Science.gov

Sample records for pv large systems

  1. PV large systems project

    NASA Technical Reports Server (NTRS)

    Leonard, S. L.

    1982-01-01

    Near term photovoltaic central-station markets are analyzed. Cost effectiveness of photovoltaic plants is determined in terms of reduction of oil consumption. The breakeven photovoltaic system cost vs oil-steam power generation is given. The value of photovoltaic power plants in Southern California and in Los Angelos is given in terms of fuel savings and capacity value. The potential value of third party financing, facilitated by Federal and state tax incentives is analyzed.

  2. Verification Test of Power Fluctuation Suppression System for Large PV

    NASA Astrophysics Data System (ADS)

    Noro, Yasuhiro; Naoi, Shinya; Toba, Koji; Kimura, Misao; Minegishi, Toshiaki; Shimizu, Masanao; Aoki, Shinichi; Okuda, Yasuo

    The large scale photovoltaic (PV) generation station is expected to spread in the future. However, output power of renewable energy sources such as PV is affected by weather conditions and their output tends to be unstable. As a result, the penetration of PV power station makes it difficult to maintain frequency of power system in allowable range. The authors have developed a suppression system to stabilize output power fluctuation of a large PV generation station. To reduce short term fluctuation, storage batteries applying SCiBTM are used. In this paper, verification test results are explained and simulation results to improve control performance are also shown.

  3. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    NASA Astrophysics Data System (ADS)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  4. PV/cogeneration hybrid system nets large contract

    SciTech Connect

    Not Available

    1987-09-01

    Alpha Solarco Inc. announced on May 18, 1987 the signing of two $175 million exclusive development contracts with the Pawnee and Otoe-Missouria Tribes of Oklahoma to build two 70,000-kilowatt photovoltaic electric generating stations on Tribal lands in Oklahoma to supply Indian and other requirements. The projects, to be built in four phases, will each consists of 35,000 kilowatts of photovoltaic generating capacity to be supplied by the company's proprietary Modular Solar-Electric Photovoltaic Generator (MSEPG), and 35,000 kilowatts of gas-fired cogeneration. Alpha Solarco is starting to build and finance itself a 500-kilowatt demonstration plant as the initial step in the first project. This plant will be used to demonstrate that proven MSEPG design and technology can be integrated in electric utility systems, either as a base-load generator for small utilities, or as a peak-shaving device for large ones.

  5. Optimal Planning Strategy for Large PV/Battery System Based on Long-Term Insolation Forecasting

    NASA Astrophysics Data System (ADS)

    Yona, Atsushi; Uchida, Kosuke; Senjyu, Tomonobu; Funabashi, Toshihisa

    Photovoltaic (PV) systems are rapidly gaining acceptance as some of the best alternative energy sources. Usually the power output of PV system fluctuates depending on weather conditions. In order to control the fluctuating power output for PV system, it requires control method of energy storage system. This paper proposes an optimization approach to determine the operational planning of power output for PV system with battery energy storage system (BESS). This approach aims to obtain more benefit for electrical power selling and to smooth the fluctuating power output for PV system. The optimization method applies genetic algorithm (GA) considering PV power output forecast error. The forecast error is based on our previous works with the insolation forecasting at one day ahead by using weather reported data, fuzzy theory and neural network(NN). The validity of the proposed method is confirmed by the computer simulations.

  6. Large-area, high-intensity PV arrays for systems using dish concentrating optics

    SciTech Connect

    Ward, J.S.; Duda, A.; Zweibel, K.; Coutts, T.J.

    1998-09-01

    In this paper, the authors report on efforts to fabricate monolithic interconnected modules (MIMs) using III-V semiconductors with bandgaps appropriate for the terrestrial solar spectrum. The small size of the component cells comprising the MIM allows for operation at extremely high flux densities and relaxes the requirement for a small spot size to be generated by the optics. This makes possible a PV option for the large dish concentrator systems that have been developed by the solar thermal community for use with Stirling engines. Additionally, the highly effective back-surface reflector integrated into the MIM design is an effective tool for thermal management of the array. Development of this technology would radically alter the projections for PV manufacturing capacity because of the potential for extremely high power generation per unit area of semiconductor material.

  7. Stabilized PV system

    DOEpatents

    Dinwoodie, Thomas L.

    2002-12-17

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  8. Large-Scale PV Integration Study

    SciTech Connect

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  9. Transient Stability Study of One-Machine-to-Infinite-Bus Power System under Large Penetration of PV Generation

    NASA Astrophysics Data System (ADS)

    Sakamoto, Naoya; Taniguchi, Haruhito; Ota, Yutaka; Nakajima, Tatsuhito; Chinuki, Tomoyuki

    Large penetration of PV may affect transient stability when fault occurs on a transmission line. Classical model for a synchronous generator, a constant current source model for PV and a constant impedance model for load are applied to the one-machine-to-infinite-bus model. The critical clearing time is calculated by using equal area criterion and Y method simulation. As a result, a case with larger PV penetration has longer CCT than the case without PV penetration and this result does not depend on the reduction of synchronous generator capacity according to PV output.

  10. PV System Performance and Standards

    SciTech Connect

    Osterwald, C. R.

    2005-11-01

    This paper presents a brief overview of the status and accomplishments during fiscal year (FY) 2005 of the Photovoltaic (PV) System Performance and Standards Subtask, which is part of the PV Systems Engineering Project (a joint NREL-Sandia project).

  11. Jebel Ali Hotel PV lighting systems

    SciTech Connect

    Ellis, M.

    1984-05-01

    A large stand-alone PV lighting project was installed in June 1983 at the Jebel Ali Hotel in Dubai, United Arab Emirates. A high mast lighting system provides illumination for a 130 meter diameter traffic roundabout. The high mast system is powered by a 15 kilowatt peak array of Mobil Solar ribbon PV modules. Along the 700 meter access road leading to the hotel entrance, twenty-one PV powered streetlights provide low-level lighting. Each streetlight consists of a 20 watt fluorescent tube powered by two 35 Wp modules. Operation of both systems is completely automatic. Design, installation, and operating experience to date are reviewed.

  12. Leasing Residential PV Systems

    SciTech Connect

    Rutberg, Michael; Bouza, Antonio

    2013-11-01

    The article discusses the adoption, consequences and current market status of the leasing of residential photovoltaic systems. It addresses attributed energy savings and market potential of residential system leasing.

  13. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  14. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  15. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect

    Anderson, K; Coddington, M; Burman, K; Hayter, S; Kroposki, B; Watson, and A

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and

  16. PV System Energy Evaluation Method (Presentation)

    SciTech Connect

    Kurtz, S.

    2014-01-01

    This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

  17. Suppression of Large-scaled PV Power Station Output Fluctuation using Sodium-Sulfur Battery

    NASA Astrophysics Data System (ADS)

    Akatsuka, Motoki; Hara, Ryoichi; Kita, Hiroyuki; Ito, Takamitsu; Ueda, Yoshinobu; Miwa, Shuya; Matsuno, Naoya; Takitani, Katsuyuki; Saito, Masami

    The large-scaled photovoltaic generation (PV) system that called “mega-solar” is expected to spread for penetrating PV system. But penetration of mega-solar may impact to stable operation of power system such as the load frequency control. As the one of solution for this problem, energy storage system (ESS) is tentatively installed to absorb short-term fluctuation of PV output. However, since the ESS is still expensive, it is favorable to reduce its required capacity of ESS for saving installation cost. In Wakkanai PV power station, sodium-sulfur (NAS) battery system is adopted as ESS and is operated to achieve suppression of short-term fluctuation and scheduled operation. In this paper, authors propose a control method of NAS battery system for reducing its MW capacity required for fluctuation suppressing based on characteristic of solar radiation.

  18. High Penetration PV Deployment in the Arizona Public Service System

    SciTech Connect

    Narang, D.; Hambrick, J.

    2011-01-01

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service (APS) and its partners have begun work on a multi-year project to develop the tools and knowledgebase needed to safely and reliably integrate high penetrations of utility and residential scale PV. Building upon the APS Community Power Project - Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.5 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. The goal of this paper is to provide insight and lessons learned on the early stages of high penetration PV deployment. Primarily focusing on modeling and data acquisition, this paper describes the overall project, early results, and plans for future phases of the project.

  19. Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.

    PubMed

    Alqahtani, Bandar Jubran; Holt, Kyra Moore; Patiño-Echeverri, Dalia; Pratson, Lincoln

    2016-02-16

    This paper presents a first-order analysis of the feasibility and technical, environmental, and economic effects of large levels of solar photovoltaic (PV) penetration within the services areas of the Duke Energy Carolinas (DEC) and Duke Energy Progress (DEP). A PV production model based on household density and a gridded hourly global horizontal irradiance data set simulates hourly PV power output from roof-top installations, while a unit commitment and real-time economic dispatch (UC-ED) model simulates hourly system operations. We find that the large generating capacity of base-load nuclear power plants (NPPs) without ramping capability in the region limits PV integration levels to 5.3% (6510 MW) of 2015 generation. Enabling ramping capability for NPPs would raise the limit of PV penetration to near 9% of electricity generated. If the planned retirement of coal-fired power plants together with new installations and upgrades of natural gas and nuclear plants materialize in 2025, and if NPPs operate flexibly, then the share of coal-fired electricity will be reduced from 37% to 22%. A 9% penetration of electricity from PV would further reduce the share of coal-fired electricity by 4-6% resulting in a system-wide CO2 emissions rate of 0.33 to 0.40 tons/MWh and associated abatement costs of 225-415 (2015$ per ton). PMID:26745347

  20. Real time PV manufacturing diagnostic system

    SciTech Connect

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  1. Updating Interconnection Screens for PV System Integration

    SciTech Connect

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  2. NREL PV System Performance and Standards Technical Progress

    SciTech Connect

    Osterwald, C. R.

    2005-01-01

    This paper presents a brief overview of the status and accomplishments during Fiscal Year (FY)2004 of the Photovoltaic (PV) System Performance & Standards Subtask, which is part of PV Systems Engineering Project (a joint NREL-Sandia project).

  3. Integrating Solar PV in Utility System Operations

    SciTech Connect

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  4. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    SciTech Connect

    Wohlgemuth, J.; Kurtz, S.

    2014-10-01

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

  5. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    SciTech Connect

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  6. Grid tied PV system energy smoothing.

    SciTech Connect

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-06-01

    Grid-tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (Advanced Valve Regulated Lead-Acid) proved to cycle well at a partial state of charge over the time interval tested.

  7. Grid-tied PV battery systems.

    SciTech Connect

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  8. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  9. Technical evaluation of a USSC Integrated/Direct Mount PV Roofing Module system at NREL

    SciTech Connect

    Strand, T.; Hansen, R.; Mrig, L.

    1995-05-01

    The results of a 16 month technical evaluation performed on a nominal 1 kW{sub ac} utility-interconnect amorphous silicon PV system deployed at the National Renewable Energy Laboratory`s PV outdoor test site are given here. The system employs 64 prototype United Solar Systems Corp. Integrated/Direct Mount PV Roofing Modules mounted on simulated attic/roof structures. In this paper we show that the PV array fill factor has been relatively stable with respect to time and that the seasonal variations in performance can be largely attributed to seasonal variations in current. We also show that in determining the summer and winter ac power output, the summation of the manufacturer-supplied module peak powers at STC for a similarly located and configured a-Si PV array should be derated by factors of approximately of 0.83 and 0.78 for summer and winter operation, respectively.

  10. MONITOR THE PHOTOVOLTAIC (PV) SYSTEM ON THE NCC ROOFTOP

    EPA Science Inventory

    This study will investigate the pollution emission reduction and demand-side management potential of a
    100 kW PV system located on the roof of the National Computer Center (NCC). Standardized instrumentation to measure meteorological and PV system performance variables will b...

  11. Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities

    SciTech Connect

    Ferguson, W.D.; Nigro, R.M.

    1999-01-20

    In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

  12. Codes, standards, and PV power systems. A 1996 status report

    SciTech Connect

    Wiles, J

    1996-06-01

    As photovoltaic (PV) electrical power systems gain increasing acceptance for both off-grid and utility-interactive applications, the safety, durability, and performance of these systems gains in importance. Local and state jurisdictions in many areas of the country require that all electrical power systems be installed in compliance with the requirements of the National Electrical Code{reg_sign} (NEC{reg_sign}). Utilities and governmental agencies are now requiring that PV installations and components also meet a number of Institute of Electrical and Electronic Engineers (IEEE) standards. PV installers are working more closely with licensed electricians and electrical contractors who are familiar with existing local codes and installation practices. PV manufacturers, utilities, balance of systems manufacturers, and standards representatives have come together to address safety and code related issues for future PV installations. This paper addresses why compliance with the accepted codes and standards is needed and how it is being achieved.

  13. Market impact of a large-scale PV buildings program

    SciTech Connect

    Rannels, J.E.

    1997-12-31

    This paper explores the rapidly changing solar technologies market and the potential impact of a new Federally sponsored Million Solar Roofs Initiative (MSRI) designed to encourage the domestic market for solar building technologies. Photovoltaic (PV) technology has reached a critical point in its development. Over the course of this decade, the PV industry has experienced tremendous growth through greater technology efficiency, the introduction of new solar technology applications (PV shingles, facades, etc.), and lower production costs. In order to achieve its full commercial potential, significant improvements are still needed along with the removal of existing market barriers. DOE`s analysis of the impact of the MSRI indicates that it could significantly reduce the cost of PV technology and improve efficiencies through manufacturing economies of scale, market experience, and industry competition.

  14. Fire hazard and other safety concerns of PV systems

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    2011-09-01

    Photovoltaic modules are usually considered safe and reliable. But in case of grid-connected PV systems that are becoming very popular, the issue of fire safety of PV modules is becoming increasingly important due to the employed high voltages of 600 V to 1000 V. The two main factors i.e. open circuiting of the bypass diode and ground fault that are responsible for the fire in the PV systems have been discussed in detail along with numerous real life examples. Recommendations are provided for preventing the fire hazards such as having at least class C fire rated PV modules, proper bypass and blocking diodes and interestingly, having an ungrounded PV system.

  15. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect

    1995-10-01

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  16. A Modular PV System Using Chain-Link-Type Multilevel Converter

    NASA Astrophysics Data System (ADS)

    Hatano, Nobuhiko; Ise, Toshifumi

    This paper presents a modular photovoltaic system (MPVS) that uses a chain-link-type multilevel converter (CLMC). In large-scale PV generating systems, the DC power supply is generally composed of a large number of PV panels. Hence, losses are caused by differences in the maximum power point at each PV panel. An MPVS has been proposed to address the above mentioned problem. It helps improve the photoelectric conversion efficiency by applying maximum power point tracking (MPPT) control to each group of PV panels. In addition, if a CLMC is used in an MPVS, a high voltage can be output from the AC side and transmission losses can be decreased. However, with this circuit configuration, the current output from the AC side may be unbalanced. Therefore, we propose a method to output balanced current from the AC side, even if the output of the DC power supply is unbalanced. The validity of the proposed method is examined by digital simulation.

  17. Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability

    SciTech Connect

    Li, Huijuan; Xu, Yan; Adhikari, Sarina; Rizy, D Tom; Li, Fangxing; Irminger, Philip

    2012-01-01

    Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

  18. All-AC, building integrated PV system for mass deployment of residential PV systems

    SciTech Connect

    Cammack, Kevin; Augenbraun, Joe; Sun, Dan

    2011-05-17

    Project Objective: Solar Red is developing novel PV installation methods and system designs that lower costs dramatically and allow seamless integration into the structure of any sloped roof using existing construction tools and processes. The overall objective of this project is to address the greatest barriers to massive adoption of residential and small commercial rooftop solar – scalability of installation and total cost of ownership - by moving Solar Red’s snap-in/snap-out PV installation method from the pre-prototype design phase to the development and construction of a deployed prototype system. Financial Summary: Funded through ARRA, DOE and Match Funding Original Project Budget: $229,310 o DOE/ARRA Funding: $150,000 o Match Funding: $79,310 Actual Cost: $216,598 o DOE/ARRA Funding: $150,000 o Match Funding: $120,087 Project Summary: Develop snap-in/snap-out mounting system for low-cost, thin-film solar panels – Lower installation cost – Lower sales costs – Lower training/expertise barriers

  19. Instrumentation for Evaluating PV System Performance Losses from Snow

    SciTech Connect

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-01-01

    When designing a photovoltaic (PV) system for northern climates, the prospective installation should be evaluated with respect to the potentially detrimental effects of snow preventing solar radiation from reaching the PV cells. The extent to which snow impacts performance is difficult to determine because snow events also increase the uncertainty of the solar radiation measurement, and the presence of snow needs to be distinguished from other events that can affect performance. This paper describes two instruments useful for evaluating PV system performance losses from the presence of snow: (1) a pyranometer with a heater to prevent buildup of ice and snow, and (2) a digital camera for remote retrieval of images to determine the presence of snow on the PV array.

  20. Control Strategies for the DAB Based PV Interface System

    PubMed Central

    El-Helw, Hadi M.; Al-Hasheem, Mohamed; Marei, Mostafa I.

    2016-01-01

    This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138

  1. Control Strategies for the DAB Based PV Interface System.

    PubMed

    El-Helw, Hadi M; Al-Hasheem, Mohamed; Marei, Mostafa I

    2016-01-01

    This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138

  2. Design, Fabrication and Certification of Advanced Modular PV Power Systems

    NASA Astrophysics Data System (ADS)

    Minyard, Glen E.; Lambarski, Timothy J.

    1997-02-01

    The Design, Fabrication and Certification of Advanced Modular PV Power Systems contract is a Photovoltaic Manufacturing Technology (PVMaT) cost-shared contract under Phase 4A1 for Product Driven Systems and Component Technologies. Phase 4A1 has the goals to improve the cost-effectiveness and manufacturing efficiency of PV end-products, optimize manufacturing and packaging methods, and generally improve balance-of-system performance, integration and manufacturing. This contract has the specific goal to reduce the installed PV system life cycle costs to the customer with the ultimate goal of increasing PV system marketability and customer acceptance. The specific objectives of the project are to develop certified, standardized, modular, pre-engineered products lines of our main stand-alone systems, the Modular Autonomous PV Power Supply (MAPPS) and PV-Generator Hybrid System (Photogenset). To date, we have designed a 200 W MAPPS and a 1 kW Photogenset and are in the process of having the MAPPS certified by Underwriters Laboratories (UL Listed) and approved for hazardous locations by Factory Mutual (FM). We have also developed a manufacturing plan for product line expansion for the MAPPS. The Photogenset will be fabricated in February 1997 and will also be UL Listed. Functionality testing will be performed at NREL and Sandia with the intentions of providing verification of performance and reliability and of developing test-based performance specifications. In addition to an expansion on the goals, objectives and status of the project, specific accomplishments and benefits are also presented in this paper.

  3. Recent advances in PV systems technology development in Europe

    SciTech Connect

    Imamura, M.; Grottke, M.; Weiss, I.

    1995-11-01

    The objectives of the photovoltaics (PV) systems technology development were to study several aspects of plant design, monitoring, control, operation, and management of different types of photovoltaic plants. Unsolved problems were to be identified and analysed, and guidelines to improve the monitoring system were to be developed. Principal studies are summarized.

  4. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect

    Bundschuh, Paul

    2013-03-23

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the

  5. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  6. Berkeley Program Offers New Option for Financing Residential PV Systems

    SciTech Connect

    Bolinger, Mark A

    2008-07-06

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more

  7. Development of standardized, low-cost AC PV systems. Phase I annual report, 7 September 1995--7 November 1996

    SciTech Connect

    Strong, S.J.; Wohlgemuth, J.H.; Kaelin, M.

    1997-06-01

    The objectives of this two-year program are to improve the reliability and safety and reduce the cost of installed grid-connected PV systems by creating standardized, pre-engineered components and an enhanced, low-cost, 250-Watt micro inverter. These advances will be combined with the new, large area Solarex MSX-240 PV module resulting in standard, modular AC PV {open_quotes}building blocks{close_quotes} used to create utility-interactive PV systems as small as one module to many thousands of modules to suit virtually any application. AC PV building blocks will be developed to meet the requirements of the U.S., Japanese and European markets.

  8. Comparative Study Between Wind and Photovoltaic (PV) Systems

    NASA Astrophysics Data System (ADS)

    Taha, Wesam

    This paper reviews two renewable energy systems; wind and photovoltaic (PV) systems. The common debate between the two of them is to conclude which one is better, in terms of cost and efficiency. Therefore, comparative study, in terms of cost and efficiency, is attempted. Regarding total cost of both, wind and PV systems, many parameters must be taken into consideration such as availability of energy (either wind or solar), operation and maintenance, availability of costumers, political influence, and the components used in building the system. The main components and parameters that play major role in determining the overall efficiency of wind systems are the wind turbine generator (WTG), gearbox and control technologies such as power, and speed control. On the other hand, in grid-connected PV systems (GCPVS), converter architecture along with maximum power point tracking (MPPT) algorithm and inverter topologies are the issues that affects the efficiency significantly. Cost and efficiency analyses of both systems have been carried out based on the statistics available till today and would be useful in the progress of renewable energy penetration throughout the world.

  9. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  10. Best practices for PV solar home system projects

    SciTech Connect

    Cosgrove-Davies, M.; Cabraal, A.

    1994-12-31

    PV solar home systems (SHS) are increasingly employed as an energy supply option for rural populations. The past 20 years` experience with small-scale SHS programs in developing countries has had mixed results. However, efforts in recent years have been more successful. In support of World Bank lending operations, the Banks Asia Alternative Energy Unit (ASTAE) has undertaken a series of case studies of currently operating SHS programs in Indonesia, Sri Lanka, the Philippines, and the Dominican Republic. These programs have varying degrees of government, NGO, and private sector involvement. This paper summarizes ASTAE`s draft Solar Photovoltaics: Best Practices for Household Electrification report which identifies the institutional, financial, and technical factors fundamental to the success of a PV solar home system project. The final version of the ASTAE report will incorporate comments from an international group of peer reviewers.

  11. Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems.

    SciTech Connect

    Reno, Matthew J.; Lave, Matthew Samuel; Broderick, Robert Joseph; Seuss, John; Grijalva, Santiago

    2016-01-01

    The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.

  12. PV Charging System for Remote Area Operations

    SciTech Connect

    Ilsemann, Frederick; Thompson, Roger

    2008-07-31

    The objective of this project is to provide the public with a study of new as well existing technology to recharge batteries used in the field. A new product(s) will also be built based upon the information ascertained. American Electric Vehicles, Inc. (AEV) developed systems and methods suitable for charging state-of-the-art lithium-ion batteries in remote locations under both ideal and cloudy weather conditions. Conceptual designs are described for existing and next generation technology, particularly as regards solar cells, peak power trackers and batteries. Prototype system tests are reported.

  13. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  14. Analysis of Dissemination of Residential PV Systems in Japan

    NASA Astrophysics Data System (ADS)

    Endo, Eiichi

    This paper focuses on residential PV systems in Japan. It projects installation and installed capacity of residential PV systems by analyzing correlation between their pay-back period and annual installation by new and existing houses. Exponential and hyperbolic curves are applied for correlation analysis. But exponential curve shows better fit than hyperbolic one. PV installation in new houses shows stronger correlation with pay-back period than that in existing houses. For the installation projection, target and delayed scenarios are assumed. In the target scenario, target price is achieved as planned. However it is achieved with delay in the delayed scenario. Ongoing subsidy and feed-in-tariff is also assumed. Based on the results of the analysis, the target cumulative installation and installed capacity are achieved in the target scenario. They are not so affected even if without subsidy and feed-in-tariff. But they become almost half in the delayed scenario compared with that in the target scenario. This means system price reduction by R&D and mass production is more effective than ongoing dissemination acceleration programs. To achieve the target capacity, not only cost reduction, but also conversion efficiency improvement by R&D is indispensable.

  15. How PV system ownership can impact the market value of residential homes

    SciTech Connect

    Klise, Geoffrey Taylor; Johnson, Jamie L.

    2014-01-01

    There are multiple ways for a homeowner to obtain the electricity generating and savings benefits offered by a photovoltaic (PV) system. These include purchasing a PV system through various financing mechanisms, or by leasing the PV system from a third party with multiple options that may include purchase, lease renewal or PV system removal. The different ownership options available to homeowners presents a challenge to appraisal and real estate professionals during a home sale or refinance in terms of how to develop a value that is reflective of the PV systems operational characteristics, local market conditions, and lender and underwriter requirements. This paper presents these many PV system ownership options with a discussion of what considerations an appraiser must make when developing the contributory value of a PV system to a residential property.

  16. A New Approach to Design of an optimized Grid Tied Smart Solar Photovoltaic (PV) System

    NASA Astrophysics Data System (ADS)

    Farhad, M. Mehedi; Ali, M. Mohammad; Iqbal, M. Asif; Islam, N. Nahar; Ashraf, N.

    2012-11-01

    Energy is the key element for the economical development of a country. With the increasing concern about the global demand for Renewable Energy (RE) energy, it is very much important to reduce the cost of the whole solar photovoltaic (PV) system. Still now most of the solar photovoltaic (PV) system is highly expensive. In this paper we have shown that grid tied solar system can be developed by omitting the energy storage device like large capacity battery bank. It will not only reduce the internallosses for charging and discharging of battery bank but also at the same time a large amount of cost of the battery will be reduced. So, the system maintenance cost will be reduced also. We have proposed a new approach to design a photovoltaic (PV) solar power system which can be operated by feeding the solar power to the national grid along with the residential load. Again if there is an extra power demand for residential load along with the solar power then this system can also provide an opportunity to consume the power from the national grid. The total system is controlled with the help of some the sensors and a microcontroller. As a whole a significant reduction in the system costs and efficient system performance can be realized.

  17. Rooftop PV system. Final technical progress report, Phase II

    SciTech Connect

    1995-08-01

    Under this four-year PV:BONUS Program, ECD and United Solar are developing and demonstrating two new lightweight flexible building integrated Photovoltaic (BIPV) modules specifically designed as exact replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and address the even larger roofing replacement market. The modules are designed to be installed by roofing contractors without special training which minimizes the installation and balance of system costs. The modules will be fabricated from high-efficiency, multiple-junction a-Si alloy solar cells developed by ECD and United Solar. Under the Phase I Program, which ended in March 1994, we developed two different concept designs for rooftop PV modules: (1) the United Solar overlapping (asphalt shingle replacement) shingle-type modules and (2) the ECD metal roof-type modules. We also developed a plan for fabricating, testing and demonstrating these modules. Candidate demonstration sites for our rooftop PV modules were identified and preliminary engineering designs for these demonstrations were developed; a marketing study plan was also developed. The major objectives of the Phase II Program, which started in June 1994 was (1) to develop, test, and qualify these new rooftop modules; (2) to develop mechanical and electrical engineering specifications for the demonstration projects; and (3) to develop a marketing/commercialization plan.

  18. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  19. Rooftop PV system. PV:BONUS Phase 3B, final technical report

    SciTech Connect

    1998-11-01

    Under the PV:BONUS Program, ECD and United Solar developed, demonstrated and commercialized two new lightweight, flexible BIPV modules specifically designed as replacements for conventional asphalt shingles and standing seam metal roofing. These modules can be economically and aesthetically integrated into new residential and commercial buildings, and can be used to address the even larger roofing-replacement market. An important design feature of these modules, which minimizes the installation and balance-of-system costs, is their ability to be installed by conventional roofing contractors without special training. The modules are fabricated from high-efficiency, triple-junction spectrum-splitting a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible stainless steel substrates and encapsulated with polymer materials. The Phase 3 program began in August 1995. The principal tasks and goals of this program, which have all been successfully completed by ECD and United Solar, are described in the body and appendices of this report.

  20. Assuring long-term reliability of concentrator PV systems

    NASA Astrophysics Data System (ADS)

    McConnell, R.; Garboushian, V.; Brown, J.; Crawford, C.; Darban, K.; Dutra, D.; Geer, S.; Ghassemian, V.; Gordon, R.; Kinsey, G.; Stone, K.; Turner, G.

    2009-08-01

    Concentrator PV (CPV) systems have attracted significant interest because these systems incorporate the world's highest efficiency solar cells and they are targeting the lowest cost production of solar electricity for the world's utility markets. Because these systems are just entering solar markets, manufacturers and customers need to assure their reliability for many years of operation. There are three general approaches for assuring CPV reliability: 1) field testing and development over many years leading to improved product designs, 2) testing to internationally accepted qualification standards (especially for new products) and 3) extended reliability tests to identify critical weaknesses in a new component or design. Amonix has been a pioneer in all three of these approaches. Amonix has an internal library of field failure data spanning over 15 years that serves as the basis for its seven generations of CPV systems. An Amonix product served as the test CPV module for the development of the world's first qualification standard completed in March 2001. Amonix staff has served on international standards development committees, such as the International Electrotechnical Commission (IEC), in support of developing CPV standards needed in today's rapidly expanding solar markets. Recently Amonix employed extended reliability test procedures to assure reliability of multijunction solar cell operation in its seventh generation high concentration PV system. This paper will discuss how these three approaches have all contributed to assuring reliability of the Amonix systems.

  1. Enhancement of real-time EPICS IOC PV management for the data archiving system

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ha

    2015-10-01

    The operation of a 100-MeV linear proton accelerator, the major driving values and experimental data need to be archived. According to the experimental conditions, different data are required. Functions that can add new data and delete data in real time need to be implemented. In an experimental physics and industrial control system (EPICS) input output controller (IOC), the value of process variables (PVs) are matched with the driving values and data. The PV values are archived in text file format by using the channel archiver. There is no need to create a database (DB) server, just a need for large hard disk. Through the web, the archived data can be loaded, and new PV values can be archived without stopping the archive engine. The details of the implementation of a data archiving system with channel archiver are presented, and some preliminary results are reported.

  2. Design and Implementation of an Innovative Residential PV System

    NASA Astrophysics Data System (ADS)

    Najm, Elie Michel

    This work focuses on the design and implementation of an innovative residential PV system. In chapter one, after an introduction related to the rapid growth of solar systems' installations, the most commonly used state of the art solar power electronics' configurations are discussed, which leads to introducing the proposed DC/DC parallel configuration. The advantages and disadvantages of each of the power electronics' configurations are deliberated. The scope of work in the power electronics is defined in this chapter to be related to the panel side DC/DC converter. System integration and mechanical proposals are also within the scope of work and are discussed in later chapters. Operation principle of a novel low cost PV converter is proposed in chapter 2. The proposal is based on an innovative, simplified analog implementation of a master/slave methodology resulting in an efficient, soft-switched interleaved variable frequency flybacks, operating in the boundary conduction mode (BCM). The scheme concept and circuit configuration, operation principle and theoretical waveforms, design equations, and design considerations are presented. Furthermore, design examples are also given, illustrating the significance of the newly derived frequency equation for flybacks operating in BCM. In chapters 3, 4, and 5, the design implementation and optimization of the novel DC/DC converter illustrated in chapter 2 are discussed. In chapter 3, a detailed variable frequency BCM flyback design model leading to optimizing the component selections and transformer design, detailed in chapter 4, is presented. Furthermore, in chapter 4, the method enabling the use of lower voltage rating switching devices is also discussed. In chapter 5, circuitry related to Start-UP, drive for the main switching devices, zero-voltage-switching (ZVS) as well as turn OFF soft switching and interleaving control are fully detailed. The experimental results of the proposed DC/DC converter are presented in

  3. Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.

  4. A control system for improved battery utilization in a PV-powered peak-shaving system

    SciTech Connect

    Palomino, E; Stevens, J.; Wiles, J.

    1996-08-01

    Photovoltaic (PV) power systems offer the prospect of allowing a utility company to meet part of the daily peak system load using a renewable resource. Unfortunately, some utilities have peak system- load periods that do not match the peak production hours of a PV system. Adding a battery energy storage system to a grid-connected PV power system will allow dispatching the stored solar energy to the grid at the desired times. Batteries, however, pose system limitations in terms of energy efficiency, maintenance, and cycle life. A new control system has been developed, based on available PV equipment and a data acquisition system, that seeks to minimize the limitations imposed by the battery system while maximizing the use of PV energy. Maintenance requirements for the flooded batteries are reduced, cycle life is maximized, and the battery is operated over an efficient range of states of charge. This paper presents design details and initial performance results on one of the first installed control systems of this type.

  5. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    SciTech Connect

    Baggu, Murali; Giraldez, Julieta; Harris, Tom; Brunhart-Lupo, Nicholas; Lisell, Lars; Narang, David

    2015-06-14

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.

  6. Comparative analysis of DG and solar PV water pumping system

    NASA Astrophysics Data System (ADS)

    Tharani, Kusum; Dahiya, Ratna

    2016-03-01

    Looking at present day electricity scenario, there is a major electricity crisis in rural areas. The farmers are still dependant on the monsoon rains for their irrigation needs and livestock maintenance. Some of the agrarian population has opted to use Diesel Generators for pumping water in their fields. But taking into consideration the economics and environmental conditions, the above choice is not suitable for longer run. An effort to shift from non-renewable sources such as diesel to renewable energy source such as solar has been highlighted. An approximate comparative analysis showing the life cycle costs of a PV pumping system with Diesel Generator powered water pumping is done using MATLAB/STMULTNK.

  7. Field Demonstration of Using Advanced PV Inverter Functionality to Mitigate the Impacts of High-Penetration PV Grid Integration on the Distribution System

    SciTech Connect

    Mather, Barry; Gebeyehu, Araya

    2015-06-14

    This paper describes a field demonstration that was completed to show the ability of currently installed PV inverters to implement advanced PV inverter functionality and that such functionality was effective at reducing the voltage-related PV impacts of high-penetration PV integration. A distribution circuit was instrumented and then tested for a two week period using off-unity power factor operation. Specifically, an inductive power factor of -0.95 was demonstrated. The results show that the PV inverters were capable of such operation and that the use of off-unity power factor operation was highly effective at reducing the voltage-related impacts of the PV systems interconnected to the circuits used in the demonstration. The impacts of using off-unity power factor operation - resulting in additional reactive current flow on the distribution circuit - are also presented and analyzed.

  8. PV Standards Work: Photovoltaic System and Component Certification, Test Facility Accreditation, and Solar Photovoltaic Energy Systems International Standards

    SciTech Connect

    Basso, T. S.; Chalmers, S.; Barikmo, H. O.

    2005-11-01

    This paper discusses efforts led by two companies (PowerMark Corporation and Sunset Technologies Inc.) to support both U.S. domestic and international photovoltaic (PV) system and component certification and test facility accreditation programs and the operation of the International Electrotechnical Commission (IEC) Technical Committee 82 (TC-82) Photovoltaic Energy Systems. International and national PV certification/accreditation programs are successfully facilitating entry of only the highest quality PV products into the marketplace. Standards also continue to be a cornerstone for assuring global PV product conformity assessment, reducing non-tariff trade barriers, and ultimately improving PV products while lowering cost.

  9. Evaluation of neural network based real time maximum power tracking controller for PV system

    SciTech Connect

    Hiyama, Takashi; Kouzuma, Shinichi; Imakubo, Tomofumi; Ortmeyer, T.H.

    1995-09-01

    This paper presents a neural network based maximum power tracking controller for interconnected PV systems to commercial power sources. The neural network is utilized to identify the optimal operating voltage of the PV system. The controller generates the control signal in real time, and the control signal is fed back to the voltage control loop of the inverter to shift the terminal voltage of the PV system to the identified optimal one, which yields the maximum power generation. The controller is a PI type one. The proportion an the integral gains are set to their optimal values to achieve the fast response and also to prevent the overshoot and also the undershoot. The continuous measurement is required for the open circuit voltage on the monitoring cell, and also for the terminal voltage of the PV system. Because of the accurate identification of the optimal operating voltage of the PV system, more than 99% power is drawn for the actual maximum power.

  10. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    NASA Astrophysics Data System (ADS)

    Bjørk, R.; Nielsen, K. K.

    2015-10-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.

  11. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    SciTech Connect

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  12. Experimental Performance Investigation of Photovoltaic/Thermal (PV-T) System

    NASA Astrophysics Data System (ADS)

    Ozgoren, M.; Aksoy, M. H.; Bakir, C.; Dogan, S.

    2013-04-01

    Photovoltaic solar cells convert light energy from the sun into electricity. Photovoltaic cells are produced by semi-conducting materials to convert the energy into electricity and during this process heat is absorbed by the solar radiation. This heat causes a loss of electricity generation efficiencies.In this study, an experimental setup was designed and established to test two separate photovoltaic panel systems with alone PV and with water cooling system PV/T to examine the heat effect on PV systems. The absorbed heat energy behind the photovoltaic cell's surface in insulated ambient was removed by means of a water cooling system and the tests for both systems were simultaneously performed along the July 2011. It is found that without active water cooling, the temperature of the PV module was higher during day time and solar cells could only achieve around 8% conversion efficiency. On the other hand, when the PV module was operated with active water cooling condition, the temperature dropped significantly, leading to an increase in the efficiency of solarcells as much as 13.6%. Gained from absorbed solar heat and maximum thermal conversion efficiencies of the system are determined as 49% and 51% for two different mass flow rates. It is observed that water flow rate is effective on the increasing the conversion efficiency as well as absorption and transitionrates of cover glass in PV/T (PV-Thermal) collector, the insulation material and cell efficiency. As a conclusion, the conversion efficiency of the PV system with water cooling might be improved on average about 10%. Therefore, it is recommended that PV system should be designed with most efficient type cooling system to enhance the efficiency and to decrease the payback period.

  13. Innovative Ballasted Flat Roof Solar PV Racking System

    SciTech Connect

    Peek, Richard T.

    2015-01-23

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  14. Economics and performance of PV hybrid power systems: Three case studies

    SciTech Connect

    Rosenthal, A.L.; Durand, S.J.; Thomas, M.G.; Post, H.N.

    1998-07-01

    The Photovoltaic Systems Assistance Center (PVSAC) of Sandia National Laboratories (SNL) has been supporting the development and implementation of off-grid PV hybrid power systems for many years. Technical support has included: refining hardware; understanding system design techniques; obtaining operation and maintenance data; studying use of energy produced. As part of the program, the PVSAC has provided technical expertise on hybrid systems to many federal agencies including the National Park Service, the Forest Service, the Bureau of Land Management, and the Department of Defense. The goal of these partnerships has been to ensure that reliable and safe PV hybrid systems are specified and procured. At present, a critical review of performance and costs of several representative PV hybrid systems is underway. This paper presents a summary of the performance and economical analyses conducted on three PV hybrid systems.

  15. Plug and Play Components for Building-Integrated PV Systems: Phase I--Final Report, 20 February 2002--19 February 2003

    SciTech Connect

    Russell, M. C.

    2004-07-01

    This report describes the development by RWE Schott Solar, Inc., of innovative new products to facilitate the broad use of its PV systems in the current markets. RWE manufactures and sells the 300-watt ASE-300 PV module and also provides complete photovoltaic system engineering, design, and turnkey PV system installation services. RWE Schott Solar has many years of experience designing PV arrays and installing them on flat roofs and pitched roofs, and had plans to improve these designs. Specifically, wind-tunnel testing and analyses were needed for the new flat-roof PV array mounting system that avoids roof penetrations. In addition, to simplify large grid-tied PV systems for flat-roof applications, the company's line of wiring junction boxes needed to be updated with new components and higher-power multi-circuit configurations. For pitched-roof residential applications, testing was planned to determine the holding power of three different fasteners in a wide range of wood-sheathing types found in residential construction to help optimize fastening methods. A device for connecting PV to the grid at a meter socket was innovated and is also being developed.

  16. Joint U.S./Brazilian hybrid power system (wind-PV-diesel) on Marajo Island

    SciTech Connect

    Leboeuf, C.; Taylor, R.W.; Corbus, D.; Moszkowicz, M.; Lima, J.; Ribeiro, C.

    1995-09-01

    A cooperative renewable energy project is underway between the U.S. Department of Energy (through the National Renewable Energy Laboratory, NREL), and the Federal Republic of Brazil (through the Centro de Pesquisas de Energia Eletrica, CEPEL). The objectives of this joint US/Brazilian program are to establish technical, institutional, and economic confidence in using renewable energy systems to meet the needs of the people of rural Brazil, to build ongoing partnerships beneficial to both countries, and to demonstrate the potential for large-scale rural electrification through the use of renewable energy systems. Phase 1 of this program resulted in the deployment of more than 700 photovoltaic (PV) electric lighting systems in the Brazilian states of Pernambuco and Ceara. Phase 2 of the program extends the pilot project into six additional Brazilian states and demonstrates a wider variety of stand-alone end uses, including the use of wind electric power generation for selected sites and applications. Additionally, Phase 2 also includes the development of two hybrid village power systems, including one comprising PV, wind, battery, and diesel power sources. This paper focuses on this hybrid system, which is located in the Amazon River delta.

  17. Modeling & power management of standalone PV-Wind Hybrid energy system for remote location

    NASA Astrophysics Data System (ADS)

    Shawon, M. J. A.

    This thesis mainly focuses on a novel design of a standalone PV-Wind hybrid energy system for remote locations where grid extension is not feasible or is expensive. The Hybrid PV-Wind standalone energy system shows higher reliability compared to Wind or PV standalone systems as wind and solar are complementary. A Matlab/Simulink model of an integrated standalone PV-Wind hybrid system using a battery for storage and backup protection is presented. The individual component of the system is discussed and modeled. A novel and unique control strategy is designed and simulated to control the power flow of the system while maintaining the battery charging and discharging limit. In addition, different converter design and maximum power point tracking control are applied to ensure efficient and reliable power supply under various atmospheric and loading conditions.

  18. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    NASA Astrophysics Data System (ADS)

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  19. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  20. Plug and Play Components for Building Integrated PV Systems, Phase II Final Report, 20 February 2003 - 31 May 2007

    SciTech Connect

    Rowell, D.

    2008-04-01

    Progress by Schott Solar, Inc. under NREL's PV Manufacturing R&D Project. Details progress on meter-interconnect device; free-standing mounting system; dark I-V curves to unearth problems with PV module strings; new 34-V version of ASE-300 PV module; and updated source-circuit protectors.

  1. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    NASA Astrophysics Data System (ADS)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be

  2. Reliability assessment for components of large scale photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Ahadi, Amir; Ghadimi, Noradin; Mirabbasi, Davar

    2014-10-01

    Photovoltaic (PV) systems have significantly shifted from independent power generation systems to a large-scale grid-connected generation systems in recent years. The power output of PV systems is affected by the reliability of various components in the system. This study proposes an analytical approach to evaluate the reliability of large-scale, grid-connected PV systems. The fault tree method with an exponential probability distribution function is used to analyze the components of large-scale PV systems. The system is considered in the various sequential and parallel fault combinations in order to find all realistic ways in which the top or undesired events can occur. Additionally, it can identify areas that the planned maintenance should focus on. By monitoring the critical components of a PV system, it is possible not only to improve the reliability of the system, but also to optimize the maintenance costs. The latter is achieved by informing the operators about the system component's status. This approach can be used to ensure secure operation of the system by its flexibility in monitoring system applications. The implementation demonstrates that the proposed method is effective and efficient and can conveniently incorporate more system maintenance plans and diagnostic strategies.

  3. Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice

    SciTech Connect

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-11-12

    Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample of 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production rather than

  4. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    SciTech Connect

    da Silva, R.M.; Fernandes, J.L.M.

    2010-12-15

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recently it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors

  5. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    PubMed

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. PMID:26606852

  6. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  7. Energy 101: Solar PV

    SciTech Connect

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  8. Energy 101: Solar PV

    ScienceCinema

    None

    2013-05-29

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  9. Integrating Solar PV in Utility System Operations: Analytical Framework and Arizona Case Study

    SciTech Connect

    Wu, Jing; Botterud, Audun; Mills, Andrew; Zhou, Zhi; Hodge, Bri-Mathias; Mike, Heaney

    2015-06-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with subhourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularly during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. (C) 2015 Elsevier Ltd. All rights reserved.

  10. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    SciTech Connect

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  11. Comparison of four MPPT techniques for PV systems

    NASA Astrophysics Data System (ADS)

    Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Aillerie, M.

    2016-07-01

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.

  12. Public Response to Residential Grid-Tied PV Systems in Colorado: A Qualitative Market Assessment

    SciTech Connect

    Farhar, B. C.; Buhrmann, J.

    1998-07-01

    The early adopters of residential grid-tied photovoltaics (PV) have complex motivations to pay today's costs, including altruistic, environmental, and financial reasons. Focused interviews were conducted with a self-selected purposive sample interested in purchasing 2-kW or 3-kW PV systems with an installed cost of $8,000 to $12,000. The sample tended to be men or married couples ranging in age from their early thirties to their mid-eighties; professionals, managers, or small business owners; relatively financially secure, with experience with energy efficiency and renewable energy. Product attributes they preferred were net metering, warranties, guarantees, utility financing, maintenance, an option to own or lease, a battery option, and an aesthetically pleasing system. Potential PV customers needed more information before making a purchase decision.

  13. Recent advances in outdoor performance evaluation of PV systems

    SciTech Connect

    Quintana, M.A.; King, D.L.; Cannon, J.E.; Woodworth, J.R.; Boyson, W.E.; Adams, N.P.; Ellibee, D.E.

    1992-12-31

    Sandia`s Photovoltaic Technology Laboratory (PTEL) routinely performs outdoor tests of a variety of one-sun and concentrator PV modules. The authors experience is that while outdoor testing has its own set of problems, it can produce results that are more directly applicable to ``field`` conditions than testing in solar simulators. They have recently improved both the hardware and software at the PTEL to improve their accuracy and to deal with the special set of problems encountered in outdoor testing. Improvements in hardware include a computer-controlled solar tracker that allows us to test arrays up to 21 m{sup 2} in size; infrared imaging of modules; and electronic loads that allow us to test components with outputs up to 1,800 watts. Improvements in software include real-time monitoring of data collection; a relational data base that has improved the reliability of test setups, operations and analyses; and a standardized reporting process that relates module performance to a number of environmental parameters.

  14. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    PubMed

    Rohini, G; Jamuna, V

    2016-01-01

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189

  15. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    PubMed Central

    Rohini, G.; Jamuna, V.

    2016-01-01

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189

  16. Investigation of power values of PV rooftop systems based on heat gain reduction

    NASA Astrophysics Data System (ADS)

    Chenvidhya, Tanokkorn; Seapan, Manit; Parinya, Panom; Wiengmoon, Buntoon; Chenvidhya, Dhirayut; Songprakorp, Roongrojana; Limsakul, Chamnan; Sangpongsanont, Yaowanee; Tannil, Nittaya

    2015-09-01

    PV rooftop system can generally be installed to produce electricity for the domestic house, office, small enterprise as well as factory. Such a system has direct useful for reducing peak load, meanwhile it also provides shaded area on the roof and hence the heat gain into the building is reduced. This study aims to investigate the shading effect on reduction of heat transfer into the building. The 49 kWp of PV rooftop system has been installed on the deck of the office building located in the middle of Thailand where the latitude of 14 ° above the equator. The estimation of heat gain into the building due to the solar irradiation throughout a day for one year has been carried out, before and after the installation of the PV rooftop system. Then the Newton's law of cooling is applied to calculate the heat gain. The calculation and the measurement of the heat reduction are compared. Finally, the indirect benefit of the PV rooftop system installed is evaluated in terms of power value.

  17. Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners

    SciTech Connect

    Kollins, K.; Speer, B.; Cory, K.

    2009-11-01

    Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

  18. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    SciTech Connect

    Schwinkendorf, W.E.

    1984-09-01

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  19. Sustainable electricity generation by solar pv/diesel hybrid system without storage for off grids areas

    NASA Astrophysics Data System (ADS)

    Azoumah, Y.; Yamegueu, D.; Py, X.

    2012-02-01

    Access to energy is known as a key issue for poverty reduction. The electrification rate of sub Saharan countries is one of the lowest among the developing countries. However this part of the world has natural energy resources that could help raising its access to energy, then its economic development. An original "flexy energy" concept of hybrid solar pv/diesel/biofuel power plant, without battery storage, is developed in order to not only make access to energy possible for rural and peri-urban populations in Africa (by reducing the electricity generation cost) but also to make the electricity production sustainable in these areas. Some experimental results conducted on this concept prototype show that the sizing of a pv/diesel hybrid system by taking into account the solar radiation and the load/demand profile of a typical area may lead the diesel generator to operate near its optimal point (70-90 % of its nominal power). Results also show that for a reliability of a PV/diesel hybrid system, the rated power of the diesel generator should be equal to the peak load. By the way, it has been verified through this study that the functioning of a pv/Diesel hybrid system is efficient for higher load and higher solar radiation.

  20. Standardized large-scale H-1PV production process with efficient quality and quantity monitoring.

    PubMed

    Leuchs, Barbara; Roscher, Mandy; Müller, Marcus; Kürschner, Kathrin; Rommelaere, Jean

    2016-03-01

    The promising anticancer properties of rodent protoparvoviruses, notably H-1PV, have led to their clinical testing. This makes it necessary to produce highly pure, well-characterized virus batches in sufficient quantity. The present work focused on developing standardized production, purification, and characterization procedures as a basis for exploiting H-1PV both preclinically and in clinical trials for anticancer virotherapy. Two infection and two virus purification strategies were tested and the resulting virus preparations compared for their purity and full-, infectious-, and empty-particle contents. The adopted production process, which involves culturing and infecting NB-324K cells in 10-layer CellSTACK(®) chambers (1×10(3) infectious units per infected cell), is simple, scalable, and reproducible. Downstream processing to eliminate contaminating DNA and protein includes DNAse treatment, filtration, and two Iodixanol density-gradient centrifugations, the first gradient being a step gradient and the second, either a step (1×10(10) PFU/ml) or a continuous gradient (3×10(11) PFU/ml). A procedure was also developed for obtaining infectious particle-free preparations of empty virions for research purposes: cesium chloride density gradient centrifugation followed by UV irradiation (1×10(14) physical particles/ml). For quick, sensitive determination of physical particles (and hence, particle-to-infectivity ratios), a "Capsid-ELISA" was developed, based on a novel monoclonal antibody that specifically targets assembled capsids. PMID:26658622

  1. Overview of PV balance-of-systems technology: Experience and guidelines for utility ties in the United States of America

    SciTech Connect

    Bower, W.; Whitaker, C.

    1997-10-01

    The U.S. National Photovoltaic Program began in 1975 by supporting the development of terrestrial PV modules and hardware associated with grid-connected PV systems. Early PV-system demonstration programs were also supported and cost shared by the U.S. Department of Energy (DOE). A wide variety of PV systems were deployed, usually with utility participation. The early demonstration projects provided, and continue to provide, valuable PV system experience to utilities, designers and suppliers. As a result of experience gained, several important milestones in codes and standards pertaining to the design, installation and operation of photovoltaic (PV) systems have been completed. These code and standard activities were conducted through collaboration of participants from all sectors of the PV industry, utilities and the US DOE National Photovoltaic Program. Codes and standards that have been proposed, written, or modified include changes and additions for the 1999 National Electric Code{reg_sign} (NEC{reg_sign}), standards for fire and personnel safety, system testing, field acceptance, component qualification, and utility interconnection. Project authorization requests with the Institute of Electrical and Electronic Engineers (IEEE) have resulted in standards for component qualification and were further adapted for standards used to list PV modules and balance-of-system components. Industry collaboration with Underwriter Laboratories, Inc., with the American Society for Testing and Materials, and through critical input and review for international standards with the International Electrotechnical Commission have resulted in new and revised domestic and international standards for PV applications. Activities related to work on codes and standards through the International Energy Agency are also being supported by the PV industry and the US DOE. The paper shows relationships between activities in standards writing.

  2. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    SciTech Connect

    McGowan, J.G.; Manwell, J.F.; Avelar, C.; Warner, C.

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  3. Design and application of PV power system for 100w to 10kw

    SciTech Connect

    Matlin, R.W.

    1982-06-01

    Photovoltaic systems are economically viable in remote areas where grid power is not available and where power requirements are modest. PV systems provide power for water pumping, navigation aids, and residential electrification. Water pumping applications are projected to provide the largest market. The world's largest PV pumping unit, a 25Kw centrifugal pump system used to irrigate 80 acres of corn in Nebraska, is shown. Volumetric style ''jack pumps'' have been installed in the Upper Volta, and in Arizona. Remote residential AC power systems at the Hopi reservation, and a navigational aid system in the St. Lawrence Seaway are also demonstrated. Life cycle costing has shown that it is preferable to use deep cycle batteries.

  4. Mitigating the Detrimental Impacts of Solar PV Penetration on Electric Power Transmission Systems

    NASA Astrophysics Data System (ADS)

    Prakash, Nitin

    At present, almost 70% of the electric energy in the United States is produced utilizing fossil fuels. Combustion of fossil fuels contributes CO 2 to the atmosphere, potentially exacerbating the impact on global warming. To make the electric power system (EPS) more sustainable for the future, there has been an emphasis on scaling up generation of electric energy from wind and solar resources. These resources are renewable in nature and have pollution free operation. Various states in the US have set up different goals for achieving certain amount of electrical energy to be produced from renewable resources. The Southwestern region of the United States receives significant solar radiation throughout the year. High solar radiation makes concentrated solar power and solar PV the most suitable means of renewable energy production in this region. However, the majority of the projects that are presently being developed are either residential or utility owned solar PV plants. This research explores the impact of significant PV penetration on the steady state voltage profile of the electric power transmission system. This study also identifies the impact of PV penetration on the dynamic response of the transmission system such as rotor angle stability, frequency response and voltage response after a contingency. The light load case of spring 2010 and the peak load case of summer 2018 have been considered for analyzing the impact of PV. If the impact is found to be detrimental to the normal operation of the EPS, mitigation measures have been devised and presented in the thesis. Commercially available software tools/packages such as PSLF, PSS/E, DSA Tools have been used to analyze the power network and validate the results.

  5. Xanthomonas campestris pv. vesicatoria Secretes Proteases and Xylanases via the Xps Type II Secretion System and Outer Membrane Vesicles

    PubMed Central

    Solé, Magali; Scheibner, Felix; Hoffmeister, Anne-Katrin; Hartmann, Nadine; Hause, Gerd; Rother, Annekatrin; Jordan, Michael; Lautier, Martine; Arlat, Matthieu

    2015-01-01

    ABSTRACT Many plant-pathogenic bacteria utilize type II secretion (T2S) systems to secrete degradative enzymes into the extracellular milieu. T2S substrates presumably mediate the degradation of plant cell wall components during the host-pathogen interaction and thus promote bacterial virulence. Previously, the Xps-T2S system from Xanthomonas campestris pv. vesicatoria was shown to contribute to extracellular protease activity and the secretion of a virulence-associated xylanase. The identities and functions of additional T2S substrates from X. campestris pv. vesicatoria, however, are still unknown. In the present study, the analysis of 25 candidate proteins from X. campestris pv. vesicatoria led to the identification of two type II secreted predicted xylanases, a putative protease and a lipase which was previously identified as a virulence factor of X. campestris pv. vesicatoria. Studies with mutant strains revealed that the identified xylanases and the protease contribute to virulence and in planta growth of X. campestris pv. vesicatoria. When analyzed in the related pathogen X. campestris pv. campestris, several T2S substrates from X. campestris pv. vesicatoria were secreted independently of the T2S systems, presumably because of differences in the T2S substrate specificities of the two pathogens. Furthermore, in X. campestris pv. vesicatoria T2S mutants, secretion of T2S substrates was not completely absent, suggesting the contribution of additional transport systems to protein secretion. In line with this hypothesis, T2S substrates were detected in outer membrane vesicles, which were frequently observed for X. campestris pv. vesicatoria. We, therefore, propose that extracellular virulence-associated enzymes from X. campestris pv. vesicatoria are targeted to the Xps-T2S system and to outer membrane vesicles. IMPORTANCE The virulence of plant-pathogenic bacteria often depends on TS2 systems, which secrete degradative enzymes into the extracellular milieu. T2S

  6. Performance Modeling and Testing of Distributed Electronics in PV Systems; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Deline, C.

    2015-03-18

    Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses with and without distributed power electronics, along with experimental validation results. Computer modeling is able to predict the performance of distributed power electronics (microinverters, power optimizers) in PV systems. However, details about partial shade and other mismatch must be known in order to give the model accurate information to go on. This talk will describe recent updates in NREL’s System Advisor Model program to model partial shading losses.

  7. Large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Doolin, B. F.

    1975-01-01

    Classes of large scale dynamic systems were discussed in the context of modern control theory. Specific examples discussed were in the technical fields of aeronautics, water resources and electric power.

  8. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  9. Remote PV powered medical systems: installation and operation in Guyana

    SciTech Connect

    Westfield, J.D.; Zacharski, R.A.

    1983-06-01

    As part of the USAID Development Assistance Program, photovoltaic powered, rural medical systems have been developed and are currently being evaluated in several developing countries. Systems were placed in Guyana, Ecuador, Kenya and Zimbabwe. These systems are essentially the same except for minor modifications which were required for site variances in insolation and end-use requirements. This paper discusses the activities associated with the first of these installations, the Guyanese 1.5 kWp system.

  10. Performance analysis of PV pumping systems using switched reluctance motor drives

    SciTech Connect

    Metwally, H.M.B.; Anis, W.R.

    1996-12-31

    A PV pumping system using switched reluctance motor (SRM) is thoroughly investigated in this work. This motor is supplied by a d.c. voltage through a simple switching circuit. This drive circuit is much simpler than the normal d.c./a.c. inverter required to supply the induction motor. The efficiency of this motor is considerably higher than that of the equivalent d.c. or induction motors. In addition, because of the simple construction, SRM is cheaper than these conventional drives. Because of the above advantages of the SRM, the proposed system has higher efficiency and lower cost as compared with other systems. A design example is studied in detail to explore the advantages of PV pumping systems based on this new drive. The study of the performance of the proposed system showed that the operating efficiency of the motor is about 85% during most of its working time. The matching efficiency between the PV array and the proposed system approaches 95%. The major part of the losses takes place in the pump and the riser pipes. This loss represents one-third of the total available energy. 21 refs., 10 figs.

  11. PV-hybrid village power systems in Amazonia

    SciTech Connect

    Warner, C.L.; Taylor, R.W.; Ribeiro, C.M.; Moszkowicz, M.; Borba, A.J.V.

    1996-09-01

    The Brazilian Amazon region is an ideal location for isolated mini-grid systems. Hundreds of diesel systems have been installed to supply electricity to this sparsely populated region. However, the availability of renewable energy resources makes the Amazon well-suited to renewable energy systems. This paper describes the technical aspects of two hybrid systems being installed in this region through the cooperative effort of multiple partners: US Department of Energy, through NREL, and Brazilian CEPEL/Eletrobras and state electric utilities. The first system is a 50-kW photovoltaic-wind-battery hybrid and the second is a 50-kW photovoltaic-diesel-battery hybrid.

  12. Distribution system model calibration with big data from AMI and PV inverters

    DOE PAGESBeta

    Peppanen, Jouni; Reno, Matthew J.; Broderick, Robert J.; Grijalva, Santiago

    2016-03-03

    Efficient management and coordination of distributed energy resources with advanced automation schemes requires accurate distribution system modeling and monitoring. Big data from smart meters and photovoltaic (PV) micro-inverters can be leveraged to calibrate existing utility models. This paper presents computationally efficient distribution system parameter estimation algorithms to improve the accuracy of existing utility feeder radial secondary circuit model parameters. The method is demonstrated using a real utility feeder model with advanced metering infrastructure (AMI) and PV micro-inverters, along with alternative parameter estimation approaches that can be used to improve secondary circuit models when limited measurement data is available. Lastly, themore » parameter estimation accuracy is demonstrated for both a three-phase test circuit with typical secondary circuit topologies and single-phase secondary circuits in a real mixed-phase test system.« less

  13. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    DOE PAGESBeta

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  14. A methodology to quantify and optimize time complementarity between hydropower and solar PV systems

    NASA Astrophysics Data System (ADS)

    Kougias, Ioannis; Szabó, Sándor; Monforti-Ferrario, Fabio; Huld, Thomas; Bódis, Katalin

    2016-04-01

    Hydropower and solar energy are expected to play a major role in achieving renewable energy sources' (RES) penetration targets. However, the integration of RES in the energy mix needs to overcome the technical challenges that are related to grid's operation. Therefore, there is an increasing need to explore approaches where different RES will operate under a synergetic approach. Ideally, hydropower and solar PV systems can be jointly developed in such systems where their electricity output profiles complement each other as much as possible and minimize the need for reserve capacities and storage costs. A straightforward way to achieve that is by optimizing the complementarity among RES systems both over time and spatially. The present research developed a methodology that quantifies the degree of time complementarity between small-scale hydropower stations and solar PV systems and examines ways to increase it. The methodology analyses high-resolution spatial and temporal data for solar radiation obtained from the existing PVGIS model (available online at: http://re.jrc.ec.europa.eu/pvgis/) and associates it with hydrological information of water inflows to a hydropower station. It builds on an exhaustive optimization algorithm that tests possible alterations of the PV system installation (azimuth, tilt) aiming to increase the complementarity, with minor compromises in the total solar energy output. The methodology has been tested in several case studies and the results indicated variations among regions and different hydraulic regimes. In some cases a small compromise in the solar energy output showed significant increases of the complementarity, while in other cases the effect is not that strong. Our contribution aims to present these findings in detail and initiate a discussion on the role and gains of increased complementarity between solar and hydropower energies. Reference: Kougias I, Szabó S, Monforti-Ferrario F, Huld T, Bódis K (2016). A methodology for

  15. PV-hybrid village power systems in Amazonia

    SciTech Connect

    Warner, C.L.; Taylor, R.W.; Ribeiro, C.M.

    1996-05-01

    The Brazilian Amazon region is an ideal location for isolated mini-grid systems. Hundreds of diesel systems have been installed to supply electricity to this sparsely populated region. However, the availability of renewable energy resources makes the Amazon well-suited to renewable energy systems. This paper describes the technical aspects of two hybrid systems being installed in this region through the cooperative effort of multiple partners: U.S. Department of Energy, through NREL, and Brazilian CEPEL/Eletrobras and state electric utilities.

  16. In-situ defect detection systems for R2R flexible PV barrier films

    NASA Astrophysics Data System (ADS)

    Gao, F.; Muhamedsalih, H.; Tang, D.; Elrawemi, M.; Blunt, L.; Jiang, X.; Edge, S.; Bird, D.; Hollis, P.

    2015-08-01

    Film processing procedures by means of Roll-to-Roll (R2R) for barrier coatings can often result in PV barrier films being manufactured with significant quantities of defects, which results in lower efficiency and a short life span. In order to improve the process yield and product efficiency, it is desirable to develop an inspection system that can detect transparent barrier film defects in the production line during film processing. Off-line detection of defects in transparent PV barrier films is difficult and time consuming. Consequently, implementing an accurate in-situ defects inspection system in the production environment is even more challenging, since the requirements on positioning, fast measurement, long term stability and robustness against environmental disturbance are demanding. This paper reports on the development and deployment of two in-situ PV barrier films defect detection systems, one based on wavelength scanning interferometry (WSI) and the other on White Light Channeled Spectral Interferometry (WLCSI), and the integration into an R2R film processing line at the Centre for Process Innovation (CPI). The paper outlines the environmental vibration strategy for both systems, and the developed auto-focusing methodology for WSI. The systems have been tested and characterised and initial results compared to laboratory-based instrumentation are presented.

  17. Status and modeling improvements of hybrid wind/PV/diesel power systems for Brazilian applications

    SciTech Connect

    McGowan, J.G.; Manwell, J.F.; Avelar, C.; Taylor, R.

    1997-12-31

    This paper present a summary of the ongoing work on the modeling and system design of hybrid wind/PV/diesel systems for two different sites in the Amazonia region of Brazil. The work incorporates the latest resource data and is based on the use of the Hybrid2 simulation code developed by the University of Massachusetts and NREL. Details of the baseline operating hybrid systems are reviewed, and the results of the latest detailed hybrid system evaluation for each site are summarized. Based on the system modeling results, separate recommendations for system modification and improvements are made.

  18. Benchmarking Soft Costs for PV Systems in the United States (Presentation)

    SciTech Connect

    Ardani, K.

    2012-06-01

    This paper presents results from the first U.S. based data collection effort to quantify non-hardware, business process costs for PV systems at the residential and commercial scales, using a bottom-up approach. Annual expenditure and labor hour productivity data are analyzed to benchmark business process costs in the specific areas of: (1) customer acquisition; (2) permitting, inspection, and interconnection; (3) labor costs of third party financing; and (4) installation labor.

  19. High-quality mutant libraries of Xanthomonas oryzae pv. oryzae and X. campestris pv. campestris generated by an efficient transposon mutagenesis system.

    PubMed

    Sun, Qihong; Wu, Wei; Qian, Wei; Hu, Jun; Fang, Rongxiang; He, Chaozu

    2003-09-12

    A novel transposon mutagenesis system for the phytopathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and X. campestris pv. campestris (Xcc) was developed using a Tn5-based transposome. A highly efficient transformation up to 10(6) transformants per microg transposon DNA was obtained. Southern blot and thermal asymmetric interlaced polymerase chain reaction analyses of Tn5 insertion sites suggested a random mode of transposition. The transposition was stable in the transformants for 20 subcultures. Eighteen thousand and 17000 transformants for Xoo and Xcc, respectively, were generated, corresponding to 4X ORF coverage of the genomes. The libraries will facilitate the identification of pathogenicity-related genes as well as functional genomic analysis in Xoo and Xcc. PMID:13129620

  20. 205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy’s Forrestal Building

    SciTech Connect

    2008-09-11

    The Forrestal PV system will provide a clean, domestic, renewable source of energy for the U.S. Department of Energy (DOE), and provide leadership in meeting Federal goals for increasing the use of renewable energy technologies.

  1. Study of photovoltaic cost elements. Volume 5: Installation cost model for intermediate PV systems: Users manual

    NASA Astrophysics Data System (ADS)

    Ayers, J. B.

    1981-07-01

    A cost modeling methodology is presented for estimating installation costs associated with intermediate photovoltaic (PV) systems. With only a parametric description of an intermediate power system, the model can be used to develop an installation cost estimate for that system. The model is based on conventional cost-estimating procedures widely used by the construction industry and was validated by comparing estimates for the same 10 systems made independently by a cost engineering firm. A description of the model is included as well as an example of its use with a 200 KW solar breeder plant design to be located in Rockville, Maryland.

  2. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite.

    PubMed

    Tyagi, Kriti; Hossain, Mohammad Enayet; Thakur, Vandana; Aggarwal, Praveen; Malhotra, Pawan; Mohmmed, Asif; Sharma, Yagya Dutta

    2016-01-01

    Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to 'Pv-fam-a' family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle. PMID:26954579

  3. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite

    PubMed Central

    Tyagi, Kriti; Hossain, Mohammad Enayet; Thakur, Vandana; Aggarwal, Praveen; Malhotra, Pawan; Mohmmed, Asif; Sharma, Yagya Dutta

    2016-01-01

    Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle. PMID:26954579

  4. Large TV display system

    NASA Technical Reports Server (NTRS)

    Liu, Hua-Kuang (Inventor)

    1986-01-01

    A relatively small and low cost system is provided for projecting a large and bright television image onto a screen. A miniature liquid crystal array is driven by video circuitry to produce a pattern of transparencies in the array corresponding to a television image. Light is directed against the rear surface of the array to illuminate it, while a projection lens lies in front of the array to project the image of the array onto a large screen. Grid lines in the liquid crystal array are eliminated by a spacial filter which comprises a negative of the Fourier transform of the grid.

  5. Real-time POD-CFD Wind-Load Calculator for PV Systems

    SciTech Connect

    Huayamave, Victor; Divo, Eduardo; Ceballos, Andres; Barriento, Carolina; Stephen, Barkaszi; Hubert, Seigneur

    2014-03-21

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such as those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals

  6. Illumination PV systems for 122 Indian school-homes under Mexican technology

    SciTech Connect

    del Valle, J.L.; Flores, C.; Tikasing, G.; Urbano, A.

    1982-09-01

    One hundred twenty-two PV systems, each of 65 pk watts, were installed for electrical lighting in school-homes for Indian children under one of the national educational programs. This project has benefitted at least 5000 children in nine Mexican States. The main characteristic of the systems is that they were designed, contructed and installed using Mexican Technology. Special attention was given to the didactic and anthropological aspects involved in the use of the systems in the Indian communities. The project was completed within the specified period of 12 months, at a cost of 0.5 million U.S. Dlls.

  7. Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint

    SciTech Connect

    Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

    2013-03-01

    Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

  8. Lessons learned from hybrid wind/PV village power system installations in Mexico

    SciTech Connect

    Bergey, M.

    1995-09-01

    In the last three years eight decentralized village power systems utilizing small wind turbines as the primary energy source have been installed in rural Mexico. Hybrid wind/PV systems have been installed in five States and by three vendors. Seven out of the eight systems, which range i size from 9.3--71.2kW in combined wind and PV capacity, utilize one or more 10 kW wind turbines. All of these installations have battery banks and use static inverters to provide AC power for distribution to homes, businesses, and community facilities. On all but one of the systems a diesel generator is used to provide back-up power. This paper attempts to summarize the range of costs and economics, performance, and operational experiences for all eight installations. Several of the systems are monitored for performance, including one that is extensively monitored under a cooperative program between the Instituto de Investigaciones Electricas and Sandia National Laboratory. Lessons learned from these systems provide insights that may allow future village power systems of this architecture to be installed at lower costs, to be operated more effectively and efficiently, and to be better able to satisfy customer requirements.

  9. Distribution of Xanthomonas oryzae pv. oryzae DNA modification systems in Asia.

    PubMed

    Choi, S H; Vera Cruz, C M; Leach, J E

    1998-05-01

    The presence or absence of two DNA modification systems, XorI and XorII, in 195 strains of Xanthomonas oryzae pv. oryzae collected from different major rice-growing countries of Asia was assessed. All four possible phenotypes (XorI+ XorII+, XorI+ XorII-, XorI- XorII+ and XorI- XorII-) were detected in the population at a ratio of approximately 1:2:2:2. The XorI+ XorII+ and XorI- XorII+ phenotypes were observed predominantly in strains from southeast Asia (Philippines, Malaysia, and Indonesia), whereas strains with the phenotypes XorI- XorII- and XorI+ XorII- were distributed in south Asia (India and Nepal) and northeast Asia (China, Korea, and Japan), respectively. Based on the prevalence and geographic distribution of the XorI and XorII systems, we suggest that the XorI modification system originated in northeast Asia and was later introduced to southeast Asia, while the XorII system originated in southeast Asia and moved to northeast Asia and south Asia. Genomic DNA from all tested strains of X. oryzae pv. oryzae that were resistant to digestion by endonuclease XorII or its isoschizomer PvuI also hybridized with a 7.0-kb clone that contained the XorII modification system, whereas strains that were digested by XorII or PvuI lacked DNA that hybridized with the clone. Size polymorphisms were observed in fragments that hybridized with the 7.0-kb clone. However, a single hybridization pattern generally was found in XorII+ strains within a country, indicating clonal maintenance of the XorII methyl-transferase gene locus. The locus was monomorphic for X. oryzae pv. oryzae strains from the Philippines and all strains from Indonesia and Korea. PMID:9572933

  10. Economic Analysis of a Brackish Water Photovoltaic-Operated (BWRO-PV) Desalination System: Preprint

    SciTech Connect

    Al-Karaghouli, A.; Kazmerski, L. L.

    2010-10-01

    The photovoltaic (PV)-powered reverse-osmosis (RO) desalination system is considered one of the most promising technologies in producing fresh water from both brackish and sea water, especially for small systems located in remote areas. We analyze the economic viability of a small PV-operated RO system with a capacity of 5 m3/day used to desalinate brackish water of 4000 ppm total dissolve solids, which is proposed to be installed in a remote area of the Babylon governorate in the middle of Iraq; this area possesses excellent insolation throughout the year. Our analysis predicts very good economic and environmental benefits of using this system. The lowest cost of fresh water achieved from using this system is US $3.98/ m3, which is very reasonable compared with the water cost reported by small-sized desalination plants installed in rural areas in other parts of the world. Our analysis shows that using this small system will prevent the release annually of 8,170 kg of CO2, 20.2 kg of CO, 2.23 kg of CH, 1.52 kg of particulate matter, 16.41 kg of SO2, and 180 kg of NOx.

  11. Statistical analysis of the performance and simulation of a two-axis tracking PV system

    SciTech Connect

    Perpinan, O.

    2009-11-15

    The energy produced by a photovoltaic system over a given period can be estimated from the incident radiation at the site where the Grid Connected PV System (GCPVS) is located, assuming knowledge of certain basic features of the system under study. Due to the inherently stochastic nature of solar radiation, the question ''How much energy will a GCPVS produce at this location over the next few years?'' involves an exercise of prediction inevitably subjected to a degree of uncertainty. Moreover, during the life cycle of the GCPVS, another question arises: ''Is the system working correctly?''. This paper proposes and examines several methods to cope with these questions. The daily performance of a PV system is simulated. This simulation and the interannual variability of both radiation and productivity are statistically analyzed. From the results several regression adjustments are obtained. This analysis is shown to be useful both for productivity prediction and performance checking exercises. Finally, a statistical analysis of the performance of a GCPVS is carried out as a detection method of malfunctioning parts of the system. (author)

  12. Stability of large systems

    NASA Astrophysics Data System (ADS)

    Hastings, Harold

    2007-03-01

    We address a long-standing dilemma concerning stability of large systems. MacArthur (1955) and Hutchinson (1959) argued that more ``complex'' natural systems tended to be more stable than less complex systems based upon energy flow. May (1972) argued the opposite, using random matrix models; see Cohen and Newman (1984, 1985), Bai and Yin (1986). We show that in some sense both are right: under reasonable scaling assumptions on interaction strength, Lyapunov stability increases but structural stability decreases as complexity is increased (c.f. Harrison, 1979; Hastings, 1984). We apply this result to a variety of network systems. References: Bai, Z.D. & Yin, Y.Q. 1986. Probab. Th. Rel. Fields 73, 555. Cohen, J.E., & Newman, C.M. 1984. Annals Probab. 12, 283; 1985. Theoret. Biol. 113, 153. Harrison, G.W. 1979. Amer. Natur. 113, 659. Hastings, H.M. 1984. BioSystems 17, 171. Hastings, H.M., Juhasz, F., & Schreiber, M. 1992. .Proc. Royal Soc., Ser. B. 249, 223. Hutchinson, G.E. 1959. Amer. Natur. 93, 145, MacArthur, R. H. 1955. Ecology 35, 533, May, R.M. 1972. Nature 238, 413.

  13. Nonlinear phenomenon in monocrystalline silicon based PV module for low power system: Lead acid battery for low energy storage

    NASA Astrophysics Data System (ADS)

    El Amrani, A.; El Amraoui, M.; El Abbassi, A.; Messaoudi, C.

    2014-11-01

    In the present work, we report the indoor photo-electrical measurements of monocrystalline silicon based photovoltaic (PV) module associated with 4 Ah lead acid battery as a storage unit for low power PV system applications. Concerning the PV module, our measurements show, at low illumination regime, that the short circuit current ISC increases linearly with the illumination power levels. Moreover, for high illumination levels, the mechanism of bimolecular recombination and space charge limitation may be intensified and hence the short current of the PV module ISCMod depends sublinearly on the incident optical power; the behavior is nonlinear. For the open circuit voltage of the PV module VOCMod measurements, a linear variation of the VOCMod versus the short circuit current in semi-logarithmic scale has been noticed. The diode ideality factor n and diode saturation current Is have been investigated; the values of n and Is are approximately of 1.3 and 10-9 A, respectively. In addition, we have shown, for different discharging-charging currents rates (i.e. 0.35 A, 0.2 A and 0.04 A), that the battery voltage decreases with discharging time as well as discharging battery capacity, and on the other hand it increases with the charging time and will rise up until it maximized value. The initial result shows the possibility to use such lead acid battery for low power PV system, which is generally designed for the motorcycle battery.

  14. Outdoor PV Degradation Comparison

    SciTech Connect

    Jordan, D. C.; Smith, R. M.; Osterwald, C. R.; Gelak, E.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output; may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined; accurately. At the Performance and Energy Rating Testbed (PERT) at the Outdoor Test Facility (OTF) at the; National Renewable Energy Laboratory (NREL) more than 40 modules from more than 10 different manufacturers; were compared for their long-term outdoor stability. Because it can accommodate a large variety of modules in a; limited footprint the PERT system is ideally suited to compare modules side-by-side under the same conditions.

  15. Space Shuttle production verification motor 1 (PV-1) field joint protection system, volume 7

    NASA Technical Reports Server (NTRS)

    Wilkinson, J. P.

    1990-01-01

    The performance of the field joint protection system (FJPS) of the Space Shuttle Production Verification Motor 1 (PV-1), as evaluated by postfire hardware inspection. Compliance with the specifications is shown for the FJPS assembly and components. The simplified FJPS and field joint heaters performed nominally, maintaining all joint seal temperatures within the required range. One anomally was noted on the igniter-to-case joint heater during postfire inspection. The heater buckled off the surface in two areas, resulting in two hot spots on the heater and darkened heater insulation. The condition did not affect heater performance during ignition countdown and all igniter seals were maintained within required temperature limits.

  16. Systemic Responses in Arabidopsis thaliana Infected and Challenged with Pseudomonas syringae pv syringae.

    PubMed Central

    Summermatter, K.; Sticher, L.; Metraux, J. P.

    1995-01-01

    Attack of plants by necrotizing pathogens leads to acquired resistance to the same or other pathogens in tissues adjacent to or remotely located from the site of initial attack. We have used Arabidopsis thaliana inoculated with the incompatible pathogen Pseudomonas syringae pv syringae on the lower leaves to test the induction of systemic reactions. When plants were challenged with Pseudomonas syringae pv syringae in the upper leaves, bacterial titers remained stable in those preinfected on the lower leaves. However, there was a distinct decrease in symptoms that correlated with a local and systemic increase in salicylic acid (SA) and in chitinase activity. Peroxidase activity only increased at the site of infection. No changes in catalase activity were observed, either at the local or at the systemic level. No inhibition of catalase could be detected in tissue in which the endogenous levels of SA were elevated either naturally (after infection) or artificially (after feeding SA to the roots). The activity of catalase in homogenates of A. thaliana leaves could not be inhibited in vitro by SA. SA accumulation was induced by H2O2 in leaves, suggesting a link between H2O2 from the oxidative burst commonly observed during the hypersensitive reaction and the induction of a putative signaling molecule leading to system acquired resistance. PMID:12228548

  17. Dynamic load management and optimum sizing of stand-alone hybrid PV/wind system

    NASA Astrophysics Data System (ADS)

    Kaplani, E.; Ntafogiannis, P.; Pappas, K.; Diamantopoulos, N.

    2015-12-01

    Simulation algorithms for the sizing of stand-alone hybrid PV/Wind systems are a powerful tool in evaluating the optimum configuration that would cover the energy demand with a predefined reliability level at the lowest cost. Several parameters such as the interval of the simulation (day, day-night, hourly) and the consumption profile may significantly affect the optimum configuration. This paper examines the effect of these parameters within an optimum sizing simulation algorithm developed. The effect of these parameters was particularly evident at low battery capacities, which involve optimum configurations resulting in minimum cost. Furthermore, shift-able loads in the hourly-based weekly profile assumed in this study were identified, and a dynamic load management functionality was developed. In this approach, loads that could be shifted through time were dynamically allocated during periods of excess energy production by the hybrid PV/Wind system. The results showed an increase in system reliability from 95% to 97% when load shifting was introduced. Finally, sizing the system for only the static (non-shift-able loads) proved to withstand the addition of the extra shift-able loads while retaining the 95% reliability level when the load management functionality was introduced. Thus, a smaller installation with lower cost is achieved.

  18. Methodology and systems to ensure reliable thin-film PV modules

    NASA Astrophysics Data System (ADS)

    Call, Jon; Varde, Uday; Konson, Alla; Walters, Mike; Kotarba, Chad, III; Kraft, Tim; Guha, Subhendu

    2008-08-01

    The reliability of Uni-Solar triple-junction amorphous silicon thin-film PV modules is very important to their success in an increasingly competitive PV market. Modules must show useful operating lifetimes on the order of 20 to 30 years, and although module efficiency is very important, the total energy a module will produce is largely dependent on its operating lifetime. Thus, it is essential to evaluate module reliability in order to estimate module lifetime and establish customer warranty periods. While real world outdoor exposure testing is necessary and important, it is essential that accelerated environmental test methods are utilized to provide more rapid feedback regarding failure modes, design flaws and degradation mechanisms. The following paper gives an overview of the methodology used to ensure long-term reliability of Uni-Solar flexible thin-film modules. The applied test methods are primarily based upon accepted industry test standards such as IEC-61646, UL-1703, and ASTM. The design, screening, and qualification process to ensure the robustness of new designs is described as well as subsequent module validation testing and manufacturing process control. Test methods important for flexible module laminates are briefly discussed and examples of reliability tests are given. Upon successful design validation and certification, the quality and reliability of manufactured modules is maintained through supplier and product quality assurance programs.

  19. Modeling needs for very large systems.

    SciTech Connect

    Stein, Joshua S.

    2010-10-01

    Most system performance models assume a point measurement for irradiance and that, except for the impact of shading from nearby obstacles, incident irradiance is uniform across the array. Module temperature is also assumed to be uniform across the array. For small arrays and hourly-averaged simulations, this may be a reasonable assumption. Stein is conducting research to characterize variability in large systems and to develop models that can better accommodate large system factors. In large, multi-MW arrays, passing clouds may block sunlight from a portion of the array but never affect another portion. Figure 22 shows that two irradiance measurements at opposite ends of a multi-MW PV plant appear to have similar irradiance (left), but in fact the irradiance is not always the same (right). Module temperature may also vary across the array, with modules on the edges being cooler because they have greater wind exposure. Large arrays will also have long wire runs and will be subject to associated losses. Soiling patterns may also vary, with modules closer to the source of soiling, such as an agricultural field, receiving more dust load. One of the primary concerns associated with this effort is how to work with integrators to gain access to better and more comprehensive data for model development and validation.

  20. Remote monitoring of solar PV system for rural areas using GSM, V-F & F-V converters

    NASA Astrophysics Data System (ADS)

    Tejwani, R.; Kumar, G.; Solanki, C. S.

    2016-05-01

    The Small capacity photovoltaic (PV) systems like solar lantern and home lighting systems installed in remote rural area often fail without any prior warning due to lack of monitoring and maintenance. This paper describes implementation of remote monitoring for small capacity solar PV system that uses GSM voice channel for communication. Through GSM analog signal of sine wave with frequency range 300–3500 Hz and amplitude range 2.5–4 V is transmitted. Receiver is designed to work in the same frequency range. The voltage from solar PV system in range of 2 to 7.5 V can be converted to frequency directly at the transmitting end. The frequency range from 300–6000 Hz can be sensed and directly converted to voltage signal at receiving end. Testing of transmission and reception of analog signal through GSM voice channel is done for voltage to frequency (V-F) and frequency to voltage (F-V) conversions.

  1. PV_LIB Toolbox

    Energy Science and Technology Software Center (ESTSC)

    2012-09-11

    While an organized source of reference information on PV performance modeling is certainly valuable, there is nothing to match the availability of actual examples of modeling algorithms being used in practice. To meet this need, Sandia has developed a PV performance modeling toolbox (PV_LIB) for Matlab. It contains a set of well-documented, open source functions and example scripts showing the functions being used in practical examples. This toolbox is meant to help make the multi-stepmore » process of modeling a PV system more transparent and provide the means for model users to validate and understand the models they use and or develop. It is fully integrated into Matlab’s help and documentation utilities. The PV_LIB Toolbox provides more than 30 functions that are sorted into four categories« less

  2. PV_LIB Toolbox

    SciTech Connect

    2012-09-11

    While an organized source of reference information on PV performance modeling is certainly valuable, there is nothing to match the availability of actual examples of modeling algorithms being used in practice. To meet this need, Sandia has developed a PV performance modeling toolbox (PV_LIB) for Matlab. It contains a set of well-documented, open source functions and example scripts showing the functions being used in practical examples. This toolbox is meant to help make the multi-step process of modeling a PV system more transparent and provide the means for model users to validate and understand the models they use and or develop. It is fully integrated into Matlab’s help and documentation utilities. The PV_LIB Toolbox provides more than 30 functions that are sorted into four categories

  3. Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system.

    SciTech Connect

    Stein, Joshua S.; Johnson, Lars; Ellis, Abraham; Kuszmaul, Scott S.

    2012-01-01

    Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery operated data acquisition system. The Lanai High-Density Irradiance Sensor Network is comprised of 24 LI-COR{reg_sign} irradiance sensors (silicon pyranometers) polled by 19 RF Radios. The system was implemented with commercially available hardware and custom developed LabVIEW applications. The network of solar irradiance sensors was installed in January 2010 around the periphery and within the 1.2 MW ac La Ola PV plant on the island of Lanai, Hawaii. Data acquired at 1 second intervals is transmitted over wireless links to be time-stamped and recorded on SunPower data servers at the site for later analysis. The intent is to study power and solar resource data sets to correlate the movement of cloud shadows across the PV array and its effect on power output of the PV plant. The irradiance data sets recorded will be used to study the shape, size and velocity of cloud shadows. This data, along with time-correlated PV array output data, will support the development and validation of a PV performance model that can predict the short-term output characteristics (ramp rates) of PV systems of different sizes and designs. This analysis could also be used by the La Ola system operator to predict power ramp events and support the function of the future battery system. This experience could be used to validate short-term output forecasting methodologies.

  4. Integration of a dual-band IR data acquisition system using low-cost PV320 cameras

    NASA Astrophysics Data System (ADS)

    Havlicek, Joseph P.; Nguyen, Chuong T.; Fan, Guoliang; Venkataraman, Vijay B.

    2006-05-01

    The Electrophysics PV320 is a broadband thermal imaging system with several attractive features including low cost (about USD 25K including optics and software), small size, uncooled operation with a BST sensor array, spectral response from 0.6 to 14 μm, easily interchangeable warm optics, and on board USB 2.0 digital video output. In this paper we describe the technical challenges that were involved in integrating together two copies of the PV320L2Z camera variant to create an experimental dual-band IR data acquisition system for measuring targets, backgrounds, and clutter. The PV320 manufacturer-supplied software includes a user friendly, all-in-one application as well as software development kits providing camera control routines that are callable from C++, Visual Basic, and LabView. While this software works well for operating a single PV320 camera, it does not provide any direct support for simultaneously imaging with multiple cameras. The main technical issues are that the base software driver can connect to only one camera at a time and that multiple instances of the driver cannot be loaded simultaneously. Therefore, to achieve our goal of acquiring dual-band IR signatures, it was necessary to program a custom distributed algorithm capable of running two copies of the driver simultaneously on two separate computers with one PV320L2Z connected to each.

  5. Residential, Commercial, and Utility-Scale Photovoltaic (PV) System Prices in the United States: Current Drivers and Cost-Reduction Opportunities

    SciTech Connect

    Goodrich, A.; James, T.; Woodhouse, M.

    2012-02-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. However, system cost reductions are not necessarily realized or realized in a timely manner by many customers. Many reasons exist for the apparent disconnects between installation costs, component prices, and system prices; most notable is the impact of fair market value considerations on system prices. To guide policy and research and development strategy decisions, it is necessary to develop a granular perspective on the factors that underlie PV system prices and to eliminate subjective pricing parameters. This report's analysis of the overnight capital costs (cash purchase) paid for PV systems attempts to establish an objective methodology that most closely approximates the book value of PV system assets.

  6. Solar PV O&M standards and best practices :

    SciTech Connect

    Klise, Geoffrey Taylor; Balfour, John R.; Keating, T. J.

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PV systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.

  7. Optical Design and Manufacturing of Fresnel Lenses for The First Korean High Concentration Solar PV System

    NASA Astrophysics Data System (ADS)

    Ryu, Kwangsun; Shin, Goo-Hwan; Cha, Wonho; Kang, Seongwon; Kim, Youngsik; Kang, Gi-Hwan

    2011-12-01

    In this study, we designed and optimized flat Fresnel lens and the light pipe to develop 500X concentrated solar PV system. In the process, we compare the transmission efficiencies according to groove types. We performed rigorous ray tracing simulation of the flat Fresnel lenses. The computer aided simulation showed the `grooves in' case has the better efficiency than that of `grooves out' case. Based on the ray-trace results, we designed and manufactured sample Fresnel lenses. The optical performance were measured and compared with ray-trace results. Finally, the optical efficiency was measured to be above 75%. All the design and manufacturing were performed based on that InGaP/InGaAs/Ge triple junction solar cell is used to convert the photon energy to electrical power. Field test will be made and analyzed in the near future.

  8. Design, Operation and Economic Analysis of Autonomous Hybrid PV-Diesel Power Systems Including Battery Storage

    NASA Astrophysics Data System (ADS)

    Papadopoulos, Demetrios P.; Maltas, Eleftherios Z.

    2010-01-01

    This paper presents a systematic techno-economic analysis of autonomous PV-Diesel energy system with battery storage. This hybrid type power system was developed and installed on the roof of the Electrical Engineering Laboratory building in the city of Xanthi, Greece, where a weather station is also installed providing necessary meteorological data since 2002. Such system can be generally used to supply electrical loads of isolated remote areas. The actual design of such a system is based on: a pre-defined load pattern to be supplied; the pertinent weather data; the relevant market prices; and the applicable recent economic rates (eg June 2009 for the Greek case). The system is operated on a predictive manner using a Programmable Logic Controller (PLC) which controls the main system parameters for safe and continuous power supply to meet reliably the desired load demand. Three distinct systems of this type and of equal capacity, which combine energy sources and battery storage have been proposed and assessed technically and economically.

  9. The control system of ENEL`s 3.3 MWp PV plant

    SciTech Connect

    Arcidiacono, V.; Corsi, S.; Lambri, L.

    1994-12-31

    The paper describes the control system of the ENEL`s first PV plant for bulk power production, consisting of ten subfields of 330 KWp each, built at Serre (Salerno). Each subfield is provided with an autonomous line-commutated and high efficiency DC/AC converter having an innovative control system, based on microprocessor technology and touch-screen monitor, which operates by a real-time MPPT control function. The regulators of the converters also accomplish the task of peripheral interfaces for the centralized command and supervisory system, which collects data and sends commands by means of fiber optic radial LAN. The centralized management system has a wealth of functions for the detailed display of the plant`s operational state, the computing and monitoring of plant performances, the historical data collection, and for a wide range of other services. Though it is also possible to control the plant remotely using concise commands and signals, and the full remote monitoring via modem of the plant current state and acquired data. The paper goes into detail on the innovative control functions of the peripheral regulators, on the centralized control system, and on the overall system field test results.

  10. Advanced polymer PV system: PVMaT 4A1 annual report, September 1995--September 1996

    SciTech Connect

    Hanoka, J; Chleboski, R; Farber, M; Fava, J; Kane, P; Martz, J

    1997-06-01

    Purpose of this subcontract was to produce lower module and systems costs through the innovative use of polymeric materials. The Innovative Mounting System (IMS) was developed and testing begun during the first year of this contract. IMS reduces the cost of installed PV systems by reducing labor and materials costs both in the factory and in field installation. It incorporates several advances in polymers, processing methods and product design. An advanced backskin material permits elimination of the conventional Al perimeter frame by protecting and sealing the edge and by direct bonding of multifunctional mounting bars. Electrical interconnection is easier and more reliable with a new junction box. Feasibility of a non-vacuum, high-throughput lamination method was also demonstrated, involving a novel transparent encapsulant with UV stabilization package that can be laminated in air and which should lead to longer field life than conventional designs. The first-year program culminated in the fielding of prototype products with the new encapsulant, backskin, junction box, frameless edge seal, and IMS. Feedback and marketing information from potential customers were solicited. Result promises a $0.50/watt manufacturing and system cost reductions as well as increased system lifetime. The second year will complete refinement and test of the encapsulant and backskin, complete the new lamination method, and refine product designs.

  11. A Monolithic Microconcentrator Receiver For A Hybrid PV-Thermal System: Preliminary Performance

    NASA Astrophysics Data System (ADS)

    Walter, D.; Everett, V.; Vivar, M.; Harvey, J.; Van Scheppingen, R.; Surve, S.; Muric-Nesic, J.; Blakers, A.

    2010-10-01

    An innovative hybrid PV-thermal microconcentrator (MCT) system is being jointly developed by Chromasun Inc., San Jose, California, and at the Centre for Sustainable Energy Systems, Australian National University. The MCT aims to develop the small-scale, roof-top market for grid-integrated linear CPV systems. A low profile, small footprint enclosure isolates system components from the environment, relaxing the demands on supporting structures, tracking, and maintenance. Net costs to the consumer are reduced via an active cooling arrangement that provides thermal energy suitable for water and space heating, ventilation, and air conditioning (HVAC) applications. As part of a simplified, low-cost design, an integrated substrate technology provides electrical interconnection, heat sinking, and mechanical support for the concentrator cells. An existing, high-efficiency, one-sun solar cell technology has been modified for this system. This paper presents an overview of the key design features, and preliminary electrical performance of the MCT. Module efficiencies of up to 19.6% at 20x concentration have been demonstrated.

  12. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    SciTech Connect

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  13. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    PubMed

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery. PMID:26852396

  14. DOE High Performance Concentrator PV Project

    SciTech Connect

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  15. Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011

    SciTech Connect

    Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

    2011-08-26

    Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

  16. System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test: Preprint

    SciTech Connect

    Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

    2011-07-01

    Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or coulombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

  17. System Voltage Potential-Induced Degradation Mechanisms in PV Modules and Methods for Test

    SciTech Connect

    Hacke, P.; Terwilliger, K.; Smith, R.; Glick, S.; Pankow, J.; Kempe, M.; Kurtz, S.; Bennett, I.; Kloos, M.

    2011-01-01

    Over the past decade, degradation and power loss have been observed in PV modules resulting from the stress exerted by system voltage bias. This is due in part to qualification tests and standards that do not adequately evaluate for the durability of modules to the long-term effects of high voltage bias experienced in fielded arrays. High voltage can lead to module degradation by multiple mechanisms. The extent of the voltage bias degradation is linked to the leakage current or culombs passed from the silicon active layer through the encapsulant and glass to the grounded module frame, which can be experimentally determined; however, competing processes make the effect non-linear and history-dependent. Appropriate testing methods and stress levels are described that demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. This information, along with outdoor testing that is in progress, is used to estimate the acceleration factors needed to evaluate the durability of modules to system voltage stress. Na-rich precipitates are observed on the cell surface after stressing the module to induce PID in damp heat with negative bias applied to the active layer.

  18. Dual-purpose self-deliverable lunar surface PV electrical power system

    NASA Technical Reports Server (NTRS)

    Arnold, Jack H.; Harris, David W.; Cross, Eldon R.; Flood, Dennis J.

    1991-01-01

    A safe haven and work supported PV power systems on the lunar surface will likely be required by NASA in support of the manned outpost scheduled for the post-2000 lunar/Mars exploration and colonization initiative. Initial system modeling and computer analysis shows that the concept is workable and contains no major high risk technology issues which cannot be resolved in the circa 2000 to 2025 timeframe. A specific selection of the best suited type of electric thruster has not been done; the initial modeling was done using an ion thruster, but Rocketdyne must also evaluate arc and resisto-jets before a final design can be formulated. As a general observation, it appears that such a system can deliver itself to the Moon using many system elements that must be transported as dead payload mass in more conventional delivery modes. It further appears that a larger power system providing a much higher safe haven power level is feasible if this delivery system is implemented, perhaps even sufficient to permit resource prospecting and/or lab experimentation. The concept permits growth and can be expanded to include cargo transport such as habitat and working modules. In short, the combined payload could be manned soon after landing and checkout. NASA has expended substantial resources in the development of electric propulsion concepts and hardware that can be applied to a lunar transport system such as described herein. In short, the paper may represent a viable mission on which previous investments play an invaluable role. A more comprehensive technical paper which embodies second generation analysis and system size will be prepared for near-term presentation.

  19. Large gap magnetic suspension system

    NASA Technical Reports Server (NTRS)

    Abdelsalam, Moustafa K.; Eyssa, Y. M.

    1991-01-01

    The design of a large gap magnetic suspension system is discussed. Some of the topics covered include: the system configuration, permanent magnet material, levitation magnet system, superconducting magnets, resistive magnets, superconducting levitation coils, resistive levitation coils, levitation magnet system, and the nitrogen cooled magnet system.

  20. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect

    Bolinger, Mark A; Wiser, Ryan; Ing, Edwin

    2009-08-01

    This CESA - LBNL Case Study examines how much economic value do new and expanded federal tax credits really provide to PV system purchasers, and what implications might they hold for state/utility PV grant programs. The report begins with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. The report concludes with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state/utility PV programs. The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or 'buy-down' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). Since the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government has begun to play a much more significant role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, for an initial period of two years, and in late 2006 were extended for an additional year. Unless extended further, the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2009. How much economic value do these new and

  1. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    SciTech Connect

    Davidson, C.; James, T. L.; Margolis, R.; Fu, R.; Feldman, D.

    2014-10-01

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% decline from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.

  2. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    SciTech Connect

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2014-10-11

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system, GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.

  3. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    SciTech Connect

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2014-06-08

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) with concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.

  4. Ota City : characterizing output variability from 553 homes with residential PV systems on a distribution feeder.

    SciTech Connect

    Stein, Joshua S.; Miyamoto, Yusuke; Nakashima, Eichi; Lave, Matthew

    2011-11-01

    This report describes in-depth analysis of photovoltaic (PV) output variability in a high-penetration residential PV installation in the Pal Town neighborhood of Ota City, Japan. Pal Town is a unique test bed of high-penetration PV deployment. A total of 553 homes (approximately 80% of the neighborhood) have grid-connected PV totaling over 2 MW, and all are on a common distribution line. Power output at each house and irradiance at several locations were measured once per second in 2006 and 2007. Analysis of the Ota City data allowed for detailed characterization of distributed PV output variability and a better understanding of how variability scales spatially and temporally. For a highly variable test day, extreme power ramp rates (defined as the 99th percentile) were found to initially decrease with an increase in the number of houses at all timescales, but the reduction became negligible after a certain number of houses. Wavelet analysis resolved the variability reduction due to geographic diversity at various timescales, and the effect of geographic smoothing was found to be much more significant at shorter timescales.

  5. A utility-connected residential PV system adapted a novel single-phase composite PWM voltage source inverter

    SciTech Connect

    Nonaka, Sakutaro

    1994-12-31

    A Utility-interactive residential PV system adapted a novel single-phase composite PWM voltage source inverter (VSI) is proposed. The proposed system is equipped with PV array, battery storage, and a single-phase VSI, which has a new circuit configuration and PWM method. The VSI circuit consists of the normal single-phase bridge circuit and an additional arm. The two auxiliary self-turn-off devices for the arm adopt to a composite PWM control, which contributes to reduce the ripple in the AC output current. Also, the VSI has a LC series resonance circuit tuned to twice the utility frequency connected in parallel with the smoothing capacitor. The series resonance circuit absorbs the double-frequency AC components included in the DC pulsed current. Consequently, the smoothing capacitor is drastically reduced. It was found with the computer simulation and the experiment that the waveform of AC output current shows an ideal sine wave.

  6. PV water pumping: NEOS Corporation recent PV water pumping activities

    SciTech Connect

    Lane, C.

    1995-11-01

    NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature published by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.

  7. Benchmarking of Typical Meteorological Year datasets dedicated to Concentrated-PV systems

    NASA Astrophysics Data System (ADS)

    Realpe, Ana Maria; Vernay, Christophe; Pitaval, Sébastien; Blanc, Philippe; Wald, Lucien; Lenoir, Camille

    2016-04-01

    Accurate analysis of meteorological and pyranometric data for long-term analysis is the basis of decision-making for banks and investors, regarding solar energy conversion systems. This has led to the development of methodologies for the generation of Typical Meteorological Years (TMY) datasets. The most used method for solar energy conversion systems was proposed in 1978 by the Sandia Laboratory (Hall et al., 1978) considering a specific weighted combination of different meteorological variables with notably global, diffuse horizontal and direct normal irradiances, air temperature, wind speed, relative humidity. In 2012, a new approach was proposed in the framework of the European project FP7 ENDORSE. It introduced the concept of "driver" that is defined by the user as an explicit function of the pyranometric and meteorological relevant variables to improve the representativeness of the TMY datasets with respect the specific solar energy conversion system of interest. The present study aims at comparing and benchmarking different TMY datasets considering a specific Concentrated-PV (CPV) system as the solar energy conversion system of interest. Using long-term (15+ years) time-series of high quality meteorological and pyranometric ground measurements, three types of TMY datasets generated by the following methods: the Sandia method, a simplified driver with DNI as the only representative variable and a more sophisticated driver. The latter takes into account the sensitivities of the CPV system with respect to the spectral distribution of the solar irradiance and wind speed. Different TMY datasets from the three methods have been generated considering different numbers of years in the historical dataset, ranging from 5 to 15 years. The comparisons and benchmarking of these TMY datasets are conducted considering the long-term time series of simulated CPV electric production as a reference. The results of this benchmarking clearly show that the Sandia method is not

  8. Benchmarking Non-Hardware Balance of System (Soft) Costs for U.S. Photovoltaic Systems Using a Data-Driven Analysis from PV Installer Survey Results

    SciTech Connect

    Ardani, K.; Barbose, G.; Margolis, R.; Wiser, R.; Feldman, D.; Ong, S.

    2012-11-01

    This report presents results from the first U.S. Department of Energy (DOE) sponsored, bottom-up data-collection and analysis of non-hardware balance-of-system costs--often referred to as 'business process' or 'soft' costs--for residential and commercial photovoltaic (PV) systems.

  9. Estimated performance of solar PV and wind turbine systems compared to coincident electrical demand in Minnesota

    SciTech Connect

    Artig, R.

    1995-10-01

    The Minnesota Department of Public Service (department), with the cooperation of Northern States Power (NSP) and US Department of Energy, is making a detailed study of wind and solar resources in the Buffalo Ridge area of southwestern Minnesota. The purpose of the study is to determine the viability of using a combination of wind and solar generation facilities to help meet electrical demand in the region. Through the Solar/Wind Study, five monitoring sites have been established to collect solar radiation and temperature data as well as to record wind speed and direction information at multiple elevations. In this paper, the data from the first year of the Solar/Wind Study are used to directly compare the projected hourly production of electricity from the wind and solar resources to hourly electrical demand. This study compares the potential electrical production from these renewable resources concurrent with peak or near peak occurrences in electrical demand. The electrical demand information used in this study is from two utilities: NSP, a utility that supplies electricity to a combination of urban residential, commercial, and industrial customers; and Cooperative Power (CP), which provides power primarily to suburban and rural residential customers. Estimates of the performance of solar PV systems were made using PVFORM, a simulation program from Sandia National Laboratories. Analysis of first year data indicates that the availability of electricity generated from a combination of solar and wind resources matches period of high peak demand for Northern States Power. The value of adding wind and solar generated electricity to the utility`s resource mix merits further investigation. The match between solar and wind power availability and Cooperative Power`s peak demand period is not apparent, but here, too, further study is needed.

  10. Genetic basis of resistance to systemic infection by Xanthomonas axonopodis pv. dieffenbachiae in Anthurium.

    PubMed

    Elibox, W; Umaharan, P

    2008-04-01

    The genetic basis of systemic resistance to bacterial blight disease (blight) of anthurium (Anthurium andraeanum) caused by Xanthomonas axonopodis pv. dieffenbachiae was investigated in progenies of 53 crosses involving 31 parent cultivars using segregation analysis. Inoculation of parents and progenies was achieved by injecting the petiole base of the most recent fully expanded leaf with 100 microl of 10(9) colony forming units per ml of the blight pathogen (strain X4gfp) transformed with the green fluorescent protein (GFP) gene. The time to death and the presence or absence of GFP fluorescence on newly emerging leaves was monitored over a period of 30 weeks after inoculation (WAI), on an individual plant basis. The expected resistance to susceptible ratios based on a digenic model involving two dominant genes, designated A and B, interacting according to a duplicate recessive epistasis model fitted the observed segregation ratios in the crosses. Based on the segregation ratios obtained, the parental cultivars were assigned plausible genotypes. There were significant differences (P < 0.001) in time to death following inoculation between the various genotypic designations. Cultivars with genotypes AABB, AABb, AaBB, and AaBb died within 10 WAI and designated as susceptible; AAbb and aaBB died from 18.8 to 25.6 WAI and were designated as moderately resistant; and Aabb, aaBb, and aabb produced resistant phenotypes. There was also some evidence for dosage effect especially in the highly resistant category. Hence, (AABb = AaBB = AaBb) < (aaBB = AAbb) < Aabb = aaBb = aabb). An approach to fixing resistance to blight in anthurium is discussed. PMID:18944190

  11. Improved PV system reliability results from surge evaluations at Sandia National Laboratories

    SciTech Connect

    Russell H. Bonn; Sigifredo Gonzalez

    2000-04-11

    Electrical surges on ac and dc inverter power wiring and diagnostic cables have the potential to shorten the lifetime of power electronics. These surges may be caused by either nearby lightning or capacitor switching transients. This paper contains a description of ongoing surge evaluations of PV power electronics and surge mitigation hardware at Sandia.

  12. Grid integrated distributed PV (GridPV).

    SciTech Connect

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  13. Comparison of three different methods of perturbing the potential vorticity field in mesoscale forecasts of Mediterranean heavy precipitation events: PV-gradient, PV-adjoint and PV-satellite

    NASA Astrophysics Data System (ADS)

    Vich, M.; Romero, R.; Richard, E.; Arbogast, P.; Maynard, K.

    2010-09-01

    a forecast with the corresponding perturbed initial state (PV-satellite). The non hydrostatic MM5 mesoscale model has been used to run all forecasts. The simulations are performed for a two-day period with a 22.5 km resolution domain (Domain 1 in http://mm5forecasts.uib.es) nested in the ECMWF large-scale forecast fields. The MEDEX cyclone of 10 June 2000, also known as the Montserrat Case, is a suitable testbed to compare the performance of each ensemble and the PV-satellite method. This case is characterized by an Atlantic upper-level trough and low-level cold front which generated a stationary mesoscale cyclone over the Spanish Mediterranean coast, advecting warm and moist air toward Catalonia from the Mediterranean Sea. The consequences of the resulting mesoscale convective system were 6-h accumulated rainfall amounts of 180 mm with estimated material losses to exceed 65 million euros by media. The performace of both ensemble forecasting systems and PV-satellite technique for our case study is evaluated through the verification of the rainfall field. Since the EPSs are probabilistic forecasts and the PV-satellite is deterministic, their comparison is done using the individual ensemble members. Therefore the verification procedure uses deterministic scores, like the ROC curve, the Taylor diagram or the Q-Q plot. These scores cover the different quality attributes of the forecast such as reliability, resolution, uncertainty and sharpness. The results show that the PV-satellite technique performance lies within the performance range obtained by both ensembles; it is even better than the non-perturbed ensemble member. Thus, perturbing randomly using the PV error climatology and introducing the perturbations in the zones given by each EPS captures the mismatch between PV and WV fields better than manual perturbations made by an expert forecaster, at least for this case study.

  14. Uncertainties in large space systems

    NASA Technical Reports Server (NTRS)

    Fuh, Jon-Shen

    1988-01-01

    Uncertainties of a large space system (LSS) can be deterministic or stochastic in nature. The former may result in, for example, an energy spillover problem by which the interaction between unmodeled modes and controls may cause system instability. The stochastic uncertainties are responsible for mode localization and estimation errors, etc. We will address the effects of uncertainties on structural model formulation, use of available test data to verify and modify analytical models before orbiting, and how the system model can be further improved in the on-orbit environment.

  15. Influence of System Operation Method on CO2 Emissions of PV/Solar Heat/Cogeneration System

    NASA Astrophysics Data System (ADS)

    Oke, Shinichiro; Kemmoku, Yoshishige; Takikawa, Hirofumi; Sakakibara, Tateki

    A PV/solar heat/cogeneration system is assumed to be installed in a hotel. The system is operated with various operation methods: CO2 minimum operation, fees minimum operation, seasonal operation, daytime operation and heat demand following operation. Of these five operations, the former two are virtual operations that are operated with the dynamic programming method, and the latter three are actual operations. Computer simulation is implemented using hourly data of solar radiation intensity, atmospheric temperature, electric, cooling, heating and hot water supply demands for one year, and the life-cycle CO2 emission and the total cost are calculated for every operations. The calculation results show that the virtual two and the actual three operations reduce the life-cycle CO2 emission by 21% and 13% compared with the conventional system, respectively. In regard to both the CO2 emission and the cost, there is no significant difference between the virtual two operation methods or among actual three operation methods.

  16. Minimum Capacity of NaS Battery according to Capacity of PV System in a Microgrid under 30 min Power Balancing Control

    NASA Astrophysics Data System (ADS)

    Shimakage, Toyonari; Sone, Akihito; Sumita, Jiro; Kato, Takeyoshi; Suzuoki, Yasuo

    On constructing a microgrid, it is essential to design capacity of photovoltaic power generation (PV) systems and storage batteries in accordance with a control target. In this study, we constructed a simulation model of energy control system in the microgrid used in the demonstration project. By using this model, we investigated the minimum capacity of NaS battery for different PV system capacities for keeping the target power imbalance within ±3% over 30 min. The main results are as follows. The microgrid involving 330-kW PV systems (corresponding to the actual system) needs a NaS battery capacity of at least approximately ±20kW, and PV systems with a capacity up to about 890kW can be integrated in the microgrid with a NaS battery capacity of ±500kW (corresponding to the actual system). We estimated the minimum capacity of NaS battery for different PV system capacities and clarified that the output behavior of the NaS battery and PAFC when supply and demand power imbalance over 30 min. exceeds the ±3% limit. We suggested the improved control model and showed that it is effective in decreasing the minimum capacity of NaS battery, although it has negative effects on the reduction of short-period power flow fluctuation at the grid-connection point.

  17. System and Battery Charge Control for PV-Powered AC Lighting Systems

    SciTech Connect

    Kern, G.

    1999-04-01

    This report reviews a number of issues specific to stand-alone AC lighting systems. A review of AC lighting technology is presented, which discusses the advantages and disadvantages of various lamps. The best lamps for small lighting systems are compact fluorescent. The best lamps for intermediate-size systems are high- or low-pressure sodium. Specifications for battery charging and load control are provided with the goal of achieving lamp lifetimes on the order of 16,000 to 24,000 hours and battery lifetimes of 4 to 5 years. A rough estimate of the potential domestic and global markets for stand-alone AC lighting systems is presented. DC current injection tests were performed on high-pressure sodium lamps and the test results are presented. Finally, a prototype system was designed and a prototype system controller (with battery charger and DC/AC inverter) was developed and built.

  18. Energy Management System Lowers U.S. Navy Energy Costs Through PV System Interconnection (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    To meet the U.S. Navy's energy goals, the National Renewable Energy Laboratory (NREL) and the Naval Facilities Engineering Command (NAVFAC) spent two years collaborating on demonstrations that tested market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - an energy management system - was identified as a promising method for reducing energy use and costs, and can contribute to increasing energy security.

  19. Large-Scale Information Systems

    SciTech Connect

    D. M. Nicol; H. R. Ammerlahn; M. E. Goldsby; M. M. Johnson; D. E. Rhodes; A. S. Yoshimura

    2000-12-01

    Large enterprises are ever more dependent on their Large-Scale Information Systems (LSLS), computer systems that are distinguished architecturally by distributed components--data sources, networks, computing engines, simulations, human-in-the-loop control and remote access stations. These systems provide such capabilities as workflow, data fusion and distributed database access. The Nuclear Weapons Complex (NWC) contains many examples of LSIS components, a fact that motivates this research. However, most LSIS in use grew up from collections of separate subsystems that were not designed to be components of an integrated system. For this reason, they are often difficult to analyze and control. The problem is made more difficult by the size of a typical system, its diversity of information sources, and the institutional complexities associated with its geographic distribution across the enterprise. Moreover, there is no integrated approach for analyzing or managing such systems. Indeed, integrated development of LSIS is an active area of academic research. This work developed such an approach by simulating the various components of the LSIS and allowing the simulated components to interact with real LSIS subsystems. This research demonstrated two benefits. First, applying it to a particular LSIS provided a thorough understanding of the interfaces between the system's components. Second, it demonstrated how more rapid and detailed answers could be obtained to questions significant to the enterprise by interacting with the relevant LSIS subsystems through simulated components designed with those questions in mind. In a final, added phase of the project, investigations were made on extending this research to wireless communication networks in support of telemetry applications.

  20. Modelling a reliable wind/PV/storage power system for remote radio base station sites without utility power

    NASA Astrophysics Data System (ADS)

    Bitterlin, Ian F.

    The development of photovoltaic (PV) cells has made steady progress from the early days, when only the USA space program could afford to deploy them, to now, seeing them applied to roadside applications even in our Northern European climes. The manufacturing cost per watt has fallen and the daylight-to-power conversion efficiency increased. At the same time, the perception that the sun has to be directly shining on it for a PV array to work has faded. On some of those roadside applications, particularly for remote emergency telephones or for temporary roadwork signage where a utility electrical power connection is not practical, the keen observer will spot, usually in addition to a PV array, a small wind-turbine and an electrical cabinet quite obviously (by virtue of its volume) containing a storage battery. In the UK, we have the lions share (>40%) of Europe's entire wind power resource although, despite press coverage of the "anti-wind" lobby to the contrary, we have hardly started to harvest this clean and free energy source. Taking this (established and proven) roadside solution one step further, we will consider higher power applications. A cellular phone system is one where a multitude of remote radio base stations (RBS) are required to provide geographical coverage. With networks developing into the so called "3G" technologies the need for base stations has tripled, as each 3G cell covers only 1/3 the geographical area of its "2G" counterpart. To cover >90% of the UK's topology (>97% population coverage) with 3G cellular technology will requires in excess of 12,000 radio base stations per operator network. In 2001, there were around 25,000 established sites and, with an anticipated degree of collocation by necessity, that figure is forecast to rise to >47,000. Of course, the vast majority of these sites have a convenient grid connection. However, it is easy to see that the combination of wind and PV power generation and an energy storage system may be an

  1. Solar PV O&M Standards and Best Practices - Existing Gaps and Improvement Efforts

    SciTech Connect

    Klise, Geoffrey Taylor; Balfour, John R.; Keating, T. J.

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PV systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.

  2. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Mission applications for large space antenna systems; large space antenna structural systems; materials and structures technology; structural dynamics and control technology, electromagnetics technology, large space antenna systems and the Space Station; and flight test and evaluation were examined.

  3. Lightweight IMM PV Flexible Blanket Assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  4. Supported PV module assembly

    SciTech Connect

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  5. Hybrid PV/diesel solar power system design using multi-level factor analysis optimization

    NASA Astrophysics Data System (ADS)

    Drake, Joshua P.

    Solar power systems represent a large area of interest across a spectrum of organizations at a global level. It was determined that a clear understanding of current state of the art software and design methods, as well as optimization methods, could be used to improve the design methodology. Solar power design literature was researched for an in depth understanding of solar power system design methods and algorithms. Multiple software packages for the design and optimization of solar power systems were analyzed for a critical understanding of their design workflow. In addition, several methods of optimization were studied, including brute force, Pareto analysis, Monte Carlo, linear and nonlinear programming, and multi-way factor analysis. Factor analysis was selected as the most efficient optimization method for engineering design as it applied to solar power system design. The solar power design algorithms, software work flow analysis, and factor analysis optimization were combined to develop a solar power system design optimization software package called FireDrake. This software was used for the design of multiple solar power systems in conjunction with an energy audit case study performed in seven Tibetan refugee camps located in Mainpat, India. A report of solar system designs for the camps, as well as a proposed schedule for future installations was generated. It was determined that there were several improvements that could be made to the state of the art in modern solar power system design, though the complexity of current applications is significant.

  6. A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design

    SciTech Connect

    Stevens, J.W.; Corey, G.P.

    1996-07-01

    Knowledge of the charge efficiency of lead-acid batteries near top-of-charge is important to the design of small photovoltaic systems. In order to know how much energy is required from the photovoltaic array in order to accomplish the task of meeting load, including periodic full battery charge, a detailed knowledge of the battery charging efficiency as a function of state of charge is required, particularly in the high state-of-charge regime, as photovoltaic systems are typically designed to operate in the upper 20 to 30% of battery state-of-charge. This paper presents the results of a process for determining battery charging efficiency near top-of-charge and discusses the impact of these findings on the design of small PV systems.

  7. Systems engineering for very large systems

    NASA Technical Reports Server (NTRS)

    Lewkowicz, Paul E.

    1993-01-01

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  8. Measurement system for determination of current-voltage characteristics of PV modules

    NASA Astrophysics Data System (ADS)

    Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander

    2015-09-01

    The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.

  9. Development of a low-cost integrated 20-kW ac solar tracking sub- array for grid-connected PV power system applications. Phase 1, Annual technical report, 11 July 1995--31 July 1996

    SciTech Connect

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-06-01

    The overall goal of this effort is to reduce the installed cost of utility scale grid connected photovoltaic power systems. The focus of the effort is on ``BOS`` (Balance-Of-System) component manufacturing technology, which essentially involves all PV power system engineering, manufacturing, assembly and construction tasks from the receipt of a PV module to the deliver of grid connected electricity.

  10. Dish-based high concentration PV system with Köhler optics.

    PubMed

    Coughenour, Blake M; Stalcup, Thomas; Wheelwright, Brian; Geary, Andrew; Hammer, Kimberly; Angel, Roger

    2014-03-10

    We present work at the Steward Observatory Solar Lab on a high concentration photovoltaic system in which sunlight focused by a single large paraboloidal mirror powers many small triple-junction cells. The optical system is of the XRX-Köhler type, comprising the primary reflector (X) and a ball lens (R) at the focus that reimages the primary reflector onto an array of small reflectors (X) that apportion the light to the cells. We present a design methodology that provides generous tolerance to mis-pointing, uniform illumination across individual cells, minimal optical loss and even distribution between cells, for efficient series connection. An operational prototype has been constructed with a 3.3m x 3.3m square primary reflector of 2m focal length powering 36 actively cooled triple-junction cells at 1200x concentration (geometric). The measured end-to-end system conversion efficiency is 28%, including the parasitic loss of the active cooling system. Efficiency ~32% is projected for the next system. PMID:24922230

  11. Dish-based high concentration PV system with Köhler optics.

    PubMed

    Coughenour, Blake M; Stalcup, Thomas; Wheelwright, Brian; Geary, Andrew; Hammer, Kimberly; Angel, Roger

    2014-03-10

    We present work at the Steward Observatory Solar Lab on a high concentration photovoltaic system in which sunlight focused by a single large paraboloidal mirror powers many small triple-junction cells. The optical system is of the XRX-Köhler type, comprising the primary reflector (X) and a ball lens (R) at the focus that reimages the primary reflector onto an array of small reflectors (X) that apportion the light to the cells. We present a design methodology that provides generous tolerance to mis-pointing, uniform illumination across individual cells, minimal optical loss and even distribution between cells, for efficient series connection. An operational prototype has been constructed with a 3.3m x 3.3m square primary reflector of 2m focal length powering 36 actively cooled triple-junction cells at 1200x concentration (geometric). The measured end-to-end system conversion efficiency is 28%, including the parasitic loss of the active cooling system. Efficiency ~32% is projected for the next system. PMID:24800277

  12. PV Hourly Simulation Tool

    SciTech Connect

    Dean, Jesse; Metzger, Ian

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes the option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  13. PV Hourly Simulation Tool

    Energy Science and Technology Software Center (ESTSC)

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes themore » option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  14. Analysis of Photovoltaic (PV) Module during Partial Shading based on Simplified Two-Diode Model

    NASA Astrophysics Data System (ADS)

    Chitti Babu, B.; Gurjar, Suresh; Meher, Ashish

    2015-02-01

    Generally, the characteristics of photovoltaic (PV) array are largely affected by solar temperature, solar irradiance, shading patterns, array configuration and location of shading modules. Partial shading is due to moving clouds and shadows of nearby obstacles and can cause a significant degradation in the output of PV system. Hence, the characteristics of PV array get more multifaceted with multiple peaks. The ultimate aim of the paper is to analyze the performance of PV module during such adverse condition based on simplified two-diode model. To reduce the computational time, the simplified two-diode model has a photocurrent source in parallel with two ideal diodes. Only four parameters are required to be calculated from datasheet in order to simulate the model. Moreover, the performance of PV array is evaluated at different shaded patterns and it is found that the model has less computational time and gives accurate results.

  15. Extending Performance and Evaluating Risks of PV Systems Failure Using a Fault Tree and Event Tree Approach: Analysis of the Possible Application

    SciTech Connect

    Colli A.

    2012-06-03

    Performance and reliability of photovoltaic (PV) systems are important issues in the overall evaluation of a PV plant and its components. While performance is connected to the amount of energy produced by the PV installation in the working environmental conditions, reliability impacts the availability of the system to produce the expected amount of energy. In both cases, the evaluation should be done considering information and data coming from indoor as well as outdoor tests. In this paper a way of re-thinking performance, giving it a probabilistic connotation, and connecting the two concepts of performance and reliability is proposed. The paper follows a theoretical approach and discusses the way to obtaining such information, facing benefits and problems. The proposed probabilistic performance accounts for the probability of the system to function correctly, thus passing through the complementary evaluation of the probability of system malfunctions and consequences. Scenarios have to be identified where the system is not functioning properly or at all. They are expected to be combined in a probabilistic safety analysis (PSA) based approach, providing not only the required probability, but also being capable of giving a prioritization of the risks and the most dominant scenario associated to a specific situation. This approach can offer the possibility to highlight the most critical parts of a PV system, as well as providing support in design activities identifying weak connections.

  16. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    SciTech Connect

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.

  17. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    SciTech Connect

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.

  18. Large space systems technology, 1981. [conferences

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems. Specifically, program status, structures, materials, and analyses, and control of large space systems are addressed.

  19. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume IV. Design analysis and trade-off study

    SciTech Connect

    Schwinkendorf, W.E.

    1984-09-01

    Detailed reference designs developed for optimally sized photovoltaic-thermal (PV-T) systems are presented for three selected applications. The results of trade-off analyses to determine the effects of load variations, new components, changes in location, and variations in array cost are also discussed.

  20. Bioinformatics-enabled identification of the HrpL regulon and type III secretion system effector proteins of Pseudomonas syringae pv. phaseolicola 1448A

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of Pseudomonas syringae pv. phaseolicola to cause halo blight of bean is dependent on its ability to translocate effector proteins into host cells via the Hrp type III secretion system (T3SS). To identity genes encoding type III effectors and other potential virulence factors that are r...

  1. The RpfB-Dependent Quorum Sensing Signal Turnover System Is Required for Adaptation and Virulence in Rice Bacterial Blight Pathogen Xanthomonas oryzae pv. oryzae.

    PubMed

    Wang, Xing-Yu; Zhou, Lian; Yang, Jun; Ji, Guang-Hai; He, Ya-Wen

    2016-03-01

    Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, produces diffusible signal factor (DSF) family quorum sensing signals to regulate virulence. The biosynthesis and perception of DSF family signals require components of the rpf (regulation of pathogenicity factors) cluster. In this study, we report that RpfB plays an essential role in DSF family signal turnover in X. oryzae pv. oryzae PXO99A. The production of DSF family signals was boosted by deletion of the rpfB gene and was abolished by its overexpression. The RpfC/RpfG-mediated DSF signaling system negatively regulates rpfB expression via the global transcription regulator Clp, whose activity is reversible in the presence of cyclic diguanylate monophosphate. These findings indicate that the DSF family signal turnover system in PXO99A is generally consistent with that in Xanthomonas campestris pv. campestris. Moreover, this study has revealed several specific roles of RpfB in PXO99A. First, the rpfB deletion mutant produced high levels of DSF family signals but reduced extracellular polysaccharide production, extracellular amylase activity, and attenuated pathogenicity. Second, the rpfB/rpfC double-deletion mutant was partially deficient in xanthomonadin production. Taken together, the RpfB-dependent DSF family signal turnover system is a conserved and naturally presenting signal turnover system in Xanthomonas spp., which plays unique roles in X. oryzae pv. oryzae adaptation and pathogenesis. PMID:26667598

  2. An ECF sigma factor mediated cell surface signaling system in Pseudomonas syringae pv. tomato DC3000 regulates gene expression in response to heterologous siderophores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diversity of regulatory systems encoded by bacteria provides an indication of the variety of stresses and interactions that these organisms encounter in nature. We have been investigating how the plant pathogen, Pseudomonas syringae pv. tomato DC3000, responds to iron limitation and have focuse...

  3. A survey of the Pseudomonas syringae pv. tomato DC3000 type III secretion system effector repertoire reveals several effectors that are deleterious when expressed in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The injection of nearly 30 effector proteins by the type III secretion system underlies the ability of Pseudomonas syringae pv. tomato strain DC3000 to cause disease in tomato and other host plants. The search for effector functions is complicated by redundancy within the repertoire and by plant R-g...

  4. Large space systems technology, 1980, volume 1

    NASA Technical Reports Server (NTRS)

    Kopriver, F., III (Compiler)

    1981-01-01

    The technological and developmental efforts in support of the large space systems technology are described. Three major areas of interests are emphasized: (1) technology pertient to large antenna systems; (2) technology related to large space systems; and (3) activities that support both antenna and platform systems.

  5. Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999

    SciTech Connect

    West, R.; Mackamul, K.; Duran, G.

    2000-03-06

    This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

  6. Low concentrator PV optics optimization

    NASA Astrophysics Data System (ADS)

    Sharp, Leonard; Chang, Ben

    2008-08-01

    Purpose: Cost reduction is a major focus of the solar industry. Thin film technologies and concentration systems are viable ways to reducing cost, with unique strengths and weakness for both. Most of the concentrating PV work focuses on high concentration systems for reducing energy cost. Meanwhile, many believe that low concentrators provide significant cost reduction potential while addressing the mainstream PV market with a product that acts as a flat panel replacement. This paper analyzes the relative benefit of asymmetric vs. symmetric optics for low-concentrators in light of specific PV applications. Approach: Symmetric and asymmetric concentrating PV module performance is evaluated using computer simulation to determine potential value across various geographic locations and applications. The selected optic design is modeled against standard cSi flat panels and thin film to determine application fit, system level energy density and economic value. Results: While symmetric designs may seem ideal, asymmetric designs have an advantage in energy density. Both designs are assessed for aperture, optimum concentration ratio, and ideal system array configuration. Analysis of performance across climate specific effects (diffuse, direct and circumsolar) and location specific effects (sunpath) are also presented. The energy density and energy production of low concentrators provide a compelling value proposition. More significantly, the choice of optics for a low concentrating design can affect real world performance. With the goal of maximizing energy density and return on investment, this paper presents the advantages of asymmetric optic concentration and illustrates the value of this design within specific PV applications.

  7. PV at the Pentagon

    SciTech Connect

    Bing, J.

    2000-02-01

    The US Department of Defense joins the battle against global warming with a photovoltaic installation at the Pentagon heating and refrigeration plant. Sitting in a line between the Pentagon and the Oval Office are four concentric arcs of iridescent silicon. In June 1999, the first half of this thirty kilowatt photovoltaic (PV) system was dedicated on the grounds of the heating and refrigeration plant that serves the Pentagon near Washington, DC. This first half of the system (the two center arcs) is the world's largest array composed solely of Ascension Technology's SunSine{reg{underscore}sign}300 AC modules. Each of these photovoltaic panels has its own DC to AC inverter mounted directly on its back side. The second half of the installation, brought on line in October 1999, includes a conventional DC array that powers a pair of newly developed Trace Technologies 10 kW inverters. The AC output of these two unique PV systems is combined at a central collection point and funneled into the electric grid that supplies power to the Pentagon. The project is a collaboration of the US Department of Defense (DoD) and the US Department of Energy (DOE), with cost-sharing support from Virginia Power, Johnson Controls, the Utility Photovoltaic Group (UPVG), and Applied Power Corporation. The systems were designed and installed by Ascension Technology, a division of Applied Power Corporation, with modules supplied by ASE Americas. This installation provides a unique real-world environment for researchers, utility engineers and power plant managers to test and compare the reliability, scalability, noise immunity and power quality of these two distinct approaches to PV energy production.

  8. Optimum expansion planning of an unconventional generation system operating in parallel with a large scale network

    SciTech Connect

    Kabouris, J.; Contaxis, G.C. )

    1991-09-01

    This paper describes a package developed at the National Technical University of Athens which determines the optimal expansion policy over a period of N years for a limited size generation system consisting of wind generators (WECs) and photovoltaic (PV) panels operating in parallel with a large scale network. The produced energy from the wind generators and the photovoltaic panels is directly injected to the local grid or transmitted to the interconnected system. Given the meteorological data of the installation area, historical load data, the characteristics of the proposed additions (WECs and PV panels), the cost of the energy and the associated escalation rate, the package finds the optimal expansion policy for the period of next N years, utilizing a dynamic programming algorithm.

  9. Large Space Antenna Systems Technology, 1984

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1985-01-01

    Papers are presented which provide a comprehensive review of space missions requiring large antenna systems and of the status of key technologies required to enable these missions. Topic areas include mission applications for large space antenna systems, large space antenna structural systems, materials and structures technology, structural dynamics and control technology, electromagnetics technology, large space antenna systems and the space station, and flight test and evaluation.

  10. Large Space Systems Technology, Part 2, 1981

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    Four major areas of interest are covered: technology pertinent to large antenna systems; technology related to the control of large space systems; basic technology concerning structures, materials, and analyses; and flight technology experiments. Large antenna systems and flight technology experiments are described. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. These research studies represent state-of-the art technology that is necessary for the development of large space systems. A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems.

  11. Analysis of large power systems

    NASA Technical Reports Server (NTRS)

    Dommel, H. W.

    1975-01-01

    Computer-oriented power systems analysis procedures in the electric utilities are surveyed. The growth of electric power systems is discussed along with the solution of sparse network equations, power flow, and stability studies.

  12. PV output smoothing with energy storage.

    SciTech Connect

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  13. The effectiveness of small scale Photovoltaic (PV) systems design and cost analysis simulation on Saudi Arabian Economy

    NASA Astrophysics Data System (ADS)

    Almansour, Faris Abdullah

    -Tariff PV system using HOMER. The result of the simulation has been discussed, analyzed, and plotted. We also give evidence in the thesis how useful the small PV systems can be as oppose to the larger scale system that must deal with location issues.

  14. Large and small photovoltaic powerplants

    NASA Astrophysics Data System (ADS)

    Cormode, Daniel

    The installed base of photovoltaic power plants in the United States has roughly doubled every 1 to 2 years between 2008 and 2015. The primary economic drivers of this are government mandates for renewable power, falling prices for all PV system components, 3rd party ownership models, and a generous tariff scheme known as net-metering. Other drivers include a desire for decreasing the environmental impact of electricity generation and a desire for some degree of independence from the local electric utility. The result is that in coming years, PV power will move from being a minor niche to a mainstream source of energy. As additional PV power comes online this will create challenges for the electric grid operators. We examine some problems related to large scale adoption of PV power in the United States. We do this by first discussing questions of reliability and efficiency at the PV system level. We measure the output of a fleet of small PV systems installed at Tucson Electric Power, and we characterize the degradation of those PV systems over several years. We develop methods to predict energy output from PV systems and quantify the impact of negatives such as partial shading, inverter inefficiency and malfunction of bypass diodes. Later we characterize the variability from large PV systems, including fleets of geographically diverse utility scale power plants. We also consider the power and energy requirements needed to smooth those systems, both from the perspective of an individual system and as a fleet. Finally we report on experiments from a utility scale PV plus battery hybrid system deployed near Tucson, Arizona where we characterize the ability of this system to produce smoothly ramping power as well as production of ancillary energy services such as frequency response.

  15. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    NASA Astrophysics Data System (ADS)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  16. A pseudomonas syringae pv. tomato DC3000 Hrp (Type III secretion) deletion mutant expressing the Hrp system of bean pathogen P. syringae pv. syringae 61 retains normal host specificity for tomato.

    PubMed

    Fouts, Derrick E; Badel, Jorge L; Ramos, Adela R; Rapp, Ryan A; Collmer, Alan

    2003-01-01

    The plant pathogenic species Pseudomonas syringae is divided into numerous pathovars based on host specificity. For example, P. syringae pv. tomato DC3000 is pathogenic on tomato and Arabidopsis, whereas P. syringae pv. syringae 61 is pathogenic on bean. The ability of P. syringae strains to elicit the hypersensitive response (HR) in non-hosts or be pathogenic (or parasitic) in hosts is dependent on the Hrp (type III secretion) system and effector proteins this system is thought to inject into plant cells. To test the role of the Hrp system in determining host range, the hrp/hrc gene cluster (hrpK through hrpR) was deleted from DC3000 and complemented in trans with the orthologous cluster from strain 61. Mutant CUCPB5114 expressing the bean pathogen Hrp system on plasmid pCPP2071 retained the ability of wild-type DC3000 to elicit the HR in bean, to grow and cause bacterial speck in tomato, and to elicit a cultivar-specific (gene-for-gene) HR in tomato plants carrying the Pto resistance gene. However, the symptoms produced in compatible tomato plants involved markedly reduced chlorosis, and CUCPB5114(pCPP2071) did not grow or produce symptoms in Arabidopsis Col-0 although it was weakly virulent in NahG Arabidopsis. A hypersensitive-like collapse was produced by CUCPB5114(pCPP2071) in Arabidopsis Col-0 at 1 x 10(7) CFU/ml, but only if the bacteria also expressed AvrB, which is recognized by the RPM1 resistance gene in Col-0 and confers incompatibility. These observations support the concept that the P. syringae effector proteins, rather than secretion system components, are the primary determinants of host range at both the species and cultivar levels of host specificity. PMID:12580281

  17. Accelerating PV Cost Effectiveness Through Systems Design, Engineering, and Quality Assurance: Phase I Annual Technical Report, 4 November 2004 - 3 November 2005

    SciTech Connect

    Botkin, J.

    2006-07-01

    During Phase I of this PV Manufacturing R&D subcontract, PowerLight Corporation has made significant progress toward the reduction of installed costs for commercial-scale, rooftop PV systems. PowerLight has worked to reduce operating costs by improving long-term reliability and performance through the development of more sophisticated tools used in system design and monitoring. Additionally, PowerLight has implemented design improvements with the goal of reducing cost while maintaining and/or improving product quality. As part of this effort, PowerLight also modified manufacturing and shipping processes to accommodate these design changes, streamline material flow, reduce cost, and decrease waste streams. During Phase II of this project, PowerLight plans to continue this work with the goal of reducing system cost and improving system performance.

  18. Lightweight flexible rooftop PV module

    SciTech Connect

    Izu, M.; Ovshinsky, H.C.; Whelan, K.

    1994-12-31

    Energy Conversion Devices, Inc. (ECD) and United Solar Systems Corp. (United Solar) are developing lightweight, flexible photovoltaic modules that can replace conventional roofing materials and be economically and aesthetically integrated into residential and commercial buildings. The modules will be fabricated from high-efficiency multi-junction a-Si alloy solar cells developed by ECD and United Solar. These cells are produced on thin, flexible, stainless steel substrates. Two types of products 1 ft by 10 ft overlapping PV shingles and 1.3 ft by 20 ft PV roof panels are being developed by United Solar and ECD, respectively. United Solar`s shingle type design uses a roof mounting procedures similar to those used with conventional asphalt shingles, while ECD`s PV panel uses mounting procedures conforming to metal roof systems. Thus, they can be installed on roof sheathings, replacing ordinary shingles or metal roofing panels, on a standard wood roof construction.

  19. Survey on large scale system control methods

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1987-01-01

    The problem inherent to large scale systems such as power network, communication network and economic or ecological systems were studied. The increase in size and flexibility of future spacecraft has put those dynamical systems into the category of large scale systems, and tools specific to the class of large systems are being sought to design control systems that can guarantee more stability and better performance. Among several survey papers, reference was found to a thorough investigation on decentralized control methods. Especially helpful was the classification made of the different existing approaches to deal with large scale systems. A very similar classification is used, even though the papers surveyed are somehow different from the ones reviewed in other papers. Special attention is brought to the applicability of the existing methods to controlling large mechanical systems like large space structures. Some recent developments are added to this survey.

  20. Operation of large cryogenic systems

    SciTech Connect

    Rode, C.H.; Ferry, B.; Fowler, W.B.; Makara, J.; Peterson, T.; Theilacker, J.; Walker, R.

    1985-06-01

    This report is based on the past 12 years of experiments on R and D and operation of the 27 kW Fermilab Tevatron Cryogenic System. In general the comments are applicable for all helium plants larger than 1000W (400 l/hr) and non mass-produced nitrogen plants larger than 50 tons per day. 14 refs., 3 figs., 1 tab.

  1. Optimization and life-cycle cost of health clinic PV system for a rural area in southern Iraq using HOMER software

    SciTech Connect

    Al-Karaghouli, Ali; Kazmerski, L.L.

    2010-04-15

    This paper addresses the need for electricity of rural areas in southern Iraq and proposes a photovoltaic (PV) solar system to power a health clinic in that region. The total daily health clinic load is 31.6 kW h and detailed loads are listed. The National Renewable Energy Laboratory (NREL) optimization computer model for distributed power, ''HOMER,'' is used to estimate the system size and its life-cycle cost. The analysis shows that the optimal system's initial cost, net present cost, and electricity cost is US$ 50,700, US$ 60,375, and US$ 0.238/kW h, respectively. These values for the PV system are compared with those of a generator alone used to supply the load. We found that the initial cost, net present cost of the generator system, and electricity cost are US$ 4500, US$ 352,303, and US$ 1.332/kW h, respectively. We conclude that using the PV system is justified on humanitarian, technical, and economic grounds. (author)

  2. Exploring the Economic Value of EPAct 2005's PV Tax Credits

    SciTech Connect

    Bolinger, Mark; Wiser, Ryan; Ing, Edwin

    2006-03-28

    The market for grid-connected photovoltaics (PV) in the US has grown dramatically in recent years, driven in large part by PV grant or ''buy-down'' programs in California, New Jersey, and many other states. The recent announcement of a new 11-year, $3.2 billion PV program in California suggests that state policy will continue to drive even faster growth over the next decade. Federal policy has also played a role, primarily by providing commercial PV systems access to tax benefits, including accelerated depreciation (5-year MACRS schedule) and a business energy investment tax credit (ITC). With the signing of the Energy Policy Act of 2005 (EPAct) on August 8, the federal government is poised to play a much more significant future role in supporting both commercial and residential PV systems. Specifically, EPAct increased the federal ITC for commercial PV systems from 10% to 30% of system costs, and also created a new 30% ITC (capped at $2000) for residential solar systems. Both changes went into effect on January 1, 2006, and--absent an extension (for which the solar industry has already begun lobbying)--will last for a period of two years: the new residential ITC will expire, and the 30% commercial ITC will revert back to 10%, on January 1, 2008. How much economic value do these new and expanded federal tax credits really provide to PV system purchasers? And what implications might they hold for state/utility PV grant programs? Using a generic (i.e., non-state-specific) cash flow model, this report explores these questions. We begin with a discussion of the taxability of PV grants and their interaction with federal credits, as this issue significantly affects the analysis that follows. We then calculate the incremental value of EPAct's new and expanded credits for PV systems of different sizes, and owned by different types of entities. We conclude with a discussion of potential implications for purchasers of PV systems, as well as for administrators of state

  3. NATIONAL ASSESSMENT OF EMISSIONS REDUCTION IMPACT FROM ROOFTOP PV

    EPA Science Inventory

    This effort will determine the emissions impacts to the U.S. PV generated electricity when PV systems are installed on building rooftops and employed as demand-side power supplies. The national assessment will be based on data provided by existing rooftop PV systems that have be...

  4. A Blue Light Inducible Two-Component Signal Transduction System in the Plant Pathogen Pseudomonas syringae pv. tomato☆

    PubMed Central

    Cao, Z.; Buttani, V.; Losi, A.; Gärtner, W.

    2008-01-01

    Abstract The open reading frame PSPTO2896 from the plant pathogen Pseudomonas syringae pv. tomato encodes a protein of 534 amino acids showing all salient features of a blue light-driven two-component system. The N-terminal LOV (light, oxygen, voltage) domain, potentially binding a flavin chromophore, is followed by a histidine kinase (HK) motif and a response regulator (RR). The full-length protein (PST-LOV) and, separately, the RR and the LOV+HK part (PST-LOVΔRR) were heterologously expressed and functionally characterized. The two LOV proteins showed typical LOV-like spectra and photochemical reactions, with the blue light-driven, reversible formation of a covalent flavin-cysteine bond. The fluorescence changes in the lit state of full-length PST-LOV, but not in PST-LOVΔRR, indicating a direct interaction between the LOV core and the RR module. Experiments performed with radioactive ATP uncover the light-driven kinase activity. For both PST-LOV and PST-LOVΔRR, much more radioactivity is incorporated when the protein is in the lit state. Furthermore, addition of the RR domain to the fully phosphorylated PST-LOVΔRR leads to a very fast transfer of radioactivity, indicating a highly efficient HK activity and a tight interaction between PST-LOVΔRR and RR, possibly facilitated by the LOV core itself. PMID:17905842

  5. Testing and Analysis for Lifetime Prediction of Crystalline Silicon PV Modules Undergoing Degradation by System Voltage Stress: Preprint

    SciTech Connect

    Hacke, P.; Smith, R.; Terwiliger, K.; Glick, S.; Jordan, D.; Johnston, S.; Kempe, M.; Kurtz, S.

    2012-07-01

    Acceleration factors are calculated for crystalline silicon PV modules under system voltage stress by comparing the module power during degradation outdoors to that in accelerated testing at three temperatures and 85% relative humidity. A lognormal analysis is applied to the accelerated lifetime test data considering failure at 80% of the initial module power. Activation energy of 0.73 eV for the rate of failure is determined, and the probability of module failure at an arbitrary temperature is predicted. To obtain statistical data for multiple modules over the course of degradation in-situ of the test chamber, dark I-V measurements are obtained and transformed using superposition, which is found well suited for rapid and quantitative evaluation of potential-induced degradation. It is determined that shunt resistance measurements alone do not represent the extent of power degradation. This is explained with a two-diode model analysis that shows an increasing second diode recombination current and ideality factor as the degradation in module power progresses. Failure modes of the modules stressed outdoors are examined and compared to those stressed in accelerated tests.

  6. Construction of EGFP-labeling system for visualizing the infection process of Xanthomonas axonopodis pv. citri in planta.

    PubMed

    Liu, Li-Ping; Deng, Zi-Niu; Qu, Jin-Wang; Yan, Jia-Wen; Catara, Vittoria; Li, Da-Zhi; Long, Gui-You; Li, Na

    2012-09-01

    Xanthomonas axonopodis pv. citri (Xac) is the causal agent of citrus bacterial canker, an economically important disease to world citrus industry. To monitor the infection process of Xac in different citrus plants, the enhanced green florescent protein (EGFP) visualizing system was constructed to visualize the propagation and localization in planta. First, the wild-type Xac was isolated from the diseased leaves of susceptible 'Bingtang' sweet orange, and then the isolated Xac was labeled with EGFP by triparental mating. After PCR identification, the growth kinetics and pathogenicity of the transformants were analyzed in comparison with the wild-type Xac. The EGFP-labeled bacteria were inoculated by spraying on the surface and infiltration in the mesophyll of 'Bingtang' sweet orange leaves. The bacterial cell multiplication and diffusion processes were observed directly under confocal laser scanning microscope at different intervals after inoculation. The results indicated that the EGFP-labeled Xac releasing clear green fluorescence light under fluorescent microscope showed the infection process and had the same pathogenicity as the wild type to citrus. Consequently, the labeled Xac demonstrated the ability as an efficient tool to monitor the pathogen infection. PMID:22674174

  7. Large Trapezium-type systems

    SciTech Connect

    Giulbudagian, A.L.

    1984-04-01

    Data on 11 Trapezium-type systems (TTSs) identified among the SAO-catalog OB stars in the region alpha 6-8 h, delta -40 - +5 deg and on 10 TTSs associated with reflection nebulas in the catalogs of van den Bergh (1966) and van den Bergh and Herbst (1975) are presented in tables and discussed along with other individual potential TTSs mentioned in the literature. The dimensions of the 21 TTSs range from 0.22 to 5.4 pc, as compared to an average of about 0.1 pc for the TTSs listed by Salukvadze (1978). 14 references.

  8. The Impact of Retail Rate Structures on the Economics ofCustomer-Sited PV: A Study of Commercial Installations inCalifornia

    SciTech Connect

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-06-01

    We analyze the impact of retail rate design on the economics of grid-connected commercial photovoltaic (PV) systems in California. The analysis is based on 15-minute interval building load and PV production data for 24 commercial PV installations in California, spanning a diverse set of building load shapes and geographic locations. We derive the annual bill savings per kWh generated for each PV system, under each of 21 distinct retail rates currently offered by the five largest utilities in California. We identify and explain variation in the value of bill savings attributable to differences in the structure of demand and energy charges across rates, as well as variation attributable to other factors, such as the size of the PV system relative to building load, the specific shape of the PV production profile, and the customer load profile. We also identify the optimal rate for each customer, among those rates offered as alternatives to one another, and show how the decision is driven in large measure by the size of the PV system relative to building load. The findings reported here may be of value to regulators and utilities responsible for designing retail rates, as well as to customers and PV retailers who have a need to estimate the prospective bill savings of PV systems.

  9. Analysis of off-grid hybrid wind turbine/solar PV water pumping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While many remote water pumping systems exist (e.g. mechanical windmills, solar photovoltaic , wind-electric, diesel powered), very few combine both the wind and solar energy resources to possibly improve the reliability and the performance of the system. In this paper, off-grid wind turbine (WT) a...

  10. Fire resistant PV shingle assembly

    DOEpatents

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  11. Large thermal protection system panel

    NASA Technical Reports Server (NTRS)

    Myers, Franklin K. (Inventor); Weinberg, David J. (Inventor); Tran, Tu T. (Inventor)

    2003-01-01

    A protective panel for a reusable launch vehicle provides enhanced moisture protection, simplified maintenance, and increased temperature resistance. The protective panel includes an outer ceramic matrix composite (CMC) panel, and an insulative bag assembly coupled to the outer CMC panel for isolating the launch vehicle from elevated temperatures and moisture. A standoff attachment system attaches the outer CMC panel and the bag assembly to the primary structure of the launch vehicle. The insulative bag assembly includes a foil bag having a first opening shrink fitted to the outer CMC panel such that the first opening and the outer CMC panel form a water tight seal at temperatures below a desired temperature threshold. Fibrous insulation is contained within the foil bag for protecting the launch vehicle from elevated temperatures. The insulative bag assembly further includes a back panel coupled to a second opening of the foil bag such that the fibrous insulation is encapsulated by the back panel, the foil bag, and the outer CMC panel. The use of a CMC material for the outer panel in conjunction with the insulative bag assembly eliminates the need for waterproofing processes, and ultimately allows for more efficient reentry profiles.

  12. Computer-aided modelling and analysis of PV systems: a comparative study.

    PubMed

    Koukouvaos, Charalambos; Kandris, Dionisis; Samarakou, Maria

    2014-01-01

    Modern scientific advances have enabled remarkable efficacy for photovoltaic systems with regard to the exploitation of solar energy, boosting them into having a rapidly growing position among the systems developed for the production of renewable energy. However, in many cases the design, analysis, and control of photovoltaic systems are tasks which are quite complex and thus difficult to be carried out. In order to cope with this kind of problems, appropriate software tools have been developed either as standalone products or parts of general purpose software platforms used to model and simulate the generation, transmission, and distribution of solar energy. The utilization of this kind of software tools may be extremely helpful to the successful performance evaluation of energy systems with maximum accuracy and minimum cost in time and effort. The work presented in this paper aims on a first level at the performance analysis of various configurations of photovoltaic systems through computer-aided modelling. On a second level, it provides a comparative evaluation of the credibility of two of the most advanced graphical programming environments, namely, Simulink and LabVIEW, with regard to their application in photovoltaic systems. PMID:24772007

  13. Computer-Aided Modelling and Analysis of PV Systems: A Comparative Study

    PubMed Central

    Koukouvaos, Charalambos

    2014-01-01

    Modern scientific advances have enabled remarkable efficacy for photovoltaic systems with regard to the exploitation of solar energy, boosting them into having a rapidly growing position among the systems developed for the production of renewable energy. However, in many cases the design, analysis, and control of photovoltaic systems are tasks which are quite complex and thus difficult to be carried out. In order to cope with this kind of problems, appropriate software tools have been developed either as standalone products or parts of general purpose software platforms used to model and simulate the generation, transmission, and distribution of solar energy. The utilization of this kind of software tools may be extremely helpful to the successful performance evaluation of energy systems with maximum accuracy and minimum cost in time and effort. The work presented in this paper aims on a first level at the performance analysis of various configurations of photovoltaic systems through computer-aided modelling. On a second level, it provides a comparative evaluation of the credibility of two of the most advanced graphical programming environments, namely, Simulink and LabVIEW, with regard to their application in photovoltaic systems. PMID:24772007

  14. Large Space Antenna Systems Technology, part 1

    NASA Technical Reports Server (NTRS)

    Lightner, E. B. (Compiler)

    1983-01-01

    A compilation of the unclassified papers presented at the NASA Conference on Large Space Antenna Systems Technology covers the following areas: systems, structures technology, control technology, electromagnetics, and space flight test and evaluation.

  15. New Concepts for High-Intensity PV Modules for Use with Dish Concentrator Systems

    SciTech Connect

    Ward, J. S.; Duda, A.; Coutts, T. J.; Kurtz, S. R.

    1998-10-06

    In this paper we report on our efforts to fabricate monolithically interconnected modules (MIMS) from GaAs device structures. The small size of the component cells comprising the MIM allows for operation at very high flux densities. This relaxes the requirement for a small spot-size to be generated by the optics. The devices are grown on semi-insulating substrates, allowing the incorporation of an extremely efficient back surface reflector (BSR). This BSR is an effective tool for thermal management of the array. The possibility of using this device configuration in conjunction with the large dish concentrators developed by the solar thermal community is examined. The advantages of using multijunction devices for this application is also discussed.

  16. New concepts for high-intensity PV modules for use with dish concentrator systems

    SciTech Connect

    Ward, J.S.; Duda, A.; Coutts, T.J.; Kurtz, S.R.

    1999-03-01

    In this paper we report on our efforts to fabricate monolithically interconnected modules (MIMs) from GaAs device structures. The small size of the component cells comprising the MIM allows for operation at very high flux densities. This relaxes the requirement for a small spotsize to be generated by the optics. The devices are grown on semi-insulating substrates, allowing the incorporation of an extremely efficient back surface reflector (BSR). This BSR is an effective tool for thermal management of the array. The possibility of using this device configuration in conjunction with the large dish concentrators developed by the solar thermal community is examined. The advantages of using multijunction devices for this application is also discussed. {copyright} {ital 1999 American Institute of Physics.}

  17. Maximizing Solar Energy Capture Through Multi-Azimuth PV Arrays

    NASA Astrophysics Data System (ADS)

    Dahl, T. S.

    2013-12-01

    By orienting photovoltaic (PV) arrays in multiple directions, significantly greater energy capture can be realized in high latitude locations. Conventional wisdom dictates orienting PV panels south (in the northern hemisphere), but multi-azimuth arrays can confer several advantages during the summer months: - Nearly even power production over a large part of the day (20+ hours) - Reduced issues with power quality in grid interactive systems - Support higher loads in independent, off-grid systems - Reduced energy storage (battery) requirements in off-grid systems This poster will present two multi-azimuth systems, one a grid-interactive system deployed at Summit Station, Greenland; the second an independent, off-grid system supporting a science project near Toolik Field Station, Alaska.

  18. Improved Large-Field Focusing Schlieren System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1993-01-01

    System used to examine complicated two- and three-dimensional flows. High-brightness large-field focusing schlieren system incorporates Fresnel lens instead of glass diffuser. In system with large field of view, image may also be very large. Relay optical subsystem minifies large image while retaining all of light. Facilities candidates for use of focusing schlieren include low-speed wind and water tunnels. Heated or cooled flow tracers or injected low- or high-density tracers used to make flows visible for photographic recording.

  19. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  20. Islanding detection technique using wavelet energy in grid-connected PV system

    NASA Astrophysics Data System (ADS)

    Kim, Il Song

    2016-08-01

    This paper proposes a new islanding detection method using wavelet energy in a grid-connected photovoltaic system. The method detects spectral changes in the higher-frequency components of the point of common coupling voltage and obtains wavelet coefficients by multilevel wavelet analysis. The autocorrelation of the wavelet coefficients can clearly identify islanding detection, even in the variations of the grid voltage harmonics during normal operating conditions. The advantage of the proposed method is that it can detect islanding condition the conventional under voltage/over voltage/under frequency/over frequency methods fail to detect. The theoretical method to obtain wavelet energies is evolved and verified by the experimental result.

  1. Real-time Series Resistance Monitoring in PV Systems; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Deceglie, M. G.; Silverman, T. J.; Marion, B.; Kurtz, S. R.

    2015-06-14

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on micro-inverters or module-integrated electronics, but it can also be extended to full strings. Automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We describe the method in detail and describe a sample application to data collected from modules operating in the field.

  2. National Energy with Weather System Simultator (NEWS) Sets Bounds on Cost Effective Wind and Solar PV Deployment in the USA without the Use of Storage.

    NASA Astrophysics Data System (ADS)

    Clack, C.; MacDonald, A. E.; Alexander, A.; Dunbar, A. D.; Xie, Y.; Wilczak, J. M.

    2014-12-01

    The importance of weather-driven renewable energies for the United States energy portfolio is growing. The main perceived problems with weather-driven renewable energies are their intermittent nature, low power density, and high costs. In 2009, we began a large-scale investigation into the characteristics of weather-driven renewables. The project utilized the best available weather data assimilation model to compute high spatial and temporal resolution power datasets for the renewable resources of wind and solar PV. The weather model used is the Rapid Update Cycle for the years of 2006-2008. The team also collated a detailed electrical load dataset for the contiguous USA from the Federal Energy Regulatory Commission for the same three-year period. The coincident time series of electrical load and weather data allows the possibility of temporally correlated computations for optimal design over large geographic areas. The past two years have seen the development of a cost optimization mathematic model that designs electric power systems. The model plans the system and dispatches it on an hourly timescale. The system is designed to be reliable, reduce carbon, reduce variability of renewable resources and move the electricity about the whole domain. The system built would create the infrastructure needed to reduce carbon emissions to 0 by 2050. The advantages of the system is reduced water demain, dual incomes for farmers, jobs for construction of the infrastructure, and price stability for energy. One important simplified test that was run included existing US carbon free power sources, natural gas power when needed, and a High Voltage Direct Current power transmission network. This study shows that the costs and carbon emissions from an optimally designed national system decrease with geographic size. It shows that with achievable estimates of wind and solar generation costs, that the US could decrease its carbon emissions by up to 80% by the early 2030s, without an

  3. Real-Time Series Resistance Monitoring in PV Systems Without the Need for IV Curves

    SciTech Connect

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-06-14

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting IV curves or constructing full series-resistance-free IV curves. RTSR is most readily deployable at the module level on micro-inverters or module-integrated electronics, but it can also be extended to full strings. Automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We describe the method in detail and describe a sample application to data collected from modules operating in the field.

  4. The ColRS system of Xanthomonas oryzae pv. oryzae is required for virulence and growth in iron-limiting conditions.

    PubMed

    Subramoni, Sujatha; Pandey, Alok; Vishnu Priya, M R; Patel, Hitendra Kumar; Sonti, Ramesh V

    2012-09-01

    Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight of rice, produces siderophores only under iron-limiting conditions. We screened 15 400 mTn5-induced mutants of X. oryzae pv. oryzae and isolated 27 mutants that produced siderophores even under iron-replete conditions. We found that the mTn5 insertions in 25 of these mutants were in or close to six genes. Mutants with insertions in five of these genes [colS, XOO1806 (a conserved hypothetical protein), acnB, prpR and prpB] exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. Insertions in a sixth gene, XOO0007 (a conserved hypothetical protein), were found to affect the ability to grow on iron-limiting medium, but did not affect the virulence. Targeted gene disruptants for colR (encoding the predicted cognate regulatory protein for ColS) also exhibited a deficiency for growth on iron-limiting medium and a decrease in virulence. colR and colS mutants were defective in the elicitation of hypersensitive response symptoms on the nonhost tomato. In addition, colR and colS mutants induced a rice basal defence response, suggesting that they are compromised in the suppression of host innate immunity. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated that a functional ColRS system is required for the optimal expression of several genes encoding components of the type 3 secretion system (T3SS) of X. oryzae pv. oryzae. Our results demonstrate the role of several novel genes, including colR/colS, in the promotion of growth on iron-limiting medium and the virulence of X. oryzae pv. oryzae. PMID:22257308

  5. Evolution of integrated panel structural design and interfaces for PV power plants

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Anderson, A. J.; Robertson, R. E.

    1983-01-01

    The evolution of integrated photovoltaic (PV) panel design at ARCO Solar is discussed. Historically, framed PV modules of about 1 x 4-ft size were individually mounted in the field on fixed support structures and interconnected electrically with cables to build higher-power arrays. When ARCO Solar saw the opportunity in 1982 to marry its PV modules with state-of-the-art heliostat trackers developed by ARCO Power Systems, it became obvious that mounting individual modules was impractical. For this project, the framed modules were factory-assembled into panels and interconnected with cables before being mounted on the trackers. Since then, ARCO Solar made considerable progress and gained substantial experience in the design and fabrication of large PV panels. Constraints and criteria considered in these design activities included static and dynamic loads; assembly and transportation equipment and logistics, structural and electrical interfaces, and safety and grounding concerns.

  6. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    SciTech Connect

    Davidson, Carolyn; Gagnon, Pieter; Denholm, Paul; Margolis, Robert

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  7. Updated Proposal for a Guide for Quality Management Systems for PV Manufacturing. Supplemental Requirements to ISO 9001-2008

    SciTech Connect

    Ramu, Govind; Yamamichi, Masaaki; Zhou, Wei; Mikonowicz, Alex; Lokanath, Sumanth; Eguchi, Yoshihito; Norum, Paul; Kurtz, Sarah

    2015-03-01

    The goal of this Technical Specification is to provide a guideline for manufacturers of photovoltaic (PV) modules to produce modules that, once the design is proven to meet the quality and reliability requirements, replicate the design on an industrial scale without compromising its consistency with the requirements.

  8. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of

  9. Primary propulsion/large space system interactions

    NASA Technical Reports Server (NTRS)

    Dergance, R. H.

    1980-01-01

    Three generic types of structural concepts and nonstructural surface densities were selected and combined to represent potential LSS applications. The design characteristics of various classes of large space systems that are impacted by primary propulsion thrust required to effect orbit transfer were identified. The effects of propulsion system thrust-to-mass ratio, thrust transients, and performance on the mass, area, and orbit transfer characteristics of large space systems were determined.

  10. PV_LIB Toolbox v. 1.3

    Energy Science and Technology Software Center (ESTSC)

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system’s plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms aremore » documented in openly available literature with the appropriate references included in comments within the code.« less

  11. PV_LIB Toolbox v. 1.3

    SciTech Connect

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system’s plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.

  12. A case for Large Space Systems Technology

    NASA Technical Reports Server (NTRS)

    Huckins, E. K., III

    1980-01-01

    The NASA Large Space Systems Technology (LSST) program, devoted to the development of Space Shuttle-deployable orbiting structures, is reviewed. The LSST program elements are: antennas, space platforms, assembly equipment and devices, surface sensors and control, control and stabilization, and analysis and design systems. Among the specific prospective applications for this technology base may be counted: multipurpose platforms, materials experimentation facilities, energy satellites, large optical and radio arrays, and communications platforms.

  13. Heritage Park Facilities PV Project

    SciTech Connect

    Hobaica, Mark

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  14. Virulence and in planta movement of Xanthomonas hortorum pv. pelargonii are affected by the diffusible signal factor (DSF)-dependent quorum sensing system.

    PubMed

    Barel, Victoria; Chalupowicz, Laura; Barash, Isaac; Sharabani, Galit; Reuven, Michal; Dror, Orit; Burdman, Saul; Manulis-Sasson, Shulamit

    2015-09-01

    Xanthomonas hortorum pv. pelargonii (Xhp), the causal agent of bacterial blight in pelargonium, is the most threatening bacterial disease of this ornamental worldwide. To gain an insight into the regulation of virulence in Xhp, we have disrupted the quorum sensing (QS) genes, which mediate the biosynthesis and sensing of the diffusible signal factor (DSF). Mutations in rpfF (encoding the DSF synthase) and rpfC (encoding the histidine sensor kinase of the two-component system RfpC/RpfG) and overexpression of rpfF showed a significant reduction in incidence and severity of the disease on pelargonium. Confocal laser scanning microscopy images of inoculated plants with a green fluorescent protein (GFP)-labelled wild-type strain showed that the pathogen is homogeneously dispersed in the lumen of xylem vessels, reaching the apex and invading the intercellular spaces of the leaf mesophyll tissue within 21 days. In contrast, the rpfF and rpfC knockout mutants, as well as the rpfF-overexpressing strain, remained confined to the vicinity of the inoculation site. The rpfF and rpfC mutants formed large incoherent aggregates in the xylem vessels that might interfere with upward movement of the bacterium within the plant. Both mutants also formed extended aggregates under in vitro conditions, whereas the wild-type strain formed microcolonies. Expression levels of putative virulence genes in planta were substantially reduced within 48 h after inoculation with the QS mutants when compared with the wild-type. The results presented indicate that an optimal DSF concentration is crucial for successful colonization and virulence of Xhp in pelargonium. PMID:25530086

  15. Very Large System Dynamics Models - Lessons Learned

    SciTech Connect

    Jacob J. Jacobson; Leonard Malczynski

    2008-10-01

    This paper provides lessons learned from developing several large system dynamics (SD) models. System dynamics modeling practice emphasize the need to keep models small so that they are manageable and understandable. This practice is generally reasonable and prudent; however, there are times that large SD models are necessary. This paper outlines two large SD projects that were done at two Department of Energy National Laboratories, the Idaho National Laboratory and Sandia National Laboratories. This paper summarizes the models and then discusses some of the valuable lessons learned during these two modeling efforts.

  16. Improvements of hybrid PV-T solar energy systems using Amlouk-Boubaker optothermal expansivity optimizing abacus sketch

    SciTech Connect

    Boubaker, K.; Amlouk, M.

    2010-10-15

    This study is a prelude to the definition of a new synthetic parameter inserted in a 2D abacus. This parameter: the Amlouk-Boubaker optothermal expansivity <{psi}{sub AB}>, is defined, for a given PV-T material, as a thermal diffusivity-to-optical effective absorptivity ratio. This parameter's unit evokes a heat flow velocity inside the material. Consequently, the parameter {psi}{sub AB} could be combined with the already known bandgap energy E{sub g}, in order to establish a 2D abacus. A sketched scheme of the 2D abacus is proposed as a guide for investigation and evaluation of PV-T candidate materials like metal oxides, amorphous silicon, zinc-doped binary compounds, and hydrogenated amorphous carbon. Using this abacus, designers will be able to compare solar energy-related materials on the basis of conjoint optical and thermal efficiency. (author)

  17. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    PubMed

    Dale, Michael; Benson, Sally M

    2013-04-01

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors. PMID:23441588

  18. Comparative density of CCK- and PV-GABA cells within the cortex and hippocampus

    PubMed Central

    Whissell, Paul D.; Cajanding, Janine D.; Fogel, Nicole; Kim, Jun Chul

    2015-01-01

    Cholecystokinin (CCK)- and parvalbumin (PV)-expressing neurons constitute the two major populations of perisomatic GABAergic neurons in the cortex and the hippocampus. As CCK- and PV-GABA neurons differ in an array of morphological, biochemical and electrophysiological features, it has been proposed that they form distinct inhibitory ensembles which differentially contribute to network oscillations and behavior. However, the relationship and balance between CCK- and PV-GABA neurons in the inhibitory networks of the brain is currently unclear as the distribution of these cells has never been compared on a large scale. Here, we systemically investigated the distribution of CCK- and PV-GABA cells across a wide number of discrete forebrain regions using an intersectional genetic approach. Our analysis revealed several novel trends in the distribution of these cells. While PV-GABA cells were more abundant overall, CCK-GABA cells outnumbered PV-GABA cells in several subregions of the hippocampus, medial prefrontal cortex and ventrolateral temporal cortex. Interestingly, CCK-GABA cells were relatively more abundant in secondary/association areas of the cortex (V2, S2, M2, and AudD/AudV) than they were in corresponding primary areas (V1, S1, M1, and Aud1). The reverse trend was observed for PV-GABA cells. Our findings suggest that the balance between CCK- and PV-GABA cells in a given cortical region is related to the type of processing that area performs; inhibitory networks in the secondary cortex tend to favor the inclusion of CCK-GABA cells more than networks in the primary cortex. The intersectional genetic labeling approach employed in the current study expands upon the ability to study molecularly defined subsets of GABAergic neurons. This technique can be applied to the investigation of neuropathologies which involve disruptions to the GABAergic system, including schizophrenia, stress, maternal immune activation and autism. PMID:26441554

  19. Workflow management in large distributed systems

    NASA Astrophysics Data System (ADS)

    Legrand, I.; Newman, H.; Voicu, R.; Dobre, C.; Grigoras, C.

    2011-12-01

    The MonALISA (Monitoring Agents using a Large Integrated Services Architecture) framework provides a distributed service system capable of controlling and optimizing large-scale, data-intensive applications. An essential part of managing large-scale, distributed data-processing facilities is a monitoring system for computing facilities, storage, networks, and the very large number of applications running on these systems in near realtime. All this monitoring information gathered for all the subsystems is essential for developing the required higher-level services—the components that provide decision support and some degree of automated decisions—and for maintaining and optimizing workflow in large-scale distributed systems. These management and global optimization functions are performed by higher-level agent-based services. We present several applications of MonALISA's higher-level services including optimized dynamic routing, control, data-transfer scheduling, distributed job scheduling, dynamic allocation of storage resource to running jobs and automated management of remote services among a large set of grid facilities.

  20. GridPV Toolbox

    Energy Science and Technology Software Center (ESTSC)

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  1. GridPV Toolbox

    SciTech Connect

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  2. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  3. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  4. Large autonomous spacecraft electrical power system (LASEPS)

    NASA Technical Reports Server (NTRS)

    Dugal-Whitehead, Norma R.; Johnson, Yvette B.

    1992-01-01

    NASA - Marshall Space Flight Center is creating a large high voltage electrical power system testbed called LASEPS. This testbed is being developed to simulate an end-to-end power system from power generation and source to loads. When the system is completed it will have several power configurations, which will include several battery configurations. These configurations are: two 120 V batteries, one or two 150 V batteries, and one 250 to 270 V battery. This breadboard encompasses varying levels of autonomy from remote power converters to conventional software control to expert system control of the power system elements. In this paper, the construction and provisions of this breadboard are discussed.

  5. Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004

    SciTech Connect

    Keshner, M. S.; Arya, R.

    2004-10-01

    Hewlett Packard has created a design for a ''Solar City'' factory that will process 30 million sq. meters of glass panels per year and produce 2.1-3.6 GW of solar panels per year-100x the volume of a typical, thin-film, solar panel manufacturer in 2004. We have shown that with a reasonable selection of materials, and conservative assumptions, this ''Solar City'' can produce solar panels and hit the price target of $1.00 per peak watt (6.5x-8.5x lower than prices in 2004) as the total price for a complete and installed rooftop (or ground mounted) solar energy system. This breakthrough in the price of solar energy comes without the need for any significant new invention. It comes entirely from the manufacturing scale of a large plant and the cost savings inherent in operating at such a large manufacturing scale. We expect that further optimizations from these simple designs will lead to further improvements in cost. The manufacturing process and cost depend on the choice for the active layer that converts sunlight into electricity. The efficiency by which sunlight is converted into electricity can range from 7% to 15%. This parameter has a large effect on the overall price per watt. There are other impacts, as well, and we have attempted to capture them without creating undue distractions. Our primary purpose is to demonstrate the impact of large-scale manufacturing. This impact is largely independent of the choice of active layer. It is not our purpose to compare the pro's and con's for various types of active layers. Significant improvements in cost per watt can also come from scientific advances in active layers that lead to higher efficiency. But, again, our focus is on manufacturing gains and not on the potential advances in the basic technology.

  6. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  7. Electrical system for a large cogeneration plant

    SciTech Connect

    Arvay, G.J. ); Smith, R.T. )

    1992-01-01

    The electrical system, interface, commissioning, and operations requirements of a major multiunit cogeneration plant interconnected with a large utility system through a 230-kV sulfur hexafluoride (SF{sub 6}) gas-insulated substation (GIS) are complex and demanding. This paper describes the electrical requirements, including utility interfaces, engineering, and on-site testing, as applied to the execution of a large, multiunit turnkey cogeneration project in California. The benefits of careful engineering efforts are shown to result in timely and cost effective completion of engineering, manufacturing, installation, testing, and commercial operation.

  8. Formal Verification of Large Software Systems

    NASA Technical Reports Server (NTRS)

    Yin, Xiang; Knight, John

    2010-01-01

    We introduce a scalable proof structure to facilitate formal verification of large software systems. In our approach, we mechanically synthesize an abstract specification from the software implementation, match its static operational structure to that of the original specification, and organize the proof as the conjunction of a series of lemmas about the specification structure. By setting up a different lemma for each distinct element and proving each lemma independently, we obtain the important benefit that the proof scales easily for large systems. We present details of the approach and an illustration of its application on a challenge problem from the security domain

  9. [Large vessels vasculopathy in systemic sclerosis].

    PubMed

    Tejera Segura, Beatriz; Ferraz-Amaro, Iván

    2015-12-01

    Vasculopathy in systemic sclerosis is a severe, in many cases irreversible, manifestation that can lead to amputation. While the classical clinical manifestations of the disease have to do with the involvement of microcirculation, proximal vessels of upper and lower limbs can also be affected. This involvement of large vessels may be related to systemic sclerosis, vasculitis or atherosclerotic, and the differential diagnosis is not easy. To conduct a proper and early diagnosis, it is essential to start prompt appropriate treatment. In this review, we examine the involvement of large vessels in scleroderma, an understudied manifestation with important prognostic and therapeutic implications. PMID:25726305

  10. Limits and Economic Effects of Distributed PV Generation in North and South Carolina

    NASA Astrophysics Data System (ADS)

    Holt, Kyra Moore

    The variability of renewable sources, such as wind and solar, when integrated into the electrical system must be compensated by traditional generation sources in-order to maintain the constant balance of supply and demand required for grid stability. The goal of this study is to analyze the effects of increasing large levels of solar Photovoltaic (PV) penetration (in terms of a percentage of annual energy production) on a test grid with similar characteristics to the Duke Energy Carolinas (DEC) and Progress Energy Carolinas (PEC) regions of North and South Carolina. PV production is modeled entering the system at the distribution level and regional PV capacity is based on household density. A gridded hourly global horizontal irradiance (GHI) dataset is used to capture the variable nature of PV generation. A unit commitment model (UCM) is then used determine the hourly dispatch of generators based on generator parameters and costs to supply generation to meet demand. Annual modeled results for six different scenarios are evaluated to determine technical, environmental and economic effects of varying levels of distributed PV penetration on the system. This study finds that the main limiting factor for PV integration in the DEC and PEC balancing authority regions is defined by the large generating capacity of base-load nuclear plants within the system. This threshold starts to affect system stability at integration levels of 5.7%. System errors, defined by imbalances caused by over or under generation with respect to demand, are identified in the model however the validity of these errors in real world context needs further examination due to the lack of high frequency irradiance data and modeling limitations. Operational system costs decreased as expected with PV integration although further research is needed to explore the impacts of the capital costs required to achieve the penetration levels found in this study. PV system generation was found to mainly displace

  11. Breaking through market barriers with an improved sizing method: Case study of a stand-alone PV system in the northern Sudan

    SciTech Connect

    Lewis, G. )

    1990-12-01

    According to the sizing methodology used here, a stand-alone photovoltaic irrigation water-pumping system for installation in northern Sudan would cost less than anticipated by other sizing methods. This method makes use of the concept of system reliability or availability without the attendant computational complexity or unwieldiness associated with many other sizing methodologies presented in the literature. Thus, two barriers to the use of photovoltaic systems for electricity generation are addressed by an improved method of estimation. One is the commonly cited claim that PV systems are too costly. The other is that the computer-aided design methods for predicting performance are too complex or difficult to use. This makes one wonder if other objections to the use of renewable-energy technologies could be overcome through improving methods of specifying systems. 19 refs., 4 figs., 1 tab.

  12. Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping

    NASA Astrophysics Data System (ADS)

    Shimanovich, Klimentiy; Bouhadana, Yaniv; Keller, David A.; Rühle, Sven; Anderson, Assaf Y.; Zaban, Arie

    2014-05-01

    The electrical properties of metal oxides play a crucial role in the development of new photovoltaic (PV) systems. Here we demonstrate a general approach for the determination and analysis of these properties in thin films of new metal oxide based PV materials. A high throughput electrical scanning system, which facilitates temperature dependent measurements at different atmospheres for highly resistive samples, was designed and constructed. The instrument is capable of determining conductivity and activation energy values for relatively large sample areas, of about 72 × 72 mm2, with the implementation of geometrical correction factors. The efficiency of our scanning system was tested using two different samples of CuO and commercially available Fluorine doped tin oxide coated glass substrates. Our high throughput tool was able to identify the electrical properties of both resistive metal oxide thin film samples with high precision and accuracy. The scanning system enabled us to gain insight into transport mechanisms with novel compositions and to use those insights to make smart choices when choosing materials for our multilayer thin film all oxide photovoltaic cells.

  13. Four-point probe electrical resistivity scanning system for large area conductivity and activation energy mapping.

    PubMed

    Shimanovich, Klimentiy; Bouhadana, Yaniv; Keller, David A; Rühle, Sven; Anderson, Assaf Y; Zaban, Arie

    2014-05-01

    The electrical properties of metal oxides play a crucial role in the development of new photovoltaic (PV) systems. Here we demonstrate a general approach for the determination and analysis of these properties in thin films of new metal oxide based PV materials. A high throughput electrical scanning system, which facilitates temperature dependent measurements at different atmospheres for highly resistive samples, was designed and constructed. The instrument is capable of determining conductivity and activation energy values for relatively large sample areas, of about 72 × 72 mm(2), with the implementation of geometrical correction factors. The efficiency of our scanning system was tested using two different samples of CuO and commercially available Fluorine doped tin oxide coated glass substrates. Our high throughput tool was able to identify the electrical properties of both resistive metal oxide thin film samples with high precision and accuracy. The scanning system enabled us to gain insight into transport mechanisms with novel compositions and to use those insights to make smart choices when choosing materials for our multilayer thin film all oxide photovoltaic cells. PMID:24880411

  14. Quality Function Deployment for Large Systems

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1992-01-01

    Quality Function Deployment (QFD) is typically applied to small subsystems. This paper describes efforts to extend QFD to large scale systems. It links QFD to the system engineering process, the concurrent engineering process, the robust design process, and the costing process. The effect is to generate a tightly linked project management process of high dimensionality which flushes out issues early to provide a high quality, low cost, and, hence, competitive product. A pre-QFD matrix linking customers to customer desires is described.

  15. System dynamic model and charging control of lead-acid battery for stand-alone solar PV system

    SciTech Connect

    Huang, B.J.; Hsu, P.C.; Wu, M.S.; Ho, P.Y.

    2010-05-15

    The lead-acid battery which is widely used in stand-alone solar system is easily damaged by a poor charging control which causes overcharging. The battery charging control is thus usually designed to stop charging after the overcharge point. This will reduce the storage energy capacity and reduce the service time in electricity supply. The design of charging control system however requires a good understanding of the system dynamic behaviour of the battery first. In the present study, a first-order system dynamics model of lead-acid battery at different operating points near the overcharge voltage was derived experimentally, from which a charging control system based on PI algorithm was developed using PWM charging technique. The feedback control system for battery charging after the overcharge point (14 V) was designed to compromise between the set-point response and the disturbance rejection. The experimental results show that the control system can suppress the battery voltage overshoot within 0.1 V when the solar irradiation is suddenly changed from 337 to 843 W/m{sup 2}. A long-term outdoor test for a solar LED lighting system shows that the battery voltage never exceeded 14.1 V for the set point 14 V and the control system can prevent the battery from overcharging. The test result also indicates that the control system is able to increase the charged energy by 78%, as compared to the case that the charging stops after the overcharge point (14 V). (author)

  16. PV Derived Data for Predicting Performance; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Marion, Bill

    2015-09-14

    A method is described for providing solar irradiance data for modeling PV performance by using measured PV performance data and back-solving for the unknown direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI), which can then be used to model the performance of PV systems of any size, PV array tilt, or PV array azimuth orientation. Ideally situated for using the performance data from PV modules with micro-inverters, the PV module operating current is used to determine the global tilted irradiance (GTI), and a separation model is then used to determine the DNI and DHI from the GTI.

  17. Camera Systems Rapidly Scan Large Structures

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Needing a method to quickly scan large structures like an aircraft wing, Langley Research Center developed the line scanning thermography (LST) system. LST works in tandem with a moving infrared camera to capture how a material responds to changes in temperature. Princeton Junction, New Jersey-based MISTRAS Group Inc. now licenses the technology and uses it in power stations and industrial plants.

  18. Global Alignment System for Large Genomic Sequencing

    Energy Science and Technology Software Center (ESTSC)

    2002-03-01

    AVID is a global alignment system tailored for the alignment of large genomic sequences up to megabases in length. Features include the possibility of one sequence being in draft form, fast alignment, robustness and accuracy. The method is an anchor based alignment using maximal matches derived from suffix trees.

  19. Ketoglutarate Transport Protein KgtP Is Secreted through the Type III Secretion System and Contributes to Virulence in Xanthomonas oryzae pv. oryzae

    PubMed Central

    Guo, Wei; Cai, Lu-Lu; Zou, Hua-Song; Ma, Wen-Xiu; Liu, Xi-Ling; Zou, Li-Fang; Li, Yu-Rong

    2012-01-01

    The phytopathogenic prokaryote Xanthomonas oryzae pv. oryzae is the causal agent of bacterial leaf blight (BB) of rice and utilizes a type III secretion system (T3SS) to deliver T3SS effectors into rice cells. In this report, we show that the ketoglutarate transport protein (KgtP) is secreted in an HpaB-independent manner through the T3SS of X. oryzae pv. oryzae PXO99A and localizes to the host cell membrane for α-ketoglutaric acid export. kgtP contained an imperfect PIP box (plant-inducible promoter) in the promoter region and was positively regulated by HrpX and HrpG. A kgtP deletion mutant was impaired in bacterial virulence and growth in planta; furthermore, the mutant showed reduced growth in minimal media containing α-ketoglutaric acid or sodium succinate as the sole carbon source. The reduced virulence and the deficiency in α-ketoglutaric acid utilization by the kgtP mutant were restored to wild-type levels by the presence of kgtP in trans. The expression of OsIDH, which is responsible for the synthesis of α-ketoglutaric acid in rice, was enhanced when KgtP was present in the pathogen. To our knowledge, this is the first report demonstrating that KgtP, which is regulated by HrpG and HrpX and secreted by the T3SS in Xanthomonas oryzae pv. oryzae, transports α-ketoglutaric acid when the pathogen infects rice. PMID:22685129

  20. Efficient Power Converters for PV Arrays : Scalable Submodule Power Conversion for Utility-Scale Photovoltaics

    SciTech Connect

    2012-02-23

    Solar ADEPT Project: SolarBridge is developing a new power conversion technique to improve the energy output of PV power plants. This new technique is specifically aimed at large plants where many solar panels are connected together. SolarBridge is correcting for the inefficiencies that occur when two solar panels that encounter different amounts of sun are connected together. In most conventional PV system, the weakest panel limits the energy production of the entire system. That’s because all of the energy collected by the PV system feeds into a single collection point where a central inverter then converts it into useable energy for the grid. SolarBridge has found a more efficient and cost-effective way to convert solar energy, correcting these power differences before they reach the grid.

  1. EFG Technology and Diagnostic R&D for Large-Scale PV Manufacturing; Final Subcontract Report, 1 March 2002 - 31 March 2005

    SciTech Connect

    Kalejs, J.; Aurora, P.; Bathey, B.; Cao, J.; Doedderlein, J.; Gonsiorawski, R.; Heath, B.; Kubasti, J.; Mackintosh, B.; Ouellette, M.; Rosenblum, M.; Southimath, S.; Xavier, G.

    2005-10-01

    The objective of this subcontract was to carry out R&D to advance the technology, processes, and performance of RWE Schott-Solar's wafer, cell, and module manufacturing lines, and help configure these lines for scaling up of edge-defined, film-fed growth (EFG) ribbon technology to the 50-100 MW PV factory level. EFG ribbon manufacturing continued to expand during this subcontract period and now has reached a capacity of 40 MW. EFG wafer products were diversified over this time period. In addition to 10 cm x 10 cm and 10 cm x 15 cm wafer areas, which were the standard products at the beginning of this program, R&D has focused on new EFG technology to extend production to 12.5 cm x 12.5 cm EFG wafers. Cell and module production also has continued to expand in Billerica. A new 12-MW cell line was installed and brought on line in 2003. R&D on this subcontract improved cell yield and throughput, and optimized the cell performance, with special emphasis on work to speed up wafer transfer, hence enhancing throughput. Improvements of wafer transfer processes during this program have raised cell line capacity from 12 MW to over 18 MW. Optimization of module manufacturing processes was carried out on new equipment installed during a manufacturing upgrade in Billerica to a 12-MW capacity to improve yield and reliability of products.

  2. Solar Access to Public Capital (SAPC) Working Group: Best Practices in PV System Installation; Version 1.0, March 2015; Period of Performance, October 2014 - September 2015

    SciTech Connect

    Doyle, C.; Truitt, A.; Inda, D.; Lawrence, R.; Lockhart, R.; Golden, M.

    2015-03-01

    The following Photovoltaics Installation Best Practices Guide is one of several work products developed by the Solar Access to Public Capital (SAPC) working group, which works to open capital market investment. SAPC membership includes over 450 leading solar developers, financiers and capital managers, law firms, rating agencies, accounting and engineering firms, and other stakeholders engaged in solar asset deployment. SAPC activities are directed toward foundational elements necessary to pool project cash flows into tradable securities: standardization of power purchase and lease contracts for residential and commercial end customers; development of performance and credit data sets to facilitate investor due diligence activities; comprehension of risk perceived by rating agencies; and the development of best practice guides for PV system installation and operations and maintenance (O&M) in order to encourage high-quality system deployment and operation that may improve lifetime project performance and energy production. This PV Installation Best Practices Guide was developed through the SAPC Installation Best Practices subcommittee, a subgroup of SAPC comprised of a wide array of solar industry leaders in numerous fields of practice. The guide was developed over roughly one year and eight months of direct engagement by the subcommittee and two working group comment periods.

  3. Stability analysis of large electric power systems

    SciTech Connect

    Elwood, D.M.

    1993-01-01

    Modern electric power systems are large and complicated, and, in many regions of the world, the generation and transmission systems are operating near their limits. Ensuring the reliable operation of the power system requires engineers to study the response of the system to various disturbances. The responses to large disturbances are examined by numerically solving the nonlinear differential-algebraic equations describing the power system. The response to small disturbances is typically studied via eigenanalysis. The Electric Power Research Institute (EPRI) recently developed the Extended Transient/Mid-term Stability Program (ETMSP) to study large disturbance stability and the Small Signal Stability Program Package (SSSP) to study small signal stability. The primary objectives of the work described in this report were to (1) explore ways of speeding up ETMSP, especially on mid-term voltage stability problems, (2) explore ways of speeding up the Multi-Area Small-Signal Stability program (MASS), one of the codes in SSSP, and (3) explore ways of increasing the size of problem that can be solved by the Cray version of MASS.

  4. PV performance modeling workshop summary report.

    SciTech Connect

    Stein, Joshua S.; Tasca, Coryne Adelle; Cameron, Christopher P.

    2011-05-01

    During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

  5. Entry control system for large populations

    SciTech Connect

    Merillat, P.D.

    1982-01-01

    An Entry Control System has been developed which is appropriate for use at an installation with a large population requiring access over a large area. This is accomplished by centralizing the data base management and enrollment functions and decentralizing the guard-assisted, positive personnel identification and access functions. Current information pertaining to all enrollees is maintained through user-friendly enrollment stations. These stations may be used to enroll individuals, alter their area access authorizations, change expiration dates, and other similar functions. An audit trail of data base alterations is provided to the System Manager. Decentrailized systems exist at each area to which access is controlled. The central system provides these systems with the necessary entry control information to allow them to operate microprocessor-driven entry control devices. The system is comprised of commercially available entry control components and is structured such that it will be able to incorporate improved devices as technology porogresses. Currently, access is granted to individuals who possess a valid credential, have current access authorization, can supply a memorized personal identification number, and whose physical hand dimensions match their profile obtained during enrollment. The entry control devices report misuses as security violations to a Guard Alarm Display and Assessment System.

  6. Design of Large Momentum Acceptance Transport Systems

    SciTech Connect

    D.R. Douglas

    2005-05-01

    The use of energy recovery to enable high power linac operation often gives rise to an attendant challenge--the transport of high power beams subtending large phase space volumes. In particular applications--such as FEL driver accelerators--this manifests itself as a requirement for beam transport systems with large momentum acceptance. We will discuss the design, implementation, and operation of such systems. Though at times counterintuitive in behavior (perturbative descriptions may, for example, be misleading), large acceptance systems have been successfully utilized for generations as spectrometers and accelerator recirculators [1]. Such systems are in fact often readily designed using appropriate geometric descriptions of beam behavior; insight provided using such a perspective may in addition reveal inherent symmetries that simplify construction and improve operability. Our discussion will focus on two examples: the Bates-clone recirculator used in the Jefferson Lab 10 kW IR U pgrade FEL (which has an observed acceptance of 10% or more) and a compaction-managed mirror-bend achromat concept with an acceptance ranging from 50 to 150 MeV.

  7. Large-Scale Structures of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Murray-Clay, Ruth; Rogers, Leslie A.

    2015-12-01

    A class of solar system analogs has yet to be identified among the large crop of planetary systems now observed. However, since most observed worlds are more easily detectable than direct analogs of the Sun's planets, the frequency of systems with structures similar to our own remains unknown. Identifying the range of possible planetary system architectures is complicated by the large number of physical processes that affect the formation and dynamical evolution of planets. I will present two ways of organizing planetary system structures. First, I will suggest that relatively few physical parameters are likely to differentiate the qualitative architectures of different systems. Solid mass in a protoplanetary disk is perhaps the most obvious possible controlling parameter, and I will give predictions for correlations between planetary system properties that we would expect to be present if this is the case. In particular, I will suggest that the solar system's structure is representative of low-metallicity systems that nevertheless host giant planets. Second, the disk structures produced as young stars are fed by their host clouds may play a crucial role. Using the observed distribution of RV giant planets as a function of stellar mass, I will demonstrate that invoking ice lines to determine where gas giants can form requires fine tuning. I will suggest that instead, disk structures built during early accretion have lasting impacts on giant planet distributions, and disk clean-up differentially affects the orbital distributions of giant and lower-mass planets. These two organizational hypotheses have different implications for the solar system's context, and I will suggest observational tests that may allow them to be validated or falsified.

  8. Ground state energy of large polaron systems

    SciTech Connect

    Benguria, Rafael D.; Frank, Rupert L.; Lieb, Elliott H.

    2015-02-15

    The last unsolved problem about the many-polaron system, in the Pekar–Tomasevich approximation, is the case of bosons with the electron-electron Coulomb repulsion of strength exactly 1 (the “neutral case”). We prove that the ground state energy, for large N, goes exactly as −N{sup 7/5}, and we give upper and lower bounds on the asymptotic coefficient that agree to within a factor of 2{sup 2/5}.

  9. Resistojet propulsion for large spacecraft systems

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J.

    1982-01-01

    Resistojet propulsion systems have characteristics that are ideally suited for the on-orbit and primary propulsion requirements of large spacecraft systems. These characteristics which offer advantages over other forms of propulsion are reviewed and presented. The feasibility of resistojets were demonstrated in space whereas only a limited number of ground life tests were performed. The major technology issues associated with these ground tests are evaluated. The past performance of resistojets is summarized and, looks into the present day technology status is reviewed. The material criteria, along with possible concepts, needed to attain high performance resistojets are presented.

  10. Component mode synthesis of large rotor systems

    NASA Technical Reports Server (NTRS)

    Li, D. F.; Gunter, E. J.

    1981-01-01

    A scheme is presented for calculating the vibrations of large multi-component flexible rotor systems based on the component mode synthesis method. It is shown that, by a modal expansion of the elastic interconnecting elements, the system modal equation can be conveniently constructed from the undamped eigen representations of the component subsystems. The capability of the component mode method is demonstrated in two examples: a transient simulation of a two-spool gas turbine engine equipped with a squeeze-film damper; and an unbalance response analysis of the Space Shuttle Main Engine oxygen turbopump in which the dynamics of the rotor and the housing are both considered.

  11. Large-system acute care transformation.

    PubMed

    Tatman, Judy; Zauner, Janiece

    2014-01-01

    All organizations are steeped in making delivery model changes to address the changing health care landscape specific to the expectations of health care reform. Too often, these changes focus solely on improving processes rather than developing creative and innovative work processes that decrease waste and increase quality. The Providence Health and Services system has embraced the challenge to transform health care services from a large-system perspective, beginning with 1 region. The authors share the beginning stages of this innovative work, the unique contributions to health care processes, and the early outcomes on 2 patient care units. PMID:24317032

  12. Energy Consumption Monitoring System for Large Complexes

    NASA Astrophysics Data System (ADS)

    Jorge, André; Guerreiro, João; Pereira, Pedro; Martins, João; Gomes, Luís

    This paper describes the development of an open source system for monitoring and data acquisition of several energy analyzers. The developed system is based on a computer with Internet/Intranet connection by means of RS485 using Modbus RTU as communication protocol. The monitoring/metering system was developed for large building complexes and was validated in the Faculdade de Ciências e Tecnologia University campus. The system considers two distinct applications. The first one allows the user to verify, in real time, the energy consumption of any department in the complex, produce load diagrams, tables and print, email or save all available data. The second application keeps records of active/reactive energy consumption in order to verify the existence of some anomalous situation, and also monthly charge energy consumption to each corresponding department.

  13. Feasible eigenvalue sensitivity for large power systems

    SciTech Connect

    Smed, T. . Dept. of Electric Power Systems)

    1993-05-01

    Traditional eigenvalue sensitivity for power systems requires the formulation of the system matrix, which lacks sparsity. In this paper, a new sensitivity analysis, derived for a sparse formulation, is presented. Variables that are computed as intermediate results in established eigen value programs for power systems, but not used further, are given a new interpretation. The effect of virtually any control action can be assessed based on a single eigenvalue-eigenvector calculation. In particular, the effect of active and reactive power modulation can be found as a multiplication of two or three complex numbers. The method is illustrated in an example for a large power system when applied to the control design for an HVDC-link.

  14. Compressed state Kalman filter for large systems

    NASA Astrophysics Data System (ADS)

    Kitanidis, Peter K.

    2015-02-01

    The Kalman filter (KF) is a recursive filter that allows the assimilation of data in real time and has found numerous applications. In earth sciences, the method is applied to systems with very large state vectors obtained from the discretization of functions such as pressure, velocity, solute concentration, and voltage. With state dimension running in the millions, the implementation of the standard or textbook version of KF is very expensive and low-rank approximations have been devised such as EnKF and SEEK. Although widely applied, the error behavior of these methods is not adequately understood. This article focuses on very large linear systems and presents a complete computational method that scales roughly linearly with the dimension of the state vector. The method is suited for problems for which the effective rank of the state covariance matrix is much smaller than its dimension. This method is closest to SEEK but uses a fixed basis that should be selected in accordance with the characteristics of the problem, mainly the transition matrix and the system noise covariance. The method is matrix free, i.e., does not require computation of Jacobian matrices and uses the forward model as a black box. Computational results demonstrate the ability of the method to solve very large, say 106 , state vectors.

  15. Utility-scale grid-tied PV inverter reliability workshop summary report.

    SciTech Connect

    Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle; Atcitty, Stanley

    2011-07-01

    A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

  16. PV technology and success of solar electricity in Vietnam

    SciTech Connect

    Dung, T.Q.

    1997-12-31

    Since 1990 the PV Technology and the Solar electricity have been strongly developed in Vietnam. The PV experts of Solarlab have studied and set up an appropriate PV Technology responding to local Market needs. It has not only stood well but has been also transferred to Mali Republic and Lao P.D.R. The PV off grid systems of Solarlab demonstrate good efficiency and low prices. Over 60 solar stations and villages have been built to provide solar lighting for about 3000 families along the country in remote, mountainous areas and islands. 400 families are using stand-alone Solar Home Systems. The Solar electricity has been chosen for Rural Electrification and National Telecommunication Network in remote and mountainous regions. Many International projects in cooperation with FONDEM-France, SELF USA and Governmental PV projects have been realized by Solarlab. The experiences of maintenance, management and finance about PV development in Vietnam are also mentioned.

  17. Cell Wall Degrading Enzyme Induced Rice Innate Immune Responses Are Suppressed by the Type 3 Secretion System Effectors XopN, XopQ, XopX and XopZ of Xanthomonas oryzae pv. oryzae

    PubMed Central

    Sinha, Dipanwita; Gupta, Mahesh Kumar; Patel, Hitendra Kumar; Ranjan, Ashish; Sonti, Ramesh V.

    2013-01-01

    Innate immune responses are induced in plants and animals through perception of Damage Associated Molecular Patterns. These immune responses are suppressed by pathogens during infection. A number of studies have focussed on identifying functions of plant pathogenic bacteria that are involved in suppression of Pathogen Associated Molecular Pattern induced immune responses. In comparison, there is very little information on functions used by plant pathogens to suppress Damage Associated Molecular Pattern induced immune responses. Xanthomonasoryzae pv. oryzae, a gram negative bacterial pathogen of rice, secretes hydrolytic enzymes such as LipA (Lipase/Esterase) that damage rice cell walls and induce innate immune responses. Here, we show that Agrobacterium mediated transient transfer of the gene for XopN, a X. oryzae pv. oryzae type 3 secretion (T3S) system effector, results in suppression of rice innate immune responses induced by LipA. A xopN- mutant of X. oryzae pv. oryzae retains the ability to suppress these innate immune responses indicating the presence of other functionally redundant proteins. In transient transfer assays, we have assessed the ability of 15 other X. oryzae pv. oryzae T3S secreted effectors to suppress rice innate immune responses. Amongst these proteins, XopQ, XopX and XopZ are suppressors of LipA induced innate immune responses. A mutation in any one of the xopN, xopQ, xopX or xopZ genes causes partial virulence deficiency while a xopN- xopX- double mutant exhibits a greater virulence deficiency. A xopN- xopQ- xopX- xopZ- quadruple mutant of X. oryzae pv. oryzae induces callose deposition, an innate immune response, similar to a X. oryzae pv. oryzae T3S- mutant in rice leaves. Overall, these results indicate that multiple T3S secreted proteins of X. oryzae pv. oryzae can suppress cell wall damage induced rice innate immune responses. PMID:24086651

  18. The pulse of large silicic magmatic systems

    NASA Astrophysics Data System (ADS)

    de Silva, S. L.; Schmitt, A. K.

    2008-12-01

    Large silicic volcanic fields (LSVFs) are considered windows into the tops of upper crustal batholiths that are the foundations of the continental crust. The space-time-volume records of volcanism in LSVFs are therefore assumed to mirror the accumulation record of the associated upper crustal batholith. However, key questions about the link between the volcanic and plutonic realms remain to be addressed if this view is to be substantiated. Among these are: 1) What does the surface pattern of volcanism really tell us about the development of the plutonic system below? Do these eruptions represent evacuation from a distinct batch of magma that formed just prior to eruption or do they represent the periodic tapping of a long lived regional magma body? 2) What does the cyclicity of the large caldera systems and the regional concordance of eruptions tell us about the development of the magmatic systems beneath? Does the repose period represent the time scale of development of the next magma batch or does the erupted magma develop in a timescale much shorter than the repose period? 3) What does the self-organization of single batholithic scale magmatic systems, for instance the development of a zoned system, tell us about the dynamics and time scales over which these systems differentiate and evolve? We are addressing some of these questions in the Altiplano-Puna Volcanic Complex of the Central Andes. Here, time scales of assembly and organization of batholith-scale silicic magma systems investigated using 40Ar/39Ar and U-Pb in zircon connote: 1) Supereruptions in the APVC evacuated distinct magma batches that accumulated within a few hundred thousand years prior to eruption 2) The repose period of cyclic supervolcanic systems is considerably longer than the time scale to develop the next eruptible magma batch 3) Batholith scale-silicic magma chambers can develop significant zonations in time scales of a few hundred thousand years. Additionally, our data suggest quasi

  19. Large Deviations in Fast-Slow Systems

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Grafke, Tobias; Tangarife, Tomás; Vanden-Eijnden, Eric

    2016-02-01

    The incidence of rare events in fast-slow systems is investigated via analysis of the large deviation principle (LDP) that characterizes the likelihood and pathway of large fluctuations of the slow variables away from their mean behavior—such fluctuations are rare on short time-scales but become ubiquitous eventually. Classical results prove that this LDP involves an Hamilton-Jacobi equation whose Hamiltonian is related to the leading eigenvalue of the generator of the fast process, and is typically non-quadratic in the momenta—in other words, the LDP for the slow variables in fast-slow systems is different in general from that of any stochastic differential equation (SDE) one would write for the slow variables alone. It is shown here that the eigenvalue problem for the Hamiltonian can be reduced to a simpler algebraic equation for this Hamiltonian for a specific class of systems in which the fast variables satisfy a linear equation whose coefficients depend nonlinearly on the slow variables, and the fast variables enter quadratically the equation for the slow variables. These results are illustrated via examples, inspired by kinetic theories of turbulent flows and plasma, in which the quasipotential characterizing the long time behavior of the system is calculated and shown again to be different from that of an SDE.

  20. Open PV Project: Unlocking PV Installation Data (Brochure)

    SciTech Connect

    Not Available

    2012-04-01

    This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

  1. Large magnetocapacitance in electronic ferroelectric manganite systems

    SciTech Connect

    Chowdhury, Ujjal; Goswami, Sudipta; Bhattacharya, Dipten; Midya, Arindam; Mandal, P.; Das, Pintu; Mukovskii, Ya. M.

    2013-11-21

    We have observed a sizable positive magnetocapacitance (∼5%–90%) in perovskite Pr{sub 0.55}Ca{sub 0.45}MnO{sub 3} and bilayer Pr(Sr{sub 0.1}Ca{sub 0.9}){sub 2}Mn{sub 2}O{sub 7} system under 5 T magnetic field across 20–100 K below the magnetic transition point T{sub N}. The magnetodielectric effect, on the other hand, exhibits a crossover: (a) from positive to negative for the perovskite system and (b) from negative to positive for the bilayer system over the same temperature range. The bilayer Pr(Sr{sub 0.1}Ca{sub 0.9}){sub 2}Mn{sub 2}O{sub 7} system exhibits a sizable anisotropy as well. We have also noticed the influence of magnetic field on the dielectric relaxation characteristics of these systems. These systems belong to a class of improper ferroelectrics and are expected to exhibit charge/orbital order driven ferroelectric polarization below the transition point T{sub CO}. Large magnetocapacitance in these systems shows a typical multiferroic behavior even though the ferroelectric polarization is small in comparison to that of other ferroelectrics.

  2. Very Large-Scale Deployment of Grid-Connected Solar Photovoltaics in the United States: Challenges and Opportunities; Preprint

    SciTech Connect

    Denholm, P.; Margolis, R.

    2006-04-01

    This paper analyzes the potential for solar photovoltaics (PV) to be deployed on a very large scale and provide a large fraction of a system's electricity. It explicitly examines how the hourly availability of PV interacts with the limited flexibility of traditional electricity generation plants. The authors found that, under high penetration levels and existing grid-operation procedures and rules, the system will have excess PV generation during certain periods of the year. This excess PV generation results in increased costs, which can increase dramatically when PV provides on the order of 10%-15% of total electricity demand in systems that are heavily dependent on inflexible baseload steam plants. Measures to increase penetration of PV are also discussed, including increased system flexibility, increased dispatchable load, and energy storage.

  3. Cryogenic systems for the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Mason, Peter V.

    1988-01-01

    There are five technologies which may have application for Large Deployable Reflector (LDR), one passive and four active. In order of maturity, they are passive stored cryogen systems, and mechanical, sorption, magnetic, and pulse-tube refrigerators. In addition, deep space radiators will be required to reject the heat of the active systems, and may be useful as auxiliary coolers for the stored cryogen systems. Hybrid combinations of these technologies may well be more efficient than any one alone, and extensive system studies will be required to determine the best trade-offs. Stored cryogen systems were flown on a number of missions. The systems are capable of meeting the temperature requirements of LDR. The size and weight of stored cryogen systems are proportional to heat load and, as a result, are applicable only if the low-temperature heat load can be kept small. Systems using chemisorption and physical adsorption for compressors and pumps have received considerable attention in the past few years. Systems based on adiabatic demagnetization of paramagnetic salts were used for refrigeration for many years. Pulse-tube refrigerators were recently proposed which show relatively high efficiency for temperatures in the 60 to 80 K range. The instrument heat loads and operating temperatures are critical to the selection and design of the cryogenic system. Every effort should be made to minimize heat loads, raise operating temperatures, and to define these precisely. No one technology is now ready for application to LDR. Substantial development efforts are underway in all of the technologies and should be monitored and advocated. Magnetic and pulse-tube refrigerators have high potential.

  4. Control systems of the large millimeter telescope

    NASA Astrophysics Data System (ADS)

    Gawronski, W.; Souccar, K.

    2005-08-01

    This paper presents the analysis results (in terms of settling time, bandwidth, and servo error in wind disturbances) of four control systems designed for the Large Millimeter Telescope (LMT). The first system, called PP, consists of the proportional and integral (PI) controllers in the rate and position loops, and is widely used in the antenna and radio telescope industry. The analysis shows that the PP control system's performance is remarkably good when compared to similar control systems applied to typical antennas. This performance is achieved because the LMT structure is exceptionally rigid; however, it does not meet the stringent LMT pointing requirements. The second system, called PL, consists of the PI controller in the rate loop, and the linear-quadratic-Gaussian (LQG) controller in the position loop. This type of controller is implemented in the NASA Deep Space Network antennas, where pointing accuracy is twice that of the PP control system. The third system, called LP, consists of the LQG controller in the rate loop, and the proportional-integral-derivative (PID) controller in the position loop. This type of loop has not been yet implemented at known antennas or radio telescopes, but the analysis shows that its pointing accuracy is the ten times better than the PP control system. The fourth system, called LL, consists of the LQG controller in both the rate loop and the position loop. It is the best of the four, with accuracy 250 times better than the PP system. It is thus worth further investigation to identify implementation challenges for telescopes with high pointing requirements.

  5. System for inspecting large size structural components

    DOEpatents

    Birks, Albert S.; Skorpik, James R.

    1990-01-01

    The present invention relates to a system for inspecting large scale structural components such as concrete walls or the like. The system includes a mobile gamma radiation source and a mobile gamma radiation detector. The source and detector are constructed and arranged for simultaneous movement along parallel paths in alignment with one another on opposite sides of a structural component being inspected. A control system provides signals which coordinate the movements of the source and detector and receives and records the radiation level data developed by the detector as a function of source and detector positions. The radiation level data is then analyzed to identify areas containing defects corresponding to unexpected variations in the radiation levels detected.

  6. Engineering management of large scale systems

    NASA Technical Reports Server (NTRS)

    Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.

    1989-01-01

    The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.

  7. Control theoretics for large structural systems

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.

    1981-01-01

    The areas of research addressed include modeling identification for both the purposes of analysis and controls, design of structural control systems actuator sensor placement, and distributed sensing and actuation as opposed to co-located sensor and actuators. Also investigated are adaptive/learning processes that could more specifically be referred to as inflight testing procedures where a structure is tested during its deployment or assembly and during its orbital life at specific points where the characteristics of the structure for the purpose of tuning the control system are identified. Another area is redundancy management techniques for structural systems. This is important because of the reliability issue for managing multiple very large numbers of sensors and actuators.

  8. Recognition of error symptoms in large systems

    NASA Technical Reports Server (NTRS)

    Iyer, Ravishankar K.; Sridhar, V.

    1987-01-01

    A methodology for automatically detecting symptoms of frequently occurring errors in large computer systems is developed. The proposed symptom recognition methodology and its validation are based on probabilistic techniques. The technique is shown to work on real failure data from two CYBER systems at the University of Illinois. The methodology allows for the resolution between independent and dependent causes and, also quantifies a measure of the strength of relationship among errors. Comparison made with failure/repair information obtained from field maintenance engineers shows that in 85% of the cases, the error symptoms recognized by our approach correspond to real system problems. Further, the remaining 15% although not directly supported by field data, were confirmed as valid problems. Some of these were shown to be persistent problems which otherwise would have been considered as minor transients and hence ignored.

  9. Operational Shortest-Term PV Solar Forecasting for ramp rate control with an ultracapacitor energy storage system using a Whole Sky Imager

    NASA Astrophysics Data System (ADS)

    Murray, K. A.; Kleissl, J. P.; Torre, W.; Kurtz, B.; Mejia, F. A.

    2015-12-01

    UCSD has partnered with Maxwell Technologies to demonstrate Maxwells' ultracapacitor energy storage system (UESS) using UCSDs' shortest-term advective forecast for PV systems. Specifically, UCSD will be supplying 5-minute forecasts to predict ramp events for the UESS, which will then discharge/charge the system as appropriate for the event. Four different metrics will be used to evaluate the effectiveness of the UCSD advective forecast with the UESS: (1) The root mean square error, root mean bias, and root mean absolute error will be calculated for the 5-minute forecast using measured irradiance from the UCSD DEMROES stations and compared to a persistence forecast (2) A "matching" error analysis will be performed to compare the 5-minute forecasted cloud cover of the PV system to the actual cloud cover at the forecasted time (3) The matching error of the advective forecast will be compared to the matching error of a persistence forecast to determine if, operationally, advective or persistence forecast performs best (4) Timing of predicted ramp events using the advective forecast will be compared to actual ramp events experienced by the UESS. The above metrics will also be used to analyze the effectiveness of cross-correlational and optical flow advective schemes in an operational setting. The cross-correlational method analyzes images from two different times to find an average velocity vector for cloud cover. Optical flow uses images from two time steps to find a velocity vector for each pixel of an image, allowing different sections of clouds to move at different speeds and directions. Hence, it is hypothesized the optical flow advective scheme will perform better then the cross-correlation method in operational settings.

  10. PV in the Netherlands, learning while growing

    SciTech Connect

    Kimman, J.T.N.; Horst, E.W. ter; Lysen, E.H.

    1994-12-31

    The main goal of the Netherlands Photovoltaic Program is to create conditions to let photovoltaic solar energy play an important role in the dutch energy supply for the 21st century. Four of the most important conditions are: to create social support; to achieve progress in solar cell and PV-system R and D; to create a market for stand-alone PV-systems; and to gain experience with grid-connected systems in the built environment. For the grid-connected systems a plan has been adopted to reach 250 MWp of installed solar capacity in 2010. The main purpose of this so-called PV pilot plan is not just a scaling up of the production volume but to reach specific learning goals. In this way the scaling-up is an important and justified by-product.

  11. Large-scale structural monitoring systems

    NASA Astrophysics Data System (ADS)

    Solomon, Ian; Cunnane, James; Stevenson, Paul

    2000-06-01

    Extensive structural health instrumentation systems have been installed on three long-span cable-supported bridges in Hong Kong. The quantities measured include environment and applied loads (such as wind, temperature, seismic and traffic loads) and the bridge response to these loadings (accelerations, displacements, and strains). Measurements from over 1000 individual sensors are transmitted to central computing facilities via local data acquisition stations and a fault- tolerant fiber-optic network, and are acquired and processed continuously. The data from the systems is used to provide information on structural load and response characteristics, comparison with design, optimization of inspection, and assurance of continued bridge health. Automated data processing and analysis provides information on important structural and operational parameters. Abnormal events are noted and logged automatically. Information of interest is automatically archived for post-processing. Novel aspects of the instrumentation system include a fluid-based high-accuracy long-span Level Sensing System to measure bridge deck profile and tower settlement. This paper provides an outline of the design and implementation of the instrumentation system. A description of the design and implementation of the data acquisition and processing procedures is also given. Examples of the use of similar systems in monitoring other large structures are discussed.

  12. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    NASA Astrophysics Data System (ADS)

    Mohammed, Touseef Ahmed Faisal

    Distribution System Simulator developed by Electric Power Research Institute, to simulate grid voltage profile with a large scale PV system under quasi-static time series considering variations of PV output in seconds, minutes, and the average daily load variations. A 13 bus IEEE distribution feeder model is utilized with distributed residential and commercial scale PV at different buses for simulation studies. Time series simulations are discussed for various modes of operation considering dynamic PV penetration at different time periods in a day. In addition, this thesis demonstrates simulations taking into account the presence of moving cloud for solar forecasting studies.

  13. PV module degradation-analysis

    NASA Astrophysics Data System (ADS)

    Themelis, M. P.

    1982-06-01

    The energy potential of photovoltaic (PV) components in various test applications were evaluated. Visual and electrical degradation analyses were performed on 47 PV modules. Discoloration, cracking, scratches, and electrical degradation were detected.

  14. Efficient Ewald electrostatic calculations for large systems

    NASA Astrophysics Data System (ADS)

    Smith, Paul E.; Pettitt, B. Montgomery

    1995-09-01

    A method is described which improves the efficiency of Ewald simulations of large condensed phase systems. This is achieved by partitioning the real space sum into a short and long range component. The long range component is calculated every time the pair list is generated and included in subsequent steps using a multiple time step algorithm. The corresponding increase in the effective cutoff distance results in an algorithm which is only slightly more expensive than a traditional cutoff simulation, but with fewer artifacts than obtained using a cutoff. The method is tested on a 1.0 M solution of sodium chloride.

  15. Modular pump limiter systems for large tokamaks

    NASA Astrophysics Data System (ADS)

    Uckan, T.; Klepper, C. C.; Mioduszewski, P. K.; McGrath, R. T.

    1987-09-01

    Long-pulse (greater than 10-s) operation of large tokamaks with high-power (greater than 10-MW) heating and extensive external fueling will require correspondingly efficient particle exhaust for density control. A pump limiter can provide the needed exhaust capability by removing a small percentage of the particles, which would otherwise be recycled. Single pump limiter modules have been operated successfully on ISX-B, PDX, TEXTOR, and PLT. An axisymmetric pump limiter is now being installed and will be studied in TEXTOR. A third type of pump limiter is a system that consists of several modules and exhibits performance different from that of a single module. To take advantage of the flexibility of a modular pump limiter system in a high-power, long-pulse device, the power load must be distributed among a number of modules. Because each added module changes the performance of all the others, a set of design criteria must be defined for the overall limiter system. The design parameters for the modules are then determined from the system requirements for particle and power removal. Design criteria and parameters are presented, and the impact on module design of the state of the art in engineering technolgy is discussed. The relationship between modules is considered from the standpoint of flux coverage and shadowing effects. The results are applied to the Tore Supra tokamak. A preliminary conceptual design for the Tore Supra pump limiter system is discussed, and the design parameters of the limiter modules are presented.

  16. Testing for PV Reliability (Presentation)

    SciTech Connect

    Kurtz, S.; Bansal, S.

    2014-09-01

    The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

  17. Large scale cryogenic fluid systems testing

    NASA Technical Reports Server (NTRS)

    1992-01-01

    NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.

  18. An informal paper on large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Ho, Y. C.

    1975-01-01

    Large scale systems are defined as systems requiring more than one decision maker to control the system. Decentralized control and decomposition are discussed for large scale dynamic systems. Information and many-person decision problems are analyzed.

  19. Large space systems auxiliary propulsion requirements

    NASA Astrophysics Data System (ADS)

    Maloy, J. E.; Smith, W. W.

    1983-05-01

    To meet the needs of a variety of civilian and military missions objectives large space systems (LSS) will become a greater percentage of our orbiting hardware. These LSS's will be transported to low Earth orbit (LEO) by the space transportation system (STS Shuttle). Concurrently, for LSS missions to orbit higher than LEO, the predominant mission scenario is that the LSS will be deployed or assembled in LEO and then transferred to a higher orbit. In support of the LSS concepts, the Office of Aeronautics and Space Technology (OAST) has sponsored studies to determine LSS mission propulsion requirements. Since the fall of 1979, the Boeing Aerospace Company, under contract to NASA and Lewis Research Center, has been studying the disturbance forces and torques that will be experienced by LSS, and they have identified some of the associated auxiliary propulsion systems (APS) requirements. This presentation provides an insight into the results of some of the APS studies, focusing primarily on the APS requirements of single Shuttle launchable LSS's.

  20. Three-phase power conversion system for utility-interconnected PV applications. Phase 1 technical progress report, 1 October 1995--17 April 1997

    SciTech Connect

    Porter, D.G.; Meyer, H.; Leang, W.

    1998-02-01

    This report describes work performed by Omnion Power Corporation under Phase 1 of a two-phase subcontract. During this phase, Omnion researchers: designed an advanced product specification to guide prototype design and development; analyzed field failure data with Omnion`s hard-switched insulated-Gate Bipolar Transistor technology hardware to better understand where design improvements were needed; presented and reviewed product specifications with key customers/users; drafted a working product specification to serve as a baseline in developing the new power conversion system; developed the core-resonant converter technology in conjunction with Soft Switching Technologies Corp.; designed a 100-kW prototype power conversion system; designed a prototype system package; initiated interaction with vendors to optimize component selection and specifications; initiated the preparation of design documentation; built the prototype core-resonant converter and initiated preliminary testing; and initiated the assembly of a 1-kW prototype power conversion system. This work has demonstrated the potential of the soft-switching resonant DC link (RDCL) inverter and its application to a three-phase utility-interconnected PV power conversion system. The RDCL inverter has demonstrated its advantage over hard-switching pulse-width modulated inverters in terms of efficiency and audible noise. With proper package design and manufacturing process design and implementation, the RDCL power conversion system has the potential to be low-cost and reliable with superior performance.

  1. Homogenization of Periodic Systems with Large Potentials

    NASA Astrophysics Data System (ADS)

    Allaire, Grégoire; Capdeboscq, Yves; Piatnitski, Andrey; Siess, Vincent; Vanninathan, M.

    2004-11-01

    We consider the homogenization of a system of second-order equations with a large potential in a periodic medium. Denoting by ɛ the period, the potential is scaled as ɛ-2. Under a generic assumption on the spectral properties of the associated cell problem, we prove that the solution can be approximately factorized as the product of a fast oscillating cell eigenfunction and of a slowly varying solution of a scalar second-order equation. This result applies to various types of equations such as parabolic, hyperbolic or eigenvalue problems, as well as fourth-order plate equation. We also prove that, for well-prepared initial data concentrating at the bottom of a Bloch band, the resulting homogenized tensor depends on the chosen Bloch band. Our method is based on a combination of classical homogenization techniques (two-scale convergence and suitable oscillating test functions) and of Bloch waves decomposition.

  2. Countermeasure for Surplus Electricity of PV using Replacement Battery of EVs

    NASA Astrophysics Data System (ADS)

    Takagi, Masaaki; Iwafune, Yumiko; Yamamoto, Hiromi; Yamaji, Kenji; Okano, Kunihiko; Hiwatari, Ryouji; Ikeya, Tomohiko

    In the power sector, the national government has set the goal that the introduction of PV reaches 53 million kW by 2030. However, large-scale introduction of PV will cause several problems in power systems such as surplus electricity. We need large capacity of pumped storages or batteries for the surplus electricity, but the construction costs of these plants are very high. On the other hand, in the transport sector, Electric Vehicle (EV) is being developed as an environmentally friendly vehicle. To promote the diffusion of EV, it is necessary to build infrastructures that can charge EV in a short time; a battery switch station is one of the solutions to this problem. At a station, the automated switch platform will replace the depleted battery with a fully-charged battery. The depleted battery is placed in a storage room and recharged to be available to other drivers. In this study, we propose the use of station's battery as a countermeasure for surplus electricity of PV and evaluate the economic value of the proposed system. We assumed that 53 million kW of PV is introduced in the nationwide power system and considered two countermeasures for surplus electricity: (1) Pumped storage; (2) Battery of station. The difference in total annual cost between Pumped case and Battery case results in 792.6 billion yen. Hence, if a utility leases the batteries from stations fewer than 792.6 billion yen, the utility will have the cost advantage in Battery case.

  3. Magmatic systems of large continental igneous province

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2014-05-01

    Large igneous provinces (LIPs) of the modern type are known from the middle Paleoproterozoic and have a great abundance in the Phanerozoic. The most researches considered their appearance with ascending of the mantle thermochemical superplumes which provided simultaneously eruption of the same type of lavas on the huge territories. Judging on presence among them different subprovinces, formation of concrete magmatic systems were linked with protuberances (secondary plumes) on the superplumes surfaces. We suggest that origin of such plumes was linked with local enrichment of upper part of the superplumes head beneath roofing by fluid components; it led to lowering of the plume material density and initiated ascending of the secondary plumes. As a result, their heads, where partial melting occurred, can reach the level of the upper crust as it follows from absence of lower-crustal rocks among xenoliths in basalts, although mantle xenoliths existed in them. Important feature of LIPs is presence of two major types of mafic lavas: (1) geochemical-enriched alkali Fe-Ti basalts and picrites, and (2) basalts of normal alkalinity (tholeiites) with different contents of TiO2. At that the first type of mafites are usually typical for lower parts of LIPs which initially developed as continental rifts, whereas the second type composed the upper part of the traps' cover. Magmatic systems of the LIPs are subdivided on three levels of different deep: (1) zones of magma generation, (2) areas of transitional magma chambers where large often layered intrusive bodies are formed, and (3) areas on surface where lava eruptions and subvolcanic intrusions occurred. All these levels are linked by feeder dykes. The least known element of the system is area of magma generation, and, especially, composition of melting substratum. Important information about it is contained in aforementioned mantle xenoliths in alkali basalts and basanites. They practically everywhere are represented by two

  4. A new large-volume multianvil system

    NASA Astrophysics Data System (ADS)

    Frost, D. J.; Poe, B. T.; Trønnes, R. G.; Liebske, C.; Duba, A.; Rubie, D. C.

    2004-06-01

    A scaled-up version of the 6-8 Kwai-type multianvil apparatus has been developed at the Bayerisches Geoinstitut for operation over ranges of pressure and temperature attainable in conventional systems but with much larger sample volumes. This split-cylinder multianvil system is used with a hydraulic press that can generate loads of up to 5000 t (50 MN). The six tool-steel outer-anvils define a cubic cavity of 100 mm edge-length in which eight 54 mm tungsten carbide cubic inner-anvils are compressed. Experiments are performed using Cr 2O 3-doped MgO octahedra and pyrophyllite gaskets. Pressure calibrations at room temperature and high temperature have been performed with 14/8, 18/8, 18/11, 25/17 and 25/15 OEL/TEL (octahedral edge-length/anvil truncation edge-length, in millimetre) configurations. All configurations tested reach a limiting plateau where the sample-pressure no longer increases with applied load. Calibrations with different configurations show that greater sample-pressure efficiency can be achieved by increasing the OEL/TEL ratio. With the 18/8 configuration the GaP transition is reached at a load of 2500 t whereas using the 14/8 assembly this pressure cannot be reached even at substantially higher loads. With an applied load of 2000 t the 18/8 can produce MgSiO 3 perovskite at 1900 °C with a sample volume of ˜20 mm 3, compared with <3 mm 3 in conventional multianvil systems at the same conditions. The large octahedron size and use of a stepped LaCrO 3 heater also results in significantly lower thermal gradients over the sample.

  5. The 1980 Large space systems technology. Volume 2: Base technology

    NASA Technical Reports Server (NTRS)

    Kopriver, F., III (Compiler)

    1981-01-01

    Technology pertinent to large antenna systems, technology related to large space platform systems, and base technology applicable to both antenna and platform systems are discussed. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. A total systems approach including controls, platforms, and antennas is presented as a cohesive, programmatic plan for large space systems.

  6. Long Focal Length Large Mirror Fabrication System

    NASA Technical Reports Server (NTRS)

    Bennett, H. E.

    2003-01-01

    The goals of this ambitious program are (1) to develop systems to make large superpolished optical mirrors, (2) to develop low scatter polishing techniques using centrifugal elutriation, (3) to develop a means of measuring scatter at any point on the mirror, (4) to polish a Hindle sphere to measure the optical figure of a one meter diameter convex mandrel, and (5) to fabricate low scatter, large adaptive optic graphite filled, cyanate ester replica transfer mirrors using these mandrels. Deliverables are a 30 cm diameter superpolished composite AO mirror. We fabricated a 1/3rd meter superpolished zerodur flat mandrel and with the support of our major subcontractor, Composite Mirror Applications Inc (CMA) we have demonstrated a 30 cm lightweight cyanate ester mirror with an rms microroughness between 0.6 and 0.8 nm and 8 faceplate influence function of 5 cm. The influence function was chosen to be comparable to the atmospheric correlation coefficient r(sub 0) which is about 5 cm at sea level. There was no print-thru of the graphite fibers in the cyanate ester surface (the bane of many previous efforts to use cyanate ester mirrors). Our subcontractor has devised a means for developing a 30-50 nm thick layer of graphite free pure ester resin on the surface of the mirrors. This graphite fiber filled material has a thermal expansion coefficient in the 10(exp -8) centimeter per Kelvin range (the same range of expansion coefficient as Zerodur and ULE glasses) and does not take up water and swell, so it is a nearly ideal mirror material in these areas. Unfortunately for these 0.8mm thick faceplates, the number of plies is not enough to result in isometric coverage. Isolated figure irregularities can appear, making it necessary to go to thicker faceplates. The influence function will then only approximate the length of r(sub 0), at higher altitudes or longer wavelengths. The influence function goes as the cube of the thickness, so we are now making a faceplate optimized for

  7. TRNSYS HYBRID wind diesel PV simulator

    SciTech Connect

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J.

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  8. Environmental effects and large space systems

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.

    1981-01-01

    When planning large scale operations in space, environmental impact must be considered in addition to radiation, spacecraft charging, contamination, high power and size. Pollution of the atmosphere and space is caused by rocket effluents and by photoelectrons generated by sunlight falling on satellite surfaces even light pollution may result (the SPS may reflect so much light as to be a nuisance to astronomers). Large (100 Km 2) structures also will absorb the high energy particles that impinge on them. Altogether, these effects may drastically alter the Earth's magnetosphere. It is not clear if these alterations will in any way affect the Earth's surface climate. Large structures will also generate large plasma wakes and waves which may cause interference with communications to the vehicle. A high energy, microwave beam from the SPS will cause ionospheric turbulence, affecting UHF and VHF communications. Although none of these effects may ultimately prove critical, they must be considered in the design of large structures.

  9. Large-Scale PV Module Manufacturing Using Ultra-Thin Polycrystalline Silicon Solar Cells: Final Subcontract Report, 1 April 2002--28 February 2006

    SciTech Connect

    Wohlgemuth, J.; Narayanan, M.

    2006-07-01

    The major objectives of this program were to continue advances of BP Solar polycrystalline silicon manufacturing technology. The Program included work in the following areas. (1) Efforts in the casting area to increase ingot size, improve ingot material quality, and improve handling of silicon feedstock as it is loaded into the casting stations. (2) Developing wire saws to slice 100-..mu..m-thick silicon wafers on 290-..mu..m-centers. (3) Developing equipment for demounting and subsequent handling of very thin silicon wafers. (4) Developing cell processes using 100-..mu..m-thick silicon wafers that produce encapsulated cells with efficiencies of at least 15.4% at an overall yield exceeding 95%. (5) Expanding existing in-line manufacturing data reporting systems to provide active process control. (6) Establishing a 50-MW (annual nominal capacity) green-field Mega-plant factory model template based on this new thin polycrystalline silicon technology. (7) Facilitating an increase in the silicon feedstock industry's production capacity for lower-cost solar-grade silicon feedstock..

  10. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  11. Performance evaluation of stand alone hybrid PV-wind generator

    NASA Astrophysics Data System (ADS)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-01

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  12. Performance evaluation of stand alone hybrid PV-wind generator

    SciTech Connect

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  13. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    DOEpatents

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  14. Kauai Island Utility Co-op (KIUC) PV integration study.

    SciTech Connect

    Ellis, Abraham; Mousseau, Tom

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  15. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  16. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis

    PubMed Central

    Djavaheri, Mohammad; Mercado-Blanco, Jesús; Versluis, C; Meyer, J-M; Loon, L C; Bakker, Peter A H M

    2012-01-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r produces several iron-regulated metabolites, including the fluorescent siderophore pseudobactin (Psb374), salicylic acid (SA), and pseudomonine (Psm), a siderophore that contains a SA moiety. After purification of Psb374 from culture supernatant of WCS374r, its structure was determined following isoelectrofocusing and tandem mass spectrometry, and found to be identical to the fluorescent siderophore produced by P. fluorescens ATCC 13525. To study the role of SA and Psm production in colonization of Arabidopsis thaliana roots and in induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst) by strain WCS374r, mutants disrupted in the production of these metabolites were obtained by homologous recombination. These mutants were further subjected to transposon Tn5 mutagenesis to generate mutants also deficient in Psb374 production. The mutants behaved similar to the wild type in both their Arabidopsis rhizosphere-colonizing capacity and their ability to elicit ISR against Pst. We conclude that Psb374, SA, and Psm production by P. fluorescens WCS374r are not required for eliciting ISR in Arabidopsis. PMID:23170230

  17. Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression

    PubMed Central

    Zheng, Dehong; Yao, Xiaoyan; Duan, Meng; Luo, Yufeng; Liu, Biao; Qi, Pengyuan; Sun, Ming; Ruan, Lifang

    2016-01-01

    Two-component signal transduction systems (TCSs) are widely used by bacteria to adapt to the environment. In the present study, StoS (stress tolerance-related oxygen sensor) and SreKRS (salt response kinase, regulator, and sensor) were found to positively regulate extracellular polysaccharide (EPS) production and swarming in the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo). Surprisingly, the absence of stoS or sreKRS did not attenuate virulence. To better understand the intrinsic functions of StoS and SreKRS, quantitative proteomics isobaric tags for relative and absolute quantitation (iTRAQ) was employed. Consistent with stoS and sreK mutants exhibiting a similar phenotype, the signalling circuits of StoS and SreKRS overlapped. Carbohydrate metabolism proteins and chemotaxis proteins, which could be responsible for EPS and swarming regulation, respectively, were reprogrammed in stoS and sreK mutants. Moreover, StoS and SreKRS demonstrated moderate expression of the major virulence factor, hypersensitive response and pathogenicity (Hrp) proteins through the HrpG-HrpX circuit. Most importantly, Xoo equipped with StoS and SreKRS outcompetes strains without StoS or SreKRS in co-infected rice and grows outside the host. Therefore, we propose that StoS and SreKRS adopt a novel strategy involving the moderation of Hrp protein expression and the promotion of EPS and motility to adapt to the environment. PMID:26957113

  18. A bibliographical surveys of large-scale systems

    NASA Technical Reports Server (NTRS)

    Corliss, W. R.

    1970-01-01

    A limited, partly annotated bibliography was prepared on the subject of large-scale system control. Approximately 400 references are divided into thirteen application areas, such as large societal systems and large communication systems. A first-author index is provided.

  19. Concomitant Induction of Systemic Resistance to Pseudomonas syringae pv. lachrymans in Cucumber by Trichoderma asperellum (T-203) and Accumulation of Phytoalexins

    PubMed Central

    Yedidia, Iris; Shoresh, Michal; Kerem, Zohar; Benhamou, Nicole; Kapulnik, Yoram; Chet, Ilan

    2003-01-01

    Most studies on the reduction of disease incidence in soil treated with Trichoderma asperellum have focused on microbial interactions rather than on plant responses. This study presents conclusive evidence for the induction of a systemic response against angular leaf spot of cucumber (Pseudomonas syringae pv. lachrymans) following application of T. asperellum to the root system. To ascertain that T. asperellum was the only microorganism present in the root milieu, plants were grown in an aseptic hydroponic growth system. Disease symptoms were reduced by as much as 80%, corresponding to a reduction of 2 orders of magnitude in bacterial cell densities in leaves of plants pretreated with T. asperellum. As revealed by electron microscopy, bacterial cell proliferation in these plants was halted. The protection afforded by the biocontrol agent was associated with the accumulation of mRNA of two defense genes: the phenylpropanoid pathway gene encoding phenylalanine ammonia lyase (PAL) and the lipoxygenase pathway gene encoding hydroxyperoxide lyase (HPL). This was further supported by the accumulation of secondary metabolites of a phenolic nature that showed an increase of up to sixfold in inhibition capacity of bacterial growth in vitro. The bulk of the antimicrobial activity was found in the acid-hydrolyzed extract containing the phenolics in their aglycone form. High-performance liquid chromatography analysis of phenolic compounds showed a marked change in their profile in the challenged, preelicited plants relative to that in challenged controls. The results suggest that similar to beneficial rhizobacteria, T. asperellum may activate separate metabolic pathways in cucumber that are involved in plant signaling and biosynthesis, eventually leading to the systemic accumulation of phytoalexins. PMID:14660384

  20. 75 FR 21455 - Large Trader Reporting System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-23

    ...; and (3) provide certain additional information in response to a Commission request. The proposed rule... regarding a response provided in Schedule 6 to a large trader's Form 13H concerning the identification of... the Federal eRulemaking Portal ( http://www.regulations.gov ). Follow the instructions for...

  1. Improved methods for the measurement and modeling of PV module and system performance for all operating conditions

    SciTech Connect

    King, D.L.

    1995-11-01

    The objective of this work was to develop improved performance model for modules and systems for for all operating conditions for use in module specifications, system and BOS component design, and system rating or monitoring. The approach taken was to identify and quantify the influence of dominant factors of solar irradiance, cell temperature, angle-of-incidence; and solar spectrum; use outdoor test procedures to separate the effects of electrical, thermal, and optical performance; use fundamental cell characteristics to improve analysis; and combine factors in simple model using the common variables.

  2. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a

  3. 205 kW Photovoltaic (PV) System Installed on the U.S. Department of Energy's Forrestal Building

    SciTech Connect

    2009-01-18

    Fact sheet on the installation of a photovoltaic system providing renewable energy for the U.S. Department of Energy and providing leadership for meeting Federal goals in the use of renewable energy technologies.

  4. MCS Large Cluster Systems Software Toolkit

    Energy Science and Technology Software Center (ESTSC)

    2002-11-01

    This package contains a number of systems utilities for managing a set of computers joined in a "cluster". The utilities assist a team of systems administrators in managing the cluster by automating routine tasks, centralizing information, and monitoring individual computers within the cluster. Included in the toolkit are scripts used to boot a computer from a floppy, a program to turn on and off the power to a system, and a system for using amore » database to organize cluster information.« less

  5. Component Cost Analysis of Large Scale Systems

    NASA Technical Reports Server (NTRS)

    Skelton, R. E.; Yousuff, A.

    1982-01-01

    The ideas of cost decomposition is summarized to aid in the determination of the relative cost (or 'price') of each component of a linear dynamic system using quadratic performance criteria. In addition to the insights into system behavior that are afforded by such a component cost analysis CCA, these CCA ideas naturally lead to a theory for cost-equivalent realizations.

  6. Large-scale systems: Complexity, stability, reliability

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.

    1975-01-01

    After showing that a complex dynamic system with a competitive structure has highly reliable stability, a class of noncompetitive dynamic systems for which competitive models can be constructed is defined. It is shown that such a construction is possible in the context of the hierarchic stability analysis. The scheme is based on the comparison principle and vector Liapunov functions.

  7. Large Space Systems Technology, 1979. [antenna and space platform systems conference

    NASA Technical Reports Server (NTRS)

    Ward, J. C., Jr. (Compiler)

    1980-01-01

    Items of technology and developmental efforts in support of the large space systems technology programs are described. The major areas of interest are large antennas systems, large space platform systems, and activities that support both antennas and platform systems.

  8. Simulation of large systems with neural networks

    SciTech Connect

    Paez, T.L.

    1994-09-01

    Artificial neural networks (ANNs) have been shown capable of simulating the behavior of complex, nonlinear, systems, including structural systems. Under certain circumstances, it is desirable to simulate structures that are analyzed with the finite element method. For example, when we perform a probabilistic analysis with the Monte Carlo method, we usually perform numerous (hundreds or thousands of) repetitions of a response simulation with different input and system parameters to estimate the chance of specific response behaviors. In such applications, efficiency in computation of response is critical, and response simulation with ANNs can be valuable. However, finite element analyses of complex systems involve the use of models with tens or hundreds of thousands of degrees of freedom, and ANNs are practically limited to simulations that involve far fewer variables. This paper develops a technique for reducing the amount of information required to characterize the response of a general structure. We show how the reduced information can be used to train a recurrent ANN. Then the trained ANN can be used to simulate the reduced behavior of the original system, and the reduction transformation can be inverted to provide a simulation of the original system. A numerical example is presented.

  9. Optimal Operation Scheduling of Pumped Storage Hydro Power Plant in Power System with a Large Penetration of Photovoltaic Generations

    NASA Astrophysics Data System (ADS)

    Aihara, Ryota; Yokoyama, Akihiko; Nomiyama, Fumitoshi; Kosugi, Narifumi

    In recent years, a substantial amount of photovoltaic (PV) generations have been installed in power systems. However, the power output from the PVs is random and intermittent in nature. Therefore, the PV generations pose many challenges to the power system operation. To solve these issues, we propose that pumped storage hydro power plant (PSHPP) is used effectively. In this paper, a new method for scheduling effective operating patterns for PSHPP that make it possible to improve both reliability and economy is presented.

  10. The future of large optical system verification

    NASA Astrophysics Data System (ADS)

    Matthews, Gary

    2005-08-01

    As optical systems grow in size, there becomes a point in which traditional system verification prior to launch will become impossible. This implies that observatory ground testing will not be completed. Our history does not support this premise and therefore results in an unacceptable programmatic risk. But, if the dream of building 20-30 meter systems is ever to become true, these realities must be accepted. To make this possible, new and better analytical tools and processes must be developed and certified on programs that can be tested on the ground. This change in paradigm does not eliminate critical testing; it just does it at different assembly levels and most likely adds alignment flexibility to correct optical errors after launch. This paper provides ideas on how the hardware, analysis tools, and testing may evolve to support these ambitious future programs.

  11. Flushing large hydraulic systems -- Oil cleanliness considerations

    SciTech Connect

    Sullivan, J.M.

    1997-07-01

    The most common problem in the start-up of hydraulic and lubrication systems is the presence of particles larger than the system can tolerate. Studies were performed to determine the velocities required to remove particulate from hydraulic systems. As a result, it was found that particle removal was dependent on lift force, drag forces and laminar sub-layer depth of the stagnant film adjacent to the pipe wall. A key factor in negating the effect of a laminar sub-layer is turbulent flow which will reduce the thickness of the sub-layer and wash the pipe wall. Achieving turbulent flow with proprietary water-based solvents overcomes the problem. A self-contained skid-type flushing unit has been developed that employs chelant-type flushing fluids. The unit provides high flow rate capability together with high-head pumps, filter pods and reverse flow capabilities.

  12. Genital warts in Burmeister's porpoises: characterization of Phocoena spinipinnis papillomavirus type 1 (PsPV-1) and evidence for a second, distantly related PsPV.

    PubMed

    Van Bressem, Marie-Françoise; Cassonnet, Patricia; Rector, Annabel; Desaintes, Christian; Van Waerebeek, Koen; Alfaro-Shigueto, Joanna; Van Ranst, Marc; Orth, Gérard

    2007-07-01

    We identified sequences from two distantly related papillomaviruses in genital warts from two Burmeister's porpoises, including a PV antigen-positive specimen, and characterized Phocoena spinipinnis papillomavirus type 1 (PsPV-1). The PsPV-1 genome comprises 7879 nt and presents unusual features. It lacks an E7, an E8 and a bona fide E5 open reading frame (ORF) and has a large E6 ORF. PsPV-1 L1 ORF showed the highest percentage of nucleotide identity (54-55 %) with human papillomavirus type 5, bovine papillomavirus type 3 (BPV-3) and Tursiops truncatus papillomavirus type 2 (TtPV-2). This warrants the classification of PsPV-1 as the prototype of the genus Omikronpapillomavirus. PsPV-1 clustered with TtPV-2 in the E6 and E1E2 phylogenetic trees and with TtPV-2 and BPV-3 in the L2L1 tree. This supports the hypothesis that PV evolution may not be monophyletic across all genes. PMID:17554024

  13. Full Steam Ahead for PV in US Homes?

    SciTech Connect

    Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

    2009-01-15

    In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

  14. Passive stabilization for large space systems

    NASA Technical Reports Server (NTRS)

    Sesak, J. R.; Gronet, M. J.; Marinos, G. M.

    1987-01-01

    The optimal tuning of multiple tuned-mass dampers for the transient vibration damping of large space structures is investigated. A multidisciplinary approach is used. Structural dynamic techniques are applied to gain physical insight into absorber/structure interaction and to optimize specific cases. Modern control theory and parameter optimization techniques are applied to the general optimization problem. A design procedure for multi-absorber multi-DOF vibration damping problems is presented. Classical dynamic models are extended to investigate the effects of absorber placement, existing structural damping, and absorber cross-coupling on the optimal design synthesis. The control design process for the general optimization problem is formulated as a linear output feedback control problem via the development of a feedback control canonical form. The techniques are applied to sample micro-g and pointing problems on the NASA dual keel space station.

  15. Simulation and experimental design of a new advanced variable step size Incremental Conductance MPPT algorithm for PV systems.

    PubMed

    Loukriz, Abdelhamid; Haddadi, Mourad; Messalti, Sabir

    2016-05-01

    Improvement of the efficiency of photovoltaic system based on new maximum power point tracking (MPPT) algorithms is the most promising solution due to its low cost and its easy implementation without equipment updating. Many MPPT methods with fixed step size have been developed. However, when atmospheric conditions change rapidly , the performance of conventional algorithms is reduced. In this paper, a new variable step size Incremental Conductance IC MPPT algorithm has been proposed. Modeling and simulation of different operational conditions of conventional Incremental Conductance IC and proposed methods are presented. The proposed method was developed and tested successfully on a photovoltaic system based on Flyback converter and control circuit using dsPIC30F4011. Both, simulation and experimental design are provided in several aspects. A comparative study between the proposed variable step size and fixed step size IC MPPT method under similar operating conditions is presented. The obtained results demonstrate the efficiency of the proposed MPPT algorithm in terms of speed in MPP tracking and accuracy. PMID:26337741

  16. Real-Time Series Resistance Monitoring in PV Systems Without the Need for I-V Curves

    SciTech Connect

    Deceglie, Michael G.; Silverman, Timothy J.; Marion, Bill; Kurtz, Sarah R.

    2015-10-01

    We apply the physical principles of a familiar method, suns-Voc, to a new application: the real-time detection of series resistance changes in modules and systems operating outside. The real-time series resistance (RTSR) method that we describe avoids the need for collecting I-V curves or constructing full series resistance-free I-V curves. RTSR is most readily deployable at the module level on microinverters or module-integrated electronics, but it can also be extended to full strings. We found that automated detection of series resistance increases can provide early warnings of some of the most common reliability issues, which also pose fire risks, including broken ribbons, broken solder bonds, and contact problems in the junction or combiner box. We also describe the method in detail and describe a sample application to data collected from modules operating in the field.

  17. Large space systems in global change mitigation

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1990-01-01

    The monitoring from space of such processes as the greenhouse effect and depletion of the ozone layer is discussed, as well as possibilities for active intervention in them, using space systems. Possibilities include the use of the Solar Power Satellite to reduce dependence on the burning of fossil fuels, dispersal of materials to neutralize chemicals responsible for ozone depletion, and measures to reduce the impact of local disasters, both natural and man-made.

  18. Systems identification technology development for large space systems

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1982-01-01

    A methodology for synthesizinng systems identification, both parameter and state, estimation and related control schemes for flexible aerospace structures is developed with emphasis on the Maypole hoop column antenna as a real world application. Modeling studies of the Maypole cable hoop membrane type antenna are conducted using a transfer matrix numerical analysis approach. This methodology was chosen as particularly well suited for handling a large number of antenna configurations of a generic type. A dedicated transfer matrix analysis, both by virtue of its specialization and the inherently easy compartmentalization of the formulation and numerical procedures, is significantly more efficient not only in computer time required but, more importantly, in the time needed to review and interpret the results.

  19. Persistence and translocation of a benzothiadiazole derivative in tomato plants in relation to systemic acquired resistance against Pseudomonas syringae pv tomato.

    PubMed

    Scarponi, L; Buonaurio, R; Martinetti, L

    2001-03-01

    A reproducible and accurate procedure, based on HPLC analysis, has been developed to determine simultaneously acibenzolar-S-methyl (CGA 245 704) and its acid derivative (CGA 210 007) in tomato leaves. The limit of detection and quantification of the method are 0.015 and 0.15 mg litre-1 for CGA 245 704 and 0.030 and 0.30 mg litre-1 for CGA 210 007. In tomato plants treated with 250 microM CGA 245 704, it was found that the inducer rapidly translocates from treated leaves (cotyledons, 1st and 2nd) to untreated leaves (3rd to 5th), with the maximum translocation (40% of the total quantity found) occurring 8 h after the treatment. CGA 245 704 residues decreased as time elapsed in both treated and untreated tomato leaves, reaching negligible values 72 h after treatment. The acid derivative, CGA 210 007, was formed in tomato plants as early as 2 h after CGA 245 704 treatment, albeit only in the treated leaves. CGA 210 007 residues decreased in treated tomato leaves with a trend similar to that observed for CGA 245 704. Treatment of tomato plants with CGA 245 704 or CGA 210 007 at 250 microM systemically protected the plants against Pseudomonas syringae pv tomato attacks, the causal agent of bacterial speak disease. Evidence of this were reductions in the degree of infection, the bacterial lesion diameter and the bacterial growth in planta. Since neither CGA 245 704 nor CGA 210 007 inhibited bacterial growth in vitro and the protection against bacterial speak of tomato was observed when the two compounds were completely degraded, the protection must be due to the activation of the plant's defence mechanisms. PMID:11455656

  20. Large Space Systems/Low-Thrust Propulsion Technology

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The potentially critical interactions that occur between propulsion, structures and materials, and controls for large spacecraft are considered, the technology impacts within these fields are defined and the net effect on large systems and the resulting missions is determined. Topical areas are systems/mission analysis, LSS static and dynamic characterization, and propulsion systems characterization.

  1. Performance modeling for large database systems

    NASA Astrophysics Data System (ADS)

    Schaar, Stephen; Hum, Frank; Romano, Joe

    1997-02-01

    One of the unique approaches Science Applications International Corporation took to meet performance requirements was to start the modeling effort during the proposal phase of the Interstate Identification Index/Federal Bureau of Investigations (III/FBI) project. The III/FBI Performance Model uses analytical modeling techniques to represent the III/FBI system. Inputs to the model include workloads for each transaction type, record size for each record type, number of records for each file, hardware envelope characteristics, engineering margins and estimates for software instructions, memory, and I/O for each transaction type. The model uses queuing theory to calculate the average transaction queue length. The model calculates a response time and the resources needed for each transaction type. Outputs of the model include the total resources needed for the system, a hardware configuration, and projected inherent and operational availability. The III/FBI Performance Model is used to evaluate what-if scenarios and allows a rapid response to engineering change proposals and technical enhancements.

  2. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    SciTech Connect

    Hoen, Ben; Cappers, Peter; Wiser, Ryan; Thayer, Mark

    2011-04-19

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.

  3. Status of DOE and AID stand-alone photovoltaic system field tests

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.; Delombard, R.; Ratajczak, A. F.; Scudder, L. R.

    1984-01-01

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PV-powered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

  4. Status of DOE and AID stand-alone photovoltaic system field tests

    NASA Astrophysics Data System (ADS)

    Bifano, W. J.; Delombard, R.; Ratajczak, A. F.; Scudder, L. R.

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PV-powered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

  5. Evaluation of the Performance of the PVUSA Rating Methodology Applied to Dual Junction PV Technology: Preprint (Revised)

    SciTech Connect

    Myers, D. R.

    2009-07-01

    The PVUSA (Photovoltaics for Utility Scale Applications) project in the 1990's developed a rating methodology for PV performance evaluation which has become popular, and even incorporated into concentrating PV rating standards This report apply that method to rack-mounted dual-junction PV system, and produces a system rating.

  6. Microgrid-Ready Solar PV; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-07-01

    Designing new solar projects to be 'microgrid-ready' enables the U.S. DoD, other federal agencies, and the private sector to plan future microgrid initiatives to utilize solar PV as a generating resource. This fact sheet provides background information with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  7. Pressure-equalizing PV assembly and method

    DOEpatents

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  8. PV module mounting method and mounting assembly

    DOEpatents

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  9. PSCAD Modules Representing PV Generator

    SciTech Connect

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  10. New therapeutic approaches in PV

    PubMed Central

    Falchi, Lorenzo; Newberry, Kate J.; Verstovsek, Srdan

    2015-01-01

    Polycytemia vera (PV) is one of the three Philadelphia-negative myeloproliferative neoplasms. Clinically, PV is an indolent disease but its course can be complicated by arterial and venous vascular accidents, evolution to myelofibrosis or leukemic transformation. Treatment of PV is, therefore, aimed at preventing such acute complications. The cornerstone of therapy of low-risk patients remains strict control of cardiovascular risk factors, the use of phlebotomy and low dose aspirin. Higher risk patients should also receive cytoreductive treatments. Hydroxyurea and interferon-α represent standard first-line options for newly diagnosed high-risk PV patients. Recommendations for patients who fail these therapies are less clearly defined. The discovery of a mutation in the Janus kinase 2 gene (V617F) in almost all cases of PV has prompted the development of molecularly targeted agents for the treatment of these patients. In this review we will discuss key clinical aspects, the current therapeutic armamentarium and data on the use of novel agents in patients with PV. PMID:26297275

  11. OPTIMIZATION OF DESIGN SPECIFICATIONS FOR LARGE DRY COOLING SYSTEMS

    EPA Science Inventory

    The report presents a methodology for optimizing design specifications of large, mechanical-draft, dry cooling systems. A multivariate, nonlinear, constrained optimization technique searches for the combination of design variables to determine the cooling system with the lowest a...

  12. A technology program for large area space systems

    NASA Technical Reports Server (NTRS)

    Guastaferro, A.

    1979-01-01

    The broad objective of the Large Space Systems Technology (LSST) program is to define and develop the necessary technology for large space systems and associated subsystems required for projected NASA space missions. It is a goal of LSST to make these systems economically and technically feasible by focusing on those technical activities believed to provide the greatest benefit to a variety of future systems. Emphasis is placed on two principal structural configurations: antennas and platforms.

  13. Measurement of a large deformable aspherical mirror using SCOTS (Software Configurable Optical Test System)

    NASA Astrophysics Data System (ADS)

    Huang, Run; Su, Peng; Horne, Todd; Brusa Zappellini, Guido; Burge, Jim H.

    2013-09-01

    The software configurable optical test system (SCOTS) is an efficient metrology technology based on reflection deflectometry that uses only an LCD screen and a camera to measure surface slope. The surface slope is determined by triangulations using the coordinates of the display screen, camera and test mirror. We present our recent SCOTS test results concentrated on high dynamic range measurements of low order aberrations. The varying astigmatism in the 91 cm diameter aspheric deformable secondary mirror for the Large Binocular Telescope (LBT) was measured with SCOTS, requiring no null corrector. The SCOTS system was designed on axis with camera and screen aligned on the optical axis of the test mirror with the help of a 6 inch pellicle beam splitter. The on-axis design gives better control of the astigmatism in the test. The high dynamic range of slope provided a measurement of astigmatism with 0.2 μm rms accuracy in the presence of 231 μm peak-to-valley (PV) aspheric departure. The simplicity of the test allowed the measurements to be performed at multiple elevation angles.

  14. Identification of a locus in arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato.

    PubMed

    Ton, J; Pieterse, C M; Van Loon, L C

    1999-10-01

    Selected nonpathogenic rhizobacteria with biological disease control activity are able to elicit an induced systemic resistance (ISR) response that is phenotypically similar to pathogen-induced systemic acquired resistance (SAR). Ten ecotypes of Arabidopsis thaliana were screened for their potential to express rhizobacteria-mediated ISR and pathogen-induced SAR against the leaf pathogen Pseudomonas syringae pv. tomato DC3000 (Pst). All ecotypes expressed SAR. However, of the 10 ecotypes tested, ecotypes RLD and Wassilewskija (Ws) did not develop ISR after treatment of the roots with nonpathogenic Pseudomonas fluorescens WCS417r bacteria. This nonresponsive phenotype was associated with relatively high susceptibility to Pst infection. The F1 progeny of crosses between the non-responsive ecotypes RLD and Ws on the one hand, and the responsive ecotypes Columbia (Col) and Landsberg erecta (Ler) on the other hand, were fully capable of expressing ISR and exhibited a relatively high level of basal resistance, similar to that of their WCS417r-responsive parent. This indicates that the potential to express ISR and the relatively high level of basal resistance against Pst are both inherited as dominant traits. Analysis of the F2 and F3 progeny of a Col x RLD cross revealed that inducibility of ISR and relatively high basal resistance against Pst cosegregate in a 3:1 fashion, suggesting that both resistance mechanisms are monogenically determined and genetically linked. Neither the responsiveness to WCS417r nor the relatively high level of basal resistance against Pst were complemented in the F1 progeny of crosses between RLD and Ws, indicating that RLD and Ws are both affected in the same locus, necessary for the expression of ISR and basal resistance against Pst. The corresponding locus, designated ISR1, was mapped between markers B4 and GL1 on chromosome 3. The observed association between ISR and basal resistance against Pst suggests that rhizobacteria-mediated ISR

  15. A technology program for large area space systems

    NASA Technical Reports Server (NTRS)

    Guastaferro, A.; Jenkins, L. M.

    1978-01-01

    The large space systems technology program (LSST) is discussed. The purpose of LSST is to define and develop technology for large space systems and associated subsystems required for projected NASA space missions. Goals involving structural concepts and supporting technology are surveyed. The application of LSST to the design of the solar power satellite is considered.

  16. Needs, opportunities, and options for large scale systems research

    SciTech Connect

    Thompson, G.L.

    1984-10-01

    The Office of Energy Research was recently asked to perform a study of Large Scale Systems in order to facilitate the development of a true large systems theory. It was decided to ask experts in the fields of electrical engineering, chemical engineering and manufacturing/operations research for their ideas concerning large scale systems research. The author was asked to distribute a questionnaire among these experts to find out their opinions concerning recent accomplishments and future research directions in large scale systems research. He was also requested to convene a conference which included three experts in each area as panel members to discuss the general area of large scale systems research. The conference was held on March 26--27, 1984 in Pittsburgh with nine panel members, and 15 other attendees. The present report is a summary of the ideas presented and the recommendations proposed by the attendees.

  17. Power quality load management for large spacecraft electrical power systems

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.

    1988-01-01

    In December, 1986, a Center Director's Discretionary Fund (CDDF) proposal was granted to study power system control techniques in large space electrical power systems. Presented are the accomplishments in the area of power system control by power quality load management. In addition, information concerning the distortion problems in a 20 kHz ac power system is presented.

  18. Review of PV Inverter Technology Cost and Performance Projections

    SciTech Connect

    Navigant Consulting Inc.

    2006-01-01

    The National Renewable Energy Laboratory (NREL) has a major responsibility in the implementation of the U.S. Department of Energy's (DOE's) Solar Energy Technologies Program. Sandia National Laboratories (SNL) has a major role in supporting inverter development, characterization, standards, certifications, and verifications. The Solar Energy Technologies Program recently published a Multiyear Technical Plan, which establishes a goal of reducing the Levelized Energy Cost (LEC) for photovoltaic (PV) systems to $0.06/kWh by 2020. The Multiyear Technical Plan estimates that, in order to meet the PV system goal, PV inverter prices will need to decline to $0.25-0.30 Wp by 2020. DOE determined the need to conduct a rigorous review of the PV Program's technical and economic targets, including the target set for PV inverters. NREL requested that Navigant Consulting Inc.(NCI) conduct a review of historical and projected cost and performance improvements for PV inverters, including identification of critical barriers identified and the approaches government might use to address them.

  19. How Can We Make PV Modules Safer?: Preprint

    SciTech Connect

    Wohlgemuth, J. H.; Kurtz, S. R.

    2012-06-01

    Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

  20. Fail-safe designs for large capacity battery systems

    DOEpatents

    Kim, Gi-Heon; Smith, Kandler; Ireland, John; Pesaran, Ahmad A.; Neubauer, Jeremy

    2016-05-17

    Fail-safe systems and design methodologies for large capacity battery systems are disclosed. The disclosed systems and methodologies serve to locate a faulty cell in a large capacity battery, such as a cell having an internal short circuit, determine whether the fault is evolving, and electrically isolate the faulty cell from the rest of the battery, preventing further electrical energy from feeding into the fault.

  1. PV solar electricity: status and future

    NASA Astrophysics Data System (ADS)

    Hoffmann, Winfried

    2006-04-01

    Within the four main market segments of PV solar electricity there are already three areas competitive today. These are off-grid industrial and rural as well as consumer applications. The overall growth within the past 8 years was almost 40 % p.a. with a "normal" growth of about 18 % p.a. for the first three market segments whereas the grid connected market increased with an astonishing 63 % p.a. The different growth rates catapulted the contribution of grid connected systems in relation to the total market from about one quarter 6 years ago towards more than three quarters today. The reason for this development is basically due to industry-politically induced market support programs in the aforementioned countries. It is quite important to outline under which boundary conditions grid connected systems will be competitive without support programs like the feed in tariff system in Germany, Spain and some more to come in Europe as well as investment subsidies in Japan, US and some other countries. It will be shown that in a more and more liberalized utility market worldwide electricity produced by PV solar electricity systems will be able to compete with their generating cost against peak power prices from utilities. The point of time for this competitiveness is mainly determined by the following facts: 1. Price decrease for PV solar electricity systems leading to an equivalent decrease in the generated cost for PV produced kWh. 2. Development of a truly liberalized electricity market. 3. Degree of irradiation between times of peak power demand and delivery of PV electricity. The first topic is discussed using price experience curves. Some explanations will be given to correlate the qualitative number of 20 % price decrease for doubling cumulative worldwide sales derived from the historic price experience curve with a more quantitative analysis based on our EPIA-Roadmap (productivity increase and ongoing improvements for existing technologies as well as development

  2. Monitoring results of PV for electric propulsion in recreational boating

    SciTech Connect

    Loois, G.; Wouters, F.P.H.; Koerts, G.M.; Weiden, T.C.J. van der

    1994-12-31

    In the future, grid connected systems will become the most important application of PV in Europe. Until that time a range of applications of autonomous systems needs to be developed to support the introduction of PV. Two projects concerning development and demonstration of PV-systems for powering ships with electric propulsion, aim to open a market with a technical potential of several hundreds of MWp in Europe. A secure energy supply, enhanced comfort (less noise and air pollution) and benevolence for the natural environment are the most significant advantages for introduction. Eighteen PV/battery-systems for electric propulsion of leisure boats (4 kWp in total) are currently realized and investigated in a pilot project in The Netherlands. The systems in use all run to the satisfaction of the users. Preliminary results of monitoring data on a few systems of these systems will be presented. A European project comprising about more than 75 PV-powered recreational ships (100 Wp to 2.5 kWp), involving shipbuilders, local authorities, utilities and interest groups has recently started.

  3. PV-MCT working standard radiometer

    NASA Astrophysics Data System (ADS)

    Eppeldauer, George P.; Podobedov, V. B.

    2012-06-01

    Sensitive infrared working-standard detectors with large active area are needed to extend the signal dynamic range of the National Institute of Standards and Technology (NIST) pyroelectric transfer-standards used for infrared spectral power responsivity calibrations. Increased sensitivity is especially important for irradiance mode responsivity measurements. The noise equivalent power (NEP) of the NIST used pyroelectric transfer-standards is about 8 nW/Hz1/2, equal to a D*= 5.5 x 107 cm Hz1/2/W. A large-area photovoltaic HgCdTe (PV-MCT) detector was custom made for the 2.5 μm to 11 μm wavelength range using a 4-stage thermoelectric cooler. At least an order of magnitude lower NEP was expected than that of the pyroelectric transfer-standards to measure irradiance. The large detector area was produced with multiple p-n junctions. The periodical, multiple-junction structure produced a spatial non-uniformity in the detector response. The PV-MCT radiometer was characterized for spatial non-uniformity of response using different incident beam sizes to evaluate the uncertainty component caused by the spatial non-uniformity. The output voltage noise and also the current and voltage responsivities were evaluated at different signal gains and frequencies. The output voltage noise was decreased and the voltage responsivity was increased to lower the NEP of the radiometer. The uncertainty of the spectral power responsivity measurements was evaluated. It is recommended to use a bootstrap type trans-impedance amplifier along with a cold field-of-view limiter to improve the NEP of the PV-MCT radiometer.

  4. Modelling and simulation of large solid state laser systems

    SciTech Connect

    Simmons, W.W.; Warren, W.E.

    1986-01-01

    The role of numerical methods to simulate the several physical processes (e.g., diffraction, self-focusing, gain saturation) that are involved in coherent beam propagation through large laser systems is discussed. A comprehensive simulation code for modeling the pertinent physical phenomena observed in laser operations (growth of small-scale modulation, spatial filter, imaging, gain saturation and beam-induced damage) is described in some detail. Comparisons between code results and solid state laser output performance data are presented. Design and performance estimation of the large Nova laser system at LLNL are given. Finally, a global design rule for large, solid state laser systems is discussed.

  5. Large space systems requirements, deployable concepts, and technology issues

    NASA Technical Reports Server (NTRS)

    Lovelace, U. M.; Garrett, L. B.

    1987-01-01

    This paper summarizes some of the future civil missions requiring large space systems technologies. Antenna, collector, and reflector missions are generalized to define a similar set of system requirements and characteristics. Although many concepts exist for both deployable and space assemblable large structures, four technically mature deployable concepts are reviewed. Two of these concepts are probably applicable to only antenna/collector missions, whereas the other two employ continuous trusses which can be configured for a broad range of planar, linear, or curved structures. Finally, technology problems or needs associated with large deployable systems are reviewed to highlight additional research and development, both analytical and experimental, required to reduce mission risk.

  6. Optical position measurement for a Large Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S.; Shelton, Kevin J.; Clemmons, James I.

    1991-01-01

    This paper describes the design of an optical position measurement system which is being built as part of the NASA Langley Large Gap Magnetic Suspension System (LGMSS). The LGMSS is a five degree-of-freedom, large-gap magnetic suspension system which is being built for Langley Research Center as part of the Advanced Controls Test Facility (ACTF). The LGMSS consists of a planar array of electromagnets which levitate and position a cylindrically shaped model containing a permanent magnet core. The optical position measurement system provides information on the location and orientation of the model to the LGMSS control system to stabilize levitation of the model.

  7. A large-field laser holographic focusing schilieren system

    NASA Technical Reports Server (NTRS)

    Doggett, Glen P.; Chokani, N.

    1992-01-01

    A large-field laser holographic focusing schlieren system for high-speed flow visualization has been built and evaluated. This system is based on a recently improved large-field focusing schlieren technique and is combined with laser holography methods to record three-dimensional flows. A coordinated experimental and computational study of supersonic flows over wedge, cone, and sphere geometries was conducted to evaluate the capabilities and limitations of the system. The ability of the system to focus on planes normal to its optical axis is demonstrated. The sharpness of focus of the present system was found to be limited. Issues regarding obtaining quantitative measurements of the density gradient are discussed.

  8. Tools for Enhanced Grid Operation and Optimized PV Penetration Utilizing Highly Distributed Sensor Data.

    SciTech Connect

    Reno, Matthew J.; Peppanen, Jouni; Seuss, John; Lave, Matthew Samuel; Broderick, Robert Joseph; Grijalva, Santiago

    2015-11-01

    Increasing number s of PV on distribution systems are creating more grid impacts , but it also provides more opportunities for measurement, sensing, and control of the grid in a distributed fashion. This report demonstrates three software tools for characterizing and controlling distribution feeders by utilizing large numbers of highly distributed current, voltage , and irradiance sensors. Instructions and a user manual is presented for each tool. First, the tool for distribution system secondary circuit parameter estimation is presented. This tool allows studying distribution system parameter estimation accuracy with user-selected active power, reactive power, and voltage measurements and measurement error levels. Second, the tool for multi-objective inverter control is shown. Various PV inverter control strategies can be selected to objectively compare their impact on the feeder. Third, the tool for energy storage for PV ramp rate smoothing is presented. The tool allows the user to select different storage characteristics (power and energy ratings) and control types (local vs. centralized) to study the tradeoffs between state-of-charge (SOC) management and the amount of ramp rate smoothing.

  9. Reduction of Large Dynamical Systems by Minimization of Evolution Rate

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1999-01-01

    Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.

  10. Large space telescope, phase A. Volume 5: Support systems module

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The development and characteristics of the support systems module for the Large Space Telescope are discussed. The following systems and described: (1) thermal control, (2) electrical, (3) communication and data landing, (4) attitude control system, and (5) structural features. Analyses of maintainability and reliability considerations are included.

  11. Geographic smoothing of solar PV: results from Gujarat

    NASA Astrophysics Data System (ADS)

    Klima, Kelly; Apt, Jay

    2015-10-01

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log-log domain at high frequencies f, ranging from {f}-1.23 to {f}-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a {f}-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an {f}-1.76 spectrum. This suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.

  12. Geographic smoothing of solar PV: Results from Gujarat

    DOE PAGESBeta

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  13. Estimation of PV energy production based on satellite data

    NASA Astrophysics Data System (ADS)

    Mazurek, G.

    2015-09-01

    Photovoltaic (PV) technology is an attractive source of power for systems without connection to power grid. Because of seasonal variations of solar radiation, design of such a power system requires careful analysis in order to provide required reliability. In this paper we present results of three-year measurements of experimental PV system located in Poland and based on polycrystalline silicon module. Irradiation values calculated from results of ground measurements have been compared with data from solar radiation databases employ calculations from of satellite observations. Good convergence level of both data sources has been shown, especially during summer. When satellite data from the same time period is available, yearly and monthly production of PV energy can be calculated with 2% and 5% accuracy, respectively. However, monthly production during winter seems to be overestimated, especially in January. Results of this work may be helpful in forecasting performance of similar PV systems in Central Europe and allow to make more precise forecasts of PV system performance than based only on tables with long time averaged values.

  14. Magnetic prism alignment system for measuring large-angle strabismus.

    PubMed

    Bishop, John Edward

    2014-02-01

    Prismatic measurement of large-angle strabismus requires the simultaneous use of two or more prisms for neutralization. To facilitate the clinical measurement of large-angle strabismus a new prism system was designed utilizing a flat plate and a ferrous metal surface coupled with prisms containing rare earth magnets implanted in their base and bottom surfaces. PMID:24569000

  15. BCH codes for large IC random-access memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1983-01-01

    In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.

  16. Progress towards large wind tunnel magnetic suspension and balance systems

    NASA Technical Reports Server (NTRS)

    Britcher, C. P.

    1984-01-01

    Recent developments and current research efforts leading towards realization of a large scale production wind tunnel Magnetic Suspension and Balance facility are reviewed. Progress has been made in the areas of model roll control, high angle-of-attack testing, digital system control, high magnetic moment superconducting solenoid model cores, and system failure tolerance. Formal design studies of large scale facilities have commenced and are continuing.

  17. Genetic diversity in populations of Xanthomonas campestris pv. camestris in cruciferous weeds in central coastal California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Xanthomonas campestris pv. campestris infects a large number of cruciferous plants, including weeds. California has one of the largest and most diverse populations of wild cruciferous plants in the world. Although considerable information is available on the genetic diversity of X. campestris pv. ca...

  18. SMART reliability mechanism for very large storage systems

    NASA Astrophysics Data System (ADS)

    Luo, Dongjian; Zhong, Haifeng; Pei, Canhao; Wu, Wei; Zhang, Chengfeng

    2008-12-01

    In this paper, we investigate the reliability in a petabyte scale storage system built from thousands of Object-Based Storage Devices and study the mechanisms to protect data loss when disk failure happens. We delve in two underlying redundancy mechanisms: 2-way mirroring, 3-way mirroring. To accelerate data reconstruction, Fast Mirroring Copy is employed where the reconstructed objects are stored on different OBSDs throughout the system. A SMART reliability for enhancing the reliability in very large-scale storage system is proposed. Results show that our SMART Reliability Mechanism can utilize the spare resources (including processing, network, and storage resources) to improve the reliability in very large storage systems.

  19. Using Agent Base Models to Optimize Large Scale Network for Large System Inventories

    NASA Technical Reports Server (NTRS)

    Shameldin, Ramez Ahmed; Bowling, Shannon R.

    2010-01-01

    The aim of this paper is to use Agent Base Models (ABM) to optimize large scale network handling capabilities for large system inventories and to implement strategies for the purpose of reducing capital expenses. The models used in this paper either use computational algorithms or procedure implementations developed by Matlab to simulate agent based models in a principal programming language and mathematical theory using clusters, these clusters work as a high performance computational performance to run the program in parallel computational. In both cases, a model is defined as compilation of a set of structures and processes assumed to underlie the behavior of a network system.

  20. Results from undergraduate PV projects at Seven Historically Black Colleges and Universities

    NASA Astrophysics Data System (ADS)

    McConnell, Robert D.

    1999-03-01

    In 1995, the NREL/Department of Energy (DOE) National Photovoltaics Program funded seven Historically Black Colleges and Universities (HBCUs) in its HBCU Photovoltaic Research Associates Program for a period of three years. The program's purpose is to advance HBCU undergraduate knowledge of photovoltaics, primarily as a result of research investigations performed, and to encourage students to pursue careers in photovoltaics. This paper presents results from PV projects ranging from fundamental materials research on PV materials to field projects of PV systems.

  1. Results from Undergraduate PV Projects at Seven Historically Black Colleges and Universities

    SciTech Connect

    McConnell, R. D.

    1999-03-03

    In 1995, the NREL/Department of Energy (DOE) National Photovoltaics Program funded seven Historically Black Colleges and Universities (HBCUs) in its HBCU Photovoltaic Research Associates Program for a period of three years. The program's purpose is to advance HBCU undergraduate knowledge of photovoltaics, primarily as a result of research investigations performed, and to encourage students to pursue careers in photovoltaics. This paper presents results from PV projects ranging from fundamental materials research on PV materials to field projects of PV systems.

  2. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    SciTech Connect

    Hoen, Ben; Cappers, Pete; Wiser, Ryan; Thayer, Mark

    2011-04-12

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that provides estimates of the marginal impacts of those PV systems on home sale prices. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. We find strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, from roughly $4 to $6.4/watt across the full dataset, to approximately $2.3/watt for new homes, to more than $6/watt for existing homes. A number of ideas for further research are suggested.

  3. Technology for large space systems: A special bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This bibliography lists 460 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1968 and December 31, 1978. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design in the area of the Large Space Systems Technology (LSST) Program. Subject matter is grouped according to systems, interactive analysis and design, structural concepts, control systems, electronics, advanced materials, assembly concepts, propulsion, and flight experiments.

  4. Discharge transient coupling in large space power systems

    NASA Technical Reports Server (NTRS)

    Stevens, N. John; Stillwell, R. P.

    1990-01-01

    Experiments have shown that plasma environments can induce discharges in solar arrays. These plasmas simulate the environments found in low earth orbits where current plans call for operation of very large power systems. The discharges could be large enough to couple into the power system and possibly disrupt operations. Here, the general concepts of the discharge mechanism and the techniques of coupling are discussed. Data from both ground and flight experiments are reviewed to obtain an expected basis for the interactions. These concepts were applied to the Space Station solar array and distribution system as an example of the large space power system. The effect of discharges was found to be a function of the discharge site. For most sites in the array discharges would not seriously impact performance. One location at the negative end of the array was identified as a position where discharges could couple to charge stored in system capacitors. This latter case could impact performance.

  5. NREL/SCE High-Penetration PV Integration Project: Report on Field Demonstration of Advanced Inverter Functionality in Fontana, CA

    SciTech Connect

    Mather, B.

    2014-08-01

    The National Renewable Energy Laboratory/Southern California Edison High-Penetration PV Integration Project is (1) researching the distribution system level impacts of high-penetration photovoltaic (PV) integration, (2) determining mitigation methods to reduce or eliminate those impacts, and (3) seeking to demonstrate these mitigation methods on actual high-penetration PV distribution circuits. This report describes a field demonstration completed during the fall of 2013 on the Fontana, California, study circuit, which includes a total of 4.5 MW of interconnected utility-scale rooftop PV systems. The demonstration included operating a 2-MW PV system at an off-unity power factor that had been determined during previously completed distribution system modeling and PV impact assessment analyses. Data on the distribution circuit and PV system operations were collected during the 2-week demonstration period. This demonstration reinforces the findings of previous laboratory testing that showed that utility-scale PV inverters are capable of operating at off-unity power factor to mitigate PV impacts; however, because of difficulties setting and retaining PV inverter power factor set points during the field demonstration, it was not possible to demonstrate the effectiveness of off-unity power factor operation to mitigate the voltage impacts of high-penetration PV integration. Lessons learned from this field demonstration are presented to inform future field demonstration efforts.

  6. Estimating the environmental and economic effects of widespread residential PV adoption using GIS and NEMS

    SciTech Connect

    Marnay, C.; Richey, R.C.; Mahler, S.A.

    1997-10-01

    This paper describes a study of the national effects of widespread adoption of grid-connected residential rooftop photovoltaic (PV) systems. A Geographic Information System (GIS) model is used to estimate potential PV system adoption and PV electricity generation and the National Energy Modeling System (NEMS) is used to estimate the national effects of PV electricity generation. Adoption is assumed to occur if levelized PV system cost is less than the local average retail electricity rate at the country level. An estimate of the current {open_quotes}best{close_quotes} scenario (defined by a 6.5% real interest rate, 30-year loan life, $6{sub 1994}/W system cost, and $4{sub 1994}/month voluntary premium) results in no adoption. Several scenarios designed to stimulate PV adoption are modeled. As an example, if PV system costs are instead assumed to be $3{sub 1994}/W, rooftop systems are found to be cost effective in 16% of detached single-family households in the U.S. by 2015 (assuming full adoption of 4-kW systems), this results in 82.1 TWh of annual PV electricity generation, 170 TWh of avoided electricity transmission, distribution, and generation losses, 6 Mt/a of avoided carbon emissions, 50 kt/a of avoided NOx emissions, and 27.3 GW of avoided electricity generating capacity in place.

  7. Estimating the environmental and economic effects of widespread residential PV adoption using GIS and NEMS

    SciTech Connect

    Marnay, C.; Richey, R.C.; Mahler, S.A.; Markel, R.J.

    1997-12-31

    This paper describes a study of the national effects of widespread adoption of grid-connected residential roof-top photovoltaic (PV) systems. A Geographic Information System (GIS) model is used to estimate potential PV system adoption and PV electricity generation and the National Energy Modeling System (NEMS) is used to estimate the national effects of PV electricity generation. Adoption is assumed to occur if levelized PV system cost is less than the local average retail electricity rate at a county-level. The estimate of the current best scenario (defined in 1994 dollars by a 6.5% real interest rate, 30 year loan life, $6/W system cost, and $4/month voluntary premium) results in no adoption. The authors model several scenarios designed to stimulate PV adoption. As an example, if PV system costs are instead assumed to be $3/W, roof-top systems are found to be cost effective in 16% of detached single-family households in the US. By 2015 (assuming full adoption of 4 kW systems), this results in 82.1 TWh of annual PV electricity generation, 1709 TWh of avoided electricity transmission, distribution, and generation (TD and G) losses, 6 Mt/a of avoided carbon emissions, 50 kt/a of avoided NOx emissions, and 27.3 GW of avoided electricity generating capacity in place.

  8. Gene Expression Profiling in Viable but Nonculturable (VBNC) Cells of Pseudomonas syringae pv. syringae

    PubMed Central

    Postnikova, Olga A.; Shao, Jonathan; Mock, Norton M.; Baker, Con J.; Nemchinov, Lev G.

    2015-01-01

    Pseudomonas syringae infects diverse crop plants and comprises at least 50 different pathovar strains with different host ranges. More information on the physiological and molecular effects of the host inhibitory environment on the pathogen is needed to develop resistant cultivars. Recently, we reported an in vitro model system that mimics the redox pulse associated with the oxidative burst in plant cells inoculated with Pseudomonas syringae pv. syringae. Using this system, we demonstrated that oxidation of acetosyringone, a major extracellular phenolic compound induced in some plants in response to bacteria, rendered Pseudomonas syringae pv. syringae to a “viable but nonculturable” (VBNC) state. Here we performed a large scale transcriptome profiling of P. s. pv. syringae in the VBNC state induced by acetosyringone treatment and identified bacterial genes and pathways presumably associated with this condition. The findings offer insight into what events occur when bacterial pathogens are first encountered and host defense responses are triggered. The acquired knowledge will improve our understanding of the molecular mechanisms of stress tolerance. We believe that this is the first work on global gene expression profiling of VBNC cells in plant pathogenic bacteria. PMID:26733964

  9. Developing closed life support systems for large space habitats

    NASA Technical Reports Server (NTRS)

    Phillips, J. M.; Harlan, A. D.; Krumhar, K. C.

    1978-01-01

    In anticipation of possible large-scale, long-duration space missions which may be conducted in the future, NASA has begun to investigate the research and technology development requirements to create life support systems for large space habitats. An analysis suggests the feasibility of a regeneration of food in missions which exceed four years duration. Regeneration of food in space may be justified for missions of shorter duration when large crews must be supported at remote sites such as lunar bases and space manufacturing facilities. It is thought that biological components consisting principally of traditional crop and livestock species will prove to be the most acceptable means of closing the food cycle. A description is presented of the preliminary results of a study of potential biological components for large space habitats. Attention is given to controlled ecosystems, Russian life support system research, controlled-environment agriculture, and the social aspects of the life-support system.

  10. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  11. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect

    Agamy, Mohammed S; Chi, Song; Elasser, Ahmed; Harfman-Todorovic, Maja; Jiang, Yan; Mueller, Frank; Tao, Fengfeng

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  12. Draft genome sequences of three Xanthomonas translucens pathovar reference strains (pv. arrhenatheri, pv. poae and pv. phlei) with different specificities for forage grasses.

    PubMed

    Hersemann, Lena; Wibberg, Daniel; Widmer, Franco; Vorhölter, Frank-Jörg; Kölliker, Roland

    2016-01-01

    As causal agents of bacterial wilt in pastures and meadows, bacteria of the species Xanthomonas translucens are a serious issue in forage grass production. So far, only little is known about host-pathogen interactions at the molecular level and the lack of comprehensive genome data impeded targeted breeding strategies towards resistant forage grass cultivars. Here we announce the draft genome sequences of three grass-pathogenic Xanthomonas translucens pathotype strains, i.e. pv. arrhenatheri LMG 727, pv. poae LMG 728 and pv. phlei LMG 730 isolated from Arrhenatherum elatius (L.) P. Beauv. ex J. Presl & C. Presl (Switzerland), Poa trivialis L. (Switzerland) and Phleum pratense L. (Norway), respectively. The genomes of all three strains revealed a non-canonical type III secretion system and a set of 22 type III effectors as common virulence-related traits. Distinct inter-pathovar differences were observed for the lipopolysaccharide biosynthesis gene cluster and the presence of nonribosomal peptide synthetases. PMID:27536340

  13. Development of NIL processes for PV applications

    NASA Astrophysics Data System (ADS)

    Hauser, H.; Tucher, N.; Tokai, K.; Schneider, P.; Wellens, Ch.; Volk, A.; Barke, S.; Müller, C.; Glinsner, T.; Bläsi, B.

    2015-03-01

    Due to its high resolution and applicability for large area patterning, Nanoimprint Lithography (NIL) is a promising technology for photovoltaic (PV) applications. However, a successful industrial application of NIL processes is only possible if large-area processing on thin, brittle and potentially rough substrates can be achieved in a high-throughput process. In this work, the development of NIL processes using the novel SmartNILTM technology from EV Group with a focus on PV applications is described. We applied this tooling to realize a honeycomb texture (8 μm period) on the front side of multicrystalline silicon solar cells leading to an improvement in optical efficiency of 7% relative and a total efficiency gain of 0.5% absolute compared to the industrial standard texture (isotexture). On the rear side of monocrystalline silicon solar cells, we realized diffraction gratings to make use of light trapping effects. An absorption enhancement of up to 35% absolute at a wavelength of 1100 nm is demonstrated. Furthermore, we combined photolithography and NIL processes to introduce features for metal contacts into honeycomb master structures, which initially were realized using interference lithography. As final application, we investigated the realization of very fine contact fingers with prismatic shape in order to minimize reflection losses.

  14. An improved large-field focusing schlieren system

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M.

    1991-01-01

    The analysis and performance of a high-brightness large-field focusing schlieren system is described. The system can be used to examine complex two- and three-dimensional flows. Techniques are described to obtain focusing schlieren through distorting optical elements, to use multiple colors in a time multiplexing technique, and to use diffuse screen holography for three-dimensional photographs.

  15. Automated frequency domain system identification of a large space structure

    NASA Technical Reports Server (NTRS)

    Yam, Y.; Bayard, D. S.; Hadaegh, F. Y.; Mettler, E.; Milman, M. H.

    1989-01-01

    This paper presents the development and experimental results of an automated on-orbit system identification method for large flexible spacecraft that yields estimated quantities to support on-line design and tuning of robust high performance control systems. The procedure consists of applying an input to the plant, obtaining an output, and then conducting nonparametric identification to yield the spectral estimate of the system transfer function. A parametric model is determined by curve fitting the spectral estimate to a rational transfer function. The identification method has been demonstrated experimentally on the Large Spacecraft Control Laboratory in JPL.

  16. Survey of decentralized control methods. [for large scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1975-01-01

    An overview is presented of the types of problems that are being considered by control theorists in the area of dynamic large scale systems with emphasis on decentralized control strategies. Approaches that deal directly with decentralized decision making for large scale systems are discussed. It is shown that future advances in decentralized system theory are intimately connected with advances in the stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools associated with the latter are summarized, and recommendations concerning future research are presented.

  17. Self-* and Adaptive Mechanisms for Large Scale Distributed Systems

    NASA Astrophysics Data System (ADS)

    Fragopoulou, P.; Mastroianni, C.; Montero, R.; Andrjezak, A.; Kondo, D.

    Large-scale distributed computing systems and infrastructure, such as Grids, P2P systems and desktop Grid platforms, are decentralized, pervasive, and composed of a large number of autonomous entities. The complexity of these systems is such that human administration is nearly impossible and centralized or hierarchical control is highly inefficient. These systems need to run on highly dynamic environments, where content, network topologies and workloads are continuously changing. Moreover, they are characterized by the high degree of volatility of their components and the need to provide efficient service management and to handle efficiently large amounts of data. This paper describes some of the areas for which adaptation emerges as a key feature, namely, the management of computational Grids, the self-management of desktop Grid platforms and the monitoring and healing of complex applications. It also elaborates on the use of bio-inspired algorithms to achieve self-management. Related future trends and challenges are described.

  18. Large-scale smart passive system for civil engineering applications

    NASA Astrophysics Data System (ADS)

    Jung, Hyung-Jo; Jang, Dong-Doo; Lee, Heon-Jae; Cho, Sang-Won

    2008-03-01

    The smart passive system consisting of a magnetorheological (MR) damper and an electromagnetic induction (EMI) part has been recently proposed. An EMI part can generate the input current for an MR damper from vibration of a structure according to Faraday's law of electromagnetic induction. The control performance of the smart passive system has been demonstrated mainly by numerical simulations. It was verified from the numerical results that the system could be effective to reduce the structural responses in the cases of civil engineering structures such as buildings and bridges. On the other hand, the experimental validation of the system is not sufficiently conducted yet. In this paper, the feasibility of the smart passive system to real-scale structures is investigated. To do this, the large-scale smart passive system is designed, manufactured, and tested. The system consists of the large-capacity MR damper, which has a maximum force level of approximately +/-10,000N, a maximum stroke level of +/-35mm and the maximum current level of 3 A, and the large-scale EMI part, which is designed to generate sufficient induced current for the damper. The applicability of the smart passive system to large real-scale structures is examined through a series of shaking table tests. The magnitudes of the induced current of the EMI part with various sinusoidal excitation inputs are measured. According to the test results, the large-scale EMI part shows the possibility that it could generate the sufficient current or power for changing the damping characteristics of the large-capacity MR damper.

  19. Engineering large-scale agent-based systems with consensus

    NASA Technical Reports Server (NTRS)

    Bokma, A.; Slade, A.; Kerridge, S.; Johnson, K.

    1994-01-01

    The paper presents the consensus method for the development of large-scale agent-based systems. Systems can be developed as networks of knowledge based agents (KBA) which engage in a collaborative problem solving effort. The method provides a comprehensive and integrated approach to the development of this type of system. This includes a systematic analysis of user requirements as well as a structured approach to generating a system design which exhibits the desired functionality. There is a direct correspondence between system requirements and design components. The benefits of this approach are that requirements are traceable into design components and code thus facilitating verification. The use of the consensus method with two major test applications showed it to be successful and also provided valuable insight into problems typically associated with the development of large systems.

  20. Software Reliability Issues Concerning Large and Safety Critical Software Systems

    NASA Technical Reports Server (NTRS)

    Kamel, Khaled; Brown, Barbara

    1996-01-01

    This research was undertaken to provide NASA with a survey of state-of-the-art techniques using in industrial and academia to provide safe, reliable, and maintainable software to drive large systems. Such systems must match the complexity and strict safety requirements of NASA's shuttle system. In particular, the Launch Processing System (LPS) is being considered for replacement. The LPS is responsible for monitoring and commanding the shuttle during test, repair, and launch phases. NASA built this system in the 1970's using mostly hardware techniques to provide for increased reliability, but it did so often using custom-built equipment, which has not been able to keep up with current technologies. This report surveys the major techniques used in industry and academia to ensure reliability in large and critical computer systems.

  1. Investigation of bias radiation effect on PV cell measurement

    NASA Astrophysics Data System (ADS)

    Huang, Xuebo; Quan, Chenggen; Chan, Joanne; Ng, Patrick

    2013-06-01

    Photovoltaic (PV) cells are photo-electrical devices that convert light energy directly into electricity through the photovoltaic effect. PV cell assemblies are used to make solar modules employed in a variety of ways ranging from space applications to domestic energy consumption. Characterisation and performance testing of PV cells are critical to the development of PV technologies and growth of the solar industry. As new solar products are being developed, its energy conversion efficiency and other critical parameters must be accurately measured and tested against globally recognised metrological standards. The differential spectral responsivity (DSR) measurement is one of the primary methods for calibrating reference PV cells. This is done by calculating its spectral responsivities through measuring the AC short-circuit current produced by a PV cell under a modulated monochromatic radiation and different levels of steady-state broadband bias light radiation. It is observed that different types of bias light source will produce different signal-to-noise levels and significantly influence measurement accuracy. This paper aims to investigate the noise sources caused by different types of bias light sources (e.g. xenon arc and tungsten-halogen lamps) and the relevant measurement uncertainties so as to propose a guideline for selection of bias light source which can improve the signal-to-noise level and measurement uncertainty. The DSRs of the PV cells are measured using a commercial DSR measurement system under different levels of bias radiation from 0 to 1 kWm-2. The data analysis and uncertainty evaluation are presented in this paper using experimental data and mathematical tools.

  2. Laser processing system development of large area and high precision

    NASA Astrophysics Data System (ADS)

    Park, Hyeongchan; Ryu, Kwanghyun; Hwang, Taesang

    2013-03-01

    As industry of PCB (Printed Circuit Board) and display growing, this industry requires an increasingly high-precision quality so current cutting process in industry is preferred laser machining than mechanical machining. Now, laser machining is used almost "step and repeat" method in large area, but this method has a problem such as cutting quality in the continuity of edge parts, cutting speed and low productivity. To solve these problems in large area, on-the-fly (stagescanner synchronized system) is gradually increasing. On-the-fly technology is able to process large area with high speed because of stage-scanner synchronized moving. We designed laser-based high precision system with on-the-fly. In this system, we used UV nano-second pulse laser, power controller and scanner with telecentric f-theta lens. The power controller is consisted of HWP(Half Wave Plate), thin film plate polarizer, photo diode, micro step motor and control board. Laser power is possible to monitor real-time and adjust precision power by using power controller. Using this machine, we tested cutting of large area coverlay and sheet type large area PCB by applying on-the-fly. As a result, our developed machine is possible to process large area without the problem of the continuity of edge parts and by high cutting speed than competitor about coverlay.

  3. Large-scale current systems in the dayside Venus ionosphere

    NASA Technical Reports Server (NTRS)

    Luhmann, J. G.; Elphic, R. C.; Brace, L. H.

    1981-01-01

    The occasional observation of large-scale horizontal magnetic fields within the dayside ionosphere of Venus by the flux gate magnetometer on the Pioneer Venus orbiter suggests the presence of large-scale current systems. Using the measured altitude profiles of the magnetic field and the electron density and temperature, together with the previously reported neutral atmosphere density and composition, it is found that the local ionosphere can be described at these times by a simple steady state model which treats the unobserved quantities, such as the electric field, as parameters. When the model is appropriate, the altitude profiles of the ion and electron velocities and the currents along the satellite trajectory can be inferred. These results elucidate the configurations and sources of the ionospheric current systems which produce the observed large-scale magnetic fields, and in particular illustrate the effect of ion-neutral coupling in the determination of the current system at low altitudes.

  4. A Large Motion Suspension System for Simulation of Orbital Deployment

    NASA Technical Reports Server (NTRS)

    Straube, T. M.; Peterson, L. D.

    1994-01-01

    This paper describes the design and implementation of a vertical degree of freedom suspension system which provides a constant force off-load condition to counter gravity over large displacements. By accommodating motions up to one meter for structures weighing up to 100 pounds, the system is useful for experiments which simulate the on-orbit deployment of spacecraft components. A unique aspect of this system is the combination of a large stroke passive off-load device augmented by electromotive torque actuated force feedback. The active force feedback has the effect of reducing breakaway friction by an order of magnitude over the passive system alone. The paper describes the development of the suspension hardware and the feedback control algorithm. Experiments were performed to verify the suspensions system's ability to provide a gravity off-load as well as its effect on the modal characteristics of a test article.

  5. Performance Health Monitoring of Large-Scale Systems

    SciTech Connect

    Rajamony, Ram

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­‐scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  6. Estimation of Battery Capacity for Fluctuation Suppression of a PV Power Station Output

    NASA Astrophysics Data System (ADS)

    Akatsuka, Motoki; Hara, Ryoichi; Kita, Hiroyuki; Ito, Takamitsu; Ueda, Yoshinobu; Saito, Yutaka

    Some MW-class PV power stations are now under construction and more PV power stations will be introduced in future. However, the penetration of PV power station may disturb a stable operation of the power system. The largest concerns are frequency variation and voltage variation caused by fluctuation of PV power station output. When these variations can not be eliminated by the conventional system operation and control schemes, installation of energy storage system might be needed. From this background, the authors have developed control method of battery system for fluctuation suppression of PV power station output. In this paper, battery capacity needed to satisfy the required fluctuation suppression level is estimated. In the estimation, two types of suppression control schemes; one can save the required power capacity and another can save energy capacity.

  7. Study on fault diagnose expert system for large astronomy telescope

    NASA Astrophysics Data System (ADS)

    Liu, Jia-jing; Luo, Ming-Cheng; Tang, Peng-yi; Wu, Wen-qing; Zhang, Guang-yu; Zhang, Hong-fei; Wang, Jian

    2014-08-01

    The development of astronomical techniques and telescopes currently entered a new vigorous period. The telescopes have trends of the giant, complex, diversity of equipment and wide span of control despite of optical, radio space telescopes. That means, for telescope observatory, the control system must have these specifications: flexibility, scalability, distributive, cross-platform and real-time, especially the fault locating and fault processing is more important when fault or exception arise. Through the analysis of the structure of large telescopes, fault diagnosis expert system of large telescope based on the fault tree and distributed log service is given.

  8. Progress in PV:BONUS project

    NASA Astrophysics Data System (ADS)

    Spaeth, James J.; Pierce, Lizana K.

    1996-01-01

    The PV:BONUS (Building Opportunities in the U.S. for Photovoltaics) program, to develop photovoltaic products and the associated infrastructure for a sustainable photovoltaic market in the building sector, has attracted a variety of promising projects ranging from integrated modular homes, rooftop integrated photovoltaic systems, dispatchable peak shaving systems, alternating-current module, photovoltaic glazing systems, and curtain wall systems. The mutual commitment by the Department of Energy and the program recipients has inspired diverse partnerships among manufacturers, utilities, construction companies, and universities for the development of niche markets for building-integrated photovoltaics. Many of the photovoltaic systems are currently being demonstrated with market campaigns underway to commercialize these innovative renewable energy, building-integrated products.

  9. Study on test metrology of large aperture optical system wavefront

    NASA Astrophysics Data System (ADS)

    Liu, Zhiying; Fu, Yuegang; Gao, Tianyuan; Wang, Zhijian

    2009-05-01

    Large aperture optical system test has been a key problem for a long time. It could be solved by sub-aperture stitching method after the sub-apertures are tested. Sub-aperture stitching technology is a feasible method for testing large diameter optical system with small diameter interferometer sub-aperture stitching. Auto-collimating component will be needed with interferometer stitching method. Auto-collimating component is defined that the image could be kept stable when the optical component rotates about any axis in space. And the beam could be back along original optical path. By this means, auto collimation could be realized. The auto-collimating component is smaller than the test system. The whole wavefront of large aperture system could be tested through the method that the auto-collimating component moves along the guide rail and rotates about optical axis. A right angle roof prism is chosen as the auto-collimating component due to its character of easier manufacture. The active matrix, characteristic orientation and extreme axial is deduced with dynamic optics. The sub-aperture stitching testing process is simulated by ZEMAX in detail. The test result by stitching method is compared with that by directive test method for large aperture optical system. It is shown that the relative test error is less than 4.3λ 0/00. The sub -aperture stitching test method is verified.

  10. Projection-free approximate balanced truncation of large unstable systems

    NASA Astrophysics Data System (ADS)

    Flinois, Thibault L. B.; Morgans, Aimee S.; Schmid, Peter J.

    2015-08-01

    In this article, we show that the projection-free, snapshot-based, balanced truncation method can be applied directly to unstable systems. We prove that even for unstable systems, the unmodified balanced proper orthogonal decomposition algorithm theoretically yields a converged transformation that balances the Gramians (including the unstable subspace). We then apply the method to a spatially developing unstable system and show that it results in reduced-order models of similar quality to the ones obtained with existing methods. Due to the unbounded growth of unstable modes, a practical restriction on the final impulse response simulation time appears, which can be adjusted depending on the desired order of the reduced-order model. Recommendations are given to further reduce the cost of the method if the system is large and to improve the performance of the method if it does not yield acceptable results in its unmodified form. Finally, the method is applied to the linearized flow around a cylinder at Re = 100 to show that it actually is able to accurately reproduce impulse responses for more realistic unstable large-scale systems in practice. The well-established approximate balanced truncation numerical framework therefore can be safely applied to unstable systems without any modifications. Additionally, balanced reduced-order models can readily be obtained even for large systems, where the computational cost of existing methods is prohibitive.

  11. Decentralization, stabilization, and estimation of large-scale linear systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Vukcevic, M. B.

    1976-01-01

    In this short paper we consider three closely related aspects of large-scale systems: decentralization, stabilization, and estimation. A method is proposed to decompose a large linear system into a number of interconnected subsystems with decentralized (scalar) inputs or outputs. The procedure is preliminary to the hierarchic stabilization and estimation of linear systems and is performed on the subsystem level. A multilevel control scheme based upon the decomposition-aggregation method is developed for stabilization of input-decentralized linear systems Local linear feedback controllers are used to stabilize each decoupled subsystem, while global linear feedback controllers are utilized to minimize the coupling effect among the subsystems. Systems stabilized by the method have a tolerance to a wide class of nonlinearities in subsystem coupling and high reliability with respect to structural perturbations. The proposed output-decentralization and stabilization schemes can be used directly to construct asymptotic state estimators for large linear systems on the subsystem level. The problem of dimensionality is resolved by constructing a number of low-order estimators, thus avoiding a design of a single estimator for the overall system.

  12. Global parallel unification for large question-answering systems

    NASA Technical Reports Server (NTRS)

    Auguston, J. G.; Minker, J.

    1974-01-01

    An efficient means of storing data in a first-order predicate calculus theorem-proving system is described. The data structure is oriented for large scale question-answering (QA) systems. An algorithm is outlined which uses the data structure to unify a given literal in parallel against all literals in all clauses in the data base. The data structure permits a compact representation of data within a QA system. Some suggestions are made for heuristics which can be used to speed-up the unification algorithm in systems.

  13. Thermal mechanical analyses of large diameter ion accelerator systems

    SciTech Connect

    Brophy, J.R.; Aston, G.

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size. 8 refs.

  14. Thermal mechanical analyses of large diameter ion accelerator systems

    NASA Technical Reports Server (NTRS)

    Brophy, John R.; Aston, Graeme

    1989-01-01

    Thermal mechanical analyses of large diameter ion accelerator systems are performed using commercially available finite element software executed on a desktop computer. Finite element models of a 30-cm-diameter accelerator system formulated using plate/shell elements give calculated results which agree well with similar published obtained on a mainframe computer. Analyses of a 50-cm-diameter, three-grid accelerator system using measured grid temperatures (corresponding to discharge powers of 653 and 886 watts) indicate that thermally induced grid movements need not be the performance limiting phenomena for accelerator systems of this size.

  15. Measuring PV module delamination

    SciTech Connect

    Murphy, E.B.

    1980-09-22

    Delamination of the encapsulating pottant from both substrate and silicon cells in solar photovoltaic modules has been a common occurrence. While the extent of delamination is in some cases minor, there are other cases where appreciably large areas have been affected. At this time, most delaminated areas do not appear to cause electrical degradation of modules; however, keeping track of delamination growth and rate of growth is important and has been difficult. More accurate measurement of delamination has been achieved by using an acoustic digitizer to record the pattern of delamination. With the aid of a computer, software can be generated that shows the exact areas of delamination. By periodic measrement of those types of modules prone to delamination, growth rates can be documented.

  16. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat, III; Pierce, K.L.

    2009-01-01

    and vein-fi lling; and (5) areal dimensions of many large hydrothermal explosion craters in Yellowstone are similar to those of its active geyser basins and thermal areas. For Yellowstone, our knowledge of hydrothermal craters and ejecta is generally limited to after the Yellowstone Plateau emerged from beneath a late Pleistocene icecap that was roughly a kilometer thick. Large hydrothermal explosions may have occurred earlier as indicated by multiple episodes of cementation and brecciation commonly observed in hydrothermal ejecta clasts. Critical components for large, explosive hydrothermal systems include a watersaturated system at or near boiling temperatures and an interconnected system of well-developed joints and fractures along which hydrothermal fluids flow. Active deformation of the Yellowstone caldera, active faulting and moderate local seismicity, high heat flow, rapid changes in climate, and regional stresses are factors that have strong infl uences on the type of hydrothermal system developed. Ascending hydrothermal fluids flow along fractures that have developed in response to active caldera deformation and along edges of low-permeability rhyolitic lava flows. Alteration of the area affected, self-sealing leading to development of a caprock for the hydrothermal system, and dissolution of silica-rich rocks are additional factors that may constrain the distribution and development of hydrothermal fields. A partial lowpermeability layer that acts as a cap to the hydrothermal system may produce some over-pressurization, thought to be small in most systems. Any abrupt drop in pressure initiates steam fl ashing and is rapidly transmitted through interconnected fractures that result in a series of multiple large-scale explosions contributing to the excavation of a larger explosion crater. Similarities between the size and dimensions of large hydrothermal explosion craters and thermal fields in Yellowstone may indicate that catastrophic events which result in l

  17. ElGENANALYSlS OF LARGE ELECTRIC POWER SYSTEMS

    SciTech Connect

    Elwood, D. M.

    1991-02-01

    Modern electric power systems are large and complicated, and, in many regions, the generation and transmission systems are operating near their limits. Eigenanalysis is one of the tools used to analyze the behavior of these systems. Standard eigenvalue methods require that simplified models be used for these analyses; however, these simplified models do not adequately model all of the characteristics of large power systems. Thus, new eigenanalysis methods that can analyze detailed power system models are required. The primary objectives of the work described in this report were I) to determine the availability of eigenanalysis algorithms that are better than methods currently being applied and that could be used an large power systems and 2) to determine if vector supercomputers could be used to significantly increase the size of power systems that can be analyzed by a standard power system eigenanalysis code. At the request of the Bonneville Power Administration, the Pacific Northwest Laboratory (PNL) conducted a literature review of methods currently used for the eigenanalysis of large electric power systems, as well as of general eigenanalysis algorithms that are applicable to large power systems. PNL found that a number of methods are currently being used for the this purpose, and all seem to work fairly well. Furthermore, most of the general eigenanalysis techniques that are applicable to power systems have been tried on these systems, and most seem to work fairly well. One of these techniques, a variation of the Arnoldi method, has been incorporated into a standard power system eigenanalysis package. Overall, it appears that the general purpose eigenanalysis methods are more versatile than most of the other methods that have been used for power systems eigenanalysis. In addition, they are generally easier to use. For some problems, however, it appears that some of the other eigenanalysis methods may be better. Power systems eigenanalysis requires the

  18. Recent Advances in PV Research and Future Directions

    NASA Astrophysics Data System (ADS)

    Deb, Satyen K.

    1998-04-01

    The photovoltaic technology is making a major thrust in the commercial arena with 1997 worldwide production of PV modules reaching over 125 MW and growing at the rate of 20-25semiconductor materials and devices are emerging as strong contenders for PV applications even though silicon is still the 'work-horse' of the industry. Ultra-high efficiency solar cells fabricated from gallium arsenide (GaAs) and its ternary alloys like gallium indium phosphide (GaInP2) are finding applications in space technology. Enormous progress has also been made on various thin-film solar cell technologies, which offer the promise for substantially reducing the cost of PV systems. Some of the leading contenders are amorphous and polycrystalline silicon, compound semiconductor thin films such as copper indium diselenide (CuInSe2) based alloys, and cadmium telluride (CdTe) thin films. Exciting new developments are happening in the use of nano-particle semiconductor materials like titanium dioxide (TiO2) for low-cost PV devices. Intense research on these and other materials and devices is making a strong impact on the technology. In this presentation, a brief overview of recent advances in PV research will b e made and the trends and opportunities for future research directions will be identified.

  19. Large space systems technology electronics: Data and power distribution

    NASA Technical Reports Server (NTRS)

    Dunbar, W. G.

    1980-01-01

    The development of hardware technology and manufacturing techniques required to meet space platform and antenna system needs in the 1980s is discussed. Preliminary designs for manned and automatically assembled space power system cables, connectors, and grounding and bonding materials and techniques are reviewed. Connector concepts, grounding design requirements, and bonding requirements are discussed. The problem of particulate debris contamination for large structure spacecraft is addressed.

  20. Procedures and tools for building large Ada systems

    NASA Technical Reports Server (NTRS)

    Hyde, Ben

    1986-01-01

    Some of the problems unique to building a very large Ada system are addressed. This is done through examples from experience. In the winter of 1985 and 1986, Intermetrics bootstrapped the Ada compiler, which was being built over the last few years. This system consists of about one million lines of full Ada. Over the last few years a number of procedures and tools were adopted for managing the life cycle of each of the many parts of an Ada system. Many of these procedures are well known to most system builders: release management, quality assurance testing; and source file revision control. Others are unique to working in an Ada language environment; i.e., recompilation management, Ada program library management, and managing multiple implementations. First a look is taken at how a large Ada system is broken down into pieces. The Ada definition leaves unspecified a number of issues that the system builder must address: versions, subsystems, multiple implementations, and synchronization of branched development paths. Having introduced how the Ada systems are decomposed, a look is taken, via a series of examples, at how the life cylces of those parts is managed. The procedures and tools used to manage the evolution of the system are examined. It is hoped that other Ada system builders can build upon the experience of the last few years.

  1. Large N matrices from a nonlocal spin system

    NASA Astrophysics Data System (ADS)

    Anninos, Dionysios; Hartnoll, Sean A.; Huijse, Liza; Martin, Victoria L.

    2015-10-01

    Large N matrices underpin the best understood models of emergent spacetime. We suggest that large N matrices can themselves be emergent from simple quantum mechanical spin models with finite dimensional Hilbert spaces. We exhibit the emergence of large N matrices in a nonlocal statistical physics model of order N2 Ising spins. The spin partition function is shown to admit a large N saddle described by a matrix integral, which we solve. The matrix saddle is dominant at high temperatures, metastable at intermediate temperatures and ceases to exist below a critical order one temperature. The matrix saddle is disordered in a sense we make precise and competes with ordered low energy states. We verify our analytic results by Monte Carlo simulation of the spin system.

  2. Helium cooling systems for large superconducting physics detector magnets

    NASA Astrophysics Data System (ADS)

    Green, M. A.

    The large superconducting detector magnets used for high energy physics experiments are virtually all indirectly cooled. In general, these detector magnets are not cryogenically stabilized. Therefore, there are a number of choices for cooling large indirectly cooled detector magnets. These choices include; 1) forced two-phase helium cooling driven by the helium refrigerator J-T circuit, 2) forced two-phase helium cooling driven by a helium pump, and 3) a peculation gravity feed cooling system which uses liquid helium from a large storage dewar. The choices for the cooling of a large detector magnet are illustrated by applying these concepts to a 4.2 meter diameter 0.5 tesla thin superconducting solenoid for an experiment at the Relativistic Heavy Ion Collider (RHIC).

  3. Status of DOE and AID stand-alone photovoltaic system field tests

    SciTech Connect

    Bifano, W.J.; DeLombard, R.; Ratajczak, A.F.; Scudder, L.R.

    1984-05-01

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PVpowered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

  4. Resource Allocation Strategies Employed in Large versus Small School Systems.

    ERIC Educational Resources Information Center

    Gutierrez, Eugene J.

    Education is faced with a declining resource base coupled with overwhelming demands for categorical programs. The current resource allocation strategy common to all systems is cutting spending. The difference between large and small districts is less important than differences in complexity. Complexity in resource allocations is more a function of…

  5. Experimental Enhanced Upper Stage (XEUS): An affordable large lander system

    NASA Astrophysics Data System (ADS)

    Scotkin, J.; Masten, D.; Powers, J.; O'Konek, N.; Kutter, B.; Stopnitzky, B.

    The Experimental Enhanced Upper Stage (XEUS) offers a path to reduce costs and development time to sustainable activity beyond LEO by equipping existing large cryogenic propulsion stages with MSS VTVL propulsion and GNC to create a large, multi-thrust axis lander. Conventional lander designs have been driven by the assumption that a single, highly reliable, and efficient propulsion system should conduct the entire descent, approach, and landing. Compromises in structural, propulsion, and operational efficiency result from this assumption. System reliability and safety also suffer. The result is often an iterative series of optimizations, making every subsystem mission-unique and expensive. The XEUS multi-thrust axis lander concept uniquely addresses the programmatic and technical challenges of large-mass planetary landing by taking advantage of proven technologies and decoupling the deorbit and descent propulsion system from the landing propulsion system. Precise control of distributed, multi-thrust axis landing propulsion units mounted on the horizontal axis of a Centaur stage will ultimately enable the affordable deployment of large planetary rovers, uncrewed base infrastructure and manned planetary expeditions. The XEUS lander has been designed to offer a significantly improved mass fraction and mass to surface capability over conventional lander designs, while reducing airlock/payload to surface distances and distributing plume effects by using multiple gimbaled landing thrusters. In utilizing a proven cryogenic propulsion stage, XEUS reduces development costs required for development of new cryogenic propulsion stages and fairings and builds upon the strong heritage of successful Centaur and MSS RLV flights.

  6. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G. F.

    1978-01-01

    An attempt is made to provide pertinent and readily usable information on the extraterrestrial processing of materials and manufacturing of components and elements of these planned large space systems from preprocessed lunar materials which are made available at a processing and manufacturing site in space. Required facilities, equipment, machinery, energy and manpower are defined.

  7. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  8. Simplified Method for Modeling the Impact of Arbitrary Partial Shading Conditions on PV Array Performance: Preprint

    SciTech Connect

    MacAlpine, Sara; Deline, Chris

    2015-09-15

    It is often difficult to model the effects of partial shading conditions on PV array performance, as shade losses are nonlinear and depend heavily on a system's particular configuration. This work describes and implements a simple method for modeling shade loss: a database of shade impact results (loss percentages), generated using a validated, detailed simulation tool and encompassing a wide variety of shading scenarios. The database is intended to predict shading losses in crystalline silicon PV arrays and is accessed using basic inputs generally available in any PV simulation tool. Performance predictions using the database are within 1-2% of measured data for several partially shaded PV systems, and within 1% of those predicted by the full, detailed simulation tool on an annual basis. The shade loss database shows potential to considerably improve performance prediction for partially shaded PV systems.

  9. Simplified Method for Modeling the Impact of Arbitrary Partial Shading Conditions on PV Array Performance

    SciTech Connect

    MacAlpine, Sara; Deline, Chris

    2015-06-14

    It is often difficult to model the effects of partial shading conditions on PV array performance, as shade losses are nonlinear and depend heavily on a system's particular configuration. This work describes and implements a simple method for modeling shade loss: a database of shade impact results (loss percentages), generated using a validated, detailed simulation tool and encompassing a wide variety of shading scenarios. The database is intended to predict shading losses in crystalline silicon PV arrays and is accessed using basic inputs generally available in any PV simulation tool. Performance predictions using the database are within 1-2% of measured data for several partially shaded PV systems, and within 1% of those predicted by the full, detailed simulation tool on an annual basis. The shade loss database shows potential to considerably improve performance prediction for partially shaded PV systems.

  10. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    SciTech Connect

    Klise, Geoffrey Taylor; Balfour, John

    2015-11-01

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how the reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.

  11. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    SciTech Connect

    1998-09-28

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.

  12. Large space antennas: A systems analysis case history

    NASA Technical Reports Server (NTRS)

    Keafer, Lloyd S. (Compiler); Lovelace, U. M. (Compiler)

    1987-01-01

    The value of systems analysis and engineering is aptly demonstrated by the work on Large Space Antennas (LSA) by the NASA Langley Spacecraft Analysis Branch. This work was accomplished over the last half-decade by augmenting traditional system engineering, analysis, and design techniques with computer-aided engineering (CAE) techniques using the Langley-developed Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) system. This report chronicles the research highlights and special systems analyses that focused the LSA work on deployable truss antennas. It notes developmental trends toward greater use of CAE techniques in their design and analysis. A look to the future envisions the application of improved systems analysis capabilities to advanced space systems such as an advanced space station or to lunar and Martian missions and human habitats.

  13. Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint

    SciTech Connect

    Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

  14. PV cell and module performance measurement capabilities at NREL

    SciTech Connect

    Rummel, S.; Emery, K.; Field, H.; Moriarty, T.; Anderberg, A.; Dunlavy, D.; Ottoson, L.

    1998-09-01

    The Photovoltaic (PV) Cell and Module Performance Characterization team at NREL supports the entire photovoltaic community by providing: secondary calibrations of photovoltaic cells and modules; efficiency measurements with respect to a given set of standard reporting conditions; verification of contract efficiency milestones; and current versus voltage (I-V) measurements under various conditions of temperature, spectral irradiance, and total irradiance. Support is also provided to in-house programs in device fabrication, module stability, module reliability, PV systems evaluations, and alternative rating methods by performing baseline testing, specialized measurements and other assistance when required. The I-V and spectral responsivity equipment used to accomplish these tasks are described in this paper.

  15. Large viewing field wavefront sensing by using a lightfield system

    NASA Astrophysics Data System (ADS)

    Lv, Yang; Zhang, Xuanzhe; Ma, Haotong; Ning, Yu; Wang, Rui; Xu, Xiaojun

    2013-09-01

    To overcome the shortcomings of Shack-Hartmann wavefront sensor, we developed a lightfield wavefront detection system, which is able to complete the large field of view, multi-perspective wavefront detection in a single photographic exposure. The lightfield wavefront detection system includes an imaging primary mirror, a lenslet array and a photosensitive device. The lenslet array is located on the imaging plane of the imaging primary mirror and the photosensitive device is located on the focal plane of the lenslet array. In this system, each lenslet reimages the aperture and forms a low-resolution image of the aperture. Compared with the Shack-Hartmann sensor, this lightfield measuring method can obtain imaging arrays in different perspectives. By comparing the array information with the standard information, we can obtain the slope matrix of the wavefront in different perspectives and restore the wavefront in a large field of view. Based on Fourier optics, we built the corresponding theoretical model and simulation system. By busing Meade telescope, turbulent phase screen, lenslet array and CCD camera, we founded the experimental lightfield wavefront measuring system. Numerical simulation results and experimental results show that this wavefront measuring method can effectively achieve the wavefront aberration information. This wavefront measurement method can realize the multi-perspective wavefront measurement, which is expected to solve the problem of large viewing field wavefront detection, and can be used for adaptive optics in giant telescopes.

  16. An artificial compound eye system for large field imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shi, Lifang; Shi, Ruiying; Dong, Xiaochun; Deng, Qiling; Du, Chunlei

    2012-11-01

    With the rapid development of science and technology, optical imaging system has been widely used, and the performance requirements are getting higher and higher such as lighter weight, smaller size, larger field of view and more sensitive to the moving targets. With the advantages of large field of view, high agility and multi-channels, compound eye is more and more concerned by academia and industry. In this work, an artificial spherical compound eye imaging system is proposed, which is formed by several mini cameras to get a large field of view. By analyzing the relationship of the view field between every single camera and the whole system, the geometric arrangement of cameras is studied and the compound eye structure is designed. By using the precision machining technology, the system can be manufactured. To verify the performance of this system, experiments were carried out, where the compound eye was formed by seven mini cameras which were placed centripetally along a spherical surface so that each camera points in a different direction. Pictures taken by these cameras were mosaiced into a complete image with large field of view. The results of the experiments prove the validity of the design method and the fabrication technology. By increasing the number of the cameras, larger view field even panoramic imaging can be realized by using this artificial compound eye.

  17. Suspension systems for ground testing large space structures

    NASA Technical Reports Server (NTRS)

    Gold, Ronald R.; Friedman, Inger P.; Reed, Wilmer H., III; Hallauer, W. L.

    1990-01-01

    A research program is documented for the development of improved suspension techniques for ground vibration testing of large, flexible space structures. The suspension system must support the weight of the structure and simultaneously allow simulation of the unconstrained rigid-body movement as in the space environment. Exploratory analytical and experimental studies were conducted for suspension systems designed to provide minimum vertical, horizontal, and rotational degrees of freedom. The effects of active feedback control added to the passive system were also investigated. An experimental suspension apparatus was designed, fabricated, and tested. This test apparatus included a zero spring rate mechanism (ZSRM) designed to support a range of weights from 50 to 300 lbs and provide vertical suspension mode frequencies less than 0.1 Hz. The lateral suspension consisted of a pendulum suspended from a moving cart (linear bearing) which served to increase the effective length of the pendulum. The torsion suspension concept involved dual pendulum cables attached from above to a pivoting support (bicycle wheel). A simple test structure having variable weight and stiffness characteristics was used to simulate the vibration characteristics of a large space structure. The suspension hardware for the individual degrees of freedom was analyzed and tested separately and then combined to achieve a 3 degree of freedom suspension system. Results from the exploratory studies should provide useful guidelines for the development of future suspension systems for ground vibration testing of large space structures.

  18. Performance of the Large Binocular Telescope's hydrostatic bearing system

    NASA Astrophysics Data System (ADS)

    Howard, James; Ashby, David; Kern, Jonathan

    2010-07-01

    The Large Binocular Telescope's hydrostatic bearing system is operational, and tuning for optimal performance is currently underway. This low friction system allows for the precise control of the 700 ton telescope at temperatures ranging from -20°C to +25°C. It was a challenge to meet the performance requirements on such a massive telescope with a wide range of operating temperatures. This required changes to the original design, including significantly improving oil temperature control, and adding variable capillary resistors to allow for precise flow control to each pocket on each bearing. We will present a system description and report on lessons learned.

  19. Laser scanning system for inspecting large underwater hydroelectric structures

    NASA Astrophysics Data System (ADS)

    Mirallès, François; Beaudry, Julien; Blain, Michel; de Santis, Romano M.; Houde, Régis; Hurteau, Richard; Robert, André; Sarraillon, Serge; Soucy, Nathalie

    2010-04-01

    A novel robotic laser scanning system for the inspection of large underwater hydroelectric structures is proposed. This system has been developed at the Hydro Quebec Research Institute and consists of a laser camera mounted on a 2-D Cartesian manipulator. Mechanical, electronic, and software design aspects; overall operational modalities; and proof of concept results are presented. We evaluated the performances of the system in the course of laboratory experiments and inspection trials carried out under normal operating conditions at the site of three of Hydro Quebec's hydroelectric dams.

  20. Large Space Telescope support systems module thermal control

    NASA Technical Reports Server (NTRS)

    Chapter, J. J.

    1975-01-01

    In 1982, an unmanned three-meter class Cassegrainian telescopic system referred to as the Large Space Telescope (LST) will be placed in earth orbit by the Shuttle. The LST consists of a telescope system and surrounding support structure that is referred to as the support system module (SSM). This paper summarizes the thermal control subsystem for several candidate SSM designs. Major emphasis has been given to the LST/SSM design concept that includes a thermally isolated aft cylinder compartment that contains subsystem components. Requirements, interfaces and thermal math modeling methods are presented. Analysis results demonstrate that a cold-biased thermal design using electrical heaters is promising.

  1. A multilevel optimization of large-scale dynamic systems

    NASA Technical Reports Server (NTRS)

    Siljak, D. D.; Sundareshan, M. K.

    1976-01-01

    A multilevel feedback control scheme is proposed for optimization of large-scale systems composed of a number of (not necessarily weakly coupled) subsystems. Local controllers are used to optimize each subsystem, ignoring the interconnections. Then, a global controller may be applied to minimize the effect of interconnections and improve the performance of the overall system. At the cost of suboptimal performance, this optimization strategy ensures invariance of suboptimality and stability of the systems under structural perturbations whereby subsystems are disconnected and again connected during operation.

  2. The Application B3LYP to Large Systems

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Arnold, James O. (Technical Monitor)

    1996-01-01

    The application of density functional theory (DFT), using the B3LYP functional, to a series of chemical problems is described. The first involves the calculation of silica-adsorbate bond energies, including both chemical bonds and weak hydrogen bonding. The calculation of vibrational frequencies for large organic systems is discussed. For the closed shell neutral systems, the B3LYP results are similar to the self- consistent- field results, however, for the positive ions, only the B3LYP level of theory is accurate and sufficiently inexpensive to allow the study of large systems. The final application involves the calculation of successive metal-ligand bond energies. The B3LYP bond energies and entropies are shown to be in good agreement with experiment.

  3. Cerebral large vessel vasculitis in systemic lupus erythematosus.

    PubMed

    Böckle, B C; Jara, D; Aichhorn, K; Junker, D; Berger, T; Ratzinger, G; Sepp, N T

    2014-11-01

    Neuropsychiatric systemic lupus erythematosus (NPSLE) is defined by involvement of the central nervous system in systemic lupus erythematosus (SLE), with a wide range of both neurological and psychiatric manifestations. Although its aetiopathogenesis is not fully elucidated, NPSLE seems to be a consequence of cerebral vascular pathology including thromboembolism, small-vessel vasculopathy and, in rare cases, true vasculitis. Cerebral vasculitis is rare, and cerebral large-vessel vasculitis in SLE is even more unusual. We report the case of a female patient with the diagnosis of SLE. She presented with stroke-like symptoms, headache and vertigo, and palpable purpura on her legs. Further investigations revealed that she suffered from both vasculitis of the cerebral large vessels and coexisting cutaneous small-vessel vasculitis. PMID:24969082

  4. Modeling and Identification of a Large Gap Magnetic Suspension System

    NASA Technical Reports Server (NTRS)

    Cox, David E. (Editor); Groom, Nelson J. (Editor); Hsiao, Min-Hung; Huang, Jen-Kuang

    1996-01-01

    This paper presents the results of modeling and system identification efforts on the NASA Large-Angle Magnetic Suspension Test Fixture (LAMSTF). The LAMSTF consists of a cylindrical permanent magnet which is levitated above a planar array of five electromagnets mounted in a circular configuration. The analytical model is first developed and open-loop characteristics are described. The system is shown to be highly unstable and requires feedback control in order to apply system identification. Limitations on modeling accuracy due to the effect of eddy-currents on the system are discussed. An algorithm is derived to identify a state-space model for the system from input/output data acquired during closed-loop operation. The algorithm is tested on both the baseline system and a perturbed system which has an increased presence of eddy currents. It is found that for the baseline system the analytic model adequately captures the dynamics, although the identified model improves the simulation accuracy. For the system perturbed by additional unmodeled eddy-currents the analytic model is no longer adequate and a higher-order model, determined through system identification, is required to accurately predict the system's time response.

  5. Tool Support for Parametric Analysis of Large Software Simulation Systems

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Gundy-Burlet, Karen; Pasareanu, Corina; Menzies, Tim; Barrett, Tony

    2008-01-01

    The analysis of large and complex parameterized software systems, e.g., systems simulation in aerospace, is very complicated and time-consuming due to the large parameter space, and the complex, highly coupled nonlinear nature of the different system components. Thus, such systems are generally validated only in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. We have addressed the factors deterring such an analysis with a tool to support envelope assessment: we utilize a combination of advanced Monte Carlo generation with n-factor combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. Additional test-cases, automatically generated from models (e.g., UML, Simulink, Stateflow) improve the coverage. The distributed test runs of the software system produce vast amounts of data, making manual analysis impossible. Our tool automatically analyzes the generated data through a combination of unsupervised Bayesian clustering techniques (AutoBayes) and supervised learning of critical parameter ranges using the treatment learner TAR3. The tool has been developed around the Trick simulation environment, which is widely used within NASA. We will present this tool with a GN&C (Guidance, Navigation and Control) simulation of a small satellite system.

  6. Status and Future Developments in Large Accelerator Control Systems

    SciTech Connect

    Karen S. White

    2006-10-31

    Over the years, accelerator control systems have evolved from small hardwired systems to complex computer controlled systems with many types of graphical user interfaces and electronic data processing. Today's control systems often include multiple software layers, hundreds of distributed processors, and hundreds of thousands of lines of code. While it is clear that the next generation of accelerators will require much bigger control systems, they will also need better systems. Advances in technology will be needed to ensure the network bandwidth and CPU power can provide reasonable update rates and support the requisite timing systems. Beyond the scaling problem, next generation systems face additional challenges due to growing cyber security threats and the likelihood that some degree of remote development and operation will be required. With a large number of components, the need for high reliability increases and commercial solutions can play a key role towards this goal. Future control systems will operate more complex machines and need to present a well integrated, interoperable set of tools with a high degree of automation. Consistency of data presentation and exception handling will contribute to efficient operations. From the development perspective, engineers will need to provide integrated data management in the beginning of the project and build adaptive software components around a central data repository. This will make the system maintainable and ensure consistency throughout the inevitable changes during the machine lifetime. Additionally, such a large project will require professional project management and disciplined use of well-defined engineering processes. Distributed project teams will make the use of standards, formal requirements and design and configuration control vital. Success in building the control system of the future may hinge on how well we integrate commercial components and learn from best practices used in other industries.

  7. PV-1 LABELS TRANS-CELLULAR OPENINGS IN MOUSE ENDOTHELIAL CELLS AND IS NEGATIVELY REGULATED BY VEGF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An N-glycosylated 60-kDa PV-1 protein that binds heparin was detected in mouse lung from a single mRNA transcript. In the absence of disulfide bond reduction PV-1 is detected as a dimer or large molecular weight oligomer. In the lung of Cav-1, but not Cav-2, null mice the amount of PV-1 protein is d...

  8. PV-1 IS NEGATIVELY REGULATED BY VEGF IN THE LUNG OF CAV-1, BUT NOT CAV-2, NULL MICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An N-glycosylated 60-kDa PV-1 protein that binds heparin was detected in mouse lung from a single mRNA transcript. In the absence of disulfide bond reduction PV-1 is detected as a dimer or large molecular weight oligomer. In the lung of Cav-1, but not Cav-2, null mice the amount of PV-1 protein is d...

  9. Policy Driven Development: Flexible Policy Insertion for Large Scale Systems

    PubMed Central

    Demchak, Barry; Krüger, Ingolf

    2014-01-01

    The success of a software system depends critically on how well it reflects and adapts to stakeholder requirements. Traditional development methods often frustrate stakeholders by creating long latencies between requirement articulation and system deployment, especially in large scale systems. One source of latency is the maintenance of policy decisions encoded directly into system workflows at development time, including those involving access control and feature set selection. We created the Policy Driven Development (PDD) methodology to address these development latencies by enabling the flexible injection of decision points into existing workflows at runtime, thus enabling policy composition that integrates requirements furnished by multiple, oblivious stakeholder groups. Using PDD, we designed and implemented a production cyberinfrastructure that demonstrates policy and workflow injection that quickly implements stakeholder requirements, including features not contemplated in the original system design. PDD provides a path to quickly and cost effectively evolve such applications over a long lifetime. PMID:25383258

  10. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, C.P.; Olden, J.D.; Lytle, D.A.; Melis, T.S.; Schmidt, J.C.; Bray, E.N.; Freeman, Mary C.; Gido, K.B.; Hemphill, N.P.; Kennard, M.J.; McMullen, L.E.; Mims, M.C.; Pyron, M.; Robinson, C.T.; Williams, J.G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  11. Large-scale flow experiments for managing river systems

    USGS Publications Warehouse

    Konrad, Christopher P.; Olden, Julian D.; Lytle, David A.; Melis, Theodore S.; Schmidt, John C.; Bray, Erin N.; Freeman, Mary C.; Gido, Keith B.; Hemphill, Nina P.; Kennard, Mark J.; McMullen, Laura E.; Mims, Meryl C.; Pyron, Mark; Robinson, Christopher T.; Williams, John G.

    2011-01-01

    Experimental manipulations of streamflow have been used globally in recent decades to mitigate the impacts of dam operations on river systems. Rivers are challenging subjects for experimentation, because they are open systems that cannot be isolated from their social context. We identify principles to address the challenges of conducting effective large-scale flow experiments. Flow experiments have both scientific and social value when they help to resolve specific questions about the ecological action of flow with a clear nexus to water policies and decisions. Water managers must integrate new information into operating policies for large-scale experiments to be effective. Modeling and monitoring can be integrated with experiments to analyze long-term ecological responses. Experimental design should include spatially extensive observations and well-defined, repeated treatments. Large-scale flow manipulations are only a part of dam operations that affect river systems. Scientists can ensure that experimental manipulations continue to be a valuable approach for the scientifically based management of river systems.

  12. Primary propulsion/large space system interaction study

    NASA Technical Reports Server (NTRS)

    Coyner, J. V.; Dergance, R. H.; Robertson, R. I.; Wiggins, J. V.

    1981-01-01

    An interaction study was conducted between propulsion systems and large space structures to determine the effect of low thrust primary propulsion system characteristics on the mass, area, and orbit transfer characteristics of large space systems (LSS). The LSS which were considered would be deployed from the space shuttle orbiter bay in low Earth orbit, then transferred to geosynchronous equatorial orbit by their own propulsion systems. The types of structures studied were the expandable box truss, hoop and column, and wrap radial rib each with various surface mesh densities. The impact of the acceleration forces on system sizing was determined and the effects of single point, multipoint, and transient thrust applications were examined. Orbit transfer strategies were analyzed to determine the required velocity increment, burn time, trip time, and payload capability over a range of final acceleration levels. Variables considered were number of perigee burns, delivered specific impulse, and constant thrust and constant acceleration modes of propulsion. Propulsion stages were sized for four propellant combinations; oxygen/hydrogen, oxygen/methane, oxygen/kerosene, and nitrogen tetroxide/monomethylhydrazine, for pump fed and pressure fed engine systems. Two types of tankage configurations were evaluated, minimum length to maximize available payload volume and maximum performance to maximize available payload mass.

  13. Fragmentation and Flow Regulation of the World's Large River Systems

    NASA Astrophysics Data System (ADS)

    Reidy, C.; Nilsson, C.; Dynesius, M.; Revenga, C.

    2005-12-01

    Humans have extensively altered river systems through impoundments and diversions to meet their water, energy and transportation needs. Here we present a global overview of flow regulation and channel fragmentation by dams in the world's large river systems (LRSs), which comprise a total virgin mean annual discharge (the discharge before any significant human manipulations) of some 790,000 m3s-1, or 60% of the world's river runoff. Over half of the systems (172 out of 292) are impacted by dams, including the eight most biogeographically diverse. In terms of summed LRS discharge and catchment area, the proportions of impacted rivers are 84% and 88%, respectively. The greatest flow regulation (428%) is reported for the Volta river system in Africa, and regulation is beyond 250% in both the Manicougan and Colorado systems in North and Central America. Dam-impacted catchments experience higher irrigation pressure and about 25 times as much economic activity per unit of water as do unaffected catchments. In view of projected changes in climate, land use and water stress, these findings can be used to identify ecohydrological risks associated with further impacts on large river systems.

  14. Large DHW solar systems with distributed storage tanks

    SciTech Connect

    Prapas, D.E.; Veliannis, I.; Evangelopoulos, A.; Sotiropoulos, B.A.

    1995-12-31

    The thermal behaviour of a central DHW solar system, the design of which is based on a new Central Collection-Separate Storing (CCSS) approach, has been investigated theoretically. The common practice for large DHW solar systems, of employing a central storage and delivery facility, has been shown in the past to exhibit a rather poor performance and considerable heat losses. This is due to the extensive lengths of pipework required for both the transfer of solar energy and the delivery of hot water. The CCSS solar system presented can overcome the above problems by employing separate storage tanks for each family, thus being best suited for multistory buildings. The simulation analysis has revealed a number of interesting features for the system performance: (i) the collected energy is distributed to all users in a fair manner, irrespective of their distance from the collector field and the daily hot water consumption profiles; (ii) an energy saving behaviour is most likely to evolve by most users, since the auxiliary energy consumptions are charged individually (unlike in large DHW solar systems with central water storage and delivery); and (iii) high values of solar fractions, comparable with those attained by thermosiphon systems, have been derived. 14 refs., 5 figs., 4 tabs.

  15. Innovations in Wind and Solar PV Financing

    SciTech Connect

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  16. Creating dynamic equivalent PV circuit models with impedance spectroscopy for arc-fault modeling.

    SciTech Connect

    Johnson, Jay Dean; Kuszmaul, Scott S.; Strauch, Jason E.; Schoenwald, David Alan

    2011-06-01

    Article 690.11 in the 2011 National Electrical Code{reg_sign} (NEC{reg_sign}) requires new photovoltaic (PV) systems on or penetrating a building to include a listed arc fault protection device. Currently there is little experimental or empirical research into the behavior of the arcing frequencies through PV components despite the potential for modules and other PV components to filter or attenuate arcing signatures that could render the arc detector ineffective. To model AC arcing signal propagation along PV strings, the well-studied DC diode models were found to inadequately capture the behavior of high frequency arcing signals. Instead dynamic equivalent circuit models of PV modules were required to describe the impedance for alternating currents in modules. The nonlinearities present in PV cells resulting from irradiance, temperature, frequency, and bias voltage variations make modeling these systems challenging. Linearized dynamic equivalent circuits were created for multiple PV module manufacturers and module technologies. The equivalent resistances and capacitances for the modules were determined using impedance spectroscopy with no bias voltage and no irradiance. The equivalent circuit model was employed to evaluate modules having irradiance conditions that could not be measured directly with the instrumentation. Although there was a wide range of circuit component values, the complex impedance model does not predict filtering of arc fault frequencies in PV strings for any irradiance level. Experimental results with no irradiance agree with the model and show nearly no attenuation for 1 Hz to 100 kHz input frequencies.

  17. Effective information channels for reducing costs of environmentally- friendly technologies: evidence from residential PV markets

    NASA Astrophysics Data System (ADS)

    Rai, Varun; Robinson, Scott A.

    2013-03-01

    Realizing the environmental benefits of solar photovoltaics (PV) will require reducing costs associated with perception, informational gaps and technological uncertainties. To identify opportunities to decrease costs associated with residential PV adoption, in this letter we use multivariate regression models to analyze a unique, household-level dataset of PV adopters in Texas (USA) to systematically quantify the effect of different information channels on aspiring PV adopters’ decision-making. We find that the length of the decision period depends on the business model, such as whether the system was bought or leased, and on special opportunities to learn, such as the influence of other PV owners in the neighborhood. This influence accrues passively through merely witnessing PV systems in the neighborhood, increasing confidence and motivation, as well as actively through peer-to-peer communications. Using these insights we propose a new framework to provide public information on PV that could drastically reduce barriers to PV adoption, thereby accelerating its market penetration and environmental benefits. This framework could also serve as a model for other distributed generation technologies.

  18. Tensor methods for large sparse systems of nonlinear equations

    SciTech Connect

    Bouaricha, A.; Schnabel, R.B.

    1996-12-31

    This paper introduces censor methods for solving, large sparse systems of nonlinear equations. Tensor methods for nonlinear equations were developed in the context of solving small to medium- sized dense problems. They base each iteration on a quadratic model of the nonlinear equations. where the second-order term is selected so that the model requires no more derivative or function information per iteration than standard linear model-based methods, and hardly more storage or arithmetic operations per iteration. Computational experiments on small to medium-sized problems have shown censor methods to be considerably more efficient than standard Newton-based methods, with a particularly large advantage on singular problems. This paper considers the extension of this approach to solve large sparse problems. The key issue that must be considered is how to make efficient use of sparsity in forming and solving the censor model problem at each iteration. Accomplishing this turns out to require an entirely new way of solving the tensor model that successfully exploits the sparsity of the Jacobian, whether the Jacobian is nonsingular or singular. We develop such an approach and, based upon it, an efficient tensor method for solving large sparse systems of nonlinear equations. Test results indicate that this tensor method is significantly more efficient and robust than an efficient sparse Newton-based method. in terms of iterations, function evaluations. and execution time.

  19. Large area high-speed metrology SPM system

    NASA Astrophysics Data System (ADS)

    Klapetek, P.; Valtr, M.; Picco, L.; Payton, O. D.; Martinek, J.; Yacoot, A.; Miles, M.

    2015-02-01

    We present a large area high-speed measuring system capable of rapidly generating nanometre resolution scanning probe microscopy data over mm2 regions. The system combines a slow moving but accurate large area XYZ scanner with a very fast but less accurate small area XY scanner. This arrangement enables very large areas to be scanned by stitching together the small, rapidly acquired, images from the fast XY scanner while simultaneously moving the slow XYZ scanner across the region of interest. In order to successfully merge the image sequences together two software approaches for calibrating the data from the fast scanner are described. The first utilizes the low uncertainty interferometric sensors of the XYZ scanner while the second implements a genetic algorithm with multiple parameter fitting during the data merging step of the image stitching process. The basic uncertainty components related to these high-speed measurements are also discussed. Both techniques are shown to successfully enable high-resolution, large area images to be generated at least an order of magnitude faster than with a conventional atomic force microscope.

  20. An Analysis of the Effects of Photovoltaic Energy Systems on Residential Selling Prices in California.

    SciTech Connect

    Cappers, Peter; Wiser, Ryan; Thayer, Mark; Hoen, Ben

    2011-04-12

    An increasing number of homes with existing photovoltaic (PV) energy systems have sold in the U.S., yet relatively little research exists that estimates the marginal impacts of those PV systems on the sales price. A clearer understanding of these effects might influence the decisions of homeowners, home buyers and PV home builders. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. Across a large number of hedonic and repeat sales model specifications and robustness tests, the analysis finds strong evidence that homes with PV systems sold for a premium over comparable homes without. The effects range, on average, from approximately $3.9 to $6.4 per installed watt (DC), with most models coalescing near $5.5/watt, which corresponds to a premium of approximately $17,000 for a 3,100 watt system. The research also shows that, as PV systems age, the premium enjoyed at the time of home sale decreases. Additionally, existing homes with PV systems are found to have commanded a larger sales price premium than new homes with similarly sized PV systems. Reasons for this discrepancy are suggested, yet further research is warranted in this area as well as a number of other areas that are highlighted.

  1. Large-scale micropropagation system of plant cells.

    PubMed

    Honda, Hiroyuki; Kobayashi, Takeshi

    2004-01-01

    Plant micropropagation is an efficient method of propagating disease-free, genetically uniform and massive amounts of plants in vitro. The scale-up of the whole process for plant micropropagation should be established by an economically feasible technology for large-scale production of them in appropriate bioreactors. It is necessary to design suitable bioreactor configuration which can provide adequate mixing and mass transfer while minimizing the intensity of shear stress and hydrodynamic pressure. Automatic selection of embryogenic calli and regenerated plantlets using image analysis system should be associated with the system. The aim of this chapter is to identify the problems related to large-scale plant micropropagation via somatic embryogenesis, and to summarize the micropropagation technology and computer-aided image analysis. Viscous additive supplemented culture, which is including the successful results obtained by us for callus regeneration, is also introduced. PMID:15453194

  2. A protocol for secure communication in large distributed systems

    NASA Astrophysics Data System (ADS)

    Anderson, D. P.; Ferrari, D.; Rangan, P. V.; Sartirana, B.

    1987-01-01

    A mechanism for secure communication in large distributed systems is proposed. The mechanism, called Authenticated Datagram Protocol (ADP), provides message authentication and, optionally, privacy of data. ADP is a host-to-host datagram protocol, positioned below the transport layer; it uses public-key encryption to establish secure channels between hosts and to authenticate owners, and single-key encryption for communication over a channel and to ensure privacy of the messages. ADP is shown to satisfy the main security requirements of large distributed systems, to provide end-to-end security in spite of its relatively low level, and to exhibit several advantages over schemes in which security mechanisms are at a higher level. The results of a trace-driven measurement study of ADP performance show that its throughput and latency are acceptable even within the limitations of today's technology, provided single-key encryption/decryption can be done in hardware.

  3. Introduction of Break-Out Session at the International PV Module Quality Assurance Forum (Presentation)

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.

    2011-07-01

    This presentation outlines review requirements for quality assurance (QA) rating systems, logical design of QA systems, and specific tasks for break-out session 1 of the 2011 International PV Module Quality Assurance Forum.

  4. Rearranging the exponential wall for large N-body systems.

    PubMed

    Watson, Deborah K; Dunn, Martin

    2010-07-01

    The work required to solve for the fully interacting N boson wave function, which is widely believed to scale exponentially with N, is rearranged so the problem scales order by order in a perturbation series as N0. The exponential complexity reappears in an exponential scaling with the order of our perturbation series allowing exact analytical calculations for very large N systems through low order. PMID:20867687

  5. An economy of scale system's mensuration of large spacecraft

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.

    1981-01-01

    The systems technology and cost particulars of using multipurpose platforms versus several sizes of bus type free flyer spacecraft to accomplish the same space experiment missions. Computer models of these spacecraft bus designs were created to obtain data relative to size, weight, power, performance, and cost. To answer the question of whether or not large scale does produce economy, the dominant cost factors were determined and the programmatic effect on individual experiment costs were evaluated.

  6. Large distributed control system using ADA in fusion research

    SciTech Connect

    Woodruff, J. P., LLNL

    1998-04-21

    Construction of the National Ignition Facility laser at Lawrence Livermore National Laboratory features a large distributed control system constructed using object-oriented software engineering techniques. Control of 60,000 devices is effected using a network of some 500 computers that run software written in Ada and communicating through CORBA. The project has completed its final design review; implementation of the first of five planned increments will be delivered at the end of fiscal year 1998. Preliminary measures of the distributed controls performance confirm the design decisions reported in this paper, and the measurement and supporting simulation of full system performance continue.

  7. ASK-GraphView: A large scale graph visualization system.

    PubMed

    Abello, James; van Ham, Frank; Krishnan, Neeraj

    2006-01-01

    We describe ASK-GraphView, a node-link-based graph visualization system that allows clustering and interactive navigation of large graphs, ranging in size up to 16 million edges. The system uses a scalable architecture and a series of increasingly sophisticated clustering algorithms to construct a hierarchy on an arbitrary, weighted undirected input graph. By lowering the interactivity requirements we can scale to substantially bigger graphs. The user is allowed to navigate this hierarchy in a top down manner by interactively expanding individual clusters. ASK-GraphView also provides facilities for filtering and coloring, annotation and cluster labeling. PMID:17080786

  8. Computer analysis of transient voltages in large grounding systems

    SciTech Connect

    Grcev, L.D.

    1996-04-01

    A computer model for transient analysis of a network of buried and above ground conductors is presented. The model is based on the electromagnetic field theory approach ad the modified image theory. Validation of the model is achieved by comparison with field measurements. The model is applied for computation of transient voltages to remote ground of large grounding grid conductors. Also computation of longitudinal and leakage currents, transient impedance, electromagnetic fields, and transient induced voltages is possible. This model is aimed to help in EMC and lightning protection studies that involve electrical and electronic systems connected to grounding systems.

  9. Design and evaluation of control systems for large communications satellites

    NASA Technical Reports Server (NTRS)

    Steiber, M. E.

    1985-01-01

    Control techniques for future large flexible spacecraft are developed. Control design and analysis are supported by a comprehensive CAD system. The proposed operational mobile communications satellite (OMSAT) featuring a 44 m offset fed antenna is used as target application. Requirements for satellite attitude control and communications beam pointing are defined. The following control methods are applied to the system: standard linear optimal regulator (LOR) with Luenberger observer, LOR/observer with selective spill-over suppression, frequency shaped LOR, LOR with closed-loop order reduction by cost decoupling, and robust servomechanism.

  10. Large capacity, high-speed multiparameter multichannel analysis system

    SciTech Connect

    Hendricks, R.W.; Seeger, P.A.; Scheer, J.W.; Suehiro, S.

    1980-01-01

    A data acquisition system for recording multiparameter digital data into a large memory array at over 2.5 MHz is described. The system consists of a MOSTEK MK8600 2048K x 24-bit memory system, I/O ports to various external devices including the CAMAC dataway, a memory incrementer/adder and a daisy-chain of experiment-specific modules which calculate the memory address which is to be incremented. The design of the daisy-chain permits multiple modules and provides for easy modification as experimental needs change. The system has been designed for use in multiparameter, multichannel analysis of high-speed data gathered by position-sensitive detectors at conventional and synchrotron x-ray sources as well as for fixed energy and time-of-flight diffraction at continuous and pulsed neutron sources.

  11. Radar system on a large autonomous vehicle for personnel avoidance

    NASA Astrophysics Data System (ADS)

    Silvious, Jerry; Wellman, Ron; Tahmoush, Dave; Clark, John

    2010-04-01

    The US Army Research Laboratory designed, developed and tested a novel switched beam radar system operating at 76 GHz for use in a large autonomous vehicle to detect and identify roadway obstructions including slowly-moving personnel. This paper discusses the performance requirements for the system to operate in an early collision avoidance mode to a range of 150 meters and at speeds of over 20 m/s. We report the measured capabilities of the system to operate in these modes under various conditions, such as rural and urban environments, and on various terrains, such as asphalt and grass. Finally, we discuss the range-Doppler map processing capabilities that were developed to correct for platform motion and identify roadway vehicles and personnel moving at 1 m/s or more along the path of the system.

  12. Electron cyclotron beam measurement system in the Large Helical Device

    SciTech Connect

    Kamio, S. Takahashi, H.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ito, S.; Kobayashi, S.; Mizuno, Y.; Okada, K.; Osakabe, M.; Mutoh, T.

    2014-11-15

    In order to evaluate the electron cyclotron (EC) heating power inside the Large Helical Device vacuum vessel and to investigate the physics of the interaction between the EC beam and the plasma, a direct measurement system for the EC beam transmitted through the plasma column was developed. The system consists of an EC beam target plate, which is made of isotropic graphite and faces against the EC beam through the plasma, and an IR camera for measuring the target plate temperature increase by the transmitted EC beam. This system is applicable to the high magnetic field (up to 2.75 T) and plasma density (up to 0.8 × 10{sup 19} m{sup −3}). This system successfully evaluated the transmitted EC beam profile and the refraction.

  13. Concept selection and analysis of large wind generator systems

    NASA Technical Reports Server (NTRS)

    Meier, R. C.

    1975-01-01

    The increasing need to develop alternative energy sources has renewed interest in the use of wind energy for the generation of utility quality electricity. This paper discusses a program to evolve a preliminary design of a cost competitive large wind generator system. An examination of a number of technically feasible alternative wind energy configurations is reported, and the rationale used in selecting the preferred system concept is presented. In addition, preliminary results of an optimization study conducted on the preferred concept are summarized. These show that considerable latitude in the selection of the system design parameters is possible. This permits design decisions to be based on other important factors such as development risk and the suitability of common component designs for systems with different power ratings.

  14. Information fusion based optimal control for large civil aircraft system.

    PubMed

    Zhen, Ziyang; Jiang, Ju; Wang, Xinhua; Gao, Chen

    2015-03-01

    Wind disturbance has a great influence on landing security of Large Civil Aircraft. Through simulation research and engineering experience, it can be found that PID control is not good enough to solve the problem of restraining the wind disturbance. This paper focuses on anti-wind attitude control for Large Civil Aircraft in landing phase. In order to improve the riding comfort and the flight security, an information fusion based optimal control strategy is presented to restrain the wind in landing phase for maintaining attitudes and airspeed. Data of Boeing707 is used to establish a nonlinear mode with total variables of Large Civil Aircraft, and then two linear models are obtained which are divided into longitudinal and lateral equations. Based on engineering experience, the longitudinal channel adopts PID control and C inner control to keep longitudinal attitude constant, and applies autothrottle system for keeping airspeed constant, while an information fusion based optimal regulator in the lateral control channel is designed to achieve lateral attitude holding. According to information fusion estimation, by fusing hard constraint information of system dynamic equations and the soft constraint information of performance index function, optimal estimation of the control sequence is derived. Based on this, an information fusion state regulator is deduced for discrete time linear system with disturbance. The simulation results of nonlinear model of aircraft indicate that the information fusion optimal control is better than traditional PID control, LQR control and LQR control with integral action, in anti-wind disturbance performance in the landing phase. PMID:25440950

  15. Visualization in aerospace research with a large wall display system

    NASA Astrophysics Data System (ADS)

    Matsuo, Yuichi

    2002-05-01

    National Aerospace Laboratory of Japan has built a large- scale visualization system with a large wall-type display. The system has been operational since April 2001 and comprises a 4.6x1.5-meter (15x5-foot) rear projection screen with 3 BARCO 812 high-resolution CRT projectors. The reason we adopted the 3-gun CRT projectors is support for stereoscopic viewing, ease with color/luminosity matching and accuracy of edge-blending. The system is driven by a new SGI Onyx 3400 server of distributed shared-memory architecture with 32 CPUs, 64Gbytes memory, 1.5TBytes FC RAID disk and 6 IR3 graphics pipelines. Software is another important issue for us to make full use of the system. We have introduced some applications available in a multi- projector environment such as AVS/MPE, EnSight Gold and COVISE, and been developing some software tools that create volumetric images with using SGI graphics libraries. The system is mainly used for visualization fo computational fluid dynamics (CFD) simulation sin aerospace research. Visualized CFD results are of our help for designing an improved configuration of aerospace vehicles and analyzing their aerodynamic performances. These days we also use it for various collaborations among researchers.

  16. Large high-vacuum systems for CERN accelerators

    NASA Astrophysics Data System (ADS)

    Strubin, P.

    2008-05-01

    CERN operated over the more than 50 years of its existence particle accelerators and storage rings ranging from a few tens of metre to 27 km, the size of its latest project, the Large Hadron Collider (LHC) which is under construction and will be started in 2008. The challenges began with the Intersection Storage Rings (ISR) in the seventies. With a beam pipe length of 2 × 1 km, this accelerator required innovative solutions like bake-out and glow discharge to achieve the required static vacuum level, fight against beam-induced pressure increases and cancel beam neutralisation by trapped electrons. The vacuum system of the Large Electron Positron (LEP) storage ring (in operation between 1989 and 2001) of a total length of 27 km had to cope with very high levels of synchrotron power. The beam vacuum system of LHC (2 × 27 km) integrates some parts at 1.9 K and others at room temperature and will also have to cope with dynamic effects. In addition to the beam vacuum system, LHC requires insulation vacuum for the superconducting magnets and the helium distribution line. Whereas the required pressure is not very low, the leak detection and localisation is significantly more demanding for the insulation vacuum than for the beam vacuum because of the large volumes and the thermal insulation. When the size of an accelerator grows, the difficulties are not only to get a clean and leak tight vacuum system, but also to be able to measure reliably pressure or gas composition over long distances. Furthermore, in the case of LHC the integration of the beam vacuum system was particularly difficult because of the complexity induced by a superconducting magnet scheme and the reduced space available for the beam pipes. Planning and logistics aspects during installation, including the usage of mobile pumping and diagnostic means, were much more difficult to manage in LHC than in previous projects.

  17. Ensuring Quality of PV Modules: Preprint

    SciTech Connect

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

    2011-07-01

    Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

  18. Geographic smoothing of solar PV: Results from Gujarat

    SciTech Connect

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f, ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.

  19. Comparative Genomic Analysis of Xanthomonas axonopodis pv. citrumelo F1, Which Causes Citrus Bacterial Spot Disease, and Related Strains Provides Insights into Virulence and Host Specificity ▿ #

    PubMed Central

    Jalan, Neha; Aritua, Valente; Kumar, Dibyendu; Yu, Fahong; Jones, Jeffrey B.; Graham, James H.; Setubal, João C.; Wang, Nian

    2011-01-01

    Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity. PMID:21908674

  20. Comparative genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity.

    PubMed

    Jalan, Neha; Aritua, Valente; Kumar, Dibyendu; Yu, Fahong; Jones, Jeffrey B; Graham, James H; Setubal, João C; Wang, Nian

    2011-11-01

    Xanthomonas axonopodis pv. citrumelo is a citrus pathogen causing citrus bacterial spot disease that is geographically restricted within the state of Florida. Illumina, 454 sequencing, and optical mapping were used to obtain a complete genome sequence of X. axonopodis pv. citrumelo strain F1, 4.9 Mb in size. The strain lacks plasmids, in contrast to other citrus Xanthomonas pathogens. Phylogenetic analysis revealed that this pathogen is very close to the tomato bacterial spot pathogen X. campestris pv. vesicatoria 85-10, with a completely different host range. We also compared X. axonopodis pv. citrumelo to the genome of citrus canker pathogen X. axonopodis pv. citri 306. Comparative genomic analysis showed differences in several gene clusters, like those for type III effectors, the type IV secretion system, lipopolysaccharide synthesis, and others. In addition to pthA, effectors such as xopE3, xopAI, and hrpW were absent from X. axonopodis pv. citrumelo while present in X. axonopodis pv. citri. These effectors might be responsible for survival and the low virulence of this pathogen on citrus compared to that of X. axonopodis pv. citri. We also identified unique effectors in X. axonopodis pv. citrumelo that may be related to the different host range as compared to that of X. axonopodis pv. citri. X. axonopodis pv. citrumelo also lacks various genes, such as syrE1, syrE2, and RTX toxin family genes, which were present in X. axonopodis pv. citri. These may be associated with the distinct virulences of X. axonopodis pv. citrumelo and X. axonopodis pv. citri. Comparison of the complete genome sequence of X. axonopodis pv. citrumelo to those of X. axonopodis pv. citri and X. campestris pv. vesicatoria provides valuable insights into the mechanism of bacterial virulence and host specificity. PMID:21908674