning J; Bennett, Keiryn L

    2016-01-01

    Mass spectrometry-based in vitro kinase screens play an essential role in the discovery of kinase substrates, however, many suffer from biological and technical noise or necessitate genetically-altered enzyme-cofactor systems. We describe a method that combines stable γ-[(18)O2]-ATP with classical in vitro kinase assays within a contemporary quantitative proteomic workflow. Our approach improved detection of known substrates of the non-receptor tyrosine kinase ABL1; and identified potential, new in vitro substrates. PMID:27346722

  2. Identifying Kinase Substrates via a Heavy ATP Kinase Assay and Quantitative Mass Spectrometry

    PubMed Central

    Müller, André C.; Giambruno, Roberto; Weißer, Juliane; Májek, Peter; Hofer, Alexandre; Bigenzahn, Johannes W.; Superti-Furga, Giulio; Jessen, Henning J.; Bennett, Keiryn L.

    2016-01-01

    Mass spectrometry-based in vitro kinase screens play an essential role in the discovery of kinase substrates, however, many suffer from biological and technical noise or necessitate genetically-altered enzyme-cofactor systems. We describe a method that combines stable γ-[18O2]-ATP with classical in vitro kinase assays within a contemporary quantitative proteomic workflow. Our approach improved detection of known substrates of the non-receptor tyrosine kinase ABL1; and identified potential, new in vitro substrates. PMID:27346722

  3. Seeding collaborations to advance kinase science with the GSK Published Kinase Inhibitor Set (PKIS).

    PubMed

    Drewry, David H; Willson, Timothy M; Zuercher, William J

    2014-01-01

    To catalyze research on historically untargeted protein kinases, we created the PKIS, an annotated set of 367 small molecule kinase inhibitors. The set has been widely distributed to academic collaborators as an open access tool. It has been used to identify chemical starting points for development of chemical probes for orphan kinases and to investigate kinase signaling in high content phenotypic assays. Access to the set comes with few restrictions other than the requirement that assay results be released into the public domain for the benefit of the entire research community. Examples from the efforts of several collaborators are summarized. PMID:24283969

  4. Protein kinase domain of twitchin has protein kinase activity and an autoinhibitory region.

    PubMed

    Lei, J; Tang, X; Chambers, T C; Pohl, J; Benian, G M

    1994-08-19

    Twitchin is a 753-kDa polypeptide located in the muscle A-bands of the nematode, Caenorhabditis elegans. It consists of multiple copies of both fibronectin III and immunoglobulin C2 domains and, near the C terminus, a protein kinase domain with greatest homology to the catalytic domains of myosin light chain kinases. We have expressed and purified from Escherichia coli twitchin's protein kinase catalytic core and flanking sequences that do not include fibronectin III and immunoglobulin C2 domains. The protein was shown to phosphorylate a model substrate and to undergo autophosphorylation. The autophosphorylation occurs at a slow rate, attaining a maximum at 3 h with a stoichiometry of about 1.0 mol of phosphate/mol of protein, probably through an intramolecular mechanism. Sequence analysis of proteolytically derived phosphopeptides revealed that autophosphorylation occurred N-terminal to the catalytic core, predominantly at Thr-5910, with possible minor sites at Ser5912 and/or Ser-5913. This portion of twitchin (residues 5890-6268) was also phosphorylated in vitro by protein kinase C in the absence of calcium and phosphotidylserine, but not by cAMP-dependent protein kinase. By comparing the activities of three twitchin segments, the enzyme appears to be inhibited by the 60-amino acid residues lying just C-terminal to the kinase catalytic core. Thus, like a number of other protein kinases including myosin light chain kinases, the twitchin kinase appears to be autoregulated. PMID:8063727

  5. Kinase inhibitor profiling reveals unexpected opportunities to inhibit disease-associated mutant kinases

    PubMed Central

    Duong-Ly, Krisna C.; Devarajan, Karthik; Liang, Shuguang; Horiuchi, Kurumi Y.; Wang, Yuren; Ma, Haiching; Peterson, Jeffrey R.

    2016-01-01

    Summary Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant, mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases including ALK, LRRK2, RET, and EGFR as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development. PMID:26776524

  6. A Molecular Brake in the Kinase Hinge Region Regulates the Activity of Receptor Tyrosine Kinases

    SciTech Connect

    Chen,H.; Ma, J.; Li, W.; Eliseenkova, A.; Xu, C.; Neubert, T.; Miller, W.; Mohammadi, M.

    2007-01-01

    Activating mutations in the tyrosine kinase domain of receptor tyrosine kinases (RTKs) cause cancer and skeletal disorders. Comparison of the crystal structures of unphosphorylated and phosphorylated wild-type FGFR2 kinase domains with those of seven unphosphorylated pathogenic mutants reveals an autoinhibitory 'molecular brake' mediated by a triad of residues in the kinase hinge region of all FGFRs. Structural analysis shows that many other RTKs, including PDGFRs, VEGFRs, KIT, CSF1R, FLT3, TEK, and TIE, are also subject to regulation by this brake. Pathogenic mutations activate FGFRs and other RTKs by disengaging the brake either directly or indirectly.

  7. Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors

    PubMed Central

    Luo, Min; Fu, Li-Wu

    2014-01-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown dramatic effects against that tumors harboring EGFR activating mutations in the EGFR intracytoplasmic tyrosine kinase domain and resulted in cell apoptosis. Unfortunately, a number of patients ultimately developed resistance by multiple mechanisms. Thus, elucidation of the mechanism of resistance to EGFR-TKIs can provide strategies for blocking or reversing the situation. Recent studies suggested that redundant kinase activation plays pivotal roles in escaping from the effects of EGFR-TKIs. Herein, we aimed to characterize several molecular events involved in the resistance to EGFR-TKIs mediated by redundant kinase activation. PMID:25520855

  8. Multifuctional integrated sensors (MFISES).

    SciTech Connect

    Homeijer, Brian D.; Roozeboom, Clifton

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  9. Combustion pressure sensor arrangement

    SciTech Connect

    Sawamoto, K.; Nagaishi, H.; Takeuchi, K.

    1986-07-29

    A combustion pressure sensor arrangement in an internal combustion engine having a cylinder head, comprising: a plug seating formed in the cylinder head; an annular pressure sensor; an ignition plug screwed into the cylinder head in such a manner that the pressure sensor is clamped between the ignition plug and the plug seating; an ignition plug accommodation hole formed in the cylinder head for accommodating therein the ignition plug; and a guide sleeve joined at one end thereof to the outer periphery of the pressure sensor and fitted in the ignition plug accommodation hole, wherein the one end of the guide sleeve is fitted on the outer periphery of the pressure sensor.

  10. Sorted gene genealogies and species-specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets

    PubMed Central

    Marshall, Jeremy L.

    2016-01-01

    In the Allonemobius socius complex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes. Our recently diverged species generally lacked sequence variation. As a result, ω-based tests were only mildly successful. Some of our genes showed evidence of elevated ω values on the internal branches of gene trees. In a couple of genes, these internal branches coincided with both species branching events of the species tree, between A. fasciatus and the other two species, and between A. socius and A. sp. nov. Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses was arginine kinase (AK) and apolipoprotein A-1 binding protein (APBP). These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of conspecific males to

  11. The putative cell cycle gene, enhancer of rudimentary, encodes a highly conserved protein found in plants and animals.

    PubMed

    Gelsthorpe, M; Pulumati, M; McCallum, C; Dang-Vu, K; Tsubota, S I

    1997-02-28

    The enhancer of rudimentary gene, e(r), in Drosophila melanogaster encodes a protein, ER, whose function has been implicated in pyrimidine biosynthesis and the cell cycle (Wojcik et al. (1994) Genetics 138, 1163-1170). In order to identify conserved regions of the protein and potentially important functional domains, the e(r) gene was cloned and sequenced from two other insects (Drosophila virilis and Aedes aegypti) and three vertebrates (Homo sapiens, Mus musculus, and Brachydanio rerio) and sequenced from a flowering plant (Arabidopsis thaliana). These sequences along with those of a nematode (Caenorhabditis elegans) exhibit a high degree of identity. ER of Drosophila melanogaster is 76% identical to the three vertebrate proteins, 49% identical to the nematode protein, and 40% identical to the plant protein. There is high evolutionary conservation among the vertebrates. The mouse and human proteins are identical and differ from that of the zebrafish by a single conservative amino-acid change (valine for isoleucine). A dramatic sequence conservation is seen in the position of the hydrophobic amino acids. Of the 27 positions occupied by hydrophobic amino acids in ER of Drosophila melanogaster, 25 of the corresponding positions in the human protein, 23 of the positions in Caenorhabditis elegans, and 20 of the positions in Arabidopsis thaliana have hydrophobic amino acids. Most of these residues are present in three conserved amphipathic alpha-helices, which are proposed to function in protein-protein interactions. Two phosphorylation sites for casein kinase II (CKII) have also been conserved within the animal groups. Purified ER from Drosophila melanogaster is phosphorylated in vitro by CKII, arguing that these two sites are functional in vivo. A putative shift in the secondary structure of ER caused by the phosphorylation of these sites suggests that CKII may be regulating the activity of the ER in vivo. PMID:9074495

  12. Targeting of a distinctive protein-serine phosphatase to the protein kinase-like domain of the atrial natriuretic peptide receptor.

    PubMed Central

    Chinkers, M

    1994-01-01

    Protein kinase-related domains of unknown function are present in the JAK family of protein tyrosine kinases and in receptor/guanylyl cyclases. I used the yeast two-hybrid system to screen for proteins interacting with the kinase-like domain of the atrial natriuretic peptide (ANP) receptor/guanylyl cyclase. A yeast strain was constructed expressing a fusion of this kinase-like domain to the lexA DNA-binding domain and containing a HIS3 gene under the control of lexA upstream activating sequences. These yeast cells were transformed with a plasmid library of mouse embryo cDNA fragments fused to the VP16 transcriptional activation domain. Cells containing VP16-fusion proteins interacting with the lexA-kinase-like domain fusion protein were selected by growth in the absence of histidine. A partial-length cDNA clone isolated by using this approach encoded a protein that interacted specifically with the ANP-receptor protein kinase-like domain both in yeast cells and in vitro. Tissue-specific expression of a 2.2-kb mRNA hybridizing to this cDNA paralleled the known pattern of ANP-receptor mRNA expression. A full-length cDNA clone isolated from a rat lung library was predicted to encode a 55-kDa protein containing at its amino terminus a targeting domain that binds to the ANP-receptor kinase-like domain and containing at its carboxyl terminus a putative protein-serine phosphatase domain. This protein is a possible candidate for the phosphatase involved in desensitizing the ANP receptor. Targeting of regulatory proteins may be an important function of protein kinase-like domains. Images PMID:7972012

  13. Fibronectin phosphorylation by ecto-protein kinase

    SciTech Connect

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru )

    1988-12-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with ({gamma}-{sup 32})ATP for 10 min at 37{degree}C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with ({gamma}-{sup 32}P)ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation.

  14. Sensor mount assemblies and sensor assemblies

    DOEpatents

    Miller, David H.

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  15. Silicon force sensor

    DOEpatents

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-07-05

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  16. Smart temperature sensors

    NASA Astrophysics Data System (ADS)

    Shahinpoor, Mohsen; Martinez, David R.

    1999-07-01

    This paper discusses the conceptual design of a family of specially-designed temperature surety sensors made with shape-memory alloys (SMA). These sensors are capable of detecting a one time temperature excursion or variance form a predetermined temperature range. The propose designs can also be used to detect a one-time temperature rise and persistence above a certain pre-selected critical temperature. In that respect, these sensors relate to a family of one-time thaw sensors detecting whether or not frozen food items or other frozen products or objects experience a thawing-refreezing process in their journey from point A to point B. The proposed sensor can also detect a one time temperature excursion into non-allowable temperatures for non-frozen food, as well as pharmaceutical or other medical products. The essential design of these smart sensor is a lever arm attached to an SMA wire whose temperature is initially below Austenite start temperature or well into the Martensite region. As a given product experiences an undesirable temperature range which pushes the SMA material into the Austenite region the wire contracts and moves the lever arm outside a display window area and exposes either a red working indicator or a graduated scale calibrated to the range of temperature excursion experienced by the product. The sensor is designed such that if the temperature returns to normal the excursion indication will not disappear, but will permanently shown the amount of excursion above the temperature surety region for that product. Several possible design variations are presented and discussed. The proposed embodiments include a rupture type thaw sensor made with short SMA springs or bellows, SMA foil roll-up type sensors, SMA wire-loaded shutter type thaw sensors, SMA torsion strut-loaded shutter type thaw sensors, multiple shutter SMA wire-loaded thaw sensors, multiple shutter, SMA torsion-rod-loaded thaw sensors, and rupture-Type SMA spring-loaded thaw sensors.

  17. Digital Sensor Technology

    SciTech Connect

    Thomas, Ken D.; Quinn, Edward L.; Mauck, Jerry L.; Bockhorst, Richard M.

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  18. HAM-5 Functions As a MAP Kinase Scaffold during Cell Fusion in Neurospora crassa

    PubMed Central

    Jonkers, Wilfried; Leeder, Abigail C.; Ansong, Charles; Wang, Yuexi; Yang, Feng; Starr, Trevor L.; Camp, David G.; Smith, Richard D.; Glass, N. Louise

    2014-01-01

    Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of

  19. Ubiquitin-Mediated Degradation of Aurora Kinases

    PubMed Central

    Lindon, Catherine; Grant, Rhys; Min, Mingwei

    2016-01-01

    The Aurora kinases are essential regulators of mitosis in eukaryotes. In somatic cell divisions of higher eukaryotes, the paralogs Aurora kinase A (AurA) and Aurora kinase B (AurB) play non-overlapping roles that depend on their distinct spatiotemporal activities. These mitotic roles of Aurora kinases depend on their interactions with different partners that direct them to different mitotic destinations and different substrates: AurB is a component of the chromosome passenger complex that orchestrates the tasks of chromosome segregation and cytokinesis, while AurA has many known binding partners and mitotic roles, including a well-characterized interaction with TPX2 that mediates its role in mitotic spindle assembly. Beyond the spatial control conferred by different binding partners, Aurora kinases are subject to temporal control of their activation and inactivation. Ubiquitin-mediated proteolysis is a critical route to irreversible inactivation of these kinases, which must occur for ordered transition from mitosis back to interphase. Both AurA and AurB undergo targeted proteolysis after anaphase onset as substrates of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase, even while they continue to regulate steps during mitotic exit. Temporal control of Aurora kinase destruction ensures that AurB remains active at the midbody during cytokinesis long after AurA activity has been largely eliminated from the cell. Differential destruction of Aurora kinases is achieved despite the fact that they are targeted at the same time and by the same ubiquitin ligase, making these substrates an interesting case study for investigating molecular determinants of ubiquitin-mediated proteolysis in higher eukaryotes. The prevalence of Aurora overexpression in cancers and their potential as therapeutic targets add importance to the task of understanding the molecular determinants of Aurora kinase stability. Here, we review what is known about ubiquitin-mediated targeting

  20. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development.

    PubMed

    Stamm, Irmela; Lottspeich, Friedrich; Plaga, Wulf

    2005-06-01

    Myxospore formation of the myxobacterium Stigmatella aurantiaca can be uncoupled from the cooperative development i.e. fruiting body formation, by low concentrations of indole. Two putative indole receptor proteins were isolated by their capacity to bind indole and identified as pyruvate kinase (PK) and aldehyde dehydrogenase. The PK activity of Stigmatella crude extracts was stimulated by indole. Cloning of the PK gene (pykA) and the construction of a pykA disruption mutant strikingly revealed that PK is essential for multicellular development: Fruiting body formation was abolished in the mutant strain and indole-induced spore formation was delayed. The developmental defects could be complemented by insertion of the pykA gene at the mtaB locus of the Stigmatella genome excluding any polar effects of the pykA disruption. PMID:15882428