Science.gov

Sample records for pwr loca conditions

  1. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    Energy Science and Technology Software Center (ESTSC)

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These maymore » be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section

  2. ACHILLES: Heat Transfer in PWR Core During LOCA Reflood Phase

    SciTech Connect

    2013-11-01

    1. NAME AND TITLE OF DATA LIBRARY ACHILLES -Heat Transfer in PWR Core During LOCA Reflood Phase. 2. NAME AND TITLE OF DATA RETRIEVAL PROGRAMS N/A 3. CONTRIBUTOR AEA Technology, Winfrith Technology Centre, Dorchester DT2 8DH United Kingdom through the OECD Nuclear Energy Agency Data Bank, Issy-les-Moulineaux, France. 4. DESCRIPTION OF TEST FACILITY The most important features of the Achilles rig were the shroud vessel, which contained the test section, and the downcomer. These may be thought of as representing the core barrel and the annular downcomer in the reactor pressure vessel. The test section comprises a cluster of 69 rods in a square array within a circular shroud vessel. The rod diameter and pitch (9.5 mm and 12.6 mm) were typical of PWR dimensions. The internal diameter of the shroud vessel was 128 mm. Each rod was electrically heated over a length of 3.66 m, which is typical of the nuclear heated length in a PWR fuel rod, and each contained 6 internal thermocouples. These were arranged in one of 8 groupings which concentrated the thermocouples in different axial zones. The spacer grids were at prototypic PWR locations. Each grid had two thermocouples attached to its trailing edge at radial locations. The axial power profile along the rods was an 11 step approximation to a "chopped cosine". The shroud vessel had 5 heating zones whose power could be independently controlled. 5. DESCRIPTION OF TESTS The Achilles experiments investigated the heat transfer in the core of a Pressurized Water Reactor during the re-flood phase of a postulated large break loss of coolant accident. The results provided data to validate codes and to improve modeling. Different types of experiments were carried out which included single phase cooling, re-flood under low flow conditions, level swell and re-flood under high flow conditions. Three series of experiments were performed. The first and the third used the same test section but the second used another test section, similar in

  3. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS.

    SciTech Connect

    A. K. MAJI; B. MARSHALL; ET AL

    2000-10-01

    In the unlikely event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor (PWR), break jet impingement would dislodge thermal insulation from nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS. In 1998, the U. S. Nuclear Regulatory Commission (NRC) initiated a generic study (Generic Safety Issue-191) to evaluate the potential for the accumulation of LOCA related debris on the PWR sump screen and the consequent loss of ECCS pump net positive suction head (NPSH). Los Alamos National Laboratory (LANL), supporting the resolution of GSI-191, was tasked with developing a method for estimating debris transport in PWR containments to estimate the quantity of debris that would accumulate on the sump screen for use in plant specific evaluations. The analytical method proposed by LANL, to predict debris transport within the water that would accumulate on the containment floor, is to use computational fluid dynamics (CFD) combined with experimental debris transport data to predict debris transport and accumulation on the screen. CFD simulations of actual plant containment designs would provide flow data for a postulated accident in that plant, e.g., three-dimensional patterns of flow velocities and flow turbulence. Small-scale experiments would determine parameters defining the debris transport characteristics for each type of debris. The containment floor transport methodology will merge debris transport characteristics with CFD results to provide a reasonable and conservative estimate of debris transport within the containment floor pool and

  4. User's guide for the PWR LOCA analysis capability of the WRAP-EM system

    SciTech Connect

    Beranek, F; Gregory, M V

    1980-02-01

    The Water Reactor Analysis Package (WRAP) has been expanded to provide the capability to analyze loss-of-coolant accidents (LOCAs) in both pressurized water reactors (PWRs) and boiling water reactors (BWRs) by using evaluation models (EMs). The input specifications for modules in the WRAP-EM system are presented in this document along with the JOSHUA input templates. This document, along with the WRAP user's guide, provides a step-by-step procedure for setting up a PWR data base for the WRAP-EM system. 12 refs.

  5. Importance of thermal nonequilibrium considerations for the simulation of nuclear reactor LOCA transients. [PWR

    SciTech Connect

    Fischer, S.R.; Nelson, R.A.; Sullivan, L.H.

    1980-01-01

    The purpose of this paper is to show the importance of considering thermal nonequilibrium effects in computer simulations of the refill and reflood portions of pressurized water reactor (PWR) loss-of-coolnat accident (LOCA) transients. Although RELAP4 assumes thermodynamic equilibrium between phases, models that account for the nonequilibrium phenomena associated with the mixing of subcooled emergency cooling water with steam and the superheating of vapor in the presence of liquid droplets have recently been incorporated into the code. Code calculated results, both with and without these new models, have been compared with experimental test data to assess the importance of including thermal nonequilibrium phenomena in computer code simulations.

  6. Large Break LOCA Safety Injection Sensitivity for a CE/ABB System 80+ PWR

    SciTech Connect

    Pottorf, J.; Bajorek, S.M.

    2002-07-01

    A WCOBRA/TRAC model of an evolutionary pressurized water reactor with direct vessel injection was constructed using publicly available information and a hypothetical double-ended guillotine break of a cold leg pipe was simulated. The model is an approximation of a ABB/Combustion Engineering System 80+ pressurized water reactor (PWR). WCOBRA/TRAC is the thermal-hydraulics code approved by the U.S. Nuclear Regulatory Commission for use in realistic large break LOCA analyses of Westinghouse 3- and 4-loop PWRs and the AP600 passive design. The AP600 design uses direct vessel injection, and the applicability of WCOBRA/TRAC to such designs is supported by comparisons to appropriate test data. This study extends the application of WCOBRA/TRAC to the investigation of the predicted behavior of direct vessel injection in an evolutionary design. A series of large break LOCA simulations were performed assuming a core power of 3914 MWt, and Technical Specification limits of 2.5 on total peaking factor and 1.7 on hot channel enthalpy rise factor. Two cladding temperature peaks were predicted during reflood, one following bottom of core recovery and a second caused by saturated boiling of water in the downcomer. This behavior is consistent with prior WCOBRA/TRAC calculations for some Westinghouse PWRs. The simulation results are described, and the sensitivity to failure assumptions for the safety injection system is presented. (authors)

  7. Zircoloy Cladding Oxidation Simulation for LWR under LOCA Conditions

    Energy Science and Technology Software Center (ESTSC)

    2003-04-25

    PRECIP-2 simulates zircaloy cladding oxidation under LOCA conditions of LWR’s. The code calculates oxygen concentration distribution across the cladding wall by solving the diffusion equation with moving boundary conditions, taking into account the structure change of the beta— phase, i.e. alpha precipitation during the cooling period. The code also predicts total oxygen uptake, thicknesses of alpha, beta and oxide layers.

  8. Effect of bundle size on cladding deformation in LOCA simulation tests. [PWR; BWR

    SciTech Connect

    Chapman, R.H.; Crowley, J.L.; Longest, A.W.

    1982-01-01

    Two LOCA simulation tests were conducted to investigate the effects of temperature uniformity and radial restraint boundary conditions on Zircaloy cladding deformation. In one of the tests (B-5), boundary conditions typical of a large array were imposed on an inner 4 x 4 square array by two concentric rings of interacting guard fuel pin simulators. In the other test (B-3), the boundary conditions were imposed on a 4 x 4 square array by a non-interacting heated shroud. Test parameters conducive to large deformation were selected in order to favor rod-to-rod interactions. The tests showed that rod-to-rod interactions play an important role in the deformation process.

  9. French investigations of high burnup effect on LOCA thermomecanical behavior. Part two. Oxidation and quenching experiments under simulated LOCA conditions with high burnup clad material

    SciTech Connect

    GrandJean, C.; Cauvin, R.; Lebuffe, C.

    1997-01-01

    In the frame of the high burnup fuel studies to support a possible extension of the current discharge burnup limit, experimental programs have been undertaken, jointly by EDF and IPSN in order to study the thermal-shock behavior of high burnup fuel claddings under typical LOCA conditions. The TAGUS program used unirradiated cladding samples, bare or bearing a pre-corrosion state simulating the end-of-life state of high burnup fuel claddings: the TAGCIR program used actually irradiated cladding samples taken from high burnup rods irradiated over 5 cycles in a commercial EDF PWR and having reached a rod burnup close to 60 GWd/tU. The thermal-shock failure tests consisted in oxidizing the cladding samples under steam flow, on both inner and outer faces or on the outer face alone, and subjecting them to a final water quench. The heating was provided by an inductive furnace the power of which being regulated through monitoring of the sample surface temperature with use of a single-wave optical pyrometer. Analysis of the irradiated tests (TAGCIR series) evidenced an increased oxidation rate as compared to similar tests on unirradiated samples. Results of the quenching tests series on unirradiated and irradiated samples are plotted under the usual presentation of failure maps relative to the oxidation parameters ECR (equivalent cladding reacted) or e{sub {beta}} (thickness of the remaining beta phase layer) as a function of the oxidation temperature. Comparison of the failure limits for irradiated specimens to those for unirradiated specimens indicates a lower brittleness under two side oxidation and possibly the opposite under one-side oxidation. The tentative analysis of the oxidation and quenching tests results on irradiated samples reveals the important role played by the hydrogen charged during in-reactor corrosion on the oxidation kinetics and the failure bearing capability of the cladding under LOCA transient conditions.

  10. Comparative analysis of pressure vessel integrity for various LOCA conditions

    NASA Astrophysics Data System (ADS)

    Çolak, Üner; Özdere, Oya

    2001-09-01

    In this study, integrity analysis is performed for a classical four loop PWR pressure vessel fabricated from SA533B type ferritic steel. Pressure vessel behavior is analyzed by deterministic and probabilistic methods under transient conditions, which may cause pressurized thermal shock (PTS). In deterministic analysis, the change of material properties and the mechanical state of the vessel are analyzed against changes in coolant pressure and temperature. Probabilistic analysis is performed to obtain pressure vessel beltline region weld failure probabilities in transient conditions. Overall vessel failure probabilities are evaluated based on the results of deterministic analyses. Computer code VISA-II is utilized for the calculation of vessel failure probabilities. Among three cases considered in this study, a medium break loss of coolant accident induced by a 50 cm2 break in the hot leg yields the highest vessel rupture probability. The maximum nil ductility temperature in all cases is still below the NRC PTS limit.

  11. Performance of Core Exit Thermocouple for PWR Accident Management Action in Vessel Top Break LOCA Simulation Experiment at OECD/NEA ROSA Project

    NASA Astrophysics Data System (ADS)

    Suzuki, Mitsuhiro; Takeda, Takeshi; Nakamura, Hideo

    Presented are experiment results of the Large Scale Test Facility (LSTF) conducted at the Japan Atomic Energy Agency (JAEA) with a focus on core exit thermocouple (CET) performance to detect core overheat during a vessel top break loss-of-coolant accident (LOCA) simulation experiment. The CET temperatures are used to start accident management (AM) action to quickly depressurize steam generator (SG) secondary side in case of core temperature excursion. Test 6-1 is the first test of the OECD/NEA ROSA Project started in 2005, simulating withdraw of a control rod drive mechanism penetration nozzle at the vessel top head. The break size is equivalent to 1.9% cold leg break. The AM action was initiated when CET temperature rose up to 623K. There was no reflux water fallback onto the CETs during the core heat-up period. The core overheat, however, was detected with a time delay of about 230s. In addition, a large temperature discrepancy was observed between the CETs and the hottest core region. This paper clarifies the reasons of time delay and temperature discrepancy between the CETs and heated core during boil-off including three-dimensional steam flows in the core and core exit. The paper discusses applicability of the LSTF CET performance to pressurized water reactor (PWR) conditions and a possibility of alternative indicators for earlier AM action than in Test 6-1 is studied by using symptom-based plant parameters such as a reactor vessel water level detection.

  12. Numerical simulation of PWR response to a small break LOCA (loss-of-coolant accident) with reactor coolant pumps operating

    SciTech Connect

    Adams, J.P.; Dobbe, C.A.; Bayless, P.D.

    1986-01-01

    Calculations have been made of the response of pressurized water reactors (PWRs) during a small-break, loss-of-coolant accident with the reactor coolant pumps (RCPs) operating. This study was conducted, as part of a comprehensive project, to assess the relationship between measurable RCP parameters, such as motor power or current, and fluid density, both local (at the RCP inlet) and global (average reactor coolant system). Additionally, the efficacy of using these RCP parameters, together with fluid temperature, to identify an off-nominal transient as either a LOCA, a heatup transient, or a cooldown transient and to follow recovery from the transient was assessed. The RELAP4 and RELAP5 computer codes were used with three independent sets of RCP, two-phase degradation multipliers. These multipliers were based on data obtained in two-phase flow conditions for the Semiscale, LOFT, and Creare/Combustion Engineering (CE)/Electric Power Research Institute (EPRI) pumps, respectively. Two reference PWRs were used in this study: Zion, a four-loop, 1100-MWe, Westinghouse plant operated by Commonwealth Edison Co. in Zion, Illinois and Bellefonte, a two-by-four loop, 1213 MWe, Babcock and Wilcox designed plant being built by the Tennessee Valley Authority in Scottsboro, Alabama. The results from this study showed that RCP operation resulted in an approximately homogeneous reactor coolant system and that this result was independent of reference plant, computer code, or two-phase RCP head degradation multiplier used in the calculation.

  13. LOCA hydroloads calculations with multidimensional nonlinear fluid/structure interaction. Volume 3. Fluid/structure interaction studies using 3-D STEALTH/WHAMSE. Final report. [PWR

    SciTech Connect

    Santee, G.E. Jr.; Chang, F.H.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Belytschko, T.B.

    1982-11-01

    This report, the third in a series of reports for RP-1065, describes the final step in the stepwise approach for developing the three-dimensional, nonlinear, fluid-structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The final step in the methodology implements enhancements and special modifications to the STEALTH 3D computer program and the WHAMSE 3D computer program. After describing the enhancements, the individual and the coupled computer programs are assessed by comparing calculational results with either analytical solutions or with experimental data. The coupled 3D STEALTH/WHAMSE computer program is then applied to the simulation of HDR Test V31.1 to further assess the program and to investigate the role that fluid-structure interaction plays in the hydrodynamic loading of reactor internals during subcooled blowdown.

  14. LOCA hydroloads calculations with multidimensional nonlinear fluid/structure interaction. Volume 1: STEALTH 1D single-phase fluid studies. Final report. [PWR

    SciTech Connect

    Santee, G.E. Jr.; Mortensen, G.A.; Caraher, D.L.

    1980-04-01

    This report, which is the first in a series of reports for RP-1065, describes the first step in the stepwise approach for developing the methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The first step in the methodology considers enhancements and special modifications to the 1D STEALTH computer code in order that acoustic phenomena in piping and vessel networks may be simulated. The resulting code is termed 1D STEALTH-HYDRO. The 1D STEALTH-HYDRO enhancements consist of three control volume models to simulate area changes, orifices, and tees in piping networks. The theory of the control volume models is described.

  15. Overview of the M5{sup R} Alloy behavior under RIA and LOCA Conditions

    SciTech Connect

    Mardon, J.P.; Dunn, B.

    2007-07-01

    Experience from irradiation in PWRs has confirmed the M5{sup R} possesses all the properties required for upgraded operation including new fuel management approaches and high duty reactor operation. In this paper accident behavior is demonstrated through a comparison of M5{sup R} and Zircaloy-4 cladding behavior under RIA (Reactivity Insertion Accident) and LOCA (Loss Of Coolant Accident) conditions. AREVA NP supports a significant experimental program of analytical and full -scale tests along with comprehensive analyses on both M5{sup R} and SRA low-tin Zircaloy-4. A key presumption in the conduct of such tests is that, for all Zirconium alloys, the primary effects of high burn-up on cladding thermal-mechanical properties arise from the accumulation of hydrogen within the cladding during operation. This hypothesis is supported through a summarisation of the results of the main RIA and LOCA tests performed on virgin, pre-hydrided, and irradiated M5{sup R} and SRA low-tin Zircaloy-4 cladding. The first part of the paper presents the results of recent Room Temperature (RT) and High Temperature High Pressure (HTHP) integral RIA tests, mainly from the NSRR and CABRI programs, and separate effects mechanical properties tests on high burn-up M5{sup R} and Zircaloy- 4 irradiated claddings. In the second part of this paper, studies of cladding performance under LOCA conditions are presented.. The discussion includes high temperature oxidation kinetics, quench behaviour and post quenched mechanical behaviour of virgin, pre-hydrided and irradiated M5{sup R} and Zircaloy-4 cladding tubes after oxidation at LOCA temperatures and various quenching scenarios. The hydrogen concentrations studied are alloy dependent. Included are mechanical tests and in-depth metallurgical investigations developed to understand the failure mechanisms with the differing alloys and hydrogen concentrations. The result is a confirmation that the effect of hydrogen uptake dominates on the RIA and LOCA

  16. Experimental investigation on the causes for pellet fragmentation under LOCA conditions

    NASA Astrophysics Data System (ADS)

    Bianco, A.; Vitanza, C.; Seidl, M.; Wensauer, A.; Faber, W.; Macián-Juan, R.

    2015-10-01

    This paper addresses a separate effect experiment performed with irradiated fuel to study fuel fragmentation and fission gas release during a loss of coolant accident (LOCA). The paper presents a qualitative and quantitative investigation of the effects of the removal of the geometrical constraint provided by the cladding and the removal of the constraint given by the rod internal pressure in determining the extent of fuel fragmentation and fission gas release during a LOCA for fuel segments with a burnup of approximately 52 MWd/kgU. A review of previous LOCA tests was the starting point for the identification of these constraints and for the selection of the fuel rod burnup, the experiment's procedure and the boundary conditions. An out-of-pile test was considered representative for the scope, and the experiment was performed at the Halden Reactor Project hot cell in Kjeller (Norway) with heat provided by an electric oven. Three fuel rod segments were studied: 1) a fuel segment that experienced only ballooning without burst, 2) a fuel segment that experienced ballooning and burst and 3) a fuel segment that experienced neither ballooning nor burst. The neutron radiography and fuel fragment sifting showed that both cladding constraint and internal pressure play a role in the formation of fuel cracks and fragmentation, and the study of the fission gas release during the transient showed that removing the cladding constraint or the internal pressure increased the amount of fission gas release.

  17. Oxidation of SiC cladding under Loss of Coolant Accident (LOCA) conditions in LWRs

    SciTech Connect

    Lee, Y.; Yue, C.; Arnold, R. P.; McKrell, T. J.; Kazimi, M. S.

    2012-07-01

    An experimental assessment of Silicon Carbide (SiC) cladding oxidation rate in steam under conditions representative of Loss of Coolant Accidents (LOCA) in light water reactors (LWRs) was conducted. SiC oxidation tests were performed with monolithic alpha phase tubular samples in a vertical quartz tube at a steam temperature of 1140 deg. C and steam velocity range of 1 to 10 m/sec, at atmospheric pressure. Linear weight loss of SiC samples due to boundary layer controlled reaction of silica scale (SiO{sub 2} volatilization) was experimentally observed. The weight loss rate increased with increasing steam flow rate. Over the range of test conditions, SiC oxidation rates were shown to be about 3 orders of magnitude lower than the oxidation rates of zircaloy 4. A SiC volatilization correlation for developing laminar flow in a vertical channel is formulated. (authors)

  18. Modeling of Zr alloy burst cladding internal oxidation and secondary hydriding under LOCA conditions

    NASA Astrophysics Data System (ADS)

    Veshchunov, M. S.; Shestak, V. E.

    2015-06-01

    The recently developed mechanistic model for Zr alloy cladding hydriding has been implemented in the single-rod SVECHA/QUENCH (S/Q) code. The mass transfer in a fuel rod after ballooning and burst opening have been modeled in the modified code that allowed calculating hydrogen and oxygen pickup by the cladding inner-metal surface. The code predicts with a good accuracy the typical distributions of oxygen and hydrogen in the Zr alloy cladding that were observed in the JAERI (Japan Atomic Energy Research Institute) and ANL (Argonne National Laboratory) single-rod tests and KIT (Karlsruhe Institute of Technology) bundle tests under postulated loss-of-coolant accident (LOCA) conditions.

  19. Generic Safety Issue (GSI) 171 -- Engineered Safety Feature (ESF) failure from a loop subsequent to LOCA: Assessment of plant vulnerability and CDF contributions

    SciTech Connect

    Martinez-Guridi, G.; Samanta, P.; Chu, L.; Yang, J.

    1998-03-01

    Generic Safety Issue 171 (GSI-171), Engineered Safety Feature (ESF) from a Loss Of Offsite Power (LOOP) subsequent to a Loss Of Coolant Accident (LOCA), deals with an accident sequence in which a LOCA is followed by a LOOP. This issue was later broadened to include a LOOP followed by a LOCA. Plants are designed to handle a simultaneous LOCA and LOOP. In this paper, the authors address the unique issues that are involved i LOCA with delayed LOOP (LOCA/LOOP) and LOOP with delayed LOCA (LOOP/LOCA) accident sequences. LOCA/LOOP accidents are analyzed further by developing event-tree/fault-tree models to quantify their contributions to core-damage frequency (CDF) in a pressurized water reactor and a boiling water reactor (PWR and a BWR). Engineering evaluation and judgments are used during quantification to estimate the unique conditions that arise in a LOCA/LOOP accident. The results show that the CDF contribution of such an accident can be a dominant contributor to plant risk, although BWRs are less vulnerable than PWRs.

  20. LOCA hydroloads calculations with multidimensional nonlinear fluid/structure interaction. Volume 2: STEALTH 2D/WHAMSE 2D single-phse fluid and elastic structure studies. Final report. [PWR

    SciTech Connect

    Chang, F.H.; Santee, G.E. Jr.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Silling, S.A.; Belytschko, T.

    1981-03-01

    This report, the second in a series of reports for RP-1065, describes the second step in the stepwise approach for developing the three-dimensional, nonlinear, fluid/structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The second step in the methodology considers enhancements and special modifications to the 2D STEALTH-HYDRO computer program and the 2D WHAMSE computer program. The 2D STEALTH-HYDRO enhancements consist of a fluid-fluid coupling control-volume model and an orifice control-volume model. The enhancements to 2D WHAMSE include elimination of the implicit integration routines, material models, and structural elements not required for the hydroloads application. In addition the logic for coupling the 2D STEALTH-HYDRO computer program to the 2D WHAMSE computer program is discussed.

  1. Reactor coolant pump startup under degraded conditions in a scaled OTSG lowered loop PWR

    SciTech Connect

    Tafreshi, A.M.; Marzo, M. di

    1996-12-31

    After a SB-LOCA or improper maintenance activities, the potential exists for a non-uniform distribution of boric acid in a PWR coolant system. This in turn presents the possibility of a reactivity excursion if sufficient volumes of boron-dilute water are transported into the core region without having first undergone substantial mixing. A research program is being conducted at the University of Maryland College Park (UMCP) 2 x 4 thermal-hydraulic test facility to assess the generation, transport and mixing of boron-dilute volumes. Start up of a pump and flow of a boron free slug of water in the cold leg and subsequent transport to the core downcomer in the facility is investigated here.

  2. Fuel behavior during a LOCA: LOFT experiments

    SciTech Connect

    Russell, M.L.

    1980-11-01

    The LOFT experiments have provided the following fuel behavior information which appears to be valuable for improving the safety of PWR operation and resolving PWR licensing issues: (1) A generic unassisted core cooling event occurs during large-break LOCAs that dominates the cooling of the core before ECC reflood commences and potentially eliminates the possibility of flow channel blockage from prepressurized fuel rod swelling. (2) The large-break LOCA decompression forces do not disturb the normal control rod gravity drop and may not structually damage the fuel assemblies. (3) Large-break LOCA core cooling may also be enhanced by spacer grid and core counter flow delay of liquid escape from the core boundaries and liquid fallback from the upper plenum into the core region. (4) Lower fuel rod prepressurization may be possible in PWR fuel rods which would reduce flow channel blockage complications during LOCA's. (5) Uniform fuel rod cladding temperature indications during the large break LOCA's do not confirm expectations for the fuel rod cladding temperature variations that would inhibit development of flow channel blockages by ballooning of prepressurized fuel rods.

  3. The electrochemistry in 316SS crevices exposed to PWR-relevant conditions

    NASA Astrophysics Data System (ADS)

    Vankeerberghen, M.; Weyns, G.; Gavrilov, S.; Henshaw, J.; Deconinck, J.

    2009-04-01

    The chemical and electrochemical conditions within a crevice of Type 316 stainless steel in boric acid-lithium hydroxide solutions under PWR-relevant conditions were modelled with a computational electrochemistry code. The influence of various variables: dissolved hydrogen, boric acid, lithium hydroxide concentration, crevice length, and radiation dose rate was studied. It was found with the model that 25 ccH 2/kg (STP) was sufficient to remain below an electrode potential of -230 mV she, commonly accepted sufficient to prevent stress corrosion cracking under BWR conditions. In a PWR plant various operational B-Li cycles are possible but it was found that the choice of the cycle did not significantly influence the model results. It was also found that a hydrogen level of 50 ccH 2/kg (STP) would be needed to avoid substantial lowering of the pH inside a crevice.

  4. Loads on steam generator tubes during simulated loss-of-coolant accident conditions. Final report. [PWR

    SciTech Connect

    Guerrero, H.N.; Hiestand, J.W.; Rossano, F.V.; Shah, P.K.; Thakkar, J.G.

    1982-11-01

    This report presents the work performed to verify the CEFLASH digital computer code modeling of the hydro-dynamic loads in a steam generator tube during a loss-of-coolant accident (LOCA). The test loop simulated the primary side thermal-hydraulic conditions in an operational nuclear steam generator. The loop consisted of 5 full size double 90/sup 0/ bend tubes and steam generator plena, a pressurizer, a reactor resistance simulator, a heater, a pump, and associated pipes and valves to complete the system. The tubes used were of typical length and the same outside diameter as those used in C-E steam generators. Prototypical supports were provided for the bundle of 5 tubes. Cold leg guillotine breaks were simulated using quick opening valve and rupture disks. Break opening times ranged from less than 1 msec to as much as 67 milliseconds. The loop instrumentation was designed to measure the transient pressure history at various locations and monitor the structural response of the tube to the LOCA hydrodynamic loading. A series of blowdown tests was performed for different operating and boundary conditions. Analytically predicted transient pressure histories and the differential pressure history across the tube span were compared with the experimental data.

  5. Best-Estimate Analysis PWR LOCA.

    Energy Science and Technology Software Center (ESTSC)

    2005-11-11

    Version: 00 TRAC‑PF1 performs best estimate analyses of loss of coolant accidents and other transients in pressurized light water reactors. The program can also be used to model a wide range of thermal hydraulic experiments in reduced scale facilities. Models employed include reflood, multi‑dimensional two‑phase flow, nonequilibrium thermodynamics, generalized heat transfer, and reactor kinetics. Automatic steady‑state and dump/restart capabilities are provided. The changes reported in TRACNEWS issues through Number 7 are incorporated in this release.more » TRAC-PF1 was developed on a CDC computer at Los Alamos National Laboratory. The PC version of TRAC‑PF1 was converted at CNEN in 1989 and has not been updated since that time. The NRC no longer supports the TRAC codes. They currently develop and maintain the TRACE code system, which is the TRAC/RELAP Advanced Computational Engine. TRACE is a modernized thermal-hydraulics code designed to consolidate the capabilities of NRC's 3 legacy safety codes - TRAC-P, TRAC-B and RELAP. This is NRC's flagship thermal-hydraulics analysis tool. See the website for more information http://www.nrccodes.com/.« less

  6. Best-Estimate Analysis PWR LOCA.

    SciTech Connect

    MAHAFFY, J. H.

    2005-11-11

    Version: 00 TRAC‑PF1 performs best estimate analyses of loss of coolant accidents and other transients in pressurized light water reactors. The program can also be used to model a wide range of thermal hydraulic experiments in reduced scale facilities. Models employed include reflood, multi‑dimensional two‑phase flow, nonequilibrium thermodynamics, generalized heat transfer, and reactor kinetics. Automatic steady‑state and dump/restart capabilities are provided. The changes reported in TRACNEWS issues through Number 7 are incorporated in this release. TRAC-PF1 was developed on a CDC computer at Los Alamos National Laboratory. The PC version of TRAC‑PF1 was converted at CNEN in 1989 and has not been updated since that time. The NRC no longer supports the TRAC codes. They currently develop and maintain the TRACE code system, which is the TRAC/RELAP Advanced Computational Engine. TRACE is a modernized thermal-hydraulics code designed to consolidate the capabilities of NRC's 3 legacy safety codes - TRAC-P, TRAC-B and RELAP. This is NRC's flagship thermal-hydraulics analysis tool. See the website for more information http://www.nrccodes.com/.

  7. Deposition of cobalt on surface-treated stainless steel under PWR conditions

    SciTech Connect

    Lister, D.H.; Anderson, P.G.; Barry, B.J.; Lavoie, R.G. . Chalk River Nuclear Labs.)

    1989-10-01

    As part of an on-going program aimed at reducing radiation exposures in light water reactors, the modification of surfaces to minimize their propensity to pick up radioactivity under reactor conditions has been studied. This report describes how stainless steel specimens, surface-treated with a variety of processes, picked up Co-60 from high-temperature water under PWR conditions in a high-pressure loop. The build-up of activity was monitored on-line with a movable gamma spectrometer. Off-line counting at the end of the experiment established the absolute activity levels, and selective examinations with SEM and metallography characterized the surface condition of the exceptional specimens. The effectiveness of the surface treatments was gauged by fitting simple parabolae to the activity build-up data and comparing the coefficients with those obtained from untreated control specimens. 10 refs., 23 figs., 4 tabs.

  8. A comparison of the CHF between tubes and annuli under PWR thermal-hydraulic conditions

    SciTech Connect

    Herer, C.

    1995-09-01

    Critical Heat Flux (CHF) tests were carried out in three tubes with inside diameters of 8, 13, and 19.2 mm and in two annuli with an inner tube of 9.5 mm and an outer tube of 13 or 19.2 mm. All axial heat flux distributions in the test sections were uniform. The coolant fluid was Refrigerant 12 (Freon-12) under PWR thermal-hydraulic conditions (equivalent water conditions - Pressure: 7 to 20 MPa, Mass Velocity: 1000 to 6000 kg/m2/s, Local Quality: -75% to +45%). The effect of tube diameter is correlated for qualities under 15%. The change from the tube to the annulus configuration is correctly taken into account by the equivalent hydraulic diameter. Useful information is also provided concerning the effect of a cold wall in an annulus.

  9. Electrochemical behaviour of stainless steel in PWR primary coolant conditions: Effects of radiolysis

    NASA Astrophysics Data System (ADS)

    Muzeau, Benoist; Perrin, Stéphane; Corbel, Catherine; Simon, Dominique; Feron, Damien

    2011-12-01

    Few data are available in the literature on the role of the water radiolysis on the corrosion of stainless steel core components in PWR operating conditions (300 °C, 155 bar). The present approach uses a high energy proton beam to control the production of radiolytic species at the interface between a stainless steel sample and water in a high temperature and high pressure (HP-HT) electrochemical cell working in the range 25 °C/1 bar-300 °C/90 bar. The cell is designed to record the free corrosion potential of the AISI 316L/water interface mounted in line with a cyclotron delivering the proton beam. The evolution of the potential is compared before, during and after the proton irradiation. The first results are obtained with an aqueous solution containing boron, lithium and dissolved hydrogen, as in PWR primary coolant circuit. The stainless steel/water interfaces are irradiated between 25 °C and 300 °C with protons emerging at 22 MeV at the interface. The flux is varied by five orders of magnitude, from 6.6 × 10 11 to 6.6 × 10 15 H + m -2 s -1. The evolution of the free corrosion potential is highly dependent on the temperature and/or pressure. For a given temperature and pressure, it evolves with the flux and the ageing of the AISI 316L/water interfaces. An important role of the temperature of irradiation on the electrochemical response was observed. These results give a better understanding of the role of radiolysis on stainless steel corrosion in high temperature conditions.

  10. Fuel performance under normal PWR conditions: A review of relevant experimental results and models

    NASA Astrophysics Data System (ADS)

    Charles, M.; Lemaignan, C.

    1992-06-01

    Experiments conducted at Grenoble (CEA/DRN) over the past 20 years in the field of nuclear fuel behaviour are reviewed. Of particular concern is the need to achieve a comprehensive understanding of and subsequently overcome the limitations associated with high burnup and load-following conditions (pellet-cladding interaction (PCI), fission gas release (FGR), water-side corrosion). A general view is given of the organization of research work as well as some experimental details (irradiation, postirradiation examination — PIE). Based on various experimental programmes (Cyrano, Medicis, Anemone, Furet, Tango, Contact, Cansar, Hatac, Flog, Decor), the main contributions of the thermomechanical behaviour of a PWR fuel rod are described: thermal conductivity, in-pile densification, swelling, fission gas release in steady state and moderate transient conditions, gap thermal conductance, formation of primary and secondary ridges under PCI conditions. Specific programmes (Gdgrif, Thermox, Grimox) are devoted to the behaviour of particular fuels (gadolinia-bearing fuel, MOX fuel). Moreover, microstructure-based studies have been undertaken on fission gas release (fine analysis of the bubble population inside irradiated fuel samples), and on cladding behaviour (PCI related studies on stress-corrosion cracking (SCO, irradiation effects on zircaloy microstructure).

  11. Fuel failure and fission gas release in high burnup PWR fuels under RIA conditions

    NASA Astrophysics Data System (ADS)

    Fuketa, Toyoshi; Sasajima, Hideo; Mori, Yukihide; Ishijima, Kiyomi

    1997-09-01

    To study the fuel behavior and to evaluate the fuel enthalpy threshold of fuel rod failure under reactivity initiated accident (RIA) conditions, a series of experiments using pulse irradiation capability of the Nuclear Safety Research Reactor (NSRR) has been performed. During the experiments with 50 MWd/kg U PWR fuel rods (HBO test series; an acronym for high burnup fuels irradiated in Ohi unit 1 reactor), significant cladding failure occurred. The energy deposition level at the instant of the fuel failure in the test is 60 cal/g fuel, and is considerably lower than those expected and pre-evaluated. The result suggests that mechanical interaction between the fuel pellets and the cladding tube with decreased integrity due to hydrogen embrittlement causes fuel failure at the low energy deposition level. After the pulse irradiation, the fuel pellets were found as fragmented debris in the coolant water, and most of these were finely fragmented. This paper describes several key observations in the NSRR experiments, which include cladding failure at the lower enthalpy level, possible post-failure events and large fission gas release.

  12. Code System for PWR & BWR Multicompartment Containment Analysis, Versions MOD5

    Energy Science and Technology Software Center (ESTSC)

    1999-06-02

    CONTEMPT4/MOD6 describes the response of multicompartment containment systems subjected to postulated loss-of-coolant accident (LOCA) conditions. The program can accommodate both pressurized water reactor (PWR) and boiling water reactor (BWR) containment systems. Also, both design basis accident (DBA) and degraded core type LOCA conditions can be analyzed. The program calculates the time variation of compartment pressures, temperatures, and mass and energy inventories due to inter-compartment mass and energy exchange taking into account user-supplied descriptions of compartments,more » inter-compartment junction flow areas, LOCA source terms, and user-selected problem features. Analytical models available to describe containment systems include models for containment fans and pumps, cooling sprays, heat conducting structures, sump drains, PWR ice condensers, and BWR pressure suppression systems. CONTEMPT4/MOD6 also provides analytical models for hydrogen and carbon monoxide combustion within compartments and energy transfer due to gas radiation to accommodate degraded core type accidents.« less

  13. Transient Analysis for Evaluating the Potential Boiling in the High Elevation Emergency Cooling Units of PWR Following a Hypothetical Loss of Coolant Accident (LOCA) and Subsequent Water Hammer Due to Pump Restart

    SciTech Connect

    Husaini, S. Mahmood; Qashu, Riyad K.

    2004-07-01

    The Generic Letter GL-96-06 issued by the U.S. Nuclear Regulatory Commission (NRC) required the utilities to evaluate the potential for voiding in their Containment Emergency Cooling Units (ECUs) due to a hypothetical Loss Of Coolant Accident (LOCA) or a Main Steam Line Break (MSLB) accompanied by the Loss Of Offsite Power (LOOP). When the offsite power is restored, the Component Cooling Water (CCW) pumps restart causing water hammer to occur due to cavity closure. Recently EPRI (Electric Power Research Institute) performed a research study that recommended a methodology to mitigate the water hammer due to cavity closure. The EPRI methodology allows for the cushioning effects of hot steam and released air, which is not considered in the conventional water column separation analysis. The EPRI study was limited in scope to the evaluation of water hammer only and did not provide any guidance for evaluating the occurrence of boiling and the extent of voiding in the ECU piping. This paper presents a complete methodology based on first principles to evaluate the onset of boiling. Also, presented is a methodology for evaluating the extent of voiding and the water hammer resulting from cavity closure by using an existing generalized computer program that is based on the Method of Characteristics. The EPRI methodology is then used to mitigate the predicted water hammer. Thus it overcomes the inherent complications and difficulties involved in performing hand calculations for water hammer. The heat transfer analysis provides an alternative to the use of very cumbersome modeling in using CFD (computational fluid dynamics) based computer programs. (authors)

  14. Post Quench Ductility Evaluation of Zircaloy-4 and Select Iron Alloys under Design Basis and Extended LOCA Conditions

    SciTech Connect

    Yan, Yong; Keiser, James R; Terrani, Kurt A; Bell, Gary L; Snead, Lance

    2014-01-01

    Oxidation experiments were conducted at 1200 C in flowing steam with tubing specimens of Zircaloy-4, 317, 347 stainless steels, and the commercial FeCrAl alloy APMT. The purpose was to determine the oxidation behavior and post quench ductility of these alloys under postulated loss-of-coolant accident conditions. The parabolic rate constant for Zircaloy-4 tubing samples at 1200 were determined to be k = 2.173 107 g2/cm4/s C, in excellent agreement with the Cathcart-Pawel correlation. The APMT alloy experienced the slowest oxidation rate among all materials examined in this work. The ductility of post quenched samples was evaluated by ring compression tests at 135 C. For Zircaloy-4, the ductile to brittle transition occurs at an equivalent cladding reacted (ECR) of 19.3%. SS-347 was still ductile after being oxidized for 2400 s (CP-ECR 50%), but the maximum load was reduced significantly owing to the metal layer thickness reduction. No ductility decrease was observed for the post-quenched APMT samples oxidized up to four hours.

  15. The LOCA performance of the AP600 passive safety systems

    SciTech Connect

    Kemper, R.M.; Hochreiter, L.E.; Takeuchi, K.; Garner, D.C.; Nguyen, S.B.; Cunningham, J.P. ); Lee, S.N.K.; Tehrani, A.A.K.; Yang, H.; Bratby, P.A.W. )

    1992-01-01

    The AP600 is an advanced passive safeguards pressurized water reactor (PWR) that is being developed jointly by Westinghouse Electric Corporation, the U.S. Department of Energy, and the Electrical Power Research Institute. The plant has a thermal rating of 1940 MW (thermal) [600 MW(electric)] and has been designed with passive safeguard systems that utilize gravity feed injection rather than safety-grade active pumps and equipment. Calculations performed for a range of break sizes used locations to find the worst set of conditions for depressurizing the reactor coolant system. The main criterion was system inventory such that the core remained covered. The resulting break spectrum study indicates only that the double-ended guillotine shear of the direct vessel injection line (a .68-in. line that feeds the emergency core coolant flow into the vessel) resulted in a momentary core uncover. For all other small-break cases, the core remained covered as the reactor coolant system depressurized. The passive safety systems provided sufficient mass flow to the reactor vessel such that even under the more conservative Appendix K assumptions, the core remained covered and in a coolable state. The LOCA analysis performed for the AP600 confirms that passive safety systems can provide the core cooling necessary to meet the requirements of 10CFR50.46 with ample margin.

  16. Assessment of residual heat removal and containment spray pump performance under air and debris ingesting conditions. [PWR

    SciTech Connect

    Kamath, P.S.; Tantillo, T.J.; Swift, W.L.

    1982-09-01

    This report presents an assessment of the performance of Residual Heat Removal (RHR) and Containment Spray (CS) pumps during the recirculation phase of reactor core and containment cooldown following a Loss-of-Coolant Accident (LOCA). The pumped fluid is expected to contain debris such as insulation and may ingest air depending on sump conditions. Findings are based on information collected from the literature and from interviews with pump and seal manufacturers. These findings show that for pumps at normal flow rates operating with sufficient Net Positive Suction Head (NPSH), pump performance degradation is negligible if air ingestion quantities are less than 2% by volume. For air ingestion between 3% and 15% by volume, head degradation depends on individual pump design and operating conditions and for air quantities greater than 15% performance of most pumps will be fully degraded. Also, small quantities of air will increase NPSH requirements for these pumps. For the types and quantities of debris likely to be present in the recirculating fluid, pump performance degradation is expected to be negligible.

  17. Timing analysis of PWR fuel pin failures

    SciTech Connect

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J. ); Straka, M. )

    1992-09-01

    This report discusses research conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin burnup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PF1/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design burnup. Using peaking factors commensurate with actual burnups would result in longer intervals for both reactor designs. This document provides appendices K and L of this report which provide plots for the timing analysis of PWR fuel pin failures for Oconee and Seabrook respectively.

  18. Heat transfer to water from a vertical tube bundle under natural-circulation conditions. [PWR; BWR

    SciTech Connect

    Gruszczynski, M.J.; Viskanta, R.

    1983-01-01

    The natural circulation heat transfer data for longitudinal flow of water outside a vertical rod bundle are needed for developing correlations which can be used in best estimate computer codes to model thermal-hydraulic behavior of nuclear reactor cores under accident or shutdown conditions. The heat transfer coefficient between the fuel rod surface and the coolant is the key parameter required to predict the fuel temperature. Because of the absence of the required heat transfer coefficient data base under natural circulation conditions, experiments have been performed in a natural circulation loop. A seven-tube bundle having a pitch-to-diameter ratio of 1.25 was used as a test heat exchanger. A circulating flow was established in the loop, because of buoyancy differences between its two vertical legs. Steady-state and transient heat transfer measurements have been made over as wide a range of thermal conditions as possible with the system. Steady state heat transfer data were correlated in terms of relevant dimensionless parameters. Empirical correlations for the average Nusselt number, in terms of Reynolds number, Rayleigh number and the ratio of Grashof to Reynolds number are given.

  19. Large LOCA-earthquake event combination probability assessment - Load Combination Program Project I summary report

    SciTech Connect

    Lu, S.; Streit, R.D.; Chou, C.K.

    1980-12-10

    This report summarizes work performed to establish a technical basis for the NRC to use in reassessing its requirement that earthquake and large loss-of-coolant accident (LOCA) loads be combined in the design of nucelar power plants. A systematic probabilistic approach is used to treat the random nature of earthquake and transient loading to estimate the probability of large LOCAs that are directly and indirectly induced by earthquakes. A large LOCA is defined in this report as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressurized water reactor (PWR). Unit 1 of the Zion Nuclear Power Plant, a four-loop PWR-1, is used for this study. To estimate the probability of a large LOCA directly induced by earthquakes, only fatigue crack growth resulting from the combined effects of thermal, pressure, seismic, and other cyclic loads is considered. Fatigue crack growth is simulated with a deterministic fracture mechanics model that incorporates stochastic inputs of initial crack size distribution, material properties, stress histories, and leak detection probability. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without an earthquake, is very small (on the order of 10/sup -12/). The probability of a leak was found to be several orders of magnitude greater than that of a complete pipe rupture.

  20. Potential for containment leak paths through electrical penetration assemblies under severe accident conditions. [PWR; BWR

    SciTech Connect

    Sebrell, W.

    1983-07-01

    The leakage behavior of containments beyond design conditions and knowledge of failure modes is required for evaluation of mitigation strategies for severe accidents, risk studies, emergency preparedness planning, and siting. These studies are directed towards assessing the risk and consequences of severe accidents. An accident sequence analysis conducted on a Boiling Water Reactor (BWR), Mark I (MK I), indicated very high temperatures in the dry-well region, which is the location of the majority of electrical penetration assemblies. Because of the high temperatures, it was postulated in the ORNL study that the sealants would fail and all the electrical penetration assemblies would leak before structural failure would occur. Since other containments had similar electrical penetration assemblies, it was concluded that all containments would experience the same type of failure. The results of this study, however, show that this conclusion does not hold for PWRs because in the worst accident sequence, the long time containment gases stabilize to 350/sup 0/F. BWRs, on the other hand, do experience high dry-well temperatures and have a higher potential for leakage.

  1. Fog inerting effects on hydrogen combustion in a PWR ice condenser contaminant

    SciTech Connect

    Luangdilok, W.; Bennett, R.B.

    1995-05-01

    A mechanistic fog inerting model has been developed to account for the effects of fog on the upward lean flammability limits of a combustible mixture based on the thermal theory of flame propagation. Benchmarking of this model with test data shows reasonably good agreement between the theory and the experiment. Applications of the model and available fog data to determine the upward lean flammability limits of the H{sub 2}-air-steam mixture in the ice condenser upper plenum region of a pressurized water reactor (PWR) ice condenser contaminant during postulated large loss of coolant accident (LOCA) conditions indicate that combustion may be suppressed beyond the downward flammability limit (8 percent H{sub 2} by volume). 18 refs., 3 tabs.

  2. Containment integrity of SEP plants under combined loads. [PWR; BWR

    SciTech Connect

    Lo, T.; Nelson, T.A.; Chen, P.Y.; Persinko, D.; Grimes, C.

    1984-06-01

    Because the containment structure is the last barrier against the release of radioactivity, an assessment was undertaken to identify the design weaknesses and estimate the margins of safety for the SEP containments under the postulated, combined loading conditions of a safe shutdown earthquake (SSE) and a design basis accident (DBA). The design basis accident is either a loss-of-coolant accident (LOCA) or a main steam line break (MSLB). The containment designs analyzed consisted of three inverted light-bulb shaped drywells used in boiling water reactor (BWR) systems, and three steel-lined concrete containments and a spherical steel shell used in pressurized water reactor (PWR) systems. These designs cover a majority of the containment types used in domestic operating plants. The results indicate that five of the seven designs are adequate even under current design standards. For the remaining two designs, the possible design weaknesses identified were buckling of the spherical steel shell and over-stress in both the radial and tangential directions in one of the concrete containments near its base.

  3. Parameterization of Buoyancy Effects in Generic PWR Boron Dilution Scenarios

    SciTech Connect

    Galindo-Garcia, Ivan F.; Cotton, Mark A.; Axcell, Brian P.

    2006-07-01

    A computational investigation is undertaken into the role of buoyancy in a PWR boron dilution transient following a postulated Small Break Loss of Coolant Accident (SB-LOCA). In the scenario envisaged there is flow of de-borated and relatively high temperature water from a single cold leg into the downcomer; flow rates are typical of natural circulation conditions. The study focuses upon the development of boron concentration distributions in the downcomer and adopts a 3D-unsteady formulation of the mean flow equations in combination with the standard high-Reynolds-number k-{epsilon} turbulence model. It is found that the Richardson number (Ri = Gr/Re{sup 2}) is the most important group parameterizing the course of a concentration transient. At Ri values characterizing a 'baseline' scenario the results indicate that there is a stable, circumferentially-uniform, descent through the downcomer of a stratified region of low-borated fluid. Qualitatively the same behaviour is found at higher Richardson number, although at Ri values of approximately one-fifth the baseline level there is evidence of large-scale mixing and a consequent absence of concentration stratification. (authors)

  4. Transient deformation properties of Zircaloy for LOCA simulation. Final report

    SciTech Connect

    Hann, C. R.; Mohr, C. L.; Busness, K. M.; Olson, N. J.; Reich, F. R.; Stewart, K. B.

    1980-05-01

    This experimental data report is Volume 4 of a series of 5 volumes describing the oxidation and deformation rate behavior of Zircaloy cladding under simulated LOCA conditions. It contains listings of strain versus stress, time, and temperature evaluated from the numerical constitutive relationships and the original data used to develop them. This volume also contains listings of the ramp load, pressure, and temperature test data from both current and previous phases of the series, as well as material describing applications of the data.

  5. French investigations of high burnup effect on LOCA thermomechanical behavior: Part 1. Experimental programmes in support of LOCA design methodologies

    SciTech Connect

    Waeckel, N.; Cauvin, R.; Lebuffe, C.

    1997-01-01

    Within the framework of Burn-Up extension request, EDF, FRAMATOME, CEA and IPSN have carried out experimental programmes in order to provide the design of fuel rods under LOCA conditions with relevant data. The design methods used in France for LOCA are based on standard Appendix K methodology updated to take into account some penalties related to the actual conditions of the Nuclear Power Plant. Best-Estimate assessments are used as well. Experimental programmes concern plastic deformation and burst behavior of advanced claddings (EDGAR) and thermal shock quenching behavior of highly irradiated claddings (TAGCIR). The former reveals the important role played by the {alpha}/{beta} transformation kinetics related to advanced alloys (Niobium alloys) and the latter the significative impact of hydrogen charged during in-reactor corrosion on oxidation kinetics and failure behavior in terms of cooling rates.

  6. Comparison of computer codes (CE-THERM, FRAP-T5, GT3-FLECHT, and TRUMP-FLECHT) with data from the NRU-LOCA thermal hydraulic tests

    SciTech Connect

    Mohr, C.L.; Rausch, W.N.; Hesson, G.M.

    1981-07-01

    The LOCA Simulation Program in the NRU reactor is the first set of experiments to provide data on the behavior of full-length, nuclear-heated PWR fuel bundles during the heatup, reflood, and quench phases of a loss-of-coolant accident (LOCA). This paper compares the temperature time histories of 4 experimental test cases with 4 computer codes: CE-THERM, FRAP-T5, GT3-FLECHT, and TRUMP-FLECHT. The preliminary comparisons between prediction and experiment show that the state-of-the art fuel codes have large uncertainties and are not necessarily conservative in predicting peak temperatures, turn around times, and bundle quench times.

  7. Preliminary LOCA analysis of the westinghouse small modular reactor using the WCOBRA/TRAC-TF2 thermal-hydraulics code

    SciTech Connect

    Liao, J.; Kucukboyaci, V. N.; Nguyen, L.; Frepoli, C.

    2012-07-01

    The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (> 225 MWe) integral pressurized water reactor (iPWR) with all primary components, including the steam generator and the pressurizer located inside the reactor vessel. The reactor core is based on a partial-height 17x17 fuel assembly design used in the AP1000{sup R} reactor core. The Westinghouse SMR utilizes passive safety systems and proven components from the AP1000 plant design with a compact containment that houses the integral reactor vessel and the passive safety systems. A preliminary loss of coolant accident (LOCA) analysis of the Westinghouse SMR has been performed using the WCOBRA/TRAC-TF2 code, simulating a transient caused by a double ended guillotine (DEG) break in the direct vessel injection (DVI) line. WCOBRA/TRAC-TF2 is a new generation Westinghouse LOCA thermal-hydraulics code evolving from the US NRC licensed WCOBRA/TRAC code. It is designed to simulate PWR LOCA events from the smallest break size to the largest break size (DEG cold leg). A significant number of fluid dynamics models and heat transfer models were developed or improved in WCOBRA/TRAC-TF2. A large number of separate effects and integral effects tests were performed for a rigorous code assessment and validation. WCOBRA/TRAC-TF2 was introduced into the Westinghouse SMR design phase to assist a quick and robust passive cooling system design and to identify thermal-hydraulic phenomena for the development of the SMR Phenomena Identification Ranking Table (PIRT). The LOCA analysis of the Westinghouse SMR demonstrates that the DEG DVI break LOCA is mitigated by the injection and venting from the Westinghouse SMR passive safety systems without core heat up, achieving long term core cooling. (authors)

  8. PWR fuel behavior: lessons learned from LOFT. [PWR

    SciTech Connect

    Russell, M.L.

    1981-01-01

    A summary of the experience with the Loss-of-Fluid Test (LOFT) fuel during loss-of-coolant experiments (LOCEs), operational and overpower transient tests and steady-state operation is presented. LOFT provides unique capabilities for obtaining pressurized water reactor (PWR) fuel behavior information because it features the representative thermal-hydraulic conditions which control fuel behavior during transient conditions and an elaborate measurement system to record the history of the fuel behavior.

  9. Experimental Investigation on the Effects of Coolant Concentration on Sub-Cooled Boiling and Crud Deposition on Reactor Cladding at Prototypical PWR Operating Conditions

    SciTech Connect

    Schultis, J., Kenneth; Fenton, Donald, L.

    2006-10-20

    Increasing demand for energy necessitates nuclear power units to increase power limits. This implies significant changes in the design of the core of the nuclear power units, therefore providing better performance and safety in operations. A major hindrance to the increase of nuclear reactor performance especially in Pressurized Deionized water Reactors (PWR) is Axial Offset Anomaly (AOA)--the unexpected change in the core axial power distribution during operation from the predicted distribution. This problem is thought to be occur because of precipitation and deposition of lithiated compounds like boric acid (H{sub 2}BO{sub 3}) and lithium metaborate (LiBO{sub 2}) on the fuel rod cladding. Deposited boron absorbs neutrons thereby affecting the total power distribution inside the reactor. AOA is thought to occur when there is sufficient build-up of crud deposits on the cladding during subcooled nucleate boiling. Predicting AOA is difficult as there is very little information regarding the heat and mass transfer during subcooled nucleate boiling. An experimental investigation was conducted to study the heat transfer characteristics during subcooled nucleate boiling at prototypical PWR conditions. Pool boiling tests were conducted with varying concentrations of lithium metaborate (LiBO{sub 2}) and boric acid (H{sub 2}BO{sub 3}) solutions in deionized water. The experimental data collected includes the effect of coolant concentration, subcooling, system pressure and heat flux on pool the boiling heat transfer coefficient. The analysis of particulate deposits formed on the fuel cladding surface during subcooled nucleate boiling was also performed. The results indicate that the pool boiling heat transfer coefficient degrades in the presence of boric acid and lithium metaborate compared to pure deionized water due to lesser nucleation. The pool boiling heat transfer coefficients decreased by about 24% for 5000 ppm concentrated boric acid solution and by 27% for 5000 ppm

  10. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect

    Unterzuber, R.; Wright, J.B.

    1980-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  11. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    SciTech Connect

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  12. Experimental investigation of the enthalpy and mass flow distribution in 16-rod clusters with BWR-PWR geometries and conditions

    NASA Astrophysics Data System (ADS)

    Herkenrath, H.; Hufschmidt, W.; Jung, U.; Weckermann, F.

    Enthalpy and mass flow distribution at the outlet of two test sections with uniform heating in axial and radial direction under steady state conditions was measured by simultaneous sampling of five of six characteristic subchannels in the bundle, using the isokinetic technique and analyzing the outlet quantities by a calorimetric method. Results show low steam quality for the corner subchannel under BWR conditions, due to a thick liquid film on the unheated channel wall. Experimental data confirm the usefullness of the subchannel sampling technique for understanding thermohydraulic phenomena under two-phase flow conditions in multirod bundles. Subchannel resistance coefficients for both types of spacers under one-phase flow conditions were calculated by a substructure method, showing a high local value of the corner subchannel. Total resistance of the spacer was evaluated using local drag coefficients. It agrees well with measured values under adiabatic conditions.

  13. Mechanistic prediction of fission-product release under normal and accident conditions: key uncertainties that need better resolution. [PWR; BWR

    SciTech Connect

    Rest, J.

    1983-09-01

    A theoretical model has been used for predicting the behavior of fission gas and volatile fission products (VFPs) in UO/sub 2/-base fuels during steady-state and transient conditions. This model represents an attempt to develop an efficient predictive capability for the full range of possible reactor operating conditions. Fission products released from the fuel are assumed to reach the fuel surface by successively diffusing (via atomic and gas-bubble mobility) from the grains to grain faces and then to the grain edges, where the fission products are released through a network of interconnected tunnels of fission-gas induced and fabricated porosity. The model provides for a multi-region calculation and uses only one size class to characterize a distribution of fission gas bubbles.

  14. Critical heat-flux experiments under low-flow conditions in a vertical annulus. [PWR; BWR; LMFBR

    SciTech Connect

    Mishima, K.; Ishii, M.

    1982-03-01

    An experimental study was performed on critical heat flux (CHF) at low flow conditions for low pressure steam-water upward flow in an annulus. The test section was transparent, therefore, visual observations of dryout as well as various instrumentations were made. The data indicated that a premature CHF occurred due to flow regime transition from churn-turbulent to annular flow. It is shown that the critical heat flux observed in the experiment is essentially similar to a flooding-limited burnout and the critical heat flux can be well reproduced by a nondimensional correlation derived from the previously obtained criterion for flow regime transition. The observed CHF values are much smaller than the standard high quality CHF criteria at low flow, corresponding to the annular flow film dryout. This result is very significant, because the coolability of a heater surface at low flow rates can be drastically reduced by the occurrence of this mode of CHF.

  15. Spatializing Sexuality in Jaime Hernandez's "Locas"

    ERIC Educational Resources Information Center

    Jones, Jessica E.

    2009-01-01

    Focusing on Jaime Hernandez's "Locas: The Maggie and Hopey Stories," part of the "Love and Rockets" comic series, I argue that the graphic landscape of this understudied comic offers an illustration of the theories of space in relation to race, gender, and sexuality that have been critical to understandings of Chicana sexuality. Set in a barrio…

  16. Kohonen mapping of the crack growth under fatigue loading conditions of stainless steels in BWR environments and of nickel alloys in PWR environments

    NASA Astrophysics Data System (ADS)

    Urquidi-Macdonald, Mirna

    2008-09-01

    In this study, crack growth rate data under fatigue loading conditions generated by Argonne National Laboratories and published in 2006 were analyzed [O.K. Chopra, B. Alexandreanu, E.E. Gruber, R.S. Daum, W.J. Shack, Argonne National Laboratory, NUREG CR 6891-series ANL 04/20, Crack Growth Rates of Austenitic Stainless Steel Weld Heat Affected Zone in BWR Environments, January, 2006; B. Alexandreanu, O.K. Chopra, H.M. Chung, E.E. Gruber, W.K. Soppet, R.W. Strain, W.J. Shack, Environmentally Assisted Cracking in Light Water Reactors, vol. 34 in the NUREG/CR-4667 series annual report of Argonne National Laboratory program studies for Calendar (Annual Report 2003). Manuscript Completed: May 2005, Date Published: May 2006], and reported by DoE [B. Alexandreanu, O.K. Chopra, W.J. Shack, S. Crane, H.J. Gonzalez, NRC, Crack Growth Rates and Metallographic Examinations of Alloy 600 and Alloy 82/182 from Field Components and Laboratory Materials Tested in PWR Environments, NUREG/CR-6964, May 2008]. The data collected were measured on austenitic stainless steels in BWR (boiling water reactor) environments and on nickel alloys in PWR (pressurized water reactor) environments. The data collected contained information on material composition, temperature, conductivity of the environment, oxygen concentration, irradiated sample information, weld information, electrochemical potential, load ratio, rise time, hydrogen concentration, hold time, down time, maximum stress intensity factor ( Kmax), stress intensity range (Δ Kmax), crack length, and crack growth rates (CGR). Each position on that Kohonen map is called a cell. A Kohonen map clusters vectors of information by 'similarities.' Vectors of information were formed using the metal composition, followed by the environmental conditions used in each experiments, and finally followed by the crack growth rate (CGR) measured when a sample of pre-cracked metal is set in an environment and the sample is cyclically loaded. Accordingly

  17. Beta and gamma dose calculations for PWR and BWR containments

    SciTech Connect

    King, D.B.

    1989-07-01

    Analyses of gamma and beta dose in selected regions in PWR and BWR containment buildings have been performed for a range of fission product releases from selected severe accidents. The objective of this study was to determine the radiation dose that safety-related equipment could experience during the selected severe accident sequences. The resulting dose calculations demonstrate the extent to which design basis accident qualified equipment could also be qualified for the severe accident environments. Surry was chosen as the representative PWR plant while Peach Bottom was selected to represent BWRs. Battelle Columbus Laboratory performed the source term release analyses. The AB epsilon scenario (an intermediate to large LOCA with failure to recover onsite or offsite electrical power) was selected as the base case Surry accident, and the AE scenario (a large break LOCA with one initiating event and a combination of failures in two emergency cooling systems) was selected as the base case Peach Bottom accident. Radionuclide release was bounded for both scenarios by including spray operation and arrested sequences as variations of the base scenarios. Sandia National Laboratories used the source terms to calculate dose to selected containment regions. Scenarios with sprays operational resulted in a total dose comparable to that (2.20 /times/ 10/sup 8/ rads) used in current equipment qualification testing. The base case scenarios resulted in some calculated doses roughly an order of magnitude above the current 2.20 /times/ 10/sup 8/ rad equipment qualification test region. 8 refs., 23 figs., 12 tabs.

  18. Boric acid precipitation following a cold-leg LOCA

    SciTech Connect

    Twogood, F.J. ); Strong, B.R. ); Lew, B.S. ); Kramer, C. )

    1993-01-01

    For a postulated cold-leg loss-of-coolant accident (LOCA) in a pressurized water reactor, borated water from the safety injection and recirculation systems is predicted to flow preferentially around the reactor pressure vessel (RPV) downcomer and out the rupture, bypassing the core. Flow to the core may therefore be limited to just the flow that is required to make up for boil-off in the core and to maintain an equal static head between the downcomer and core regions. Lacking any mixing of dilute injection water in the core, this would result in the accumulation of boron in the core region until saturation concentrations are reached and boric acid begins to precipitate out of solution. Boric acid precipitation is undesirable because it may interfere with long-term core cooling. Without a reliable estimate of reflux condensation, this time to precipitation establishes the minimum time for the initiation of hot-leg recirculation to flush the core and terminate boric acid concentration. This analysis estimates the boric acid concentration over time for the postulated conditions of a cold-leg LOCA in San Onofre nuclear generating station unit 1, including the explicit incorporation of the stored heat release from the RPV and structures discussed in a companion paper. Earlier analyses assumed that the RPV stored energy was released during the safety injection phase immediately after the LOCA. Recent analyses showed that a significant portion of this stored energy is released into the coolant after core safety injection and needs to be explicitly addressed.

  19. LOCA simulation in NRU program: data report for the fourth materials experiment (MT-4)

    SciTech Connect

    Wilson, C.L.; Mohr, C.L.; Hesson, G.M.; Wildung, N.J.; Russcher, G.E.; Webb, B.J.; Freshley, M.D.

    1983-07-01

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR) fuel bundles as part of the Loss-of-Coolant Accident (LOCA) Simulation Program by Pacific Northwest Laboratory (PNL). This experiment (MT-4) was funded by the US Nuclear Regulatory Commission (NRC) to evaluate ballooning and rupture during adiabatic heatup in the temperature range of 1033 to 1200K (1400 to 1700/sup 0/F). The 12 rest rods in the center of the 32-rod bundle were initially pressurized to 4.62 MPa (670 psia) to insure rupture in the correct temperature range. All 12 test rods ruptured with an average strain of 43.7% at the maximum flow blockage elevation of 2.68 m (105.4 in.). Experimental data for the MT-4 transient experiment and post-test measurements and photographs of the fuel are presented in this report.

  20. Uncertainties in TRAC plenum pressures for the FI phase of a DEGB LOCA

    SciTech Connect

    Griggs, D.P.

    1991-05-01

    The TRAC-PF1/MOD1 code (TRAC) is used to perform best-estimate analyses of certain postulated Design Basis Accidents (DBAs) in SRS production reactors. Currently, the most limiting DBA in terms of reactor power level is an instantaneous double-ended guillotine break (DEGB) loss of coolant accident (LOCA). For this accident, TRAC is used to analyze only the first 5 seconds following the DEGB, which encompasses the Flow Instability (FI) phase of the DBA. The TRAC analysis provides time-dependent plenum and tank bottom pressures for use as boundary conditions in the FLOWTRAN code. The quantification of uncertainty is an important element of determining safe operating power levels for SRS reactors. A detailed methodology for the determination of uncertainty for the FI phase of a DEGB LOCA has been developed. This report presents estimates of the uncertainty in the time-dependent plenum pressures for the DEGB LOCA calculated by TRAC. The plenum pressure uncertainty was estimated by means of comparing TRAC results with steady-state data measured in L Reactor, and confirmed by comparisons with transient LOCA results calculated by an independent group with the RELAP5 code. An overview of the limits methodology is given and discusses the L Reactor data. The methodology for estimating the plenum pressure uncertainty is presented along with the results.

  1. Aging and loss-of-coolant accident (LOCA) testing of electrical connections

    SciTech Connect

    Nelson, C.F.

    1998-01-01

    This report presents the results of an experimental program to determine the aging and loss-of-coolant accident (LOCA) behavior of electrical connections in order to obtain an initial scoping of their performance. Ten types of connections commonly used in nuclear power plants were tested. These included 3 types of conduit seals, 2 types of cable-to-device connectors, 3 types of cable-to-cable connectors, and 2 types of in-line splices. The connections were aged for 6 months under simultaneous thermal (99 C) and radiation (46 Gy/hr) conditions. A simulated LOCA consisting of sequential high dose-rate irradiation (3 kGy/hr) and high-temperature steam exposures followed the aging. Connection functionality was monitored using insulation resistance measurements during the aging and LOCA exposures. Because only 5 of the 10 connection types passed a post-LOCA, submerged dielectric withstand test, further detailed investigation of electrical connections and the effects of cable jacket integrity on the cable-connection system is warranted.

  2. COBRA/TRAC analysis of the PKL reflood test K9. [PWR

    SciTech Connect

    Wilkins, C.A.; Thurgood, M.J.

    1982-08-01

    Experiments at the Primaerkreislaeufe (PKL) test facility in Erlangen, Germany, simulated the refill and reflood procedure after a loss-of-coolant accident (LOCA) in the primary coolant system of a 1300-MW pressurized water reactor (PWR). COBRA/TRAC, a thermal-hydraulics analysis code developed at the Pacific Northwest Laboratory, was used to model experiment K9 of the PKL test series (completed December 1979). The COBRA/TRAC code, which utilizes COBRA-TF as the vessel module and TRAC-P1A for the remaining components, was designed to analyze LOCAs in PWRs. PKL-K9 was characterized by a double-ended guillotine break in the cold leg with emergency core cooling water injected into the cold legs. COBRA/TRAC was able to successfully predict lower-core temperature profiles and quench times, upper-core temperature profiles until the quench, upper plenum and break pressures, and correct trends in collapsed water levels.

  3. Embrittlement of pre-hydrided Zircaloy-4 by steam oxidation under simulated LOCA transients

    NASA Astrophysics Data System (ADS)

    Desquines, J.; Drouan, D.; Guilbert, S.; Lacote, P.

    2016-02-01

    During a Loss Of Coolant Accident (LOCA), the mechanical behavior of high temperature steam oxidized fuel rods is an important issue. In this study, as-received and pre-hydrided axial tensile samples were steam oxidized in a vertical furnace and water quenched in order to simulate a LOCA transient. The samples were then subjected to a mechanical test to determine the failure conditions. Two different rupture modes were evidenced; the first one associated to linear elastic fracture mechanics and the second one is associated to sample failure without applied load. The oxidized cladding fracture toughness was determined relying on intensive metallographic analysis. The sample failure conditions were then back predicted confirming that the main rupture parameters are well captured.

  4. Quantification and local distribution of hydrogen within Zircaloy-4 PWR nuclear fuel cladding tubes at the nuclear microprobe of the Pierre Süe Laboratory from μ-ERDA

    NASA Astrophysics Data System (ADS)

    Raepsaet, C.; Bossis, Ph.; Hamon, D.; Béchade, J. L.; Brachet, J. C.

    2008-05-01

    Hydrogen content and its distribution in in-core materials of nuclear plants are known to have a strong influence on their behaviour, especially on their mechanical properties but also on their corrosion resistance. This point has to be largely investigated in the case of the nuclear fuel cladding (Zr based alloys) of pressurized water reactors (PWR). Two situations have been considered here, with regards to the hydrogen content and its spatial distribution within the thickness of the tubes: Irradiated fuel cladding tubes after a nominal period under working conditions in a PWR core. Non-irradiated fuel cladding previously exposed to conditions representative of an hypothetical "loss of coolant accident" scenario (LOCA). As far as micrometric distributions of H were required, μ-ERDA has been performed at the nuclear microprobe of the Pierre Süe Laboratory. This facility is fitted with two beam lines. In the first one, used for non-active sample analysis, the μ-ERDA configuration has been improved to reduce the limits of detection and the reliability of the results. The second one offers the unique feature of being dedicated to radioactive samples. We will present the nuclear microprobe and emphasize on the μ-ERDA configuration of the two beam lines. We will illustrate the performance of the setup by describing the results obtained for Zircaloy-4 cladding both on non-irradiated and irradiated samples.

  5. MELCOR analyses of severe accident scenarios in Oconee, a B&W PWR plant

    SciTech Connect

    Madni, I.K.; Nimnual, S.; Foulds, R.

    1993-03-01

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock & Wilcox (B&W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides.

  6. MELCOR analyses of severe accident scenarios in Oconee, a B W PWR plant

    SciTech Connect

    Madni, I.K.; Nimnual, S. ); Foulds, R. )

    1993-01-01

    This paper presents the results and insights gained from MELCOR analyses of two severe accident scenarios, a Loss of Coolant Accident (LOCA) and a Station Blackout (TMLB) in Oconee, a Babcock Wilcox (B W) designed PWR with a large dry containment, and comparisons with Source Term Code Package (STCP) calculations of the same sequences. Results include predicted timing of key events, thermal-hydraulic response in the reactor coolant system and containment, and environmental releases of fission products. The paper also explores the impact of varying concrete type, vessel failure temperature, and break location on the accident progression, containment pressurization, and environmental releases of radionuclides.

  7. Assessment of CONTAIN and MELCOR for performing LOCA and LOVA analyses in ITER

    SciTech Connect

    Merrill, B.J.; Hagrman, D.L.; Gaeta, M.J.; Petti, D.A.

    1994-09-01

    This report describes the results of an assessment of the CONTAIN and MELCOR computer codes for ITER LOCA and LOVA applications. As part of the assessment, the results of running a test problem that describes an ITER LOCA are presented. It is concluded that the MELCOR code should be the preferred code for ITER severe accident thermal hydraulic analyses. This code will require the least modification to be appropriate for calculating thermal hydraulic behavior in ITER relevant conditions that include vacuum, cryogenics, ITER temperatures, and the presence of a liquid metal test module. The assessment of the aerosol transport models in these codes concludes that several modifications would have to be made to CONTAIN and/or MELCOR to make them applicable to the aerosol transport part of severe accident analysis in ITER.

  8. Long-term aging and loss-of-coolant accident (LOCA) testing of electrical cables

    SciTech Connect

    Nelson, C.F.; Gauthier, G.; Carlin, F.

    1996-10-01

    Experiments were performed to assess the aging degradation and loss-of-coolant accident (LOCA) behavior of electrical cables subjected to long-term aging exposures. Four different cable types were tested in both the U.S. and France: (1) U.S. 2 conductor with ethylene propylene rubber (EPR) insulation and a Hypalon jacket. (2) U.S. 3 conductor with cross-linked polyethylene (XLPE) insulation and a Hypalon jacket. (3) French 3 conductor with EPR insulation and a Hypalon jacket. (4) French coaxial with polyethylene (PE) insulation and a PE jacket. The data represent up to 5 years of simultaneous aging where the cables were exposed to identical aging radiation doses at either 40{degrees}C or 70{degrees}C; however, the dose rate used for the aging irradiation was varied over a wide range (2-100 Gy/hr). Aging was followed by exposure to simulated French LOCA conditions. Several mechanical, electrical, and physical-chemical condition monitoring techniques were used to investigate the degradation behavior of the cables. All the cables, except for the French PE cable, performed acceptably during the aging and LOCA simulations. In general, cable degradation at a given dose was highest for the lowest dose rate, and the amount of degradation decreased as the dose rate was increased.

  9. Experimental investigation of sedimentation of LOCA - generated fibrous debris and sludge in BWR suppression pools

    SciTech Connect

    Souto, F.J.; Rao, D.V.

    1995-12-01

    Several tests were conducted in a 1:2.4 scale model of a Mark I suppression pool to investigate the behavior of fibrous insulation and sludge debris under LOCA conditions. NUKON{trademark} shreds, manually cut and tore up in a leaf shredder, and iron oxide particles were used to simulate fibrous and sludge debris, respectively. The suppression pool model included four downcomers fitted with pistons to simulate the steam-water oscillations during chugging expected during a LOCA. The study was conducted to provide debris settling velocity data for the models used in the BLOCKAGE computer code, developed to estimate the ECCS pump head loss due to clogging of the strainers with LOCA generated debris. The tests showed that the debris, both fibrous and particulate, remains fully mixed during chugging; they also showed that, during chugging, the fibrous debris underwent fragmentation into smaller sizes, including individual fibers. Measured concentrations showed that fibrous debris settled slower than the sludge, and that the settling behavior of each material is independent of the presence of the other material. Finally, these tests showed that the assumption of considering uniform debris concentration during strainer calculations is reasonable. The tests did not consider the effects of the operation of the ECCS on the transport of debris in the suppression pool.

  10. System code requirements for SBWR LOCA predictions

    SciTech Connect

    Rohatgi, U.S.; Slovik, G.; Kroeger, P.

    1994-12-31

    The simplified boiling water reactor (SBWR) is the latest design in the family of boiling water reactors (BWRs) from General Electric. The concept is based on many innovative, passive, safety systems that rely on naturally occurring phenomena, such as natural circulation, gravity flows, and condensation. Reliability has been improved by eliminating active systems such as pumps and valves. The reactor pressure vessel (RPV) is connected to heat exchangers submerged in individual water tanks, which are open to atmosphere. These heat exchanger, or isolation condensers (ICs), provide a heat sink to reduce the RPV pressure when isolated. The RPV is also connected to three elevated tanks of water called the gravity-driven cooling system (GDCS). During a loss-of-coolant accident (LOCA), the RPV is depressurized by the automatic depressurization system (ADS), allowing the gravity-driven flow from the GDCS tanks. The containment pressure is controlled by a passive containment cooling system (PCCS) and suppression pool. Similarly, there are new plant protection systems in the SBWR, such as fine-motion control rod drive, passive standby liquid control system, and the automatic feedwater runback system. These safety and plant protection systems respond to phenomena that are different from previous BWR designs. System codes must be upgraded to include models for the phenomena expected during transients for the SBWR.

  11. Small Break LOCA Analysis of ACR-700 NPP

    SciTech Connect

    Limin Zheng; Sen Shen; Wright, David

    2006-07-01

    A small break loss of coolant accident (SB-LOCA) analysis to assess a preliminary conceptual design of the ACR-700 PHWR nuclear power plant (NPP) developed by AECL has been performed with CATHENA MOD 3.5d, a PHWR system thermal-hydraulic analysis code. The limiting break size has been found by performing a sensitivity study for three different break locations [i.e. reactor inlet header (RIH), HTS pump suction (PS) pipe and reactor outlet head (ROH)] under the limiting case (i.e. SB-LOCA with subsequent loss of class IV power with all safety systems available). The analysis results indicate that the SB-LOCA acceptance criteria are satisfied. (authors)

  12. Code System for Supercritical Water Cooled Reactor LOCA Analysis.

    Energy Science and Technology Software Center (ESTSC)

    1999-10-13

    Version 00 The new SCRELA code was developed to analyze the LOCA of the supercritical water cooled reactor. Since the currently available LWR codes for LOCA analysis could not analyze the significant differences in reactor characteristics between the supercritical-water cooled reactor and the current LWR, the first objective of this code development was to analyze the uniqueness of this reactor. The behavior of the supercritical water in the blowdown phase and the reflood phase ismore » modeled.« less

  13. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 1. Summary, Load Combination Program. Project I final report

    SciTech Connect

    Lu, S.; Streit, R.D.; Chou, C.K.

    1981-06-01

    This report summarizes work performed to establish a technical basis for the NRC to use in reassessing its requirement that earthquake and large loss-of-coolant accident (LOCA) loads be combined in the design of nuclear power plants. A systematic probabilistic approach is used to treat the random nature of earthquake and transient loading and to estimate the probability of large LOCAs that are directly and indirectly induced by earthquakes. A large LOCA is defined in this report as a double-ended guillotine break of the primary reactor coolant loop piping (the hot leg, cold leg, and crossover) of a pressurized water reactor (PWR). Unit 1 of the Zion Nuclear Power Plant, a four-loop PWR, is the demonstration plant used in this study. To estimate the probability of a large LOCA directly induced by earthquakes, only fatigue crack growth resulting from the combined effects of thermal, pressure, seismic, and other cyclic loads is considered. Fatigue crack growth is simulated by a deterministic fracture mechanics model with stochastic inputs of initial crack size distribution, material properties, stress histories, and leak detection probability. Results of the simulation indicate that the probability of a double-ended guillotine break, either with or without earthquake, is very small (on the order of 10/sup -12/). The probability of a leak was found to be several orders of magnitude greater than that of a large LOCA, complete pipe rupture. A limited investigation involving engineering judgment of a double-ended guillotine break indirectly induced by an earthquake is also reported.

  14. Generalized Thermohydraulics Module GENFLO for Combining With the PWR Core Melting Model, BWR Recriticality Neutronics Model and Fuel Performance Model

    SciTech Connect

    Miettinen, Jaakko; Hamalainen, Anitta; Pekkarinen, Esko

    2002-07-01

    Thermal hydraulic simulation capability for accident conditions is needed at present in VTT in several programs. Traditional thermal hydraulic models are too heavy for simulation in the analysis tasks, where the main emphasis is the rapid neutron dynamics or the core melting. The GENFLO thermal hydraulic model has been developed at VTT for special applications in the combined codes. The basic field equations in GENFLO are for the phase mass, the mixture momentum and phase energy conservation equations. The phase separation is solved with the drift flux model. The basic variables to be solved are the pressure, void fraction, mixture velocity, gas enthalpy, liquid enthalpy, and concentration of non-condensable gas fractions. The validation of the thermohydraulic solution alone includes large break LOCA reflooding experiments and in specific for the severe accident conditions QUENCH tests. In the recriticality analysis the core neutronics is simulated with a two-dimensional transient neutronics code TWODIM. The recriticality with one rapid prompt peak is expected during a severe accident scenario, where the control rods have been melted and ECCS reflooding is started after the depressurization. The GENFLO module simulates the BWR thermohydraulics in this application. The core melting module has been developed for the real time operator training by using the APROS engineering simulators. The core heatup, oxidation, metal and fuel pellet relocation and corium pool formation into the lower plenum are calculated. In this application the GENFLO model simulates the PWR vessel thermohydraulics. In the fuel performance analysis the fuel rod transient behavior is simulated with the FRAPTRAN code. GENFLO simulates the subchannel around a single fuel rod and delivers the heat transfer on the cladding surface for the FRAPTRAN. The transient boundary conditions for the subchannel are transmitted from the system code for operational transient, loss of coolant accidents and

  15. Experimental investigations of uncovered-bundle heat transfer and two-phase mixture-level swell under high-pressure low heat-flux conditions. [PWR

    SciTech Connect

    Anklam, T. M.; Miller, R. J.; White, M. D.

    1982-03-01

    Results are reported from a series of uncovered-bundle heat transfer and mixture-level swell tests. Experimental testing was performed at Oak Ridge National Laboratory in the Thermal Hydraulic Test Facility (THTF). The THTF is an electrically heated bundle test loop configured to produce conditions similar to those in a small-break loss-of-coolant accident. The objective of heat transfer testing was to acquire heat transfer coefficients and fluid conditions in a partially uncovered bundle. Testing was performed in a quasi-steady-state mode with the heated core 30 to 40% uncovered. Linear heat rates varied from 0.32 to 2.22 kW/m.rod (0.1 to 0.68 kW/ft.rod). Under these conditions peak clad temperatures in excess of 1050 K (1430/sup 0/F) were observed, and total heat transfer coefficients ranged from 0.0045 to 0.037 W/cm/sup 2/.K (8 to 65 Btu/h.ft/sup 2/./sup 0/F). Spacer grids were observed to enhance heat transfer at, and downstream of, the grid. Radiation heat transfer was calculated to account for as much as 65% of total heat transfer in low-flow tests.

  16. Uncertainty analysis for K-reactor flow instability LOCA limits

    SciTech Connect

    Hardy, B.J. )

    1992-01-01

    A postulated accident scenario for the Savannah River Site (SRS) K reactor is a double-ended guillotine break loss-of-coolant accident (DEGB/LOCA) caused by a coolant pipe break at the plenum inlet. The DEBG/LOCA consists of two parts, the first of which applies to the first few seconds of the transient. The first part of the DEGB/LOCA is addressed in this paper. In the first few seconds after the pipe break, there is a rapid depressurization of the plenum, which results in a rapid reduction in the core flow rate. Safety rod insertion is not assumed to begin until 1 s after the pipe break, and the rods are assumed not to be fully inserted until {approximately} 2 s after the break. The resulting flow-power mismatch results in coolant heating and possible flow disruption via a Ledinegg-type flow instability. It is assumed that assembly integrity will be compromised if flow disruption occurs. Because Ledinegg flow instability is the limiting phenomenon for the initial phase of the DEGB/LOCA transient, this part of the transient is called the flow instability (FI) phase.

  17. Timing analysis of PWR fuel pin failures

    SciTech Connect

    Jones, K.R.; Wade, N.L.; Katsma, K.R.; Siefken, L.J. ); Straka, M. )

    1992-09-01

    Research has been conducted to develop and demonstrate a methodology for calculation of the time interval between receipt of the containment isolation signals and the first fuel pin failure for loss-of-coolant accidents (LOCAs). Demonstration calculations were performed for a Babcock and Wilcox (B W) design (Oconee) and a Westinghouse (W) four-loop design (Seabrook). Sensitivity studies were performed to assess the impacts of fuel pin bumup, axial peaking factor, break size, emergency core cooling system availability, and main coolant pump trip on these times. The analysis was performed using the following codes: FRAPCON-2, for the calculation of steady-state fuel behavior; SCDAP/RELAP5/MOD3 and TRACPF1/MOD1, for the calculation of the transient thermal-hydraulic conditions in the reactor system; and FRAP-T6, for the calculation of transient fuel behavior. In addition to the calculation of fuel pin failure timing, this analysis provides a comparison of the predicted results of SCDAP/RELAP5/MOD3 and TRAC-PFL/MOD1 for large-break LOCA analysis. Using SCDAP/RELAP5/MOD3 thermal-hydraulic data, the shortest time intervals calculated between initiation of containment isolation and fuel pin failure are 10.4 seconds and 19.1 seconds for the B W and W plants, respectively. Using data generated by TRAC-PF1/MOD1, the shortest intervals are 10.3 seconds and 29.1 seconds for the B W and W plants, respectively. These intervals are for a double-ended, offset-shear, cold leg break, using the technical specification maximum peaking factor and applied to fuel with maximum design bumup. Using peaking factors commensurate widi actual bumups would result in longer intervals for both reactor designs. This document also contains appendices A through J of this report.

  18. Case study of the propagation of a small flaw under PWR loading conditions and comparison with the ASME code design life. Comparison of ASME Code Sections III and XI

    SciTech Connect

    Yahr, G.T.; Gwaltney, R.C.; Richardson, A.K.; Server, W.L.

    1986-01-01

    A cooperative study was performed by EG and G Idaho, Inc., and Oak Ridge National Laboratory to investigate the degree of conservatism and consistency in the ASME Boiler and Pressure Vessel Code Section III fatigue evaluation procedure and Section XI flaw acceptance standards. A single, realistic, sample problem was analyzed to determine the significance of certain points of criticism made of an earlier parametric study by staff members of the Division of Engineering Standards of the Nuclear Regulatory Commission. The problem was based on a semielliptical flaw located on the inside surface of the hot-leg piping at the reactor vessel safe-end weld for the Zion 1 pressurized-water reactor (PWR). Two main criteria were used in selecting the problem; first, it should be a straight pipe to minimize the computational expense; second, it should exhibit as high a cumulative usage factor as possible. Although the problem selected has one of the highest cumulative usage factors of any straight pipe in the primary system of PWRs, it is still very low. The Code Section III fatigue usage factor was only 0.00046, assuming it was in the as-welded condition, and fatigue crack-growth analyses predicted negligible crack growth during the 40-year design life. When the analyses were extended past the design life, the usage factor was less than 1.0 when the flaw had propagated to failure. The current study shows that the criticism of the earlier report should not detract from the conclusion that if a component experiences a high level of cyclic stress corresponding to a fatigue usage factor near 1.0, very small cracks can propagate to unacceptable sizes.

  19. Defect formation in aqueous environment: Theoretical assessment of boron incorporation in nickel ferrite under conditions of an operating pressurized-water nuclear reactor (PWR)

    NASA Astrophysics Data System (ADS)

    Rák, Zs.; Bucholz, E. W.; Brenner, D. W.

    2015-06-01

    A serious concern in the safety and economy of a pressurized water nuclear reactor is related to the accumulation of boron inside the metal oxide (mostly NiFe2O4 spinel) deposits on the upper regions of the fuel rods. Boron, being a potent neutron absorber, can alter the neutron flux causing anomalous shifts and fluctuations in the power output of the reactor core. This phenomenon reduces the operational flexibility of the plant and may force the down-rating of the reactor. In this work an innovative approach is used to combine first-principles calculations with thermodynamic data to evaluate the possibility of B incorporation into the crystal structure of NiFe2O4 , under conditions typical to operating nuclear pressurized water nuclear reactors. Analyses of temperature and pH dependence of the defect formation energies indicate that B can accumulate in NiFe2O4 as an interstitial impurity and may therefore be a major contributor to the anomalous axial power shift observed in nuclear reactors. This computational approach is quite general and applicable to a large variety of solids in equilibrium with aqueous solutions.

  20. Estimate of LOCA-FI plenum pressure uncertainty for a five-ring RELAP5 production reactor model

    SciTech Connect

    Griggs, D.P.

    1993-03-01

    The RELAP5/MOD2.5 code (RELAP5) is used to perform best-estimate analyses of certain postulated Design Basis Accidents (DBAs) in SRS production reactors. Currently, the most limiting DBA in terms of reactor power level is an instantaneous double-ended guillotine break (DEGB) loss of coolant accident (LOCA). A six-loop RELAP5 K Reactor model is used to analyze the reactor system behavior dozing the Flow Instability (FI) phase of the LOCA, which comprises only the first 5 seconds following the DEGB. The RELAP5 K Reactor model includes tank and plenum nodalizations having five radial rings and six azimuthal sectors. The reactor system analysis provides time-dependent plenum and tank bottom pressures for use as boundary conditions in the FLOWTRAN code, which models a single fuel assembly in detail. RELAP5 also performs the system analysis for the latter phase of the LOCA, denoted the Emergency Cooling System (ECS) phase. Results from the RELAP analysis are used to provide boundary conditions to the FLOWTRAN-TF code, which is an advanced two-phase version of FLOWTRAN. The RELAP5 K Reactor model has been tested for LOCA-FI and Loss-of-Pumping Accident analyses and the results compared with equivalent analyses performed with the TRAC-PF1/MOD1 code (TRAC). An equivalent RELAP5 six-loop, five-ring, six-sector L Reactor model has been benchmarked against qualified single-phase system data from the 1989 L-Area In-Reactor Test Program. The RELAP5 K and L Reactor models have also been subjected to an independent Quality Assurance verification.

  1. PWR AXIAL BURNUP PROFILE ANALYSIS

    SciTech Connect

    J.M. Acaglione

    2003-09-17

    The purpose of this activity is to develop a representative ''limiting'' axial burnup profile for pressurized water reactors (PWRs), which would encompass the isotopic axial variations caused by different assembly irradiation histories, and produce conservative isotopics with respect to criticality. The effect that the low burnup regions near the ends of spent fuel have on system reactivity is termed the ''end-effect''. This calculation will quantify the end-effects associated with Pressurized Water Reactor (PWR) fuel assemblies emplaced in a hypothetical 21 PWR waste package. The scope of this calculation covers an initial enrichment range of 3.0 through 5.0 wt% U-235 and a burnup range of 10 through 50 GWd/MTU. This activity supports the validation of the process for ensuring conservative generation of spent fuel isotopics with respect to criticality safety applications, and the use of burnup credit for commercial spent nuclear fuel. The intended use of these results will be in the development of PWR waste package loading curves, and applications involving burnup credit. Limitations of this evaluation are that the limiting profiles are only confirmed for use with the B&W 15 x 15 fuel assembly design. However, this assembly design is considered bounding of all other typical commercial PWR fuel assembly designs. This calculation is subject to the Quality Assurance Requirements and Description (QARD) because this activity supports investigations of items or barriers on the Q-list (YMP 2001).

  2. Characterization of Decommissioned PWR Vessel Internals Material Samples: Tensile and SSRT Testing (Nonproprietary Version)

    SciTech Connect

    M.Krug, R.Shogan

    2004-09-01

    Pressurized water reactor (PWR) cores operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs requires detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel (internals) subjected to such conditions. This project studied the effects of reactor service on the mechanical and corrosion properties of samples of baffle plate, former plate, and core barrel from a decommissioned PWR.

  3. Aging, Loss-of-Coolant Accident (LOCA), and high potential testing of damaged cables

    SciTech Connect

    Vigil, R.A.; Jacobus, M.J.

    1994-04-01

    Experiments were conducted to assess the effects of high potential testing of cables and to assess the survivability of aged and damaged cables under Loss-of-Coolant Accident (LOCA) conditions. High potential testing at 240 Vdc/mil on undamaged cables suggested that no damage was incurred on the selected virgin cables. During aging and LOCA testing, Okonite ethylene propylene rubber (EPR) cables with a bonded jacket experienced unexpected failures. The failures appear to be primarily related to the level of thermal aging and the presence of a bonded jacket that ages more rapidly than the insulation. For Brand Rex crosslinked polyolefin (XLPO) cables, the results suggest that 7 mils of insulation remaining should give the cables a high probability of surviving accident exposure following aging. The voltage necessary to detect when 7 mils of insulation remain on unaged Brand Rex cables is approximately 35 kVdc. This voltage level would almost certainly be unacceptable to a utility for use as a damage assessment tool. However, additional tests indicated that a 35 kvdc voltage application would not damage virgin Brand Rex cables when tested in water. Although two damaged Rockbestos silicone rubber cables also failed during the accident test, no correlation between failures and level of damage was apparent.

  4. Potential for boron dilution during small-break LOCAs in PWRs

    SciTech Connect

    Nourbakhsh, H.P.; Cheng, Z.

    1995-11-01

    This paper documents the results of a scoping study of boron dilution and mixing phenomena during small break loss of coolant accidents (LOCAs) in pressurized water reactors (PWRs). Boron free condensate can accumulate in the cold leg loop seals when the reactor is operating in a reflux/boiler condenser mode. A problem may occur when the subsequent change in flow conditions such as loop seal clearing or re-establishment of natural circulation flow drive the diluted water in the loop seals into the reactor core without sufficient mixing with the highly borated water in the reactor downcomer and lower plenum. The resulting low boron concentration coolant entering the core may cause a power excursion leading to fuel failure. The mixing processes associated with a slow moving stream of diluted water through the loop seal to the core were examined in this report. A bounding evaluation of the range of boron concentration entering the core during a small break LOCA in a typical Westinghouse-designed, four-loop plant is also presented in this report.

  5. Considerations for Probabilistic Analyses to Assess Potential Changes to Large-Break LOCA Definition for ECCS Requirements

    SciTech Connect

    Wilkowski, G.; Rudland, D.; Wolterman, R.; Krishnaswamy, P.; Scott, P.; Rahman, S.; Fairbanks, C.

    2002-07-01

    The U.S.NRC has undertaken a study to explore changes to the body of Part 50 of the U.S. Federal Code of Regulations, to incorporate risk-informed attributes. One of the regulations selected for this study is 10 CFR 50.46, {sup A}cceptance Criteria for Emergency Core Cooling Systems for Light-Water Nuclear Power Reactors{sup .} These changes will potentially enhance safety and reduce unnecessary burden on utilities. Specific attention is being paid to redefining the maximum pipe break size for LB-LOCA by determining the spectrum of pipe diameter (or equivalent opening area) versus failure probabilities. In this regard, it is necessary to ensure that all contributors to probabilistic failures are accounted for when redefining ECCS requirements. This paper describes initial efforts being conducted for the U.S.NRC on redefining the LB-LOCA requirements. Consideration of the major contributors to probabilistic failure, and deterministic aspects for modeling them, are being addressed. At this time three major contributors to probabilistic failures are being considered. These include: (1) Analyses of the failure probability from cracking mechanisms that could involve rupture or large opening areas from either through-wall or surface flaws, whether the pipe system was approved for leak-before-break (LBB) or not. (2) Future degradation mechanisms, such as recent occurrence of PWSCC in PWR piping need to be included. This degradation mechanism was not recognized as being an issue when LBB was approved for many plants or when the initial risk-informed inspection plans were developed. (3) Other indirect causes of loss of pressure-boundary integrity than from cracks in the pipe system also should be included. The failure probability from probabilistic fracture mechanics will not account for these other indirect causes that could result in a large opening in the pressure boundary: i.e., failure of bolts on a steam generator manway, flanges, and valves; outside force damage from

  6. Hydrogen motion in Zircaloy-4 cladding during a LOCA transient

    NASA Astrophysics Data System (ADS)

    Elodie, T.; Jean, D.; Séverine, G.; M-Christine, B.; Michel, C.; Berger, P.; Martine, B.; Antoine, A.

    2016-04-01

    Hydrogen and oxygen are key elements influencing the embrittlement of zirconium-based nuclear fuel cladding during the quench phase following a Loss Of Coolant Accident (LOCA). The understanding of the mechanisms influencing the motion of these two chemical elements in the metal is required to fully describe the material embrittlement. High temperature steam oxidation tests were performed on pre-hydrided Zircaloy-4 samples with hydrogen contents ranging between 11 and 400 wppm prior to LOCA transient. Thanks to the use of both Electron Probe Micro-Analysis (EPMA) and Elastic Recoil Detection Analysis (μ-ERDA), the chemical elements partitioning has been systematically quantified inside the prior-β phase. Image analysis and metallographic examinations were combined to provide an average oxygen profile as well as hydrogen profile within the cladding thickness after LOCA transient. The measured hydrogen profile is far from homogeneous. Experimental distributions are compared to those predicted numerically using calculations derived from a finite difference thermo-diffusion code (DIFFOX) developed at IRSN.

  7. Methods and findings of a systems interaction study of a Westinghouse PWR

    SciTech Connect

    Youngblood, R.; Hanan, N.; Fitzpatrick, R.; Xue, D.; Bozoki, G.; Fresco, A.; Papazoglou, I.; Mitra, S.; Macdonald, G.; Chelliah, E.

    1985-01-01

    This paper describes the methods and findings of a systems interaction study of a Westinghouse PWR. BNL conducted the study as a methods application that was performed to support the resolution of Unresolved Safety Issue A-17 on Systems Interactions. The method calls for a fault tree model of the plant to be developed in stages, corresponding to successively increasing levels of scope and detail. A functional model is developed first, resolved only to sufficient detail to reflect support system dependences; this guides the subsequent searches for spatial and induced-human interactions. This process has led to the identification of an active single failure causing loss of low pressure injection following a large or medium LOCA.

  8. Materials Reliability Program: Fracture Toughness Testing of Decommissioned PWR Core Internals Material Samples (MRP-160) Non-Proprietary Version

    SciTech Connect

    M. E. Krug; R. P. Shogan

    2005-09-30

    Pressurised water reactor (PWR) cores operate under extreme envrionmental conditions due to coolant chemistry, operating temperature and neutron exposure. Extending the life of PWRs requires detailed knowledge of teh changes in mechanical and corrosion properties of teh structural austenitic stainless steel components adjacent to the fuel. This report contains results of fracture toughness testing of samples machined from decommissioned PWR reactor internals.

  9. Analysis of PWR RCS Injection Strategy During Severe Accident

    SciTech Connect

    Wang, S.-J.; Chiang, K.-S.; Chiang, S.-C.

    2004-05-15

    Reactor coolant system (RCS) injection is an important strategy for severe accident management of a pressurized water reactor (PWR) system. Maanshan is a typical Westinghouse PWR nuclear power plant (NPP) with large, dry containment. The severe accident management guideline (SAMG) of Maanshan NPP is developed based on the Westinghouse Owners Group (WOG) SAMG.The purpose of this work is to analyze the RCS injection strategy of PWR system in an overheated core condition. Power is assumed recovered as the vessel water level drops to the bottom of active fuel. The Modular Accident Analysis Program version 4.0.4 (MAAP4) code is chosen as a tool for analysis. A postulated station blackout sequence for Maanshan NPP is cited as a reference case for this analysis. The hot leg creep rupture occurs during the mitigation action with immediate injection after power recovery according to WOG SAMG, which is not desired. This phenomenon is not considered while developing the WOG SAMG. Two other RCS injection methods are analyzed by using MAAP4. The RCS injection strategy is modified in the Maanshan SAMG. These results can be applied for typical PWR NPPs.

  10. Characterization of Decommissioned PWR Vessel Internals Materials Samples: Material Certification, Fluence, and Temperature (Nonproprietary Version)

    SciTech Connect

    M. Krug; R. Shogan; A. Fero; M. Snyder

    2004-11-01

    Pressurized water reactor (PWR) cores, operate under extreme environmental conditions due to coolant chemistry, operating temperature, and neutron exposure. Extending the life of PWRs require detailed knowledge of the changes in mechanical and corrosion properties of the structural austenitic stainless steel components adjacent to the fuel. This report contains basic material characterization information of the as-installed samples of reactor internals material which were harvested from a decommissioned PWR.

  11. Multi-Pin Studies of the Effect of Changes in PWR Fuel Design on Clad Ballooning and Flow Blockage in a Large-Break Loss-Of Coolant Accident

    SciTech Connect

    Jones, J.R.; Trow, M.

    2007-07-01

    Fuel pins can credibly balloon to reach very high diametric strains under temperature transients typical of a PWR Loss-of coolant Accident (LOCA), but experiments show that these balloons are sufficiently misaligned axially to prevent total blockage of the flow. Most of the relevant experiments were performed in the 1980's and therefore were principally carried out on the various forms of Zircaloy 4 cladding available at the time. Much of the fuel used was either fresh or of modest burnup compared to the discharge irradiations achievable today. Since then, single pin experiments have been carried out with new cladding material and (to a limited extent) with high-burnup fuel. However, there is a need to interpret the performance of this fuel in the context of the wider body of evidence. A model of the development of flow blockages has been implemented using multiple instances of the fuel pin code MABEL interfaced to a sub-channel coolant flow code. The effect of a change in cladding material from Zircaloy to a 1% niobium alloy has been examined. The assessment concluded that the proposed replacement alloy is more creep hard at high temperature and therefore is expected to fail slightly later in the transient. The new cladding achieved a generally lower diametric strain at failure under the particular conditions of the fault. (authors)

  12. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    NASA Astrophysics Data System (ADS)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  13. Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction

    NASA Astrophysics Data System (ADS)

    González-Robles, E.; Serrano-Purroy, D.; Sureda, R.; Casas, I.; de Pablo, J.

    2015-10-01

    The denominated instant release fraction (IRF) is considered in performance assessment (PA) exercises to govern the dose that could arise from the repository. A conservative definition of IRF comprises the total inventory of radionuclides located in the gap, fractures, and the grain boundaries and, if present, in the high burn-up structure (HBS). The values calculated from this theoretical approach correspond to an upper limit that likely does not correspond to what it will be expected to be instantaneously released in the real system. Trying to ascertain this IRF from an experimental point of view, static leaching experiments have been carried out with two commercial UO2 spent nuclear fuels (SNF): one from a pressurized water reactor (PWR), labelled PWR, with an average burn-up (BU) of 52 MWd/kgU and fission gas release (FGR) of 23.1%, and one from a boiling water reactor (BWR), labelled BWR, with an average BU of and 53 MWd/kgU and FGR of 3.9%. One sample of each SNF, consisting of fuel and cladding, has been leached in bicarbonate water during one year under oxidizing conditions at room temperature (25 ± 5)°C. The behaviour of the concentration measured in solution can be divided in two according to the release rate. All radionuclides presented an initial release rate that after some days levels down to a slower second one, which remains constant until the end of the experiment. Cumulative fraction of inventory in aqueous phase (FIAPc) values has been calculated. Results show faster release in the case of the PWR SNF. In both cases Np, Pu, Am, Cm, Y, Tc, La and Nd dissolve congruently with U, while dissolution of Zr, Ru and Rh is slower. Rb, Sr, Cs and Mo, dissolve faster than U. The IRF of Cs at 10 and 200 days has been calculated, being (3.10 ± 0.62) and (3.66 ± 0.73) for PWR fuel, and (0.35 ± 0.07) and (0.51 ± 0.10) for BWR fuel.

  14. Application of the MELCOR code to design basis PWR large dry containment analysis.

    SciTech Connect

    Phillips, Jesse; Notafrancesco, Allen; Tills, Jack Lee

    2009-05-01

    The MELCOR computer code has been developed by Sandia National Laboratories under USNRC sponsorship to provide capability for independently auditing analyses submitted by reactor manufactures and utilities. MELCOR is a fully integrated code (encompassing the reactor coolant system and the containment building) that models the progression of postulated accidents in light water reactor power plants. To assess the adequacy of containment thermal-hydraulic modeling incorporated in the MELCOR code for application to PWR large dry containments, several selected demonstration designs were analyzed. This report documents MELCOR code demonstration calculations performed for postulated design basis accident (DBA) analysis (LOCA and MSLB) inside containment, which are compared to other code results. The key processes when analyzing the containment loads inside PWR large dry containments are (1) expansion and transport of high mass/energy releases, (2) heat and mass transfer to structural passive heat sinks, and (3) containment pressure reduction due to engineered safety features. A code-to-code benchmarking for DBA events showed that MELCOR predictions of maximum containment loads were equivalent to similar predictions using a qualified containment code known as CONTAIN. This equivalency was found to apply for both single- and multi-cell containment models.

  15. Robotic inspection of PWR coolant pump casing welds

    SciTech Connect

    Pratt, W.R.; Alford, J.W.; Davis, J.B.

    1997-12-01

    As of January 1, 1995, the Swedish Nuclear Inspectorate began requiring more thorough inspections of cast stainless-steel components in nuclear power plants, including pressurized water reactor (PWR) reactor coolant pump (RCP) casings. The examination requirements are established by fracture mechanics analyses of component weldments and demonstrated test system detection capabilities. This may include full volumetric inspection or some portion thereof. Ringhals station is a four-unit nuclear power plant, owned and operated by the Swedish State Power Board, Vattenfall. Unit 1 is a boiling water reactor. Units 2, 3, and 4 are Westinghouse-designed PWRs, ranging in size from 795 to 925 MW. The RCP casings at the PWR units are made of cast stainless steel and contain four circumferential welds that require inspection. Due to the thickness of the casings at the weld locations and configuration and surface conditions on the outside diameter of the casings, remote inspection from the inside diameter of the pump casing was mandated.

  16. Radiative transfer during the reflooding step of a LOCA

    NASA Astrophysics Data System (ADS)

    Gérardin, J.; Seiler, N.; Ruyer, P.; Boulet, P.

    2013-10-01

    Within the evaluation of the heat transfer downstream a quench front during the reflood phase of a Loss of Coolant Accident (LOCA) in a nuclear power plant, a numerical study has been conducted on radiative transfer through a vapor-droplet medium. The non-grey behavior of the medium is obvious since it can be optically thin or thick depending on the wavelength. A six wide bands model has been tested, providing a satisfactory accuracy for the description of the radiative properties. Once the radiative properties of the medium computed, they have been introduced in a model solving the radiative heat transfer based on the Improved Differential Approximation. The fluxes and the flux divergence have been computed on a geometry characteristic of the reactor core showing that radiative transfer plays a relevant role, quite as important as convective heat transfer.

  17. Probabilistic assessment of the primary-coolant-loop pipe-fracture due to fatigue crack growth for a PWR plant

    SciTech Connect

    Chou, C.K.

    1981-06-01

    The work reported herein assesses the probability of a double-ended guillotine break of the hot leg, cold leg and cross-over line (for the purpose of this paper we defined it as a large LOCA) of a PWR plant subjected to the loads caused by plant transients and earthquakes. The work employs a fracture mechanics based fatigue model to propagate cracks from an initial flaw distribution. Flaw size and aspect ratio, material properties, operating transient and seismic stress histories, pre-service and in-service inspections as well as leak defections are considered random variables to be input into the fatigue crack growth fracture mechanics model. A brief description of the model and interrelationship between various steps are discussed.

  18. Mixing phenomena of interest to boron dilution during small break LOCAs in PWRs. Revision 7/95

    SciTech Connect

    Nourbakhsh, H.P.; Cheng, Z.

    1995-07-01

    This paper presents the results of a study of mixing phenomena related to boron dilution during small break loss of coolant accidents (LOCAs) in pressurized water reactors (PWRs). Boron free condensate can accumulate in the cold leg loop seals when the reactor is operating in a reflux/boiler-condenser mode. A problem may occur when subsequent change in flow conditions such as loop seal clearing or re-establishment of natural circulation flow drive the diluted water in the loop seals into the reactor core without sufficient mixing with the highly borated water in the reactor downcomer and lower plenum. The resulting low boron concentration coolant entering the core may cause a power excursion leading to fuel failure. The mixing processes associated with a slow moving stream of diluted water through the loop seal to the core are examined in this paper. Bounding calculations for boron concentration of coolant entering the core during a small break LOCA in a typical Westinghouse-designed four-loop plant are also presented.

  19. Coupled Neutronics Thermal-Hydraulic Solution of a Full-Core PWR Using VERA-CS

    SciTech Connect

    Clarno, Kevin T; Palmtag, Scott; Davidson, Gregory G; Salko, Robert K; Evans, Thomas M; Turner, John A; Belcourt, Kenneth; Hooper, Russell; Schmidt, Rodney

    2014-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a core simulator called VERA-CS to model operating PWR reactors with high resolution. This paper describes how the development of VERA-CS is being driven by a set of progression benchmark problems that specify the delivery of useful capability in discrete steps. As part of this development, this paper will describe the current capability of VERA-CS to perform a multiphysics simulation of an operating PWR at Hot Full Power (HFP) conditions using a set of existing computer codes coupled together in a novel method. Results for several single-assembly cases are shown that demonstrate coupling for different boron concentrations and power levels. Finally, high-resolution results are shown for a full-core PWR reactor modeled in quarter-symmetry.

  20. RIA Limits Based On Commercial PWR Core Response To RIA

    SciTech Connect

    Beard, Charles L.; Mitchell, David B.; Slagle, William H.

    2006-07-01

    Reactivity insertion accident (RIA) limits have been under intense review by regulators since 1993 with respect to what should be the proper limit as a function of burnup. Some national regulators have imposed new lower limits while in the United States the limits are still under review. The data being evaluated with respect to RIA limits come from specialized test reactors. However, the use of test reactor data needs to be balanced against the response of a commercial PWR core in setting reasonable limits to insure the health and safety of the public without unnecessary restrictions on core design and operation. The energy deposition limits for a RIA were set in the 1970's based on testing in CDC (SPERT), TREAT, PBF and NSRR test reactors. The US limits given in radially averaged enthalpy are 170 cal/gm for fuel cladding failure and 280 cal/gm for coolability. Testing conducted in the 1990's in the CABRI, NSRR and IGR test reactors have demonstrated that the cladding failure threshold is reduced with burnup, with the primary impact due to hydrogen pickup for in-reactor corrosion. Based on a review of this data very low enthalpy limits have been proposed. In reviewing proposed limits from RIL-0401(1) it was observed that much of the data used to anchor the low allowable energy deposition levels was from recent NSRR tests which do not represent commercial PWR reactor conditions. The particular characteristics of the NSRR test compared to commercial PWR reactor characteristics are: - Short pulse width: 4.5 ms vs > 8 ms; - Low temperature conditions: < 100 deg. F vs 532 deg. F. - Low pressure environment: atmospheric vs {approx} 2200 psi. A review of the historical RIA database indicates that some of the key NSRR data used to support the RIL was atypical compared to the overall RIA database. Based on this detailed review of the RIA database and the response of commercial PWR core, the following view points are proposed. - The Failure limit should reflect local fuel

  1. Cobalt-60 simulation of LOCA (loss of coolant accident) radiation effects

    SciTech Connect

    Buckalew, W.H.

    1989-07-01

    The consequences of simulating nuclear reactor loss of coolant accident (LOCA) radiation effects with Cobalt-60 gamma ray irradiators have been investigated. Based on radiation induced damage in polymer base materials, it was demonstrated that electron/photon induced radiation damage could be related on the basis of average absorbed radiation dose. This result was used to estimate the relative effectiveness of the mixed beta/gamma LOCA and Cobalt-60 radiation environments to damage both bare and jacketed polymer base electrical insulation materials. From the results obtained, it is concluded that present simulation techniques are a conservative method for simulating LOCA radiation effects and that the practices have probably substantially overstressed both bare and jacketed materials during qualification testing. 9 refs., 8 figs., 5 tabs.

  2. K-Reactor emergency core coolant system response during a double-ended guillotine break LOCA

    SciTech Connect

    Rodriguez, S.B. )

    1990-01-01

    This paper describes the modeling and benchmarking of the Savannah River Site K-Reactor emergency core coolant system (ECCS), using the Transient Reactor Analysis Code (TRAC). The ECCS model was benchmarked against plant data obtained from various ECCS configurations. Next, the benchmarked model was used to simulate various loss-of-coolant accidents (LOCAs). The adequacy of the model's behavior during the LOCAs was then analyzed. The K-Reactor ECCS model can adequately simulate a wide variety of system configurations. The TRAC output compared favorably with the plant data for the different ECCS configurations. The results of the plenum-inlet double-ended guillotine break LOCA simulation showed the ECCS protected the core.

  3. DEGB LOCA ECS power limit recommendation for the K-14. 1 subcycle

    SciTech Connect

    Smith, F.G. III; Aleman, S.E.

    1991-04-01

    This report documents assembly deposited power limits and the corresponding effluent temperature limits recommended for operating the K-14.1 subcycle to ensure sufficient cooling of reactor assemblies during the ECS phase of a Double Ended Guillotine Break (DEGSS) Loss of Coolant Accident (LOCA). The ECS LOCA effluent temperature limits are computed for each flowzone of the K-14.1 charge. The recommended overall DEGB LOCA ECS power limit is 1515 MW or about 63.1% of the historical full reactor power limit (assumed to be 2400-MW) for Mark 22 assemblies. The design basis accident is a break in the plenum inlet line where the AC pump motors not tripped.

  4. DEGB LOCA ECS power limit recommendation for the K-14.1 subcycle. Revision 1

    SciTech Connect

    Smith, F.G. III; Aleman, S.E.

    1991-04-01

    This report documents assembly deposited power limits and the corresponding effluent temperature limits recommended for operating the K-14.1 subcycle to ensure sufficient cooling of reactor assemblies during the ECS phase of a Double Ended Guillotine Break (DEGSS) Loss of Coolant Accident (LOCA). The ECS LOCA effluent temperature limits are computed for each flowzone of the K-14.1 charge. The recommended overall DEGB LOCA ECS power limit is 1515 MW or about 63.1% of the historical full reactor power limit (assumed to be 2400-MW) for Mark 22 assemblies. The design basis accident is a break in the plenum inlet line where the AC pump motors not tripped.

  5. Summary on the depressurization from supercritical pressure conditions

    SciTech Connect

    Anderson, M.; Chen, Y.; Ammirable, L.; Yamada, K.

    2012-07-01

    When a fluid discharges from a high pressure and temperature system, a 'choking' or critical condition occurs, and the flow rate becomes independent of the downstream pressure. During a postulated loss of coolant accident (LOCA) of a water reactor the break flow will be subject to this condition. An accurate estimation of the critical flow rate is important for the evaluation of the reactor safety, because this flow rate controls the loss of coolant inventory and energy from the system, and thus has a significant effect on the accident consequences[1]. In the design of safety systems for a super critical water reactor (SCWR), postulated LOCA transients are particularly important due to the lower coolant inventory compared to a typical PWR for the same power output. This lower coolant inventory would result in a faster transient response of the SCWR, and hence accurate prediction of the critical discharge is mandatory. Under potential two-phase conditions critical flow is dominated by the vapor content or quality of the vapor, which is closely related with the onset of vaporization and the interfacial interaction between phases [2]. This presents a major challenge for the estimation of the flow rate due to the lack of the knowledge of those processes, especially under the conditions of interest for the SCWR. According to the limited data of supercritical fluids, the critical flows at conditions above the pseudo-critical point seem to be fairly stable and consistent with the subcritical homogeneous equilibrium model (HEM) model predictions, while having a lower flow rate than those in the two-phase region. Thus the major difficulty in the prediction of the depressurization flow rates remains in the region where two phases co-exist at the top of the vapor dome. In this region, the flow rate is strongly affected by the nozzle geometry and tends to be unstable. Various models for this region have been developed with different assumptions, e.g. the HEM and Moody model [3

  6. Modeling local chemistry in PWR steam generator crevices

    SciTech Connect

    Millett, P.J.

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledge of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.

  7. Effect of spray parameter on containment depressurization during LOCA in KAPP 3 and 4, 700 MWE IPHWR

    SciTech Connect

    Sharma, S. K.; Bhartia, D. K.; Mohan, N.; Malhotra, P. K.; Ghadge, S. G.

    2012-07-01

    KAPP 3 and 4 is an Indian Pressurized Heavy Water Reactor (IPHWR) of 700 MWe capacities. It is a pressure tube type reactor with heavy water as moderator and coolant and natural Uranium Dioxide as fuel. It consists of 392 horizontal fuel channel assemblies and surrounded by three separate water systems i.e. primary coolant, moderator and calandria vault water system. Containment of Indian PHWR is an ultimate barrier, which is designed to envelope whole reactor systems, to prevent the spread of active air-borne fission products in accident condition. Containment Spray System has been provided for energy as well as activity removal from the Containment system. This paper discusses about the studies done to assess the effect of spray parameters such as spray flow rate, droplets diameter and height of fall on containment peak pressure and temperature, long term containment depressurization and energy removal from the containment during Loss of Coolant Accident (LOCA). The spray flow rate and droplets diameter play an important role in removing residual energy from containment atmosphere, which influences depressurization of containment. It is obvious that faster depressurization of containment during postulated LOCA helps in limiting radiological consequences. From radiological considerations, droplets diameter is required to be kept to the lowest practically possible value and flow rate of spray should be high. Spray water droplets fall height governs the exposure time of droplets, which is the direct indication of energy removal rate. However, it is observed from the sensitivity studies that for a height of spray droplet fall more than 16.5 m, for the range of spray water flow rate and droplets sizes considered in the analyses, there is no significant change in heat removal. (authors)

  8. Thermal mixing in a model cold leg and downcomer at low flow rates. [PWR

    SciTech Connect

    Rothe, P.H.; Fanning, M.W.

    1983-03-01

    This report describes an experimental program of fluid-mixing experiments performed at atmospheric pressure in a 1/5-scale, transparent model of a cold leg and downcomer typical of Combustion Engineering and Westinghouse Pressurized Water Reactors (PWRs). The test program simulated steady-state conditions thought to be extreme for small break Loss of Coolant Accidents (LOCAs). Analysis of transient and steady-state temperature records indicates that the cold High-Pressure Injection (HPI) coolant water and the hot primary coolant water are well mixed prior to flowing over the reactor vessel wall.

  9. Development of an analytic model to determine pump performance under two-phase flow conditions. Final report

    SciTech Connect

    Furuya, O.

    1984-05-01

    During a hypothetical LOCA (loss of coolant accident), the recirculating coolant of PWR (pressurized water reactor) may flash into steam due to a loss of line pressure. Under such two-phase flow conditions, it is well known that the recirculation pump becomes unable to generate the same head as that of the single-phase flow case. Based on the one dimensional control volume method, an analytical method has been developed to determine the performance of pumps operating under two-phase flow conditions. The analytical method has incorporated pump geometry, void fraction, flow slippage and flow regime into the basic formula, but neglected the compressibility and condensation effects. During the course of model development, it has been found that the head degradation is mainly caused by higher acceleration on liquid phase and deceleration on gas phase than in the case of single-phase flows. The numerical results for head and torque degradations were obtained with the model and favorably compared with the test data of air/water two-phase flow pumps of Babcock and Wilcox (1/3 scale) and Creare (1/20 scale).

  10. Assessment of void swelling in austenitic stainless steel PWR core internals.

    SciTech Connect

    Chung, H. M.; Energy Technology

    2006-01-31

    As many pressurized water reactors (PWRs) age and life extension of the aged plants is considered, void swelling behavior of austenitic stainless steel (SS) core internals has become the subject of increasing attention. In this report, the available database on void swelling and density change of austenitic SSs was critically reviewed. Irradiation conditions, test procedures, and microstructural characteristics were carefully examined, and key factors that are important to determine the relevance of the database to PWR conditions were evaluated. Most swelling data were obtained from steels irradiated in fast breeder reactors at temperatures >385 C and at dose rates that are orders of magnitude higher than PWR dose rates. Even for a given irradiation temperature and given steel, the integral effects of dose and dose rate on void swelling should not be separated. It is incorrect to extrapolate swelling data on the basis of 'progressive compounded multiplication' of separate effects of factors such as dose, dose rate, temperature, steel composition, and fabrication procedure. Therefore, the fast reactor data should not be extrapolated to determine credible void swelling behavior for PWR end-of-life (EOL) or life-extension conditions. Although the void swelling data extracted from fast reactor studies is extensive and conclusive, only limited amounts of swelling data and information have been obtained on microstructural characteristics from discharged PWR internals or steels irradiated at temperatures and at dose rates comparable to those of a PWR. Based on this relatively small amount of information, swelling in thin-walled tubes and baffle bolts in a PWR is not considered a concern. As additional data and relevant research becomes available, the newer results should be integrated with existing data, and the worthiness of this conclusion should continue to be scrutinized. PWR baffle reentrant corners are the most likely location to experience high swelling rates, and

  11. Downscaling humidity with Localized Constructed Analogs (LOCA) over the conterminous United States

    NASA Astrophysics Data System (ADS)

    Pierce, D. W.; Cayan, D. R.

    2015-09-01

    Humidity is important to climate impacts in hydrology, agriculture, ecology, energy demand, and human health and comfort. Nonetheless humidity is not available in some widely-used archives of statistically downscaled climate projections for the western U.S. In this work the Localized Constructed Analogs (LOCA) statistical downscaling method is used to downscale specific humidity to a 1°/16° grid over the conterminous U.S. and the results compared to observations. LOCA reproduces observed monthly climatological values with a mean error of ~0.5 % and RMS error of ~2 %. Extreme (1-day in 1- and 20-years) maximum values (relevant to human health and energy demand) are within ~5 % of observed, while extreme minimum values (relevant to agriculture and wildfire) are within ~15 %. The asymmetry between extreme maximum and minimum errors is largely due to residual errors in the bias correction of extreme minimum values. The temporal standard deviations of downscaled daily specific humidity values have a mean error of ~1 % and RMS error of ~3 %. LOCA increases spatial coherence in the final downscaled field by ~13 %, but the downscaled coherence depends on the spatial coherence in the data being downscaled, which is not addressed by bias correction. Temporal correlations between daily, monthly, and annual time series of the original and downscaled data typically yield values >0.98. LOCA captures the observed correlations between temperature and specific humidity even when the two are downscaled independently.

  12. Uncertainty analysis for the K-reactor FI-LOCA limits

    SciTech Connect

    Hardy, B.J.

    1991-12-31

    A postulated accident scenario for the Savannah River Site (SRS) K-reactor is a Double Ended Guillotine Break Loss of Coolant Accident (DEGB/LOCA) due to a coolant pipe break at the plenum inlet. The DEGB/LOCA consists of two parts, the first of which applies to the first few seconds of the transient. The first part of the DEGB/LOCA is addressed in this paper. In the first few seconds after the pipe break there is a rapid depressurization of the plenum, which results in a rapid reduction in the core flowrate. Safety rod insertion is not assumed to begin until 1 second after the pipe break and the rods are assumed not to be fully inserted until approximately 2 seconds after the break. The resulting flow-power mismatch results in coolant heating and possible flow disruption via a Lendinegg type flow instability. For this reason, the initial phase of the DEGB/LOCA transient is called the Flow Instability (FI) phase.

  13. Uncertainty analysis for the K-reactor FI-LOCA limits

    SciTech Connect

    Hardy, B.J.

    1991-01-01

    A postulated accident scenario for the Savannah River Site (SRS) K-reactor is a Double Ended Guillotine Break Loss of Coolant Accident (DEGB/LOCA) due to a coolant pipe break at the plenum inlet. The DEGB/LOCA consists of two parts, the first of which applies to the first few seconds of the transient. The first part of the DEGB/LOCA is addressed in this paper. In the first few seconds after the pipe break there is a rapid depressurization of the plenum, which results in a rapid reduction in the core flowrate. Safety rod insertion is not assumed to begin until 1 second after the pipe break and the rods are assumed not to be fully inserted until approximately 2 seconds after the break. The resulting flow-power mismatch results in coolant heating and possible flow disruption via a Lendinegg type flow instability. For this reason, the initial phase of the DEGB/LOCA transient is called the Flow Instability (FI) phase.

  14. Downscaling humidity with Localized Constructed Analogs (LOCA) over the conterminous United States

    NASA Astrophysics Data System (ADS)

    Pierce, D. W.; Cayan, D. R.

    2016-07-01

    Humidity is important to climate impacts in hydrology, agriculture, ecology, energy demand, and human health and comfort. Nonetheless humidity is not available in some widely-used archives of statistically downscaled climate projections for the western U.S. In this work the Localized Constructed Analogs (LOCA) statistical downscaling method is used to downscale specific humidity to a 1°/16° grid over the conterminous U.S. and the results compared to observations. LOCA reproduces observed monthly climatological values with a mean error of ~0.5 % and RMS error of ~2 %. Extreme (1-day in 1- and 20-years) maximum values (relevant to human health and energy demand) are within ~5 % of observed, while extreme minimum values (relevant to agriculture and wildfire) are within ~15 %. The asymmetry between extreme maximum and minimum errors is largely due to residual errors in the bias correction of extreme minimum values. The temporal standard deviations of downscaled daily specific humidity values have a mean error of ~1 % and RMS error of ~3 %. LOCA increases spatial coherence in the final downscaled field by ~13 %, but the downscaled coherence depends on the spatial coherence in the data being downscaled, which is not addressed by bias correction. Temporal correlations between daily, monthly, and annual time series of the original and downscaled data typically yield values >0.98. LOCA captures the observed correlations between temperature and specific humidity even when the two are downscaled independently.

  15. Facing Challenges for Monte Carlo Analysis of Full PWR Cores : Towards Optimal Detail Level for Coupled Neutronics and Proper Diffusion Data for Nodal Kinetics

    NASA Astrophysics Data System (ADS)

    Nuttin, A.; Capellan, N.; David, S.; Doligez, X.; El Mhari, C.; Méplan, O.

    2014-06-01

    Safety analysis of innovative reactor designs requires three dimensional modeling to ensure a sufficiently realistic description, starting from steady state. Actual Monte Carlo (MC) neutron transport codes are suitable candidates to simulate large complex geometries, with eventual innovative fuel. But if local values such as power densities over small regions are needed, reliable results get more difficult to obtain within an acceptable computation time. In this scope, NEA has proposed a performance test of full PWR core calculations based on Monte Carlo neutron transport, which we have used to define an optimal detail level for convergence of steady state coupled neutronics. Coupling between MCNP for neutronics and the subchannel code COBRA for thermal-hydraulics has been performed using the C++ tool MURE, developed for about ten years at LPSC and IPNO. In parallel with this study and within the same MURE framework, a simplified code of nodal kinetics based on two-group and few-point diffusion equations has been developed and validated on a typical CANDU LOCA. Methods for the computation of necessary diffusion data have been defined and applied to NU (Nat. U) and Th fuel CANDU after assembly evolutions by MURE. Simplicity of CANDU LOCA model has made possible a comparison of these two fuel behaviours during such a transient.

  16. Horizontal Drop of 21- PWR Waste Package

    SciTech Connect

    A.K. Scheider

    2007-01-31

    The objective of this calculation is to determine the structural response of the waste package (WP) dropped horizontally from a specified height. The WP used for that purpose is the 21-Pressurized Water Reactor (PWR) WP. The scope of this document is limited to reporting the calculation results in-terms of stress intensities. This calculation is associated with the WP design and was performed by the Waste Package Design group in accordance with the ''Technical Work Plan for: Waste Package Design Description for LA'' (Ref. 16). AP-3.12Q, ''Calculations'' (Ref. 1 1) is used to perform the calculation and develop the document. The sketches attached to this calculation provide the potential dimensions and materials for the 21-PWR WP design.

  17. PWR secondary water chemistry guidelines: Revision 3. Final report

    SciTech Connect

    Lurie, S.; Bucci, G.; Johnson, L.; King, M.; Lamanna, L.; Morgan, E.; Bates, J.; Burns, R.; Eaker, R.; Ward, G.; Linnenbom, V.; Millet, P.; Paine, J.P.; Wood, C.J.; Gatten, T.; Meatheany, D.; Seager, J.; Thompson, R.; Brobst, G.; Connor, W.; Lewis, G.; Shirmer, R.; Gillen, J.; Kerns, M.; Jones, V.; Lappegaard, S.; Sawochka, S.; Smith, F.; Spires, D.; Pagan, S.; Gardner, J.; Polidoroff, T.; Lambert, S.; Dahl, B.; Hundley, F.; Miller, B.; Andersson, P.; Briden, D.; Fellers, B.; Harvey, S.; Polchow, J.; Rootham, M.; Fredrichs, T.; Flint, W.

    1993-05-01

    An effective, state-of-the art secondary water chemistry control program is essential to maximize the availability and operating life of major PWR components. Furthermore, the costs related to maintaining secondary water chemistry will likely be less than the repair or replacement of steam generators or large turbine rotors, with resulting outages taken into account. The revised PWR secondary water chemistry guidelines in this report represent the latest field and laboratory data on steam generator corrosion phenomena. This document supersedes Interim PWR Secondary Water Chemistry Recommendations for IGA/SCC Control (EPRI report TR-101230) as well as PWR Secondary Water Chemistry Guidelines--Revision 2 (NP-6239).

  18. Crack growth rates of nickel alloy welds in a PWR environment.

    SciTech Connect

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.; Energy Technology

    2006-05-31

    In light water reactors (LWRs), vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking. A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. A program is being conducted at Argonne National Laboratory to evaluate the resistance of Ni alloys and their welds to environmentally assisted cracking in simulated LWR coolant environments. This report presents crack growth rate (CGR) results for Alloy 182 shielded-metal-arc weld metal in a simulated pressurized water reactor (PWR) environment at 320 C. Crack growth tests were conducted on 1-T compact tension specimens with different weld orientations from both double-J and deep-groove welds. The results indicate little or no environmental enhancement of fatigue CGRs of Alloy 182 weld metal in the PWR environment. The CGRs of Alloy 182 in the PWR environment are a factor of {approx}5 higher than those of Alloy 600 in air under the same loading conditions. The stress corrosion cracking for the Alloy 182 weld is close to the average behavior of Alloy 600 in the PWR environment. The weld orientation was found to have a profound effect on the magnitude of crack growth: cracking was found to propagate faster along the dendrites than across them. The existing CGR data for Ni-alloy weld metals have been compiled and evaluated to establish the effects of key material, loading, and environmental parameters on CGRs in PWR environments. The results from the present study are compared with the existing CGR data for Ni-alloy welds to determine the relative susceptibility of the specific Ni-alloy weld to environmentally enhanced cracking.

  19. Experiment data report for Multirod Burst Test (MRBT) Bundle B-5. [PWR

    SciTech Connect

    Chapman, R H; Crowley, J L; Longest, A W

    1984-08-01

    A reference source of MRBT bundle B-5 test data is presented with interpretation limited to that necessary to understand pertinent features of the test. Primary objectives of this 8 x 8 multirod burst test were to investigate the effects of array size and rod-to-rod interactions on cladding deformation in the high-alpha-Zircaloy temperature range under simulated light-water reactor loss-of-coolant accident (LOCA) conditions. B-5 test conditions, nominally the same as used in an earlier 4 x 4 (B-3) test, simulated the adiabatic heatup (reheat) phase of an LOCA and were conducive to large deformation. The fuel pin simulators were electrically heated (average linear power generation of 3.0 kW/m) and were slightly cooled with a very low flow (Re approx. 140) of low-pressure superheated steam. The cladding temperature increased from the initial temperature (335/sup 0/C) to the burst temperature at a rate of 9.8/sup 0/C/s. The simulators burst in a very narrow temperature range, with an average of 768/sup 0/C. Cladding burst strain ranged from 32% to 95%, with an average of 61%. Volumetric expansion over the heated length of the cladding ranged from 35% to 79%, with an average of 52%. The results clearly show deformation was greater in the bundle interior and suggest rod-to-rod mechanical interactions caused axial propagation of the deformation.

  20. Experiment data report for Multirod Burst Test (MRBT) bundle B-6. [PWR; BWR

    SciTech Connect

    Chapman, R H; Longest, A W; Crowley, J L

    1984-07-01

    A reference source of MRBT bundle B-6 test data is presented with minimum interpretation. The primary objective of this 8 x 8 multirod burst test was to investigate cladding deformation in the alpha-plus-beta-Zircaloy temperature range under simulated light-water-reactor (LWR) loss-of-coolant accident (LOCA) conditions. B-6 test conditions simulated the adiabatic heatup (reheat) phase of an LOCA and produced very uniform temperature distributions. The fuel pin simulators were electrically heated (average linear power generation of 1.42 kW/m) and were slightly cooled with a very low flow (Re approx. 140) of low-pressure superheated steam. The cladding temperature increased from the initial temperature (330/sup 0/C) to the burst temperature at a rate of 3.5/sup 0/C/s. The simulators burst in a very narrow temperature range, with an average of 930/sup 0/C. Cladding burst strain ranged from 21 to 56%, with an average of 31%. Volumetric expansion over the heated length of the cladding ranged from 16 to 32%, with an average of 23%. 23 references.

  1. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    SciTech Connect

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  2. Code System for Best-Estimate Analysis of LOCA in BWR.

    Energy Science and Technology Software Center (ESTSC)

    2001-07-23

    Version 00 TRAC-BD1 performs best estimate analyses of loss-of-coolant accidents (LOCA) and other transients in boiling water reactors (BWRs). The program provides LOCA analysis capability for BWRs and for many BWR-related thermal-hydraulic experimental facilities. The program features a three-dimensional treatment of the BWR pressure vessel, a detailed model of a BWR fuel bundle including multi-rod, multi-bundle, radiation heat transfer, and leakage path modeling capability; flow-regime-dependent constitutive equation treatment; reflood tracking capability both for falling filmsmore » and bottom flood quench fronts; and consistent treatment of the entire accident sequence. Dump/restart capabilities are also provided.« less

  3. Preliminary assessment of PWR Steam Generator modelling in RELAP5/MOD3. International Agreeement Report

    SciTech Connect

    Preece, R.J.; Putney, J.M.

    1993-07-01

    A preliminary assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD3 is presented. The study is based on calculations against a series of steady-state commissioning tests carried out on the Wolf Creek PWR over a range of load conditions. Data from the tests are used to assess the modelling of primary to secondary side heat transfer and, in particular, to examine the effect of reverting to the standard form of the Chen heat transfer correlation in place of the modified form applied in RELAP5/MOD2. Comparisons between the two versions of the code are also used to show how the new interphase drag model in RELAP5/MOD3 affects the calculation of SG liquid inventory and the void fraction profile in the riser.

  4. Scoping Study Investigating PWR Instrumentation during a Severe Accident Scenario

    SciTech Connect

    Rempe, J. L.; Knudson, D. L.; Lutz, R. J.

    2015-09-01

    The accidents at the Three Mile Island Unit 2 (TMI-2) and Fukushima Daiichi Units 1, 2, and 3 nuclear power plants demonstrate the critical importance of accurate, relevant, and timely information on the status of reactor systems during a severe accident. These events also highlight the critical importance of understanding and focusing on the key elements of system status information in an environment where operators may be overwhelmed with superfluous and sometimes conflicting data. While progress in these areas has been made since TMI-2, the events at Fukushima suggests that there may still be a potential need to ensure that critical plant information is available to plant operators. Recognizing the significant technical and economic challenges associated with plant modifications, it is important to focus on instrumentation that can address these information critical needs. As part of a program initiated by the Department of Energy, Office of Nuclear Energy (DOE-NE), a scoping effort was initiated to assess critical information needs identified for severe accident management and mitigation in commercial Light Water Reactors (LWRs), to quantify the environment instruments monitoring this data would have to survive, and to identify gaps where predicted environments exceed instrumentation qualification envelop (QE) limits. Results from the Pressurized Water Reactor (PWR) scoping evaluations are documented in this report. The PWR evaluations were limited in this scoping evaluation to quantifying the environmental conditions for an unmitigated Short-Term Station BlackOut (STSBO) sequence in one unit at the Surry nuclear power station. Results were obtained using the MELCOR models developed for the US Nuclear Regulatory Commission (NRC)-sponsored State of the Art Consequence Assessment (SOARCA) program project. Results from this scoping evaluation indicate that some instrumentation identified to provide critical information would be exposed to conditions that

  5. Probabilistic based design rules for intersystem LOCAS in ABWR piping

    SciTech Connect

    Ware, A.G.; Wesley, D.A.

    1993-05-01

    A methodology has been developed for probability-based standards for low-pressure piping systems that are attached to the reactor coolant loops of advanced light water reactors (ALWRs) which could experience reactor coolant loop temperatures and pressures because of multiple isolation valve failures. This accident condition is called an intersystem loss-of-coolant accident (ISLOCA). The methodology was applied to various sizes of carbon and stainless steel piping designed to advanced boiling water reactor (ABWR) temperatures and pressures.

  6. A highly heterogeneous 3D PWR core benchmark: deterministic and Monte Carlo method comparison

    NASA Astrophysics Data System (ADS)

    Jaboulay, J.-C.; Damian, F.; Douce, S.; Lopez, F.; Guenaut, C.; Aggery, A.; Poinot-Salanon, C.

    2014-06-01

    Physical analyses of the LWR potential performances with regards to the fuel utilization require an important part of the work dedicated to the validation of the deterministic models used for theses analyses. Advances in both codes and computer technology give the opportunity to perform the validation of these models on complex 3D core configurations closed to the physical situations encountered (both steady-state and transient configurations). In this paper, we used the Monte Carlo Transport code TRIPOLI-4®; to describe a whole 3D large-scale and highly-heterogeneous LWR core. The aim of this study is to validate the deterministic CRONOS2 code to Monte Carlo code TRIPOLI-4®; in a relevant PWR core configuration. As a consequence, a 3D pin by pin model with a consistent number of volumes (4.3 millions) and media (around 23,000) is established to precisely characterize the core at equilibrium cycle, namely using a refined burn-up and moderator density maps. The configuration selected for this analysis is a very heterogeneous PWR high conversion core with fissile (MOX fuel) and fertile zones (depleted uranium). Furthermore, a tight pitch lattice is selcted (to increase conversion of 238U in 239Pu) that leads to harder neutron spectrum compared to standard PWR assembly. In these conditions two main subjects will be discussed: the Monte Carlo variance calculation and the assessment of the diffusion operator with two energy groups for the core calculation.

  7. Zebra: An advanced PWR lattice code

    SciTech Connect

    Cao, L.; Wu, H.; Zheng, Y.

    2012-07-01

    This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precision and a high efficiency. (authors)

  8. RBMK-LOCA-Analyses with the ATHLET-Code

    SciTech Connect

    Petry, A.; Domoradov, A.; Finjakin, A.

    1995-09-01

    The scientific technical cooperation between Germany and Russia includes the area of adaptation of several German codes for the Russian-designed RBMK-reactor. One point of this cooperation is the adaptation of the Thermal-Hydraulic code ATHLET (Analyses of the Thermal-Hydraulics of LEaks and Transients), for RBMK-specific safety problems. This paper contains a short description of a RBMK-1000 reactor circuit. Furthermore, the main features of the thermal-hydraulic code ATHLET are presented. The main assumptions for the ATHLET-RBMK model are discussed. As an example for the application, the results of test calculations concerning a guillotine type rupture of a distribution group header are presented and discussed, and the general analysis conditions are described. A comparison with corresponding RELAP-calculations is given. This paper gives an overview on some problems posed and experience by application of Western best-estimate codes for RBMK-calculations.

  9. MELCOR code analysis of a severe accident LOCA at Peach Bottom Plant

    SciTech Connect

    Carbajo, J.J. )

    1993-01-01

    A design-basis loss-of-coolant accident (LOCA) concurrent with complete loss of the emergency core cooling systems (ECCSs) has been analyzed for the Peach Bottom atomic station unit 2 using the MELCOR code, version 1.8.1. The purpose of this analysis is to calculate best-estimate times for the important events of this accident sequence and best-estimate source terms. Calculated pressures and temperatures at the beginning of the transient have been compared to results from the Peach Bottom final safety analysis report (FSAR). MELCOR-calculated source terms have been compared to source terms reported in the NUREG-1465 draft.

  10. SPACE code simulation of cold leg small break LOCA in the ATLAS integral test

    SciTech Connect

    Kim, B. J.; Kim, H. T.; Kim, J.; Kim, K. D.

    2012-07-01

    SPACE code is a system analysis code for pressurized water reactors. This code uses a two-fluid and three-field model. For a few years, intensive validations have been performed to secure the prediction accuracy of models and correlations for two-phase flow and heat transfer. Recently, the code version 1.0 was released. This study is to see how well SPACE code predicts thermal hydraulic phenomena of an integral effect test. The target experiment is a cold leg small break LOCA in the ATLAS facility, which has the same two-loop features as APR1400. Predicted parameters were compared with experimental observations. (authors)

  11. Experimental study of head loss and filtration for LOCA debris

    SciTech Connect

    Rao, D.V.; Souto, F.J.

    1996-02-01

    A series of controlled experiments were conducted to obtain head loss and filtration characteristics of debris beds formed of NUKON{trademark} fibrous fragments, and obtain data to validate the semi-theoretical head loss model developed in NUREG/CR-6224. A thermally insulated closed-loop test set-up was used to conduct experiments using beds formed of fibers only and fibers intermixed with particulate debris. A total of three particulate mixes were used to simulate the particulate debris. The head loss data were obtained for theoretical fiber bed thicknesses of 0.125 inches to 4.0 inches; approach velocities of 0.15 to 1.5 ft/s; temperatures of 75 F and 125 F; and sludge-to-fiber nominal concentration ratios of 0 to 60. Concentration measurements obtained during the first flushing cycle were used to estimate the filtration efficiencies of the debris beds. For test conditions where the beds are fairly uniform, the head loss data were predictable within an acceptable accuracy range by the semi-theoretical model. The model was equally applicable for both pure fiber beds and the mixed beds. Typically the model over-predicted the head losses for very thin beds and for thin beds at high sludge-to-fiber mass ratios. This is attributable to the non-uniformity of such debris beds. In this range the correlation can be interpreted to provide upper bound estimates of head loss. This is pertinent for loss of coolant accidents in boiling water reactors.

  12. Continuation and bifurcation analysis of large-scale dynamical systems with LOCA.

    SciTech Connect

    Salinger, Andrew Gerhard; Phipps, Eric Todd; Pawlowski, Roger Patrick

    2010-06-01

    Dynamical systems theory provides a powerful framework for understanding the behavior of complex evolving systems. However applying these ideas to large-scale dynamical systems such as discretizations of multi-dimensional PDEs is challenging. Such systems can easily give rise to problems with billions of dynamical variables, requiring specialized numerical algorithms implemented on high performance computing architectures with thousands of processors. This talk will describe LOCA, the Library of Continuation Algorithms, a suite of scalable continuation and bifurcation tools optimized for these types of systems that is part of the Trilinos software collection. In particular, we will describe continuation and bifurcation analysis techniques designed for large-scale dynamical systems that are based on specialized parallel linear algebra methods for solving augmented linear systems. We will also discuss several other Trilinos tools providing nonlinear solvers (NOX), eigensolvers (Anasazi), iterative linear solvers (AztecOO and Belos), preconditioners (Ifpack, ML, Amesos) and parallel linear algebra data structures (Epetra and Tpetra) that LOCA can leverage for efficient and scalable analysis of large-scale dynamical systems.

  13. Analysis of LOCA Scenarios in the NIST Research Reactor Before and After Fuel Conversion

    SciTech Connect

    Baek, J. S.; Cheng, L. Y.; Diamond, D.

    2015-08-30

    An analysis has been done of hypothetical loss-of-coolant-accidents (LOCAs) in the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The purpose of the analysis is to determine if the peak clad temperature remains below the Safety Limit, which is the blister temperature for the fuel. The configuration of the NBSR considered in the analysis is that projected for the future when changes will be made so that shutdown pumps do not operate when a LOCA signal is detected. The analysis was done for the present core with high-enriched uranium (HEU) fuel and with the proposed low-enriched uranium (LEU) fuel that would be used when the NBSR is converted from one to the other. The analysis consists of two parts. The first examines how the water would drain from the primary system following a break and the possibility for the loss of coolant from within the fuel element flow channels. This work is performed using the TRACE system thermal-hydraulic code. The second looks at the fuel clad temperature as a function of time given that the water may have drained from many of the flow channels and the water in the vessel is in a quasi-equilibrium state. The temperature behavior is investigated using the three-dimensional heat conduction code HEATING7.3. The results in all scenarios considered for both HEU and LEU fuel show that the peak clad temperature remains below the blister temperature.

  14. High Cycle Thermal Fatigue in French PWR

    SciTech Connect

    Blondet, Eric; Faidy, Claude

    2002-07-01

    Different fatigue-related incidents which occurred in the world on the auxiliary lines of the reactor coolant system (SIS, RHR, CVC) have led EDF to search solutions in order to avoid or to limit consequences of thermodynamic phenomenal (Farley-Tihange, free convection loop and stratification, independent thermal cycling). Studies are performed on mock-up and compared with instrumentation on nuclear power stations. At the present time, studies allow EDF to carry out pipe modifications and to prepare specifications and recommendations for next generation of nuclear power plants. In 1998, a new phenomenal appeared on RHR system in Civaux. A crack was discovered in an area where hot and cold fluids (temperature difference of 140 deg. C) were mixed. Metallurgic studies concluded that this crack was caused by high cycle thermal fatigue. Since 1998, EDF is making an inventory of all mixing areas in French PWR on basis of criteria. For all identified areas, a method was developed to improve the first classifying and to keep back only potential damage pipes. Presently, studies are performing on the charging line nozzle connected to the reactor pressure vessel. In order to evaluate the load history, a mock-up has been developed and mechanical calculations are realised on this nozzle. The paper will make an overview of EDF conclusions on these different points: - dead legs and vortex in a no flow connected line; - stratification; - mixing tees with high {delta}T. (authors)

  15. CRACK GROWTH RESPONSE OF ALLOY 152 AND 52 WELD METALS IN SIMULATED PWR PRIMARY WATER

    SciTech Connect

    Toloczko, Mychailo B.; Bruemmer, Stephen M.

    2009-12-01

    The crack growth response of alloy 152 and 52 weld metals has been measured in simulated PWR primary water at both high (325-350 C) and low (50 C) temperatures. Tests were performed on samples machined from alloy 152 or 52 mockup welds. Propagation rates under cycle + hold and constant K conditions at high temperatures show stable, but extremely low SCC growth rates. The most significant intergranular cracking occurred during cycling at 50 C, particularly for the alloy 152 weld metal at high stress intensity.

  16. Nano-cavities observed in a 316SS PWR Flux Thimble Tube Irradiated to 33 and 70 dpa

    SciTech Connect

    Edwards, Danny J.; Garner, Francis A.; Bruemmer, Stephen M.; Efsing, Pal G.

    2009-02-28

    The radiation-induced microstructure of a cold-worked 316SS flux thimble tube from an operating pressurized water reactor (PWR) was examined. Two irradiated conditions, 33 dpa at 290ºC and 70 dpa at 315ºC were examined by transmission electron microscopy. The original dislocation network had completely disappeared and was replaced by fine dispersions of Frank loops and small nano-cavities at high densities. The latter appear to be bubbles containing high levels of helium and hydrogen. An enhanced distribution of these nano-cavities was found at grain boundaries and may play a role in the increased susceptibility of the irradiated 316SS to intergranular failure of specimens from this tube during post-irradiation slow strain rate testing in PWR water conditions.

  17. Calculation of sample problems related to two-phase flow blowdown transients in pressure relief piping of a PWR pressurizer

    SciTech Connect

    Shin, Y.W.; Wiedermann, A.H.

    1984-02-01

    A method was published, based on the integral method of characteristics, by which the junction and boundary conditions needed in computation of a flow in a piping network can be accurately formulated. The method for the junction and boundary conditions formulation together with the two-step Lax-Wendroff scheme are used in a computer program; the program in turn, is used here in calculating sample problems related to the blowdown transient of a two-phase flow in the piping network downstream of a PWR pressurizer. Independent, nearly exact analytical solutions also are obtained for the sample problems. Comparison of the results obtained by the hybrid numerical technique with the analytical solutions showed generally good agreement. The good numerical accuracy shown by the results of our scheme suggest that the hybrid numerical technique is suitable for both benchmark and design calculations of PWR pressurizer blowdown transients.

  18. Sample problem calculations related to two-phase flow transients in a PWR relief-piping network

    SciTech Connect

    Shin, Y.W.; Wiedermann, A.H.

    1981-03-01

    Two sample problems related with the fast transients of water/steam flow in the relief line of a PWR pressurizer were calculated with a network-flow analysis computer code STAC (System Transient-Flow Analysis Code). The sample problems were supplied by EPRI and are designed to test computer codes or computational methods to determine whether they have the basic capability to handle the important flow features present in a typical relief line of a PWR pressurizer. It was found necessary to implement into the STAC code a number of additional boundary conditions in order to calculate the sample problems. This includes the dynamics of the fluid interface that is treated as a moving boundary. This report describes the methodologies adopted for handling the newly implemented boundary conditions and the computational results of the two sample problems. In order to demonstrate the accuracies achieved in the STAC code results, analytical solutions are also obtained and used as a basis for comparison.

  19. Influence Of Low Boron Core Design On PWR Transient Behavior

    SciTech Connect

    Aleksandrov Papukchiev, Angel; Yubo Liu; Schaefer, Anselm

    2006-07-01

    In conventional pressurized water reactor (PWR) designs, the concentration of boron in primary coolant is limited by the requirement of having a negative moderator density coefficient. As high boron concentrations have significant impact on reactivity feedback properties, design changes to reduce boron concentration in the reactor coolant are of general interest in view of improving PWR inherent safety. In the framework of an investigation into the feasibility of low boron design, a PWR core configuration based on fuel with higher gadolinium (Gd) content has been developed which permits to reduce the natural boron concentration at begin of cycle (BOC) by approx. 50% compared to current German PWR technology. For the assessment of the potential safety advantages, a Loss-of-Feedwater Anticipated Transient Without Scram (ATWS LOFW) has been simulated with the system code ATHLET for two PWR core designs: a low boron design and a standard core design. The most significant difference in the transient performance of both designs is the total primary fluid mass released through the pressurizer (PRZ) valves. It is reduced by a factor of four for the low boron reactor, indicating its improved density reactivity feedback. (authors)

  20. Analysis of a rod withdrawal in a PWR core with the neutronic- thermalhydraulic coupled code RELAP/PARCS and RELAP/VALKIN

    SciTech Connect

    Miro, R.; Maggini, F.; Barrachina, T.; Verdu, G.; Gomez, A.; Ortego, A.; Murillo, J. C.

    2006-07-01

    The Reactor Ejection Accident (REA) belongs to the Reactor Initiated Accidents (RIA) category of accidents and it is part of the licensing basis accident analyses required for pressure water reactors (PWR). The REA at hot zero power (HZP) is characterized by a single rod ejection from a core position with a very low power level. The evolution consists basically of a continuous reactivity insertion. The main feature limiting the consequences of the accident in a PWR is the Doppler Effect. To check the performance of the coupled code RELAP5/PARCS2.5 and RELAP5/VALKIN a REA in Trillo NPP is simulated. These analyses will allow knowing more accurately the PWR real plant phenomenology in the RIA most limiting conditions. (authors)

  1. The BWR lower head response during a large-break LOCA with core damage

    SciTech Connect

    Alammar, M.A.

    1996-12-31

    Some of the important issues in severe accident management guidelines development deal with estimating the time to lower head vessel failure after core damage and the time window available for water injection that would prevent vessel failure. These issues are obviously scenario dependent, but bounding estimates are needed. The scenario chosen for this purpose was a design-basis accident (DBA) loss-of-coolant accident (LOCA) because it was one of the contributors to the Oyster Creek containment failure frequency. Oyster Creek is a 1930-MW(thermal) boiling water reactor (BWR)-2. The lower head response models have improved since the Three Mile Island unit 2 (TMI-2) vessel investigation project (VIP) results became known, specifically the addition of rapid- and slow-cooling models. These mechanisms were found to have taken place in the TMI-2 lower head during debris cooldown and were important contributors in preventing vessel failure.

  2. Interfacing systems LOCA (loss-of-coolant accidents): Pressurized water reactors

    SciTech Connect

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1989-02-01

    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Regulatory Research, Reactor and Plant Safety Issues Branch, Division of Reactor and Plant Systems, US Nuclear Regulatory Commission. This study was requested by the NRC in order to provide a technical basis for the resolution of Generic Issue 105 ''Interfacing LOCA at LWRs.'' This report deals with pressurized water reactors (PWRs). A parallel report was also accomplished for boiling water reactors. This study focuses on three representative PWRs and extrapolates the plant-specific findings for their generic applicability. In addition, a generic analysis was performed to investigate the cost-benefit aspects of imposing a testing program that would require some minimum level of leak testing of the pressure isolation valves on plants that presently have no such requirements. 28 refs., 31 figs., 64 tabs.

  3. Leak before break application in French PWR plants under operation

    SciTech Connect

    Faidy, C.

    1997-04-01

    Practical applications of the leak-before break concept are presently limited in French Pressurized Water Reactors (PWR) compared to Fast Breeder Reactors. Neithertheless, different fracture mechanic demonstrations have been done on different primary, auxiliary and secondary PWR piping systems based on similar requirements that the American NUREG 1061 specifications. The consequences of the success in different demonstrations are still in discussion to be included in the global safety assessment of the plants, such as the consequences on in-service inspections, leak detection systems, support optimization,.... A large research and development program, realized in different co-operative agreements, completes the general approach.

  4. Sensitivity of risk parameters to human errors for a PWR

    SciTech Connect

    Samanta, P.; Hall, R. E.; Kerr, W.

    1980-01-01

    Sensitivities of the risk parameters, emergency safety system unavailabilities, accident sequence probabilities, release category probabilities and core melt probability were investigated for changes in the human error rates within the general methodological framework of the Reactor Safety Study for a Pressurized Water Reactor (PWR). Impact of individual human errors were assessed both in terms of their structural importance to core melt and reliability importance on core melt probability. The Human Error Sensitivity Assessment of a PWR (HESAP) computer code was written for the purpose of this study.

  5. Enriched boric acid for PWR application: Cost evaluation study for a twin-unit PWR

    SciTech Connect

    Battaglia, J.A.; Waters, R.M.; von Hollen, J.M.; Lamatia, L.A.; Bergmann, C.A.; Ditommaso, S.M. . Nuclear and Advanced Technology Div.)

    1989-09-01

    In the nuclear industry boric acid dissolved in the reactor coolant is used as a soluble reactivity control agent. Reactivity control in nuclear plants is also provided by neutron absorbing control rods. This neutron absorbing duty is distributed between the control rods and soluble boric acid in such a way as to provide the most economical split. Typically, the control rods take care of rapid reactivity changes and the boric acid handles the slower long term control of reactivity by varying the boric acid concentrations within the reactor coolant. In PWR reactor plants the dissolved boric acid is referred to as a soluble poison or chemical shim due to the high capacity for thermal neutron capture exhibited by the boron-10 isotope contained in the boric acid molecule. This slow reactivity change or chemical shim control would otherwise have to be performed using control rods, a much more expensive proposition. Reactivity changes are controlled by the B-10 isotope by virtue of its very high cross section (3837 barns) for thermal neutron absorption. However, natural boron contains only 20 atom percent of the B-10 isotope and essentially all the remaining 80 percent as the B-11 isotope. The B-11 isotope of cross section .005 barns is essentially of no use as a neutron absorber. Since B-11 makes up the bulk of the total boron present and contributes little to the nuclear operation it would seem logical to eliminate this isotope of boron from the boric acid molecule. In so doing boric acid concentration in operating PWR plants need only be a fraction of that existing to accomplish identical nuclear operations. However, to achieve the elimination of B-11 from NBA (Natural Boric Acid) an isotope separation must be performed. 4 refs., 25 figs., 17 tabs.

  6. Optimization of burnable poison design for Pu incineration in fully fertile free PWR core

    SciTech Connect

    Fridman, E.; Shwageraus, E.; Galperin, A.

    2006-07-01

    The design challenges of the fertile-free based fuel (FFF) can be addressed by careful and elaborate use of burnable poisons (BP). Practical fully FFF core design for PWR reactor has been reported in the past [1]. However, the burnable poison option used in the design resulted in significant end of cycle reactivity penalty due to incomplete BP depletion. Consequently, excessive Pu loading were required to maintain the target fuel cycle length, which in turn decreased the Pu burning efficiency. A systematic evaluation of commercially available BP materials in all configurations currently used in PWRs is the main objective of this work. The BP materials considered are Boron, Gd, Er, and Hf. The BP geometries were based on Wet Annular Burnable Absorber (WABA), Integral Fuel Burnable Absorber (IFBA), and Homogeneous poison/fuel mixtures. Several most promising combinations of BP designs were selected for the full core 3D simulation. All major core performance parameters for the analyzed cases are very close to those of a standard PWR with conventional UO{sub 2} fuel including possibility of reactivity control, power peaking factors, and cycle length. The MTC of all FFF cores was found at the full power conditions at all times and very close to that of the UO{sub 2} core. The Doppler coefficient of the FFF cores is also negative but somewhat lower in magnitude compared to UO{sub 2} core. The soluble boron worth of the FFF cores was calculated to be lower than that of the UO{sub 2} core by about a factor of two, which still allows the core reactivity control with acceptable soluble boron concentrations. The main conclusion of this work is that judicial application of burnable poisons for fertile free fuel has a potential to produce a core design with performance characteristics close to those of the reference PWR core with conventional UO{sub 2} fuel. (authors)

  7. Probability of pipe fracture in the primary coolant loop of a PWR plant. Volume 5. Probabilistic fracture mechanics analysis. Load Combination Program Project I final report

    SciTech Connect

    Harris, D.O.; Lim, E.Y.; Dedhia, D.D.

    1981-06-01

    The primary purpose of the Load Combination Program covered in this report is to estimate the probability of a seismic induced LOCA in the primary piping of a commercial pressurized water reactor (PWR). Best estimates, rather than upper bound results are desired. This was accomplished by use of a fracture mechanics model that employs a random distribution of initial cracks in the piping welds. Estimates of the probability of cracks of various sizes initially existing in the welds are combined with fracture mechanics calculations of how these cracks would grow during service. This then leads to direct estimates of the probability of failure as a function of time and location within the piping system. The influence of varying the stress history to which the piping is subjected is easily determined. Seismic events enter into the analysis through the stresses they impose on the pipes. Hence, the influence of various seismic events on the piping failure probability can be determined, thereby providing the desired information.

  8. Method of characteristics - Based sensitivity calculations for international PWR benchmark

    SciTech Connect

    Suslov, I. R.; Tormyshev, I. V.; Komlev, O. G.

    2013-07-01

    Method to calculate sensitivity of fractional-linear neutron flux functionals to transport equation coefficients is proposed. Implementation of the method on the basis of MOC code MCCG3D is developed. Sensitivity calculations for fission intensity for international PWR benchmark are performed. (authors)

  9. Comparison of Removed Fuel Compositions of CANDLE, PWR, and FBR

    SciTech Connect

    Nagata, Akito; Sekimoto, Hiroshi

    2007-07-01

    A new reactor burnup strategy CANDLE was proposed, where shapes of neutron flux, nuclide densities and power density distributions remain constant but move to an axial direction. Application of this burnup strategy to neutron rich fast reactors makes excellent performances. Only natural or depleted uranium is required for the replaced fresh fuels. About 40% of natural or depleted uranium undergoes fission. In this paper, spent fuels of PWR, FBR and CANDLE reactor are compared. Fresh fuels of PWR, FBR and CANDLE reactor are 4.1% enriched uranium (UO{sub 2}), MOX with 18.5% plutonium enrichment and natural uranium nitride (natural-UN), respectively. In once-through fuel cycle point of view, low disposal amount for high energy is better and CANDLE reactor can decrease this amount more than other reactors, especially it is only one-tenth of PWR fuel. Also, it can decrease MA and this amount is 0.4 times of PWR. Total FP amount of each reactor is nearly same. However, LLFP amount of CANDLE reactor is the largest. (authors)

  10. Implementation of non-condensable gases condensation suppression model into the WCOBRA/TRAC-TF2 LOCA safety evaluation code

    SciTech Connect

    Liao, J.; Cao, L.; Ohkawa, K.; Frepoli, C.

    2012-07-01

    The non-condensable gases condensation suppression model is important for a realistic LOCA safety analysis code. A condensation suppression model for direct contact condensation was previously developed by Westinghouse using first principles. The model is believed to be an accurate description of the direct contact condensation process in the presence of non-condensable gases. The Westinghouse condensation suppression model is further revised by applying a more physical model. The revised condensation suppression model is thus implemented into the WCOBRA/TRAC-TF2 LOCA safety evaluation code for both 3-D module (COBRA-TF) and 1-D module (TRAC-PF1). Parametric study using the revised Westinghouse condensation suppression model is conducted. Additionally, the performance of non-condensable gases condensation suppression model is examined in the ACHILLES (ISP-25) separate effects test and LOFT L2-5 (ISP-13) integral effects test. (authors)

  11. The behavior of ANGRA 2 nuclear power plant core for a small break LOCA simulated with RELAP5 code

    NASA Astrophysics Data System (ADS)

    Sabundjian, Gaianê; Andrade, Delvonei A.; Belchior, Antonio, Jr.; da Silva Rocha, Marcelo; Conti, Thadeu N.; Torres, Walmir M.; Macedo, Luiz A.; Umbehaun, Pedro E.; Mesquita, Roberto N.; Masotti, Paulo H. F.; de Souza Lima, Ana Cecília

    2013-05-01

    This work discusses the behavior of Angra 2 nuclear power plant core, for a postulate Loss of Coolant Accident (LOCA) in the primary circuit for Small Break Loss Of Coolant Accident (SBLOCA). A pipe break of the hot leg Emergency Core Cooling System (ECCS) was simulated with RELAP 5 code. The considered rupture area is 380 cm2, which represents 100% of the ECCS pipe flow area. Results showed that the cooling is enough to guarantee the integrity of the reactor core.

  12. Parametric study of the potential for BWR ECCS strainer blockage due to LOCA generated debris. Final report

    SciTech Connect

    Zigler, G.; Brideau, J.; Rao, D.V.; Shaffer, C.; Souto, F.; Thomas, W.

    1995-10-01

    This report documents a plant-specific study for a BWR/4 with a Mark I containment that evaluated the potential for LOCA generated debris and the probability of losing long term recirculation capability due ECCS pump suction strainer blockage. The major elements of this study were: (1) acquisition of detailed piping layouts and installed insulation details for a reference BWR; (2) analysis of plant specific piping weld failure probabilities to estimate the LOCA frequency; (3) development of an insulation and other debris generation and drywell transport models for the reference BWR; (4) modeling of debris transport in the suppression pool; (5) development of strainer blockage head loss models for estimating loss of NPSH margin; (6) estimation of core damage frequency attributable to loss of ECCS recirculation capability following a LOCA. Elements 2 through 5 were combined into a computer code, BLOCKAGE 2.3. A point estimate of overall DEGB pipe break frequency (per Rx-year) of 1.59E-04 was calculated for the reference plant, with a corresponding overall ECCS loss of NPSH frequency (per Rx-year) of 1.58E-04. The calculated point estimate of core damage frequency (per Rx-year) due to blockage related accident sequences for the reference BWR ranged from 4.2E-06 to 2.5E-05. The results of this study show that unacceptable strainer blockage and loss of NPSH margin can occur within the first few minutes after ECCS pumps achieve maximum flows when the ECCS strainers are exposed to LOCA generated fibrous debris in the presence of particulates (sludge, paint chips, concrete dust). Generic or unconditional extrapolation of these reference plant calculated results should not be undertaken.

  13. The impact of radiolytic yield on the calculated ECP in PWR primary coolant circuits

    NASA Astrophysics Data System (ADS)

    Urquidi-Macdonald, Mirna; Pitt, Jonathan; Macdonald, Digby D.

    2007-05-01

    A code, PWR-ECP, comprising chemistry, radiolysis, and mixed potential models has been developed to calculate radiolytic species concentrations and the corrosion potential of structural components at closely spaced points around the primary coolant circuits of pressurized water reactors (PWRs). The pH( T) of the coolant is calculated at each point of the primary-loop using a chemistry model for the B(OH) 3 + LiOH system. Although the chemistry/radiolysis/mixed potential code has the ability to calculate the transient reactor response, only the reactor steady state condition (normal operation) is discussed in this paper. The radiolysis model is a modified version of the code previously developed by Macdonald and coworkers to model the radiochemistry and corrosion properties of boiling water reactor primary coolant circuits. In the present work, the PWR-ECP code is used to explore the sensitivity of the calculated electrochemical corrosion potential (ECP) to the set of radiolytic yield data adopted; in this case, one set had been developed from ambient temperature experiments and another set reported elevated temperatures data. The calculations show that the calculated ECP is sensitive to the adopted values for the radiolytic yields.

  14. Survey of the power ramp performance testing of KWU'S PWR UO 2, fuel

    NASA Astrophysics Data System (ADS)

    Ga¨rtner, M.; Fischer, G.

    1987-06-01

    To determine the power ramp performance of KWU's PWR UO 2 fuel, 134 fuel rodlets with burnups of up to 46 GWd/ t (U) and several fuel assemblies with 19 to 30 GWd/t (U) burnup were ramped in power in the research reactors HFR Petten/The Netherlands and R2 Studsvik/Sweden and in the power plants KWO and KWB-A/Germany, respectively. The power ramp tests demonstrate decreasing resistance of the PWR fuel rods to PCI (pellet-to-clad interaction) up to fuel burnups of 35 GWd/t (U) and a reversal effect at higher burnups. The fuel rods can be operated free of defects at fast power transients to linear heat generation rates of up to 400 W/cm, at least.Power levels of up to 490 W/cm can be reached without defects by reducing the ramp rate. After reshuffling according to an out-in scheme, 1-cycle fuel assemblies may return to rod powers of up to 480 W/cm with a power increase rate of up to 10 W/(cm min) without fuel rod damage. Set points basing on these test results and incorporated into the power distribution control and power density limitation system of KWU's advanced power plants guarantee safe plant operation under normal and load follow operating conditions.

  15. Experiment data report for LOFT anticipated transient-without-scram Experiment L9-3. [PWR

    SciTech Connect

    Bayless, P.D.; Divine, J.M.

    1982-05-01

    Selected pertinent and uninterpreted data from the third anticipated transient with multiple failures experiment (Experiment L9-3) conducted in the Loss-of-Fluid Test (LOFT) facility are presented. The LOFT facility is a 50-MW(t) pressurized water reactor (PWR) system with instruments that measure and provide data on the system thermal-hydraulic and nuclear conditions. The operation of the LOFT system is typical of large (approx. 1000 MW(e)), commercial PWR operations. Experiment L9-3 simulated a loss-of-feedwater anticipated transient without scram. The loss-of-feedwater accident led to an increase in the primary coolant system temperature and pressure. Both the experiment power-operated relief valve (PORV) and safety relief valve opened and were able to limit and control the pressure transient. The plant was then recovered with the control rods still withdrawn by injecting 7200-ppM borated water, manually cycling the PORV and feeding and bleeding the steam generator.

  16. Analysis of loss of off-site power with a PWR at shutdown

    SciTech Connect

    Chu, T.L.; Yoon, W.H.; Fitzpatrick, R.G.

    1987-01-01

    In many probabilistic risk assessments (PRAs), loss of offsite power (LOOP) when a nuclear power plant is operating was found to be a significant contributor to core damage. The purpose of this study is to provide an analysis of a LOOP event that occurs while a pressurized water reactor (PWR) is shut down. The importance of such an analysis was recognized as part of a study to evaluate the core damage frequency due to a loss of decay heat removal (DHR) capability during an outage. When a PWR is in a shutdown condition, there are relatively few technical specification requirements on the operability of safety systems. In fact, some safety systems are intentionally disabled, i.e., the safety injection system and nonoperating charging pumps. Another problem when the reactor is shut down is that the reactor coolant system (RCS) may be partially drained and the steam generators may be unavailable. To determine the time available for operator actions, given that a LOOP occurs during shutdown and the DHR capability is lost, a simple thermal model has been developed. Similar calculations have been performed for other phases of refueling and maintenance outages. A total core damage frequency due to LOOP while the plant is in shutdown has been calculated to be 5.9 x 10/sup -6//yr. This is approximately twice the core damage frequency calculated for LOOP when the plant is at power.

  17. Evaluation of stress corrosion cracking of irradiated 304L stainless steel in PWR environment using heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.

    2016-08-01

    IASCC has been a major concern regarding the structural and functional integrity of core internals of PWR's, especially baffle-to-former bolts. Despite numerous studies over the past few decades, additional evaluation of the parameters influencing IASCC is still needed for an accurate understanding and modeling of this phenomenon. In this study, Fe irradiation at 450 °C was used to study the cracking susceptibility of 304 L austenitic stainless steel. After 10 MeV Fe irradiation to 5 dpa, irradiation-induced damage in the microstructure was characterized and quantified along with nano-hardness measurements. After 4% plastic strain in a PWR environment, quantitative information on the degree of strain localization, as determined by slip-line spacing, was obtained using SEM. Fe-irradiated material strained to 4% in a PWR environment exhibited crack initiation sites that were similar to those that occur in neutron- and proton-irradiated materials, which suggests that Fe irradiation may be a representative means for studying IASCC susceptibility. Fe-irradiated material subjected to 4% plastic strain in an inert argon environment did not exhibit any cracking, which suggests that localized deformation is not in itself sufficient for initiating cracking for the irradiation conditions used in this study.

  18. Criticality Safety and Sensitivity Analyses of PWR Spent Nuclear Fuel Repository Facilities

    SciTech Connect

    Maucec, Marko; Glumac, Bogdan

    2005-01-15

    Monte Carlo criticality safety and sensitivity calculations of pressurized water reactor (PWR) spent nuclear fuel repository facilities for the Slovenian nuclear power plant Krsko are presented. The MCNP4C code was deployed to model and assess the neutron multiplication parameters of pool-based storage and dry transport containers under various loading patterns and moderating conditions. To comply with standard safety requirements, fresh 4.25% enriched nuclear fuel was assumed. The impact of potential optimum moderation due to water steam or foam formation as well as of different interpretations, of neutron multiplication through varying the system boundary conditions was elaborated. The simulations indicate that in the case of compact (all rack locations filled with fresh fuel) single or 'double tiering' loading, the supercriticality can occur under the conditions of enhanced neutron moderation, due to accidentally reduced density of cooling water. Under standard operational conditions the effective multiplication factor (k{sub eff}) of pool-based storage facility remains below the specified safety limit of 0.95. The nuclear safety requirements are fulfilled even when the fuel elements are arranged at a minimal distance, which can be initiated, for example, by an earthquake. The dry container in its recommended loading scheme with 26 fuel elements represents a safe alternative for the repository of fresh fuel. Even in the case of complete water flooding, the k{sub eff} remains below the specified safety level of 0.98. The criticality safety limit may however be exceeded with larger amounts of loaded fuel assemblies (i.e., 32). Additional Monte Carlo criticality safety analyses are scheduled to consider the 'burnup credit' of PWR spent nuclear fuel, based on the ongoing calculation of typical burnup activities.

  19. Improvement of COBRA-TF for modeling of PWR cold- and hot-legs during reactor transients

    NASA Astrophysics Data System (ADS)

    Salko, Robert K.

    COBRA-TF is a two-phase, three-field (liquid, vapor, droplets) thermal-hydraulic modeling tool that has been developed by the Pacific Northwest Laboratory under sponsorship of the NRC. The code was developed for Light Water Reactor analysis starting in the 1980s; however, its development has continued to this current time. COBRA-TF still finds wide-spread use throughout the nuclear engineering field, including nuclear-power vendors, academia, and research institutions. It has been proposed that extension of the COBRA-TF code-modeling region from vessel-only components to Pressurized Water Reactor (PWR) coolant-line regions can lead to improved Loss-of-Coolant Accident (LOCA) analysis. Improved modeling is anticipated due to COBRA-TF's capability to independently model the entrained-droplet flow-field behavior, which has been observed to impact delivery to the core region[1]. Because COBRA-TF was originally developed for vertically-dominated, in-vessel, sub-channel flow, extension of the COBRA-TF modeling region to the horizontal-pipe geometries of the coolant-lines required several code modifications, including: • Inclusion of the stratified flow regime into the COBRA-TF flow regime map, along with associated interfacial drag, wall drag and interfacial heat transfer correlations, • Inclusion of a horizontal-stratification force between adjacent mesh cells having unequal levels of stratified flow, and • Generation of a new code-input interface for the modeling of coolant-lines. The sheer number of COBRA-TF modifications that were required to complete this work turned this project into a code-development project as much as it was a study of thermal-hydraulics in reactor coolant-lines. The means for achieving these tasks shifted along the way, ultimately leading the development of a separate, nearly completely independent one-dimensional, two-phase-flow modeling code geared toward reactor coolant-line analysis. This developed code has been named CLAP, for

  20. Improvement of COBRA-TF for modeling of PWR cold- and hot-legs during reactor transients

    NASA Astrophysics Data System (ADS)

    Salko, Robert K.

    COBRA-TF is a two-phase, three-field (liquid, vapor, droplets) thermal-hydraulic modeling tool that has been developed by the Pacific Northwest Laboratory under sponsorship of the NRC. The code was developed for Light Water Reactor analysis starting in the 1980s; however, its development has continued to this current time. COBRA-TF still finds wide-spread use throughout the nuclear engineering field, including nuclear-power vendors, academia, and research institutions. It has been proposed that extension of the COBRA-TF code-modeling region from vessel-only components to Pressurized Water Reactor (PWR) coolant-line regions can lead to improved Loss-of-Coolant Accident (LOCA) analysis. Improved modeling is anticipated due to COBRA-TF's capability to independently model the entrained-droplet flow-field behavior, which has been observed to impact delivery to the core region[1]. Because COBRA-TF was originally developed for vertically-dominated, in-vessel, sub-channel flow, extension of the COBRA-TF modeling region to the horizontal-pipe geometries of the coolant-lines required several code modifications, including: • Inclusion of the stratified flow regime into the COBRA-TF flow regime map, along with associated interfacial drag, wall drag and interfacial heat transfer correlations, • Inclusion of a horizontal-stratification force between adjacent mesh cells having unequal levels of stratified flow, and • Generation of a new code-input interface for the modeling of coolant-lines. The sheer number of COBRA-TF modifications that were required to complete this work turned this project into a code-development project as much as it was a study of thermal-hydraulics in reactor coolant-lines. The means for achieving these tasks shifted along the way, ultimately leading the development of a separate, nearly completely independent one-dimensional, two-phase-flow modeling code geared toward reactor coolant-line analysis. This developed code has been named CLAP, for

  1. FLUOLE-2: An Experiment for PWR Pressure Vessel Surveillance

    NASA Astrophysics Data System (ADS)

    Thiollay, Nicolas; Di Salvo, Jacques; Sandrin, Charlotte; Soldevila, Michel; Bourganel, Stéphane; Fausser, Clément; Destouches, Christophe; Blaise, Patrick; Domergue, Christophe; Philibert, Hervé; Bonora, Jonathan; Gruel, Adrien; Geslot, Benoit; Lamirand, Vincent; Pepino, Alexandra; Roche, Alain; Méplan, Olivier; Ramdhane, Mourad

    2016-02-01

    FLUOLE-2 is a benchmark-type experiment dedicated to 900 and 1450 MWe PWR vessels surveillance dosimetry. This two-year program started in 2014 and will end in 2015. It will provide precise experimental data for the validation of the neutron spectrum propagation calculation from core to vessel. It is composed of a square core surrounded by a stainless steel baffe and internals: PWR barrel is simulated by steel structures leading to different steel-water slides; two steel components stand for a surveillance capsule holder and for a part of the pressure vessel. Measurement locations are available on the whole experimental structure. The experimental knowledge of core sources will be obtained by integral gamma scanning measurements directly on fuel pins. Reaction rates measured by calibrated fission chambers and a large set of dosimeters will give information on the neutron energy and spatial distributions. Due to the low level neutron flux of EOLE ZPR a special, high efficiency, calibrated gamma spectrometry device will be used for some dosimeters, allowing to measure an activity as low as 7. 10-2 Bq per sample. 103mRh activities will be measured on an absolute calibrated X spectrometry device. FLUOLE-2 experiment goal is to usefully complete the current experimental benchmarks database used for the validation of neutron calculation codes. This two-year program completes the initial FLUOLE program held in 2006-2007 in a geometry representative of 1300 MWe PWR.

  2. Design study of long-life PWR using thorium cycle

    NASA Astrophysics Data System (ADS)

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-01

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that 231Pa better than 237Np as burnable poisons in thorium fuel system. Thorium oxide system with 8% 233U enrichment and 7.6˜ 8% 231Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1% Δk/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53% Δk/k and reduced power peaking during its operation.

  3. Design study of long-life PWR using thorium cycle

    SciTech Connect

    Subkhi, Moh. Nurul; Su'ud, Zaki; Waris, Abdul

    2012-06-06

    Design study of long-life Pressurized Water Reactor (PWR) using thorium cycle has been performed. Thorium cycle in general has higher conversion ratio in the thermal spectrum domain than uranium cycle. Cell calculation, Burn-up and multigroup diffusion calculation was performed by PIJ-CITATION-SRAC code using libraries based on JENDL 3.2. The neutronic analysis result of infinite cell calculation shows that {sup 231}Pa better than {sup 237}Np as burnable poisons in thorium fuel system. Thorium oxide system with 8%{sup 233}U enrichment and 7.6{approx} 8%{sup 231}Pa is the most suitable fuel for small-long life PWR core because it gives reactivity swing less than 1%{Delta}k/k and longer burn up period (more than 20 year). By using this result, small long-life PWR core can be designed for long time operation with reduced excess reactivity as low as 0.53%{Delta}k/k and reduced power peaking during its operation.

  4. PWR Cross Section Libraries for ORIGEN-ARP

    SciTech Connect

    McGraw, Carolyn; Ilas, Germina

    2012-01-01

    New pressurized water reactor (PWR) cross-section libraries were generated for use with the ORIGEN-ARP depletion sequence in the SCALE nuclear analysis code system. These libraries are based on ENDF/B-VII nuclear data and were generated using the two-dimensional depletion sequence, TRITON/NEWT, in SCALE 6.1. The libraries contain multiple burnup-dependent cross-sections for seven PWR fuel designs, with enrichments ranging from 1.5 to 6 wt% 235U. The burnup range has been extended from the 72 GWd/MTU used in previous versions of the libraries to 90 GWd/MTU. Validation of the libraries using radiochemical assay measurements and decay heat measurements for PWR spent fuel showed good agreement between calculated and experimental data. Verification against detailed TRITON simulations for the considered assembly designs showed that depletion calculations performed in ORIGEN-ARP with the pre-generated libraries provide similar results as obtained with direct TRITON depletion, while greatly reducing the computation time.

  5. A predictive model for corrosion fatigue crack growth rates in RPV steels exposed to PWR environments

    SciTech Connect

    Atkinson, J.D.; Chen, Z.; Yu, J.

    1995-12-31

    Corrosion fatigue crack propagation rates have been measured in A533B Class 1 plate in stagnant PWR primary water for a range of steel sulphur contents, temperature and corrosion potential values. Parametric descriptions of the data collected under constant rig conditions give good correlations for each variable and are consistent with a crack tip environment controlled process related to sulphur chemistry. A modified crack velocity equation is proposed to include temperature, sulphur content, polarization potential, frequency and {Delta}K values and it is shown how the predictions compare with the proposed ASME XI revision. Critical fatigue situations are identified for 0.003% and 0.019% sulphur steels typical of modern and old plant. The use of the equation in assessing the synergistic effect of variables is discussed.

  6. Quantitative uncertainty and sensitivity analysis of a PWR control rod ejection accident

    SciTech Connect

    Pasichnyk, I.; Perin, Y.; Velkov, K.

    2013-07-01

    The paper describes the results of the quantitative Uncertainty and Sensitivity (U/S) Analysis of a Rod Ejection Accident (REA) which is simulated by the coupled system code ATHLET-QUABOX/CUBBOX applying the GRS tool for U/S analysis SUSA/XSUSA. For the present study, a UOX/MOX mixed core loading based on a generic PWR is modeled. A control rod ejection is calculated for two reactor states: Hot Zero Power (HZP) and 30% of nominal power. The worst cases for the rod ejection are determined by steady-state neutronic simulations taking into account the maximum reactivity insertion in the system and the power peaking factor. For the U/S analysis 378 uncertain parameters are identified and quantified (thermal-hydraulic initial and boundary conditions, input parameters and variations of the two-group cross sections). Results for uncertainty and sensitivity analysis are presented for safety important global and local parameters. (authors)

  7. Irradiation Test of Advanced PWR Fuel in Fuel Test Loop at HANARO

    SciTech Connect

    Yang, Yong Sik; Bang, Je Geon; Kim, Sun Ki; Song, Kun Woo; Park, Su Ki; Seo, Chul Gyo

    2007-07-01

    A new fuel test loop has been constructed in the research reactor HANARO at KAERI. The main objective of the FTL (Fuel Test Loop) is an irradiation test of a newly developed LWR fuel under PWR or Candu simulated conditions. The first test rod will be loaded within 2007 and its irradiation test will be continued until a rod average their of 62 MWd/kgU. A total of five test rods can be loaded into the IPS (In-Pile Section) and fuel centerline temperature, rod internal pressure and fuel stack elongation can be measured by an on-line real time system. A newly developed advanced PWR fuel which consists of a HANA{sup TM} alloy cladding and a large grain UO{sub 2} pellet was selected as the first test fuel in the FTL. The fuel cladding, the HANA{sup TM} alloy, is an Nb containing Zirconium alloy that has shown better corrosion and creep resistance properties than the current Zircaloy-4 cladding. A total of six types of HANA{sup TM} alloy were developed and two or three of these candidate alloys will be used as test rod cladding, which have shown a superior performance to the others. A large-grain UO{sub 2} pellet has a 14{approx}16 micron 2D diameter grain size for a reduction of a fission gas release at a high burnup. In this paper, characteristics of the FTL and IPS are introduced and the expected operation and irradiation conditions are summarized for the test periods. Also the preliminary fuel performance analysis results, such as the cladding oxide thickness, fission gas release and rod internal pressure, are evaluated from the test rod safety analysis aspects. (authors)

  8. The behavior of ANGRA 2 nuclear power plant core for a small break LOCA simulated with RELAP5 code

    SciTech Connect

    Sabundjian, Gaiane; Andrade, Delvonei A.; Belchior, Antonio Jr.; Silva Rocha, Marcelo da; Conti, Thadeu N.; Torres, Walmir M.; Macedo, Luiz A.; Umbehaun, Pedro E.; Mesquita, Roberto N.; Masotti, Paulo H. F.; Souza Lima, Ana Cecilia de

    2013-05-06

    This work discusses the behavior of Angra 2 nuclear power plant core, for a postulate Loss of Coolant Accident (LOCA) in the primary circuit for Small Break Loss Of Coolant Accident (SBLOCA). A pipe break of the hot leg Emergency Core Cooling System (ECCS) was simulated with RELAP 5 code. The considered rupture area is 380 cm{sup 2}, which represents 100% of the ECCS pipe flow area. Results showed that the cooling is enough to guarantee the integrity of the reactor core.

  9. A computer program for assessment of emergency operation procedures under non-loca transient conditions in BWRs

    SciTech Connect

    Ohga, Y.

    1983-06-01

    A program analyzing long-term transients after abnormal incidents, excluding loss-of-coolant accidents, has been developed to assess emergency operation procedures for cold shutdown of reactors. The main program features are: The thermal hydraulics in both the reactor pressure vessel (RPV) and the primary containment vessel (PCV) are treated. Analytical models of the cooling system are included for not only the emergency core cooling system but other cooling systems that are effective for RPV and PCV cooling. The on/off switching of cooling systems by plant interlocks, component failures, and operator actions is simulated. The applicability of this program has been evaluated by simulation of long-term thermal-hydraulic behavior of the boiling water reactor transients initiated by loss of feedwater. From the evaluation results, it has been confirmed that the main program models can assess emergency operation procedures.

  10. Calculational limitations in PWR system simulation

    SciTech Connect

    Abramson, P.B.; Kennedy, M.F.; Speis, T.P.

    1982-01-01

    Engineering transient analysis codes, which are in general more accurate than the present generation of simulator software, can be expected to yield reasonably accurate results (+-20% or so on system pressure) if carefully utilized and if the two-phase and transient flow conditions are not severe. As the severity of the transient increases, the confidence that one may have in the results decreases. None of the existing engineering analysis codes is well assessed or verified for transient analysis, but all give qualitatively the same results lending credence to their results. Recent comparisons to transients in LOFT and SEMISCALE are encouraging as are various comparisons to actual plant data.

  11. 21-PWR WASTE PACKAGE WITH ABSORBER PLATES LOADING CURVE EVALUATION

    SciTech Connect

    J.M. Scaglione

    2004-12-17

    The objective of this calculation is to evaluate the required minimum burnup as a function of initial pressurized water reactor (PWR) assembly enrichment that would permit loading of spent nuclear fuel into the 21 PWR waste package with absorber plates design as provided in Attachment IV. This calculation is an example of the application of the methodology presented in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent U-235, and a burnup range of 0 through 45 GWd/MTU. Higher burnups were not necessary because 45 GWd/MTU was high enough for the loading curve determination. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing PWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials. This calculation is subject to the ''Quality Assurance Requirements and Description'' (QARD) (DOE 2004) because it concerns engineered barriers that are included in the ''Q-List'' (BSC 2004k, Appendix A) as items important to safety and waste isolation.

  12. The developments and verifications of trace model for IIST LOCA experiments

    SciTech Connect

    Zhuang, W. X.; Wang, J. R.; Lin, H. T.; Shih, C.; Huang, K. C.

    2012-07-01

    The test facility IIST (INER Integral System Test) is a Reduced-Height and Reduced-Pressure (RHRP) integral test loop, which was constructed for the purposes of conducting thermal hydraulic and safety analysis of the Westinghouse three-loop PWR Nuclear Power Plants. The main purpose of this study is to develop and verify TRACE models of IIST through the IIST small break loss of coolant accident (SBLOCA) experiments. First, two different IIST TRACE models which include a pipe-vessel model and a 3-D vessel component model have been built. The steady state and transient calculation results show that both TRACE models have the ability to simulate the related IIST experiments. Comparing with IIST SBLOCA experiment data, the 3-D vessel component model has shown better simulation capabilities so that it has been chosen for all further thermal hydraulic studies. The second step is the sensitivity studies of two phase multiplier and subcooled liquid multiplier in choked flow model; and two correlation constants in CCFL model respectively. As a result, an appropriate set of multipliers and constants can be determined. In summary, a verified IIST TRACE model with 3D vessel component, and fine-tuned choked flow model and CCFL model is established for further studies on IIST experiments in the future. (authors)

  13. Single PWR spent fuel assembly heat transfer data for computer code evaluations

    SciTech Connect

    Bates, J.M.

    1986-01-01

    The descriptions and results of two separate heat transfer tests designed to investigate the dry storage of commercial PWR spent fuel assemblies are presented. Presented first are descriptions and selected results from the Fuel Temperature Test performed at the Engine Maintenance and Disassembly facility on the Nevada Test Site. An actual spent fuel assembly from the Turkey Point Unit Number 3 Reactor with a decay heat level of 1.17 KW, was installed vertically in a test stand mounted canister/liner assembly. The boundary temperatures were controlled and the canister backfill gases were alternated between air, helium and vacuum to investigate the primary heat transfer mechanisms of convection, conduction and radiation. The assembly temperature profiles were experimentally measured using installed thermocouple instrumentation. Also presented are the results from the Single Assembly Heat Transfer Test designed and fabricated by Allied General Nuclear Services, under contract to the Department of Energy, and ultimately conducted by the Pacific Northwest Laboratory. For this test, an electrically heated 15 x 15 rod assembly was used to model a single PWR spent fuel assembly. The electrically heated model fuel assembly permitted various ''decay heat'', levels to be tested; 1.0 KW and 0.5 KW were used for these tests. The model fuel assembly was positioned within a prototypic fuel tube and in turn placed within a double-walled sealed cask. The complete test assembly could be positioned at any desired orientation (horizontal, vertical, and 25/sup 0/ from horizontal for the present work) and backfilled as desired (air, helium, or vacuum). Tests were run for all combinations of ''decay heat,'' backfill, and orientation. Boundary conditions were imposed by temperature controlled guard heaters installed on the cask exterior surface.

  14. Estimating probable flaw distributions in PWR steam generator tubes

    SciTech Connect

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses.

  15. PWR systems transient analysis: a reactor-safety perspective

    SciTech Connect

    Kennedy, M.F.; Abramson, P.B.; McDonald, T.A.

    1982-01-01

    In the simulation of transient events in large PWR reactor systems for reactor safety studies, the plant model is quite detailed and must include most of the plant components and control systems to adequately analyze the range of transients. The results discussed were calculated with the RELAP4/MOD6 code and reveal the need for the analysis to carefully review and understand the results to assure that they are not being adversely affected by the improper solution techniques or changes in models during the calculation.

  16. Electropolishing process development for PWR steam generator channel heads

    SciTech Connect

    Asay, R.H.; Graves, P.; Guastaferro, C.T.; Spalaris, C.N. )

    1991-04-01

    A broad range of process parameters was established to smoothen the surface of 309 L weld clad overlay, prototypic of surfaces common is channel heads of replacement PWR (pressurized water reactor) steam generators. Mechanical and electropolishing steps were studied to explore process boundaries, which result in acceptable degree of surface smoothness, without compromising metallurgical properties. Recommended processes and acceptance criteria established in this work, can be applied to electropolish steam generator channel heads. Smooth surfaces are less likely to retain radioactive species, and potentially develop lower radiation fields when these components are placed into service. 7 refs., 11 figs., 12 tabs.

  17. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect

    Chiang, R. T.

    2013-07-01

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  18. Evaluation of prompt nucleation of bubbles in annular fuel elements during the initial depressurization transient of a DEGB LOCA

    SciTech Connect

    Smith, A.C.

    1997-06-01

    In the first moments following the pipe break, of a DEGB LOCA, the depressurization wave is postulated to propagate rapidly through the system, in the manner of an acoustic or water hammer wave. this is immediately followed by a (reflected) repressurization wave, as the flow of coolant through the break is established. The pressure history is then dictated by the flow from the break and the ability of the pressurizer, pumps and accumulators to supply coolant. The initial sudden drop in pressure may result in the system pressure falling below the saturation pressure of the coolant. This could, in turn, result in bubble formation. Such immediate vapor formation (prompt nucleation of bubbles), in the period before the repressurization wave restores the system pressure to a level above the saturation pressure might initiate flow instability. Such an interruption in flow would allow the fuel tube clad temperature to increase rapidly. Depending on the duration of the flow interruption, the reactor might not be able to survive the initial moments of DEGB LOCA. It has generally been that this phenomenon would not actually occur in an operating reactor. The purpose of this investigation is to evaluate the possibility of occurrence of bubble formation as a result of initial depressurization. 7 refs., 6 figs.

  19. Model pump performance program. Data report. [PWR

    SciTech Connect

    Swift, W.L.

    1982-05-01

    A 1/20-scale model of a reactor coolant pump has been tested under single-phase and two-phase flow conditions. Air/water and steam/water mixtures have been used to obtain two-phase pump performance and information about flow regime effects throughout three quadrants of pump operation. This report contains extensive pump performance data from low pressure air/water and high pressure steam/water steady state tests, results from cavitation tests at temperatures from 100/sup 0/F and 420/sup 0/F and results from transient blowdown tests in which flow through the pump was two-phase. The data should be useful for: formulating empirical models of two-phase pump performance, examining scaling relations for two-phase flow in jumps, unifying air/water and steam/water data, determining relationships between steady-state and transient performance of pumps in two-phase flow and developing an understanding of two-phase flow physics in pumps.

  20. Characterization of PWR steam generator deposits

    SciTech Connect

    Varrin, R. Jr.

    1996-02-01

    Restoring the thermal performance of the steam generators often requires the utility to remove deposits by expensive chemical means. This work demonstrates that careful characterization of secondary side deposit samples can reveal their chemical and physical properties which in turn contribute to an overall assessment of the need for and extent of steam generator inspection and maintenance. More specifically, knowledge of deposit characteristics can contribute to: (1) determination of the source of corrosion products, (2) assessment of feedwater chemistry control strategies, (3) prediction of rates of tube degradation, and (4) evaluation of degraded heat transfer performance or flow instabilities. Despite the relationships between deposits and steam generator operation and performance, few utilities elect to perform the types of characterizations which are suitable for the determination of the specific chemical and physical nature of their particular deposits. One of the principal goals of this document is to encourage utilities to consider deposit characterization an integral part of an overall effort to assess and maintain the material condition of the steam generators at their plant. This document includes a review of the nature of deposits and relates deposit characteristics to a variety of secondary side phenomena including corrosion and fouling. Candidate techniques for revealing relevant deposit properties are provided so that inferences regarding the role of deposits in promoting or causing these phenomena at their plant can be developed.

  1. Gamma and Neutron Radiolysis in the 21-PWR Waste Package

    SciTech Connect

    J.S. Tang

    2001-05-03

    The objective of this calculation is to compute gamma and neutron dose rates in order to determine the maximum radiolytic production of nitric acid and other chemical species inside the 21-PWR (pressurized-water reactor) waste package (WP). The scope of this calculation is limited to the time period between 5,000 and 100,000 years after emplacement. The information provided by the sketches attached to this calculation is that of the potential design for the type of WP considered in this calculation. The results of this calculation will be used to evaluate nitric acid corrosion of fuel cladding from radiolysis in the 21-PWR WP. This calculation was performed in accordance with the Technical Work Plan for: Waste Package Design Description for LA (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000a). AP-3.124, Calculations, is used to perform the calculation and develop the document. This calculation is associated with the total system performance assessment (TSPA) of which the spent fuel cladding integrity is to be evaluated.

  2. VERA Core Simulator Methodology for PWR Cycle Depletion

    SciTech Connect

    Kochunas, Brendan; Collins, Benjamin S; Jabaay, Daniel; Kim, Kang Seog; Graham, Aaron; Stimpson, Shane; Wieselquist, William A; Clarno, Kevin T; Palmtag, Scott; Downar, Thomas; Gehin, Jess C

    2015-01-01

    This paper describes the methodology developed and implemented in MPACT for performing high-fidelity pressurized water reactor (PWR) multi-cycle core physics calculations. MPACT is being developed primarily for application within the Consortium for the Advanced Simulation of Light Water Reactors (CASL) as one of the main components of the VERA Core Simulator, the others being COBRA-TF and ORIGEN. The methods summarized in this paper include a methodology for performing resonance self-shielding and computing macroscopic cross sections, 2-D/1-D transport, nuclide depletion, thermal-hydraulic feedback, and other supporting methods. These methods represent a minimal set needed to simulate high-fidelity models of a realistic nuclear reactor. Results demonstrating this are presented from the simulation of a realistic model of the first cycle of Watts Bar Unit 1. The simulation, which approximates the cycle operation, is observed to be within 50 ppm boron (ppmB) reactivity for all simulated points in the cycle and approximately 15 ppmB for a consistent statepoint. The verification and validation of the PWR cycle depletion capability in MPACT is the focus of two companion papers.

  3. Test plan for high-burnup fuel cladding behavior under loss-of- coolant accident conditions

    SciTech Connect

    Chung, H.M.; Neimark, L.A.; Kassner, T.F.

    1996-10-01

    Excessive oxidation, hydriding, and extensive irradiation damage occur in high-burnup fuel cladding, and as result, mechanical properties of high-burnup fuels are degraded significantly. This may influence the current fuel cladding failure limits for loss-of- coolant-accident (LOCA) situations, which are based on fuel cladding behavior for zero burnup. To avoid cladding fragmentation and fuel dispersal during a LOCA, 10 CFR 50.46 requires that peak cladding temperature shall not exceed 1204 degrees C (2200 degrees F) and that total oxidation of the fuel cladding nowhere exceeds 0.17 times total cladding thickness before oxidation. Because of the concern, a new experimental program to investigate high-burnup fuel cladding behavior under LOCA situations has been initiated under the sponsorship of the U.S. Nuclear Regulatory Commission. A hot-cell test plan to investigate single-rod behavior under simulated LOCA conditions is described in this paper. In the meantime, industry fuel design and operating conditions are expected to undergo further changes as more advanced cladding materials are developed. Under these circumstances, mechanical properties of high-burnup fuel cladding require further investigation so that results from studies on LOCA, reactivity- initiated-accident (RIA), operational transient, and power-ramping situations, can be extrapolated to modified or advanced cladding materials and altered irradiation conditions without repeating major integral experiments in test reactors. To provide the applicable data base and mechanistic understanding, tests will be conducted to determine dynamic and static fracture toughness and tensile properties. Background and rationale for selecting the specific mechanical properties tests are also described.

  4. Pump and valve fastener serviceability in PWR nuclear facilities

    SciTech Connect

    Moisidis, N.T.; Ratiu, M.D.

    1996-02-01

    The results of several studies conducted on corrosion of carbon and low-alloy steels in borated water have shown that impingement of borated steam on ferritic steels or contact with a moist paste of boric acid can lead to high corrosion rates due to high local concentrations of boric acid on the surface. The corrosion process of the flange fasteners of pumps and valves is considered a material compatibility and equipment maintenance problem. Therefore, the nuclear utilities of pressurized water reactor (PWR) power plants can prevent this damage by implementing appropriate fastener steel replacement and extended inspections to detect and correct the cause of leakage. A 3-phase corrosion protection program is presented for implementation based on system operability, outage-related accessibility, and cost of fastener replacement versus maintenance frequency increase. A selection criterion for fastener material is indicated based on service limitation: preloading and metal temperature.

  5. Ultrasonic Backscattering in Polycrystalline Materials of Pwr Components

    NASA Astrophysics Data System (ADS)

    Chassignole, B.; Dupond, O.; Fouquet, T.; Rupin, F.

    2011-06-01

    The ultrasonic examination of metallic components of Pressurized Water Reactors (PWR) is an important challenge for the nuclear industry. During the past decades, EDF R&D has undertaken numerous studies in order to improve the NDT process on these applications and to help to their qualification. The present paper deals with the problem of the structural noise which can potentially disturbs the ultrasonic inspection. In particular, this study proposes a modeling approach to simulate the ultrasonic scattering due to coarse grain structures of polycrystalline materials. The methodology is based on the mixing of a grain scale description of the material and a 2D finite element code (ATHENA) developed by EDF to simulate the ultrasonic propagation in isotropic and anisotropic elastic media. The modeling results are compared to experimental acquisitions on mock-ups containing artificial defects.

  6. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  7. PWR and BWR spent fuel assembly gamma spectra measurements

    DOE PAGESBeta

    Vaccaro, S.; Tobin, Stephen J.; Favalli, Andrea; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Hu, Jianwei; Schwalbach, P.; Sjoland, A.; et al

    2016-07-17

    A project to research the application of nondestructive assay (NDA) to spent fuel assemblies is underway. The research team comprises the European Atomic Energy Community (EURATOM), embodied by the European Commission, DG Energy, Directorate EURATOM Safeguards; the Swedish Nuclear Fuel and Waste Management Company (SKB); two universities; and several United States national laboratories. The Next Generation of Safeguards Initiative–Spent Fuel project team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detectmore » the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. This study focuses on spectrally resolved gamma-ray measurements performed on a diverse set of 50 assemblies [25 pressurized water reactor (PWR) assemblies and 25 boiling water reactor (BWR) assemblies]; these same 50 assemblies will be measured with neutron-based NDA instruments and a full-length calorimeter. Given that encapsulation/repository and dry storage safeguards are the primarily intended applications, the analysis focused on the dominant gamma-ray lines of 137Cs, 154Eu, and 134Cs because these isotopes will be the primary gamma-ray emitters during the time frames of interest to these applications. This study addresses the impact on the measured passive gamma-ray signals due to the following factors: burnup, initial enrichment, cooling time, assembly type (eight different PWR and six different BWR fuel designs), presence of gadolinium rods, and anomalies in operating history. As a result, to compare the measured results with theory, a limited number of ORIGEN-ARP simulations were performed.« less

  8. The stress corrosion cracking behavior of alloys 690 and 152 WELD in a PWR environment.

    SciTech Connect

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

    2009-01-01

    Alloys 690 and 152 are the replacement materials of choice for Alloys 600 and 182, respectively. The latter two alloys are used as structural materials in pressurized water reactors (PWRs) and have been found to undergo stress corrosion cracking (SCC). The objective of this work is to determine the crack growth rates (CGRs) in a simulated PWR water environment for the replacement alloys. The study involved Alloy 690 cold-rolled by 26% and a laboratory-prepared Alloy 152 double-J weld in the as-welded condition. The experimental approach involved pre-cracking in a primary water environment and monitoring the cyclic CGRs to determine the optimum conditions for transitioning from the fatigue transgranular to intergranular SCC fracture mode. The cyclic CGRs of cold-rolled Alloy 690 showed significant environmental enhancement, while those for Alloy 152 were minimal. Both materials exhibited SCC of 10{sup -11} m/s under constant loading at moderate stress intensity factors. The paper also presents tensile property data for Alloy 690TT and Alloy 152 weld in the temperature range 25--870 C.

  9. A comparison of fuzzy logic-PID control strategies for PWR pressurizer control

    SciTech Connect

    Kavaklioglu, K.; Ikonomopoulos, A. )

    1993-01-01

    This paper describes the results obtained from a comparison performed between classical proportional-integral-derivative (PID) and fuzzy logic (FL) controlling the pressure in a pressurized water reactor (PWR). The two methodologies have been tested under various transient scenarios, and their performances are evaluated with respect to robustness and on-time response to external stimuli. One of the main concerns in the safe operation of PWR is the pressure control in the primary side of the system. In order to maintain the pressure in a PWR at the desired level, the pressurizer component equipped with sprayers, heaters, and safety relief valves is used. The control strategy in a Westinghouse PWR is implemented with a PID controller that initiates either the electric heaters or the sprayers, depending on the direction of the coolant pressure deviation from the setpoint.

  10. Evaluation of thermal mixing data from a model cold leg and downcomer. [PWR

    SciTech Connect

    Rothe, P.H.; Fanning, M.W.

    1982-12-01

    This report describes an evaluation of thermal mixing data obtained in a 1/5-scale, transparent model of the cold leg and downcomer of a Pressurized Water Reactor (PWR). The data are relevant to the phenomenon of fluid and thermal mixing following HPI (High Pressure Injection) of coolant water in a PWR loop. The data are reduced, correlated and compared with theoretically derived values and scaling approaches.

  11. Identification and evaluation of PWR in-vessel severe accident management strategies

    SciTech Connect

    Dukelow, J S; Harrison, D G; Morgenstern, M

    1992-03-01

    This reports documents work performed the NRC/RES Accident Management Guidance Program to evaluate possible strategies for mitigating the consequences of PWR severe accidents. The selection and evaluation of strategies was limited to the in-vessel phase of the severe accident, i.e., after the initiation of core degradation and prior to RPV failure. A parallel project at BNL has been considering strategies applicable to the ex-vessel phase of PWR severe accidents.

  12. Integrated Radiation Transport and Thermo-Mechanics Simulation of a PWR Assembly

    SciTech Connect

    Clarno, Kevin T; Hamilton, Steven P; Philip, Bobby; Sampath, Rahul S; Allu, Srikanth; Berrill, Mark A; Barai, Pallab; Banfield, James E

    2012-01-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step towards incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source terms, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. AMPFuel was used to model an entire 17 x 17 Pressurized Water Reactor (PWR) fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins, the 25 guide tubes, top and bottom structural regions, and the upper and lower (neutron) reflector regions. The final full-assembly calculation was executed on Jaguar (Cray XT5) at the Oak Ridge Leadership Computing Facility using 40,000 cores in under 10 hours to model over 162 billion degrees of freedom for 10 loading steps.

  13. Sensitivity Analyses in Small Break LOCA with HPI-Failure: Effect of Break-Size in Secondary-Side Depressurization

    NASA Astrophysics Data System (ADS)

    Kinoshita, Ikuo; Torige, Toshihide; Yamada, Minoru

    2014-06-01

    In the case of total failure of the high pressure injection (HPI) system following small break loss of coolant accident (SBLOCA) in pressurized water reactor (PWR), the break size is so small that the primary system does not depressurize to the accumulator (ACC) injection pressure before the core is uncovered extensively. Therefore, steam generator (SG) secondary-side depressurization is necessary as an accident management in order to grant accumulator system actuation and core reflood. A thermal-hydraulic analysis using RELAP5/MOD3 was made on SBLOCA with HPI-failure for Oi Units 3/4 operated by Kansai Electoric Power Co., which are conventional 4 loop PWR plants. The effectiveness of SG secondary-side depressurization procedure was investigated for the real plant design and operational characteristics. The sensitivity analyses using RELAP5/MOD3.2 showed that the accident management was effective for a wide range of break sizes, various orientations and positions. The critical break can be 3 inch cold-leg bottom break.

  14. Determination of the bias in LOFT fuel peak cladding temperature data from the blowdown phase of large-break LOCA experiments

    SciTech Connect

    Berta, V.T.; Hanson, R.G.; Johnsen, G.W.; Schultz, R.R.

    1993-05-01

    Data from the Loss-of-Fluid Test (LOFT) Program help quantify the margin of safety inherent in pressurized water reactors during postulated loss-of-coolant accidents (LOCAs). As early as 1979, questions arose concerning the accuracy of LOFT fuel rod cladding temperature data during several large-break LOCA experiments. This report analyzes how well externally-mounted fuel rod cladding thermocouples in LOFT accurately reflected actual cladding surface temperature during large-break LOCA experiments. In particular, the validity of the apparent core-wide fuel rod cladding quench exhibited during blowdown in LOFT Experiments L2-2 and L2-3 is studied. Also addressed is the question of whether the externally-mounted thermocouples might have influenced cladding temperature. The analysis makes use of data and information from several sources, including later, similar LOFT Experiments in which fuel centerline temperature measurements were made, experiments in other facilities, and results from a detailed FRAP-T6 model of the LOFT fuel rod. The analysis shows that there can be a significant difference (referred to as bias) between the surface-mounted thermocouple reading and the actual cladding temperature, and that the magnitude of this bias depends on the rate of heat transfer between the fuel rod cladding and coolant. The results of the analysis demonstrate clearly that a core-wide cladding quench did occur in Experiments L2-2 and L2-3. Further, it is shown that, in terms of peak cladding temperature recording during LOFT large-break LOCA experiments, the mean bias is 11.4 {plus_minus} 16.2K (20.5 {plus_minus} 29.2{degrees} F). The best-estimate value of peak cladding temperature for LOFT LP-02-6 is 1,104.8 K. The best-estimate peak cladding temperature for LOFT LP-LB-1 is 1284.0 K.

  15. Direct Experimental Evaluation of the Grain Boundaries Gas Content in PWR fuels: New Insight and Perspective of the ADAGIO Technique

    SciTech Connect

    Pontillon, Y.; Noirot, J.; Caillot, L.

    2007-07-01

    Over the last decades, many analytical experiments (in-pile and out-of-pile) have underlined the active role of the inter-granular gases on the global fuel transient behavior under accidental conditions such as RIA and/or LOCA. In parallel, the improvement of fission gas release modeling in nuclear fuel performance codes needs direct experimental determination/validation regarding the local gas distribution inside the fuel sample. In this context, an experimental program, called 'ADAGIO' (French acronym for Discriminating Analysis of Accumulation of Inter-granular and Occluded Gas), has been initiated through a joint action of CEA, EDF and AREVA NP in order to develop a new device/technique for quantitative and direct measurement of local fission gas distribution within an irradiated fuel pellet. ADAGIO technique is based on the fact that fission gas inventory (intra and inter-granular parts) can be distinguished by controlled fuel oxidation, since grain boundaries oxidize faster than the bulk. The purpose of the current paper is to present both the methodology and the associated results of the ADAGIO program performed at CEA. It has been divided into two main parts: (i) feasibility (UO{sub 2} and MOX fuels), (ii) application on high burn up UO{sub 2} fuel. (authors)

  16. LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor: Appendix A-4

    SciTech Connect

    Sviatoslavsky, I.N.; Attaya, H.M.; Corradini, M.L.; Lomperski, S.

    1987-01-01

    This paper describes the preliminary analysis of LOFA (loss of flow accident) and LOCA (loss of coolant accident) in the TIBER-II engineering test reactor breeding shield. TIBER-II is a compact reactor with a major radius of 3 m and thus requires a thin, high efficiency shield on the inboard side. The use of tungsten in the inboard shield implies a rather high rate of afterheat upon plasma shutdown, which must be dissipated in a controlled manner to avoid the possibility of radioactivity release or threatening the investment. Because the shield is cooled with an aqueous solution, LOFA does not pose a problem as long as natural convection can be established. LOCA, however, has more serious consequences, particularly on the inboard side. Circulation of air by natural convection is proposed as a means for dissipating the inboard shield decay heat. The safety and environmental implications of such a scheme are evaluated. It is shown that the inboard shield temperature never exceeds 510/sup 0/C following LOCA posing no hazard to reactor personnel and not threatening the investment. 7 refs., 6 figs.

  17. Experience in PWR and BWR mixed-oxide fuel management

    SciTech Connect

    Schlosser, G.J.; Krebs, W.; Urban, P. )

    1993-04-01

    Germany has adopted the strategy of a closed fuel cycle using reprocessing and recycling. The central issue today is plutonium recycling by the use of U-Pu mixed oxide (MOX) in pressurized water reactors (PWRs) and boiling water reactors (BWRs). The design of MOX fuel assemblies and fuel management in MOX-containing cores are strongly influenced by the nuclear properties of the plutonium isotopes. Optimized MOX fuel assembly designs for PWRs currently use up to three types of MOX fuel rods having different plutonium contents with natural uranium or uranium tailings as carrier material but without burnable absorbers. The MOX fuel assembly designs for BWRs use four to six rod types with different plutonium contents and Gd[sub 2]O[sub 3]/UO[sub 2] burnable absorber rods. Both the PWR and the BWR designs attain good burnup equivalence and compatibility with uranium fuel assemblies. High flexibility exists in the loading schemes relative to the position and number of MOX fuel assemblies in the reloads and in the core as a whole. The Siemens experience with MOX fuel assemblies is based on the insertion of 318 MOX fuel assemblies in eight PWRs and 168 in BWRs and pressurized heavy water reactors so far. The primary operating results include information on the cycle length, power distribution, reactivity coefficients, and control rod worth of cores containing MOX fuel assemblies.

  18. Integrity of PWR pressure vessels during overcooling accidents

    SciTech Connect

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents, vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. A state-of-the-art fracture-mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure in a few years if subjected to a Rancho Seco-type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation.

  19. Integrity of PWR pressure vessels during overcooling accidents

    SciTech Connect

    Cheverton, R.D.; Iskander, S.K.; Whitman, G.D.

    1982-01-01

    The reactor pressure vessel in a pressurized water reactor is normally subjected to temperatures and pressures that preclude propagation of sharp, crack-like defects that might exist in the wall of the vessel. However, there is a class of postulated accidents, referred to as overcooling accidents, that can subject the pressure vessel to severe thermal shock while the pressure is substantial. As a result of such accidents vessels containing high concentrations of copper and nickel, which enhance radiation embrittlement, may possess a potential for extensive propagation of preexistent inner surface flaws prior to the vessel's normal end of life. For the purpose of evaluating this problem a state-of-the-art fracture mechanics model was developed and has been used for conducting parametric analyses and for calculating several recorded PWR transients. Results of the latter analysis indicate that there may be some vessels that have a potential for failure today if subjected to a Rancho Seco (1978) or TMI-2 (1979) type transient. However, the calculational model may be excessively conservative, and this possibility is under investigation.

  20. Effect of temperature and dissolved hydrogen on oxide films formed on Ni and Alloy 182 in simulated PWR water

    NASA Astrophysics Data System (ADS)

    Mendonça, R.; Bosch, R.-W.; Van Renterghem, W.; Vankeerberghen, M.; de Araújo Figueiredo, C.

    2016-08-01

    Alloy 182 is a nickel-based weld metal, which is susceptible to stress corrosion cracking in PWR primary water. It shows a peak in SCC susceptibility at a certain temperature and hydrogen concentration. This peak is related to the electrochemical condition where the Ni to NiO transition takes place. One hypothesis is that the oxide layer at this condition is not properly developed and so the material is not optimally protected against SCC. Therefore the oxide layer formed on Alloy 182 is investigated as a function of the dissolved hydrogen concentration and temperature around this Ni/NiO transition. Exposure tests were performed with Alloy 182 and Ni coupons in a PWR environment at temperatures between 300 °C and 345 °C and dissolved hydrogen concentration between 5 and 35 cc (STP)H2/kg. Post-test analysis of the formed oxide layers were carried out by SEM, EDS and XPS. The exposure tests with Ni coupons showed that the Ni/NiO transition curve is at a higher temperature than the curve based on thermodynamic calculations. The exposure tests with Alloy 182 showed that oxide layers were present at all temperatures, but that the morphology changed from spinel crystals to needle like oxides when the Ni/NiO transition curve was approached. Oxide layers were present below the Ni/NiO transition curve i.e. when the Ni coupon was still free of oxides. In addition an evolved slip dissolution model was proposed that could explain the observed experimental results and the peak in SCC susceptibility for Ni-based alloys around the Ni/NiO transition.

  1. Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR

    SciTech Connect

    Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

    1980-01-01

    An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

  2. A comparison of HLW-glass and PWR-borate waste glass

    NASA Astrophysics Data System (ADS)

    Luo, Shanggeng; Sheng, Jiawei; Tang, Baolong

    2001-09-01

    Glass can incorporate a wide variety of wastes ranging from high level wastes (HLW) to low and intermediate level wastes (LILW). A comparison of HLW-Glass and PWR-borate waste glass is given in this paper. The HLW glass formulation named GC-12/9B and 90-19/U can incorporate 16-20 wt% HLW at 1100°C or 1150°C. The borate waste glass named SL-1 can incorporate 45 wt% borate waste generated from PWR. Their physical properties, characteristic temperatures, chemical durability and leach behavior are summarized here. The comparison indicates: the PWR-glass SL-1 can incorporate up to 45 wt% waste oxides at lower melting temperature (1000°C) in agreement with minimum additive waste stabilization (MAWS) approach; owing to the PWR-borate glass contain less Si and more B and Na, its mass loss is higher than HWR-glass; both HLW-glass and PWR-borate glass have favorable chemical durability and the same leaching phenomena, i.e., Na is mostly depleted, but Ca, Mg, Al and Ti are enriched in the leached surface layer.

  3. Cavitation and two-phase flow characteristics of SRPR (Savannah River Plant Reactor) pump. Final report

    SciTech Connect

    Not Available

    1991-07-01

    The possible head degradation of the SRPR pumps may be attributable to two independent phenomena, one due to the inception of cavitation and the other due to the two-phase flow phenomena. The head degradation due to the appearance of cavitation on the pump blade is hardly likely in the conventional pressurized water reactor (PWR) since the coolant circulating line is highly pressurized so that the cavitation is difficult to occur even at LOCA (loss of coolant accident) conditions. On the other hand, the suction pressure of SRPR pump is order-of-magnitude smaller than that of PWR so that the cavitation phenomena, may prevail, should LOCA occur, depending on the extent of LOCA condition. In this study, therefore, both cavitation phenomena and two-phase flow phenomena were investigated for the SRPR pump by using various analytical tools and the numerical results are presented herein.

  4. VERA-CS Modeling and Simulation of PWR Main Steam Line Break Core Response to DNB

    SciTech Connect

    Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa; Xu, Yiban; Cao, Liping

    2016-01-01

    The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time step of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.

  5. Experimental study of debris-bed coolability under pool-boiling conditions. [PWR; BWR; LMFBR

    SciTech Connect

    Catton, I.; Dhir, V.K.; Somerton, C.W.

    1983-05-01

    An experimental investigation has been conducted into the dryout of a bed of inductively heated particles cooled by an overlying liquid pool. Particles of diameters 4763 ..mu..m, 3175 ..mu..m, 1588 ..mu..m, and 589-787 ..mu..m have been used. Acetone and water have been used as the coolant with bed heights varying from 5 to 40 cm. Results are presented in terms of the dryout heat as a function of bed height. It has been found that the ratio of the overlying liquid pool height to the particulate bed height can influence the dryout heat flux. Comparison with other experimetal studies was good and a comparison with proposed theoretical models was also made.

  6. Assessment of PWR Steam Generator modelling in RELAP5/MOD2. International Agreement Report

    SciTech Connect

    Putney, J.M.; Preece, R.J.

    1993-06-01

    An assessment of Steam Generator (SG) modelling in the PWR thermal-hydraulic code RELAP5/MOD2 is presented. The assessment is based on a review of code assessment calculations performed in the UK and elsewhere, detailed calculations against a series of commissioning tests carried out on the Wolf Creek PWR and analytical investigations of the phenomena involved in normal and abnormal SG operation. A number of modelling deficiencies are identified and their implications for PWR safety analysis are discussed -- including methods for compensating for the deficiencies through changes to the input deck. Consideration is also given as to whether the deficiencies will still be present in the successor code RELAP5/MOD3.

  7. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    SciTech Connect

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z.; Sekimoto, H.

    2010-06-22

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required {sup 233}U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium and uranium confinement in PWR.

  8. Study on Equilibrium Characteristics of Thorium-Plutonium-Minor Actinides Mixed Oxides Fuel in PWR

    NASA Astrophysics Data System (ADS)

    Waris, A.; Permana, S.; Kurniadi, R.; Su'ud, Z.; Sekimoto, H.

    2010-06-01

    A study on characteristics of thorium-plutonium-minor actinides utilization in the pressurized water reactor (PWR) with the equilibrium burnup model has been conducted. For a comprehensive evaluation, several fuel cycles scenario have been included in the present study with the variation of moderator-to-fuel volume ratio (MFR) of PWR core design. The results obviously exhibit that the neutron spectra grow to be harder with decreasing of the MFR. Moreover, the neutron spectra also turn into harder with the rising number of confined heavy nuclides. The required 233U concentration for criticality of reactor augments with the increasing of MFR for all heavy nuclides confinement and thorium & uranium confinement in PWR.

  9. Switching from deferred dismantling to immediate dismantling: the example of Chooz A, a French PWR

    SciTech Connect

    Grenouillet, Jean-Jacques

    2007-07-01

    Located in the north of France, close to Belgian border, Chooz A is the first PWR that was built in France from 1962 to 1967. When it was shutdown in 1991, a deferred dismantling strategy was selected. Further to an evolution of EDF decommissioning strategy in 2001, the decommissioning of the plant was accelerated by reducing the safe enclosure period to only a few years. Thus Chooz A will be the first PWR to be fully dismantled in France and it gives a good insight of what is needed to reactivate a plant for final dismantling after a safe enclosure period. (author)

  10. PWR containment structures license renewal industry report: Revision 1. Final report

    SciTech Connect

    Deng, D.; Renfro, J.; Statton, J.

    1994-07-01

    Reinforced concrete, prestressed concrete, and freestanding steel PWR containment structures and components have been evaluated relative to the effects of age-related degradation mechanisms; the capability of current design limits, inservice examination, testing, repair, refurbishment, and other programs to manage these effects; and the assurance that these structures and components can continue to perform their intended safety functions in the license renewal term. This industry report (IR), one of a series of ten, provides a generic technical basis for evaluation of PWR containment structures and components for license renewal.

  11. International experience with a multidisciplinary table top exercise for response to a PWR accident

    SciTech Connect

    Lakey, J.R.A.

    1996-06-01

    Table Top Exercises are used for the training of emergency response personnel from a wide range of disciplines whose duties range from strategic to tactical, from managerial to operational. The exercise reported in this paper simulates the first two or three hours of an imaginary accident on a generic PWR site (named Seaside or Lakeside depending on its location). It is designed to exercise the early response of staff of the utility, government, local authority and the media and some players represent the public. The relatively few scenarios used for this exercise are based on actual events scaled to give off-site consequences which demand early assessment and therefore stress the communication procedures. The exercise is applicable in different cultures and has been used in over 20 short courses held in the USA, UK, Sweden, Prague, and Hong Kong. There are two styles of support for players: a linear program which ensures that all players follow the desired path through the event and an open program which is triggered by umpires (who play the reactor crew from a script) and by requests from other players. In both cases the exercise ends with a Press Conference. Players have an initial briefing and are assigned to roles; those who must speak at interviews and at the Press Conference arc given separate briefing by an expert in Public Affairs. The exercise runs with up to six groups and the communication rate reaches about 30 to 40 messages per hour for each group. The exercise can be applied to test management and communication systems and to study human response to emergencies because the merits of individual players are highlighted in the relatively stressful conditions of the initial stage of an accident. For some players the exercise is the first time that they have been required to carry out their task in front of other people.

  12. Development of the ACP safeguards neutron counter for PWR spent fuel rods

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hoon; Menlove, Howard O.; Lee, Sang-Yoon; Kim, Ho-Dong

    2008-04-01

    An advanced neutron multiplicity counter has been developed for measuring spent fuel in the Advanced spent fuel Conditioning Process (ACP) at the Korea Atomic Energy Research Institute (KAERI). The counter uses passive neutron multiplicity counting to measure the 244Cm content in spent fuel. The input to the ACP process is spent fuel from pressurized water reactors (PWRs), and the high intensity of the gamma-ray exposure from spent fuel requires a careful design of the counter to measure the neutrons without gamma-ray interference. The nuclear safeguards for the ACP facility requires the measurement of the spent fuel input to the process and the Cm/Pu ratio for the plutonium mass accounting. This paper describes the first neutron counter that has been used to measure the neutron multiplicity distribution from spent fuel rods. Using multiple samples of PWR spent fuel rod-cuts, the singles (S), doubles (D), and triples (T) rates of the neutron distribution for the 244Cm nuclide were measured and calibration curves were produced. MCNPX code simulations were also performed to obtain the three counting rates and to compare them with the measurement results. The neutron source term was evaluated by using the ORIGEN-ARP code. The results showed systematic difference of 21-24% in the calibration graphs between the measured and simulation results. A possible source of the difference is that the burnup codes have a 244Cm uncertainty greater than ±15% and it would be systematic for all of the calibration samples. The S/D and D/T ratios are almost constant with an increment of the 244Cm mass, and this indicates that the bias is in the 244Cm neutron source calculation using the ORIGEN-ARP source code. The graphs of S/D and D/T ratios show excellent agreement between measurement and MCNPX simulation results.

  13. Geochemical and Hydrologic Controls of Copper-Rich Surface Waters in the Yerba Loca-Mapocho System

    NASA Astrophysics Data System (ADS)

    Pasten, P.; Montecinos, M.; Coquery, M.; Pizarro, G. E.; Abarca, M. I.; Arce, G. J.

    2015-12-01

    Andean watersheds in Northern and Central Chile are naturally enriched with metals, many of them associated to sulfide mineralizations related to copper mining districts. The natural and anthropogenic influx of toxic metals into drinking water sources pose a sustainability challenge for cities that need to provide safe water with the smallest footprint. This work presents our study of the transformations of copper in the Yerba Loca-Mapocho system. Our sampling campaign started from the headwaters at La Paloma Glacier and continues to the inlet of the San Enrique drinking water treatment plant, a system feeding municipalities in the Eastern area of Santiago, Chile. Depending on the season, total copper concentrations go as high as 22 mg/L for the upper sections, which become diluted to <5 mg/L downstream. pH ranged from 3 to 5.6 while suspended solids ranged from <10 to 100 mg/L. We used Geochemist Workbench to assess copper speciation and to evaluate the thermodynamic controls for the formation and dissolution of solid phases. A sediment trap was used to concentrate suspended particulate matter, which was analyzed with ICP-MS, TXRF (total reflection X ray fluorescence) and XRD (X-ray diffraction). Major elements detected in the precipitates were Al (200 g/kg), S (60 g/kg), and Cu (6 g/kg). Likely solid phases include hydrous amorphous phases of aluminum hydroxides and sulfates, and copper hydroxides/carbonates. Efforts are undergoing to find the optimal mixing ratios between the acidic stream and more alkaline streams to maximize attenuation of dissolved copper. The results of this research could be used for enhancing in-stream natural attenuation of copper and reducing treatment needs at the drinking water facility. Acknowledgements to Fondecyt 1130936 and Conicyt Fondap 15110020

  14. Irradiation performance of (Th,Pu)O2 fuel under Pressurized Water Reactor conditions

    NASA Astrophysics Data System (ADS)

    Boer, B.; Lemehov, S.; Wéber, M.; Parthoens, Y.; Gysemans, M.; McGinley, J.; Somers, J.; Verwerft, M.

    2016-04-01

    This paper examines the in-pile safety performance of (Th,Pu)O2 fuel pins under simulated Pressurized Water Reactor (PWR) conditions. Both sol-gel and SOLMAS produced (Th,Pu)O2 fuels at enrichments of 7.9% and 12.8% in Pu/HM have been irradiated at SCK·CEN. The irradiation has been performed under PWR conditions (155 bar, 300 °C) in a dedicated loop of the BR-2 reactor. The loop is instrumented with flow and temperature monitors at inlet and outlet, which allow for an accurate measurement of the deposited enthalpy.

  15. ORNL rod-bundle heat-transfer test data. Volume 3. Thermal-hydraulic test facility experimental data report for test 3. 06. 6B - transient film boiling in upflow. [PWR

    SciTech Connect

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01

    Reduced instrument responses are presented for Thermal-Hyraulic Test Facility (THTF) Test 3.06.6B. This test was conducted by members of the Oak Ridge National Laboratory Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on August 29, 1980. The objective of the program was to investigate heat transfer phenomena believed to occur in PWR's during accidents, including small and large break loss-of-coolant accidents. Test 3.06.6B was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.06.6B available. Included in the report are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers.

  16. Experimental investigation on circumferential and axial temperature gradient over fuel channel under LOCA

    NASA Astrophysics Data System (ADS)

    Yadav, Ashwini Kumar; kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun; Mukhopadhyay, Deb; Lele, H. G.

    2014-06-01

    In a nuclear reactor temperature rises drastically in fuel channels under loss of coolant accident due to failure of primary heat transportation system. Present investigation has been carried out to capture circumferential and axial temperature gradients during fully and partially voiding conditions in a fuel channel using 19 pin fuel element simulator. A series of experiments were carried out by supplying power to outer, middle and center rods of 19 pin fuel simulator in ratio of 1.4:1.1:1. The temperature at upper periphery of pressure tube (PT) was slightly higher than at bottom due to increase in local equivalent thermal conductivity from top to bottom of PT. To simulate fully voided conditions PT was pressurized at 2.0 MPa pressure with 17.5 kW power injection. Ballooning initiated from center and then propagates towards the ends and hence axial temperature difference has been observed along the length of PT. For asymmetric heating, upper eight rods of fuel simulator were activated and temperature difference up-to 250 °C has been observed from top to bottom periphery of PT. Such situation creates steep circumferential temperature gradient over PT and could lead to breaching of PT under high pressure.

  17. OBSERVATIONS AND IMPLICATIONS OF INTERGRANULAR STRESS CORROSION CRACK GROWTH OF ALLOY 152 WELD METALS IN SIMULATED PWR PRIMARY WATER

    SciTech Connect

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.; Bruemmer, Stephen M.

    2013-08-15

    Significant intergranular (IG) crack growth during stress corrosion cracking (SCC) tests has been documented during tests in simulated PWR primary water on two alloy 152 specimens cut from a weldment produced by ANL. The cracking morphology was observed to change from transgranular (TG) to mixed mode (up to ~60% IG) during gentle cycling and cycle + hold loading conditions. Measured crack growth rates under these conditions often suggested a moderate degree of environmental enhancement consistent with faster growth on grain boundaries. However, overall SCC propagation rates at constant stress intensity (K) or constant load were very low in all cases. Initial SCC rates up to 6x10-9 mm/s were occasionally measured, but constant K/load growth rates dropped below ~1x10-9 mm/s with time even when significant IG engagement existed. Direct comparisons were made among loading conditions, measured crack growth response and cracking morphology during each test to assess IGSCC susceptibility of the alloy 152 specimens. These results were analyzed with respect to our previous SCC crack growth rate measurements on alloy 152/52 welds.

  18. Topical report on actinide-only burnup credit for PWR spent nuclear fuel packages. Revision 1

    SciTech Connect

    None, None

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria

  19. Performance evaluation of two-stage fuel cycle from SFR to PWR

    SciTech Connect

    Fei, T.; Hoffman, E.A.; Kim, T.K.; Taiwo, T.A.

    2013-07-01

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with an average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)

  20. High mechanical performance of Areva upgraded fuel assemblies for PWR in USA

    SciTech Connect

    Gottuso, Dennis; Canat, Jean-Noel; Mollard, Pierre

    2007-07-01

    The merger of the product portfolios of the former Siemens and Framatome fuel businesses gave rise to a new family of PWR products which combine the best features of the different technologies to enhance the main performance of each of the existing products. In this way, the technology of each of the three main fuel assembly types usually delivered by AREVA NP, namely Mark-BW{sup TM}, HTP{sup TM} and AFA 3G{sup TM} has been enriched by one or several components from the others which contributes to improve their robustness and to enhance their performance. The combined experience of AREVA's products shows that the ROBUST FUELGUARD{sup TM}, the HMP{sup TM} end grid, the MONOBLOC{sup TM} guide tube, a welded structure, M5{sup R} material for every zirconium component and an upper QUICK-DISCONNECT{sup TM} are key features for boosting fuel assembly robustness. The ROBUST FUELGUARD benefits from a broad experience demonstrating its high efficiency in stopping debris. In addition, its mechanical strength has been enhanced and the proven blade design homogenizes the downstream flow distribution to strongly reduce excitation of fuel rods. The resistance to rod-to-grid fretting resistance of AREVA's new products is completed by the use of a lower HMP grid with 8 lines of contact to insure low wear. The Monobloc guide tube with a diameter maximized to strengthen the fuel assembly stiffness, excludes through its uniform outer geometry any local condition which could weaken guide tube straightness. The application of a welded cage to all fuel assemblies of the new family of products in combination with stiffer guide tubes and optimized hold-down assures each fuel assembly enhanced resistance to distortion. The combination of these features has been widely demonstrated as an effective method to reduce the risk of incomplete RCCA insertion and significantly reduce assembly distortion. Thanks to its enhanced performance, M5 alloy insures that all fuel assemblies in the family

  1. Proceedings: 1983 Workshop on Secondary-Side Stress Corrosion Cracking and Intergranular Corrosion of PWR Steam Generator Tubing

    SciTech Connect

    1986-03-01

    Participants in this international workshop discussed research investigating mechanisms and propagation rates of intergranular corrosion in PWR steam generators. Laboratory test results, which have been consistent with power plant experience, permitted preliminary definition of corrosion rates in alloy 600 tubing.

  2. LWR fuel rod bundle behavior under severe fuel damage conditions

    SciTech Connect

    Kuczera, B. Hagen, S.; Hofmann, P.

    1988-01-01

    Light water reactor (LWR) safety research and development activities conducted at Kernforschungszentrum Karlsruhe have recently been reorganized with a concentrated mission under the LWR safety project group. The topics treated relate mainly to severe-accident analysis research and source term assessment as well as to source term mitigation measures. A major part of the investigations concerns the early phase of a severe core meltdown accident, specifically LWR rod assembly behavior under sever fuel damage (SFD) conditions. To determine the extent of fuel rod damage, including the relocation behavior of molten reaction products, damage propagation, time-dependent H{sub 2} generation from clad oxidation, and fragmentation of oxygen-embrittled materials during cooldown and quenching, extensive out-of-pile rod bundle experiments have been initiated in the new CORA test facility. The bundle parameters, such as rod dimensions, rod pitch, and grid spacer, can be adjusted to both pressurized water reactor (PWR) and boiling water reactor (BWR) conditions. Currently, the test program consists of 15 experiments in which the influence of Inconel grid spacer, (Ag,In,Cd)-absorber rods (PWR) and of B{sub 4}C control blades (BWR) on fuel damage initiation and damage propagation are being investigated for different boundary conditions. As of June 1988, four bundle tests had been successfully carried out for PWR accident conditions.

  3. A Critical Review of Practice of Equating the Reactivity of Spent Fuel to Fresh Fuel in Burnup Credit Criticality Safety Analyses for PWR Spent Fuel Pool Storage

    SciTech Connect

    Wagner, J.C.; Parks, C.V.

    2000-09-01

    This research examines the practice of equating the reactivity of spent fuel to that of fresh fuel for the purpose of performing burnup credit criticality safety analyses for PWR spent fuel pool (SFP) storage conditions. The investigation consists of comparing k{sub inf} estimates based on reactivity equivalent fresh fuel enrichment (REFFE) to k{sub inf} estimates using the actual spent fuel isotopics. Analyses of selected storage configurations common in PWR SFPs show that this practice yields nonconservative results (on the order of a few tenths of a percent) in configurations in which the spent fuel is adjacent to higher-reactivity assemblies (e.g., fresh or lower-burned assemblies) and yields conservative results in configurations in which spent fuel is adjacent to lower-reactivity assemblies (e.g., higher-burned fuel or empty cells). When the REFFE is determined based on unborated water moderation, analyses for storage conditions with soluble boron present reveal significant nonconservative results associated with the use of the REFFE. This observation is considered to be important, especially considering the recent allowance of credit for soluble boron up to 5% in reactivity. Finally, it is shown that the practice of equating the reactivity of spent fuel to fresh fuel is acceptable, provided the conditions for which the REFFE was determined remain unchanged. Determination of the REFFE for a reference configuration and subsequent use of the REFFE for different configurations violates the basis used for the determination of the REFFE and, thus, may lead to inaccurate, and possibly, nonconservative estimates of reactivity. A significant concentration ({approximately}2000 ppm) of soluble boron is typically (but not necessarily required to be) present in PWR SFPs, of which only a portion ({le} 500 ppm) may be credited in safety analyses. Thus, a large subcritical margin currently exists that more than accounts for errors or uncertainties associated with the use of

  4. Pressure-vessel-damage fluence reduction by low-leakage fuel management. [PWR

    SciTech Connect

    Cokinos, D.; Aronson, A.L.; Carew, J.F.; Kohut, P.; Todosow, M.; Lois, L.

    1983-01-01

    As a result of neutron-induced radiation damage to the pressure vessel and of an increased concern that in a PWR transient the pressure vessel may be subjected to pressurized thermal shock (PTS), detailed analyses have been undertaken to determine the levels of neutron fluence accumulation at the pressure vessels of selected PWR's. In addition, various methods intended to limit vessel damage by reducing the vessel fluence have been investigated. This paper presents results of the fluence analysis and the evaluation of the low-leakage fuel management fluence reduction method. The calculations were performed with DOT-3.5 in an octant of the core/shield/vessel configuration using a 120 x 43 (r, theta) mesh structure.

  5. MC21 analysis of the MIT PWR benchmark: Hot zero power results

    SciTech Connect

    Kelly Iii, D. J.; Aviles, B. N.; Herman, B. R.

    2013-07-01

    MC21 Monte Carlo results have been compared with hot zero power measurements from an operating pressurized water reactor (PWR), as specified in a new full core PWR performance benchmark from the MIT Computational Reactor Physics Group. Included in the comparisons are axially integrated full core detector measurements, axial detector profiles, control rod bank worths, and temperature coefficients. Power depressions from grid spacers are seen clearly in the MC21 results. Application of Coarse Mesh Finite Difference (CMFD) acceleration within MC21 has been accomplished, resulting in a significant reduction of inactive batches necessary to converge the fission source. CMFD acceleration has also been shown to work seamlessly with the Uniform Fission Site (UFS) variance reduction method. (authors)

  6. Optimization of small long-life PWR based on thorium fuel

    SciTech Connect

    Subkhi, Moh Nurul; Suud, Zaki Waris, Abdul; Permana, Sidik

    2015-09-30

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% {sup 233}U & 2.8% {sup 231}Pa, 6% {sup 233}U & 2.8% {sup 231}Pa and 7% {sup 233}U & 6% {sup 231}Pa give low excess reactivity.

  7. Conceptual design study of small long-life PWR based on thorium cycle fuel

    NASA Astrophysics Data System (ADS)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-09-01

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higer conversion ratio in thermal region compared to uranium cycle produce some significant of 233U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  8. Optimization of small long-life PWR based on thorium fuel

    NASA Astrophysics Data System (ADS)

    Subkhi, Moh Nurul; Suud, Zaki; Waris, Abdul; Permana, Sidik

    2015-09-01

    A conceptual design of small long-life Pressurized Water Reactor (PWR) using thorium fuel has been investigated in neutronic aspect. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.2, while the multi-energy-group diffusion calculations were optimized in three-dimension X-Y-Z geometry of core by COREBN. The excess reactivity of thorium nitride with ZIRLO cladding is considered during 5 years of burnup without refueling. Optimization of 350 MWe long life PWR based on 5% 233U & 2.8% 231Pa, 6% 233U & 2.8% 231Pa and 7% 233U & 6% 231Pa give low excess reactivity.

  9. Conceptual design study of small long-life PWR based on thorium cycle fuel

    SciTech Connect

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-09-30

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  10. DOMINO: A fast 3D cartesian discrete ordinates solver for reference PWR simulations and SPN validation

    SciTech Connect

    Courau, T.; Moustafa, S.; Plagne, L.; Poncot, A.

    2013-07-01

    As part of its activity, EDF R and D is developing a new nuclear core simulation code named COCAGNE. This code relies on DIABOLO, a Simplified PN (SPN) method to compute the neutron flux inside the core for eigenvalue calculations. In order to assess the accuracy of SPN calculations, we have developed DOMINO, a new 3D Cartesian SN solver. The parallel implementation of DOMINO is very efficient and allows to complete an eigenvalue calculation involving around 300 x 10{sup 9} degrees of freedom within a few hours on a single shared-memory supercomputing node. This computation corresponds to a 26-group S{sub 8} 3D PWR core model used to assess the SPN accuracy. At the pin level, the maximal error for the SP{sub 5} DIABOLO fission production rate is lower than 0.2% compared to the S{sub 8} DOMINO reference for this 3D PWR core model. (authors)

  11. Safety analysis of B and W Standard PWR using thorium-based fuels

    SciTech Connect

    Uotinen, V.O.; Carroll, W.P.; Jones, H.M.; Toops, E.C.

    1980-06-01

    A study was performed to assess the safety and licenseability of the Babcock and Wilcox standard 205-fuel assembly PWR when it is fueled with three types of thoria-based fuels denatured (/sup 233/U//sup 238/U-Th)O/sub 2/, denatured (/sup 235//U/sup 238/U-Th)O/sub 2/, and (Th-Pu)O/sub 2/. Selected transients were analyzed using typical PWR safety analysis calculational methods. The results support the conclusion that it is feasible from a safety standpoint to utilize either of the denatured urania-thoria fuels in the standard B and W plant. In addition, it appears that the use of thoria-plutonia fuels would probably also be feasible. These tentative conclusions depend on a data that is more limited than that available for UO/sub 2/ fuels.

  12. Radiation dose rates from commercial PWR and BWR spent fuel elements

    SciTech Connect

    Willingham, C.E.

    1981-10-01

    Data on measurements of gamma dose rates from commercial reactor spent fuel were collected, and documented calculated gamma dose rates were reviewed. As part of this study, the gamma dose rate from spent fuel was estimated, using computational techniques similar to previous investigations into this problem. Comparison of the measured and calculated dose rates provided a recommended dose rate in air versus distance curve for PWR spent fuel.

  13. PWR ENDF/B-VII cross-section libraries for ORIGEN-ARP

    SciTech Connect

    McGraw, C.; Ilas, G.

    2012-07-01

    New pressurized water reactor (PWR) cross-section libraries were generated for use with the ORIGEN-ARP depletion sequence in the SCALE nuclear analysis code system. These libraries are based on ENDF/B-VII nuclear data and were generated using the two-dimensional depletion sequence, TRITON/NEWT, in SCALE 6.1. The libraries contain multiple burnup-dependent cross-sections for seven PWR fuel designs, with enrichments ranging from 1.5 to 6 wt% {sup 235}U. The burnup range has been extended from the 72 GWd/MTU used in previous versions of the libraries to 90 GWd/MTU. Validation of the libraries using radiochemical assay measurements and decay heat measurements for PWR spent fuel showed good agreement between calculated and experimental data. Verification against detailed TRITON simulations for the considered assembly designs showed that depletion calculations performed in ORIGEN-ARP with the pre-generated libraries provide similar results as obtained with direct TRITON depletion, while greatly reducing the computation time. (authors)

  14. Three-dimensional analysis of thermal and fluid mixing in cold leg and downcomer of PWR geometries

    SciTech Connect

    Lyczkowski, R.W.; Miao, C.C.; Domanus, H.M.; Hull, J.R.; Sha, W.T.; Schmitt, R.C.

    1983-12-01

    This report describes the three-dimensional transient and steady-state computations using the COMMIX-1A computer code for the analysis of six (6) 1/5-scale thermal and fluid mixing experiments conducted at Creare, Inc. under EPRI sponsorship. The tests chosen for analyses emphasized the effects of vent valve flow, cold leg and high pressure injection (HPI) coolant flow rates, and HPI location and geometry. The COMMIX-1A computations will provide fluid temperatures and velocities in the belt-line region of the downcomer for assessment of boundary conditions for thermal stress analysis in the vessel walls. A realistic prediction for thermal and fluid mixing significantly helps establish what overcooling transients can lead to in pressurized thermal shock (PTS) events. Sample three-dimensional steady-state computations are presented for three (3) generic full-scale pressurized water reactors (PWR's) typical of Westinghouse (W), Combustion Engineering (CE), and Babcock and Wilcox (B and W) configurations as part of the code assessment.

  15. Linking Grain Boundary Microstructure to Stress Corrosion Cracking of Cold Rolled Alloy 690 in PWR Primary Water

    SciTech Connect

    Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.; Thomas, Larry E.

    2012-10-01

    Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. For the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.

  16. Overview of the PBF test results. [PWR; BWR

    SciTech Connect

    Zeile, H.J.

    1980-01-01

    The Thermal Fuels Behavior Program (TFBP) of EG and G Idaho conducts fuel behavior research in the Power Burst Facility (PBF) at INEL and at the Halden Reactor in Norway. The fuels behavior research in the PBF is directed toward providing a detailed understanding of the response of light water reactor (LWR) nuclear fuel assemblies to off-normal and hypothesized accident conditions. Single fuel rods and clusters of highly instrumented fuel rods are installed within a central test space of the PBF core for testing. The core can be operated in various modes to provide test conditions typical of accidents and off-normal conditions that may be experienced in a pressurized water reactor or a boiling water reactor.

  17. Demonstration of a noise-surveillance system at a PWR

    SciTech Connect

    Smith, C.M.

    1982-01-01

    The automated surveillance system has monitored the Sequoyah Nuclear Plant during its first fuel cycle. The system was able to acceptably adapt to different plant operating conditions. While evaluations are still ongoing, results indicate that the system was able to adapt to signals with different statistical character and that the discriminants are useful in detecting spectral changes. The system monitored long-term noise behavior, detected spectra that differ from what is considered normal, and provided concise storage of spectra together with the plant operating condition associated with the stored spectra.

  18. Materials Reliability Program: Environmental Fatigue Testing of Type 304L Stainless Steel U-Bends in Simulated PWR Primary Water (MRP-137)

    SciTech Connect

    R.Kilian

    2004-12-01

    Laboratory data generated in the past decade indicate a significant reduction in component fatigue life when reactor water environmental effects are experimentally simulated. However, these laboratory data have not been supported by nuclear power plant component operating experience. In recent comprehensive review of laboratory, component and structural test data performed through the EPRI Materials Reliability Program, flow rate was identified as a critical variable that was generally not considered in laboratory studies but applicable in plant operating environments. Available data for carbon/low-alloy steel piping components suggest that high flow is beneficial regarding the effects of a reactor water environment. Similar information is lacking for stainless steel piping materials. This report documents progress made to date in an extensive testing program underway to evaluate the effects of flow rate on the corrosion fatigue of 304L stainless steel under simulated PWR primary water environmental conditions.

  19. Transient cooldown in a model cold leg and downcomer. [PWR

    SciTech Connect

    Fanning, M.W.; Rothe, P.H.

    1983-05-01

    This report describes an experimental program of fluid mixing experiments performed at atmospheric pressure in a 1/5-scale, transparent model of a cold leg, downcomer, lower plenum, pump simulator and loop seal typical of Westinghouse and Combustion Engineering Pressurized Water Reactor (PWRs). The tests were transient cooldown tests in that they simulated an extreme condition of Small Break Loss of Coolant Accident (SBLOCA) during which cold High Pressure Injection (HPI) fluid is injected into stagnant, hot, primary fluid with complete loss of natural circulation in the loop. Cooldown in this new test series is much slower than in previous tests that did not model the pump simulator and loop seal volumes. For the stagnant loop condition, the dominant buoyancy force diverts cool HPI water to the additional volumes.

  20. Nuclear power plant fire protection: philosophy and analysis. [PWR; BWR

    SciTech Connect

    Berry, D. L.

    1980-05-01

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method.

  1. A Study on the Conceptual Design of a 1,500 MWe Passive PWR with Annular Fuel

    SciTech Connect

    Kwi Lim Lee; Soon Heung Chang

    2004-07-01

    In this study, the preliminary conceptual design of a 1500 MWe pressurized water reactor (PWR) with annular fuel has been performed. This design is derived from the AP1000 which is a 1000 MWe PWR with two-loop. However, the present design is a 1500 MWe PWR with three-loop, passive safety features and extensive plant simplifications to enhance the construction, operation, and maintenance. The preliminary design parameters of this reactor have been determined through simple relation to those of AP1000 for reactor, reactor coolant system, and passive safety injection system. Using the MATRA code, we analyze the core designs for two alternatives on fuel assembly types: solid fuel and annular fuel. The performance of reactor cooling systems is evaluated through the accident of the cold leg break in the core makeup tank loop by using MARS2.1 code. This study presents the developmental strategy, preliminary design parameters and safety analysis results. (authors)

  2. End effects on elbows subjected to moment loadings. [PWR; BWR

    SciTech Connect

    Rodabaugh, E.C.; Moore, S.E.

    1982-01-01

    So-called end effects for moment loadings on short-radius and long-radius butt welding elbows of various arc lengths are investigated with a view toward providing more accurate design formulas for critical piping systems. Data developed in this study, along with published information, were used to develop relatively simple design equations for elbows attached at both ends to long sections of straight pipe. These formulas are the basis for an alternate ASME Code procedure for evaluating the bending moment stresses in Class 1 nuclear piping (ASME Code Case N-319). The more complicated problems of elbows with other end conditions, e.g., flanges at one or both ends, are also considered. Comparisons of recently published experimental and theoretical studies with current industrial code design rules for these situations indicate that these rules also need to be improved.

  3. PWR Facility Dose Modeling Using MCNP5 and the CADIS/ADVANTG Variance-Reduction Methodology

    SciTech Connect

    Blakeman, Edward D; Peplow, Douglas E.; Wagner, John C; Murphy, Brian D; Mueller, Don

    2007-09-01

    The feasibility of modeling a pressurized-water-reactor (PWR) facility and calculating dose rates at all locations within the containment and adjoining structures using MCNP5 with mesh tallies is presented. Calculations of dose rates resulting from neutron and photon sources from the reactor (operating and shut down for various periods) and the spent fuel pool, as well as for the photon source from the primary coolant loop, were all of interest. Identification of the PWR facility, development of the MCNP-based model and automation of the run process, calculation of the various sources, and development of methods for visually examining mesh tally files and extracting dose rates were all a significant part of the project. Advanced variance reduction, which was required because of the size of the model and the large amount of shielding, was performed via the CADIS/ADVANTG approach. This methodology uses an automatically generated three-dimensional discrete ordinates model to calculate adjoint fluxes from which MCNP weight windows and source bias parameters are generated. Investigative calculations were performed using a simple block model and a simplified full-scale model of the PWR containment, in which the adjoint source was placed in various regions. In general, it was shown that placement of the adjoint source on the periphery of the model provided adequate results for regions reasonably close to the source (e.g., within the containment structure for the reactor source). A modification to the CADIS/ADVANTG methodology was also studied in which a global adjoint source is weighted by the reciprocal of the dose response calculated by an earlier forward discrete ordinates calculation. This method showed improved results over those using the standard CADIS/ADVANTG approach, and its further investigation is recommended for future efforts.

  4. Impact of radiation embrittlement on integrity of pressure vessel supports for two PWR plants

    SciTech Connect

    Cheverton, R.D.; Pennell, W.E.; Robinson, G.C.; Nanstad, R.K.

    1989-01-01

    Recent data from the HFIR vessel surveillance program indicate a substantial radiation embrittlement rate effect at low irradiation temperatures (/approximately/120/degree/F) for A212-B, A350-LF3, A105-II, and corresponding welds. PWR vessel supports are fabricated of similar materials and are subjected to the same low temperatures and fast neutron fluxes (10/sup 8/ to 10/sup 9/ neutrons/cm/sup 2//center dot/s, E > 1.0 MeV) as those in the HFIR vessel. Thus, the embrittlement rate of these structures may be greater than previously anticipated. A study sponsored by the NRC is under way at ORNL to determine the impact of the rate effect on PWR vessel-support life expectancy. The scope includes the interpretation and application of the HFIR data, a survey of all light-water-reactor vessel support designs, and a structural and fracture-mechanics analysis of the supports for two specific PWR plants of particular interest with regard to a potential for support failure as a result of propagation of flaws. Calculations performed thus far indicate best-estimate critical flaw sizes, corresponding to 32 EFPY, of /approximately/0.2 in. for one plant and /approximately/0.4 in. for the other. These flaw sizes are small enough to be of concern. However, it appears that low-cycle fatigue is not a viable mechanism for creation of flaws of this size, and thus, presumably, such flaws would have to exist at the time of fabrication. 59 refs., 128 figs., 49 tabs.

  5. Bias estimates used in lieu of validation of fission products and minor actinides in MCNP Keff calculations for PWR burnup credit casks

    SciTech Connect

    Mueller, Don E.; Marshall, William J.; Wagner, John C.; Bowen, Douglas G.

    2015-09-01

    The U.S. Nuclear Regulatory Commission (NRC) Division of Spent Fuel Storage and Transportation recently issued Interim Staff Guidance (ISG) 8, Revision 3. This ISG provides guidance for burnup credit (BUC) analyses supporting transport and storage of PWR pressurized water reactor (PWR) fuel in casks. Revision 3 includes guidance for addressing validation of criticality (keff) calculations crediting the presence of a limited set of fission products and minor actinides (FP&MA). Based on previous work documented in NUREG/CR-7109, recommendation 4 of ISG-8, Rev. 3, includes a recommendation to use 1.5 or 3% of the FP&MA worth to conservatively cover the bias due to the specified FP&MAs. This bias is supplementary to the bias and bias uncertainty resulting from validation of keff calculations for the major actinides in SNF and does not address extension to actinides and fission products beyond those identified herein. The work described in this report involves comparison of FP&MA worths calculated using SCALE and MCNP with ENDF/B-V, -VI, and -VII based nuclear data and supports use of the 1.5% FP&MA worth bias when either SCALE or MCNP codes are used for criticality calculations, provided the other conditions of the recommendation 4 are met. The method used in this report may also be applied to demonstrate the applicability of the 1.5% FP&MA worth bias to other codes using ENDF/B V, VI or VII based nuclear data. The method involves use of the applicant s computational method to generate FP&MA worths for a reference SNF cask model using specified spent fuel compositions. The applicant s FP&MA worths are then compared to reference values provided in this report. The applicants FP&MA worths should not exceed the reference results by more than 1.5% of the reference FP&MA worths.

  6. Thermal Response of the 21-PWR Waste Package to a Fire Accident

    SciTech Connect

    F.P. Faucher; H. Marr; M.J. Anderson

    2000-10-03

    The objective of this calculation is to evaluate the thermal response of the 21-PWR WP (pressurized water reactor waste package) to the regulatory fire event. The scope of this calculation is limited to the two-dimensional waste package temperature calculations to support the waste package design. The information provided by the sketches attached to this calculation (Attachment IV) is that of the potential design of the type of waste package considered in this calculation. The procedure AP-3.12Q.Calculations (Reference 1), and the Development Plan (Reference 24) are used to develop this calculation.

  7. SCALE 5.1 Predictions of PWR Spent Nuclear Fuel Isotopic Compositions

    SciTech Connect

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina

    2010-03-01

    The purpose of this calculation report is to document the comparison to measurement of the isotopic concentrations for pressurized water reactor (PWR) spent nuclear fuel determined with the Standardized Computer Analysis for Licensing Evaluation (SCALE) 5.1 (Ref. ) epletion calculation method. Specifically, the depletion computer code and the cross-section library being evaluated are the twodimensional (2-D) transport and depletion module, TRITON/NEWT,2, 3 and the 44GROUPNDF5 (Ref. 4) cross-section library, respectively, in the SCALE .1 code system.

  8. Nuclear data uncertainties by the PWR MOX/UO{sub 2} core rod ejection benchmark

    SciTech Connect

    Pasichnyk, I.; Klein, M.; Velkov, K.; Zwermann, W.; Pautz, A.

    2012-07-01

    Rod ejection transient of the OECD/NEA and U.S. NRC PWR MOX/UO{sub 2} core benchmark is considered under the influence of nuclear data uncertainties. Using the GRS uncertainty and sensitivity software package XSUSA the propagation of the uncertainties in nuclear data up to the transient calculations are considered. A statistically representative set of transient calculations is analyzed and both integral as well as local output quantities are compared with the benchmark results of different participants. It is shown that the uncertainties in nuclear data play a crucial role in the interpretation of the results of the simulation. (authors)

  9. Application of LBB to high energy piping systems in operating PWR

    SciTech Connect

    Swamy, S.A.; Bhowmick, D.C.

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  10. Neutronics and safety characteristics of a 100% MOX fueled PWR using weapons grade plutonium

    SciTech Connect

    Biswas, D.; Rathbun, R.; Lee, Si Young; Rosenthal, P.

    1993-12-31

    Preliminary neutronics and safety studies, pertaining to the feasibility of using 100% weapons grade mixed-oxide (MOX) fuel in an advanced PWR Westinghouse design are presented in this paper. The preliminary results include information on boron concentration, power distribution, reactivity coefficients and xenon and control rode worth for the initial and the equilibrium cycle. Important safety issues related to rod ejection and steam line break accidents and shutdown margin requirements are also discussed. No significant change from the commercial design is needed to denature weapons-grade plutonium under the current safety and licensing criteria.