Science.gov

Sample records for puzzle imperfect knowledge

  1. KnowledgePuzzle: A Browsing Tool to Adapt the Web Navigation Process to the Learner's Mental Model

    ERIC Educational Resources Information Center

    AlAgha, Iyad

    2012-01-01

    This article presents KnowledgePuzzle, a browsing tool for knowledge construction from the web. It aims to adapt the structure of web content to the learner's information needs regardless of how the web content is originally delivered. Learners are provided with a meta-cognitive space (e.g., a concept mapping tool) that enables them to plan…

  2. Imperfect Unit.

    ERIC Educational Resources Information Center

    McCarthy, Katherine

    This unit provides visual activities to engage students in learning the imperfect tense in Spanish. Upon completion of the unit, students will be able to do the following: identify imperfect tense conjugation in children's books; conjugate verbs in the imperfect tense; list uses of the imperfect tense; discriminate between the imperfect tense and…

  3. Puzzling Mechanisms

    ERIC Educational Resources Information Center

    van Deventer, M. Oskar

    2009-01-01

    The basis of a good mechanical puzzle is often a puzzling mechanism. This article will introduce some new puzzling mechanisms, like two knots that engage like gears, a chain whose links can be interchanged, and flat gears that do not come apart. It illustrates how puzzling mechanisms can be transformed into real mechanical puzzles, e.g., by…

  4. Puzzle Corner.

    ERIC Educational Resources Information Center

    Andrews, Ian A.

    1992-01-01

    Presents a crossword puzzle and a word find puzzle. Offers clues dealing with member nations in the British Commonwealth. Includes an answer key for the crossword puzzle. Suggests sources of information on the Commonwealth. (DK)

  5. Predicting community responses to perturbations in the face of imperfect knowledge and network complexity

    USGS Publications Warehouse

    Novak, Mark; Wootton, J. Timothy; Doak, Daniel F.; Emmerson, Mark; Estes, James A.; Tinker, M. Timothy

    2011-01-01

    How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (∼25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities.

  6. Predicting community responses to perturbations in the face of imperfect knowledge and network complexity

    USGS Publications Warehouse

    Novak, M.; Wootton, J.T.; Doak, D.F.; Emmerson, M.; Estes, J.A.; Tinker, M.T.

    2011-01-01

    How best to predict the effects of perturbations to ecological communities has been a long-standing goal for both applied and basic ecology. This quest has recently been revived by new empirical data, new analysis methods, and increased computing speed, with the promise that ecologically important insights may be obtainable from a limited knowledge of community interactions. We use empirically based and simulated networks of varying size and connectance to assess two limitations to predicting perturbation responses in multispecies communities: (1) the inaccuracy by which species interaction strengths are empirically quantified and (2) the indeterminacy of species responses due to indirect effects associated with network size and structure. We find that even modest levels of species richness and connectance (??25 pairwise interactions) impose high requirements for interaction strength estimates because system indeterminacy rapidly overwhelms predictive insights. Nevertheless, even poorly estimated interaction strengths provide greater average predictive certainty than an approach that uses only the sign of each interaction. Our simulations provide guidance in dealing with the trade-offs involved in maximizing the utility of network approaches for predicting dynamics in multispecies communities. ?? 2011 by the Ecological Society of America.

  7. Blood Type Puzzle.

    ERIC Educational Resources Information Center

    Kelly, Janet

    1997-01-01

    Presents a blood type puzzle that provides a visual, hands-on mechanism by which students can examine blood group reactions. Offers students an opportunity to construct their own knowledge about blood types. (JRH)

  8. Theorising Knowledge Practices: A Missing Piece of the Educational Technology Puzzle

    ERIC Educational Resources Information Center

    Howard, Sarah; Maton, Karl

    2011-01-01

    Educational technology research has been characterised as lacking theoretical frameworks that can enable cumulative knowledge-building across the field. This article explores the value of Legitimation Code Theory (LCT) for addressing these issues by discussing research into the key of integration of information and communication technologies in…

  9. Puzzles & Problems.

    ERIC Educational Resources Information Center

    Murphy, Pat, Ed.

    1993-01-01

    "Exploring" is a magazine of science, art, and human perception, produced by Exploratorium in collaboration with other participating museums. This issue focuses on puzzles and problem solving. Brain teasers, puzzles, and the strategies for solving them are included. Features include: (1) "Homework Assignment #3" (Paul Doherty); (2) "The Case of…

  10. Lockean Puzzles

    ERIC Educational Resources Information Center

    Milligan, Tony

    2007-01-01

    In analytic moral philosophy it is standard to use unrealistic puzzles to set up moral dilemmas of a sort that I will call Lockean Puzzles. This paper will try to pinpoint just what is and what is not problematic about their use as a teaching tool or component part of philosophical arguments. I will try to flesh out the claim that what may be lost…

  11. Deductive Puzzling

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.

    2010-01-01

    To help fifth- through eighth-grade students develop their deductive reasoning skills, the author used a ten-week supplementary curriculum so that students could answer logic questions. The curriculum, a series of lessons built around language-independent logic puzzles, has been used in classrooms of fifth through eighth grades. In most cases,…

  12. Incomplete Puzzle

    NASA Technical Reports Server (NTRS)

    2006-01-01

    15 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a mid-summer view of a portion of the south polar residual cap of Mars. The large, relatively flat-lying, puzzle-like pieces in this scene are mesas composed largely of solid carbon dioxide.

    Location near: 85.5oS, 76.8oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  13. Irregularities in Imperfective Derivation

    ERIC Educational Resources Information Center

    Levin, Maurice I.

    1977-01-01

    This article discusses presentation of Russian conjugation via the one-stem system advocated by Lipson and Townsend, and attempts a more unified and complete presentation of irregularities in imperfect derivation. Two major irregularities are occurrence of an unexpected suffix and unpredictable alternation in the root of the derived imperfective.…

  14. Puzzles, Pastimes, Problems.

    ERIC Educational Resources Information Center

    Eperson, D. B.

    1985-01-01

    Presents six mathematical problems (with answers) which focus on: (1) chess moves; (2) patterned numbers; (3) quadratics with rational roots; (4) number puzzles; (5) Euclidean geometry; and (6) Carrollian word puzzles. (JN)

  15. Benjamin Banneker's Mathematical Puzzles.

    ERIC Educational Resources Information Center

    Mahoney, John F.

    2003-01-01

    Benjamin Banneker, a self-taught African American mathematician, kept a journal containing a number of mathematical puzzles. Explores four of these puzzles, 200 years later, with the aid of 21st century technology. (Author/NB)

  16. The Proton Radius Puzzle

    NASA Astrophysics Data System (ADS)

    Downie, E. J.

    2016-03-01

    The proton radius puzzle is the difference between the proton radius as measured with electron scattering and in the excitation spectrum of atomic hydrogen, and that measured with muonic hydrogen spectroscopy. Since the inception of the proton radius puzzle in 2010 by the measurement of Pohl et al.[1], many possible resolutions to the puzzle have been postulated, but, to date, none has been generally accepted. New data are therefore necessary to resolve the issue. We briefly review the puzzle, the proposed solutions, and the new electron scattering and spectroscopy experiments planned and underway. We then introduce the MUSE experiment, which seeks to resolve the puzzle by simultaneously measuring elastic electron and muon scattering on the proton, in both charge states, thereby providing new information to the puzzle. MUSE addresses issues of two-photon effects, lepton universality and, possibly, new physics, while providing simultaneous form factor, and therefore radius, measurements with both muons and electrons.

  17. Puzzling Ways to Learn

    ERIC Educational Resources Information Center

    School Shop, 1975

    1975-01-01

    Four authors present crossword and wordfind puzzles developed for students in the areas of electricity, principles of hydraulics, finishing, construction, thermoplastic materials, patternmaking, wood, occupations, and drafting. (BP)

  18. Imperfection Insensitive Thin Shells

    NASA Astrophysics Data System (ADS)

    Ning, Xin

    The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century. This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells. Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression

  19. Puzzles and Hunts.

    ERIC Educational Resources Information Center

    Weissblum, Aaron

    2000-01-01

    A company designs and delivers treasure and scavenger hunts for corporate and institutional clients. Groups are divided into teams that must solve puzzles for directions or clues. The hunts build creativity, teamwork, communication skills, and an appreciation of others' strengths. An insert includes a four-puzzle mini-treasure hunt. (TD)

  20. The Anatomy Puzzle Book.

    ERIC Educational Resources Information Center

    Jacob, Willis H.; Carter, Robert, III

    This document features review questions, crossword puzzles, and word search puzzles on human anatomy. Topics include: (1) Anatomical Terminology; (2) The Skeletal System and Joints; (3) The Muscular System; (4) The Nervous System; (5) The Eye and Ear; (6) The Circulatory System and Blood; (7) The Respiratory System; (8) The Urinary System; (9) The…

  1. The Puzzle Design Activity.

    ERIC Educational Resources Information Center

    Meyer, Marc E.

    1983-01-01

    A sampling of puzzles and games produced by students at North Rockland High School (New York) are presented as an example of a way student-designed activities can be used to cover a specific unit within the health education curriculum. Produced by 9th and 10th graders, the unit on alcohol consists of puzzles and word games using related vocabulary…

  2. The Textual Puzzle Technique.

    ERIC Educational Resources Information Center

    Lanier, Dorothy C.

    Textual puzzles may be used in freshman composition or introduction to writing courses to emphasize word order and subject-predicate agreement. These sentence puzzles demonstrate that the English language depends primarily upon word order to convey meaning, and assist students to avoid blending statement and question word order in their sentences…

  3. Tangrams: Puzzles of Art

    ERIC Educational Resources Information Center

    Fee, Brenda

    2009-01-01

    Challenging one's brain is the beginning of making great art. Tangrams are a great way to keep students thinking about their latest art project long after leaving the classroom. A tangram is a Chinese puzzle. The earliest known reference to tangrams appears in a Chinese book dated 1813, but the puzzles existed long before that date. The puzzle…

  4. A Disciplined Chemical Puzzle

    ERIC Educational Resources Information Center

    Peris, Miguel

    2007-01-01

    A puzzle was developed as a resource for teaching intermediate chemistry students where they need to use general intelligence and logic skills. The puzzle involves identification of name, age, subdiscipline of chemistry and position of 6 students around the table by using certain data provided to them.

  5. Imperfect mirror copies of the standard model

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Hernández, Daniel; Kelly, Kevin J.

    2016-08-01

    Inspired by the standard model of particle physics, we discuss a mechanism for constructing chiral, anomaly-free gauge theories. The gauge symmetries and particle content of such theories are identified using subgroups and complex representations of simple anomaly-free Lie groups, such as S O (10 ) or E6. We explore, using mostly S O (10 ) and the 16 representation, several of these "imperfect copies" of the standard model, including U (1 )N theories, S U (5 )⊗U (1 ) theories, S U (4 )⊗U (1 )2 theories with 4-plets and 6-plets, and chiral S U (3 )⊗S U (2 )⊗U (1 ) . A few general properties of such theories are discussed, as is how they might shed light on nonzero neutrino masses, the dark matter puzzle, and other phenomenologically relevant questions.

  6. Learning with imperfectly labeled patterns

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The problem of learning in pattern recognition using imperfectly labeled patterns is considered. The performance of the Bayes and nearest neighbor classifiers with imperfect labels is discussed using a probabilistic model for the mislabeling of the training patterns. Schemes for training the classifier using both parametric and non parametric techniques are presented. Methods for the correction of imperfect labels were developed. To gain an understanding of the learning process, expressions are derived for success probability as a function of training time for a one dimensional increment error correction classifier with imperfect labels. Feature selection with imperfectly labeled patterns is described.

  7. Accelerating Student Learning of Technology Terms: "The Crossword Puzzle Exercise"

    ERIC Educational Resources Information Center

    Whisenand, Thomas G.; Dunphy, Steven M.

    2010-01-01

    The authors suggest using an alternative teaching methodology to impart knowledge regarding information systems phraseology and vocabulary. Specifically, a series of crossword puzzles or scrabbles are used to present information system (IS) terminology to students in an introductory business information systems course. The puzzle terms and answers…

  8. Imperfect Dark Matter

    NASA Astrophysics Data System (ADS)

    Mirzagholi, Leila; Vikman, Alexander

    2015-06-01

    We consider cosmology of the recently introduced mimetic matter with higher derivatives (HD). Without HD this system describes irrotational dust—Dark Matter (DM) as we see it on cosmologically large scales. DM particles correspond to the shift-charges—Noether charges of the shifts in the field space. Higher derivative corrections usually describe a deviation from the thermodynamical equilibrium in the relativistic hydrodynamics. Thus we show that mimetic matter with HD corresponds to an imperfect DM which: i) renormalises the Newton's constant in the Friedmann equations, ii) has zero pressure when there is no extra matter in the universe, iii) survives the inflationary expansion which puts the system on a dynamical attractor with a vanishing shift-charge, iv) perfectly tracks any external matter on this attractor, v) can become the main (and possibly the only) source of DM, provided the shift-symmetry in the HD terms is broken during some small time interval in the radiation domination époque. In the second part of the paper we present a hydrodynamical description of general anisotropic and inhomogeneous configurations of the system. This imperfect mimetic fluid has an energy flow in the field's rest frame. We find that in the Eckart and in the Landau-Lifshitz frames the mimetic fluid possesses nonvanishing vorticity appearing already at the first order in the HD. Thus, the structure formation and gravitational collapse should proceed in a rather different fashion from the simple irrotational DM models.

  9. Learning receptor positions from imperfectly known motions

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Mulligan, Jeffrey B.

    1990-01-01

    An algorithm is described for learning image interpolation functions for sensor arrays whose sensor positions are somewhat disordered. The learning is based on failures of translation invariance, so it does not require knowledge of the images being presented to the visual system. Previously reported implementations of the method assumed the visual system to have precise knowledge of the translations. It is demonstrated that translation estimates computed from the imperfectly interpolated images can have enough accuracy to allow the learning process to converge to a correct interpolation.

  10. Boggle Logic Puzzles: Minimal Solutions

    ERIC Educational Resources Information Center

    Needleman, Jonathan

    2013-01-01

    Boggle logic puzzles are based on the popular word game Boggle played backwards. Given a list of words, the problem is to recreate the board. We explore these puzzles on a 3 x 3 board and find the minimum number of three-letter words needed to create a puzzle with a unique solution. We conclude with a series of open questions.

  11. More Pebble Puzzles.

    ERIC Educational Resources Information Center

    Gibbs, William M.

    This booklet is a collection of puzzles, investigations, and games. They are designed to be used with large objects such as tins or stones and diagrams marked on the ground. The children are to be encouraged to use an experimental, trial-and-error approach at first, and then develop methods of solution. (MNS)

  12. La Francophonie. Puzzle Corner.

    ERIC Educational Resources Information Center

    Andrews, Ian A.

    2000-01-01

    Discusses the organization La Francophonie, which is an international community of people who speak French and convene to address issues. Presents a crossword puzzle that introduces readers to some of the nations involved in La Francophonie. Provides the across and down clues, a word list, and answer key. (CMK)

  13. Nature's Greatest Puzzles

    SciTech Connect

    Quigg, Chris; /Fermilab

    2005-02-01

    It is a pleasure to be part of the SLAC Summer Institute again, not simply because it is one of the great traditions in our field, but because this is a moment of great promise for particle physics. I look forward to exploring many opportunities with you over the course of our two weeks together. My first task in talking about Nature's Greatest Puzzles, the title of this year's Summer Institute, is to deconstruct the premise a little bit.

  14. Equivalent Imperfections In Arched Structures

    NASA Astrophysics Data System (ADS)

    Dallemule, Marian

    2015-09-01

    There are currently three design methods to verify the in-plane buckling of an arched structure: substitute member method, the method of equivalent imperfection with recommendations for arched bridges, and the equivalent unique global and local initial imperfection method (EUGLI), which uses the critical elastic buckling mode as an imperfection. The latter method is included in the EN 1993-1-1 cl. 5.3.2 (11) since 2002; however, to this day it is neither utilized in the design practice nor is it incorporated in ordinary structural analysis software. The main purpose of this article is to show the application of the proposed methods in a step-by-step manner to the numerical example considered and to compare these design methods for various arched structures. Verification of the in-plane buckling of an arch is explained in detail.

  15. A Microscale Oxidation Puzzle

    NASA Astrophysics Data System (ADS)

    Pelter, Michael W.; Macudzinski, Rebecca M.; Passarelli, Mary Ellen

    2000-11-01

    We have adapted oxidation of an alcohol with sodium hypochlorite solution to a "puzzle" approach by using a diol as the substrate for oxidation. The diols under investigation have both a primary and a secondary hydroxyl group. There are three possible outcomes to the reaction: (i) only the primary alcohol is oxidized to the aldehyde (or carboxylic acid); (ii) only the secondary alcohol is oxidized to the ketone; or (iii) both alcohols are oxidized. The assignment is to perform the reaction and determine the structure of the product through interpretation of the IR spectrum. Examples using two commercially available diols are shown.

  16. Pebble Puzzles. A Source Book of Simple Puzzles and Problems.

    ERIC Educational Resources Information Center

    Gibbs, William M.

    This booklet is a collection of puzzles, games, and investigations. All that children need are some stones or shells, on some of which they must write numerals. For playing with the whole class, the game or puzzles may be marked out on the floor or in sand; in that case, larger objects such as small rocks and empty tins may be used. Children are…

  17. Three Puzzles for Organic Laboratory.

    ERIC Educational Resources Information Center

    Todd, David; Pickering, Miles

    1988-01-01

    Notes that laboratory work should be more oriented towards puzzle solving rather than technique or illustration. Offers three organic laboratory puzzles which can be solved by melting point alone. Involves lab work at the 100-200-mg scale but still uses conventional glassware. (MVL)

  18. Puzzle geometry and rigidity

    NASA Astrophysics Data System (ADS)

    Smania, Daniel

    2007-07-01

    We describe a new and robust method to prove rigidity results in complex dynamics. The new ingredient is the geometry of the critical puzzle pieces: under control of geometry and ``complex bounds'', two generalized polynomial-like maps which admit a topological conjugacy, quasiconformal outside the filled-in Julia set, are indeed quasiconformally conjugate. The proof uses a new abstract removability-type result for quasiconformal maps, following ideas of Heinonen and Koskela and of Kallunki and Koskela, optimized for applications in complex dynamics. We prove, as the first application of this new method, that, for even criticalities distinct from two, the period two cycle of the Fibonacci renormalization operator is hyperbolic with 1 -dimensional unstable manifold.

  19. Modeling Being "Lost": Imperfect Situation Awareness

    NASA Technical Reports Server (NTRS)

    Middleton, Victor E.

    2011-01-01

    Being "lost" is an exemplar of imperfect Situation Awareness/Situation Understanding (SA/SU) -- information/knowledge that is uncertain, incomplete, and/or just wrong. Being "lost" may be a geo-spatial condition - not knowing/being wrong about where to go or how to get there. More broadly, being "lost" can serve as a metaphor for uncertainty and/or inaccuracy - not knowing/being wrong about how one fits into a larger world view, what one wants to do, or how to do it. This paper discusses using agent based modeling (ABM) to explore imperfect SA/SU, simulating geo-spatially "lost" intelligent agents trying to navigate in a virtual world. Each agent has a unique "mental map" -- its idiosyncratic view of its geo-spatial environment. Its decisions are based on this idiosyncratic view, but behavior outcomes are based on ground truth. Consequently, the rate and degree to which an agent's expectations diverge from ground truth provide measures of that agent's SA/SU.

  20. The Puzzling Ophiuchus Stream

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Dwarf galaxies or globular clusters orbiting the Milky Way can be pulled apart by tidal forces, leaving behind a trail of stars known as a stellar stream. One such trail, the Ophiuchus stream, has posed a serious dynamical puzzle since its discovery. But a recent study has identified four stars that might help resolve this streams mystery.Conflicting TimescalesThe stellar stream Ophiuchus was discovered around our galaxy in 2014. Based on its length, which appears to be 1.6 kpc, we can calculate the time that has passed since its progenitor was disrupted and the stream was created: ~250 Myr. But the stars within it are ~12 Gyr old, and the stream orbits the galaxy with a period of ~350 Myr.Given these numbers, we can assume that Ophiuchuss progenitor completed many orbits of the Milky Way in its lifetime. So why would it only have been disrupted 250 million years ago?Fanning StreamLed by Branimir Sesar (Max Planck Institute for Astronomy), a team of scientists has proposed an idea that might help solve this puzzle. If the Ophiuchus stellar stream is on a chaotic orbit common in triaxial potentials, which the Milky Ways may be then the stream ends can fan out, with stars spreading in position and velocity.The fanned part of the stream, however, would be difficult to detect because of its low surface brightness. As a result, the Ophiuchus stellar stream could actually be longer than originally measured, implying that it was disrupted longer ago than was believed.Search for Fan StarsTo test this idea, Sesar and collaborators performed a search around the ends of the stream, looking for stars thatare of the right type to match the stream,are at the predicted distance of the stream,are located near the stream ends, andhave velocities that match the stream and dont match the background halo stars.Histogram of the heliocentric velocities of the 43 target stars. Six stars have velocities matching the stream velocity. Two of these are located in the main stream; the other

  1. Sleep for Kids: Games and Puzzles

    MedlinePlus

    Games and Puzzles These games and puzzles can help you learn more about sleep! Learn about sleep with this fun crossword puzzle! Test your memory ... can't sleep? • dreams • • bring out the stars • games and puzzles • pj bear booklet • • home • about us • ...

  2. [The Parkinson puzzle].

    PubMed

    Guseo, András

    2012-12-30

    Parkinson's disease is one of the most frequent progressive degenerative disorders with unknown origin of the nervous system. The commutation of the disease on Guam led to the discovery of a neurotoxin which was also found in other continents. This neurotoxin was identified in the common cyanobacteria (blue-green algae). Early clinical observations suggested some loose correlations with gastric and duodenal ulcer and Parkinson's disease, while recent studies revealed a toxin, almost identical to that found in cyanobacteria in one strain of Helicobacter pylori, which proved to cause Parkinson like symptoms in animals. Therefore, it cannot be ruled out that there is a slowly progressive poisoning in Parkinson's disease. The disease specific alpha-sinuclein inclusions can be found in nerve cells of the intestinal mucosa far before the appearance of clinical symptoms indicating that the disease may start in the intestines. These results are strengthened by the results of Borody's fecal transplants, after which in Parkinson patients showed a symptomatic improvement. Based on these observations the Parkinson puzzle is getting complete. Although these observations are not evidence based, they may indicate a new way for basic clinical research, as well as a new way of thinking for clinicians. These new observations in psycho-neuro-immunology strengthen the fact that immunological factors may also play a critical factor facilitating local cell necrosis which may be influenced easily. PMID:23261994

  3. Puzzle Them First! Motivating Adolescent Readers with Question-Finding

    ERIC Educational Resources Information Center

    Ciardiello, A. Vincent

    2007-01-01

    In this book, the author suggests that to truly learn, students should be puzzled about new knowledge. Question-finding, the unique strategy described in the book, fosters this learning by leading adolescent students to probe the multiple meanings of text and ask challenging, open-ended questions. Focus units illustrate how teachers can use…

  4. Seismic response of LMFBR tanks with imperfections

    SciTech Connect

    Gvildys, J.; Ma, D.C.; Chang, Y.W.

    1985-01-01

    This paper deals with seismic responses of imperfect circular tanks. Physical imperfection due to manufacturing tolerances and numerical imperfection due to finite element spatial discretization are described. Numerical imperfections produced by 4-node and 9-node Lagrangian shell elements are examined. A convergence study is performed in which the number of the shell elements required to capture the dominant ''out-of-roundness'' modes under seismic excitations is determined. The response of a shell with a cos4theta imperfection due to manufacturing tolerances is compared with that of a perfect circular shell to demonstrate the effects of imperfection on the axial stresses of the shell under seismic conditions. 3 refs., 4 figs., 2 tabs.

  5. The PRad experiment and the proton radius puzzle

    SciTech Connect

    Gasparian, Ashot H.

    2014-06-01

    New results from the recent muonic hydrogen experiments seriously questioned our knowledge of the proton charge radius, r_p. The new value, with its unprecedented less than sub-percent precision, is currently up to eight standard deviation smaller than the average value from all previous experiments, triggering the well-known "proton charge radius puzzle" in nuclear and atomic physics. The PRad collaboration is currently preparing a novel, magnetic-spectrometer-free ep scattering experiment in Hall B at JLab for a new independent r_p measurement to address this growing "puzzle" in physics.

  6. Imperfect Cloning Operations in Algebraic Quantum Theory

    NASA Astrophysics Data System (ADS)

    Kitajima, Yuichiro

    2015-01-01

    No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal -imperfect cloning operation which tolerates a finite loss of fidelity in the cloned state, and show that an individual system's algebra of observables is abelian if and only if there is a universal -imperfect cloning operation in the case where the loss of fidelity is less than . Therefore in this case no universal -imperfect cloning operation is possible in algebraic quantum theory.

  7. Multichanneled puzzle-like encryption

    NASA Astrophysics Data System (ADS)

    Amaya, Dafne; Tebaldi, Myrian; Torroba, Roberto; Bolognini, Néstor

    2008-07-01

    In order to increase data security transmission we propose a multichanneled puzzle-like encryption method. The basic principle relies on the input information decomposition, in the same way as the pieces of a puzzle. Each decomposed part of the input object is encrypted separately in a 4 f double random phase mask architecture, by setting the optical parameters in a determined status. Each parameter set defines a channel. In order to retrieve the whole information it is necessary to properly decrypt and compose all channels. Computer simulations that confirm our proposal are presented.

  8. Buckling of conical shell with local imperfections

    NASA Technical Reports Server (NTRS)

    Cooper, P. A.; Dexter, C. B.

    1974-01-01

    Small geometric imperfections in thin-walled shell structures can cause large reductions in buckling strength. Most imperfections found in structures are neither axisymmetric nor have the shape of buckling modes but rather occur locally. This report presents the results of a study of the effect of local imperfections on the critical buckling load of a specific axially compressed thin-walled conical shell. The buckling calculations were performed by using a two-dimensional shell analysis program referred to as the STAGS (Structural Analysis of General Shells) computer code, which has no axisymmetry restrictions. Results show that the buckling load found from a bifurcation buckling analysis is highly dependent on the circumferential arc length of the imperfection type studied. As the circumferential arc length of the imperfection is increased, a reduction of up to 50 percent of the critical load of the perfect shell can occur. The buckling load of the cone with an axisymmetric imperfections is nearly equal to the buckling load of imperfections which extended 60 deg or more around the circumference, but would give a highly conservative estimate of the buckling load of a shell with an imperfection of a more local nature.

  9. A Developmental Perspective on the Imperfective Paradox

    ERIC Educational Resources Information Center

    Kazanina, Nina; Phillips, Colin

    2007-01-01

    Imperfective or progressive verb morphology makes it possible to use the name of a whole event to refer to an activity that is clearly not a complete instance of that event, leading to what is known as the Imperfective Paradox. For example, a sentence like "John was building a house" does not entail that a house ever got built. The Imperfective…

  10. Methodological imperfection and formalizations in scientific activity

    SciTech Connect

    Svetlichny, G.

    1987-03-01

    Any mathematical formalization of scientific activity allows for imperfections in the methodology that is formalized. These can be of three types, dirty, rotten, and dammed. Restricting mathematical attention to those methods that cannot be construed to be imperfect drastically reduces the class of objects that must be analyzed, and related all other objects to these more regular ones. Examples are drawn from empirical logic.

  11. Chemistry of Art and Color Sudoku Puzzles

    ERIC Educational Resources Information Center

    Welsh, Michael J.

    2007-01-01

    Sudoku puzzle format was used to teach light science and chemistry terms to students of Chemistry of Art and Color. The puzzles were used to motivate and encourage students to learn chemistry in an easier and in friendly fashion.

  12. Package Them in Puzzles: Vocabulary, Culture, Conjugations.

    ERIC Educational Resources Information Center

    McElroy, Mary E.; Samaniego, Fabian A.

    1981-01-01

    Presents a method of using traditional puzzles and crosswords in foreign language instruction. Instead of merely providing amusement, the puzzles are designed to assist in the learning of various language skills. This article gives directions for developing puzzles specifically designed to teach grammar, vocabulary, and culture. (Author/PJM)

  13. Sudoku Puzzles as Chemistry Learning Tools

    ERIC Educational Resources Information Center

    Crute, Thomas D.; Myers, Stephanie A.

    2007-01-01

    A sudoku puzzle was designed that incorporated lists of chemistry terms like polyatomic ions, organic functional groups or strong nucleophiles that students need to learn. It was found that students enjoyed solving such puzzles and also such puzzles made the boring tasks of memorizing basic chemical terms an exciting one.

  14. On a Perplexing Polynomial Puzzle

    ERIC Educational Resources Information Center

    Richmond, Bettina

    2010-01-01

    It seems rather surprising that any given polynomial p(x) with nonnegative integer coefficients can be determined by just the two values p(1) and p(a), where a is any integer greater than p(1). This result has become known as the "perplexing polynomial puzzle." Here, we address the natural question of what might be required to determine a…

  15. Canadian Open Tennis. Puzzle Corner.

    ERIC Educational Resources Information Center

    Andrews, Ian A.

    2000-01-01

    Describes the du Maurier Open, a women's tennis tournament. Explains that tennis becomes an elite sport at the level of the du Maurier Open. Presents a crossword puzzle that focuses on many of the female tennis stars and provides the across and down clues, a word list, and the answer key. (CMK)

  16. Japanese Logic Puzzles and Proof

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.

    2009-01-01

    An understanding of proof does not start in a high school geometry course. Rather, attention to logical reasoning throughout a student's school experience can help the development of proof readiness. In the spirit of problem solving, the author has begun to use some Japanese logic puzzles other than sudoku to help students develop additional…

  17. Making Peer-Assisted Content Distribution Robust to Collusion Using Bandwidth Puzzles

    NASA Astrophysics Data System (ADS)

    Reiter, Michael K.; Sekar, Vyas; Spensky, Chad; Zhang, Zhenghao

    Many peer-assisted content-distribution systems reward a peer based on the amount of data that this peer serves to others. However, validating that a peer did so is, to our knowledge, an open problem; e.g., a group of colluding attackers can earn rewards by claiming to have served content to one another, when they have not. We propose a puzzle mechanism to make contribution-aware peer-assisted content distribution robust to such collusion. Our construction ties solving the puzzle to possession of specific content and, by issuing puzzle challenges simultaneously to all parties claiming to have that content, our mechanism prevents one content-holder from solving many others' puzzles. We prove (in the random oracle model) the security of our scheme, describe our integration of bandwidth puzzles into a media streaming system, and demonstrate the resulting attack resilience via simulations.

  18. Constrained Clustering With Imperfect Oracles.

    PubMed

    Zhu, Xiatian; Loy, Chen Change; Gong, Shaogang

    2016-06-01

    While clustering is usually an unsupervised operation, there are circumstances where we have access to prior belief that pairs of samples should (or should not) be assigned with the same cluster. Constrained clustering aims to exploit this prior belief as constraint (or weak supervision) to influence the cluster formation so as to obtain a data structure more closely resembling human perception. Two important issues remain open: 1) how to exploit sparse constraints effectively and 2) how to handle ill-conditioned/noisy constraints generated by imperfect oracles. In this paper, we present a novel pairwise similarity measure framework to address the above issues. Specifically, in contrast to existing constrained clustering approaches that blindly rely on all features for constraint propagation, our approach searches for neighborhoods driven by discriminative feature selection for more effective constraint diffusion. Crucially, we formulate a novel approach to handling the noisy constraint problem, which has been unrealistically ignored in the constrained clustering literature. Extensive comparative results show that our method is superior to the state-of-the-art constrained clustering approaches and can generally benefit existing pairwise similarity-based data clustering algorithms, such as spectral clustering and affinity propagation. PMID:25622327

  19. Current puzzles and future possibilities

    SciTech Connect

    Nagamiya, S.

    1982-02-01

    Four current puzzles and several future experimental possibilities in high-energy nuclear collision research are discussed. These puzzles are (1) entropy, (2) hydrodynamic flow, (3) anomalon, and (4) particle emission at backward angles in proton-nucleus collisions. The last one seems not to be directly related to the subject of the present school. But it is, because particle emission into the region far beyond the nucleon-nucleon kinematical limit is an interesting subject common for both proton-nucleus and nucleus-nucleus collisions, and the basic mechanism involved is strongly related in these two cases. Future experimental possibilities are described which include: (1) possibilities of studying multibaryonic excited states, (2) applications of neutron-rich isotopes, and (3) other needed experimental tasks. 72 references.

  20. Teaching Imperfect Competition at the Principles Level.

    ERIC Educational Resources Information Center

    Weber, William V.; Highfill, Jannett K.

    1990-01-01

    Argues that, although most economics textbooks' explanations of imperfect competition may involve three to five models, the concept can be taught using a single, simple model. Uses several business/economic examples as illustrations. (DB)

  1. Understanding Your Vision: The "Imperfect Eye"

    MedlinePlus

    ... Navigation Bar Home Current Issue Past Issues Feature: Vision Understanding Your Vision: The "Imperfect Eye" Past Issues / Summer 2008 Table ... are different and so are the types of vision that we have. Understanding how some of us ...

  2. Construction-Paper Puzzle Masterpieces

    ERIC Educational Resources Information Center

    Vance, Shelly

    2010-01-01

    Creating an appreciation of art history in her junior-high students has always been one of the author's greatest challenges as an art teacher. In this article, the author describes how her eighth-grade students re-created a famous work of art--piece by piece, like a puzzle or a stained-glass window--out of construction paper. (Contains 1 resource.)

  3. Methodological Imperfection and Formalizations of Scientific Activity

    NASA Astrophysics Data System (ADS)

    Svetlichny, George

    1987-03-01

    Any mathematical formalization of scientific activity allows for imperfections in the methodology that is formalized. These can be of three types, “dirty,” “rotten,” and “dammed.” Restricting mathematical attention to those methods that cannot be construed to be imperfect drastically reduces the class of objects that must be analyzed, and relates all other objects to these more regular ones. Examples are drawn from empirical logic.

  4. Knowledge.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    This theme issue on knowledge includes annotated listings of Web sites, CD-ROMs and computer software, videos, books, and additional resources that deal with knowledge and differences between how animals and humans learn. Sidebars discuss animal intelligence, learning proper behavior, and getting news from the Internet. (LRW)

  5. Guerrilla Puzzling: A Model for Research

    ERIC Educational Resources Information Center

    Zimmer, Marc

    2007-01-01

    There are two main settings for puzzle solving in higher education: graduate programs, with professors and both graduate and postdoctoral students; and predominantly undergraduate institutions, with professors and students. Research programs at large universities are well-oiled puzzle-solving machines. Graduate students there work long, hard hours…

  6. Economics - A Puzzle: The People Power Solution.

    ERIC Educational Resources Information Center

    Bartlett, Glenda; Price, Marlene H.

    A third-grade class and fifth-grade remedial reading students gained a positive attitude toward contemporary economic problems by studying economics as a puzzle in this award-winning project. The following concepts were each approached as pieces of the puzzle to be solved: money, wants and needs, income, goods and services, scarcity, consumption…

  7. Project-A-Puzzle. Second Edition.

    ERIC Educational Resources Information Center

    Porter, Richard D.

    This set of transparency masters of mathematical puzzles has as its intent the development of logical and perceptual skills. The puzzles include patterns, magic squares, and counting problems. Solutions and follow-up suggestions are provided on the back of each page. (MP)

  8. Advocacy: AASL Puts the Puzzle Together

    ERIC Educational Resources Information Center

    Johns, Sara Kelly

    2007-01-01

    School librarians work with people of all ages, abilities, and personalities; those people are the puzzle pieces that make advocacy for libraries effective. School librarians contribute to and use the resources of their state and national organizations' advocacy efforts. The completed picture of the puzzle is an excellent program with…

  9. Solving the BM Camelopardalis puzzle

    NASA Technical Reports Server (NTRS)

    Teke, Mathias; Busby, Michael R.; Hall, Douglas S.

    1989-01-01

    BM Camelopardalis (=12 Cam) is a chromospherically active binary star with a relatively large orbital eccentricity. Systems with large eccentricities usually rotate pseudosynchronously. However, BM Cam has been a puzzle since its observed rotation rate is virtually equal to its orbital period indicating synchronization. All available photometry data for BM Cam have been collected and analyzed. Two models of modulated ellipticity effect are proposed, one based on equilibrium tidal deformation of the primary star and the other on a dynamical tidal effect. When the starspot variability is removed from the data, the dynamical tidal model was the better approximation to the real physical situation. The analysis indicates that BM Cam is not rotating pseudosynchronously but rotating in virtual synchronism after all.

  10. Solving combinatorial problems: the 15-puzzle.

    PubMed

    Pizlo, Zygmunt; Li, Zheng

    2005-09-01

    We present a series of experiments in which human subjects were tested with a well-known combinatorial problem called the 15-puzzle and in different-sized variants of this puzzle. Subjects can solve these puzzles reliably by systematically building a solution path, without performing much search and without using distances among the states of the problem. The computational complexity of the underlying mental mechanisms is very low. We formulated a computational model of the underlying cognitive processes on the basis of our results. This model applied a pyramid algorithm to individual stages of each problem. The model's performance proved to be quite similar to the subjects' performance. PMID:16496727

  11. Imperfect chimera states for coupled pendula.

    PubMed

    Kapitaniak, Tomasz; Kuzma, Patrycja; Wojewoda, Jerzy; Czolczynski, Krzysztof; Maistrenko, Yuri

    2014-01-01

    The phenomenon of chimera states in the systems of coupled, identical oscillators has attracted a great deal of recent theoretical and experimental interest. In such a state, different groups of oscillators can exhibit coexisting synchronous and incoherent behaviors despite homogeneous coupling. Here, considering the coupled pendula, we find another pattern, the so-called imperfect chimera state, which is characterized by a certain number of oscillators which escape from the synchronized chimera's cluster or behave differently than most of uncorrelated pendula. The escaped elements oscillate with different average frequencies (Poincare rotation number). We show that imperfect chimera can be realized in simple experiments with mechanical oscillators, namely Huygens clock. The mathematical model of our experiment shows that the observed chimera states are controlled by elementary dynamical equations derived from Newton's laws that are ubiquitous in many physical and engineering systems. PMID:25223296

  12. Impact of imperfect information on network attack

    NASA Astrophysics Data System (ADS)

    Melchionna, Andrew; Caloca, Jesus; Squires, Shane; Antonsen, Thomas M.; Ott, Edward; Girvan, Michelle

    2015-03-01

    This paper explores the effectiveness of network attack when the attacker has imperfect information about the network. For Erdős-Rényi networks, we observe that dynamical importance and betweenness centrality-based attacks are surprisingly robust to the presence of a moderate amount of imperfect information and are more effective compared with simpler degree-based attacks even at moderate levels of network information error. In contrast, for scale-free networks the effectiveness of attack is much less degraded by a moderate level of information error. Furthermore, in the Erdős-Rényi case the effectiveness of network attack is much more degraded by missing links as compared with the same number of false links.

  13. Impact of imperfect information on network attack.

    PubMed

    Melchionna, Andrew; Caloca, Jesus; Squires, Shane; Antonsen, Thomas M; Ott, Edward; Girvan, Michelle

    2015-03-01

    This paper explores the effectiveness of network attack when the attacker has imperfect information about the network. For Erdős-Rényi networks, we observe that dynamical importance and betweenness centrality-based attacks are surprisingly robust to the presence of a moderate amount of imperfect information and are more effective compared with simpler degree-based attacks even at moderate levels of network information error. In contrast, for scale-free networks the effectiveness of attack is much less degraded by a moderate level of information error. Furthermore, in the Erdős-Rényi case the effectiveness of network attack is much more degraded by missing links as compared with the same number of false links. PMID:25871157

  14. Quantum metrology with imperfect states and detectors

    SciTech Connect

    Datta, Animesh; Zhang Lijian; Thomas-Peter, Nicholas; Smith, Brian J.; Walmsley, Ian A.; Dorner, Uwe

    2011-06-15

    Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this paper, we identify the major sources of imperfection of an optical sensor: input state preparation inefficiency, sensor losses, and detector inefficiency. The second of these has received much attention; we show that it is the least damaging to surpassing the standard quantum limit in a optical interferometric sensor. Further, we show that photonic states that can be prepared in the laboratory using feasible resources allow a measurement strategy using photon-number-resolving detectors that not only attain the Heisenberg limit for phase estimation in the absence of losses, but also deliver close to the maximum possible precision in realistic scenarios including losses and inefficiencies. In particular, we give bounds for the tradeoff between the three sources of imperfection that will allow true quantum-enhanced optical metrology

  15. Polarization puzzles for the upper elementary grades

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Meera; Rainwater, David L.; Litherland, Rebecca Q.; Swope, Rodney A.; VanNest, Ann

    1995-10-01

    The concept of polarization and its most basic consequence, Malus' Law, is usually not taught in the elementary or middle grades because of conceptual difficulties. We introduce the concept of polarization using sunglasses to understand the consequences of parallel and crossed polarizers. We then expand the concept with four puzzles. The puzzles are cut out of sheets of linear polarizers and are viewed through a (hand held) spinning polarizer. The first puzzle is constructed out of wedge shaped pieces of linear polarizer so that the wheel appears to rotate when viewed through the spinning polarizer. The second puzzle consists of concentric circles that appear to radiate outward. The third and fourth puzzles are four- and twelve piece wedges that are manipulated to produce different symmetric designs. We have tested these activities on fifth and sixth graders, and find that they enjoy the manipulative as well as the problem solving aspects of the puzzles. They are also able to understand that when light is polarized, 'whatever it is that waves' (the electric field) is oriented in one direction. The materials are inexpensive and can be easily made by teachers for classroom learning.

  16. Shell Buckling Design Criteria Based on Manufacturing Imperfection Signatures

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Starnes, James H., Jr.

    2004-01-01

    An analysis-based approach .for developing shell-buckling design criteria for laminated-composite cylindrical shells that accurately accounts for the effects of initial geometric imperfections is presented. With this approach, measured initial geometric imperfection data from six graphite-epoxy shells are used to determine a manufacturing-process-specific imperfection signature for these shells. This imperfection signature is then used as input into nonlinear finite-element analyses. The imperfection signature represents a "first-approximation" mean imperfection shape that is suitable for developing preliminary-design data. Comparisons of test data and analytical results obtained by using several different imperfection shapes are presented for selected shells. Overall, the results indicate that the analysis-based approach presented for developing reliable preliminary-design criteria has the potential to provide improved, less conservative buckling-load estimates, and to reduce the weight and cost of developing buckling-resistant shell structures.

  17. Tornillos: Pieces of a Puzzle

    NASA Astrophysics Data System (ADS)

    Hellweg, M.; Seidl, D.

    2001-12-01

    In the past decade several of the ash eruptions at Galeras volcano (Colombia) have been preceded by tornillos. These unusual seismic events of unknown origin have screw-like profiles on seismograms and can last up to several minutes. Since 1997, a joint project between the Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) and the Instituto de Investigación e Información Geocientífica, Minero-Ambiental y Nuclear (INGEOMINAS) has supplemented the shortperiod network of the Observatorio Vulcanológico de Pasto with four broadband, three-component seismometer stations, continuous fumarole gas chemistry measurments, electromagnetic sensors, an infrasound sensor and weather observations in the hopes to learn more about the physical or chemical process which generates tornillos and their significance in the sequence leading to ash explosions. The events of a suite of tornillos which occurred at Galeras Volcano between 08 December 1999 and 11 February 2000 were recorded well at the crater rim broadband stations, ANG and ACH. They appear to be more complex than many of the tornillos recorded previously. They are multichromatic, having narrow spectral peaks at up to 9 frequencies. Some peaks last throughout the entire tornillo, others only contribute to the turn-on transient. We compare polarization, frequency, amplitudes and decay measured from this suite of tornillos in each frequency band at the stations ANG and ACH. They indicate a single source location for all these tornillos. While other parameters correlate well at both stations, the amplitude of the 1.9 Hz peak is nearly twice as large at ACH than at ANG. This may indicate a distinct radiation pattern at this frequency. While none of these observations gives us a clear picture of the source process of tornillos, they provide additional puzzle pieces we can add those collected from other measurements.

  18. Chaos in an imperfectly premixed model combustor

    SciTech Connect

    Kabiraj, Lipika Saurabh, Aditya; Paschereit, Christian O.; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P.

    2015-02-15

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration.

  19. Method for correcting imperfections on a surface

    SciTech Connect

    Sweatt, William C.; Weed, John W.

    1999-09-07

    A process for producing near perfect optical surfaces. A previously polished optical surface is measured to determine its deviations from the desired perfect surface. A multi-aperture mask is designed based on this measurement and fabricated such that deposition through the mask will correct the deviations in the surface to an acceptable level. Various mask geometries can be used: variable individual aperture sizes using a fixed grid for the apertures or fixed aperture sizes using a variable aperture spacing. The imperfections are filled in using a vacuum deposition process with a very thin thickness of material such as silicon monoxide to produce an amorphous surface that bonds well to a glass substrate.

  20. Imperfect relativistic mirrors in the quantum regime

    SciTech Connect

    Mendonça, J. T.; Serbeto, A.; Galvão, R. M. O.

    2014-05-15

    The collective backscattering of intense laser radiation by energetic electron beams is considered in the relativistic quantum regime. Exact solutions for the radiation field are obtained, for arbitrary electron pulse shapes and laser intensities. The electron beams act as imperfect nonlinear mirrors on the incident laser radiation. This collective backscattering process can lead to the development of new sources of ultra-short pulse radiation in the gamma-ray domain. Numerical examples show that, for plausible experimental conditions, intense pulses of gamma-rays, due to the double Doppler shift of the harmonics of the incident laser radiation, can be produced using the available technology, with durations less than 1 as.

  1. Imperfection, practice and humility in clinical ethics.

    PubMed

    Garchar, Kim

    2012-10-01

    In this essay, I provide a description of the discipline of ethics using the philosophies of Aristotle and the American pragmatist John Dewey. Specifically, I argue that ethics is an active undertaking that is ambiguous and pluralistic. I then normatively prescribe the way in which clinical ethicists ought to approach their work in medicine. Rather than endeavouring to become, or behaving as if they are, experts, clinical ethicists must be humble. They must practise ethics. That is, they must admit ethics is the study and pursuit of the good life but that this study and pursuit occurs imperfectly in the face of problematic situations. PMID:22995007

  2. Chaos in an imperfectly premixed model combustor.

    PubMed

    Kabiraj, Lipika; Saurabh, Aditya; Karimi, Nader; Sailor, Anna; Mastorakos, Epaminondas; Dowling, Ann P; Paschereit, Christian O

    2015-02-01

    This article reports nonlinear bifurcations observed in a laboratory scale, turbulent combustor operating under imperfectly premixed mode with global equivalence ratio as the control parameter. The results indicate that the dynamics of thermoacoustic instability correspond to quasi-periodic bifurcation to low-dimensional, deterministic chaos, a route that is common to a variety of dissipative nonlinear systems. The results support the recent identification of bifurcation scenarios in a laminar premixed flame combustor (Kabiraj et al., Chaos: Interdiscip. J. Nonlinear Sci. 22, 023129 (2012)) and extend the observation to a practically relevant combustor configuration. PMID:25725637

  3. Imperfect twinning: a clinical and ethical dilemma

    PubMed Central

    Denardin, Daniela; Telles, Jorge Alberto B.; Betat, Rosilene da Silveira; Fell, Paulo Renato K.; da Cunha, André Campos; Targa, Luciano Vieira; Zen, Paulo Ricardo G.; Rosa, Rafael Fabiano M.

    2013-01-01

    OBJECTIVE To review the history, epidemiology, etiology, gestational aspects, diagnosis and prognosis of imperfect twinning. DATA SOURCES Scientific articles were searched in PubMed, SciELO and Lilacs databases, using the descriptors "conjoined twins", "multiple pregnancy", "ultrasound", "magnetic resonance imaging" and "prognosis". The research was not delimited to a specific period of time and was supplemented with bibliographic data from books. DATA SYNTHESIS: The description of conjoined twins is legendary. The estimated frequency is 1/45,000-200,000 births. These twins are monozygotic, monochorionic and usually monoamniotic. They can be classified by the most prominent fusion site, by the symmetry between the conjoined twins or by the sharing structure. The diagnosis can be performed in the prenatal period or after birth by different techniques, such as ultrasound, magnetic resonance imaging and echocardiography. These tests are of paramount importance for understanding the anatomy of both fetuses/children, as well as for prognosis and surgical plan determination. CONCLUSIONS Although imperfect twinning is a rare condition, the prenatal diagnosis is very important in order to evaluate the fusion site and its complexity. Hence, the evaluation of these children should be multidisciplinary, involving mainly obstetricians, pediatricians and pediatric surgeons. However, some decisions may constitute real ethical dilemmas, in which different points should be discussed and analyzed with the health team and the family. PMID:24142323

  4. Statistical analysis of imperfection effect on cylindrical buckling response

    NASA Astrophysics Data System (ADS)

    Ismail, M. S.; Purbolaksono, J.; Muhammad, N.; Andriyana, A.; Liew, H. L.

    2015-12-01

    It is widely reported that no efficient guidelines for modelling imperfections in composite structures are available. In response, this work evaluates the imperfection factors of axially compressed Carbon Fibre Reinforced Polymer (CFRP) cylinder with different ply angles through finite element (FE) analysis. The sensitivity of imperfection factors were analysed using design of experiment: factorial design approach. From the analysis it identified three critical factors that sensitively reacted towards buckling load. Furthermore empirical equation is proposed according to each type of cylinder. Eventually, critical buckling loads estimated by empirical equation showed good agreements with FE analysis. The design of experiment methodology is useful in identifying parameters that lead to structures imperfection tolerance.

  5. Insights and Puzzles in Particle Physics

    NASA Astrophysics Data System (ADS)

    Leutwyler, H.

    2015-03-01

    I briefly review the conceptual developments that led to the Standard Model and discuss some of its remarkable qualitative features. On the way, I draw attention to several puzzling aspects that are beyond the reach of our present understanding of the basic laws of physics.

  6. Insights and puzzles in particle physics

    NASA Astrophysics Data System (ADS)

    Leutwyler, H.

    2015-01-01

    I briefly review the conceptual developments that led to the Standard Model and discuss some of its remarkable qualitative features. On the way, I draw attention to several puzzling aspects that are beyond the reach of our present understanding of the basic laws of physics.

  7. Bullet-Block Science Video Puzzle

    ERIC Educational Resources Information Center

    Shakur, Asif

    2015-01-01

    A science video blog, which has gone viral, shows a wooden block shot by a vertically aimed rifle. The video shows that the block hit dead center goes exactly as high as the one shot off-center. (Fig. 1). The puzzle is that the block shot off-center carries rotational kinetic energy in addition to the gravitational potential energy. This leads a…

  8. Ramanujan's Continued Fraction for a Puzzle

    ERIC Educational Resources Information Center

    Park, Poo-Sung

    2005-01-01

    This article describes a method of solution that Ramanujan may have used in solving the following puzzle: The number of a house is both the sum of the house numbers below it on the street and the sum of those above it. (The houses on a street are numbered consecutively, starting with 1.)

  9. Exploring Organic Mechanistic Puzzles with Molecular Modeling

    ERIC Educational Resources Information Center

    Horowitz, Gail; Schwartz, Gary

    2004-01-01

    The molecular modeling was used to reinforce more general skills such as deducing and drawing reaction mechanisms, analyzing reaction kinetics and thermodynamics and drawing reaction coordinate energy diagrams. This modeling was done through the design of mechanistic puzzles, involving reactions not familiar to the students.

  10. Reinforcing Geometric Properties with Shapedoku Puzzles

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.; Nickell, Jennifer V.

    2013-01-01

    Shapedoku is a new type of puzzle that combines logic and spatial reasoning with understanding of basic geometric concepts such as slope, parallelism, perpendicularity, and properties of shapes. Shapedoku can be solved by individuals and, as demonstrated here, can form the basis of a review for geometry students as they create their own. In this…

  11. Mathematical History: Activities, Puzzles, Stories, and Games.

    ERIC Educational Resources Information Center

    Mitchell, Merle

    Based on the history of mathematics, these materials have been planned to enrich the teaching of mathematics in grades four, five, and six. Puzzles and games are based on stories about topics such as famous mathematicians, numerals of ancient peoples, and numerology. The sheets are arranged by grade level and are designed for easy duplication.…

  12. Method for correcting imperfections on a surface

    SciTech Connect

    Sweatt, W.C.; Weed, J.W.

    1999-09-07

    A process for producing near perfect optical surfaces is disclosed. A previously polished optical surface is measured to determine its deviations from the desired perfect surface. A multi-aperture mask is designed based on this measurement and fabricated such that deposition through the mask will correct the deviations in the surface to an acceptable level. Various mask geometries can be used: variable individual aperture sizes using a fixed grid for the apertures or fixed aperture sizes using a variable aperture spacing. The imperfections are filled in using a vacuum deposition process with a very thin thickness of material such as silicon monoxide to produce an amorphous surface that bonds well to a glass substrate.

  13. Weird Stellar Pair Puzzles Scientists

    NASA Astrophysics Data System (ADS)

    2008-05-01

    Astronomers have discovered a speedy spinning pulsar in an elongated orbit around an apparent Sun-like star, a combination never seen before, and one that has them puzzled about how the strange system developed. Orbital Comparison Comparing Orbits of Pulsar and Its Companion to our Solar System. CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for full caption information and available graphics. "Our ideas about how the fastest-spinning pulsars are produced do not predict either the kind of orbit or the type of companion star this one has," said David Champion of the Australia Telescope National Facility. "We have to come up with some new scenarios to explain this weird pair," he added. Astronomers first detected the pulsar, called J1903+0327, as part of a long-term survey using the National Science Foundation's Arecibo radio telescope in Puerto Rico. They made the discovery in 2006 doing data analysis at McGill University, where Champion worked at the time. They followed up the discovery with detailed studies using the Arecibo telescope, the NSF's Robert C. Byrd Green Bank Telescope (GBT) in West Virginia, the Westerbork radio telescope in the Netherlands, and the Gemini North optical telescope in Hawaii. The pulsar, a city-sized superdense stellar corpse left over after a massive star exploded as a supernova, is spinning on its axis 465 times every second. Nearly 21,000 light-years from Earth, it is in a highly-elongated orbit that takes it around its companion star once every 95 days. An infrared image made with the Gemini North telescope in Hawaii shows a Sun-like star at the pulsar's position. If this is an orbital companion to the pulsar, it is unlike any companions of other rapidly rotating pulsars. The pulsar, a neutron star, also is unusually massive for its type. "This combination of properties is unprecedented. Not only does it require us to figure out how this system was produced, but the large mass may help us understand how matter behaves at extremely

  14. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  15. Puzzles in hyperon, charm and beauty physics.

    SciTech Connect

    Lipkin, H. J.

    2002-10-21

    Puzzles awaiting better experiments and better theory include: (1) the contradiction between good and bad SU(3) baryon wave functions in fitting Cabibbo theory for hyperon decays, strangeness suppression in the sea and the violation of the Gottfried Sum rule--no model fits all; (2) Anomalously enhanced Cabibbo-suppressed D{sup +} {yields} K*{sup +} (s{bar d}) decays; (3) anomalously enhanced and suppressed B {yields} {eta}{prime} X decays; (4) the OZI rule in weak decays; (5) Vector dominance (W {yields} {pi}, {rho}, a{sub 1}, D{sub s}, D*{sub s}) in weak decays; (6) puzzles in doubly-cabibbo-suppressed charm decays; and (7) problems in obtaining {Lambda} spin structure from polarization measurements of produced {Lambda}'s.

  16. Use of Imperfect Calibration for Seismic Location

    SciTech Connect

    Myers, S C; Schultz, C A

    2000-07-12

    Efforts to more effectively monitor nuclear explosions include the calibration of travel times along specific paths. Benchmark events are used to improve travel-time prediction by (1) improving models, (2) determining travel times empirically, or (3) using a hybrid approach. Even velocity models that are determined using geophysical analogy (i.e. models determined without the direct use of calibration data) require validation with calibration events. Ideally, the locations and origin times of calibration events would be perfectly known. However, the existing set of perfectly known events is spatially limited and many of these events occurred prior to the installation of current monitoring stations, thus limiting their usefulness. There are, however, large numbers of well (but not perfectly) located events that are spatially distributed, and many of these events may be used for calibration. Identifying the utility and limitations of the spatially distributed set of imperfect calibration data is of paramount importance to the calibration effort. In order to develop guidelines for calibration utility, we examine the uncertainty and correlation of location parameters under several network configurations that are commonly used to produce calibration-grade locations. We then map these calibration uncertainties through location procedures with network configurations that are likely in monitoring situations. By examining the ramifications of depth and origin-time uncertainty, we expand on previous studies that focus strictly on epicenter accuracy. Particular attention is given to examples where calibration events are determined with teleseismic or local networks and monitoring is accomplished with a regional network.

  17. Influence of imperfections on effective properties of cellular solids

    SciTech Connect

    Grenestedt, J.L.

    1998-12-31

    The mechanical properties of cellular solids, or solid foams, is affected by imperfections such as wavy distortions of cell walls, variations in cell wall thickness, non-uniform cell shape, etc. The present paper is focused mainly on elastic stiffnesses of closed cell cellular solids. A perfect model is first discussed and shown to predict the behavior of PVC foams well. However, this model over-estimates the stiffnesses of aluminum foams. The relatively poor properties of the aluminum foam are believed to be caused by imperfections in the cells. The main body of the paper focuses on modeling different kinds of imperfections, and analyzing their impact on foam properties.

  18. Quantification of the Forgiveness of Drugs to Imperfect Adherence.

    PubMed

    Assawasuwannakit, P; Braund, R; Duffull, S B

    2015-03-01

    The circumstance of how sensitive therapeutic success is under imperfect adherence is driven by the property known as forgiveness. To date, no studies have considered variability in the pharmacokinetic-pharmacodynamic process in conjunction with imperfect adherence patterns in order to develop a comparative criterion to determine the forgiveness of a drug. In this study, we have proposed a criterion to quantify forgiveness; illustrated the criterion for a theoretical example and evaluated the forgiveness of a motivating example, namely warfarin. A forgiveness criterion, relative forgiveness, is defined as the number of times more likely that a target is successfully attained under perfect adherence compared to imperfect adherence; or when comparing two drugs under a standard setting of imperfect adherence. The relative forgiveness criterion may have important implications for both drug development and clinical practice since the choice of drug can account for the likely influence of its forgiveness. PMID:26225235

  19. Bayesian imperfect information analysis for clinical recurrent data

    PubMed Central

    Chang, Chih-Kuang; Chang, Chi-Chang

    2015-01-01

    In medical research, clinical practice must often be undertaken with imperfect information from limited resources. This study applied Bayesian imperfect information-value analysis to realistic situations to produce likelihood functions and posterior distributions, to a clinical decision-making problem for recurrent events. In this study, three kinds of failure models are considered, and our methods illustrated with an analysis of imperfect information from a trial of immunotherapy in the treatment of chronic granulomatous disease. In addition, we present evidence toward a better understanding of the differing behaviors along with concomitant variables. Based on the results of simulations, the imperfect information value of the concomitant variables was evaluated and different realistic situations were compared to see which could yield more accurate results for medical decision-making. PMID:25565853

  20. Buckling Imperfection Sensitivity of Axially Compressed Orthotropic Cylinders

    NASA Technical Reports Server (NTRS)

    Schultz, Marc R.; Nemeth, Michael P.

    2010-01-01

    Structural stability is a major consideration in the design of lightweight shell structures. However, the theoretical predictions of geometrically perfect structures often considerably over predict the buckling loads of inherently imperfect real structures. It is reasonably well understood how the shell geometry affects the imperfection sensitivity of axially compressed cylindrical shells; however, the effects of shell anisotropy on the imperfection sensitivity is less well understood. In the present paper, the development of an analytical model for assessing the imperfection sensitivity of axially compressed orthotropic cylinders is discussed. Results from the analytical model for four shell designs are compared with those from a general-purpose finite-element code, and good qualitative agreement is found. Reasons for discrepancies are discussed, and potential design implications of this line of research are discussed.

  1. Macromolecular diffractive imaging using imperfect crystals.

    PubMed

    Ayyer, Kartik; Yefanov, Oleksandr M; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Xavier, Paulraj Lourdu; Beyerlein, Kenneth R; Schmidt, Marius; Sarrou, Iosifina; Spence, John C H; Weierstall, Uwe; White, Thomas A; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S; Robinson, Joseph S; Koglin, Jason E; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N

    2016-02-11

    The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing. PMID

  2. Macromolecular diffractive imaging using imperfect crystals

    PubMed Central

    Ayyer, Kartik; Yefanov, Oleksandr; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Lourdu Xavier, Paulraj; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.

    2016-01-01

    The three-dimensional structures of macromolecules and their complexes are predominantly elucidated by X-ray protein crystallography. A major limitation is access to high-quality crystals, to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields sufficiently high-resolution information that the crystal structure can be solved. The observation that crystals with shrunken unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks1,2 hints that crystallographic resolution for some macromolecules may be limited not by their heterogeneity but rather by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern, equal to the incoherent sum of diffraction from rigid single molecular complexes aligned along several discrete crystallographic orientations and hence with an increased information content3. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins4 —they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5 Å limit of measurable Bragg peaks, which allows us to directly phase5 the pattern. With the molecular envelope conventionally determined at 4.5 Å as a constraint, we then obtain a static image of the photosystem II dimer at 3.5 Å resolution. This result shows that continuous diffraction can be used to overcome long-supposed resolution limits of macromolecular crystallography, with a method that puts great value in commonly encountered imperfect crystals and opens up the possibility for model-free phasing6,7. PMID:26863980

  3. Precision Astronomy with Imperfect Deep Depletion CCDs

    NASA Astrophysics Data System (ADS)

    Stubbs, Christopher; LSST Sensor Team; PanSTARRS Team

    2014-01-01

    While thick CCDs do provide definite advantages in terms of increased quantum efficiency at wavelengths 700 nm<λ < 1.1 microns and reduced fringing from atmospheric emission lines, these devices also exhibit undesirable features that pose a challenge to precision determination of the positions, fluxes, and shapes of astronomical objects, and for the precision extraction of features in astronomical spectra. For example, the assumptions of a perfectly rectilinear pixel grid and of an intensity-independent point spread function become increasingly invalid as we push to higher precision measurements. Many of the effects seen in these devices arise from lateral electrical fields within the detector, that produce charge transport anomalies that have been previously misinterpreted as quantum efficiency variations. Performing simplistic flat-fielding therefore introduces systematic errors in the image processing pipeline. One measurement challenge we face is devising a combination of calibration methods and algorithms that can distinguish genuine quantum efficiency variations from charge transport effects. These device imperfections also confront spectroscopic applications, such as line centroid determination for precision radial velocity studies. Given the scientific benefits of improving both the precision and accuracy of astronomical measurements, we need to identify, characterize, and overcome these various detector artifacts. In retrospect, many of the detector features first identified in thick CCDs also afflict measurements made with more traditional CCD detectors, albeit often at a reduced level since the photocharge is subject to the perturbing influence of lateral electric fields for a shorter time interval. I provide a qualitative overview of the physical effects we think are responsible for the observed device properties, and provide some perspective for the work that lies ahead.

  4. Macromolecular diffractive imaging using imperfect crystals

    NASA Astrophysics Data System (ADS)

    Ayyer, Kartik; Yefanov, Oleksandr M.; Oberthür, Dominik; Roy-Chowdhury, Shatabdi; Galli, Lorenzo; Mariani, Valerio; Basu, Shibom; Coe, Jesse; Conrad, Chelsie E.; Fromme, Raimund; Schaffer, Alexander; Dörner, Katerina; James, Daniel; Kupitz, Christopher; Metz, Markus; Nelson, Garrett; Xavier, Paulraj Lourdu; Beyerlein, Kenneth R.; Schmidt, Marius; Sarrou, Iosifina; Spence, John C. H.; Weierstall, Uwe; White, Thomas A.; Yang, Jay-How; Zhao, Yun; Liang, Mengning; Aquila, Andrew; Hunter, Mark S.; Robinson, Joseph S.; Koglin, Jason E.; Boutet, Sébastien; Fromme, Petra; Barty, Anton; Chapman, Henry N.

    2016-02-01

    The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed—and are of interest as a source of information about the dynamics of proteins—they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.

  5. Rule mining and classification in a situation assessment application: a belief-theoretic approach for handling data imperfections.

    PubMed

    Rohitha, K K; Hewawasam, G K; Premaratne, Kamal; Shyu, Mei-Ling

    2007-12-01

    Management of data imprecision and uncertainty has become increasingly important, especially in situation awareness and assessment applications where reliability of the decision-making process is critical (e.g., in military battlefields). These applications require the following: 1) an effective methodology for modeling data imperfections and 2) procedures for enabling knowledge discovery and quantifying and propagating partial or incomplete knowledge throughout the decision-making process. In this paper, using a Dempster-Shafer belief-theoretic relational database (DS-DB) that can conveniently represent a wider class of data imperfections, an association rule mining (ARM)-based classification algorithm possessing the desirable functionality is proposed. For this purpose, various ARM-related notions are revisited so that they could be applied in the presence of data imperfections. A data structure called belief itemset tree is used to efficiently extract frequent itemsets and generate association rules from the proposed DS-DB. This set of rules is used as the basis on which an unknown data record, whose attributes are represented via belief functions, is classified. These algorithms are validated on a simplified situation assessment scenario where sensor observations may have caused data imperfections in both attribute values and class labels. PMID:18179065

  6. Dislocation stability in three-phase nanocomposites with imperfect interface

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Xin; Liu, You-Wen; Fang, Qi-Hong

    2014-10-01

    Interface imperfection can significantly affect the mechanical properties and failure mechanisms as well as the strength and toughness of nanocomposites. The elastic behavior of a screw dislocation in nanoscale coating with imperfect interface is studied in the three-phase composite cylinder model. The interface between inner nanoinhomogeneity and intermediate coating is assumed as perfectly bonded. The bonding between intermediate coating and outer matrix is considered to be imperfect with the assumption that interface imperfection is uniform, and a linear spring model is adopted to describe the weakness of imperfect interface. The explicit expression for image force acting on dislocation is obtained by means of a complex variable method. The analytic results indicate that inner interface effect and outer interface imperfection, simultaneously taken into account, would influence greatly image force, equilibrium position and stability of dislocation, and various critical parameters that would change dislocation stability. The weaker interface is a very strong trap for glide dislocation and, thus, a more effective barrier for slip transmission.

  7. Method and apparatus for evaluating multilayer objects for imperfections

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Abedin, Nurul (Inventor); Sun, Kuen J. (Inventor)

    1997-01-01

    A multilayer object having multiple layers arranged in a stacking direction is evaluated for imperfections such as voids, delaminations and microcracks. First, an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by, e.g., generating pulse echo signals indicative of the received acoustic wave, wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and curve fit to an exponential curve, wherein a substantial fit of approximately 80-90% indicates an absence of imperfections and a significant deviation indicates the presence of imperfections. Alternatively, the time interval between distinct groups can be measured, wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections.

  8. Method and Apparatus for Evaluating Multilayer Objects for Imperfections

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S. (Inventor); Abedin, Nurul (Inventor); Sun, Kuen J. (Inventor)

    1999-01-01

    A multilayer object having multiple layers arranged in a stacking direction is evaluated for imperfections such as voids, delaminations and microcracks. First. an acoustic wave is transmitted into the object in the stacking direction via an appropriate transducer/waveguide combination. The wave propagates through the multilayer object and is received by another transducer/waveguide combination preferably located on the same surface as the transmitting combination. The received acoustic wave is correlated with the presence or absence of imperfections by, e.g., generating pulse echo signals indicative of the received acoustic wave. wherein the successive signals form distinct groups over time. The respective peak amplitudes of each group are sampled and curve fit to an exponential curve. wherein a substantial fit of approximately 80-90% indicates an absence of imperfections and a significant deviation indicates the presence of imperfections. Alternatively, the time interval between distinct groups can be measured. wherein equal intervals indicate the absence of imperfections and unequal intervals indicate the presence of imperfections.

  9. Geoscience Data Puzzles: Developing Students' Ability to Make Meaning from Data

    NASA Astrophysics Data System (ADS)

    Kastens, K. A.; Turrin, M.

    2010-12-01

    One of the most fundamental aspects of geoscience expertise is the ability to extract insights from observational earth data. Where an expert might see trends, patterns, processes, and candidate causal relationships, a novice could look at the same data representation and see dots, wiggles and blotches of color. The problem is compounded when the student was not personally involved in collecting the data or samples and thus has no experiential knowledge of the Earth setting that the data represent. In other words, the problem is especially severe when students tap into the vast archives of professionally-collected data that the geoscience community has worked so hard to make available for instructional use over the internet. Moreover, most high school and middle school teachers did not themselves learn Earth Science through analyzing data, and they may lack skills and/or confidence needed to scaffold students through the process of learning to interpret realistically-complex data sets. We have developed “Geoscience Data Puzzles” with the paired goals of (a) helping students learn about the earth from data, and (b) helping teachers learn to teach with data. Geoscience Data Puzzles are data-using activities that purposefully present a low barrier-to-entry for teachers and a high ratio of insight-to-effort for students. Each Puzzle uses authentic geoscience data, but the data are carefully pre-selected in order to illuminate a fundamental Earth process within tractable snippets of data. Every Puzzle offers "Aha" moments, when the connection between data and process comes clear in a rewarding burst of insight. Every Puzzle is accompanied by a Pedagogical Content Knowledge (PCK) guide, which explicates the chain of reasoning by which the puzzle-solver can use the evidence provided by the data to construct scientific claims. Four types of reasoning are stressed: spatial reasoning, in which students make inferences from observations about location, orientation, shape

  10. Imperfect chemical female mimicry in males of the ant Cardiocondyla obscurior

    NASA Astrophysics Data System (ADS)

    Cremer, Sylvia; D'Ettorre, Patrizia; Drijfhout, Falko P.; Sledge, Matthew F.; Turillazzi, Stefano; Heinze, Jürgen

    2008-11-01

    Winged and wingless males coexist in the ant Cardiocondyla obscurior. Wingless (“ergatoid”) males never leave their maternal colony and fight remorselessly among each other for the access to emerging females. The peaceful winged males disperse after about 10 days, but beforehand also mate in the nest. In the first 5 days of their life, winged males perform a chemical female mimicry that protects them against attack and even makes them sexually attractive to ergatoid males. When older, the chemical profile of winged males no longer matches that of virgin females; nevertheless, they are still tolerated, which so far has been puzzling. Contrasting this general pattern, we have identified a single aberrant colony in which all winged males were attacked and killed by the ergatoid males. A comparative analysis of the morphology and chemical profile of these untypical attacked winged males and the tolerated males from several normal colonies revealed that normal old males are still performing some chemical mimicry to the virgin queens, though less perfect than in their young ages. The anomalous attacked winged males, on the other hand, had a very different odour to the females. Our study thus exemplifies that the analysis of rare malfunctioning can add valuable insight on functioning under normal conditions and allows the conclusion that older winged males from normal colonies of the ant C. obscurior are guarded through an imperfect chemical female mimicry, still close enough to protect against attacks by the wingless fighters yet dissimilar enough not to elicit their sexual interest.

  11. Early Puzzle Play: A predictor of preschoolers’ spatial transformation skill

    PubMed Central

    Levine, S.C.; Ratliff, K.R.; Huttenlocher, J.; Cannon, J.

    2011-01-01

    Individual differences in spatial skill emerge prior to kindergarten entry. However, little is known about the early experiences that may contribute to these differences. The current study examines the relation between children’s early puzzle play and their spatial skill. Children and parents (n = 53) were observed at home for 90 minutes every four months (six times) between 2 and 4 years of age (26 to 46 months). When children were 4 years 6 months old, they completed a spatial task involving mental transformations of 2D shapes. Children who were observed playing with puzzles performed better on this task than those who did not, controlling for parent education, income, and overall parent word types. Moreover, among those children who played with puzzles, frequency of puzzle play predicted performance on the spatial transformation task. Although the frequency of puzzle play did not differ for boys and girls, the quality of puzzle play (a composite of puzzle difficulty, parent engagement, and parent spatial language) was higher for boys than girls. In addition, variation in puzzle play quality predicted performance on the spatial transformation task for girls but not boys. Implications of these findings as well as future directions for research on the role of the role of puzzle play in the development of spatial skill are discussed. PMID:22040312

  12. Early puzzle play: a predictor of preschoolers' spatial transformation skill.

    PubMed

    Levine, Susan C; Ratliff, Kristin R; Huttenlocher, Janellen; Cannon, Joanna

    2012-03-01

    Individual differences in spatial skill emerge prior to kindergarten entry. However, little is known about the early experiences that may contribute to these differences. The current study examined the relation between children's early puzzle play and their spatial skill. Children and parents (n = 53) were observed at home for 90 min every 4 months (6 times) between 2 and 4 years of age (26 to 46 months). When children were 4 years 6 months old, they completed a spatial task involving mental transformations of 2-dimensional shapes. Children who were observed playing with puzzles performed better on this task than those who did not, controlling for parent education, income, and overall parent word types. Moreover, among those children who played with puzzles, frequency of puzzle play predicted performance on the spatial transformation task. Although the frequency of puzzle play did not differ for boys and girls, the quality of puzzle play (a composite of puzzle difficulty, parent engagement, and parent spatial language) was higher for boys than for girls. In addition, variation in puzzle play quality predicted performance on the spatial transformation task for girls but not for boys. Implications of these findings as well as future directions for research on the role of puzzle play in the development of spatial skill are discussed. PMID:22040312

  13. TOPICAL REVIEW The cosmological constant puzzle

    NASA Astrophysics Data System (ADS)

    Bass, Steven D.

    2011-04-01

    The accelerating expansion of the Universe points to a small positive vacuum energy density and negative vacuum pressure. A strong candidate is the cosmological constant in Einstein's equations of general relativity. Possible contributions are zero-point energies and the condensates associated with spontaneous symmetry breaking. The vacuum energy density extracted from astrophysics is 1056 times smaller than the value expected from quantum fields and standard model particle physics. Is the vacuum energy density time dependent? We give an introduction to the cosmological constant puzzle and ideas how to solve it.

  14. Modified Sigmund sputtering theory: isotopic puzzle

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Zhang, L.

    2005-05-01

    The theory of anisotropic sputtering proposed by Zhang [Z.L. Zhang, Phys. Rev. B 71 026101 (2005).] and [Z.L. Zhang and L. Zhang, Radiat. Eff. Defects Solids 159(5) 301 (2004).] has been generalized to sputtering of isotopic mixtures. The present theory (modified Sigmund theory) has been shown to fit numerous simulations and experimental measurements, including energy and angular distribution of sputtered atoms. In particular, the theory has successfully solved the isotope puzzle of sputtering induced by low energy and heavy ion bombardment.

  15. Decision support in an imperfect world

    SciTech Connect

    Chang, C.L.

    1983-01-01

    By a decision support system it is meant an expert system that the user can use to inquire about information to make his decision. Such a system will be based on an expert knowledge base. It is believed that the knowledge base is more than facts and rules. It may include less tangible and less codifiable factors like opinions, judgments, educated guesses, as well as factual information and logic rules for reasoning. That is, the knowledge may be explicit, logical, heuristic, or fuzzy. This paper presents some methods to add fuzzy information into a relational data base. Specifically it considers the treatments of fuzzy queries. An answer to a fuzzy query will be a fuzzy set from which a further detailed study can be made. 13 references.

  16. Magic star puzzle for educational mathematics

    NASA Astrophysics Data System (ADS)

    Gan, Yee Siang; Fong, Wan Heng; Sarmin, Nor Haniza

    2013-04-01

    One of the interesting fields in recreational mathematics is the magic number arrangement. There are different kinds of arrays in the arrangement for a group of numbers. In particular, one of the arrays in magic number arrangement is called magic star. In fact, magic star involves combinatorics that contributes to geometrical analysis and number theory. Hence, magic star is suitable to be introduced as educational mathematics to cultivate interest in different area of mathematics. To obtain the solutions of normal magic stars of order six, the possible sets of numbers for every line in a magic star have been considered. Previously, the calculation for obtaining the solutions has been done manually which is time-consuming. Therefore, a programming code to generate all the fundamental solutions for normal magic star of order six without including the properties of rotation and reflection has been done. In this puzzle, a magic star puzzle is created by using Matlab software, which enables a user to verify the entries for the cells of magic star of order six. Moreover, it is also user-friendly as it provides interactive commands on the inputs given by the user, which enables the user to detect the incorrect inputs. In addition, user can also choose to view all the fundamental solutions as generated by the programming code.

  17. 3D puzzle reconstruction for archeological fragments

    NASA Astrophysics Data System (ADS)

    Jampy, F.; Hostein, A.; Fauvet, E.; Laligant, O.; Truchetet, F.

    2015-03-01

    The reconstruction of broken artifacts is a common task in archeology domain; it can be supported now by 3D data acquisition device and computer processing. Many works have been dedicated in the past to reconstructing 2D puzzles but very few propose a true 3D approach. We present here a complete solution including a dedicated transportable 3D acquisition set-up and a virtual tool with a graphic interface allowing the archeologists to manipulate the fragments and to, interactively, reconstruct the puzzle. The whole lateral part is acquired by rotating the fragment around an axis chosen within a light sheet thanks to a step-motor synchronized with the camera frame clock. Another camera provides a top view of the fragment under scanning. A scanning accuracy of 100μm is attained. The iterative automatic processing algorithm is based on segmentation into facets of the lateral part of the fragments followed by a 3D matching providing the user with a ranked short list of possible assemblies. The device has been applied to the reconstruction of a set of 1200 fragments from broken tablets supporting a Latin inscription dating from the first century AD.

  18. Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.

    2016-01-01

    Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.

  19. Bio-chemical sensor based on imperfected plastic optical fiber

    NASA Astrophysics Data System (ADS)

    Babchenko, Anatoly; Chernyak, Valeri; Maryles, Jonathan

    2007-05-01

    In this paper we report results for an intrinsic evanescent field sensor based on not-regular plastic optical fiber with polymer film containing Malachite Green MG +([PhC(C 6H 4NMe II) 3] +) as an absorption reagent, which coats the fiber's imperfected area. A theoretical model was developed which shows that changes of light in such structure result from the attenuation of light in the strait and bent imperfected fiber. In this model, the imperfected area with malachite green polymer film is replaced by a uniform layer with a complex refractive index. The changes in color and absorption characteristics of the polymer film depend on the acidic and basic environmental properties in the sensing area. Additional increase of the evanescent field interaction can be achieved by decrease the bending radius of the fiber with the coated imperfection area at the middle of the bent fiber. An imperfected plastic optical fiber with Malachite Green coating has been presented for the detection of ammonia vapor. The initial results show that depending on the sensing application demands, it is possible to design a high sensitive sensor with a relatively long response time, while when the demands require fast response times the sensor with less sensitivity can be used. In addition, the sensors' sensitivity can be calibrated in real-time by changing the bending radius.

  20. Crossword Puzzles as Learning Tools in Introductory Soil Science

    ERIC Educational Resources Information Center

    Barbarick, K. A.

    2010-01-01

    Students in introductory courses generally respond favorably to novel approaches to learning. To this end, I developed and used three crossword puzzles in spring and fall 2009 semesters in Introductory Soil Science Laboratory at Colorado State University. The first hypothesis was that crossword puzzles would improve introductory soil science…

  1. Sudoku Puzzles for First-Year Organic Chemistry Students

    ERIC Educational Resources Information Center

    Perez, Alice L.; Lamoureux, G.

    2007-01-01

    Sudoku puzzle was designed to teach about amino acids and functional groups to the students of undergraduate organic chemistry students. The puzzles focus on helping the student learn the name, 3-letter code and 1-letter code of common amino acids and functional groups.

  2. Jigsaw Puzzles. Australian Early Childhood Resource Booklets, No. 3.

    ERIC Educational Resources Information Center

    Fleer, Marilyn

    This booklet examines the educational value of jigsaw puzzles and gives practical suggestions on how to select and make them for use by children ages 1 through 8. It asserts that jigsaw puzzles provide children with the opportunity to develop problem-solving strategies, and discusses a theory of adult-child interaction that encourages the…

  3. A Puzzle Used to Teach the Cardiac Cycle

    ERIC Educational Resources Information Center

    Marcondes, Fernanda K.; Moura, Maria J. C. S.; Sanches, Andrea; Costa, Rafaela; Oliveira de Lima, Patricia; Groppo, Francisco Carlos; Amaral, Maria E. C.; Zeni, Paula; Gaviao, Kelly Cristina; Montrezor, Luís H.

    2015-01-01

    The aim of the present article is to describe a puzzle developed for use in teaching cardiac physiology classes. The puzzle presents figures of phases of the cardiac cycle and a table with five columns: phases of cardiac cycle, atrial state, ventricular state, state of atrioventricular valves, and pulmonary and aortic valves. Chips are provided…

  4. Categorization Competence by Youth in Non-School Material (Puzzles)

    ERIC Educational Resources Information Center

    Buell, Robert R.; And Others

    1970-01-01

    Presents the procedures, results, and conclusions of a study to investigate the effects of (1) sex, (2) intelligence, and (3) prior experience in puzzle solving on the categorization skills of youth. A two-dimensional type puzzle involving 4 sorting variables was given to 110 ninth graders. 22 subjects, age from 7 to 18 were given a 3-dimensional…

  5. Decoding Codewords: Statistical Analysis of a Newspaper Puzzle

    ERIC Educational Resources Information Center

    Meacock, Susan; Meacock, Geoff

    2012-01-01

    In recent years English newspapers have started featuring a number of puzzles other than the ubiquitous crossword. Many of the puzzles are of Japanese origin such as Sudoku, Kakuro or Hidato. However, one recent one is very English and is called variously Cross-code, Alphapuzzle or some other name. In this article, it will be known as Codeword.…

  6. Enumerating Small Sudoku Puzzles in a First Abstract Algebra Course

    ERIC Educational Resources Information Center

    Lorch, Crystal; Lorch, John

    2008-01-01

    Two methods are presented for counting small "essentially different" sudoku puzzles using elementary group theory: one method (due to Jarvis and Russell) uses Burnside's counting formula, while the other employs an invariant property of sudoku puzzles. Ideas are included for incorporating this material into an introductory abstract algebra course.…

  7. Sharing Skills: Reach for a Book; Book Week Puzzle Packet.

    ERIC Educational Resources Information Center

    Bauer, Caroline Feller

    1986-01-01

    Reach for a Book is the theme for Children's Book Week 1986, and book presentations, activities, and exhibits to emphasize the joy of reading are listed. A Book Week Puzzle Packet provides two puzzles designed to reinforce the idea of using the card catalog to find materials on specific subjects. (EM)

  8. Marginalized Particle Filter for Blind Signal Detection with Analog Imperfections

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Hayashi, Kazunori; Sakai, Hideaki; Bocquet, Wladimir

    Recently, the marginalized particle filter (MPF) has been applied to blind symbol detection problems over selective fading channels. The MPF can ease the computational burden of the standard particle filter (PF) while offering better estimates compared with the standard PF. In this paper, we investigate the application of the blind MPF detector to more realistic situations where the systems suffer from analog imperfections which are non-linear signal distortion due to the inaccurate analog circuits in wireless devices. By reformulating the system model using the widely linear representation and employing the auxiliary variable resampling (AVR) technique for estimation of the imperfections, the blind MPF detector is successfully modified to cope with the analog imperfections. The effectiveness of the proposed MPF detector is demonstrated via computer simulations.

  9. Multiwave diffraction, phase problem, and extinction in imperfect crystals

    SciTech Connect

    Dmitrienko, V. E.

    2009-11-15

    The extinction effects of multiwave diffraction in imperfect crystals have been investigated. It is shown that the presence of extinction in the direct diffraction channel may lead to errors in determining the relative phases of structural amplitudes by the multiwave diffraction method (i.e., by interference with indirect excitation). The reason is that the dependence of the reflection intensity on the structural amplitude in imperfect crystals is generally nonquadratic (as in the kinematic theory), nonlinear (as in the dynamic theory), and is not even somewhat intermediate. These effects open up new possibilities for using multiwave diffraction for the direct study of the extinction and, therefore, quantitatively characterize the imperfection of crystal structures with known values and phases of structural amplitudes.

  10. Remote preparation of W states from imperfect bipartite sources

    NASA Astrophysics Data System (ADS)

    Moreno, M. G. M.; Cunha, Márcio M.; Parisio, Fernando

    2016-06-01

    Several proposals to produce tripartite W-type entanglement are probabilistic even if no imperfections are considered in the processes. We provide a deterministic way to remotely create W states out of an EPR source. The proposal is made viable through measurements (which can be demolitive) in an appropriate three-qubit basis. The protocol becomes probabilistic only when source flaws are considered. It turns out that, even in this situation, it is robust against imperfections in two senses: (i) It is possible, after postselection, to create a pure ensemble of W states out of an EPR source containing a systematic error; (ii) If no postselection is done, the resulting mixed state has a fidelity, with respect to a pure |Wrangle , which is higher than that of the imperfect source in comparison with an ideal EPR source. This simultaneously amounts to entanglement concentration and lifting.

  11. Static Isotropic Space-Times with Radially Imperfect Fluids

    NASA Astrophysics Data System (ADS)

    Konopka, Tomasz

    When one is solving the equations of general relativity in a symmetric sector, it is natural to consider the same symmetry for the geometry and stress-energy. This implies that for static and isotropic space-times, the most general natural stress-energy tensor is a sum of a perfect fluid and a radially imperfect fluid component. In the special situations where the perfect fluid component vanishes or is a space-time constant, the solutions to Einstein's equations can be thought of as modified Schwarzschild and Schwarzschild-de Sitter spaces. Exact solutions of this type are derived and it is shown that whereas deviations from the unmodified solutions can be made small, among the manifestations of the imperfect fluid component is a shift in angular momentum scaling for orbiting test bodies at large radius. Based on this effect, the question of whether the imperfect fluid component can feasibly describe dark matter phenomenology is addressed.

  12. The electron screening puzzle and nuclear clustering

    NASA Astrophysics Data System (ADS)

    Spitaleri, C.; Bertulani, C. A.; Fortunato, L.; Vitturi, A.

    2016-04-01

    Accurate measurements of nuclear reactions of astrophysical interest within, or close to, the Gamow peak show evidence of an unexpected effect attributed to the presence of atomic electrons in the target. The experiments need to include an effective "screening" potential to explain the enhancement of the cross sections at the lowest measurable energies. Despite various theoretical studies conducted over the past 20 years and numerous experimental measurements, a theory has not yet been found that can explain the cause of the exceedingly high values of the screening potential needed to explain the data. In this letter we show that instead of an atomic physics solution of the "electron screening puzzle", the reason for the large screening potential values is in fact due to clusterization effects in nuclear reactions, in particular for reaction involving light nuclei.

  13. The puzzle of TRPV4 channelopathies

    PubMed Central

    Nilius, Bernd; Voets, Thomas

    2013-01-01

    Hereditary channelopathies, that is, mutations in channel genes that alter channel function and are causal for the pathogenesis of the disease, have been described for several members of the transient receptor potential channel family. Mutations in the TRPV4 gene, encoding a polymodal Ca2+ permeable channel, are causative for several human diseases, which affect the skeletal system and the peripheral nervous system, with highly variable phenotypes. In this review, we describe the phenotypes of TRPV4 channelopathies and overlapping symptoms. Putative mechanisms to explain the puzzle, and how mutations in the same region of the channel cause different diseases, are discussed and experimental approaches to tackle this surprising problem are suggested. PMID:23306656

  14. The Puzzle of HD 104994 (WR 46)

    NASA Astrophysics Data System (ADS)

    Marchenko, Sergey V.; Arias, Julia; Barbá, Rodolfo; Balona, Luis; Moffat, Anthony F. J.; Niemela, Virpi S.; Shara, Michael M.; Sterken, Christiaan

    2000-10-01

    Intense coordinated spectroscopic and photometric monitoring of the suspected Wolf-Rayet binary WR 46 in 1999 reveals clear periodic variations, P=0.329+/-0.013 days, in the radial velocities of the emission lines of highest ionization potential, O VI and N V, found deepest in the Wolf-Rayet wind and thus least likely to be perturbed by a companion. These are accompanied by coherent variability in the profiles of lines with lower ionization/excitation potential and in the continuum flux. Most probably originating from orbital motion of the Wolf-Rayet component of the binary, this periodic radial velocity signal disappears from time to time, thus creating a puzzle yet to be solved. We show that the entangled patterns of the line profile variability are mainly governed by transitions between high and low states of the system's continuum flux. Based in part on observations obtained at the European Southern Observatory, La Silla, Chile (ESO program 62.H-0110).

  15. Solving the Puzzle of Subhalo Spins

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Lin, Weipeng; Pearce, Frazer R.; Lux, Hanni; Muldrew, Stuart I.; Onions, Julian

    2015-03-01

    Investigating the spin parameter distribution of subhalos in two high-resolution isolated halo simulations, recent work by Onions et al. suggested that typical subhalo spins are consistently lower than the spin distribution found for field halos. To further examine this puzzle, we have analyzed simulations of a cosmological volume with sufficient resolution to resolve a significant subhalo population. We confirm the result of Onions et al. and show that the typical spin of a subhalo decreases with decreasing mass and increasing proximity to the host halo center. We interpret this as the growing influence of tidal stripping in removing the outer layers, and hence the higher angular momentum particles, of the subhalos as they move within the host potential. Investigating the redshift dependence of this effect, we find that the typical subhalo spin is smaller with decreasing redshift. This indicates a temporal evolution, as expected in the tidal stripping scenario.

  16. Bullet-Block Science Video Puzzle

    NASA Astrophysics Data System (ADS)

    Shakur, Asif

    2015-01-01

    A science video blog,1 which has gone viral, shows a wooden block shot by a vertically aimed rifle. The video2 shows that the block hit dead center goes exactly as high as the one shot off-center. (Fig. 1). The puzzle is that the block shot off-center carries rotational kinetic energy in addition to the gravitational potential energy. This leads a majority of the bloggers to claim that the block shot off-center should not go as high as the one shot dead center. Others have claimed that the energy tied up as rotational energy is insignificant and the two blocks should rise to the same height within experimental error.

  17. The electron screening puzzle and nuclear clustering

    DOE PAGESBeta

    Spitaleri, C.; Bertulani, C. A.; Fortunato, L.; Vitturi, A.

    2016-02-12

    Accurate measurements of nuclear reactions of astrophysical interest within, or close to, the Gamow peak show evidence of an unexpected effect attributed to the presence of atomic electrons in the target. The experiments need to include an effective "screening" potential to explain the enhancement of the cross sections at the lowest measurable energies. Despite various theoretical studies conducted over the past 20 years and numerous experimental measurements, a theory has not yet been found that can explain the cause of the exceedingly high values of the screening potential needed to explain the data. Furthermore, in this letter we show thatmore » instead of an atomic physics solution of the "electron screening puzzle", the reason for the large screening potential values is in fact due to clusterization effects in nuclear reactions, in particular for reaction involving light nuclei.« less

  18. A PUZZLE INVOLVING GALACTIC BULGE MICROLENSING EVENTS

    SciTech Connect

    Cohen, Judith G.; Gould, Andrew; Johnson, Jennifer A.; Thompson, Ian B.; Feltzing, Sofia; Bensby, Thomas; Huang Wenjin; Melendez, Jorge; Lucatello, Sara; Asplund, Martin E-mail: gould@astronomy.ohio-state.edu E-mail: ian@obs.carnegiescience.edu E-mail: tbensby@eso.org E-mail: jorge@astro.up.pt E-mail: asplund@MPA-Garching.MPG.DE

    2010-03-01

    We study a sample of 16 microlensed Galactic bulge main-sequence turnoff region stars for which high-dispersion spectra have been obtained with detailed abundance analyses. We demonstrate that there is a very strong and highly statistically significant correlation between the maximum magnification of the microlensed bulge star and the value of the [Fe/H] deduced from the high resolution spectrum of each object. Physics demands that this correlation, assuming it to be real, be the result of some sample bias. We suggest several possible explanations, but are forced to reject them all, and are left puzzled. To obtain a reliable metallicity distribution in the Galactic bulge based on microlensed dwarf stars, it will be necessary to resolve this issue through the course of additional observations.

  19. A puzzle used to teach the cardiac cycle.

    PubMed

    Marcondes, Fernanda K; Moura, Maria J C S; Sanches, Andrea; Costa, Rafaela; de Lima, Patricia Oliveira; Groppo, Francisco Carlos; Amaral, Maria E C; Zeni, Paula; Gaviao, Kelly Cristina; Montrezor, Luís H

    2015-03-01

    The aim of the present article is to describe a puzzle developed for use in teaching cardiac physiology classes. The puzzle presents figures of phases of the cardiac cycle and a table with five columns: phases of cardiac cycle, atrial state, ventricular state, state of atrioventricular valves, and pulmonary and aortic valves. Chips are provided for use to complete the table. Students are requested to discuss which is the correct sequence of figures indicating the phases of cardiac cycle. Afterward, they should complete the table with the chips. Students of biology, dentistry, medicine, pharmacy, and nursing graduation courses from seven institutions performed the puzzle evaluation. They were invited to indicate whether the puzzle had been useful for learning about the subject by filling one of four alternatives. Of the students, 4.6% answered that it was not necessary but helped them to confirm what they had learned, 64.5% reported that although they had previously understood the cardiac cycle, the puzzle helped them to solve doubts and promoted a better understanding of it, and 30.9% said that they needed the puzzle to understand the cardiac cycle, without differences among courses, institutions, and course semesters. The results of the present study suggest that a simple and inexpensive puzzle may be useful as an active learning methodology applied after the theoretical lecture, as a complementary tool for studying cardiac cycle physiology. PMID:25727466

  20. Vibration and guiding of moving media with edge weave imperfections

    NASA Astrophysics Data System (ADS)

    Kartik, V.; Wickert, J. A.

    2006-03-01

    This paper examines the steady-state-forced vibration of a moving medium that is guided by a partial elastic foundation, and where geometric imperfections on the medium's edge act as an excitation source. Such a system is of technical interest in the areas of web handling and magnetic tape transport where externally pressurized air bearing guides are sometimes used to control lateral position. The axially moving strip is modeled here as a string that is guided by elastic foundation segments, and that is subjected to traveling wave excitation as the edge's imperfection interacts with the foundation. The equation of motion for this "moving medium and moving load" system incorporates a skew-symmetric Coriolis acceleration component that arises from convection. The governing equation is cast in state-space form, with one symmetric and one skew-symmetric operator, as is characteristic of gyroscopic systems. Through modal analysis, the forced response of the system is obtained to the complex harmonic excitation associated with the interaction between the edge's weave pattern and the guides. Parameter studies are presented in the transport speed, foundation stiffness, guide placement, guide width, and imperfection wavelength. Of potential technological application, for a given wavelength of the edge's imperfection, it is possible to reduce the medium's vibration at a certain location by judiciously selecting the locations and spans of the foundation segments.

  1. Modelling occurrence and abundance of species when detection is imperfect

    USGS Publications Warehouse

    Royle, J. Andrew; Nichols, J.D.; Kery, M.

    2005-01-01

    Relationships between species abundance and occupancy are of considerable interest in metapopulation biology and in macroecology. Such relationships may be described concisely using probability models that characterize variation in abundance of a species. However, estimation of the parameters of these models in most ecological problems is impaired by imperfect detection. When organisms are detected imperfectly, observed counts are biased estimates of true abundance, and this induces bias in stated occupancy or occurrence probability. In this paper we consider a class of models that enable estimation of abundance/occupancy relationships from counts of organisms that result from surveys in which detection is imperfect. Under such models, parameter estimation and inference are based on conventional likelihood methods. We provide an application of these models to geographically extensive breeding bird survey data in which alternative models of abundance are considered that include factors that influence variation in abundance and detectability. Using these models, we produce estimates of abundance and occupancy maps that honor important sources of spatial variation in avian abundance and provide clearly interpretable characterizations of abundance and occupancy adjusted for imperfect detection.

  2. Information Imperfections: The Achilles' Heel of Entitlement Plans

    ERIC Educational Resources Information Center

    Bridge, Gary

    1978-01-01

    Discusses some crucial questions about voucher systems in education and examines the major weakness of the voucher and entitlement proposals, i.e., information imperfections that limit the ability of individuals, especially low-income and less educated people, to choose intelligently among competing alternatives. (BR)

  3. Quantum key distribution: vulnerable if imperfectly implemented

    NASA Astrophysics Data System (ADS)

    Leuchs, G.

    2013-10-01

    We report several vulnerabilities found in Clavis2, the flagship quantum key distribution (QKD) system from ID Quantique. We show the hacking of a calibration sequence run by Clavis2 to synchronize the Alice and Bob devices before performing the secret key exchange. This hack induces a temporal detection efficiency mismatch in Bob that can allow Eve to break the security of the cryptosystem using faked states. We also experimentally investigate the superlinear behaviour in the single-photon detectors (SPDs) used by Bob. Due to this superlinearity, the SPDs feature an actual multi-photon detection probability which is generally higher than the theoretically-modelled value. We show how this increases the risk of detector control attacks on QKD systems (including Clavis2) employing such SPDs. Finally, we review the experimental feasibility of Trojan-horse attacks. In the case of Clavis2, the objective is to read Bob's phase modulator to acquire knowledge of his basis choice as this information suffices for constructing the raw key in the Scarani-Acin-Ribordy-Gisin 2004 (SARG04) protocol. We work in close collaboration with ID Quantique and for all these loopholes, we notified them in advance. Wherever possible, we or ID Quantique proposed countermeasures and they implemented suitable patches and upgrade their systems.

  4. Solar System Puzzle Kit: An Activity for Earth and Space Science.

    ERIC Educational Resources Information Center

    Vogt, Gregory L.; Rosenberg, Carla B.

    This Solar System Puzzle Kit for grades 5-8, allows students to create an eight-cube paper puzzle of the solar system and may be duplicated for classroom use or used as a take home activity for children and parents. By assembling the puzzle, hand-coloring the bodies of the solar system, and viewing the puzzle's 12 sides, students can reinforce…

  5. Puzzling through General Chemistry: A Light-Hearted Approach to Engaging Students with Chemistry Content

    ERIC Educational Resources Information Center

    Boyd, Susan L.

    2007-01-01

    Several puzzles are designed to be used by chemistry students as learning tools and teach them basic chemical concepts. The topics of the puzzles are based on the chapters from Chemistry, The Central Science used in general chemistry course and the puzzles are in various forms like crosswords, word searches, number searches, puzzles based on…

  6. Teaching the Blue-Eyed Islanders Puzzle in a Liberal Arts Mathematics Course

    ERIC Educational Resources Information Center

    Shea, Stephen

    2012-01-01

    The blue-eyed islanders puzzle is an old and challenging logic puzzle. This is a narrative of an experience introducing a variation of this puzzle on the first day of classes in a liberal arts mathematics course for non-majors. I describe an exercise that was used to facilitate the class's understanding of the puzzle.

  7. Latest Zika Puzzle: How U.S. Patient Infected Caregiver

    MedlinePlus

    ... https://medlineplus.gov/news/fullstory_159925.html Latest Zika Puzzle: How U.S. Patient Infected Caregiver Officials say ... MONDAY, July 18, 2016 (HealthDay News) -- The mysterious Zika virus continues to surprise health scientists. On Monday, ...

  8. Error-Driven Knowledge Restructuring in Categorization

    ERIC Educational Resources Information Center

    Kalish, Michael L.; Lewandowsky, Stephan; Davies, Melissa

    2005-01-01

    Knowledge restructuring occurs when people shift to a new strategy or representation during learning. Although knowledge restructuring can frequently be experimentally encouraged, there are instances in which people resist restructuring and continue to use an expedient but imperfect initial strategy. The authors report 3 category learning…

  9. Solving the puzzle of autoimmunity: critical questions

    PubMed Central

    Smilek, Dawn E.

    2015-01-01

    Despite recent advances in delineating the pathogenic mechanisms of autoimmune disease, the puzzle that reveals the true picture of these diverse immunological disorders is yet to be solved. We know that the human leukocyte antigen (HLA) loci as well as many different genetic susceptibility loci with relatively small effect sizes predispose to various autoimmune diseases and that environmental factors are involved in triggering disease. Models for mechanisms of disease become increasingly complex as relationships between components of both the adaptive and innate immune systems are untangled at the molecular level. In this article, we pose some of the important questions about autoimmunity where the answers will advance our understanding of disease pathogenesis and improve the rational design of novel therapies. How is autoimmunity triggered, and what components of the immune response drive the clinical manifestations of disease? What determines whether a genetically predisposed individual will develop an autoimmune disease? Is restoring immune tolerance the secret to finding cures for autoimmune disease? Current research efforts seek answers to these big questions. PMID:25750735

  10. Hepatitis B virus: the genotype E puzzle.

    PubMed

    Andernach, Iris E; Hübschen, Judith M; Muller, Claude P

    2009-07-01

    Hepatitis B virus (HBV) is highly endemic throughout sub-Saharan Africa. One of the two genotypes A and E dominates in most countries. With several subgenotypes and variants, genotype A is more diverse in Africa (4.00%) than in the rest of the world (2.96%), suggesting an African origin and a long history on the continent. Despite the African slave trade, genotype E has only sporadically been found within the Americas, indicating that this genotype was introduced only during the past 200 years into the general African population. A short history for this genotype in Africa is also supported by its conspicuously low genetic diversity (1.75%), which contrasts, however, with its excessively high HBsAg prevalence and its extensive spread throughout the vast West-African genotype E crescent. We discuss the spread and routes of transmission of genotype E and suggest that the distribution and current high prevalence levels of HBV (genotype E) in Africa are the result of the extensive use of unsafe needles, potentially solving the current African genotype E puzzle and shedding new light on the high HBV prevalence in Africa. PMID:19475565

  11. Climate Change: Geophysical Puzzles and Some Answers

    NASA Astrophysics Data System (ADS)

    Singer, S. F.

    2009-04-01

    Climate change is a complex subject, involving many disciplines of geophysics - from geodynamics and meteorology to solar-terrestrial relationships and solar-planetary dynamics. We will discuss a number of scientific puzzles, many still unanswered: · How much of climate change of the past century is anthropogenic and how much is caused by Nature? · How reliable are temperature data of the atmosphere and of the surface, including sea surface? · How reliable are climate models used to calculate future temperatures? · How good is the evidence for solar forcing of climate? · On a decadal time scale, is natural forcing mainly solar or due to internal oscillations? · Can the 1500-year cycle discovered in ice cores explain the Medieval Warming and Little Ice Age? · Why does sea level rise show no acceleration - and how to account for its observed magnitude? -------------------------------------------------------------------- Much of the presentation is based on the NIPCC report "Nature - Not Human Activity - Rules the Climate" http://www.sepp.org/publications/NIPCC_final.pdf

  12. Peripartum cardiomyopathy: A puzzle closer to solution

    PubMed Central

    Fett, James D

    2014-01-01

    Peripartum cardiomyopathy (PPCM) represents new heart failure in a previously heart-healthy peripartum patient. It is necessary to rule out all other known causes of heart failure before accepting a diagnosis of PPCM. The modern era for PPCM in the United States and beyond began with the report of the National Institutes of Health PPCM Workshop in 2000, clarifying all then-currently known aspects of the disease. Since then, hundreds of publications have appeared, an indication of how devastating this disease can be to young mothers and their families and the urgent desire to find solutions for its cause and better treatment. The purpose of this review is to highlight the important advances that have brought us nearer to the solution of this puzzle, focusing on what we have learned about PPCM since 2000; and what still remains unanswered. Despite many improvements in outcome, we still do not know the actual triggers that initiate the pathological process; but realize that cardiac angiogenic imbalances resulting from complex pregnancy-related immune system and hormonal changes play a key role. PMID:24669290

  13. A Discourse Analysis of the Periphrastic Imperfect in the Greek New Testament Writings of Luke

    ERIC Educational Resources Information Center

    Johnson, Carl E.

    2010-01-01

    Motivated by Bloomfield's belief that linguistic variation is not without motivation, this paper seeks to determine the distinction between the morphological imperfect and periphrastic imperfect of Koine Greek within the New Testament writings of Luke. This study suggests that: (1) The periphrastic imperfect occurs only within narrative…

  14. Effects of instrument imperfections on quantitative scanning transmission electron microscopy.

    PubMed

    Krause, Florian F; Schowalter, Marco; Grieb, Tim; Müller-Caspary, Knut; Mehrtens, Thorsten; Rosenauer, Andreas

    2016-02-01

    Several instrumental imperfections of transmission electron microscopes are characterized and their effects on the results of quantitative scanning electron microscopy (STEM) are investigated and quantified using simulations. Methods to either avoid influences of these imperfections during acquisition or to include them in reference calculations are proposed. Particularly, distortions inflicted on the diffraction pattern by an image-aberration corrector can cause severe errors of more than 20% if not accounted for. A procedure for their measurement is proposed here. Furthermore, afterglow phenomena and nonlinear behavior of the detector itself can lead to incorrect normalization of measured intensities. Single electrons accidentally impinging on the detector are another source of error but can also be exploited for threshold-less calibration of STEM images to absolute dose, incident beam current determination and measurement of the detector sensitivity. PMID:26686661

  15. Effects of mask imperfections on InP etching profiles

    SciTech Connect

    Huo, D.T.C.; Yan, M.F.; Wynn, J.D.; Wilt, D.P. )

    1990-01-01

    The authors have demonstrated that the quality of etch masks has a significant effect on the InP etching profiles. In particular, the authors have shown that mask imperfections can cause defective etching profiles, such as vertical sidewalls and extra mask undercutting in InP. The authors also discovered that the geometry of these defective profiles is determined by the orientation of the substrate relative to the direction of the mask imperfections. Along a {l angle}110{r angle} line mask defect, the downward etching process changes the {l angle}110{r angle} v-grooves to vertical sidewalls without extra undercutting. For v-grooves aligned along the {l angle}110{r angle} direction, defects on the mask give a significant extra undercutting without changing the etching profile.

  16. Noncontacting thermoelectric detection of material imperfections in metals

    SciTech Connect

    Peter B. Nagy; Adnan H. Nayfeh; Waseem I. Faidi; Hector Carreon; Balachander Lakshminaraya; Feng Yu; Bassam Abu-Nabah

    2005-06-17

    This project was aimed at developing a new noncontacting thermoelectric method for nondestructive detection of material imperfections in metals. The method is based on magnetic sensing of local thermoelectric currents around imperfections when a temperature gradient is established throughout a conducting specimen by external heating and cooling. The surrounding intact material serves as the reference electrode therefore the detection sensitivity could be very high if a sufficiently sensitive magnetometer is used in the measurements. This self-referencing, noncontacting, nondestructive inspection technique offers the following distinct advantages over conventional methods: high sensitivity to subtle variations in material properties, unique insensitivity to the size, shape, and other geometrical features of the specimen, noncontacting nature with a substantial stand-off distance, and the ability to probe relatively deep into the material. The potential applications of this method cover a very wide range from detection metallic inclusions and segregations, inhomogeneities, and tight cracks to characterization of hardening, embrittlement, fatigue, texture, and residual stresses.

  17. Distribution of radiative crystal imperfections through a silicon ingot

    SciTech Connect

    Flø, A. Burud, I.; Kvaal, K.; Olsen, E.; Søndenå, R.

    2013-11-15

    Crystal imperfections limit the efficiency of multicrystalline silicon solar cells. Recombination through traps is more prominent in areas with high density of crystal imperfections. A method to visualize the distribution of radiative emission from Shockley Read Hall recombination in silicon is demonstrated. We use hyperspectral photoluminescence, a fast non-destructive method, to image radiatively active recombination processes on a set of 50 wafers through a silicon block. The defect related emission lines D1 and D2 may be detected together or alone. The D3 and D4 seem to be correlated if we assume that an emission at the similar energy as D3 (VID3) is caused by a separate mechanism. The content of interstitial iron (Fe{sub i}) correlates with D4. This method yields a spectral map of the inter band gap transitions, which opens up for a new way to characterize mechanisms related to loss of efficiency for solar cells processed from the block.

  18. Parametric Multi-Level Tiling of Imperfectly Nested Loops

    SciTech Connect

    Hartono, Albert; Baskaran, Muthu M.; Bastoul, Cedric; Cohen, Albert; Krishnamoorthy, Sriram; Norris, Boyana; Ramanujam, J.; Sadayappan, Ponnuswamy

    2009-05-18

    Tiling is a critical loop transformation for generating high-performance code on modern architectures. Efficient generation of multilevel tiled code is essential to exploit several levels of parallelism and/or to maximize data reuse in deep memory hierarchies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. The existing parametric multilevel tiling approach has focused on transformation for perfectly nested loops, where all assignment statements are contained inside the innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where tile sizes are fixed. In this paper, we present an approach to parameterized multilevel tiling for imperfectly nested loops. Our tiling algorithm generates loops that iterate over full rectangular tiles that are amenable for potential compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of our tiling approach.

  19. Stability, vibration and passive damping of partially restrained imperfect columns

    NASA Technical Reports Server (NTRS)

    Razzaq, Z.; Voland, R. T.; Bush, H. G.; Mikulas, M. M., Jr.

    1983-01-01

    A theoretical and experimental study of slender tubular columns for possible use in space structures is conducted in the presence of partial rotational end restraints. Explicit formulas are derived for computing the buckling load and the lowest natural frequency of perfectly straight uniform elastic members with rotational end restraints possessing linear moment-rotation characteristics. An exact solution in the form of a transcendental equation, and a numerical solution using second-order finite-differences are also presented. The presence of an initial imperfection is also incorporated into the numerical procedure. Vibration tests are conducted on an imperfect tubular steel member in the absence of an axial load. A damping concept consisting of a string-mass assembly is explored. Three passive damping configurations involving combinations of three lead shots were investigated. The three lead shot configurations provided considerably greater damping than the single lead shot.

  20. Coarse grain modeling of imperfect networks and gels

    NASA Astrophysics Data System (ADS)

    Sliozberg, Yelena; Chantawansri, Tanya; Sirk, Timothy; Andzelm, Jan; Mrozek, Randy; Lenhart, Joseph

    2013-03-01

    There is a strong interest in chemically and physically cross-linked entangled polymer networks and gels due to their tailorability in respect to both mechanical and structural properties. Even so, these properties are sensitive to imperfections in the polymer networks, such as dangling ends and loops. Computational modeling is a viable tool to understand the effects of these imperfections on properties in a controlled environment, in which specific defects can be systematically created and varied. In this study, we have employed generic bead-spring models of flexible chains to study a chemically and physically cross-linked network. Our results will show the importance defects, such as dangling ends and loops, on the mechanical and structural properties of these networks. We will also discuss the effects of these defects on the time-dependent elastic modulus. The simulation results qualitatively agree with experimental results and the other theoretical predictions.

  1. Imperfect Geometric Control and Overdamping for The Damped Wave Equation

    NASA Astrophysics Data System (ADS)

    Burq, Nicolas; Christianson, Hans

    2015-05-01

    We consider the damped wave equation on a manifold with imperfect geometric control. We show the sub-exponential energy decay estimate in (Christianson, J Funct Anal 258(3):1060-1065, 2010) is optimal in the case of one hyperbolic periodic geodesic. We show if the equation is overdamped, then the energy decays exponentially. Finally we show if the equation is overdamped but geometric control fails for one hyperbolic periodic geodesic, then nevertheless the energy decays exponentially.

  2. Buckling of structures with uncertain imperfections - Personal perspective

    NASA Technical Reports Server (NTRS)

    Elishakoff, Isaac

    1998-01-01

    The previous review on stochastic buckling of structures was written by Amazigo in 1976. This review summarizes some of the developments which took place in recent two decades. A brief overview is given of the effect on uncertainty in the initial geometric imperfections, elastic moduli, applied forces, and thickness variation. For the benefit of the thinking reader, the review has a critical nature. It should be noted that this manuscript has yet to be completed.

  3. Transitional Flows in Imperfect Millimeter-Scale Channels

    NASA Astrophysics Data System (ADS)

    Lissandrello, Charles; Li, Le; Ekinci, Kamil L.; Yakhot, Victor

    2015-11-01

    The majority of workers studying transition to turbulence in pipes have been interested in the flow response to perturbations in otherwise perfect pipes. Conversely, the ``fuzzy'' problem involving inlet disturbances, pipe imperfections, and pipe roughness has not attracted as much attention. Here, we investigate both experimentally and theoretically the transition to turbulence in imperfect millimeter-scale channels. For probing the flows, we use microcantilever sensors embedded in the channel walls. We perform experiments in two nominally identical channels. We quantify growing perturbations near the channel wall by their spectra and statistical properties, including probability densities and low- and high-order moments. The different sets of imperfections in the two channels result in two random flows in which the high-order moments of the near-wall fluctuations differ by orders of magnitude. Surprisingly, however, the lowest-order statistics in both cases appear to be qualitatively similar and can be described by a proposed noisy Landau equation for a slow mode. The noise, regardless of its origin, regularizes the Landau singularity of the relaxation time and makes transitions driven by different noise sources appear similar.

  4. Heavy quarkonium: progress, puzzles, and opportunities

    SciTech Connect

    Petreczky, P.; Brambilla, N.; Eidelman,S; B.K. Heltsley; Vogt, R.; Bodwiny, G.T.; Eichteny, E., et. al.

    2011-02-08

    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c{bar c}, b{bar b}, and b{bar c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.

  5. Heavy quarkonium: progress, puzzles, and opportunities

    SciTech Connect

    Brambilla, N; Heltsley, B K; Vogt, R; Bodwin, G T; Eichten, E; Frawley, A D; Meyer, A B; Mitchell, R E; Papdimitriou, V; Petreczky, P; Petrov, A A; Robbe, P; Vairo, A; Andronic, A; Arnaldi, R; Artoisenet, P; Bali, G; Bertolin, A; Bettoni, D; Brodzicka, J; Bruno, G E; Caldwell, A; Catmore, J; Chang, C -H; Chao, K -T; Chudakov, E; Cortese, P; Crochet, P; Drutskoy, A; Ellwanger, U; Faccioli, P; Gabareen Mokhtar, A; Garcia i Tormo, X; Hanhart, C; Harris, F A; Kaplan, D M; Klein, S R; Kowalski, H; Lansberg, J -P; Levichev, E; Lombardo, V; Loureno, C; Maltoni, F; Mocsy, A; Mussa, R; Navarra, F S; Negrini, M; Nielsen, M; Olsen, S L; Pakhlov, P; Pakhlova, G; Peters, K; Polosa, A D; Qian, W; Qiu, J -W; Rong, G; Sanchis-Lozano, M A; Scomparin, E; Senger, P; Simon, F; Stracka, S; Sumino, Y; Voloshin, M; Weiss, C; Wohri, H K; Yuan, C -Z

    2011-02-01

    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the $B$-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA, JLab, and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\\bar{c}, b\\bar{b}, and b\\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.

  6. International trade network: fractal properties and globalization puzzle.

    PubMed

    Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata

    2014-12-12

    Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade. PMID:25541810

  7. The Puzzle of Science; Making Sense of Incomplete Information

    NASA Astrophysics Data System (ADS)

    Shorey, B. U.

    2015-12-01

    There are many topics within Earth science including evolution, historical geology, and climate change, which have gained the status of theory becuse they have overwhelming evidence, yet there is still fragmentary information which can frustrate a student from coming to solid conclusions. Using a jigsaw puzzle whose image has been hidden, and the pieces only given out sparingly, students go though the process of getting more information. How does one get more puzzle pieces and what is the interpretive process? Experience with this exercise demonstrates how students can sketch out an incredibly accurate conception of the "big picture", despite not having all the puzzle pieces. The goal of this talk is to give a complete tool kit to perform as a comprehensive lesson plan. Guiding questions and copies of lesson plans and materials are supplied for this exercise.

  8. International Trade Network: Fractal Properties and Globalization Puzzle

    NASA Astrophysics Data System (ADS)

    Karpiarz, Mariusz; Fronczak, Piotr; Fronczak, Agata

    2014-12-01

    Globalization is one of the central concepts of our age. The common perception of the process is that, due to declining communication and transport costs, distance becomes less and less important. However, the distance coefficient in the gravity model of trade, which grows in time, indicates that the role of distance increases rather than decreases. This, in essence, captures the notion of the globalization puzzle. Here, we show that the fractality of the international trade system (ITS) provides a simple solution for the puzzle. We argue that the distance coefficient corresponds to the fractal dimension of ITS. We provide two independent methods, the box counting method and spatial choice model, which confirm this statement. Our results allow us to conclude that the previous approaches to solving the puzzle misinterpreted the meaning of the distance coefficient in the gravity model of trade.

  9. Finding optimal solutions to the twenty-four puzzle

    SciTech Connect

    Korf, R.E.; Taylor, L.A.

    1996-12-31

    We have found the first optimal solutions to random instances of the Twenty-Four Puzzle, the 5 x 5 version of the well-known sliding-tile puzzles. Our new contribution to this problem is a more powerful admissible heuristic function. We present a general theory for the automatic discovery of such heuristics, which is based on considering multiple subgoals simultaneously. In addition, we apply a technique for pruning duplicate nodes in depth-first search using a finite-state machine. Finally, we observe that as heuristic search problems are scaled up, more powerful heuristic functions become both necessary and cost-effective.

  10. The Computational Complexity of the Kakuro Puzzle, Revisited

    NASA Astrophysics Data System (ADS)

    Ruepp, Oliver; Holzer, Markus

    We present a new proof of NP-completeness for the problem of solving instances of the Japanese pencil puzzle Kakuro (also known as Cross-Sum). While the NP-completeness of Kakuro puzzles has been shown before [T. Seta. The complexity of CROSS SUM. IPSJ SIG Notes, AL-84:51-58, 2002], there are still two interesting aspects to our proof: we show NP-completeness for a new variant of Kakuro that has not been investigated before and thus improves the aforementioned result. Moreover some parts of the proof have been generated automatically, using an interesting technique involving SAT solvers.

  11. Reliability with imperfect diagnostics. [flight-maintenance sequence

    NASA Technical Reports Server (NTRS)

    White, A. L.

    1983-01-01

    A reliability estimation method for systems that continually accumulate faults because of imperfect diagnostics is developed and an application for redundant digital avionics is presented. The present method assumes that if a fault does not appear in a short period of time, it will remain hidden until a majority of components are faulty and the system fails. A certain proportion of a component's faults are detected in a short period of time, and a description of their detection is included in the reliability model. A Markov model of failure during flight for a nonreconfigurable five-plex is presented for a sequence of one-hour flights followed by maintenance.

  12. Security Issues of Quantum Cryptographic Systems with Imperfect Detectors

    NASA Astrophysics Data System (ADS)

    Burenkov, Viacheslav

    The laws of quantum physics can be used to secure communications between two distant parties in a scheme called quantum key distribution (QKD), even against a technologically unlimited eavesdropper. While the theoretical security of QKD has been proved rigorously, current implementations of QKD are generally insecure. In particular, mathematical models of devices, such as detectors, do not accurately describe their reallife behaviour. Such seemingly insignificant discrepancies can compromise the security of the entire scheme, especially as novel detector technologies are being developed with little regard for potential vulnerabilities. In this thesis, we study how detector imperfections can impact the security of QKD and how to overcome such technological limitations. (Abstract shortened by UMI.).

  13. Heavy quarkonium : progress, puzzles, and opportunities.

    SciTech Connect

    Brambilla, N.; Eidelman, S.; Heltsley, B. K.; Vogt, R.; Bodwin, G. T.; Quarkonium Working Group; High Energy Physics; Technische Univ. Munchen; Budker Inst. of Nuclear Physics; Cornell Univ.; LLNL; Univ. of California at Davis

    2011-01-01

    A golden age for heavy-quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the B-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations at BESIII, the LHC, RHIC, FAIR, the Super Flavor and/or Tau-Charm factories, JLab, the ILC, and beyond. The list of newly found conventional states expanded to include h{sub c}(1P), {chi}{sub c2} (2P), B{sub c}{sup +}, and {eta}{sub b} (1S). In addition, the unexpected and still-fascinating X(3872) has been joined by more than a dozen other charmonium- and bottomonium-like 'XYZ' states that appear to lie outside the quark model. Many of these still need experimental confirmation. The plethora of new states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c{bar c}, b{bar b}, and b{bar c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. Lattice QCD has grown from a tool with computational possibilities to an

  14. Effect of imperfect Faraday mirrors on the security of a Faraday-Michelson quantum cryptography system

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Long; Gao, Ming; Ma, Zhi

    2013-11-01

    The one-way Faraday-Michelson system is a very useful practical quantum cryptography system where Faraday mirrors (FMs) play an important role. In this paper we analyze the security of this system against imperfect FMs. We consider the security loophole caused by imperfect FMs in Alice’s and Bob’s security zones. Then we implement a passive FM attack in this system. By changing the values of the imperfection parameters of Alice’s FMs, we calculate the quantum bit error rate between Alice and Bob induced by Eve and the probability that Eve obtains outcomes successfully. It is shown that the imperfection of one of Alice’s two FMs makes the system sensitive to an attack. Finally we give a modified key rate as a function of the FM imperfections. The security analysis indicates that both Alice’s and Bob’s imperfect FMs can compromise the secure key.

  15. One-dimensional flows of an imperfect diatomic gas

    NASA Technical Reports Server (NTRS)

    1959-01-01

    With the assumptions that Berthelot's equation of state accounts for molecular size and intermolecular force effects, and that changes in the vibrational heat capacities are given by a Planck term, expressions are developed for analyzing one-dimensional flows of a diatomic gas. The special cases of flow through normal and oblique shocks in free air at sea level are investigated. It is found that up to a Mach number 10 pressure ratio across a normal shock differs by less than 6 percent from its ideal gas value; whereas at Mach numbers above 4 the temperature rise is considerable below and hence the density rise is well above that predicted assuming ideal gas behavior. It is further shown that only the caloric imperfection in air has an appreciable effect on the pressures developed in the shock process considered. The effects of gaseous imperfections on oblique shock-flows are studied from the standpoint of their influence on the life and pressure drag of a flat plate operating at Mach numbers of 10 and 20. The influence is found to be small. (author)

  16. Population level impact of an imperfect prophylactic HSV-2 vaccine

    PubMed Central

    Alsallaq, Ramzi A.; Schiffer, Joshua T.; Longini, Ira M.; Wald, Anna; Corey, Lawrence; Abu-Raddad, Laith J.

    2010-01-01

    Background The continuation of developing HSV-2 prophylactic vaccines requires parallel mathematical modeling to quantify the impact on the population of these vaccines. Methods Using mathematical modeling we derived three summary measures for the population impact of imperfect HSV-2 vaccines as a function of their efficacies in reducing susceptibility (VES), genital shedding (VEP), and infectivity during shedding (VEI). In addition, we studied the population level impact of vaccine intervention using representative vaccine efficacies. Results A vaccine with limited efficacy of reducing shedding frequency (VEP =10%) and infectivity (VEI =0%) would need to reduce susceptibility by 75% (VES =75%) to substantially reduce the sustainability of HSV-2 infection in a population. No reduction in susceptibility would be required to reach this target in a vaccine that decreased shedding by 75% (VES =0%, VEP =75%, VEI =0%). Mass vaccination using a vaccine with imperfect efficacies (VES =30%, VEP =75%, and VEI =0%) in Kisumu, Kenya in 2010 would decrease prevalence and incidence in 2020 by 7% and 30% respectively. For lower prevalence settings, vaccination is predicted to have a lower impact on prevalence. Conclusion A vaccine with substantially high efficacy of reducing HSV-2 shedding frequency would have a desirable impact at the population level. The vaccine’s short-term impact in a high prevalence setting in Africa would be a substantial decrease in incidence, whereas its immediate impact on prevalence would be small and would increase slowly over time. PMID:20351622

  17. Efficient Logistic Regression Designs Under an Imperfect Population Identifier

    PubMed Central

    Albert, Paul S.; Liu, Aiyi; Nansel, Tonja

    2013-01-01

    Summary Motivated by actual study designs, this article considers efficient logistic regression designs where the population is identified with a binary test that is subject to diagnostic error. We consider the case where the imperfect test is obtained on all participants, while the gold standard test is measured on a small chosen subsample. Under maximum-likelihood estimation, we evaluate the optimal design in terms of sample selection as well as verification. We show that there may be substantial efficiency gains by choosing a small percentage of individuals who test negative on the imperfect test for inclusion in the sample (e.g., verifying 90% test-positive cases). We also show that a two-stage design may be a good practical alternative to a fixed design in some situations. Under optimal and nearly optimal designs, we compare maximum-likelihood and semi-parametric efficient estimators under correct and misspecified models with simulations. The methodology is illustrated with an analysis from a diabetes behavioral intervention trial. PMID:24261471

  18. Identifying sediment discontinuities and solving dating puzzles using monitoring and palaeolimnological records

    NASA Astrophysics Data System (ADS)

    Dong, Xuhui; Sayer, Carl D.; Bennion, Helen; Maberly, Stephen C.; Yang, Handong; Battarbee, Richard W.

    2016-05-01

    Palaeolimnological studies should ideally be based upon continuous, undisturbed sediment sequences with reliable chronologies. However for some lake cores, these conditions are not met and palaeolimnologists are often faced with dating puzzles caused by sediment disturbances in the past. This study chooses Esthwaite Water from England to illustrate how to identify sedimentation discontinuities in lake cores and how chronologies can be established for imperfect cores by correlation of key sediment signatures in parallel core records and with long-term monitoring data (1945-2003). Replicated short cores (ESTH1, ESTH7, and ESTH8) were collected and subjected to loss-on-ignition, radiometric dating (210Pb, 137Cs, and 14C), particle size, trace metal, and fossil diatom analysis. Both a slumping and a hiatus event were detected in ESTH7 based on comparisons made between the cores and the long-term diatom data. Ordination analysis suggested that the slumped material in ESTH7 originated from sediment deposited around 1805-1880 AD. Further, it was inferred that the hiatus resulted in a loss of sediment deposited from 1870 to 1970 AD. Given the existence of three superior 14C dates in ESTH7, ESTH1 and ESTH7 were temporally correlated by multiple palaeolimnological proxies for age-depth model development. High variability in sedimentation rates was evident, but good agreement across the various palaeolimnological proxies indicated coherence in sediment processes within the coring area. Differences in sedimentation rates most likely resulted from the natural morphology of the lake basin. Our study suggests that caution is required in selecting suitable coring sites for palaeolimnological studies of small, relatively deep lakes and that proximity to steep slopes should be avoided wherever possible. Nevertheless, in some cases, comparisons between a range of contemporary and palaeolimnological records can be employed to diagnose sediment disturbances and establish a chronology.

  19. An Analysis of Instructor-Created Crossword Puzzles for Student Review

    ERIC Educational Resources Information Center

    Weisskirch, Robert S.

    2006-01-01

    This article evaluates the use of instructor-created crossword puzzles as a means of reviewing course material. Students completed one crossword puzzle in class to prepare for an exam, and then they had the opportunity to complete a second crossword puzzle outside of class to prepare for the second exam. Students generally rated the crossword…

  20. Teaching Proofs and Algorithms in Discrete Mathematics with Online Visual Logic Puzzles

    ERIC Educational Resources Information Center

    Cigas, John; Hsin, Wen-Jung

    2005-01-01

    Visual logic puzzles provide a fertile environment for teaching multiple topics in discrete mathematics. Many puzzles can be solved by the repeated application of a small, finite set of strategies. Explicitly reasoning from a strategy to a new puzzle state illustrates theorems, proofs, and logic principles. These provide valuable, concrete…

  1. To Txt or Not to Txt: That's the Puzzle

    ERIC Educational Resources Information Center

    Goh, Tiong-Thye; Hooper, Val

    2007-01-01

    This paper describes the potential use of a mobile phone Short Message Service (SMS) crossword puzzle system to promote interaction through learning activities in a large classroom environment. While personal response systems (PRS) have been used in the classroom environment to foster interaction, it is not an ideal tool with respect to cost and…

  2. Generating Sudoku Puzzles and Its Applications in Teaching Mathematics

    ERIC Educational Resources Information Center

    Evans, Ryan; Lindner, Brett; Shi, Yixun

    2011-01-01

    This article presents a few methods for generating Sudoku puzzles. These methods are developed based on the concepts of matrix, permutation, and modular functions, and therefore can be used to form application examples or student projects when teaching various mathematics courses. Mathematical properties of these methods are studied, connections…

  3. On the puzzling distribution of cholesterol in the plasma membrane.

    PubMed

    Giang, H; Schick, M

    2016-09-01

    The distribution of cholesterol between the two leaves of the plasma membrane in mammalian cells presents a conundrum; given cholesterol's known affinity for sphingomyelin, which resides predominantly in the exoplasmic leaf, why is it that experiment finds a majority of the cholesterol in the cytoplasmic leaf? This article reviews a recently proposed solution to this puzzle. PMID:26724709

  4. A Jigsaw Puzzle Approach To Learning History in Introductory Psychology.

    ERIC Educational Resources Information Center

    Krauss, Judith

    1999-01-01

    Believes that it may be daunting for some students to learn about the history of psychology. Describes a teaching strategy that uses jigsaw puzzles to teach about the historical terms of structuralism, functionalism, and gestalt psychology. Finds that students performed better on test questions related to these three concepts after using this…

  5. Using Building-Block Puzzles to Practice Drawing Organic Mechanisms

    ERIC Educational Resources Information Center

    Erdik, Ender

    2005-01-01

    A study uses a thought-provoking, pencil-and-paper activity to aid students in writing organic reaction mechanisms. Organic and functional groups that constitute the formulas of organic and inorganic reactants, ionic intermediates, and products are presented as building blocks, which must be placed correctly in a given puzzle so that they bind…

  6. Crossword Puzzles as a Learning Tool for Vocabulary Development

    ERIC Educational Resources Information Center

    Orawiwatnakul, Wiwat

    2013-01-01

    Introduction: Since vocabulary is a key basis on which reading achievement depends, various vocabulary acquisition techniques have become pivotal. Among the many teaching approaches, traditional or otherwise, the use of crossword puzzles seems to offer potential and a solution for the problem of learning vocabulary. Method: This study was…

  7. Unraveling "Braid": Puzzle Games and Storytelling in the Imperative Mood

    ERIC Educational Resources Information Center

    Arnott, Luke

    2012-01-01

    "Unraveling Braid" analyzes how unconventional, non-linear narrative fiction can help explain the ways in which video games signify. Specifically, this essay looks at the links between the semiotic features of Jonathan Blow's 2008 puzzle-platform video game Braid and similar elements in Georges Perec's 1978 novel "Life A User's Manual," as well as…

  8. Loss-tolerant quantum cryptography with imperfect sources

    NASA Astrophysics Data System (ADS)

    Tamaki, Kiyoshi; Curty, Marcos; Kato, Go; Lo, Hoi-Kwong; Azuma, Koji

    2014-11-01

    In principle, quantum key distribution (QKD) offers unconditional security based on the laws of physics. Unfortunately, all previous QKD experiments assume perfect state preparation in their security analysis. Therefore, the generated key is not proven to be secure in the presence of unavoidable modulation errors. The key reason that modulation errors are not considered in previous QKD experiments lies in a crucial weakness of the standard Gottesman-Lo-Lütkenhaus-Preskill (GLLP) model, namely, it is not loss tolerant and Eve may in principle enhance imperfections through losses. Here, we propose a QKD protocol that is loss tolerant to state preparation flaws. Importantly, we show conclusively that the state preparation process in QKD can be much less precise than initially thought. Our method can also be applied to other quantum cryptographic protocols.

  9. Imperfect traveling chimera states induced by local synaptic gradient coupling

    NASA Astrophysics Data System (ADS)

    Bera, Bidesh K.; Ghosh, Dibakar; Banerjee, Tanmoy

    2016-07-01

    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state.

  10. Imperfect traveling chimera states induced by local synaptic gradient coupling.

    PubMed

    Bera, Bidesh K; Ghosh, Dibakar; Banerjee, Tanmoy

    2016-07-01

    In this paper, we report the occurrence of chimera patterns in a network of neuronal oscillators, which are coupled through local, synaptic gradient coupling. We discover a new chimera pattern, namely the imperfect traveling chimera state, where the incoherent traveling domain spreads into the coherent domain of the network. Remarkably, we also find that chimera states arise even for one-way local coupling, which is in contrast to the earlier belief that only nonlocal, global, or nearest-neighbor local coupling can give rise to chimera state; this find further relaxes the essential connectivity requirement of getting a chimera state. We choose a network of identical bursting Hindmarsh-Rose neuronal oscillators, and we show that depending upon the relative strength of the synaptic and gradient coupling, several chimera patterns emerge. We map all the spatiotemporal behaviors in parameter space and identify the transitions among several chimera patterns, an in-phase synchronized state, and a global amplitude death state. PMID:27575131

  11. Clinical trials: robust tests are wonderful for imperfect data.

    PubMed

    Cleophas, Ton J

    2015-01-01

    Robust tests are tests that can handle the inclusion into a data file of some outliers without largely changing the overall test results. Despite the risk of non-Gaussian data in clinical trials, robust tests are virtually never performed. The objective of this study was to review important robust tests and to assess whether they provide better sensitivity of testing than standard tests do. In a 33 patient study of frailty scores, no significant t value was obtained (P = 0.067). The following 4 robust tests were performed: (1) z test for medians and median absolute deviations, (2) z test for Winsorized variances, (3) Mood test, and (4) z test for M-estimators with bootstrap standard errors. They produced P values of, respectively, <0.0001, 0.043, <0.0001, and 0.005. Robust tests are wonderful for imperfect clinical data because they often produce statistically significant results, whereas standard tests do not. PMID:23896742

  12. Generalized random sign and alert delay models for imperfect maintenance.

    PubMed

    Dijoux, Yann; Gaudoin, Olivier

    2014-04-01

    This paper considers the modelling of the process of Corrective and condition-based Preventive Maintenance, for complex repairable systems. In order to take into account the dependency between both types of maintenance and the possibility of imperfect maintenance, Generalized Competing Risks models have been introduced in "Doyen and Gaudoin (J Appl Probab 43:825-839, 2006)". In this paper, we study two classes of these models, the Generalized Random Sign and Generalized Alert Delay models. A Generalized Competing Risks model can be built as a generalization of a particular Usual Competing Risks model, either by using a virtual age framework or not. The models properties are studied and their parameterizations are discussed. Finally, simulation results and an application to real data are presented. PMID:23460491

  13. Long-distance quantum key distribution with imperfect devices

    SciTech Connect

    Lo Piparo, Nicoló; Razavi, Mohsen

    2014-12-04

    Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secure key generation rate per memory, R{sub QKD}. The two schemes under investigation are the one proposed by Duan et al. in [Nat. 414, 413 (2001)] and that of Sangouard et al. proposed in [Phys. Rev. A 76, 050301 (2007)]. We consider various sources of imperfections in the latter protocol, such as a nonzero double-photon probability for the source, dark count per pulse, channel loss and inefficiencies in photodetectors and memories, to find the rate for different nesting levels. We determine the maximum value of the double-photon probability beyond which it is not possible to share a secret key anymore. We find the crossover distance for up to three nesting levels. We finally compare the two protocols.

  14. Casimir force induced by an imperfect Bose gas.

    PubMed

    Napiórkowski, Marek; Piasecki, Jarosław

    2011-12-01

    We present a study of the Casimir effect in an imperfect (mean-field) Bose gas contained between two infinite parallel plane walls. The derivation of the Casimir force follows from the calculation of the excess grand-canonical free energy density under periodic, Dirichlet, and Neumann boundary conditions with the use of the steepest descent method. In the one-phase region, the force decays exponentially fast when distance D between the walls tends to infinity. When the Bose-Einstein condensation point is approached, the decay length in the exponential law diverges with critical exponent ν(IMP) = 1, which differs from the perfect gas case where ν(P) = 1/2. In the two-phase region, the Casimir force is long range and decays following the power law D(-3), with the same amplitude as in the perfect gas. PMID:22304038

  15. FEL gain calculation for imperfectly matched electron beams

    NASA Astrophysics Data System (ADS)

    Swent, R. L.; Berryman, K. W.

    1995-04-01

    We present here the details of an analytical small-signal gain calculation. The analysis builds on the basic one-dimensional analytical calculation by modeling the effects of finite electron beam size and imperfect matching of the electron beam to the wiggler. The calculation uses TRANSPORT [SLAC-91, Rev. 2 (1977)] parameters to describe the electron beam in order to easily take the output of beam transport calculations and use them as the input for FEL gain calculations. The model accepts an arbitrary TRANSPORT beam and includes the effects of energy spread, beam size, betatron oscillations, and focussing in the wiggle plane. The model has allowed us to calculate the range over which our FEL can be tuned by changing the electron energy alone (i.e., without changing any magnets).

  16. How to Introduce the Imperfection Sensitivity Concept into Design 2

    NASA Technical Reports Server (NTRS)

    Elishakoff, Isaac

    1998-01-01

    The previous review on stochastic buckling of structures was written by Amazigo in 1976. The present review summarizes some of the developments which took place in recent two decades. A brief overview is given of the effect on uncertainty in the initial geometric imperfections, elastic moduli, applied forces, and thickness variation. For the benefit of the thinking reader, the review has a critical nature. Present essay should be viewed as a direct continuation of our previous paper (1983) with the same title. In order not to repeat what was covered there, it appears instructive to read it although not necessarily prior to dwelling on this article. Accordingly the title is appended with the serial number. It is not promised that the third review will follow since the university science, both fortunately and unfortunately, stands on three things: relevance, interest, and grants.

  17. Effects of experimental imperfections on a spin counting experiment.

    PubMed

    Zelenova, Yelena; Morgan, Steven W; Boutis, Gregory S

    2013-06-01

    Spin counting NMR is an experimental technique that allows a determination of the size and time evolution of networks of dipolar coupled nuclear spins. This work reports on an average Hamiltonian treatment of two spin counting sequences and compares the efficiency of the two cycles in the presence of flip errors, RF inhomogeneity, phase transients, phase errors, and offset interactions commonly present in NMR experiments. Simulations on small quantum systems performed using the two cycles reveal the effects of pulse imperfections on the resulting multiple quantum spectra, in qualitative agreement with the average Hamiltonian calculations. Experimental results on adamantane are presented, demonstrating differences in the two sequences in the presence of pulse errors. PMID:23648319

  18. Correcting length-frequency distributions for imperfect detection

    USGS Publications Warehouse

    Breton, André R.; Hawkins, John A.; Winkelman, Dana L.

    2013-01-01

    Sampling gear selects for specific sizes of fish, which may bias length-frequency distributions that are commonly used to assess population size structure, recruitment patterns, growth, and survival. To properly correct for sampling biases caused by gear and other sources, length-frequency distributions need to be corrected for imperfect detection. We describe a method for adjusting length-frequency distributions when capture and recapture probabilities are a function of fish length, temporal variation, and capture history. The method is applied to a study involving the removal of Smallmouth Bass Micropterus dolomieu by boat electrofishing from a 38.6-km reach on the Yampa River, Colorado. Smallmouth Bass longer than 100 mm were marked and released alive from 2005 to 2010 on one or more electrofishing passes and removed on all other passes from the population. Using the Huggins mark–recapture model, we detected a significant effect of fish total length, previous capture history (behavior), year, pass, year×behavior, and year×pass on capture and recapture probabilities. We demonstrate how to partition the Huggins estimate of abundance into length frequencies to correct for these effects. Uncorrected length frequencies of fish removed from Little Yampa Canyon were negatively biased in every year by as much as 88% relative to mark–recapture estimates for the smallest length-class in our analysis (100–110 mm). Bias declined but remained high even for adult length-classes (≥200 mm). The pattern of bias across length-classes was variable across years. The percentage of unadjusted counts that were below the lower 95% confidence interval from our adjusted length-frequency estimates were 95, 89, 84, 78, 81, and 92% from 2005 to 2010, respectively. Length-frequency distributions are widely used in fisheries science and management. Our simple method for correcting length-frequency estimates for imperfect detection could be widely applied when mark–recapture data

  19. Aquaporins: another piece in the osmotic puzzle.

    PubMed

    Alleva, Karina; Chara, Osvaldo; Amodeo, Gabriela

    2012-09-21

    Osmolarity not only plays a key role in cellular homeostasis but also challenges cell survival. The molecular understanding of osmosis has not yet been completely achieved, and the discovery of aquaporins as molecular entities involved in water transport has caused osmosis to again become a focus of research. The main questions that need to be answered are the mechanism underlying the osmotic permeability coefficients and the extent to which aquaporins change our understanding of osmosis. Here, attempts to answer these questions are discussed. Critical aspects of the state of the state of knowledge on osmosis, a topic that has been studied since 19th century, are reviewed and integrated with the available information provided by in vivo, in vitro and in silico approaches. PMID:22728434

  20. OLD PUZZLE, NEW INSIGHTS: A LITHIUM-RICH GIANT QUIETLY BURNING HELIUM IN ITS CORE

    SciTech Connect

    Aguirre, V. Silva; Christensen-Dalsgaard, J.; Jessen-Hansen, J.; Ruchti, G. R.; Hekker, S.; Cassisi, S.; Datta, A.; Jendreieck, A.; Mazumdar, A.; Mosser, B.; Stello, D.; Beck, P. G.; De Ridder, J.

    2014-03-20

    About 1% of giant stars have been shown to have large surface Li abundances, which is unexpected according to standard stellar evolution models. Several scenarios for lithium production have been proposed, but it is still unclear why these Li-rich giants exist. A missing piece in this puzzle is the knowledge of the exact stage of evolution of these stars. Using low- and-high-resolution spectroscopic observations, we have undertaken a survey of lithium-rich giants in the Kepler field. In this Letter, we report the finding of the first confirmed Li-rich core-helium-burning giant, as revealed by asteroseismic analysis. The evolutionary timescales constrained by its mass suggest that Li production most likely took place through non-canonical mixing at the RGB tip, possibly during the helium flash.

  1. Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface.

    PubMed

    Zhang, Ziyin; Nagy, Peter B; Hassan, Waled

    2016-02-01

    Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the additional nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation. PMID:26482394

  2. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  3. Analytical and numerical modeling of non-collinear shear wave mixing at an imperfect interface

    NASA Astrophysics Data System (ADS)

    Zhang, Ziyin; Nagy, Peter B.; Hassan, Waled

    2016-02-01

    Non-collinear shear wave mixing at an imperfect interface between two solids can be exploited for nonlinear ultrasonic assessment of bond quality. In this study we developed two analytical models for nonlinear imperfect interfaces. The first model uses a finite nonlinear interfacial stiffness representation of an imperfect interface of vanishing thickness, while the second model relies on a thin nonlinear interphase layer to represent an imperfect interface region. The second model is actually a derivative of the first model obtained by calculating the equivalent interfacial stiffness of a thin isotropic nonlinear interphase layer in the quasi-static approximation. The predictions of both analytical models were numerically verified by comparison to COMSOL finite element simulations. These models can accurately predict the excess nonlinearity caused by interface imperfections based on the strength of the reflected and transmitted mixed longitudinal waves produced by them under non-collinear shear wave interrogation.

  4. Impact of imperfect potential evapotranspiration knowledge on the efficiency and parameters of watershed models

    NASA Astrophysics Data System (ADS)

    Andréassian, Vazken; Perrin, Charles; Michel, Claude

    2004-01-01

    This paper attempts to assess the impact of improved estimates of areal potential evapotranspiration (PE) on the results of two rainfall-runoff models. A network of 42 PE stations was used for a sample of 62 watersheds and two watershed models of different complexity (the four-parameter GR4J model and an eight-parameter modified version of TOPMODEL), to test how sensitive rainfall-runoff models were to watershed PE estimated with the Penman equation. First, Penman PE estimates were regionalized in the Massif Central highlands of France, a mountainous area where PE is known to vary greatly with elevation, latitude, and longitude. The two watershed models were then used to assess changes in model efficiency with the improved PE input. Finally, the behavior of one of the model's parameters was analyzed, to understand how watershed models cope with systematic errors in the estimated PE input. In terms of model efficiency, in both models it was found that very simple assumptions on watershed PE input (the same average input for all watersheds) yield the same results as more accurate input obtained from regionalization. The detailed evaluation of the GR4J model calibrated with different PE input scenarios showed that the model is clearly sensitive to PE input, but that it uses its two production parameters to adapt to the various PE scenarios.

  5. How to predict community responses to perturbations in the face of imperfect knowledge and network complexity

    USGS Publications Warehouse

    Aufderheide, Helge; Rudolf, Lars; Gross, Thilo; Lafferty, Kevin D.

    2013-01-01

    Recent attempts to predict the response of large food webs to perturbations have revealed that in larger systems increasingly precise information on the elements of the system is required. Thus, the effort needed for good predictions grows quickly with the system's complexity. Here, we show that not all elements need to be measured equally well, suggesting that a more efficient allocation of effort is possible. We develop an iterative technique for determining an efficient measurement strategy. In model food webs, we find that it is most important to precisely measure the mortality and predation rates of long-lived, generalist, top predators. Prioritizing the study of such species will make it easier to understand the response of complex food webs to perturbations.

  6. Abortion in Vietnam: measurements, puzzles, and concerns.

    PubMed

    Goodkind, D

    1994-01-01

    This report summarizes current knowledge about abortion in Vietnam, drawing upon government statistics, survey data, and fieldwork undertaken by the author in Vietnam throughout 1993 and part of 1994. The official total abortion rate in Vietnam in 1992 was about 2.5 per woman, the highest in Asia and worrisome for a country with a still-high total fertility rate of 3.7 children per woman. Vietnamese provinces exhibited substantial variation in both the rate of abortion and the type of procedures performed. Among the hypotheses explored to explain Vietnam's high rate of abortion are the borrowing of family planning strategies from other poor socialist states where abortion is common; current antinatal population policies that interact with a lack of contraceptive alternatives; and a rise in pregnancies among young and unmarried women in the wake of recent free-market reforms. Because family-size preferences are still declining, abortion rates may continue to increase unless the incidence of unwanted pregnancy can be reduced, a goal that Vietnamese population specialists are seeking to achieve. PMID:7716799

  7. Is there really a W →τ ν puzzle?

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhubanjyoti; London, David; Datta, Alakabha

    2016-05-01

    According to the Particle Data Group, the measurements of B (W+→τ+ντ) and B (W+→ℓ+νℓ)(ℓ=e , μ ) disagree with one another at the 2.3 σ level. In this paper, we search for a new-physics (NP) explanation of this W →τ ν puzzle. We consider two NP scenarios: (i) the W mixes with a W ' boson that couples preferentially to the third generation, (ii) τ L ,R and ντ L mix with isospin-triplet leptons. Unfortunately, once other experimental constraints are taken into account, neither scenario can explain the above experimental result. Our conclusion is that the W →τ ν puzzle is almost certainly just a statistical fluctuation.

  8. Laser Spectroscopy of Muonic Hydrogen and the Puzzling Proton

    NASA Astrophysics Data System (ADS)

    Pohl, Randolf

    2016-09-01

    Laser spectroscopy of muonic hydrogen atoms, μp, has revealed a proton root-mean-square (rms) charge radius rE that is an order of magnitude more accurate than the CODATA world average from elastic electron-proton scattering and precision spectroscopy of regular (electronic) hydrogen. Interestingly, though, the value of rE from μp is 4%, or 7 combined standard deviations smaller than the CODATA value of rE. This discrepancy has been coined "proton radius puzzle". We summarize the experiment and give a brief overview of the theory in muonic hydrogen. Finally we discuss some possible scenarios for the resolution of the "proton radius puzzle".

  9. Validation of Italian rebus puzzles and compound remote associate problems.

    PubMed

    Salvi, Carola; Costantini, Giulio; Bricolo, Emanuela; Perugini, Marco; Beeman, Mark

    2016-06-01

    Rebus puzzles and compound remote associate problems have been successfully used to study problem solving. These problems are physically compact, often can be solved within short time limits, and have unambiguous solutions, and English versions have been normed for solving rates and levels of difficulty. Many studies on problem solving with sudden insight have taken advantage of these features in paradigms that require many quick solutions (e.g., solution priming, visual hemifield presentations, electroencephalography, fMRI, and eyetracking). In order to promote this vein of research in Italy, as well, we created and tested Italian versions of both of these tests. The data collected across three studies yielded a pool of 88 rebus puzzles and 122 compound remote associate problems within a moderate range of difficulty. This article provides both sets of problems with their normative data, for use in future research. PMID:26148823

  10. Puzzles about 1/8 magic doping in cuprate

    NASA Astrophysics Data System (ADS)

    Feng, D. L.; Shen, Z.-X.; Zhou, X. J.; Shen, K. M.; Lu, D. H.; Marel, D. V. D.

    2006-01-01

    We discuss the puzzles surrounding the interpretation of the 1/8 anomaly in cuprates, highlighting the tension between the real and reciprocal space ways to look at the problem. This issue is relevant to the current discussion on the nature of charge ordering in the form of ‘stripe’ and ‘checker-board’ as derived from neutron and STM experiments. A resolution of this tension is important to fully understand the electronic structure.

  11. On the explanation of Peele`s Pertinent Puzzle

    SciTech Connect

    Gai, E.V.

    1994-12-31

    Investigation of Peele`s Pertinent Puzzle (PPP) by analytical and numerical simulation shows that if covariations of experimental data are determined within frames of rigorous maximum likelihood method (MLM), then least-squares method (LSM) gives for PPP correct but unusually looking results. It is shown also that some restrictions and corrections outside rigorous MLM frame bring to incorrect results instead of improved ones.

  12. Radial flow afterburner for event generators and the baryon puzzle

    NASA Astrophysics Data System (ADS)

    Cuautle, E.; Paic, G.

    2008-07-01

    A simple afterburner to add radial flow to the randomized transverse momentum obtained from event generators, PYTHIA and HIJING, has been implemented to calculate the p/π ratios and compare them with available data. A coherent trend of qualitative agreement has been obtained in pp and Au+Au collisions for various centralities. These results indicate that the radial flow does play an important role in the so-called baryon puzzle anomaly.

  13. Lorentz violation in the gravity sector: The t puzzle

    NASA Astrophysics Data System (ADS)

    Bonder, Yuri

    2015-06-01

    Lorentz violation is a candidate quantum-gravity signal, and the Standard-Model Extension (SME) is a widely used parametrization of such a violation. In the gravitational SME sector, there is an elusive coefficient for which no effects have been found. This is known as the t puzzle and, to date, it has no compelling explanation. This paper analyzes whether there is a fundamental explanation for the t puzzle. To tackle this question, several approaches are followed. Mainly, redefinitions of the dynamical fields are studied, showing that other SME coefficients can be moved to nongravitational sectors. It is also found that the gravity SME sector can be consistently treated à la Palatini, and that, in the presence of spacetime boundaries, it is possible to correct its action to get the desired equations of motion. Moreover, through a reformulation as a Lanczos-type tensor, some problematic features of the t term, which should arise at the phenomenological level, are revealed. The most important conclusion of the paper is that there is no evidence of a fundamental explanation for the t puzzle, suggesting that it may be linked to the approximations taken at the phenomenological level.

  14. Serotonin, Amygdala and Fear: Assembling the Puzzle

    PubMed Central

    Bocchio, Marco; McHugh, Stephen B.; Bannerman, David M.; Sharp, Trevor; Capogna, Marco

    2016-01-01

    The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5

  15. Nursing education: current themes, puzzles and paradoxes.

    PubMed

    Tanner, Christine A

    2007-01-01

    have been tremendously changed, with an emphasis on case-based instruction, integrating distance delivery technologies, and using simulation, drawing on best practices in the development of these approaches (Billings, et al., 2001; Issenberg, et al .2005; Jeffries, 2005). OCNE leaders obtained funding from Kaiser Permanente Northwest to begin the long, collaborative, consensus building process to transform clinical education. Evaluation has and will continue to be an integral part of this work, with an eye to adding to our collective knowledge of best practices in nursing education. We see evidence of similar efforts, mostly state or regional, in order to build on prior alliances, acknowledge geographic particularities, and respond to local needs in many other parts of the country, from Hawaii to New Jersey, Texas to Montana. The nursing shortage has been a primary catalyst. It has captured the interest of potential funders, individual donors, foundations to the Federal government. The keys are collaboration and a collective voice for nursing, a willingness to work through long-standing and divisive issues, and most importantly, a moral commitment to the populations we serve. PMID:17900063

  16. Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2002-01-01

    The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The results identify the effects of traditional and non-traditional initial imperfections on the non-linear response and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfect ions that are commonly discussed in the literature on thin shell buckling. The non-traditional imperfections include shell-wall thickness variations local shell-wall ply-gaps associated with the fabrication process, sheltered geometric imperfections, non-uniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity non-linear shell analysis procedure that accurately accounts for the effects of these traditional and non-traditional imperfections on the nonlinear response, and buckling loads of the shells is described. The analysis procedure includes a non-linear static analysis that predicts stable response characteristics of the shells and a non-linear transient analysis that predicts unstable response characteristics.

  17. Robust Beamforming for Security in MIMO Wiretap Channels With Imperfect CSI

    NASA Astrophysics Data System (ADS)

    Mukherjee, Amitav; Swindlehurst, A. Lee

    2011-01-01

    In this paper, we investigate methods for reducing the likelihood that a message transmitted between two multiantenna nodes is intercepted by an undetected eavesdropper. In particular, we focus on the judicious transmission of artificial interference to mask the desired signal at the time it is broadcast. Unlike previous work that assumes some prior knowledge of the eavesdropper's channel and focuses on maximizing secrecy capacity, we consider the case where no information regarding the eavesdropper is available, and we use signal-to-interference-plus-noise-ratio (SINR) as our performance metric. Specifically, we focus on the problem of maximizing the amount of power available to broadcast a jamming signal intended to hide the desired signal from a potential eavesdropper, while maintaining a prespecified SINR at the desired receiver. The jamming signal is designed to be orthogonal to the information signal when it reaches the desired receiver, assuming both the receiver and the eavesdropper employ optimal beamformers and possess exact channel state information (CSI). In practice, the assumption of perfect CSI at the transmitter is often difficult to justify. Therefore, we also study the resulting performance degradation due to the presence of imperfect CSI, and we present robust beamforming schemes that recover a large fraction of the performance in the perfect CSI case. Numerical simulations verify our analytical performance predictions, and illustrate the benefit of the robust beamforming schemes.

  18. CD271 is an imperfect marker for melanoma initiating cells

    PubMed Central

    Cheli, Yann; Bonnazi, Vanessa F.; Jacquel, Arnaud; Allegra, Maryline; Donatis, Gian Marco De; Bahadoran, Philippe; Bertolotto, Corine; Ballotti, Robert

    2014-01-01

    Understanding the molecular and cellular processes underlying melanoma plasticity and heterogeneity is of paramount importance to improve the efficiency of current treatment and to overcome resistance to chemotherapy drugs. The notion of plasticity and heterogeneity implies the existence of melanoma cell populations with different phenotypic and tumorigenic properties. Using melanoma cell lines and melanoma cells freshly isolated from patient biopsies, we investigated the relationship between ABCB5+, CD271+ and low-MITF, expressing populations that were reported to display melanoma initiating cell properties. Here, we showed that ABCB5+ and CD271+ populations poorly overlap. However, we found that the CD271+ population is enriched in low-MITF cells and expresses a higher level of stemness genes, such as OCT4, NANOG and NES. These features could explain the increased tumorigenicity of the CD271+ cells. The rapid conversion of CD271+ to CD271− cells in vitro demonstrates the plasticity ability of melanoma cells. Finally, we observed that the transient slow-growing population contains only CD271+ cells that are highly tumorigenic. However, the fast growing/CD271+ population exhibits a poor tumorigenic ability. Taking together, our data show that CD271 is an imperfect marker for melanoma initiating cells, but may be useful to identify melanoma cells with an increased stemness and tumorigenic potential. PMID:25105565

  19. Many-body localization in imperfectly isolated quantum systems.

    PubMed

    Johri, Sonika; Nandkishore, Rahul; Bhatt, R N

    2015-03-20

    We use numerical exact diagonalization to analyze which aspects of the many-body localization phenomenon survive in an imperfectly isolated setting, when the system of interest is weakly coupled to a thermalizing environment. We show that widely used diagnostics (such as many-body level statistics and expectation values in exact eigenstates) cease to show signatures of many-body localization above a critical coupling that is exponentially small in the size of the environment. However, we also identify alternative diagnostics for many-body localization, in the spectral functions of local operators. Diagnostics include a discrete spectrum and a hierarchy of energy gaps, including a universal gap at zero frequency. These alternative diagnostics are shown to be robust, and continue to show signatures of many-body localization as long as the coupling to the bath is weaker than the characteristic energy scales in the system. We also examine how these signatures disappear when the coupling to the environment becomes larger than the characteristic energy scales of the system. PMID:25839306

  20. Long-distance quantum key distribution with imperfect devices

    NASA Astrophysics Data System (ADS)

    Lo Piparo, Nicoló; Razavi, Mohsen

    2013-07-01

    Quantum key distribution over probabilistic quantum repeaters is addressed. We compare, under practical assumptions, two such schemes in terms of their secret key generation rates per quantum memory. The two schemes under investigation are the one proposed by Duan [Nature (London)0028-083610.1038/35106500 414, 413 (2001)] and that of Sangouard [Phys. Rev. A1050-294710.1103/PhysRevA.76.050301 76, 050301 (2007)]. We consider various sources of imperfection in both protocols, such as nonzero double-photon probabilities at the sources, dark counts in detectors, and inefficiencies in the channel, photodetectors, and memories. We also consider memory decay and dephasing processes in our analysis. For the latter system, we determine the maximum value of the double-photon probability beyond which secret key distillation is not possible. We also find crossover distances for one nesting level to its subsequent one. We finally compare the two protocols in terms of their achievable secret key generation rates at their optimal settings. Our results specify regimes of operation where one system outperforms the other.

  1. Imperfect supercritical bifurcation in a three-dimensional turbulent wake.

    PubMed

    Cadot, Olivier; Evrard, Antoine; Pastur, Luc

    2015-06-01

    The turbulent wake of a square-back body exhibits a strong bimodal behavior. The wake randomly undergoes symmetry-breaking reversals between two mirror asymmetric steady modes [reflectional symmetry-breaking (RSB) modes]. The characteristic time for reversals is about 2 or 3 orders of magnitude larger than the natural time for vortex shedding. Studying the effects of the proximity of a ground wall together with the Reynolds number, it is shown that the bimodal behavior is the result of an imperfect pitchfork bifurcation. The RSB modes correspond to the two stable bifurcated branches resulting from an instability of the stable symmetric wake. An attempt to stabilize the unstable symmetric wake is investigated using a passive control technique. Although the controlled wake still exhibits strong fluctuations, the bimodal behavior is suppressed and the drag reduced. This promising experiment indicates the possible existence of an unstable solution branch corresponding to a reflectional symmetry preserved (RSP) mode. This work is encouraging to develop a control strategy based on a stabilization of this RSP mode to reduce mean drag and lateral force fluctuations. PMID:26172790

  2. Imperfect supercritical bifurcation in a three-dimensional turbulent wake

    NASA Astrophysics Data System (ADS)

    Cadot, Olivier; Evrard, Antoine; Pastur, Luc

    2015-06-01

    The turbulent wake of a square-back body exhibits a strong bimodal behavior. The wake randomly undergoes symmetry-breaking reversals between two mirror asymmetric steady modes [reflectional symmetry-breaking (RSB) modes]. The characteristic time for reversals is about 2 or 3 orders of magnitude larger than the natural time for vortex shedding. Studying the effects of the proximity of a ground wall together with the Reynolds number, it is shown that the bimodal behavior is the result of an imperfect pitchfork bifurcation. The RSB modes correspond to the two stable bifurcated branches resulting from an instability of the stable symmetric wake. An attempt to stabilize the unstable symmetric wake is investigated using a passive control technique. Although the controlled wake still exhibits strong fluctuations, the bimodal behavior is suppressed and the drag reduced. This promising experiment indicates the possible existence of an unstable solution branch corresponding to a reflectional symmetry preserved (RSP) mode. This work is encouraging to develop a control strategy based on a stabilization of this RSP mode to reduce mean drag and lateral force fluctuations.

  3. Modeling species occurrence dynamics with multiple states and imperfect detection

    USGS Publications Warehouse

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics. ?? 2009 by the Ecological Society of America.

  4. Sensitivity of actively damped structures to imperfections and modeling errors

    NASA Technical Reports Server (NTRS)

    Haftka, Raphael T.; Kapania, Rakesh K.

    1989-01-01

    The sensitivity of actively damped response of structures with respect to errors in the structural modeling is studied. Two ways of representing errors are considered. The first approach assumes errors in the form of spatial variations (or imperfections) in the assumed mass and stiffness properties of the structures. The second approach assumes errors due to such factors as unknown joint stiffnesses, discretization errors, and nonlinearities. These errors are represented here as discrepancies between experimental and analytical mode shapes and frequencies. The actively damped system considered here is a direct-rate feedback regulator based on a number of colocated velocity sensors and force actuators. The response of the controlled structure is characterized by the eigenvalues of the closed-loop system. The effects of the modeling errors are thus presented as the sensitivity of the eigenvalues of the closed-loop system. Results are presented for two examples: (1) a three-span simply supported beam controlled by three sensors and actuators, and (2) a laboratory structure consisting of a cruciform beam supported by cables.

  5. Effect of Surface Imperfections and Excrescences on the Crossflow Instability

    NASA Astrophysics Data System (ADS)

    Tufts, Matthew; Duncan, Glen, Jr.; Crawford, Brian; Reed, Helen; Saric, William

    2012-11-01

    Presented is analysis of the planned SWIFTER experiment to be flown on Texas A&M University's O-2A aircraft. Simultaneous control of the crossflow and streamwise boundary-layer instabilities is a challenge for laminar flow control on swept wings. Solving this problem is an active area of research, with a specific need to quantify the effect of surface imperfections and outer mold line excrescences on crossflow instabilities. The SWIFTER test article is a modification of a prior-tested flight model, with the additional capability of creating controlled excrescences in flight. Using a finite-element Navier-Stokes solution and a spectrally accurate boundary-layer solver, coupled with linear and nonlinear stability analyses, we show that the flow field over the test article is well suited to this study. Results are compared with flight data. The work is supported by the Air Force Research Laboratory through General Dynamics Information Technology, Inc. under sub Agreement No USAF-3446-11-50-SC-01 and the Texas A&M Supercomputing Facility.

  6. Information Loss Associated with Imperfect Observation and Mismatched Decoding

    PubMed Central

    Oizumi, Masafumi; Okada, Masato; Amari, Shun-Ichi

    2011-01-01

    We consider two types of causes leading to information loss when neural activities are passed and processed in the brain. One is responses of upstream neurons to stimuli being imperfectly observed by downstream neurons. The other is upstream neurons non-optimally decoding stimuli information contained in the activities of the downstream neurons. To investigate the importance of neural correlation in information processing in the brain, we specifically consider two situations. One is when neural responses are not simultaneously observed, i.e., neural correlation data is lost. This situation means that stimuli information is decoded without any specific assumption about neural correlations. The other is when stimuli information is decoded by a wrong statistical model where neural responses are assumed to be independent even when they are not. We provide the information geometric interpretation of these two types of information loss and clarify their relationship. We then concretely evaluate these types of information loss in some simple examples. Finally, we discuss use of these evaluations of information loss to elucidate the importance of correlation in neural information processing. PMID:21629857

  7. Information loss associated with imperfect observation and mismatched decoding.

    PubMed

    Oizumi, Masafumi; Okada, Masato; Amari, Shun-Ichi

    2011-01-01

    We consider two types of causes leading to information loss when neural activities are passed and processed in the brain. One is responses of upstream neurons to stimuli being imperfectly observed by downstream neurons. The other is upstream neurons non-optimally decoding stimuli information contained in the activities of the downstream neurons. To investigate the importance of neural correlation in information processing in the brain, we specifically consider two situations. One is when neural responses are not simultaneously observed, i.e., neural correlation data is lost. This situation means that stimuli information is decoded without any specific assumption about neural correlations. The other is when stimuli information is decoded by a wrong statistical model where neural responses are assumed to be independent even when they are not. We provide the information geometric interpretation of these two types of information loss and clarify their relationship. We then concretely evaluate these types of information loss in some simple examples. Finally, we discuss use of these evaluations of information loss to elucidate the importance of correlation in neural information processing. PMID:21629857

  8. Strategies and correlates of jigsaw puzzle and visuospatial performance by persons with Prader-Willi syndrome.

    PubMed

    Verdine, Brian N; Troseth, Georgene L; Hodapp, Robert M; Dykens, Elisabeth M

    2008-09-01

    Some individuals with Prader-Willi syndrome exhibit strengths in solving jigsaw puzzles. We compared visuospatial ability and jigsaw puzzle performance and strategies of 26 persons with Prader-Willi syndrome and 26 MA-matched typically developing controls. Individuals with Prader-Willi syndrome relied on piece shape. Those in the control group used a different, picture-focused strategy. Individuals with Prader-Willi syndrome performed better than did the control group on an achromatic interlocking puzzle, whereas scores on puzzles with pictures (interlocking or noninterlocking) did not differ. Visuospatial scores related to performance on all puzzles in the control group and on the noninterlocking puzzle in the Prader-Willi syndrome group. The most proficient jigsaw puzzlers with Prader-Willi syndrome tended to be older and have shape-based strategies. PMID:18702555

  9. Analysis and testing of axial compression in imperfect slender truss struts

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Georgiadis, Nicholas

    1990-01-01

    The axial compression of imperfect slender struts for large space structures is addressed. The load-shortening behavior of struts with initially imperfect shapes and eccentric compressive end loading is analyzed using linear beam-column theory and results are compared with geometrically nonlinear solutions to determine the applicability of linear analysis. A set of developmental aluminum clad graphite/epoxy struts sized for application to the Space Station Freedom truss are measured to determine their initial imperfection magnitude, load eccentricity, and cross sectional area and moment of inertia. Load-shortening curves are determined from axial compression tests of these specimens and are correlated with theoretical curves generated using linear analysis.

  10. Buckling and postbuckling behaviour of imperfect laminated shallow spherical shells under external pressure

    NASA Astrophysics Data System (ADS)

    Muc, A.

    The paper deals with the static buckling and postbuckling behavior of clamped elastic imperfect laminated shallow spherical shells subjected to uniform external pressure. Three types of initial geometrical imperfections are analyzed: two local described by a convex or a concave curve, and one global in the form of the Legendre polynomial. Applying the Rayleigh-Ritz procedure to Marguerre's equations combined with the precise prebuckling numerical analysis, reasonably accurate solutions are obtained for upper and lower buckling pressures. The effects of fiber orientations on pre- and postbuckling behavior, imperfection sensitivity, buckling loads, and modes are considered. The results for composite shells are compared with those calculated for quasi-isotropic ones.

  11. The role of genetics in estrogen responses: a critical piece of an intricate puzzle

    PubMed Central

    Wall, Emma H.; Hewitt, Sylvia C.; Case, Laure K.; Lin, Chin-Yo; Korach, Kenneth S.; Teuscher, Cory

    2014-01-01

    The estrogens are female sex hormones that are involved in a variety of physiological processes, including reproductive development and function, wound healing, and bone growth. They are mainly known for their roles in reproductive tissues—specifically, 17β-estradiol (E2), the primary estrogen, which is secreted by the ovaries and induces cellular proliferation and growth of the uterus and mammary glands. In addition to the role of estrogens in promoting tissue growth and development during normal physiological states, they have a well-established role in determining susceptibility to disease, particularly cancer, in reproductive tissues. The responsiveness of various tissues to estrogen is genetically controlled, with marked quantitative variation observed across multiple species, including humans. This variation presents both researchers and clinicians with a veritable physiological puzzle, the pieces of which—many of them unknown—are complex and difficult to fit together. Although genetics is known to play a major role in determining sensitivity to estrogens, there are other factors, including parent of origin and the maternal environment, that are intimately linked to heritable phenotypes but do not represent genotype, per se. The objectives of this review article were to summarize the current knowledge of the role of genotype, and uterine and neonatal environments, in phenotypic variation in the response to estrogens; to discuss recent findings and the potential mechanisms involved; and to highlight exciting research opportunities for the future.—Wall, E. H., Hewitt, S. C., Case, L. K, Lin, C.-Y., Korach, K. S., Teuscher, C. The role of genetics in estrogen responses: a critical piece of an intricate puzzle. PMID:25212221

  12. Buckling and Failure of Compression-Loaded Composite Cylindrical Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of an experimental and numerical study of the effects of initial imperfections on the buckling response and failure of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have six different orthotropic or quasi-isotropic shell-wall laminates and two different shell-radius-to-thickness ratios. The numerical results include the effects of geometric shell-wall mid-surface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform end loads, and the effects of elastic boundary conditions. Selected cylinder parameter uncertainties were also considered. Results that illustrate the effects of imperfections and uncertainties on the nonlinear response characteristics, buckling loads and failure the shells are presented. In addition, a common failure analysis is used to predict material failures in the shells.

  13. Understanding Your Vision: The “Imperfect Eye” | NIH MedlinePlus the Magazine

    MedlinePlus

    ... of this page please turn Javascript on. Feature: Vision Understanding Your Vision: The “Imperfect Eye” Past Issues / Winter 2012 Table ... are different and so are the types of vision that we have. Understanding how some of us ...

  14. High-energy cosmic neutrino puzzle: a review.

    PubMed

    Ahlers, Markus; Halzen, Francis

    2015-12-01

    We appraise the status of high-energy neutrino astronomy and summarize the observations that define the 'IceCube puzzle.' The observations are closing in on the source candidates that may contribute to the observation. We highlight the potential of multi-messenger analysis to assist in the identification of the sources. We also give a brief overview of future search strategies that include the realistic possibility of constructing a next-generation detector larger by one order of magnitude in volume. PMID:26510451

  15. ysteries, Puzzles, and Paradoxes in Quantum Mechanics. Proceedings

    SciTech Connect

    Rodolfo, B.

    1999-02-01

    These proceedings represent papers presented at the Mysteries, Puzzles, and Paradoxes in Quantum Mechanics Workshop held in Italy, in August 1998. The Workshop was devoted to recent experimental and theoretical advances such as new interference, effects, the quantum eraser, non{minus}disturbing and Schroedinger{minus}cat{minus}like states, experiments, EPR correlations, teleportation, superluminal effects, quantum information and computing, locality and causality, decoherence and measurement theory. Tachyonic information transfer was also discussed. There were 45 papers presented at the conference,out of which 2 have been abstracted for the Energy,Science and Technology database.(AIP)

  16. Mixed heavy quark hybrid mesons, decay puzzles, and RHIC

    SciTech Connect

    Kisslinger, Leonard S.

    2009-06-01

    We estimate the energy of the lowest charmonium and upsilon states with hybrid admixtures using the method of QCD sum rules. Our results show that the {psi}{sup '}(2S) and {upsilon}(3S) states both have about a 50% admixture of hybrid and meson components. From this we find explanations of both the famous {rho}-{pi} puzzle for charmonium and the unusual pattern of {sigma} decays that have been found in {upsilon} decays. Moreover, this picture can be used for predictions of heavy quark production with the octet model for RHIC.

  17. Tetsuo Nozoe's Autograph Books: poems, puzzles and playfulness.

    PubMed

    Seeman, Jeffrey I

    2015-02-01

    The Nozoe Autograph Books contain entries from, literally, around the world of organic chemistry. Many of the inscriptions showed the poetic or even musical side of their signees. This Essay presents a diverse selection of the poetic entries of the autograph books, starting with a musical puzzle. This Essay and the interactive website that accompanies the Nozoe Autograph Book project are available free-access for at least a three-year period at http://www.tcr.wiley-vch.de/nozoe. PMID:25690991

  18. The Influence of Hollow Imperfections of Adhesive on Performances of Interface of RC Beams Strengthened with HFRP

    SciTech Connect

    Guo Yongchang; Li Lijuan; Deng Jun; Zhong Genquan

    2010-05-21

    The mechanical characteristics of the interface with hollow imperfections for reinforced concrete (RC) beams strengthened with Carbon-Glass fiber sheet is discussed, which is a new hybrid strengthening method. By establishing the constitutive equations of different materials, three interfacial models including imperfection dimension, imperfection location and imperfection amount are simulated using nonlinear finite element method. The shear stress and normal stress of glue layer, the first principal stress of concrete at the end of the interface and the stress distributions of different strengthening modes are analyzed. The results show that the shear stress of glue layer is sensitive for imperfection dimension and significantly increases with the imperfection dimension. However, the first principal stress of the concrete at the end of the interface marginally decreases with the imperfection dimension.

  19. The Influence of Hollow Imperfections of Adhesive on Performances of Interface of RC Beams Strengthened with HFRP

    NASA Astrophysics Data System (ADS)

    Yongchang, Guo; Lijuan, Li; Jun, Deng; Genquan, Zhong

    2010-05-01

    The mechanical characteristics of the interface with hollow imperfections for reinforced concrete (RC) beams strengthened with Carbon-Glass fiber sheet is discussed, which is a new hybrid strengthening method. By establishing the constitutive equations of different materials, three interfacial models including imperfection dimension, imperfection location and imperfection amount are simulated using nonlinear finite element method. The shear stress and normal stress of glue layer, the first principal stress of concrete at the end of the interface and the stress distributions of different strengthening modes are analyzed. The results show that the shear stress of glue layer is sensitive for imperfection dimension and significantly increases with the imperfection dimension. However, the first principal stress of the concrete at the end of the interface marginally decreases with the imperfection dimension.

  20. EPIDEMIOLOGICAL CONSEQUENCES OF IMPERFECT VACCINES FOR IMMUNIZING INFECTIONS

    PubMed Central

    MAGPANTAY, F.M.G.; RIOLO, M.A.; DE CELLÈS, M. DOMENECH; KING, A.A.; ROHANI, P.

    2015-01-01

    The control of some childhood diseases has proven to be difficult even in countries that maintain high vaccination coverage. This may be due to the use of imperfect vaccines and there has been much discussion on the different modes by which vaccines might fail. To understand the epidemiological implications of some of these different modes, we performed a systematic analysis of a model based on the standard SIR equations with a vaccinated component that permits vaccine failure in degree (“leakiness”), take (“all-or-nothingness”) and duration (waning of vaccine-derived immunity). The model was first considered as a system of ordinary differential equations, then extended to a system of partial differential equations to accommodate age structure. We derived analytic expressions for the steady states of the system and the final age distributions in the case of homogenous contact rates. The stability of these equilibria are determined by a threshold parameter Rp, a function of the vaccine failure parameters and the coverage p. The value of p for which Rp = 1 yields the critical vaccination ratio, a measure of herd immunity. Using this concept we can compare vaccines that confer the same level of herd immunity to the population but may fail at the individual level in different ways. For any fixed Rp > 1, the leaky model results in the highest prevalence of infection, while the all-or-nothing and waning models have the same steady state prevalence. The actual composition of a vaccine cannot be determined on the basis of steady state levels alone, however the distinctions can be made by looking at transient dynamics (such as after the onset of vaccination), the mean age of infection, the age distributions at steady state of the infected class, and the effect of age-specific contact rates. PMID:25878365

  1. Monitoring programs need to take into account imperfect species detectability

    USGS Publications Warehouse

    Kery, M.; Schmid, H.

    2004-01-01

    Biodiversiry monitoring is important to identify biological units in need of conservation and to check the effectiveness of conservation actions. Programs generally monitor species richness and its changes (trend). Usually, no correction is made for imperfect species detectability. Instead, it is assumed that each species present has the same probability of being recorded and that there is no difference in this detectability across space and time, e.g. among observers and habitats. Consequently, species richness is determined by enumeration as the sum of species recorded. In Switzerland, the federal government has recently launched a comprehensive program that aims at detecting changes in biodiversity at all levels of biological integration. Birds are an important part of that program. Since 1999, 23 visits per breeding season are made to each of >250 1 km2 squares to map the territories of all detected breeding bird species. Here, we analyse data from three squares to illustrate the use of capture-recapture models in monitoring to obtain detectability-corrected estimates of species richness and trend. Species detectability averaged only 85%. Hence an estimated 15% of species present remained overlooked even after three visits. Within a square, changes in detectability for different years were of the same magnitude when surveys were conducted by the same observer as when they were by different observers. Estimates of trend were usually biased and community turnover was overestimated when based on enumeration. Here we use bird data as an illustration of methods. However, species detectability for any taxon is unlikely ever to be perfect or even constant across categories to be compared. Therefore, monitoring programs should correct for species detectability.

  2. Quantum state tomography with noninstantaneous measurements, imperfections, and decoherence

    NASA Astrophysics Data System (ADS)

    Six, P.; Campagne-Ibarcq, Ph.; Dotsenko, I.; Sarlette, A.; Huard, B.; Rouchon, P.

    2016-01-01

    Tomography of a quantum state is usually based on a positive-operator-valued measure (POVM) and on their experimental statistics. Among the available reconstructions, the maximum-likelihood (MaxLike) technique is an efficient one. We propose an extension of this technique when the measurement process cannot be simply described by an instantaneous POVM. Instead, the tomography relies on a set of quantum trajectories and their measurement records. This model includes the fact that, in practice, each measurement could be corrupted by imperfections and decoherence, and could also be associated with the record of continuous-time signals over a finite amount of time. The goal is then to retrieve the quantum state that was present at the start of this measurement process. The proposed extension relies on an explicit expression of the likelihood function via the effective matrices appearing in quantum smoothing and solutions of the adjoint quantum filter. It allows us to retrieve the initial quantum state as in standard MaxLike tomography, but where the traditional POVM operators are replaced by more general ones that depend on the measurement record of each trajectory. It also provides, aside from the MaxLike estimate of the quantum state, confidence intervals for any observable. Such confidence intervals are derived, as the MaxLike estimate, from an asymptotic expansion of multidimensional Laplace integrals appearing in Bayesian mean estimation. A validation is performed on two sets of experimental data: photon(s) trapped in a microwave cavity subject to quantum nondemolition measurements relying on Rydberg atoms, and heterodyne fluorescence measurements of a superconducting qubit.

  3. Effect of joint imperfections on static control of adaptive structures as space cranes

    NASA Technical Reports Server (NTRS)

    Ramesh, A. V.; Utku, Senol; Wada, B. K.; Chen, G. S.

    1990-01-01

    Effect of imperfections in the joints of an adaptive structure on its slow (no inertia forces) motion along a prescribed trajectory as a space crane is studied. Two mathematical models to predict the effect of joint imperfections are proposed. The two models are used to obtain estimates of the deviations of the node of the space crane to which the end-effector is attached, from its prescribed trajectory. An application of the models to a two-section space crane is given.

  4. Effect of imperfections on static control of adaptive structures as a space crane

    NASA Technical Reports Server (NTRS)

    Ramesh, A. V.; Utku, S.; Wada, B. K.; Chen, G. S.

    1989-01-01

    Effect of imperfections in the joints of an adaptive structure on its slow (no inertia forces) motion along a prescribed trajectory as a space crane is studied. Two mathematical models to predict the effect of joint imperfections are proposed. The two models are used to obtain estimates of the deviations of the node of the space crane to which the end-effector is attached, from its prescribed trajectory. An application of the models to a two-section space crane is given.

  5. Three-dimensional piezoelasticity solution for piezolaminated angle-ply cylindrical shells featuring imperfect interfacial bonding

    NASA Astrophysics Data System (ADS)

    Kapuria, S.; Kumar, Amit

    2010-04-01

    The work presents an analytical three-dimensional solution for simply supported angle-ply piezoelectric (hybrid) laminated cylindrical shells in cylindrical bending with interlaminar bonding imperfections, in an electro-thermomechanical loading environment. The jumps in displacements, electric potential and temperature at the imperfect interfaces are modeled using linear spring-layer model. The solution includes the case when, besides at inner and outer surfaces, electric potentials are prescribed at layer interfaces also for effective actuation/sensing. The entities for each layer are expanded in Fourier series in circumferential coordinate to satisfy the boundary conditions at the simply supported ends. The resulting ordinary differential equations in thickness coordinate with variable coefficients are solved by the modified Frobenius method. Numerical results are presented for hybrid composite and sandwich shells with varying imperfection compliance. The effect of location of imperfect interface on the response is studied for cross-ply panels while the effect of ply angle on the sensitivity towards imperfection is studied for angle-ply panels. The effect of weak bonding at actuator/sensor interface on the actuation/sensing authority is investigated. The presented results would also help assessing 2D shell theories that incorporate interlaminar bonding imperfections.

  6. Ecological and Evolutionary Processes Drive the Origin and Maintenance of Imperfect Mimicry

    PubMed Central

    Wilson, Joseph S.; Jahner, Joshua P.; Williams, Kevin A.; Forister, Matthew L.

    2013-01-01

    Although the forces behind the evolution of imperfect mimicry remain poorly studied, recent hypotheses suggest that relaxed selection on small-bodied individuals leads to imperfect mimicry. While evolutionary history undoubtedly affects the development of imperfect mimicry, ecological community context has largely been ignored and may be an important driver of imperfect mimicry. Here we investigate how evolutionary and ecological contexts might influence mimetic fidelity in Müllerian and Batesian mimicry systems. In Batesian hoverfly systems we find that body size is not a strong predictor of mimetic fidelity. However, in Müllerian velvet ants we find a weak positive relationship between body size and mimetic fidelity when evolutionary context is controlled for and a much stronger relationship between community diversity and mimetic fidelity. These results suggest that reduced selection on small-bodied individuals may not be a major driver of the evolution of imperfect mimicry and that other factors, such as ecological community context, should be considered when studying the evolution of imperfect mimicry. PMID:23593490

  7. May heavy neutrinos solve underground and cosmic-ray puzzles?

    SciTech Connect

    Belotsky, K. M. Fargion, D. Khlopov, M. Yu. Konoplich, R. V.

    2008-01-15

    Primordial heavy neutrinos of the fourth generation might explain different astrophysical puzzles. The simplest fourth-neutrino scenario is consistent with known fourth-neutrino physics, cosmic ray antimatter, cosmic gamma fluxes, and positive signals in underground detectors for a very narrow neutrino mass window (46-47 GeV). However, accounting for the constraint of underground experiment CDMS prohibits solution of cosmic-ray puzzles in this scenario. We have analyzed extended heavy-neutrino models related to the clumpiness of neutrino density, new interactions in heavy-neutrino annihilation, neutrino asymmetry, and neutrino decay. We found that, in these models, the cosmic-ray imprint may fit the positive underground signals in DAMA/Nal experiment in the entire mass range 46-70 GeV allowed from uncertainties of electroweak parameters, while satisfaction of the CDMS constraint reduces the mass range to around 50 GeV, where all data can come to consent in the framework of the considered hypothesis.

  8. Tiny bubbles challenge giant turbines: Three Gorges puzzle.

    PubMed

    Li, Shengcai

    2015-10-01

    Since the birth of the first prototype of the modern reaction turbine, cavitation as conjectured by Euler in 1754 always presents as a challenge. Following his theory, the evolution of modern reaction (Francis and Kaplan) turbines has been completed by adding the final piece of the element 'draft-tube' that enables turbines to explore water energy at efficiencies of almost 100%. However, during the last two and a half centuries, with increasing unit capacity and specific speed, the problem of cavitation has been manifested and complicated by the draft-tube surges rather than being solved. Particularly, during the last 20 years, the fierce competition in the international market for extremely large turbines with compact design has encouraged the development of giant Francis turbines of 700-1000 MW. The first group (24 units) of such giant turbines of 700 MW each was installed in the Three Gorges project. Immediately after commission, a strange erosion phenomenon appeared on the guide vane of the machines that has puzzled professionals. From a multi-disciplinary analysis, this Three Gorges puzzle could reflect an unknown type of cavitation inception presumably triggered by turbulence production from the boundary-layer streak transitional process. It thus presents a fresh challenge not only to this old turbine industry, but also to the fundamental sciences. PMID:26442144

  9. The puzzling unsolved mysteries of liquid water: Some recent progress

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Kumar, P.; Xu, L.; Yan, Z.; Mazza, M. G.; Buldyrev, S. V.; Chen, S.-H.; Mallamace, F.

    2007-12-01

    Water is perhaps the most ubiquitous, and the most essential, of any molecule on earth. Indeed, it defies the imagination of even the most creative science fiction writer to picture what life would be like without water. Despite decades of research, however, water's puzzling properties are not understood and 63 anomalies that distinguish water from other liquids remain unsolved. We introduce some of these unsolved mysteries, and demonstrate recent progress in solving them. We present evidence from experiments and computer simulations supporting the hypothesis that water displays a special transition point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell). The general idea is that when the liquid is near this “tipping point,” it suddenly separates into two distinct liquid phases. This concept of a new critical point is finding application to other liquids as well as water, such as silicon and silica. We also discuss related puzzles, such as the mysterious behavior of water near a protein.

  10. Yet another possible explanation of the solar-neutrino puzzle

    SciTech Connect

    Kolb, E.W.; Turner, M.S.; Walker, T.P.

    1986-04-01

    Mikheyev and Smirnov have shown that the interactions of neutrinos with matter can result in the conversion of electron neutrinos produced in the center of the sun to muon neutrinos. Bethe has exploited this and has pointed out that the solar-neutrino puzzle can be resolved if the mass difference squared of the two neutrinos is m/sub 2//sup 2/ - m /sub 1//sup 2/ approx. = 6 x 10/sup -5/ eV/sup 2/, and the mixing angle satisfies sin theta/sub v/ > 0.0065. We discuss a qualitatively different solution to the solar-neutrino puzzle which requires 1.0 x 10/sup -8/ < (m/sub 2//sup 2/ - m/sub 1//sup 2/) (sin/sup 2/ 2theta/sub v//cos 2theta/sub v/) < 6.1 x 10/sup -8/ eV/sup 2/. Our solutions result in a much smaller flux of neutrinos from the p - p process than predicted by standard solar models, while Bethe's solution results in a flux of neutrinos from the p - process that is about the same as standard solar models.