Science.gov

Sample records for pyrimidine dimer formation

  1. Blocking cyclobutane pyrimidine dimer formation by steric hindrance.

    PubMed

    Vendrell-Criado, Victoria; Lhiaubet-Vallet, Virginie; Yamaji, Minoru; Cuquerella, M Consuelo; Miranda, Miguel A

    2016-04-26

    The efficiency of thymine (Thy) and uracil (Ura) to form cyclobutane pyrimidine dimers (CPDs) in solution, upon UV irradiation differs by one order of magnitude. This could to be partially related to the steric hindrance induced by the methyl at C5 in thymine. The aim of the present work is to establish the influence of a bulky moiety at this position on the photoreactivity of pyrimidines. With this purpose, photosensitization with benzophenone and acetone of a 5-tert-butyl uracil derivative () and the equivalent Thy () has been compared. Introduction of the tert-butyl group completely blocks CPD formation. Moreover, the mechanistic insight obtained by laser flash photolysis is in accordance with the observed photoreactivity. PMID:27112630

  2. Pyrimidine dimer formation and repair in human skin

    SciTech Connect

    Sutherland, B.M.; Harber, L.C.; Kochevar, I.E.

    1980-09-01

    Cyclobutyl pyrimidine dimers have been detected in the DNA of human skin following in vivo irradiation with suberythermal doses of ultraviolet (UV) radiation from FS-20 sun lamp fluorescent tubes. Dimers were assayed by treatment of extracted DNA with Micrococus luteus UV-specific endonuclease, alkaline agarose electrophoresis, and ethidum bromide staining. This technique, in contrast to conventional dimer assays, can be used with nonradioactive DNA and is optimal at low UV light doses. These data suggest that some dimer disappearance by excision repair occurs within 20 min of UV irradiation and that photoreactivation of dimers can make a contribution to the total repair process.

  3. Influence of C5-methylation of cytosine on the formation of cyclobutane pyrimidine dimers

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi; Eriksson, Leif A.

    2005-01-01

    The reaction pathways for thermal and photochemical formation of 5-methylcytosine (m 5C) pyrimidine dimers (CPD) are explored using density functional theory techniques. It is shown that the methylation of cytosine does not contribute to an increased yield of CPDs after UV irradiation due to an even lower excitation energy at the reactant complex of m 5C as compared to cytosine, a larger barrier to reach the decay channel corresponding to the transition state structure along the ground state reaction path, and a higher-lying decay channel.

  4. Physical quenching in competition with the formation of cyclobutane pyrimidine dimers in DNA photolesion.

    PubMed

    Zhao, Hongmei; Liu, Kunhui; Song, Di; Su, Hongmei

    2014-10-01

    The potential energy profiles toward formation of cyclobutane pyrimidine dimers CPD and the physical quenching after UV excitation were explored for the dinucleotide thymine dinucleoside monophosphate (TpT) using density functional theory (ωB97XD) and the time-dependent density functional theory (TD-ωB97XD). The ωB97XD functional that includes empirical dispersion correction is shown to be an appropriate method to obtain rational results for the current large reaction system of TpT. Photophysical quenching is shown to be predominant over the photochemical CPD formation. Following the initial excitation to the (1)ππ* state, the underlying dark (1)nπ* state bifurcates the excited population to the prevailing IC to S0 and the small ISC to the long-lived triplet state T1 via T4 ((3)ππ*) state that has negligible energy gap with (1)nπ* state. Even for the reactive T1 state, two physical quenching pathways resulting in the conversion back to ground-state reactant via the T1/S0 crossing points are newly located, which are in strong competition with CPD formation. These results provide rationale for the recently observed nanosecond triplet decay rates in the single-stranded (dT)18 and inefficiency of deleterious CPD formation, which allow for a deeper understanding of DNA photostability. PMID:24964272

  5. Repair of DNA-containing pyrimidine dimers

    SciTech Connect

    Grossman, L.; Caron, P.R.; Mazur, S.J.; Oh, E.Y.

    1988-08-01

    Ultraviolet light-induced pyrimidine dimers in DNA are recognized and repaired by a number of unique cellular surveillance systems. The most direct biochemical mechanism responding to this kind of genotoxicity involves direct photoreversal by flavin enzymes that specifically monomerize pyrimidine:pyrimidine dimers monophotonically in the presence of visible light. Incision reactions are catalyzed by a combined pyrimidine dimer DNA-glycosylase:apyrimidinic endonuclease found in some highly UV-resistant organisms. At a higher level of complexity, Escherichia coli has a uvr DNA repair system comprising the UvrA, UvrB, and UvrC proteins responsible for incision. There are several preincision steps governed by this pathway, which includes an ATP-dependent UvrA dimerization reaction required for UvrAB nucleoprotein formation. This complex formation driven by ATP binding is associated with localized topological unwinding of DNA. This same protein complex can catalyze an ATPase-dependent 5'----3'-directed strand displacement of D-loop DNA or short single strands annealed to a single-stranded circular or linear DNA. This putative translocational process is arrested when damaged sites are encountered. The complex is now primed for dual incision catalyzed by UvrC. The remainder of the repair process involves UvrD (helicase II) and DNA polymerase I for a coordinately controlled excision-resynthesis step accompanied by UvrABC turnover. Furthermore, it is proposed that levels of repair proteins can be regulated by proteolysis. UvrB is converted to truncated UvrB* by a stress-induced protease that also acts at similar sites on the E. coli Ada protein. Although UvrB* can bind with UvrA to DNA, it cannot participate in helicase or incision reactions. It is also a DNA-dependent ATPase.21 references.

  6. Excision repair of UV-induced pyrimidine dimers in human skin in vivo

    SciTech Connect

    D'Ambrosio, S.M.; Slazinski, L.; Whetstone, J.W.; Lowney, E.

    1981-09-01

    The induction and loss of pyrimidine dimers in human skin in vivo was determined using UV endonuclease, alkaline sucrose sedimentations, and the fluorescent detection of nonradiolabeled DNA. The number of dimers induced following exposure of the skin to radiation emitted from a Burdick UV-800 sunlamp was quantitated by reacting the extracted DNA with Micrococcus luteus endonuclease specific for pyrimidine dimers. Exposure to 15 and 30 seconds of radiation emitted from this lamp produced the formation of 12.8 and 23.6 dimers per 10(8) daltons DNA, respectively. Approximately 50% of the dimers induced were lost 58 min after irradiation. Only a small percentage (less than 10) remained 24 hr postirradiation. These data partially characterize the process by which pyrimidine dimers are excised from human skin DNA in vivo.

  7. Human white blood cells contain cyclobutyl pyrimidine dimer photolyase

    SciTech Connect

    Sutherland, B.M.; Bennett, P.V.

    1995-10-10

    Although enzymatic photoreactivation of cyclobutyl pyrimidine dimers in DNA is present in almost all organisms, its presence in placental mammals is controversial. We tested human white blood cells for photolyase by using three defined DNAs (suprecoiled pET-2, nonsupercoiled bacteriphage {lambda}, and a defined-sequence 287-bp oligonucleotide), two dimer-specific endonucleases (T4 endonuclease V and UV endonuclease from Micrococcus luteus), and three assay methods. We show that human white blood cells contain photolyase that can photorepair pyrimidine dimers in defined supercoiled and linear DNAs and in a 287-bp oligonucleotide and that human photolyase is active on genomic DNA in intact human cells. 44 refs., 3 figs.

  8. Quantitation of pyrimidine dimer contents of nonradioactive deoxyribonucleic acid by electrophoresis in alkaline agarose gels

    SciTech Connect

    Sutherland, B.M.; Shih, A.G.

    1983-02-15

    We have developed a method of quantitating the pyrimidine dimer content of nonradioactive DNAs. DNA samples are treated with the UV-endonuclease from Micrococcus luteus and then separated according to molecular weight by electrophoresis on alkaline agarose gels. From their migration relative to known molecular weight standards, their median molecular weight and thus the number of dimers per DNA molecule in each sample can be calculated. Results of action spectra for dimer formation in T7 bacteriophage measured by this method agree well with action spectra for T7 killing. In addition, the method gives dimer yields in good agreement with those obtained by others using alkaline sucrose gradient sedimentation.

  9. Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin

    SciTech Connect

    Ananthaswamy, H.N.; Fisher, M.S.

    1981-05-01

    The numbers of ultraviolet light (uv)-induced pyrimidine dimers in the DNA of neonatal BALB/c mouse skin were measured by assessing the sensitivity of the DNA to Micrococcus luteus uv endonuclease. Irradiation of neonatal BALB/c mice with FS40 sunlamps caused a dose-dependent induction of endonuclease-sensitive sites (pyrimidine dimers) in DNA extracted from back skin. Exposure of these uv-irradiated neonatal mice to photoreactivating (PR) light (cool white fluorescent lamp and incandescent lamp) caused a reduction in the number of pyrimidine dimers in the DNA, as revealed by a shift in low-molecular-weight DNA to high-molecular-weight DNA. In contrast, DNA profiles of the skin of either uv-irradiated mice or uv-irradiated mice kept in the dark for the same duration as those exposed to PR light did not show a loss of uv-induced endonuclease-sensitive sites. Furthermore, reversing the order of treatment, i.e., administering PR light first and then uv, did not produce a reduction in pyrimidine dimers. These results demonstrate that PR or uv-induced pyrimidine dimers occurs in neonatal BALB/c mouse skin. The optimal wavelength range for in vivo PR appears to be in the visible region of the spectrum (greater than 400 nm). Although dimer formation could be detected in both dermis and epidermis, PR occurred only in the dermis. Furthermore, the PR phenomenon could not be detected in the skin of adult mice from the same inbred strain.

  10. Regulation of pyrimidine formation in Pseudomonas oryzihabitans.

    PubMed

    West, Thomas P

    2007-10-01

    The regulation of pyrimidine formation in the opportunistic human pathogen Pseudomonas oryzihabitans was investigated at the level of enzyme synthesis and at the level of activity for the pyrimidine biosynthetic pathway enzyme aspartate transcarbamoylase. Although pyrimidine supplementation of succinate-grown P. oryzihabitans cells produced little effect on the de novo pyrimidine biosynthetic pathway enzyme activities, pyrimidine limitation experiments undertaken using an orotidine 5'-monophosphate decarboxylase mutant strain isolated from P. oryzihabitans ATCC 43272 indicated that repression of enzyme synthesis by pyrimidines was occurring. Following pyrimidine limitation of the succinate-grown decarboxylase mutant strain cells, aspartate transcarbamoylase and dihydroorotase activities were found to increase by about 3-fold while dihydroorotate dehydrogenase and orotate phosphoribosyltransferase activities were also observed to increase relative to their activities in the mutant strain cells grown on excess uracil. At the level of enzyme activity, aspartate transcarbamoylase in P. oryzihabitans was strongly inhibited by pyrophosphate, ADP, ATP and GTP in the presence of saturating substrate concentrations. PMID:17910097

  11. Quantitation of pyrimidine dimers in DNA from UVB-irradiated alfalfa (@ L. ) seedlings

    SciTech Connect

    Quaite, F.E.; Sutherland, B.M.; Sutherland, J.C.

    1991-01-01

    Depletion of stratospheric ozone will increase the solar ultraviolet radiation in the range from 290-320 nm (UVB) that reaches the surface of the earth, placing an increased UV burden on exposed organisms. One consequence of increased UVB may be decreased productivity of crop plants. A principal lesion caused by UV in DNA is the cyclobutyl pyrimidine dimer. We have adapted a method for measuring these dimers in nanogram quantities of non-radioactive DNA for use in UV-irradiated plants. We find that biologically relevant doses of broad band UVB radiation induce easily detectable frequencies of pyrimidine dimers in the DNA of irradiated alfalfa sprout leaves and that the dose response for dimer formation is linear up to doses of at least 690 J/m{sup 2}. We also find easily measurable frequencies of dimers in the leaves of seedlings grown in glass filtered sunlight but not exposed to additional UVB, suggesting that significant number of dimers are formed in plants exposed to normal sunlight. 27 refs., 3 figs., 1 tab.

  12. Molecular Mechanisms in the Repair of the Cyclobutane Pyrimidine Dimer

    NASA Astrophysics Data System (ADS)

    Hassanali, Ali A.; Zhong, Dongping; Singer, Sherwin J.

    2009-06-01

    Exposure to far UV radiation induces DNA damage in the form of cyclobutane pyrimidine dimers (CPDs). Cyclobutane dimer lesions can be repaired by the enzyme photolyase, in which the absorption of a blue light photon initiates a sequence of photochemical events leading to the injection of an electron at the site of the CPD lesion in DNA. The electron catalyzes the repair of the cyclobutane dimer, splitting the CPD to is original pyrimidine units, and is subsequently recaptured by the photolyase protein. In this work we investigate the molecular mechanism of the repair of the cyclobutane dimer radical anion in aqueous solution using ab initio MD simulations. Umbrella sampling is used to determine a two-dimensional free energy surface as a function of the C5-C5-4 and C6-C6-4 distances. The neutral dimer is unable to surmount a large free energy barrier for repair. Upon addition of an electron, the splitting of the C5-C5-4 coordinate is virtually barrier less. Transition state theory predicts that the splitting of the C6-C6-4 bond is complete on a picosecond timescale. The free energy surface suggests that the splitting of the two bonds is asynchronously concerted. Our work is the first to explicitly include the electronic degrees of freedom for both the cyclobutane dimer and the surrounding water pocket. The ab initio simulations show that at least 30% of the electron density is delocalized onto the surrounding solvent during the splitting process. Simulations on the neutral surface show that back electron transfer from the dimer is critical for the completion of splitting: splitting of the C5-C5' and C6-C6' bonds can be reversed or enhanced depending on when electron return occurs. To maximize splitting yield, the back electron transfer should occur beyond the transition state along the splitting coordinate. Non-equilibrium trajectories are also conducted that begin with the electron added to a neutral unrepaired solvated CPD. Our results indicate that there are two

  13. Induction of pyrimidine dimers in epidermal DNA of hairless mice by UVB: an action spectrum

    SciTech Connect

    Ley, R.D.; Peak, M.J.; Lyon, L.L.

    1983-03-01

    An action spectrum for the induction of pyrimidine dimers in the epidermis of hairless mice was determined between 288 and 307 nm. The presence of pyrimidine dimers in tritium-labeled DNA extracted from exposed SKH:hairless-1 mouse skin was determined using dimer-specific nucleases from Micrococcus luteus in conjunction with sedimentation of the irradiated DNA in alkaline sucrose gradients. The rate of induction of pyrimidine dimers was maximal at 293 nm. These values were used to propose a UVB transmission curve for mouse epidermis.

  14. Pyrimidine dimers in DNA initiate systemic immunosuppression in UV-irradiated mice.

    PubMed

    Kripke, M L; Cox, P A; Alas, L G; Yarosh, D B

    1992-08-15

    Exposing the skin of mice to UV radiation interferes with the induction of delayed and contact hypersensitivity immune responses initiated at nonirradiated sites. The identity of the molecular target in the skin for these immunosuppressive effects of UV radiation remains controversial. To test the hypothesis that DNA is the target for UV-induced systemic immunosuppression, we exposed C3H mice to UV radiation and then used liposomes to deliver a dimer-specific excision repair enzyme into the epidermis in situ. The application of T4 endonuclease V encapsulated in liposomes to UV-irradiated mouse skin decreased the number of cyclobutane pyrimidine dimers in the epidermis and prevented suppression of both delayed and contact hypersensitivity responses. Moreover, the formation of suppressor lymphoid cells was inhibited. Control, heat-inactivated endonuclease encapsulated in liposomes had no effect. These studies demonstrate that DNA is the major target of UV radiation in the generation of systemic immunosuppression and suggest that the primary molecular event mediating these types of immunosuppression by UV radiation is the formation of pyrimidine dimers. Furthermore, they illustrate that the delivery of lesion-specific DNA repair enzymes to living skin after UV irradiation is an effective tool for restoring immune function and suggest that this approach may be broadly applicable to preventing other alterations caused by DNA damage. PMID:1502162

  15. The native cyclobutane pyrimidine dimer photolyase of rice is phosphorylated.

    PubMed

    Teranishi, Mika; Nakamura, Kentaro; Morioka, Hiroshi; Yamamoto, Kazuo; Hidema, Jun

    2008-04-01

    The cyclobutane pyrimidine dimer (CPD) is a major type of DNA damage induced by ultraviolet B (UVB) radiation. CPD photolyase, which absorbs blue/UVA light as an energy source to monomerize dimers, is a crucial factor for determining the sensitivity of rice (Oryza sativa) to UVB radiation. Here, we purified native class II CPD photolyase from rice leaves. As the final purification step, CPD photolyase was bound to CPD-containing DNA conjugated to magnetic beads and then released by blue-light irradiation. The final purified fraction contained 54- and 56-kD proteins, whereas rice CPD photolyase expressed from Escherichia coli was a single 55-kD protein. Western-blot analysis using anti-rice CPD photolyase antiserum suggested that both the 54- and 56-kD proteins were the CPD photolyase. Treatment with protein phosphatase revealed that the 56-kD native rice CPD photolyase was phosphorylated, whereas the E. coli-expressed rice CPD photolyase was not. The purified native rice CPD photolyase also had significantly higher CPD photorepair activity than the E. coli-expressed CPD photolyase. According to the absorption, emission, and excitation spectra, the purified native rice CPD photolyase possesses both a pterin-like chromophore and an FAD chromophore. The binding activity of the native rice CPD photolyase to thymine dimers was higher than that of the E. coli-expressed CPD photolyase. These results suggest that the structure of the native rice CPD photolyase differs significantly from that of the E. coli-expressed rice CPD photolyase, and the structural modification of the native CPD photolyase leads to higher activity in rice. PMID:18235036

  16. Determination of pyrimidine dimers in DNA by high-performance liquid chromatography/gas chromatography and electron capture detection

    SciTech Connect

    Ramsey, R.S.; Ho, C. )

    1989-11-01

    Exposure of DNA to uv radiation results in the formation of a number of photoproducts including the cyclobutyl pyrimidine dimers. At low uv fluences the concentrations of these dimeric compounds are only a small fraction of the corresponding DNA pyrimidine concentration (e.g., as low as 0.02% or less of the total thymine content). Sensitive methods of analysis are therefore required for accurate determinations. Analytical methodology based upon HPLC fractionation and electrophore labeling followed by GC/electron capture detection (ECD) has been developed to quantitate these species. Separation of thymine-thymine, thymine-uracil, and uracil-uracil from the monomeric bases and from other constituents present in acid-hydrolyzed DNA is achieved by reversed-phase HPLC. Isolation of the dimeric fractions is followed by off-line derivatization to form pentafluorobenzyl products for analysis by GC/ECD. All active hydrogens are alkylated, yielding products with high response factors and detection limits in the low femtomole range. The overall analytical scheme for the determination of pyrimidine dimers in DNA is presented.

  17. Photorepair of ultraviolet radiation-induced pyrimidine dimers in corneal DNA.

    PubMed

    Ley, R D; Applegate, L A; Freeman, S E

    1988-07-01

    The induction and photorepair of pyrimidine dimers in DNA have been measured in the ultraviolet-irradiated, corneal epithelium of the marsupial, Monodelphis domestica, using damage-specific nucleases from Micrococcus luteus in conjunction with agarose gel electrophoresis. We observed that FS-40 sunlamps (280-400 nm) induced 7.2 +/- 1.0 X 10(-5) pyrimidine dimers per kilobase (kb) of DNA per J/m2. Following 100 J/m2, 50% and greater than 90% of the dimers were photorepaired during a 10- and 30-min exposure to photoreactivating light (320-400 nm), respectively. In addition, approximately 70% and approximately 60% of the dimers induced by 300 and 500 J/m2, respectively, were repaired by a 60-min exposure to photoreactivating light. The capacity of the corneal epithelium of M. domestica to photorepair pyrimidine dimers identifies this animal as a potentially useful model with which to determine whether pyrimidine dimers are involved in pathological changes of the irradiated eye. PMID:3386657

  18. Photoreactivation of UV-induced pyrimidine dimers and erythema in the marsupial Monodelphis domestica

    SciTech Connect

    Ley, R.D.

    1985-04-01

    Post-UV treatment of the gray, short-tailed opossum Monodelphis domestica with photoreactivating light (320-400 nm) suppressed the appearance of UV-induced erythema as evidenced by an increase in the dose of UV required to elicit an erythemal response. Pre-UV exposure to photoreactivating light had no effect on the UV induction of erythema. The dose-response for the photoreversal of pyrimidine dimers in epidermal DNA of M. domestica was similar to that for the photoreactivation of erythema induction. These data not only support the notion that DNA is the primary chromophore involved in the induction of erythema but also identify pyrimidine dimers as the major DNA change responsible for its induction. These results also identify M. domestica as a useful whole-animal system with which to determine the role of pyrimidine dimers in other photobiological responses of mammalian skin.

  19. Ultraviolet radiation-induced lethality and repair of pyrimidine dimers in fish embryos.

    PubMed

    Applegate, L A; Ley, R D

    1988-03-01

    Pimephales promelas (fathead minnow) embryos were used to show a correlation between induction of pyrimidine dimers in DNA and embryo death. Embryo killing was measured by a lack of heart-beat and blood circulation at 48 h post-ultraviolet radiation (UVR). When the embryos were exposed to various doses of UVR from a FS-40 sunlamp followed by exposure to photoreactivating light (PRL) (320-400 nm), the number of pyrimidine dimers decreased significantly. The photorepair of dimers was accompanied by a substantial increase in embryo survival. When embryo killing was examined as a function of the number of dimers present, dimers were identified as a major lesion involved in UVR-induced killing in these fish embryos. This in vivo study on photoreactivation treatment of fish embryos shows a direct association between UVR-induced pyrimidine dimers and embryo killing. In addition, when embryos were held in the dark for 9 h after UVR, 50% of the dimers were removed by excision repair. PMID:3352631

  20. Quantitation of ultraviolet radiation-induced cyclobutyl pyrimidine dimers in DNA by video and photographic densitometry

    SciTech Connect

    Freeman, S.E.; Thompson, B.D. )

    1990-05-01

    We have compared video and photographic methods for calculating the number of ultraviolet radiation (uv)-induced pyrimidine dimers in DNA from the bacteriophage T7 exposed to uv (0 to 800 J/m2) from an FS40 sunlamp. DNA was incubated with a pyrimidine dimer-specific Micrococcus luteus uv endonuclease, subjected to alkaline agarose gel electrophoresis, neutralized, and stained with ethidium bromide, and the DNA fluorescence was recorded either with a video camera or on photographic film. The slopes of the dose-response curves for the number of uv-endonuclease-sensitive sites per 10(3) bases (pyrimidine dimers) was 1.2 (+/- 0.1) X 10(-4) uv-endonuclease-sensitive sites per J/m2 for the video analysis and 1.3 (+/- 0.04) X 10(-4) uv-endonuclease-sensitive sites per J/m2 for the photographic analysis. Results for pyrimidine dimer determination by either method were statistically comparable.

  1. Detection of UV-induced cyclobutane pyrimidine dimers by near-infrared spectroscopy and aquaphotomics

    PubMed Central

    Goto, Noriko; Bazar, Gyorgy; Kovacs, Zoltan; Kunisada, Makoto; Morita, Hiroyuki; Kizaki, Seiichiro; Sugiyama, Hiroshi; Tsenkova, Roumiana; Nishigori, Chikako

    2015-01-01

    Ultraviolet (UV) radiation causes cellular DNA damage, among which cyclobutane pyrimidine dimers (CPDs) are responsible for a variety of genetic mutations. Although several approaches have been developed for detection of CPDs, conventional methods require time-consuming steps. Aquaphotomics, a new approach based on near-infrared spectroscopy (NIRS) and multivariate analysis that determines interactions between water and other components of the solution, has become an effective method for qualitative and quantitative parameters measurement in the solutions. NIR spectral patterns of UVC-irradiated and nonirradiated DNA solutions were evaluated using aquaphotomics for detection of UV-induced CPDs. Groups of UV-irradiated and nonirradiated DNA samples were classified (87.5% accuracy) by soft independent modeling of class analogy (SIMCA). A precise regression model calculated from NIR water spectral patterns based on UVC doses (r Val = 0.9457) and the concentration of cis-syn cyclobutane thymine dimers (cis-syn T<>Ts; r Val = 0.9993) was developed using partial least squares regression (PLSR), while taking advantage of water spectral patterns, particularly around 1400–1500 nm. Our results suggested that, in contrast to DNA, the formation of cis-syn T<>Ts increased the strongly hydrogen bonded water. Additionally, NIRS could qualitatively and quantitatively detect cis-syn T<>Ts in isolated DNA aqueous solutions upon UVC exposure. PMID:26133899

  2. Excision of pyrimidine dimers from nuclear deoxyribonucleic acid in ultraviolet-irradiated Dictyostelium discoideum

    SciTech Connect

    Clark, J.M.; Deering, R.A.

    1987-02-01

    A sensitive endonuclease assay was used to study the fate of pyrimidine dimers introduced by ultraviolet irradiation into the nuclear deoxyribonucleic acid of the cellular slime mold Dictyostellium discoideum. Analysis of the frequency of T4 endonuclease V-induced single-strand breaks by alkaline sucrose gradient sedimentation showed that strain NC4 (rad/sup +/) removed >98% of the dimers induced by irradiation at 40 J/m/sup 2/ (254 nm) within 215 min after irradiation. HPS104 (radC44), a mutant sensitive to ultraviolet irradiation, removed 91% under these conditions, although at a significantly slower rate than NC4: only 8% were removed during the 10- to 15- min period immediately after irradiation, whereas NC4 excised 64% during this interval. HPS104 thus appears to be deficient in the activity(ies) responsible for rapidly incising ultraviolet-irradiated nuclear deoxyribonucleic acid at the sites of pyrimidine dimers.

  3. Accommodation of pyrimidine dimers during replication of UV-damaged simian virus 40 DNA.

    PubMed Central

    Stacks, P C; White, J H; Dixon, K

    1983-01-01

    UV irradiation of simian virus 40-infected cells at fluences between 20 and 60 J/m2, which yield one to three pyrimidine dimers per simian virus 40 genome, leads to a fluence-dependent progressive decrease in simian virus 40 DNA replication as assayed by incorporation of [3H]deoxyribosylthymine into viral DNA. We used a variety of biochemical and biophysical techniques to show that this decrease is due to a block in the progression of replicative-intermediate molecules to completed form I molecules, with a concomitant decrease in the entry of molecules into the replicating pool. Despite this UV-induced inhibition of replication, some pyrimidine dimer-containing molecules become fully replicated after UV irradiation. The fraction of completed molecules containing dimers goes up with time such that by 3 h after a UV fluence of 40 J/m2, more than 50% of completed molecules contain pyrimidine dimers. We postulate that the cellular replication machinery can accommodate limited amounts of UV-induced damage and that the progressive decrease in simian virus 40 DNA synthesis after UV irradiation is due to the accumulation in the replication pool of blocked molecules containing levels of damage greater than that which can be tolerated. PMID:6621531

  4. UV light-induced cyclobutane pyrimidine dimers are mutagenic in mammalian cells

    SciTech Connect

    Protic-Sabljic, M.; Tuteja, N.; Munson, P.J.; Hauser, J.; Kraemer, K.H.; Dixon, K.

    1986-10-01

    We used a simian virus 40-based shuttle vector plasmid, pZ189, to determine the role of pyrimidine cyclobutane dimers in UV light-induced mutagenesis in monkey cells. The vector DNA was UV irradiated and then introduced into monkey cells by transfection. After replication, vector DNA was recovered from the cells and tested for mutations in its supF suppressor tRNA marker gene by transformation of Escherichia coli carrying a nonsense mutation in the beta-galactosidase gene. When the irradiated vector was treated with E. coli photolyase prior to transfection, pyrimidine cyclobutane dimers were removed selectively. Removal of approximately 90% of the pyrimidine cyclobutane dimers increased the biological activity of the vector by 75% and reduced its mutation frequency by 80%. Sequence analysis of 72 mutants recovered indicated that there were significantly fewer tandem double-base changes and G X C----A X T transitions (particularly at CC sites) after photoreactivation of the DNA. UV-induced photoproducts remained (although at greatly reduced levels) at all pyr-pyr sites after photoreactivation, but there was a relative increase in photoproducts at CC and TC sites and a relative decrease at TT and CT sites, presumably due to a persistence of (6-4) photoproducts at some CC and TC sites. These observations are consistent with the fact that mutations were found after photoreactivation at many sites at which only cyclobutane dimers would be expected to occur. From these results we conclude that UV-induced pyrimidine cyclobutane dimers are mutagenic in DNA replicated in monkey cells.

  5. Thymine Dimer Formation probed by Time-Resolved Vibrational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schreier, Wolfgang J.; Schrader, Tobias E.; Roller, Florian O.; Gilch, Peter; Zinth, Wolfgang; Kohler, Bern

    Cyclobutane pyrimidine dimers are the major photoproducts formed when DNA is exposed to UV light. Femtosecond time-resolved vibrational spectroscopy reveals that thymine dimers are formed in thymidine oligonucleotides in an ultrafast photoreaction.

  6. Enhanced pyrimidine dimer repair in cultured murine epithelial cells transfected with the denV gene of bacteriophage T4.

    PubMed

    Kusewitt, D F; Budge, C L; Ley, R D

    1994-04-01

    The patch size for excision repair of ultraviolet radiation (UV)-induced pyrimidine dimers was determined in cultured murine epithelial cells with normal and enhanced pyrimidine dimer repair capabilities. Cells with enhanced pyrimidine dimer repair were produced by transfecting 308 cells with the denV gene of bacteriophage T4; this gene encodes the enzyme endonuclease V. Pyrimidine dimer repair following exposure to UV from an FS-40 sunlamp was determined by micrococcal dimer-specific nuclease digestion and alkaline sucrose ultracentrifugation. Patch size ws estimated based on the photolytic lability of bromodeoxyuridine-substituted DNA. Excision repair of UV-induced pyrimidine dimers in denV-transfected 308 cells was enhanced two- to threefold. Production of mRNA from the denV gene in cell lines with enhanced repair was confirmed by RNA blotting. In control cells, the patch size for excision repair of DNA photoproducts was estimated to be 34 nucleotides per photoproduct removed; in denV-transfected cells, a smaller average patch size of 10-16 nucleotides per photoproduct removed was calculated. Thus, endonuclease V activity appears to alter not only the extent, but also the nature of excision repair in UV-exposed mammalian epithelial cells. PMID:8151125

  7. Bifilar enzyme-sensitive sites in ultraviolet-irradiated DNA are indicative of closely opposed cyclobutyl pyrimidine dimers.

    PubMed Central

    Lam, L H; Reynolds, R J

    1986-01-01

    Incubation of UV-irradiated DNA with pyrimidine dimer-DNA glycosylase in cell-free lysates prepared from Micrococcus luteus results in the appearance of double-strand breaks. It has previously been assumed that such double-strand breaks result from cleavage at closely opposed dimers. We have used hybrid molecules of bacteriophage T7 DNA comprised of two unirradiated strands, two UV-irradiated strands, or one unirradiated and one UV-irradiated strand to test this hypothesis. Bifilar cleavage was observed only with molecules consisting of two irradiated strands and no bifilar cleavage was observed after the monomerization of pyrimidine dimers by enzymatic photoreactivation. Our results indicate that at least 80% of the double-strand breaks result from cleavage at closely opposed dimers and that the induction of dimers in one strand does not influence the induction of dimers at closely opposed positions in the complementary strand of a DNA double helix. PMID:3527288

  8. Comparison of the cleavage of pyrimidine dimers by the bacteriophage T4 and Micrococcus luteus uv-specific endonucleases

    SciTech Connect

    Gordon, L.K.; Haseltine, W.A.

    1980-12-25

    A comparison was made of the activity of the uv-specific endonucleases of bacteriophage T4 (T4 endonuclease V) and of Micrococcus luteus on ultraviolet light-irradiated DNA substrates of defined sequence. The two enzyms cleave DNA at the site of pyrimidine dimers with the same frequency. The products of the cleavage reaction are the same. The pyrimidine dimer DNA-glycosylase activity of both enzymes is more active on double-stranded DNA than it is on single-stranded DNA.

  9. Baculovirus cyclobutane pyrimidine dimer photolyases show a close relationship with lepidopteran host homologues.

    PubMed

    Biernat, M A; Ros, V I D; Vlak, J M; van Oers, M M

    2011-08-01

    Cyclobutane pyrimidine dimer (CPD) photolyases repair ultraviolet (UV)-induced DNA damage using blue light. To get insight in the origin of baculovirus CPD photolyase (phr) genes, homologues in the lepidopteran insects Chrysodeixis chalcites, Spodoptera exigua and Trichoplusia ni were identified and characterized. Lepidopteran and baculovirus phr genes each form a monophyletic group, and together form a well-supported clade within the insect photolyases. This suggests that baculoviruses obtained their phr genes from an ancestral lepidopteran insect host. A likely evolutionary scenario is that a granulovirus, Spodoptera litura GV or a direct ancestor, obtained a phr gene. Subsequently, it was horizontally transferred from this granulovirus to several group II nucleopolyhedroviruses (NPVs), including those that infect noctuids of the Plusiinae subfamily. PMID:21477200

  10. UV Radiation–Sensitive Norin 1 Rice Contains Defective Cyclobutane Pyrimidine Dimer Photolyase

    PubMed Central

    Hidema, Jun; Kumagai, Tadashi; Sutherland, Betsy M.

    2000-01-01

    Norin 1, a progenitor of many economically important Japanese rice strains, is highly sensitive to the damaging effects of UVB radiation (wavelengths 290 to 320 nm). Norin 1 seedlings are deficient in photorepair of cyclobutane pyrimidine dimers. However, the molecular origin of this deficiency was not known and, because rice photolyase genes have not been cloned and sequenced, could not be determined by examining photolyase structural genes or upstream regulatory elements for mutations. We therefore used a photoflash approach, which showed that the deficiency in photorepair in vivo resulted from a functionally altered photolyase. These results were confirmed by studies with extracts, which showed that the Norin 1 photolyase–dimer complex was highly thermolabile relative to the wild-type Sasanishiki photolyase. This deficiency results from a structure/function alteration of photolyase rather than of nonspecific repair, photolytic, or regulatory elements. Thus, the molecular origin of this plant DNA repair deficiency, resulting from a spontaneously occurring mutation to UV radiation sensitivity, is defective photolyase. PMID:11006332

  11. Formation of cystine slipknots in dimeric proteins.

    PubMed

    Sikora, Mateusz; Cieplak, Marek

    2013-01-01

    We consider mechanical stability of dimeric and monomeric proteins with the cystine knot motif. A structure based dynamical model is used to demonstrate that all dimeric and some monomeric proteins of this kind should have considerable resistance to stretching that is significantly larger than that of titin. The mechanisms of the large mechanostability are elucidated. In most cases, it originates from the induced formation of one or two cystine slipknots. Since there are four termini in a dimer, there are several ways of selecting two of them to pull by. We show that in the cystine knot systems, there is strong anisotropy in mechanostability and force patterns related to the selection. We show that the thermodynamic stability of the dimers is enhanced compared to the constituting monomers whereas machanostability is either lower or higher. PMID:23520470

  12. Formation of Cystine Slipknots in Dimeric Proteins

    PubMed Central

    Sikora, Mateusz; Cieplak, Marek

    2013-01-01

    We consider mechanical stability of dimeric and monomeric proteins with the cystine knot motif. A structure based dynamical model is used to demonstrate that all dimeric and some monomeric proteins of this kind should have considerable resistance to stretching that is significantly larger than that of titin. The mechanisms of the large mechanostability are elucidated. In most cases, it originates from the induced formation of one or two cystine slipknots. Since there are four termini in a dimer, there are several ways of selecting two of them to pull by. We show that in the cystine knot systems, there is strong anisotropy in mechanostability and force patterns related to the selection. We show that the thermodynamic stability of the dimers is enhanced compared to the constituting monomers whereas machanostability is either lower or higher. PMID:23520470

  13. Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo.

    PubMed

    Cannistraro, Vincent J; Pondugula, Santhi; Song, Qian; Taylor, John-Stephen

    2015-10-30

    Sunlight-induced C to T mutation hot spots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C and 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by the DNA damage bypass polymerase η, thereby defining a probable mechanism for the origin of UV-induced C to T mutations. Deamination rates for T(m)CG CPDs have been found to vary 12-fold with rotational position in a nucleosome in vitro. To determine the influence of nucleosome structure on deamination rates in vivo, we determined the deamination rates of CPDs at TCG sites in a stably positioned nucleosome within the FOS promoter in HeLa cells. A procedure for in vivo hydroxyl radical footprinting with Fe-EDTA was developed, and, together with results from a cytosine methylation protection assay, we determined the translational and rotational positions of the TCG sites. Consistent with the in vitro observations, deamination was slower for one CPD located at an intermediate rotational position compared with two other sites located at outside positions, and all were much faster than for CPDs at non-TCG sites. Photoproduct formation was also highly suppressed at one site, possibly due to its interaction with a histone tail. Thus, it was shown that CPDs of TCG sites deaminate the fastest in vivo and that nucleosomes can modulate both their formation and deamination, which could contribute to the UV mutation hot spots and cold spots. PMID:26354431

  14. Purification, cDNA cloning, and expression profiles of the cyclobutane pyrimidine dimer photolyase of Xenopus laevis.

    PubMed

    Tanida, Hiroaki; Tahara, Eiji; Mochizuki, Miwa; Yamane, Yukiko; Ryoji, Masaru

    2005-12-01

    Photolyase is a light-dependent enzyme that repairs pyrimidine dimers in DNA. Two types of photolyases have been found in frog Xenopus laevis, one for repairing cyclobutane pyrimidine dimers (CPD photolyase) and the other for pyrimidine-pyrimidone (6-4)photoproduct [(6-4)photolyase]. However, little is known about the former type of the Xenopus photolyases. To characterize this enzyme and its expression profiles, we isolated the entire coding region of a putative CPD photolyase cDNA by extending an EST (expressed sequence tag) sequence obtained from the Xenopus database. Nucleotide sequence analysis of the cDNA revealed a protein of 557 amino acids with close similarity to CPD photolyase of rat kangaroo. The identity of this cDNA was further established by the molecular mass (65 kDa) and the partial amino acid sequences of the major CPD photolyase that we purified from Xenopus ovaries. The gene of this enzyme is expressed in various tissues of Xenopus. Even internal organs like heart express relatively high levels of mRNA. A much smaller amount was found in skin, although UV damage is thought to occur most frequently in this tissue. Such expression profiles suggest that CPD photolyase may have roles in addition to the photorepair function. PMID:16302973

  15. Xeroderma pigmentosum complementation group C cells remove pyrimidine dimers selectively from the transcribed strand of active genes

    SciTech Connect

    Venema, J.; van Hoffen, A.; Karcagi, V.; Natarajan, A.T.; van Zeeland, A.A.; Mullenders, L.H. )

    1991-08-01

    The authors have measured the removal of UV-induced pyrimidine dimers from DNA fragments of the adenosine deaminase (ADA) and dihydrofolate reductase (DHFR) genes in primary normal human and xeroderma pigmentosum complementation group C (XP-C) cells. Using strand-specific probes, we show that in normal cells, preferential repair of the 5{prime} part of the ADA gene is due to the rapid and efficient repair of the transcribed strand. Within 8 h after irradiation with UV at 10 J m-2, 70% of the pyrimidine dimers in this strand are removed. The nontranscribed strand is repaired at a much slower rate, with 30% dimers removed after 8 h. Repair of the transcribed strand in XP-C cells occurs at a rate indistinguishable from that in normal cells, but the nontranscribed strand is not repaired significantly in these cells. Similar results were obtained for the DHFR gene. In the 3{prime} part of the ADA gene, however, both normal and XP-C cells perform fast and efficient repair of either strand, which is likely to be caused by the presence of transcription units on both strands. The factor defective in XP-C cells is apparently involved in the processing of DNA damage in inactive parts of the genome, including nontranscribed strands of active genes. These findings have important implications for the understanding of the mechanism of UV-induced excision repair and mutagenesis in mammalian cells.

  16. Pyrimidine dimer induction and repair in cultured human skin keratinocytes or melanocytes after irradiation with monochromatic ultraviolet radiation

    SciTech Connect

    Schothorst, A.A.; Evers, L.M.; Noz, K.C.; Filon, R.; van Zeeland, A.A. )

    1991-06-01

    We compared the susceptibilities of cultured melanocytes and keratinocytes to dimer induction in DNA by monochromatic ultraviolet (UV) radiation. Keratinocytes as well as melanocytes were derived from human foreskin, grown as a monolayer in petri dishes, covered with phosphate-buffered saline containing 0.1% glucose, and irradiated. UV irradiation was carried out at 254, 297, and 302 nm as well as with a light source emitting predominantly 312 nm. The induction of pyrmidine dimers was assessed by determination of the number of T4 endonuclease V-sensitive sites (ESS). We found a slightly higher response for dimer induction in melanocytes at 254, 297, and 302 nm; this difference was only significant at the 297-nm wavelength. Action spectra for pyrimidine dimer induction were derived from the exposure-response data obtained. The action spectra mimic to a large degree the action spectra for dimer induction in other cultured mammalian cells. The repair rate during a post-irradiation period lasting up to 24 h was substantially the same for the two cell types. The percentage of T4 endonuclease V-sensitive sites (ESS) remaining 9 and 24 h after irradiation was 45% and 30%, respectively.

  17. Potential formation of three pyrimidine bases in interstellar regions

    NASA Astrophysics Data System (ADS)

    Majumdar, Liton; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.

    2015-12-01

    Work on the chemical evolution of pre-biotic molecules remains incomplete since the major obstacle is the lack of adequate knowledge of rate coefficients of various reactions which take place in interstellar conditions. In this work, we study the possibility of forming three pyrimidine bases, namely, cytosine, uracil and thymine in interstellar regions. Our study reveals that the synthesis of uracil from cytosine and water is quite impossible under interstellar circumstances. For the synthesis of thymine, reaction between uracil and :CH2 is investigated. Since no other relevant pathways for the formation of uracil and thymine were available in the literature, we consider a large gas-grain chemical network to study the chemical evolution of cytosine in gas and ice phases. Our modeling result shows that cytosine would be produced in cold, dense interstellar conditions. However, presence of cytosine is yet to be established. We propose that a new molecule, namely, C4N3OH5 could be observable in the interstellar region. C4N3OH5 is a precursor (Z isomer of cytosine) of cytosine and far more abundant than cytosine. We hope that observation of this precursor molecule would enable us to estimate the abundance of cytosine in interstellar regions. We also carry out quantum chemical calculations to find out the vibrational as well as rotational transitions of this precursor molecule along with three pyrimidine bases.

  18. The Class III Cyclobutane Pyrimidine Dimer Photolyase Structure Reveals a New Antenna Chromophore Binding Site and Alternative Photoreduction Pathways*

    PubMed Central

    Scheerer, Patrick; Zhang, Fan; Kalms, Jacqueline; von Stetten, David; Krauß, Norbert; Oberpichler, Inga; Lamparter, Tilman

    2015-01-01

    Photolyases are proteins with an FAD chromophore that repair UV-induced pyrimidine dimers on the DNA in a light-dependent manner. The cyclobutane pyrimidine dimer class III photolyases are structurally unknown but closely related to plant cryptochromes, which serve as blue-light photoreceptors. Here we present the crystal structure of a class III photolyase termed photolyase-related protein A (PhrA) of Agrobacterium tumefaciens at 1.67-Å resolution. PhrA contains 5,10-methenyltetrahydrofolate (MTHF) as an antenna chromophore with a unique binding site and mode. Two Trp residues play pivotal roles for stabilizing MTHF by a double π-stacking sandwich. Plant cryptochrome I forms a pocket at the same site that could accommodate MTHF or a similar molecule. The PhrA structure and mutant studies showed that electrons flow during FAD photoreduction proceeds via two Trp triads. The structural studies on PhrA give a clearer picture on the evolutionary transition from photolyase to photoreceptor. PMID:25784552

  19. Fibrillar dimer formation of islet amyloid polypeptides

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-09-01

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 - 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 - 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  20. Fibrillar dimer formation of islet amyloid polypeptides

    SciTech Connect

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  1. Formation of Nucleobases from the UV Photo-Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Astrophysics Data System (ADS)

    Milam, S. N.; Nuevo, M.; Sandford, S. A.; Elsila, J. E.; Dworkin, J. P.

    2010-04-01

    This work shows how pyrimidic nucleobases (uracil, cytosine, etc.) can be formed under abiotic conditions from the UV irradiation of pyrimidine in astrophysical ices. The formation mechanisms and the photo-stability of such compounds are discussed.

  2. Earthworms repair H2O2-induced oxidative DNA adducts without removing UV-induced pyrimidine dimers.

    PubMed

    Chang, Wen-Shin; Tsai, Chia-Wen; Lin, Cheng-Chieh; Lin, Chih-Hsueh; Shen, Wu-Chung; Lin, Song-Shei; Bau, Da-Tian

    2011-01-01

    Ultraviolet (UV) radiation is a natural insult to various organisms. Earthworms, although possessing similar biomolecules to those in mammalian skin, do not suffer from skin cancer nor any other types of cancer as humans do. However, little is known about the molecular mechanism of the earthworm's tolerance to UV. In this study, we evaluated the genotoxicity of UV and the capacity of earthworm cell to repair UV-induced damage. The T4 UV endonuclease UV-incorporated comet assay was used to examine the excision and rejoining steps of UV-induced pyrimidine dimer. Earthworm testis cells were treated with a combination of 5 mM hydroxyurea plus 50 μM cytosine-β-D-arabinofuranoside for 6 h to block DNA rejoining capacity and to investigate excision dynamics. Compared with H(2)O(2)-induced oxidative repair capacity, the excision step of repair of UV-induced lesions in earthworm testis cells was significantly lower. After 6-h treatment of 5 mM hydroxyurea plus 50 μM cytosine-β-D-arabinofuranoside, the medium was totally replaced with fresh medium and cells were allowed to rejoin the accumulated DNA strand breaks. We found that the capacity for rejoining UV-induced breaks was also significantly lower than that for the H(2)O(2)-induced breaks. Our results strongly suggest that earthworms seem to be efficient at repairing H(2)O(2)-induced oxidative DNA adducts, but not so capable of removing UV-induced pyrimidine dimers from their genome. PMID:22021692

  3. Adenine Synthesis in Interstellar Space: Mechanisms of Prebiotic Pyrimidine-Ring Formation of Monocyclic HCN-Pentamers

    NASA Astrophysics Data System (ADS)

    Glaser, Rainer; Hodgen, Brian; Farrelly, Dean; McKee, Elliot

    2007-06-01

    The question whether the nucleobases can be synthesized in interstellar space is of fundamental significance in considerations of the origin of life. Adenine is formally the HCN pentamer, and experiments have demonstrated that adenine is formed under certain conditions by HCN pentamerization in gas, liquid, and condensed phases. Most mechanistic proposals invoke the intermediacy of the HCN tetramer AICN (4), and it is thought that adenine synthesis is completed by addition of the 5th HCN to 4 to form amidine 5 and subsequent pyrimidine cyclization. In this context, we have been studying the mechanism for prebiotic pyrimidine-ring formation of monocyclic HCN-pentamers with ab initio electronic structure theory. The calculations model gas phase chemistry, and the results primarily inform discussions of adenine synthesis in interstellar space. Purine formation requires tautomerization of 5 to the conjugated amidine 6 (via hydrogen-tunneling, thermally with H+ -catalysis, or by photolysis) or to keteneimine 7 (by photolysis). It was found that 5-(N'-formamidinyl)-1H-imidazole-4-carbonitrile (6) can serve as a substrate for proton-catalyzed purine formation under photolytic conditions and N-(4-(iminomethylene)-1H-imidazol-5(4H)-ylidene)formamidine (7) can serve as a substrate for uncatalyzed purine formation under photolytic conditions. The absence of any sizeable activation barrier for the cyclization of 7 to the (Z)-imino form of 9H-adenine (Z)-2 is quite remarkable, and it is this feature that allows for the formation of the purine skeleton from 7 without any further activation.

  4. QM/MM studies reveal pathways leading to the quenching of the formation of thymine dimer photoproduct by flanking bases.

    PubMed

    Lee, Wook; Matsika, Spiridoula

    2015-04-21

    It is known that the formation of the photochemical product of thymine-thymine cyclobutane pyrimidine dimer (TT-CPD) formed upon UV excitation in DNA is significantly affected by the nature of the flanking bases, and that the oxidation potential of the flanking base correlates with the quenching of TT-CPD formation. However, the electronic details of this correlation have remained controversial. The quenching of thymine dimer formation exerted by flanking bases was suggested to be driven by both conformational and electronic effects. In the present study, we examine both of these effects using umbrella sampling and a quantum mechanical/molecular mechanical (QM/MM) approach for selected model systems. Our results demonstrate that a charge transfer (CT) state between the flanking base and the adjacent thymine base can provide a decay pathway for the population to escape from dimer formation, which eventually leads to the formation of an exciplex. The QM/MM vertical excitation energies also reveal that the oxidation potential of flanking bases correlates with the energy level of the CT state, thereby determining whether the CT state intersects with the state that can lead to dimer formation. The consistency between these results and experimentally obtained dimer formation rates implies that the quenching of dimer formation is mainly attributed to the decay pathway via the CT state. The present results further underline the importance of the electronic effects in quenching. PMID:25776223

  5. Fibrillar dimer formation of islet amyloid polypeptides

    DOE PAGESBeta

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimentalmore » and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.« less

  6. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes.

    PubMed

    Mallet, Justin D; Dorr, Marie M; Drigeard Desgarnier, Marie-Catherine; Bastien, Nathalie; Gendron, Sébastien P; Rochette, Patrick J

    2016-01-01

    Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP). These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced. PMID:27611318

  7. In Vivo Spectrum of UVC-induced Mutation in Mouse Skin Epidermis May Reflect the Cytosine Deamination Propensity of Cyclobutane Pyrimidine Dimers.

    PubMed

    Ikehata, Hironobu; Mori, Toshio; Yamamoto, Masayuki

    2015-11-01

    Although ultraviolet radiation (UVR) has a genotoxicity for inducing skin cancers, the skin may tolerate UVC component because the epidermal layer prevents this short wavelength range from passing through. Here, UVC genotoxicity for mouse skin was evaluated in terms of DNA damage formation and mutagenicity. UVC induced UVR photolesions and mutations remarkably in the epidermis but poorly in the dermis, confirming the barrier ability of the epidermis against shorter UVR wavelengths. Moreover, the epidermis itself responded to UVC mutagenicity with mutation induction suppression, which suppressed the mutant frequencies to a remarkably low, constant level regardless of UVC dose. The mutation spectrum observed in UVC-exposed epidermis showed a predominance of UV-signature mutation, which occurred frequently in 5'-TCG-3', 5'-TCA-3' and 5'-CCA-3' contexts. Especially, for the former two contexts, the mutations recurred at several sites with more remarkable recurrences at the 5'-TCG-3' sites. Comparison of the UVC mutation spectrum with those observed in longer UVR wavelength ranges led us to a mechanism that explains why the sequence context preference of UV-signature mutation changes according to the wavelength, which is based on the difference in the mCpG preference of cyclobutane pyrimidine dimer (CPD) formation among UVR ranges and the sequence context-dependent cytosine deamination propensity of CPD. PMID:26335024

  8. Dithiothreitol causes HIV-1 integrase dimer dissociation while agents interacting with the integrase dimer interface promote dimer formation.

    PubMed

    Tsiang, Manuel; Jones, Gregg S; Hung, Magdeleine; Samuel, Dharmaraj; Novikov, Nikolai; Mukund, Susmith; Brendza, Katherine M; Niedziela-Majka, Anita; Jin, Debi; Liu, Xiaohong; Mitchell, Michael; Sakowicz, Roman; Geleziunas, Romas

    2011-03-15

    We have developed a homogeneous time-resolved fluorescence resonance energy transfer (FRET)-based assay that detects the formation of HIV-1 integrase (IN) dimers. The assay utilizes IN monomers that express two different epitope tags that are recognized by their respective antibodies, coupled to distinct fluorophores. Surprisingly, we found that dithiothreitol (DTT), a reducing agent essential for in vitro enzymatic activity of IN, weakened the interaction between IN monomers. This effect of DTT on IN is dependent on its thiol groups, since the related chemical threitol, which contains hydroxyls in place of thiols, had no effect on IN dimer formation. By studying mutants of IN, we determined that cysteines in IN appear to be dispensable for the dimer dissociation effect of DTT. Peptides derived from the IN binding domain (IBD) of lens epithelium derived growth factor/transcriptional coactivator p75 (LEDGF), a cellular cofactor that interacts with the IN dimer interface, were tested in this IN dimerization assay. These peptides, which compete with LEDGF for binding to IN, displayed an intriguing equilibrium binding dose-response curve characterized by a plateau rising to a peak, then descending to a second plateau. Mathematical modeling of this binding system revealed that these LEDGF-derived peptides promote IN dimerization and block subunit exchange between IN dimers. This dose-response behavior was also observed with a small molecule that interacts with the IN dimer interface and inhibits LEDGF binding to IN. In conclusion, this novel IN dimerization assay revealed that peptide and small molecule inhibitors of the IN-LEDGF interaction also stabilize IN dimers and promote their formation. PMID:21222490

  9. Photochemistry of Pyrimidine in Astrophysical Ices: Formation of Nucleobases and Other Prebiotic Species

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Sandford, Scott A.; Materese, Christopher K.; Milam, Stefanie N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA. They are divided into two molecular groups: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites, and their extraterrestrial origin confirmed by isotopic measurements. Although no N-heterocycles have ever been observed in the ISM, the positions of the 6.2- m interstellar emission features suggest a population of such molecules is likely to be present. However, laboratory experiments have shown that the ultraviolet (UV) irradiation of pyrimidine in ices of astrophysical relevance such as H2O, NH3, CH3OH, CH4, CO, or combinations of these at low temperature (less than or equal to 20 K) leads to the formation of several pyrimidine derivatives including the nucleobases uracil and cytosine, as well as precursors such as 4(3H)-pyrimidone and 4-aminopyrimidine. Quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways.10 In those residues, other species of prebiotic interest such as urea as well as the amino acids glycine and alanine could also be identified. However, only very small amounts of pyrimidine derivatives containing CH3 groups could be detected, suggesting that the addition of methyl groups to pyrimidine is not an efficient process. For this reason, the nucleobase thymine was not observed in any of the samples. In this work, we study the formation of nucleobases and other photo-products of prebiotic interest from the UV irradiation of pyrimidine in ices containing H2O, NH3, CH3OH, and CO, mixed in astrophysical proportions.

  10. Formation of Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices

    NASA Astrophysics Data System (ADS)

    Nuevo, M.; Sandford, S. A.; Milam, S. N.; Materese, C. K.; Elsila, J. E.; Dworkin, J. P.

    2011-05-01

    Nucleobases are N-heterocycles which are the informational subunits of DNA and RNA. Biological nucleobases are divided in two types: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin has been confirmed by isotope measurements, but no N-heterocycle has ever been observed in the ISM. Experiments showed that the UV irradiation of pyrimidine mixed in astrophysical ices such as H_2O, NH_3, CH_3OH, or any combination of these at low temperature (20-30 K) leads to the formation of multiple photo-products derived from pyrimidine including the nucleobases uracil and cytosine. Theoretical studies on the formation of uracil confirmed its experimental formation pathway and demonstrated that the H_2O matrix plays a key role in the chemistry [9]. Thymine, however, was not found in any of the samples, though other pyrimidine derivatives, as well as other species of prebiotic interest such as urea and the amino acid glycine, could be identified [8]. We will extend this study to the formation of nucleobases and other prebiotic species from the UV irradiation of pyrimidine in astrophysically relevant ice mixtures containing H_2O, NH_3, CH_3OH, CO, and CO_2.

  11. Selective inhibition by methoxyamine of the apurinic/apyrimidinic endonuclease activity associated with pyrimidine dimer-DNA glycosylases from Micrococcus luteus and bacteriophage T4

    SciTech Connect

    Liuzzi, M.; Weinfeld, M.; Paterson, M.C.

    1987-06-16

    The UV endonucleases from Micrococcus luteus and bacteriophage T4 possess two catalytic activities specific for the site of cyclobutane pyrimidine dimers in UV-irradiated DNA: a DNA glycosylase that cleaves the 5'-glycosyl bond of the dimerized pyrimidines and an apurinic/apyrimidinic (AP) endonuclease that thereupon incises the phosphodiester bond 3' to the resulting apyrimidinic site. The authors have explored the potential use of methoxyamine, a chemical that reacts at neutral pH with AP sites in DNA, as a selective inhibitor of the AP endonuclease activities residing in the M. luteus and T4 enzymes. The presence of 50 mM methoxyamine during incubation of UV-treated, (/sup 3/H)thymine-labeled poly(dA) x poly(dT) with either enzyme preparation was found to protect completely the irradiated copolymer from endonucleolytic attack at dimer sites, as assayed by yield of acid-soluble radioactivity. In contrast, the dimer-DNA glycosylase activity of each enzyme remained fully functional, as monitored retrospectively by release of free thymine after either photochemical-(5 kJ/m/sup 2/, 254 nm) or photoenzymic- (Escherichia coli photolyase plus visible light) induced reversal of pyrimidine dimers in the UV-damaged substrate. The data demonstrate that the inhibition of the strand-incision reaction arises because of chemical modification of the AP sites and is not due to inactivation of the enzyme by methoxyamine. The results, combined with earlier findings for 5'-acting AP endonucleases, strongly suggest that methoxyamine is a highly specific inhibitor of virtually all AP endonucleases, irrespective of their modes of action, and may therefore prove useful in a wide variety of DNA repair studies.

  12. Investigation of the mechanisms of photo-induced formation of cyclobutane dimers of cytosine and 2,4-diaminopyrimidine.

    PubMed

    Kancheva, Pavlina B; Delchev, Vassil B

    2016-09-01

    The mechanisms of the formation of cyclobutane dimers (CBD) of cytosine and 2,4-diaminopyrimidine were studied at the CC2 theoretical level and cc-pVDZ basis functions. Four orientations of the two monomers are explored: cys-syn, cis-anti, trans-syn, and trans-anti. The research revealed that in all cases the cyclobutane structures are formed along the (1)ππ* excited-state reaction paths of the stacked aggregates. We localized the S1/S0 conical intersections mediating those transformations. The results obtained agree well with the previously reported investigations on the cis-syn cyclodimer formations of other pyrimidines. PMID:27572158

  13. Formation of cyclobutane thymine dimers photosensitized by pyridopsoralens: Quantitative and qualitative distribution within DNA

    SciTech Connect

    Moysan, A.; Viari, A.; Vigny, P. ); Voituriez, L.; Cadet J. ); Moustacchi, E.; Sage, E. )

    1991-07-23

    As after irradiation with 254-nm UV light, exposure of thymidine and three isomeric pyridopsoralen derivatives to UVA radiation, in the dry state, leads to the formation of the six diastereomers of cyclobutadithymidine as the predominant reaction. This unexpected photosensitized reaction, which also gives rise to both 5R* and 5S* diastereomers of 5,6-dihydro-5-({alpha}-thymidylyl)thymidine (or spore photoproduct), is selective since (2+2) dimerization of 2{prime}-deoxycytidine was not detected under the same experimental conditions. The cis-syn isomer of cyclobutadithymine was also found to be produced within isolated DNA following UVA irradiation in aqueous solutions containing 7-methylpyrido (3,4-c)psoralen. Quantitatively, this photoproduct represents about one-fifth of the overall yield of the furan-side pyridopsoralen (2+2) photocycloadducts the thymine. DNA sequencing methodology was used to demonstrate that pyridopsoralen-photosensitized DNA is a substrate for T4 endonuclease V and Escherichia coli photoreactivating enzyme, two enzymes acting specifically on cyclobutane pyrimidine dimers. The formation of cyclobutane thymine dimers concomitant to that of thymine-furocoumarin photoadducts and their eventual implication in the photobiological effects of the pyridopsoralens are discussed.

  14. Quantitation of radiation-, chemical-, or enzyme-induced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers

    SciTech Connect

    Freeman, S.E.; Blackett, A.D.; Monteleone, D.C.; Setlow, R.B.; Sutherland, B.M.; Sutherland, J.C.

    1986-10-01

    The authors have developed an alkaline agarose gel method for quantitating single strand breaks in nanogram quantities of nonradioactive DNA. After electrophoresis together with molecular length standards, the DNA is neutralized, stained with ethidium bromide, photographed, and the density profiles recorded with a computer controller scanner. The medium lengths, number average molecular lengths, and length average molecular lengths of the DNAs can be computed by using the mobilities of the molecular length standards. The frequency of single strand breaks can then be determined by comparison of the corresponding average molecular lengths of DNAs treated and not treated with single stand break-inducing agents (radiation, chemicals, or lesion-specific endonuclease). Single stand break yields (induced at pyrimidine dimer sites in uv-irradiated human fibroblasts DNA by the dimer-specific endonuclease from Micrococcus luteus) from our method agree with values obtained for the same DNAs from alkaline sucrose gradient analysis. The method has been used to determined pyrimidine dimer yields in DNA from biopsies of human skin irradiated in situ. It will be especially useful in determining the frequency of single strand breaks (or lesions convertible to single stand breaks by specific cleaving reagents or enzymes) in small quantities of DNA from cells or tissues not amendable to radioactive labeling.

  15. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Nuevo, Michel; Materese, Christopher K.

    2014-01-01

    Nucleobases are the informational subunits of DNA and RNA. They consist of Nheterocycles that belong to either the pyrimidine-base group (uracil, cytosine, and thymine) or the purinebase group (adenine and guanine). Several nucleobases, mostly purine bases, have been detected in meteorites [1-3], with isotopic signatures consistent with an extraterrestrial origin [4]. Uracil is the only pyrimidine-base compound formally reported in meteorites [2], though the presence of cytosine cannot be ruled out [5,6]. However, the actual process by which the uracil was made and the reasons for the non-detection of thymine in meteorites have yet to be fully explained. Although no N-heterocycles have ever been observed in the ISM [7,8], the positions of the 6.2-µm interstellar emission features suggest a population of such molecules is likely to be present [9]. In this work we study the formation of pyrimidine-based molecules, including the three nucleobases uracil, cytosine, and thymine from the ultraviolet (UV) irradiation of pyrimidine in ices consisting of several combinations of H(sub2)O, NH(sub3), CH(sub3)OH, and CH(sub4) at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium, in the protosolar nebula, and on icy bodies of the Solar System.

  16. Acetylene as an essential building block for prebiotic formation of pyrimidine bases on Titan.

    PubMed

    Jeilani, Yassin A; Fearce, Chelesa; Nguyen, Minh Tho

    2015-10-01

    Prebiotic building blocks for the formation of biomolecules are important in understanding the abiotic origin of biomolecules. However, there is a limited choice of the building blocks as precursors for the biomolecules. Acetylene (HCCH) is found in Titan's atmosphere and is an abiotic-precursor of pyrimidine bases. HCCH reacts with urea to form both cytosine and uracil. The mechanisms for the formation of both cytosine and uracil were studied by density functional theory at B3LYP/6-311G(d,p) level. Ethynyl radicals (˙CCH) are relevant for the chemistry of Titan's atmosphere therefore both HCCH and ˙CCH were evaluated as carbon sources. The pathways, for both HCCH and ˙CCH, lead to intermediates with an unsaturated-group that facilitate the formation of the six-membered ring of the pyrimidine bases. The predicted structures for cytosine and uracil were compared with labeled cytosine and uracil that were formed from the reaction of DCCD with urea. The results suggest that cytosine is formed from HCCH while uracil is formed from ˙CCH. The mechanisms are energetically feasible and there is no conclusive evidence for the preferred pathway (HCCH or ˙CCH). The pathways were further extended for the formation of both uric acid and 8-oxoguanine from HCCH and urea, and demonstrate the utility of HCCH as a carbon source for diverse biomolecules. Biuret is identified as a precursor for the pyridimine bases, and it unifies the free radical pathways for the pyrimidine bases with those of triazines. The pathways are appropriate for the reducing atmosphere that creates both radicals and electrons due to ionizing radiation on Titan. The mechanisms are feasible for the extraterrestrial formation of the pyrimidine bases. PMID:26325173

  17. The Photochemistry of Pyrimidine in Pure H2O Ice Subjected to Different Radiation Environments and the Formation of Uracil

    NASA Technical Reports Server (NTRS)

    Nuevo, M.; Chen, Y.-J.; Materese. C. K..; Hu, W.-J.; Qiu, J.-M.; Wu, S.-R.; Fung, H.-S.; Sandford, S. A.; Chu, C.-C.; Yih, T.-S.; Wu, R.; Ip, W.-H.

    2013-01-01

    Nucleobases are N-heterocycles which are the informational subunits of DNA and RNA. They include pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in several meteorites, although no Nheterocycles have been observed in space to data. Laboratory experiments showed that the ultraviolet (UV) irradiation of pyrimidine in pure H2O ice at low temperature (<=20 K) leads to the formation of pyrimidine derivatives including the nucleobase uracil and its precursor 4(3H)-pyrimidone. These results were confirmed by quantum chemical calculations. When pyrimidine is mixed with combinations of H2O, NH3, CH3OH, and CH4 ices under similar conditions, uracil and cytosine are formed. In the present work we study the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in H2O ice with high-energy UV photons (Lyman , He I, and He II lines) provided by a synchrotron source. The photo-destruction of pyrimidine in these H2O ices as well as the formation yields for 4(3H)-pyrimidone and uracil are compared with our previous results in order to study the photo-stability of pyrimidine and the production efficiency of uracil as a function of the photon energy.

  18. Are isomers of the vinyl cyanide ion missing links for interstellar pyrimidine formation?

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Lee, Timothy J.; Schaefer, Henry F.

    2009-08-01

    In the interstellar medium (ISM) there are many regions where the formation of molecules is kinetically driven rather than thermochemically, which can lead to the formation of many isomers even though some may be fairly higher in energy relative to the molecular global minimum. Recent laboratory experiments where noble gas cations are reacted with pyrimidine favored the formation of C3H3N+, but the molecular structure(s) of this fragment was not determined. Microscopic reversibility means that pyrimidine could form under interstellar conditions should the required C3H3N+ reactant be detected in the ISM. Hence C3H3N+ could be a strong candidate for involvement in the formation of heterocyclic biomolecules such as pyrimidine in the ISM. In this study, we have investigated the low energy isomers of the acrylonitrile ion (C3H3N+) using density functional theory as well as high levels of ab initio theory, namely, the singles and doubles coupled-cluster theory that includes a perturbational correction for connected triple excitations, denoted as CCSD(T). An automated stochastic search procedure, Kick, has been employed to find isomers on the ground state doublet potential energy surface. Several new structures, along with all the previously reported minima, have been found. The global minimum H2CCCNH+ is energetically much lower than either H2CC(H)CN+, the acrylonitrile ion, or HCC(H)NCH+, the most likely intermediate of the reaction between HCCH+ and HCN. These isomers are connected to the global minimum via several transition states and intermediates. The results indicate that not only the global minimum but also several higher energy isomers of the C3H3N+ ion could be important in interstellar pyrimidine formation. The isomeric molecules have the necessary CCNC backbone needed for the reaction with HCN to form the cyclic pyrimidine framework. The structural and rotational parameters of all the isomers studied in this work have been predicted at the CCSD(T) level of

  19. Are isomers of the vinyl cyanide ion missing links for interstellar pyrimidine formation?

    SciTech Connect

    Bera, Partha P.; Lee, Timothy J.; Schaefer, Henry F. III

    2009-08-21

    In the interstellar medium (ISM) there are many regions where the formation of molecules is kinetically driven rather than thermochemically, which can lead to the formation of many isomers even though some may be fairly higher in energy relative to the molecular global minimum. Recent laboratory experiments where noble gas cations are reacted with pyrimidine favored the formation of C{sub 3}H{sub 3}N{sup +}, but the molecular structure(s) of this fragment was not determined. Microscopic reversibility means that pyrimidine could form under interstellar conditions should the required C{sub 3}H{sub 3}N{sup +} reactant be detected in the ISM. Hence C{sub 3}H{sub 3}N{sup +} could be a strong candidate for involvement in the formation of heterocyclic biomolecules such as pyrimidine in the ISM. In this study, we have investigated the low energy isomers of the acrylonitrile ion (C{sub 3}H{sub 3}N{sup +}) using density functional theory as well as high levels of ab initio theory, namely, the singles and doubles coupled-cluster theory that includes a perturbational correction for connected triple excitations, denoted as CCSD(T). An automated stochastic search procedure, Kick, has been employed to find isomers on the ground state doublet potential energy surface. Several new structures, along with all the previously reported minima, have been found. The global minimum H{sub 2}CCCNH{sup +} is energetically much lower than either H{sub 2}CC(H)CN{sup +}, the acrylonitrile ion, or HCC(H)NCH{sup +}, the most likely intermediate of the reaction between HCCH{sup +} and HCN. These isomers are connected to the global minimum via several transition states and intermediates. The results indicate that not only the global minimum but also several higher energy isomers of the C{sub 3}H{sub 3}N{sup +} ion could be important in interstellar pyrimidine formation. The isomeric molecules have the necessary CCNC backbone needed for the reaction with HCN to form the cyclic pyrimidine framework

  20. Formation of Nucleobases from the UV Irradiation of Pyrimidine in Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Nuevo, Michel; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Previous laboratory simulations showed that complex molecules, including prebiotic compounds/can be formed under interstellar conditions from the vacuum UV irradiation of interstellar ice analogs containing H2O, CO, NH3 etc. Although some complex prebiotic species have not been confirmed In the interstellar medium, they are known to be present in meteorites. Nucleobases, the building blocks of DNA and RNA, have also been detected in meteorites. Here, we present a study of the formation of pyrimidine-based compounds from the UV irradiation of pyrimidine in H2O- and/or NH3-ices at 20-30 K, Our results show that various derivatives, induding the nucleobases uracil and cytosine, are formed under these conditions.

  1. Dimer monomer transition and dimer re-formation play important role for ATM cellular function during DNA repair

    SciTech Connect

    Du, Fengxia; Zhang, Minjie; Li, Xiaohua; Yang, Caiyun; Meng, Hao; Wang, Dong; Chang, Shuang; Xu, Ye; Price, Brendan; Sun, Yingli

    2014-10-03

    Highlights: • ATM phosphorylates the opposite strand of the dimer in response to DNA damage. • The PETPVFRLT box of ATM plays a key role in its dimer dissociation in DNA repair. • The dephosphorylation of ATM is critical for dimer re-formation after DNA repair. - Abstract: The ATM protein kinase, is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks, mediates responses to ionizing radiation in mammalian cells. Here we show that ATM is held inactive in unirradiated cells as a dimer and phosphorylates the opposite strand of the dimer in response to DNA damage. Cellular irradiation induces rapid intermolecular autophosphorylation of serine 1981 that causes dimer dissociation and initiates cellular ATM kinase activity. ATM cannot phosphorylate the substrates when it could not undergo dimer monomer transition. After DNA repair, the active monomer will undergo dephosphorylation to form dimer again and dephosphorylation is critical for dimer re-formation. Our work reveals novel function of ATM dimer monomer transition and explains why ATM dimer monomer transition plays such important role for ATM cellular activity during DNA repair.

  2. Fully functional global genome repair of (6-4) photoproducts and compromised transcription-coupled repair of cyclobutane pyrimidine dimers in condensed mitotic chromatin

    SciTech Connect

    Komura, Jun-ichiro; Ikehata, Hironobu; Mori, Toshio; Ono, Tetsuya

    2012-03-10

    During mitosis, chromatin is highly condensed, and activities such as transcription and semiconservative replication do not occur. Consequently, the condensed condition of mitotic chromatin is assumed to inhibit DNA metabolism by impeding the access of DNA-transacting proteins. However, about 40 years ago, several researchers observed unscheduled DNA synthesis in UV-irradiated mitotic chromosomes, suggesting the presence of excision repair. We re-examined this subject by directly measuring the removal of UV-induced DNA lesions by an ELISA and by a Southern-based technique in HeLa cells arrested at mitosis. We observed that the removal of (6-4) photoproducts from the overall genome in mitotic cells was as efficient as in interphase cells. This suggests that global genome repair of (6-4) photoproducts is fully functional during mitosis, and that the DNA in mitotic chromatin is accessible to proteins involved in this mode of DNA repair. Nevertheless, not all modes of DNA repair seem fully functional during mitosis. We also observed that the removal of cyclobutane pyrimidine dimers from the dihydrofolate reductase and c-MYC genes in mitotic cells was very slow. This suggests that transcription-coupled repair of cyclobutane pyrimidine dimers is compromised or non-functional during mitosis, which is probably the consequence of mitotic transcriptional repression. -- Highlights: Black-Right-Pointing-Pointer Global genome repair of (6-4) photoproducts is fully active in mitotic cells. Black-Right-Pointing-Pointer DNA in condensed mitotic chromatin does not seem inaccessible or inert. Black-Right-Pointing-Pointer Mitotic transcriptional repression may impair transcription-coupled repair.

  3. Resistance of the genome of Escherichia coli and Listeria monocytogenes to irradiation evaluated by the induction of cyclobutane pyrimidine dimers and 6-4 photoproducts using gamma and UV-C radiations

    NASA Astrophysics Data System (ADS)

    Beauchamp, S.; Lacroix, M.

    2012-08-01

    The effect of gamma and UV-C irradiation on the production of cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4 PPs) in DNA was investigated to compare the natural resistance of the genome of a Gram-positive bacterium and a Gram-negative bacterium against irradiation. Solution of pure DNA and bacterial strains Listeria monocytogenes and Escherichia coli were irradiated using gamma and UV-C rays. Extracted DNA from bacteria and pure DNA samples were then analysed by ELISA using anti-CPDs and anti-6-4 PPs monoclonal antibodies. The results show that gamma rays, as well as UV-C rays, induce the formation of CPDs and 6-4 PPs in DNA. During UV-C irradiation, the three samples showed a difference in their sensitivity against formation of CPDs (P≤0.05). Pure DNA was the most sensitive while the genome of L. monocytogenes was the most resistant. Also during UV-C irradiation, the genome of L. monocytogenes was the only one to show a significant resistance against formation of 6-4 PPs (P≤0.05). During gamma irradiation, for both types of lesion, pure DNA and the genome of E. coli did not show significant difference in their sensitivity (P>0.05) while the genome of L. monocytogenes showed a resistance against formation of CPDs and 6-4 PPs.

  4. GLYCOLALDEHYDE FORMATION VIA THE DIMERIZATION OF THE FORMYL RADICAL

    SciTech Connect

    Woods, Paul M.; Viti, Serena; Slater, Ben; Raza, Zamaan; Brown, Wendy A.; Burke, Daren J.

    2013-11-10

    Glycolaldehyde, the simplest monosaccharide sugar, has recently been detected in low- and high-mass star-forming cores. Following our previous investigation into glycolaldehyde formation, we now consider a further mechanism for the formation of glycolaldehyde that involves the dimerization of the formyl radical, HCO. Quantum mechanical investigation of the HCO dimerization process upon an ice surface is predicted to be barrierless and therefore fast. In an astrophysical context, we show that this mechanism can be very efficient in star-forming cores. It is limited by the availability of the formyl radical, but models suggest that only very small amounts of CO are required to be converted to HCO to meet the observational constraints.

  5. Excited State Pathways Leading to Formation of Adenine Dimers.

    PubMed

    Banyasz, Akos; Martinez-Fernandez, Lara; Ketola, Tiia-Maaria; Muñoz-Losa, Aurora; Esposito, Luciana; Markovitsi, Dimitra; Improta, Roberto

    2016-06-01

    The reaction intermediate in the path leading to UV-induced formation of adenine dimers A═A and AA* is identified for the first time quantum mechanically, using PCM/TD-DFT calculations on (dA)2 (dA: 2'deoxyadenosine). In parallel, its fingerprint is detected in the absorption spectra recorded on the millisecond time-scale for the single strand (dA)20 (dA: 2'deoxyadenosine). PMID:27163876

  6. Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active site formation and catalytic specificity

    PubMed Central

    Itoh, Yuzuru; Bröcker, Markus J.; Sekine, Shun-ichi; Söll, Dieter; Yokoyama, Shigeyuki

    2015-01-01

    The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins, and is synthesized on its specific tRNA (tRNASec). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNASec, formed by seryl-tRNA synthetase, to Sec-tRNASec. SelA, a member of the fold-type-I pyridoxal 5′-phosphate (PLP)-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500 kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNASec revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNASec. The SelA catalytic site is close to the dimer-dimer interface, but the significance of the dimer-pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions, and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of “depentamerized” SelA variants with mutations at the dimer-dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site, and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I PLP-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures. PMID:24456689

  7. Formation of Nucleobases from the UV Photo-Irradiation of Pyrimidine in Astrophysical Ice Analogs

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Nuevo, M.; Sandford, S. A.; Elsila, J. E.; Dworkin, J. P.

    2010-01-01

    Astrochemistry laboratory simulations have shown that complex organic molecules including compounds of astrobiological interest can be formed under interstellarl/circumstellar conditions from the vacuum UV irradiation of astrophysical ice analogs containing H2O, CO, CO2, CH3OH, NH13, etc. Of all prebiotic compounds, the formation of amino acids under such experimental conditions has been the most extensively studied. Although the presence of amino acids in the interstellar medium (ISM) has yet to be confirmed, they have been detected in meteorites, indicating that biomolecules and/or their precursors can be formed under extraterrestrial, abiotic conditions. Nucleobases, the building blocks of DNA and RNA, as well as other 1V-heterocycles, have also been detected in meteorites, but like amino acids, they have yet to be observed in the ISM. In this work, we present an experimental study of the formation of pyrimidine-based compounds from the UV photo-irradiation of pyrimidine in ice mixtures containing H2O, NH3, and/or CH3OH at low temperature and pressure.

  8. The inhibition of antigen-presenting activity of dendritic cells resulting from UV irradiation of murine skin is restored by in vitro photorepair of cyclobutane pyrimidine dimers.

    PubMed

    Vink, A A; Moodycliffe, A M; Shreedhar, V; Ullrich, S E; Roza, L; Yarosh, D B; Kripke, M L

    1997-05-13

    Exposing skin to UVB (280-320 nm) radiation suppresses contact hypersensitivity by a mechanism that involves an alteration in the activity of cutaneous antigen-presenting cells (APC). UV-induced DNA damage appears to be an important molecular trigger for this effect. The specific target cells in the skin that sustain DNA damage relevant to the immunosuppressive effect have yet to be identified. We tested the hypothesis that UV-induced DNA damage in the cutaneous APC was responsible for their impaired ability to present antigen after in vivo UV irradiation. Cutaneous APC were collected from the draining lymph nodes of UVB-irradiated, hapten-sensitized mice and incubated in vitro with liposomes containing a photolyase (Photosomes; Applied Genetics, Freeport, NY), which, upon absorption of photoreactivating light, splits UV-induced cyclobutane pyrimidine dimers. Photosome treatment followed by photoreactivating light reduced the number of dimer-containing APC, restored the in vivo antigen-presenting activity of the draining lymph node cells, and blocked the induction of suppressor T cells. Neither Photosomes nor photoreactivating light alone, nor photoreactivating light given before Photosomes, restored APC activity, and Photosome treatment did not reverse the impairment of APC function when isopsoralen plus UVA (320-400 nm) radiation was used instead of UVB. These controls indicate that the restoration of APC function matched the requirements of Photosome-mediated DNA repair for dimers and post-treatment photoreactivating light. These results provide compelling evidence that it is UV-induced DNA damage in cutaneous APC that leads to reduced immune function. PMID:9144224

  9. Polyamine effects on purine-purine-pyrimidine triple helix formation by phosphodiester and phosphorothioate oligodeoxyribonucleotides.

    PubMed Central

    Musso, M; Van Dyke, M W

    1995-01-01

    Utilization of oligodeoxyribonucleotides to inhibit specific gene transcription in vivo (antigene strategy) requires the efficient formation of triple helices under physiological conditions. However, pyrimidine-motif triplexes are not favored at physiological pH, and physiological concentrations of potassium cations hamper purine-motif triplex formation. Here we investigated the effects of polyamines on promoting triplex formation by G/T-rich oligodeoxyribonucleotides containing either phosphodiester or a diastereomeric mixture of phosphorothioate linkages. Compared with Mg2+, equimolar concentrations of polyamines greatly facilitated purine-motif triplex formation with the following order of effectiveness: spermine > spermidine > putrescine. At low polyamine concentrations, phosphorothioate oligonucleotides were better at triplex formation than the corresponding phosphodiester oligonucleotides. Kinetic studies indicated that polyamines facilitated triplex formation by increasing the rate of oligonucleotide-duplex DNA association. However, triplex accumulation with either oligonucleotide was still low under physiological conditions (140 mM K+, 10 mM Mg2+, 1 mM spermine). The inhibitory effects of K+ could be partially overcome with high concentrations of Mg2+ or spermine, with phosphodiester oligonucleotides being better able to form triplexes than phosphorothioates under these conditions. Images PMID:7610062

  10. Identification of Cyclobutane Pyrimidine Dimer-Responsive Genes Using UVB-Irradiated Human Keratinocytes Transfected with In Vitro-Synthesized Photolyase mRNA

    PubMed Central

    Boros, Gábor; Miko, Edit; Muramatsu, Hiromi; Weissman, Drew; Emri, Eszter; van der Horst, Gijsbertus T. J.; Szegedi, Andrea; Horkay, Irén; Emri, Gabriella; Karikó, Katalin; Remenyik, Éva

    2015-01-01

    Major biological effects of UVB are attributed to cyclobutane pyrimidine dimers (CPDs), the most common photolesions formed on DNA. To investigate the contribution of CPDs to UVB-induced changes of gene expression, a model system was established by transfecting keratinocytes with pseudouridine-modified mRNA (Ψ-mRNA) encoding CPD-photolyase. Microarray analyses of this model system demonstrated that more than 50% of the gene expression altered by UVB was mediated by CPD photolesions. Functional classification of the gene targets revealed strong effects of CPDs on the regulation of the cell cycle and transcriptional machineries. To confirm the microarray data, cell cycle-regulatory genes, CCNE1 and CDKN2B that were induced exclusively by CPDs were selected for further investigation. Following UVB irradiation, expression of these genes increased significantly at both mRNA and protein levels, but not in cells transfected with CPD-photolyase Ψ-mRNA and exposed to photoreactivating light. Treatment of cells with inhibitors of c-Jun N-terminal kinase (JNK) blocked the UVB-dependent upregulation of both genes suggesting a role for JNK in relaying the signal of UVB-induced CPDs into transcriptional responses. Thus, photolyase mRNA-based experimental platform demonstrates CPD-dependent and -independent events of UVB-induced cellular responses, and, as such, has the potential to identify novel molecular targets for treatment of UVB-mediated skin diseases. PMID:26121660

  11. Specific detection of cyclobutane pyrimidine dimers in phytoplankton DNA by a non-radioactive assay based on T4-endonuclease V digestion.

    PubMed

    Fafandel, M; Bihari, N; Krajcar, V; Müller, W E; Zahn, R K; Batel, R

    2001-09-28

    The effect of artificial and natural UV irradiation on DNA in marine phytoplankton Isochrysis galbana monoculture was investigated. The presence of cyclobutane pyrimidine dimers (CPDs) in unlabelled I. galbana DNA was detected by a non-radiometric alkaline filter elution assay after T4-endonuclease V digestion. The quantity of CPDs was estimated by alkaline agarose gel electrophoresis. Precise determination of the amount of DNA in the presence of I. galbana pigments was achieved by oxazole yellow homodimer (YOYO) dye. T4-endonuclease V-sensitive sites frequency (ESS/kb), measured after exposure to 2-40 kJ m(-2) of artificial UV light, increased in a dose-dependent manner. Twelve hours after irradiation cell culture growth was disrupted, and 50% of initial DNA damage in the cells was observed. After 1 h of sunlight exposure, the incidence of CPDs increase significantly. Prolonged exposition to sunlight decrease CPDs incidence due to efficiency of I. galbana DNA repair mechanisms. The presence of water-soluble crude oil fraction (WSOF) affected DNA repair efficiency resulting in accumulation of CPDs in I. galbana DNA. PMID:11589394

  12. Stacking of the mutagenic base analogue 5-bromouracil: energy landscapes of pyrimidine dimers in gas phase and water.

    PubMed

    Holroyd, Leo F; van Mourik, Tanja

    2015-11-11

    The potential energy surfaces of stacked base pairs consisting of cytosine (C), thymine (T), uracil (U) and the mutagenic thymine analogue 5-bromouracil (BrU) have been searched to obtain all possible minima. Minima and transition states were optimised at the counterpoise-corrected M06-2X/6-31+G(d) level, both in the gas phase and in water, modelled by the polarizable continuum model. The stacked dimers studied are BrU/BrU, C/BrU, C/C, C/T, C/U, T/BrU and T/U. Both face-to-back and face-to-face structures were considered. Free energies were calculated at 298.15 K. Together with U/U, T/T and BrU/U results from previous work, these results complete the family consisting of every stacked dimer combination consisting of C, T, U and BrU. The results were used to assess the hypothesis suggested in the literature that BrU stacks stronger than T, which could stabilise the mispair formed by BrU and guanine. In the gas phase, structures of C/BrU, T/BrU and U/BrU with greater zero-point-corrected binding energies than C/T, T/T and U/T, respectively, were found, with differences in favour of BrU of 3.1 kcal mol(-1), 1.7 kcal mol(-1) and 0.5 kcal mol(-1), respectively. However, the structure of these dimers differed considerably from anything encountered in DNA. When only the dimers with the most "DNA-like" twist (±36°) were considered, C/BrU and T/BrU were still more strongly bound than C/T and T/T, by 0.5 kcal mol(-1) and 1.7 kcal mol(-1), respectively. However, when enthalpic and/or solvent contributions were taken into account, the stacking advantage of BrU was reversed in the gas phase and mostly nullified in water. Enhanced stacking therefore does not seem a plausible mechanism for the considerably greater ability of BrU-G mispairs over T-G mispairs to escape enzymatic repair. PMID:26507806

  13. Effect of soluble epoxide hydrolase polymorphism on substrate and inhibitor selectivity and dimer formation[S

    PubMed Central

    Morisseau, Christophe; Wecksler, Aaron T.; Deng, Catherine; Dong, Hua; Yang, Jun; Lee, Kin Sing S.; Kodani, Sean D.; Hammock, Bruce D.

    2014-01-01

    Epoxy FAs (EpFAs) are important lipid mediators that are mainly metabolized by soluble epoxide hydrolase (sEH). Thus, sEH inhibition is a promising therapeutic target to treat numerous ailments. Several sEH polymorphisms result in amino acid substitutions and alter enzyme activity. K55R and R287Q are associated with inflammatory, cardiovascular, and metabolic diseases. R287Q seems to affect sEH activity through reducing formation of a catalytically active dimer. Thus, understanding how these SNPs affect the selectivity of sEH for substrates and inhibitors is of potential clinical importance. We investigated the selectivity of four sEH SNPs toward a series of EpFAs and inhibitors. We found that the SNPs alter the catalytic activity of the enzyme but do not alter the relative substrate and inhibitor selectivity. We also determined their dimer/monomer constants (KD/M). The WT sEH formed a very tight dimer, with a KD/M in the low picomolar range. Only R287Q resulted in a large change of the KD/M. However, human tissue concentrations of sEH suggest that it is always in its dimer form independently of the SNP. These results suggest that the different biologies associated with K55R and R287Q are not explained by alteration in dimer formation or substrate selectivity. PMID:24771868

  14. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation

    NASA Astrophysics Data System (ADS)

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W.; Lin, Jialing; Li, Jianing

    2016-07-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation.

  15. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation

    PubMed Central

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W.; Lin, Jialing; Li, Jianing

    2016-01-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model — using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation. PMID:27381287

  16. Conformational Heterogeneity of Bax Helix 9 Dimer for Apoptotic Pore Formation.

    PubMed

    Liao, Chenyi; Zhang, Zhi; Kale, Justin; Andrews, David W; Lin, Jialing; Li, Jianing

    2016-01-01

    Helix α9 of Bax protein can dimerize in the mitochondrial outer membrane (MOM) and lead to apoptotic pores. However, it remains unclear how different conformations of the dimer contribute to the pore formation on the molecular level. Thus we have investigated various conformational states of the α9 dimer in a MOM model - using computer simulations supplemented with site-specific mutagenesis and crosslinking of the α9 helices. Our data not only confirmed the critical membrane environment for the α9 stability and dimerization, but also revealed the distinct lipid-binding preference of the dimer in different conformational states. In our proposed pathway, a crucial iso-parallel dimer that mediates the conformational transition was discovered computationally and validated experimentally. The corroborating evidence from simulations and experiments suggests that, helix α9 assists Bax activation via the dimer heterogeneity and interactions with specific MOM lipids, which eventually facilitate proteolipidic pore formation in apoptosis regulation. PMID:27381287

  17. [Mechanisms of targeted frameshift mutations--insertion formation under error-prone or SOS synthesis of DNA containing CIS-SYN cyncyclobutane thymine dimers].

    PubMed

    Grebneva, E A

    2014-01-01

    Up to now the mechanism of formation of frameshift mutations caused by cyclobutane pyrimidine dimers has not been yet explained satisfactorily. Mechanisms of different mutations are usually considered in polymerase model. Here, the alternative polymerase-tautomer model of ultraviolet mutagenesis is developed. The mechanism of targeted insertion formation caused by cis-syn cyclobutane thymine dimers is proposed. Insertions are mutations when one or several DNA bases are inserted.Targeted insertions are mutations of a frameshift type--when one or severalnucleotides are inserted opposite damageswhich may stop synthesis of DNA. Targeted insertions are induced bycyclobutane pyrimidine dimmers. Ultraviolet irradiation may result in a change of tautomer state of DNA bases. A thymine base may form 5 rare tautomer forms that are stable if the base is a part of cyclobutane dimer. As it was shown by structural analysis, one rare tautomeric form of thymine forms hydrogen bonds with no one canonical DNA base. Therefore, under SOS or error-prone synthesis of DNA containing cis-syn cyclobutane thymine dimers with such rare tautomeric_form a specialize or modified DNA polymerase leaves a single nucleotide gap opposite the cis-syn cyclobutane thymine dimer. According to Streisinger model, if the DNA composition within this region is homogeneous, the end of the growing DNA strand can slip and form complementary pairs with a template nucleotide neighboring to the dimer of such type a loop is formed. Further elongation of the daughter strand leads to the appearance of targeted insertion in the daughter strand. Here, it is first shown that cis-syn cyclobutane thymine dimers with one or both bases in the specific tautomer conformation--opposite which it is impossible to insert a canonical base with a hydrogen bond formation--results in targeted insertions. Moreover, the model of forming targeted single--and several-base insertions is developed. The polymerase-tautomer model of

  18. Formation of CN (B2Σ+) radicals in the vacuum-ultraviolet photodissociation of pyridine and pyrimidine molecules

    NASA Astrophysics Data System (ADS)

    Wasowicz, Tomasz J.; Kivimäki, Antti; Coreno, Marcello; Zubek, Mariusz

    2014-03-01

    Formation of the excited CN(B2Σ+) free radicals in the photodissociation of pyridine (C5H5N) and pyrimidine (C4H4N2) molecules was investigated over the energy ranges 16-27 and 14.7-25 eV, respectively. Photon-induced fluorescence spectroscopy was applied to detect the vibrationally and rotationally excited CN radicals by recording the B2Σ+→X2Σ+ emission bands (violet system). The measured dissociation yield curves demonstrate that the CN(B2Σ+) formation occurs via excitation of pyridine and pyrimidine molecules into higher-lying superexcited states. This is followed by rearrangement and isomerization of the excited molecules before dissociation. The vertical excitation energies of the superexcited states were determined and the probable dissociation mechanisms of both molecules are discussed.

  19. Radical Pathways for the Prebiotic Formation of Pyrimidine Bases from Formamide.

    PubMed

    Nguyen, Huyen Thi; Jeilani, Yassin A; Hung, Huynh Minh; Nguyen, Minh Tho

    2015-08-20

    The prebiotic formation of nucleobases, the building blocks of RNA/DNA, is of current interest. Highly reactive radical species present in the atmosphere under irradiation have been suggested to be involved in the prebiotic synthesis of nucleobases from formamide (FM). We studied several free radical reaction pathways for the synthesis of pyrimidine bases (cytosine, uracil, and thymine) from FM under cold conditions. These pathways are theoretically determined using density functional theory (DFT) computations to examine their kinetic and thermodynamic feasibilities. These free radical reaction pathways share some common reaction types such as H-rearrangement, (•)H/(•)OH/(•)NH2 radical loss, and intramolecular radical cyclization. The rate-determining steps in these pathways are characterized with low energy barriers. The energy barriers of the ring formation steps are in the range of 3-7 kcal/mol. Although DFT methods are known to significantly underestimate the barriers for addition of (•)H radical to neutral species, many of these reactions are highly exergonic with energy release of -15 to -52 kcal/mol and are thus favorable. Among the suggested pathways for formation of cytosine (main route, routes 7a and 1a), uracil (main route, routes 7b and 1b), and thymine (main route and route 26a), the main routes are in general thermodynamically more exergonic and more kinetically favored than other alternative routes with lower overall energy barriers. The reaction energies released following formation of cytosine, uracil, and thymine from FM via the main radical routes amount to -59, -81, and -104 kcal/mol, respectively. Increasing temperature induces unfavorable changes in both kinetic and thermodynamic aspects of the suggested routes. However, the main routes are still more favored than the alternative pathways at the temperature up to the boiling point of FM. PMID:26196536

  20. Transport of rice cyclobutane pyrimidine dimer photolyase into mitochondria relies on a targeting sequence located in its C-terminal internal region.

    PubMed

    Takahashi, Sayaka; Teranishi, Mika; Izumi, Masanori; Takahashi, Masaaki; Takahashi, Fumio; Hidema, Jun

    2014-09-01

    The cyclobutane pyrimidine dimer (CPD), which represents a major type of DNA damage induced by ultraviolet-B (UVB) radiation, is a principal cause of UVB-induced growth inhibition in plants. CPD photolyase is the primary enzyme for repairing CPDs and is crucial for determining the sensitivity of Oryza sativa (rice) to UVB radiation. CPD photolyase is widely distributed among species ranging from eubacteria to eukaryotes, and is classified into class I or II based on its primary structure. We previously demonstrated that rice CPD photolyase (OsPHR), which belongs to class II and is encoded by a single-copy gene, is a unique nuclear/mitochondrial/chloroplast triple-targeting protein; however, the location and nature of the organellar targeting information contained within OsPHR are unknown. Here, the nuclear and mitochondrial targeting signal sequences of OsPHR were identified by systematic deletion analysis. The nuclear and mitochondrial targeting sequences are harbored within residues 487-489 and 391-401 in the C-terminal region of OsPHR (506 amino acid residues), respectively. The mitochondrial targeting signal represents a distinct topogenic sequence that differs structurally and functionally from classical N-terminal pre-sequences, and this region, in addition to its role in localization to the mitochondria, is essential for the proper functioning of the CPD photolyase. Furthermore, the mitochondrial targeting sequence, which is characteristic of class-II CPD photolyases, was acquired before the divergence of class-II CPD photolyases in eukaryotes. These results indicate that rice plants have evolved a CPD photolyase that functions in mitochondria to protect cells from the harmful effects of UVB radiation. PMID:24947012

  1. Preferential repair of cyclobutane pyrimidine dimers in the transcribed strand of a gene in yeast chromosomes and plasmids is dependent on transcription.

    PubMed Central

    Sweder, K S; Hanawalt, P C

    1992-01-01

    While preferential repair of the transcribed strands within active genes has been demonstrated in organisms as diverse as humans and Escherichia coli, it has not previously been shown to occur in chromosomal genes in the yeast Saccharomyces cerevisiae. We found that repair of cyclobutane pyrimidine dimers in the transcribed strand of the expressed RPB2 gene in the chromosome of a repair-proficient strain is much more rapid than that in the nontranscribed strand. Furthermore, a copy of the RPB2 gene borne on a centromeric ARS1 plasmid showed the same strand bias in repair. To investigate the relation of this strand bias to transcription, we studied repair in a yeast strain with the temperature-sensitive mutation, rpb1-1, in the largest subunit of RNA polymerase II. When exponentially growing rpb1-1 cells are shifted to the nonpermissive temperature, they rapidly cease mRNA synthesis. At the permissive temperature, both rpb1-1 and the wild-type, parental cells exhibited rapid, proficient repair in the transcribed strand of chromosomal and plasmid-borne copies of the RPB2 gene. At the nonpermissive temperature, the rate of repair in the transcribed strand in rpb1-1 cells was reduced to that in the nontranscribed strand. These findings establish the dependence of strand bias in repair on transcription by RNA polymerase II in the chromosomes and in plasmids, and they validate the use of plasmids for analysis of the relation of repair to transcription in yeast. Images PMID:1438266

  2. Kinetic mechanism for formation of the active, dimeric UvrD helicase-DNA complex.

    PubMed

    Maluf, Nasib K; Ali, Janid A; Lohman, Timothy M

    2003-08-22

    Escherichia coli UvrD protein is a 3' to 5' SF1 helicase required for DNA repair as well as DNA replication of certain plasmids. We have shown previously that UvrD can self-associate to form dimers and tetramers in the absence of DNA, but that a UvrD dimer is required to form an active helicase-DNA complex in vitro. Here we have used pre-steady state, chemical quenched flow methods to examine the kinetic mechanism for formation of the active, dimeric helicase-DNA complex. Experiments were designed to examine the steps leading to formation of the active complex, separate from the subsequent DNA unwinding steps. The results show that the active dimeric complex can form via two pathways. The first, faster path involves direct binding to the DNA substrate of a pre-assembled UvrD dimer (dimer path), whereas the second, slower path proceeds via sequential binding to the DNA substrate of two UvrD monomers (monomer path), which then assemble on the DNA to form the dimeric helicase. The rate-limiting step within the monomer pathway involves dimer assembly on the DNA. These results show that UvrD dimers that pre-assemble in the absence of DNA are intermediates along the pathway to formation of the functional dimeric UvrD helicase. PMID:12788954

  3. Formation of Uracil from the Ultraviolet Photo-Irradiation of Pyrimidine in Pure H2O Ices

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2009-09-01

    The detection of nucleobases in carbonaceous chondrites such as Murchison supports the scenario in which extraterrestrial organic molecules could have contributed to the origin of life on Earth. However, such large molecules have not been observed to date in astrophysical environments, in particular, comets and the interstellar medium (ISM). The physico-chemical conditions under which nucleobases and, more generally, N-heterocycles were formed are unknown, as are their mechanisms of formation. In this work, H2O:pyrimidine ice mixtures were irradiated with UV photons under interstellar/cometary- relevant conditions to study the formation of pyrimidine derivatives, including the nucleobase uracil. Liquid and gas chromatography analyses of the samples produced in our experiments revealed the presence of numerous photoproducts among which 4(3H)-pyrimidone and uracil could be conclusively identified. The photostability of pyrimidine against UV photons was also studied, and we showed that it would survive from the ISM to the solar nebula if formed and preserved in ice mantles on the surface of cold grains. We propose pathways for the formation of 4(3H)-pyrimidone and uracil under astrophysically relevant conditions and discuss the possibility for such molecules to survive from the ISM to their delivery to Earth and other Solar System bodies.

  4. Formation of uracil from the ultraviolet photo-irradiation of pyrimidine in pure H2O ices.

    PubMed

    Nuevo, Michel; Milam, Stefanie N; Sandford, Scott A; Elsila, Jamie E; Dworkin, Jason P

    2009-09-01

    The detection of nucleobases in carbonaceous chondrites such as Murchison supports the scenario in which extraterrestrial organic molecules could have contributed to the origin of life on Earth. However, such large molecules have not been observed to date in astrophysical environments, in particular, comets and the interstellar medium (ISM). The physico-chemical conditions under which nucleobases and, more generally, N-heterocycles were formed are unknown, as are their mechanisms of formation. In this work, H2O:pyrimidine ice mixtures were irradiated with UV photons under interstellar/cometary-relevant conditions to study the formation of pyrimidine derivatives, including the nucleobase uracil. Liquid and gas chromatography analyses of the samples produced in our experiments revealed the presence of numerous photoproducts among which 4(3H)-pyrimidone and uracil could be conclusively identified. The photostability of pyrimidine against UV photons was also studied, and we showed that it would survive from the ISM to the solar nebula if formed and preserved in ice mantles on the surface of cold grains. We propose pathways for the formation of 4(3H)-pyrimidone and uracil under astrophysically relevant conditions and discuss the possibility for such molecules to survive from the ISM to their delivery to Earth and other Solar System bodies. PMID:19778279

  5. Ultraviolet Irradiation of Pyrimidine in Interstellar Ice Analogs: Formation and Photo-Stability of Nucleobases

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Elsila, Jamie E.; Dworkin, Jason P.

    2010-01-01

    Astrochemistry laboratory experiments recently showed that molecules of prebiotic interest can potentially form in space, as supported by the detection of amino acids in organic residues formed by the UV photolysis of ices simulating interstellar and cometary environments (H2O, CO, CO2, CH3OH, NH3, etc.). Although the presence of amino acids in the interstellar medium (ISM) is still under debate, experiments and the detection of amino acids in meteorites both support a scenario in which prebiotic molecules could be of extraterrestrial origin, before they are delivered to planets by comets, asteroids, and interplanetary dust particles. Nucleobases, the informational subunits of DNA and RNA, have also been detected in meteorites, although they have not yet been observed in the ISM. Thus, these molecules constitute another family of prebiotic compounds that can possibly form via abiotical processes in astrophysical environments. Nucleobases are nitrogen-bearing cyclic aromatic species with various functional groups attached, which are divided into two classes: pyrimidines (uracil, cytosine, and thymine) and purines (adenine and guanine). In this work, we study how UV irradiation affects pyrimidine mixed in interstellar ice analogs (H2O, NH3, CH3OH). In particular, we show that the UV irradiation of H2O:pyrimidine mixtures leads to the production of oxidized compounds including uracil, and show that both uracil and cytosine are formed upon irradiation of H2O:NH3:pyrimidine mixtures. We also study the photostability of pyrimidine and its photoproducts formed during these experiments.

  6. Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH.

    PubMed

    Torigoe, Hidetaka; Nakagawa, Osamu; Imanishi, Takeshi; Obika, Satoshi; Sasaki, Kiyomi

    2012-04-01

    Extreme instability of pyrimidine motif triplex DNA at physiological pH severely limits its use in wide variety of potential applications, such as artificial regulation of gene expression, mapping of genomic DNA, and gene-targeted mutagenesis in vivo. Stabilization of pyrimidine motif triplex at physiological pH is, therefore, crucial for improving its potential in various triplex-formation-based strategies in vivo. To this end, we investigated the effect of 3'-amino-2'-O,4'-C-methylene bridged nucleic acid modification of triplex-forming oligonucleotide (TFO), in which 2'-O and 4'-C of the sugar moiety were bridged with the methylene chain and 3'-O was replaced by 3'-NH, on pyrimidine motif triplex formation at physiological pH. The modification not only significantly increased the thermal stability of the triplex but also increased the binding constant of triplex formation about 15-fold. The increased magnitude of the binding constant was not significantly changed when the number and position of the modification in TFO changed. The consideration of the observed thermodynamic parameters suggested that the increased rigidity of the modified TFO in the free state resulting from the bridging of different positions of the sugar moiety with an alkyl chain and the increased hydration of the modified TFO in the free state caused by the introduction of polar nitrogen atoms may significantly increase the binding constant at physiological pH. The study on the TFO viability in human serum showed that the modification significantly increased the resistance of TFO against nuclease degradation. This study presents an effective approach for designing novel chemically modified TFOs with higher binding affinity of triplex formation at physiological pH and higher nuclease resistance under physiological condition, which may eventually lead to progress in various triplex-formation-based strategies in vivo. PMID:22245184

  7. Interstrand cross-link formation in duplex and triplex DNA by modified pyrimidines.

    PubMed

    Peng, Xiaohua; Hong, In Seok; Li, Hong; Seidman, Michael M; Greenberg, Marc M

    2008-08-01

    DNA interstrand cross-links have important biological consequences and are useful biotechnology tools. Phenylselenyl substituted derivatives of thymidine (1) and 5-methyl-2'-deoxycytidine (5) produce interstrand cross-links in duplex DNA when oxidized by NaIO4. The mechanism involves a [2,3]-sigmatropic rearrangement of the respective selenoxides to the corresponding methide type intermediates, which ultimately produce the interstrand cross-links. Determination of the rate constants for the selenoxide rearrangements indicates that the rate-determining step for cross-linking is after methide formation. Cross-linking by the thymidine derivative in duplex DNA shows a modest kinetic preference when flanked by pyrimidines as opposed to purines. In contrast, the rate constant for cross-link formation from 5 opposite dG in duplex DNA is strongly dependent upon the flanking sequence and, in general, is at least an order of magnitude slower than that for 1 in an otherwise identical sequence. Introduction of mispairs at the base pairs flanking 5 or substitution of the opposing dG by dI significantly increases the rate constant and yield for cross-linking, indicating that stronger hydrogen bonding between the methide derived from it and dG compared to dA and the respective electrophile derived from 1 limits reaction by increasing the barrier to rotation into the required syn-conformation. Incorporation of 1 or 5 in triplex forming oligonucleotides (TFOs) that utilize Hoogsteen base pairing also yields interstrand cross-links. The dC derivative produces ICLs approximately 10x faster than the thymidine derivative when incorporated at the 5'-termini of the TFOs and higher yields when incorporated at internal sites. The slower, less efficient ICL formation emanating from 1 is attributed to reaction at N1-dA, which requires local melting of the duplex. In contrast, 5 produces cross-links by reacting with N7-dG. The cross-linking reactions of 1 and 5 illustrate the versatility and

  8. Dynamic dimer formation between superionic fluorines in PbF2

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobutaka; Tsumuraya, Kazuo

    2013-03-01

    Recently Tsumuraya et al .(J. Phys. Soc. Jpn. 81,055603(2012).) have elucidated the formation of the dynamic dimers in the superionic conductor α-CuI with the first principles molecular dynamics (MD) method. They, for the first time in research, confirmed the dimer formation through the analyses the origin of the correlation peaks of the partial pair distribution functions and the partial angle distribution functions. The present study elucidates the dynamic structure of the superionc fluorines in PbF2 crystal with the MD method through identifying the origins of the correlation peaks. The fluorines form the dynamic 32 f-8 c and 4 b-8 c dimers.

  9. Ultraviolet Irradiation of Pyrimidine in Interstellar Ice Analogs: Formation and Stability of Nucleobases

    NASA Astrophysics Data System (ADS)

    Milam, Stefanie; Nuevo, Michel; Sandford, Scott; Elsila, Jamie; Dworkin, Jason

    The detection of amino acids in organic residues formed by the UV photolysis of 10 K ices representative of interstellar and cometary environments (H2 O, CO, CO2 , CH3 OH, NH3 , etc.) show that molecules of prebiotic interest could potentially form in space. The detection of amino acids in meteorites supports a scenario where the organic molecules required for life are of extraterrestrial origin. Nucleobases, the informational units of RNA and DNA, have also been detected in meteorites and constitute another family of prebiotic compounds that can possibly form in interstellar environments. These molecules are functionalized heterocyclic aromatic species. There are two classes of nucleobases: pyrimidines (e.g. thymine, uracil, and cytosine) and purines (e.g. adenine and guanine). The functionalization of PAHs from UV photolysis in mixed molecular ices has been proven effective in the laboratory. This work aims at studying how UV irradiation affects pyrimidine in interstellar ice analogs. In particular, we show how H2 O/ pyrimidine mixtures lead to the production of oxidized compounds and study their photostability.

  10. Formation and properties of dimeric recombinant horseradish peroxidase in a system of reversed micelles.

    PubMed Central

    Gazaryan, I G; Klyachko, N L; Dulkis, Y K; Ouporov, I V; Levashov, A V

    1997-01-01

    Wild-type recombinant horseradish peroxidase purified and refolded from Escherichia coli inclusion bodies has been studied in the system of bis(2-ethylhexyl)sulphosuccinate sodium salt (Aerosol OT)-reversed micelles in octane. In contrast with native horseradish peroxidase the wild-type recombinant enzyme forms dimeric structures as judged by sedimentation analysis. Peroxidase substrates affect the equilibrium between monomeric and dimeric enzyme forms. The dependence of the catalytic activity of recombinant peroxidase on the degree of hydration of the surfactant exhibits two maxima with pyrogallol, o-phenylene- diamine, guaiacol and o-dianisidine, with different ratios of activities for the first and second maxima. The differences in activities of monomeric and dimeric forms of the recombinant horseradish peroxidase provide evidence for active-site screening in dimeric forms. This has been used to model a dimeric structure of recombinant horseradish peroxidase with the screened entrance to the active site. In the model structure obtained, three of eight glycosylation sites were screened. This might explain the absence of dimeric structures in native enzyme peroxidase. The system of reversed micelles provides, for the first time, evidence for the formation of dimeric structures by recombinant plant peroxidase with an altered substrate specificity compared with the native enzyme. Thus one can assume that haem-containing peroxidases in general are able to form dimeric structures. PMID:9371726

  11. H-type Dimer Formation of Fluorophores: A Mechanism for Activatable, in vivo Optical Molecular Imaging

    PubMed Central

    Ogawa, Mikako; Kosaka, Nobuyuki; Choyke, Peter L; Kobayashi, Hisataka

    2009-01-01

    In vivo molecular imaging with target-specific activatable “smart” probes, which only yield fluorescence at the intended target, enables sensitive and specific cancer detection because of high target to background ratios (TBR). Dimerization and fluorescence quenching has been shown to occur in concentrated aqueous solutions of various fluorophores. Here, we hypothesized that fluorophore dimerization and quenching after conjugation to targeting proteins can occur at low concentration, which is reasonable for in vivo imaging probes, because protein molecules can stabilize the fluorophore dimers based on physico-chemical interactions. This dimerization can be exploited as a mechanism for fluorescence activation. Rhodamine derivatives were conjugated to the cancer targeting molecules, avidin and trastuzumab, which target D-galactose receptor and HER2/neu antigen, respectively. After conjugation, a large proportion of R6G and TAMRA formed H-type dimers, even at low concentrations, but could be fully dequenched upon dissociation of the dimers to monomers. Lipophilicity was a potential factor in promoting H-dimer formation. To demonstrate the fluorescence activation effect during in vivo fluorescence endoscopic molecular imaging, a highly quenched probe, avidin-TAMRA or a minimally quenched probe, avidin-Alexa488 was administered into mice with ovarian metastases to the peritoneum. The tumors were clearly visualized with avidin-TAMRA, with low background fluorescence; in contrast, the background fluorescence was high for avidin-Alexa488. Thus, H-dimer formation as a mechanism of fluorescence quenching could be used to develop fluorescence activatable probes for in vivo molecular imaging. Effective activatable optical probes can be designed by focusing on the H-dimer formation of fluorophores. PMID:19480464

  12. Data on dimer formation between importin α subtypes.

    PubMed

    Miyamoto, Yoichi; Oka, Masahiro

    2016-06-01

    This article describes data related to the research article titled "Functional characterization of importin α8 as a classical nuclear localization signal receptor" [1]. A GST pull-down assay showed that both importin α1 and α8, which are classical nuclear localization signal (cNLS) receptors, can form a dimer with importin α6, α7, or α8. Importin α8 has higher dimer-forming ability than importin α1. In addition, our data show that either importin α1 or importin α8 can form a heterodimer with importin α3, which exists in a preformed complex with cNLS substrates such as the conventional SV40TNLS or the p53 protein, resulting in the release of the cNLS substrates from importin α3. PMID:27222842

  13. Data on dimer formation between importin α subtypes

    PubMed Central

    Miyamoto, Yoichi; Oka, Masahiro

    2016-01-01

    This article describes data related to the research article titled “Functional characterization of importin α8 as a classical nuclear localization signal receptor” [1]. A GST pull-down assay showed that both importin α1 and α8, which are classical nuclear localization signal (cNLS) receptors, can form a dimer with importin α6, α7, or α8. Importin α8 has higher dimer-forming ability than importin α1. In addition, our data show that either importin α1 or importin α8 can form a heterodimer with importin α3, which exists in a preformed complex with cNLS substrates such as the conventional SV40TNLS or the p53 protein, resulting in the release of the cNLS substrates from importin α3. PMID:27222842

  14. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures.

    PubMed

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  15. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures

    PubMed Central

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  16. Passage time statistics in the formation of ultracold dimers from fermionic atoms

    NASA Astrophysics Data System (ADS)

    Uys, Hermann

    2005-05-01

    We investigate the temporal fluctuations characteristic of the formation of molecular dimers from ultracold fermionic atoms via either photoassociation or a Feshbach resonance. The quantum fluctuations inherent to the initial atomic state result in large fluctuations in the passage time from atoms to molecules. A heuristic classical stochastic model yields an excellent agreement with the full quantum treatment in the initial stages of the dynamics. We also show that in contrast to the association of atoms into dimers, the reverse process of dissociation from a condensate of bosonic dimers exhibits little passage time fluctuations.

  17. Dimer-dimer interaction of the bacterial selenocysteine synthase SelA promotes functional active-site formation and catalytic specificity.

    PubMed

    Itoh, Yuzuru; Bröcker, Markus J; Sekine, Shun-ichi; Söll, Dieter; Yokoyama, Shigeyuki

    2014-04-17

    The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins and is synthesized on its specific tRNA (tRNA(Sec)). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNA(Sec), formed by seryl-tRNA synthetase, to Sec-tRNA(Sec). SelA, a member of the fold-type-I pyridoxal 5'-phosphate-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNA(Sec) revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNA(Sec). The SelA catalytic site is close to the dimer-dimer interface, but the significance of the dimer pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of "depentamerized" SelA variants with mutations at the dimer-dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I pyridoxal 5'-phosphate-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures. PMID:24456689

  18. A Strategy for Complex Dimer Formation When Biomimicry Fails: Total Synthesis of Ten Coccinellid Alkaloids

    PubMed Central

    2015-01-01

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature’s presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class. PMID:24959981

  19. A strategy for complex dimer formation when biomimicry fails: total synthesis of ten coccinellid alkaloids.

    PubMed

    Sherwood, Trevor C; Trotta, Adam H; Snyder, Scott A

    2014-07-01

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature's presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class. PMID:24959981

  20. Transition Metal Free Intermolecular Direct Oxidative C-N Bond Formation to Polysubstituted Pyrimidines Using Molecular Oxygen as the Sole Oxidant.

    PubMed

    Guo, Wei; Li, Chunsheng; Liao, Jianhua; Ji, Fanghua; Liu, Dongqing; Wu, Wanqing; Jiang, Huanfeng

    2016-07-01

    Various polysubstituted pyrimidines are smoothly formed via a base-promoted intermolecular oxidation C-N bond formation of allylic C(sp(3))-H and vinylic C(sp(2))-H of allyllic compounds with amidines using O2 as the sole oxidant. This protocol features protecting group free nitrogen sources, good functional group tolerance, high atom economy, and environmental advantages. PMID:27275869

  1. Factor Xa dimerization competes with prothrombinase complex formation on platelet-like membrane surfaces.

    PubMed

    Koklic, Tilen; Chattopadhyay, Rima; Majumder, Rinku; Lentz, Barry R

    2015-04-01

    Exposure of phosphatidylserine (PS) molecules on activated platelet membrane surface is a crucial event in blood coagulation. Binding of PS to specific sites on factor Xa (fXa) and factor Va (fVa) promotes their assembly into a complex that enhances proteolysis of prothrombin by approximately 10⁵. Recent studies demonstrate that both soluble PS and PS-containing model membranes promote formation of inactive fXa dimers at 5 mM Ca²⁺. In the present study, we show how competition between fXa dimerization and prothrombinase formation depends on Ca²⁺ and lipid membrane concentrations. We used homo-FRET measurements between fluorescein-E-G-R-chloromethylketone (CK)-Xa [fXa irreversibly inactivated by alkylation of the active site histidine residue with FEGR (FEGR-fXa)] and prothrombinase activity measurements to reveal the balance between fXa dimer formation and fXa-fVa complex formation. Changes in FEGR-fXa dimer homo-FRET with addition of fVa to model-membrane-bound FEGR-fXa unambiguously demonstrated that formation of the FEGR-fXa-fVa complex dissociated the dimer. Quantitative global analysis according to a model for protein interaction equilibria on a surface provided an estimate of a surface constant for fXa dimer dissociation (K(fXa×fXa)(d, σ)) approximately 10-fold lower than K(fXa×fVa)(d,σ) for fXa-fVa complex. Experiments performed using activated platelet-derived microparticles (MPs) showed that competition between fXa dimerization and fXa-fVa complex formation was even more prominent on MPs. In summary, at Ca²⁺ concentrations found in the maturing platelet plug (2-5 mM), fVa can compete fXa off of inactive fXa dimers to significantly amplify thrombin production, both because it releases dimer inhibition and because of its well-known cofactor activity. This suggests a hitherto unanticipated mechanism by which PS-exposing platelet membranes can regulate amplification and propagation of blood coagulation. PMID:25572019

  2. A balanced pyrimidine pool is required for optimal Chk1 activation to prevent ultrafine anaphase bridge formation.

    PubMed

    Gemble, Simon; Buhagiar-Labarchède, Géraldine; Onclercq-Delic, Rosine; Biard, Denis; Lambert, Sarah; Amor-Guéret, Mounira

    2016-08-15

    Cytidine deaminase (CDA) deficiency induces an excess of cellular dCTP, which reduces basal PARP-1 activity, thereby compromising complete DNA replication, leading to ultrafine anaphase bridge (UFB) formation. CDA dysfunction has pathological implications, notably in cancer and in Bloom syndrome. It remains unknown how reduced levels of PARP-1 activity and pyrimidine pool imbalance lead to the accumulation of unreplicated DNA during mitosis. We report that a decrease in PARP-1 activity in CDA-deficient cells impairs DNA-damage-induced Chk1 activation, and, thus, the downstream checkpoints. Chemical inhibition of the ATR-Chk1 pathway leads to UFB accumulation, and we found that this pathway was compromised in CDA-deficient cells. Our data demonstrate that ATR-Chk1 acts downstream from PARP-1, preventing the accumulation of unreplicated DNA in mitosis, and, thus, UFB formation. Finally, delaying entry into mitosis is sufficient to prevent UFB formation in both CDA-deficient and CDA-proficient cells, suggesting that both physiological and pathological UFBs are derived from unreplicated DNA. Our findings demonstrate an unsuspected requirement for a balanced nucleotide pool for optimal Chk1 activation both in unchallenged cells and in response to genotoxic stress. PMID:27383768

  3. Methanol dimer formation drastically enhances hydrogen abstraction from methanol by OH at low temperature.

    PubMed

    Siebrand, Willem; Smedarchina, Zorka; Martínez-Núñez, Emilio; Fernández-Ramos, Antonio

    2016-08-10

    The kinetics of the reaction of methanol with hydroxyl radicals is revisited in light of the reported new kinetic data, measured in cold expansion beams. The rate constants exhibit an approximately 10(2)-fold increase when the temperature decreases from 200 to 50 K, a result that cannot be fully explained by tunneling, as we confirm by new calculations. These calculations also show that methanol dimers are much more reactive to hydroxyl than monomers and imply that a dimer concentration of about 30% of the equilibrium concentration can account quantitatively for the observed rates. The assumed presence of dimers is supported by the observation of cluster formation in these and other cold beams of molecules subject to hydrogen bonding. The calculations imply an important caveat with respect to the use of cold expansion beams for the study of interstellar chemistry. PMID:27479134

  4. Fluctuations in the formation time of ultracold dimers from fermionic atoms

    NASA Astrophysics Data System (ADS)

    Uys, H.; Miyakawa, T.; Meiser, D.; Meystre, P.

    2005-11-01

    We investigate the temporal fluctuations characteristic of the formation of molecular dimers from ultracold fermionic atoms via Raman photoassociation. The quantum fluctuations inherent to the initial atomic state result in large fluctuations in the passage time from atoms to molecules. Assuming degeneracy of kinetic energies of atoms in the strong coupling limit, we find that a heuristic classical stochastic model yields qualitative agreement with the full quantum treatment in the initial stages of the dynamics. We also show that in contrast to the association of atoms into dimers, the reverse process of dissociation from a condensate of bosonic dimers exhibits little passage time fluctuations. Finally, we explore effects due to the nondegeneracy of atomic kinetic energies.

  5. Trypsin-modified alkaline phosphatase. Formation of apoenzyme monomer and hybrid dimer.

    PubMed

    Roberts, C H; Chlebowski, J F

    1985-06-25

    The cleavage of an amino-terminal decapeptide from Escherichia coli alkaline phosphatase has been previously described (Roberts, C. H., and Chlebowski, J. F. (1984) J. Biol. Chem. 259, 729-733) by this laboratory. The modest reduction in specific activity of the modified enzyme is paralleled by an apparent alteration in the Zn(II) affinity at one of the three active center metal ion binding sites. In contrast to the behavior of the native enzyme, formation of the metal-free apoprotein results in an irreversible loss of catalytic activity; phosphohydrolase activity is not restored on addition of Zn(II) and Mg(II). Differential scanning calorimetry and velocity sedimentation data indicate that the apo form of the modified enzyme exists as a monomer form which, while capable of binding Zn(II) does not readily reassociate to active dimer. Processive cleavage of the amino termini of the dimer by trypsin results in the transient formation of a hybrid dimer consisting of cleaved and uncleaved subunits. This species can be directly observed and isolated by taking advantage of the differential chromatographic mobility of the native "isozymes" and the resulting products. Coupled with improved procedures for the preparation of the modified protein, these data indicate that the amino-terminal modification results in alterations in the subunit interface domain and provides a species (the hybrid dimer) for the investigation of the propagation of these effects. PMID:3889000

  6. Homochiral Selectivity in RNA Synthesis: Montmorillonite-catalyzed Quaternary Reactions of D, L-Purine with D, L- Pyrimidine Nucleotides

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.

    2011-06-01

    Selective adsorption of D, L-ImpA with D, L-ImpU on the platelets of montmorillonite demonstrates an important reaction pathway for the origin of homochirality in RNA synthesis. Our earlier studies have shown that the individual reactions of D, L-ImpA or D, L-ImpU on montmorillonite catalyst produced oligomers which were only partially inhibited by the incorporation of both D- and L-enantiomers. Homochirality in these reactions was largely due to the formation of cyclic dimers that cannot elongate. We investigated the quaternary reactions of D, L-ImpA with D, L-ImpU on montmorillonite. The chain length of these oligomers increased from 9-mer to 11-mer as observed by HPLC, with a concominant increase in the yield of linear dimers and higher oligomers in the reactions involving D, L-ImpA with D, L-ImpU as compared to the similar reactions carried out with D-enantiomers only. The formation of cyclic dimers of U was completely inhibited in the quaternary reactions. The yield of cyclic dimers of A was reduced from 60% to 10% within the dimer fraction. 12 linear dimers and 3 cyclic dimers were isolated and characterized from the quaternary reaction. The homochirality and regioselectivity of dimers were 64.1% and 71.7%, respectively. Their sequence selectivity was shown by the formation of purine-pyrimidine (54-59%) linkages, followed by purine-purine (29-32%) linkages and pyrimidine-pyrimidine (9-13%) linkages. Of the 16 trimers detected, 10 were homochiral with an overall homochirality of 73-76%. In view of the greater homochirality, sequence- and regio- selectivity, the quaternary reactions on montmorillonite demonstrate an unexpectedly favorable route for the prebiotic synthesis of homochiral RNA compared with the separate reactions of enantiomeric activated mononucleotides.

  7. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae.

    PubMed Central

    Verhage, R; Zeeman, A M; de Groot, N; Gleig, F; Bang, D D; van de Putte, P; Brouwer, J

    1994-01-01

    The rad16 mutant of Saccharomyces cerevisiae was previously shown to be impaired in removal of UV-induced pyrimidine dimers from the silent mating-type loci (D. D. Bang, R. A. Verhage, N. Goosen, J. Brouwer, and P. van de Putte, Nucleic Acids Res. 20:3925-3931, 1992). Here we show that rad7 as well as rad7 rad16 double mutants have the same repair phenotype, indicating that the RAD7 and RAD16 gene products might operate in the same nucleotide excision repair subpathway. Dimer removal from the genome overall is essentially incomplete in these mutants, leaving about 20 to 30% of the DNA unrepaired. Repair analysis of the transcribed RPB2 gene shows that the nontranscribed strand is not repaired at all in rad7 and rad16 mutants, whereas the transcribed strand is repaired in these mutants at a fast rate similar to that in RAD+ cells. When the results obtained with the RPB2 gene can be generalized, the RAD7 and RAD16 proteins not only are essential for repair of silenced regions but also function in repair of nontranscribed strands of active genes in S. cerevisiae. The phenotype of rad7 and rad16 mutants closely resembles that of human xeroderma pigmentosum complementation group C (XP-C) cells, suggesting that RAD7 and RAD16 in S. cerevisiae function in the same pathway as the XPC gene in human cells. RAD4, which on the basis of sequence homology has been proposed to be the yeast XPC counterpart, seems to be involved in repair of both inactive and active yeast DNA, challenging the hypothesis that RAD4 and XPC are functional homologs. Images PMID:8065346

  8. Hydrogen Recombination and Dimer Formation on Graphite from Ab Initio Molecular Dynamics Simulations.

    PubMed

    Casolo, S; Tantardini, G F; Martinazzo, R

    2016-07-14

    We studied Eley-Rideal molecular hydrogen formation on graphite using ab initio molecular dynamics, in the energy range relevant for the chemistry of the interstellar medium and for terrestrial experiments employing cold plasma (0.02-1 eV). We found substantial projectile steering effects that prevent dimer formation at low energies, thereby ruling out any catalytic synthetic pathways that form hydrogen molecules. Ortho and para dimers do form efficiently thanks to preferential sticking, but only at energies that are too high to be relevant for the chemistry of the interstellar medium. Computed reaction cross sections and ro-vibrational product populations are in good agreement with available experimental data and capable of generating adsorbate configurations similar to those observed with scanning tunneling microscopy techniques. PMID:26905385

  9. Formation of nitric oxide dimers on MgO-supported gold particles

    NASA Astrophysics Data System (ADS)

    Fuente, Silvia A.; Fortunato, Leandro F.; Domancich, Nicolás; Castellani, Norberto J.; Ferullo, Ricardo M.

    2012-12-01

    We present density functional theory (DFT) calculations on the formation of nitric oxide dimers (N2O2) on Au atoms, dimers and trimers adsorbed on regular O2 - sites and neutral oxygen vacancies (Fs sites) of the MgO(100) surface. The study of the N2O2 species is of great interest since it has been detected in the NO reduction reaction as an intermediate towards the formation of N2O. We found that the coupling of a NO molecule with a previously adsorbed one on Au/MgO is energetically favorable on Au1 and Au3, but unfavorable on Au2. The stability of N2O2 is in direct relation with the amount of charge taken from the support. Furthermore, one of the N―O bonds can be activated as a result of the attraction between the negatively charged NO dimer and the ionic oxide surface. In fact, for Au1 anchored on the Fs site a barrierless reaction occurs between N2O2 and a third NO molecule, forming adsorbed N2O and NO2.

  10. Metallamacrocycle formation through dimerization of metal bioconjugates derived from amino acids and peptides.

    PubMed

    Álvarez, Celedonio M; García-Rodríguez, Raúl; Miguel, Daniel

    2016-01-21

    Metallamacrocycles of 12, 16, and 22 members are obtained by deprotonation of the carboxylic group of the side chain of iminopyridine complexes derived from the amino acid β-alanine, and the peptides Gly-Gly and Gly-Gly-Gly. Instead of the expected intramolecular attack to give tridentate (N,N,O) ligands, the deprotonated carboxylate attacks in an inter-molecular manner to give dimers in which the ligand acts as a bridge bonded in a κ(2)(N,N') chelating fashion to one metal and as κ(O) to the other metal. The formation of the dimers is supported by NMR spectroscopy, mass spectrometry and X-ray crystallography. PMID:26645303

  11. Structural diversity of Alzheimer’s disease Aβ dimers and their role in oligomerization and fibril formation

    PubMed Central

    Tsigelny, Igor F.; Sharikov, Yuriy; Kouznetsova, Valentina L.; Greenberg, Jerry P.; Wrasidlo, Wolfgang; Gonzalez, Tania; Desplats, Paula; Michael, Sarah E.; Trejo-Morales, Margarita; Overk, Cassia R.; Masliah, Eliezer

    2015-01-01

    Alzheimer’s disease (AD) is associated with the formation of toxic Aβ42 oligomers and recent evidence supports a role for Aβ dimers as building blocks for oligomers. Molecular dynamics (MD) simulation studies have identified clans for the dominant conformations of Aβ42 forming dimers; however, it is unclear if a larger spectrum of dimers is involved and which set(s) of dimers might evolve to oligomers verse fibrils. Therefore, for this study we generated multiple structural conformations of Aβ42, using explicit all-atom MD, and then clustering the different structures based on key conformational similarities. Those matching a selection threshold were then used to model a process of oligomerization. Remarkably, we showed a greater diversity in Aβ dimers than previously described. Depending on the clan family, different types of Aβ dimers were obtained. While some had the tendency to evolve into oligomeric rings, others formed fibrils of diverse characteristics. Then we selected the dimers that would evolve to membranephilic annular oligomers. Nearly one third of the 28 evaluated annular oligomers had the dimer interfaces between the neighboring Aβ42 monomers with possible salt bridges between the residue K28 from one side and either residue E22 or D23 on the other. Based on these results, key amino acids were identified for point mutations that either enhanced or suppressed the formation and toxicity of oligomer rings. Our studies suggest a greater diversity of Aβ dimers. Understanding the structure of Aβ dimers might be important for the rationale design of small molecules that block formation of toxic oligomers. PMID:24240640

  12. Structural Basis of M3 Muscarinic Receptor Dimer/Oligomer Formation*

    PubMed Central

    McMillin, Sara M.; Heusel, Moritz; Liu, Tong; Costanzi, Stefano; Wess, Jürgen

    2011-01-01

    Class A G protein-coupled receptors (GPCRs) are known to form dimers and/or oligomeric arrays in vitro and in vivo. These complexes are thought to play important roles in modulating class A GPCR function. Many studies suggest that residues located on the “outer” (lipid-facing) surface of the transmembrane (TM) receptor core are critically involved in the formation of class A receptor dimers (oligomers). However, no clear consensus has emerged regarding the identity of the TM helices or TM subsegments involved in this process. To shed light on this issue, we have used the M3 muscarinic acetylcholine receptor (M3R), a prototypic class A GPCR, as a model system. Using a comprehensive and unbiased approach, we subjected all outward-facing residues (70 amino acids total) of the TM helical bundle (TM1–7) of the M3R to systematic alanine substitution mutagenesis. We then characterized the resulting mutant receptors in radioligand binding and functional studies and determined their ability to form dimers (oligomers) in bioluminescence resonance energy transfer saturation assays. We found that M3R/M3R interactions are not dependent on the presence of one specific structural motif but involve the outer surfaces of multiple TM subsegments (TM1–5 and -7) located within the central and endofacial portions of the TM receptor core. Moreover, we demonstrated that the outward-facing surfaces of most TM helices play critical roles in proper receptor folding and/or function. Guided by the bioluminescence resonance energy transfer data, molecular modeling studies suggested the existence of multiple dimeric/oligomeric M3R arrangements, which may exist in a dynamic equilibrium. Given the high structural homology found among all class A GPCRs, our results should be of considerable general relevance. PMID:21685385

  13. Transient dimer formation in supercritical carbon dioxide as seen from Raman scattering

    NASA Astrophysics Data System (ADS)

    Cabaço, M. Isabel; Longelin, S.; Danten, Y.; Besnard, M.

    2008-02-01

    The polarized and depolarized Raman profiles of supercritical CO2 have been measured in the region of the ν2 bending mode (forbidden transition at about 668cm-1) and for the Fermi dyad (1285 and 1388cm-1) along the isotherms 307, 309, 313, and 323K in a reduced density domain 0.04<ρ *=ρ/ρC<2.04 (ρC˜467.6kgm-3, ρC is the critical density). The spectral features associated with the ν2 mode (degeneracy removal of the mode and Raman intensity activation) are found to be due to the formation of transient complexes. This is supported by the spectral signatures predicted for parallel slipped dimer and trimers (cyclic and noncyclic) from ab initio calculations taking into account the frequency anharmonicity. The band-shape analysis of the Fermi doublet (observed in the spectral range of 1260-1400cm-1) shows that on the subpicosecond time scale of the Raman spectroscopy, a tagged CO2 molecule probed two kinds of environment in its first shell of neighbors independent of local density enhancement phenomenon. The first one involves interactions of CO2 with surrounding molecules in the first shell whereas the latter is associated with a transient dimer formation. Finally, a broad band observed between the Fermi dyad (at about 1335cm-1) is assessed from symmetry considerations and from its depolarization ratio as a further evidence of transient complex formation in supercritical CO2.

  14. (1-(4-(Naphthalen-2-yl)pyrimidin-2-yl)piperidin-4-yl)methanamine: a wingless beta-catenin agonist that increases bone formation rate.

    PubMed

    Pelletier, Jeffrey C; Lundquist, Joseph T; Gilbert, Adam M; Alon, Nipa; Bex, Frederick J; Bhat, Bheem M; Bursavich, Mattew G; Coleburn, Valerie E; Felix, Luciana A; Green, Daniel M; Green, Paula; Hauze, Diane B; Kharode, Yogendra P; Lam, Ho-Sun; Lockhead, Susan R; Magolda, Ronald L; Matteo, Jeanne J; Mehlmann, John F; Milligan, Colleen; Murrills, Richard J; Pirrello, Jennifer; Selim, Sally; Sharp, Michael C; Unwalla, Ray J; Vera, Matthew D; Wrobel, Jay E; Yaworsky, Paul; Bodine, Peter V N

    2009-11-26

    A high-throughput screening campaign to discover small molecule leads for the treatment of bone disorders concluded with the discovery of a compound with a 2-aminopyrimidine template that targeted the Wnt beta-catenin cellular messaging system. Hit-to-lead in vitro optimization for target activity and molecular properties led to the discovery of (1-(4-(naphthalen-2-yl)pyrimidin-2-yl)piperidin-4-yl)methanamine (5, WAY-262611). Compound 5 has excellent pharmacokinetic properties and showed a dose dependent increase in the trabecular bone formation rate in ovariectomized rats following oral administration. PMID:19856966

  15. Dimer formation effect on the red-shift in fluorescent spectra of dye solutions

    NASA Astrophysics Data System (ADS)

    Sukprasong, Saksit; Manjit, Yongyut; Limpichaipanit, Apichart; Ngamjarurojana, Athipong

    2015-07-01

    The red-shift on fluorescent dyes spectra at high concentration was investigated by laser induce fluorescence technique. In this research, the fluorescent dyes (Rhodamine 6G, Rhodamine B, Fluorescein and Bromofluorescein) were used. The sample solutions were prepared with methanol solvent in the concentration range of 10-5 to 10-3 Molar and the temperature of sample solution was controlled at 25 °C by temperature control chamber. Then, the sample solution was illuminated by violet laser (405 nm) excitation source and the fluorescence spectra were recorded by CCD spectrometer. The result showed that the fluorescence spectra of all fluorescent dye solutions were dependent on concentration of fluorescent dyes. The position of fluorescence maximum intensity was shifted to a higher wavelength (red-shift) when the concentration increased because the dimer formation rate increases with increasing concentration, but the shifting of wavelength for each fluorescent dye solutions was different, which suggests the different rate of formation of dimer molecules in each fluorescent dye solutions.

  16. Reactivity of damaged pyrimidines: formation of a Schiff base intermediate at the glycosidic bond of saturated dihydrouridine.

    PubMed

    Jian, Yajun; Lin, Gengjie; Chomicz, Lidia; Li, Lei

    2015-03-11

    DNA glycosylases catalyze the first step of the base excision repair (BER) pathway. The chemistry used by these enzymes for deglycosylation has been largely considered as the chemistry of the oxocarbenium ion, e.g., direct rupture of the C1'-N1 bond resulting in an oxocarbenium ion intermediate. Here we present mechanistic studies revealing the 2'-deoxyribose isomerization and subsequent deglycosylation processes in two pyrimidine lesions: 5,6-dihydro-2'-deoxyuridine (dHdU) and 5,6-dihydrothymidine (dHT), formed via ionizing radiation damage to 2'-deoxycytidine and thymidine, respectively, under anoxic conditions. Acid or heat treatment of these two lesions leads to the production of two pairs of C1' epimers containing a pyranose and a furanose, respectively, indicating that both lesions favor the rupture of the C1'-O4' bond, resulting in a Schiff base intermediate at the N-glycosidic bond. Such a Schiff base intermediate was trapped and characterized by either Pd-catalyzed hydrogenation or thiol-mediated addition reaction. In contrast, in undamaged 2'-deoxyuridine and thymidine, reactions at elevated temperatures lead to the release of nucleobases most likely via the traditional oxocarbenium ion pathway. DFT calculations further support the experimental findings, suggesting that the oxocarbenium ion intermediate is responsible for the deglycosylation process if the integrity of the pyrimidine ring is maintained, while the Schiff base intermediate is preferred if the C5═C6 bond is saturated. Currently, the oxocarbenium ion pathway is indicated to be solely responsible for the deglycosylation in BER enzymes, however our results suggest an alternative Schiff base mechanism which may be responsible for the repair of saturated pyrimidine damages. PMID:25671389

  17. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules.

    PubMed

    Hern, Jonathan A; Baig, Asma H; Mashanov, Gregory I; Birdsall, Berry; Corrie, John E T; Lazareno, Sebastian; Molloy, Justin E; Birdsall, Nigel J M

    2010-02-01

    G-protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins in the human genome. Events in the GPCR signaling cascade have been well characterized, but the receptor composition and its membrane distribution are still generally unknown. Although there is evidence that some members of the GPCR superfamily exist as constitutive dimers or higher oligomers, interpretation of the results has been disputed, and recent studies indicate that monomeric GPCRs may also be functional. Because there is controversy within the field, to address the issue we have used total internal reflection fluorescence microscopy (TIRFM) in living cells to visualize thousands of individual molecules of a model GPCR, the M(1) muscarinic acetylcholine receptor. By tracking the position of individual receptors over time, their mobility, clustering, and dimerization kinetics could be directly determined with a resolution of approximately 30 ms and approximately 20 nm. In isolated CHO cells, receptors are randomly distributed over the plasma membrane. At any given time, approximately 30% of the receptor molecules exist as dimers, and we found no evidence for higher oligomers. Two-color TIRFM established the dynamic nature of dimer formation with M(1) receptors undergoing interconversion between monomers and dimers on the timescale of seconds. PMID:20133736

  18. Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules

    PubMed Central

    Hern, Jonathan A.; Baig, Asma H.; Mashanov, Gregory I.; Birdsall, Berry; Corrie, John E. T.; Lazareno, Sebastian; Molloy, Justin E.; Birdsall, Nigel J. M.

    2010-01-01

    G-protein–coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins in the human genome. Events in the GPCR signaling cascade have been well characterized, but the receptor composition and its membrane distribution are still generally unknown. Although there is evidence that some members of the GPCR superfamily exist as constitutive dimers or higher oligomers, interpretation of the results has been disputed, and recent studies indicate that monomeric GPCRs may also be functional. Because there is controversy within the field, to address the issue we have used total internal reflection fluorescence microscopy (TIRFM) in living cells to visualize thousands of individual molecules of a model GPCR, the M1 muscarinic acetylcholine receptor. By tracking the position of individual receptors over time, their mobility, clustering, and dimerization kinetics could be directly determined with a resolution of ~30 ms and ~20 nm. In isolated CHO cells, receptors are randomly distributed over the plasma membrane. At any given time, ~30% of the receptor molecules exist as dimers, and we found no evidence for higher oligomers. Two-color TIRFM established the dynamic nature of dimer formation with M1 receptors undergoing interconversion between monomers and dimers on the timescale of seconds. PMID:20133736

  19. Identification of Specific Transmembrane Residues and Ligand-Induced Interface Changes Involved In Homo-Dimer Formation of A Yeast G Protein-Coupled Receptor

    PubMed Central

    Kim, Heejung; Lee, Byung-Kwon; Naider, Fred; Becker, Jeffrey M.

    2009-01-01

    The S. cerevisiae α-factor pheromone receptor, Ste2p, has been studied as a model for G protein-coupled receptor (GPCR) structure and function. Dimerization has been demonstrated for many GPCRs, although the role(s) of dimerization in receptor function is disputed. Transmembrane domains one (TM1) and four (TM4) of Ste2p were shown previously to play a role in dimerization. In this study, single cysteine substitutions were introduced into a Cys-less Ste2p, and disulfide-mediated dimerization was assessed. Six residues in TM1 (L64 to M69) that had not been previously investigated and nineteen residues in TM7 (T278 to A296) of which fifteen were not previously investigated were mutated to create 25 single Cys-containing Ste2p molecules. Ste2p mutants V68C in TM1 and nine mutants in TM7 (cysteine substituted into residues 278, 285, 289, and 291 to 296) showed increased dimerization upon addition of an oxidizing agent in comparison to the background dimers formed by the Cys-less receptor. The formation of dimers was decreased for TM7 mutant receptors in the presence of α-factor indicating that ligand binding resulted in a conformational change that influenced dimerization. The effect of ligand on dimer formation suggests that dimers are formed in the resting state and the activated state of the receptor by different TM interactions. PMID:19839649

  20. A Sustainable Multicomponent Pyrimidine Synthesis.

    PubMed

    Deibl, Nicklas; Ament, Kevin; Kempe, Rhett

    2015-10-14

    Since alcohols are accessible from indigestible biomass (lignocellulose), the development of novel preferentially catalytic reactions in which alcohols are converted into important classes of fine chemicals is a central topic of sustainable synthesis. Multicomponent reactions are especially attractive in organic chemistry as they allow the synthesis of large libraries of diversely functionalized products in a short time when run in a combinatorial fashion. Herein, we report a novel, regioselective, iridium-catalyzed multicomponent synthesis of pyrimidines from amidines and up to three (different) alcohols. This reaction proceeds via a sequence of condensation and dehydrogenation steps which give rise to selective C-C and C-N bond formations. While the condensation steps deoxygenate the alcohol components, the dehydrogenations lead to aromatization. Two equiv of hydrogen and water are liberated in the course of the reactions. PN5P-Ir-pincer complexes, recently developed in our laboratory, catalyze this sustainable multicomponent process most efficiently. A total of 38 different pyrimidines were synthesized in isolated yields of up to 93%. Strong points of the new protocol are its regioselectivity and thus the immediate access to pyrimidines that are highly and unsymmetrically decorated with alkyl or aryl substituents. The combination of this novel protocol with established methods for converting alcohols to nitriles now allows to selectively assemble pyrimidines from four alcohol building blocks and 2 equiv of ammonia. PMID:26414993

  1. A molecular beam mass spectrometric study of the formation and photolysis of C(lc)lO dimer

    NASA Technical Reports Server (NTRS)

    Greene, Frank T.; Robaugh, David A.

    1992-01-01

    A study of the chlorine oxides present at temperatures and pressures typical of the Antarctic stratosphere was carried out. A series of low temperature flow reactors was constructed and used in conjunction with molecular beam mass spectrometric techniques to identify species and characterize their kinetic behavior at temperatures of -20 to -70 C and pressures of from 30 to 130 Torr. It was found that the gas phase chlorine-oxygen system was quite complex at low temperatures. ClO dimer was identified and found to be thermodynamically very stable under stratospheric conditions. It was also found that any system which contained ClO also contained a larger oxide. The oxide was identified as Cl2O3. A survey of possible higher oxides, which have been postulated as possible chlorine sinks in the stratosphere, was also carried out. The rate of formation of ClO dimer was measured as a function of temperature and pressure. Measurements were made of both the decay of ClO and the formation of the dimer. By comparing these rates it was determined that virtually all of the ClO was converted to the dimer under stratospheric conditions, and that the other ClO reactions were not important under these conditions.

  2. Sulfur dimers adsorbed on Au(111) as building blocks for sulfur octomers formation: A density functional study

    SciTech Connect

    Hernandez-Tamargo, Carlos E.; Montero-Alejo, Ana Lilian; Pujals, Daniel Codorniu; Mikosch, Hans

    2014-07-28

    Experimental scanning tunneling microscopy (STM) studies have shown for more than two decades rectangular formations when sulfur atoms are deposited on Au(111) surfaces. The precursors have ranged from simple molecules or ions, such as SO{sub 2} gas or sulfide anions, to more complex organosulfur compounds. We investigated, within the framework of the Density Functional Theory, the structure of these rectangular patterns assuming them entirely composed of sulfur atoms as the experimental evidence suggests. The sulfur coverage at which the simulations were carried out (0.67 ML or higher) provoked that the sulfur-sulfur association had to be taken into account for achieving a good agreement between the sets of simulated and experimental STM images. A combination of four sulfur dimers per rectangular formation properly explained the trends obtained by the experimental STM analysis which were related with the rectangles' size and shape fluctuations together with sulfur-sulfur distances within these rectangles. Finally, a projected density of states analysis showed that the dimers were capable of altering the Au(5d) electronic states at the same level as atomic sulfur adsorbed at low coverage. Besides, sulfur dimers states were perfectly distinguished, whose presence near and above the Fermi level can explain both: sulfur-sulfur bond elongation and dimers stability when they stayed adsorbed on the surface at high coverage.

  3. Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations.

    PubMed

    Zhou, Shuangyan; Shi, Danfeng; Liu, Xuewei; Liu, Huanxiang; Yao, Xiaojun

    2016-01-01

    Recent studies uncovered a novel protective prion protein variant: V127 variant, which was reported intrinsically resistant to prion conversion and propagation. However, the structural basis of its protective effect is still unknown. To uncover the origin of the protective role of V127 variant, molecular dynamics simulations were performed to explore the influence of G127V mutation on two key processes of prion propagation: dimerization and fibril formation. The simulation results indicate V127 variant is unfavorable to form dimer by reducing the main-chain H-bond interactions. The simulations of formed fibrils consisting of β1 strand prove V127 variant will make the formed fibril become unstable and disorder. The weaker interaction energies between layers and reduced H-bonds number for V127 variant reveal this mutation is unfavorable to the formation of stable fibril. Consequently, we find V127 variant is not only unfavorable to the formation of dimer but also unfavorable to the formation of stable core and fibril, which can explain the mechanism on the protective role of V127 variant from the molecular level. Our findings can deepen the understanding of prion disease and may guide the design of peptide mimetics or small molecule to mimic the protective effect of V127 variant. PMID:26906032

  4. Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations

    PubMed Central

    Zhou, Shuangyan; Shi, Danfeng; Liu, Xuewei; Liu, Huanxiang; Yao, Xiaojun

    2016-01-01

    Recent studies uncovered a novel protective prion protein variant: V127 variant, which was reported intrinsically resistant to prion conversion and propagation. However, the structural basis of its protective effect is still unknown. To uncover the origin of the protective role of V127 variant, molecular dynamics simulations were performed to explore the influence of G127V mutation on two key processes of prion propagation: dimerization and fibril formation. The simulation results indicate V127 variant is unfavorable to form dimer by reducing the main-chain H-bond interactions. The simulations of formed fibrils consisting of β1 strand prove V127 variant will make the formed fibril become unstable and disorder. The weaker interaction energies between layers and reduced H-bonds number for V127 variant reveal this mutation is unfavorable to the formation of stable fibril. Consequently, we find V127 variant is not only unfavorable to the formation of dimer but also unfavorable to the formation of stable core and fibril, which can explain the mechanism on the protective role of V127 variant from the molecular level. Our findings can deepen the understanding of prion disease and may guide the design of peptide mimetics or small molecule to mimic the protective effect of V127 variant. PMID:26906032

  5. C...H...N Hydrogen Bond Formation in Trimethylamine Dimer upon One-Photon Ionization

    NASA Astrophysics Data System (ADS)

    Nakayama, Yuichiro; Matsuda, Yoshiyuki; Fujii, Asuka

    2011-06-01

    Structures of trimethylamine dimer cluster cations which are generated by the vacuum-ultraviolet photoionization are investigated by a combination of infrared spectroscopic methods and theoretical reaction-pass calculations. In the trimethylamine dimer cluster cation, a proton of a methyl group is shared with the N atom of the other trimethylamine moiety. This is evidence that the methyl group acts as a proton donor in the cation state.

  6. Base pairing enhances fluorescence and favors cyclobutane dimer formation induced upon absorption of UVA radiation by DNA.

    PubMed

    Banyasz, Akos; Vayá, Ignacio; Changenet-Barret, Pascale; Gustavsson, Thomas; Douki, Thierry; Markovitsi, Dimitra

    2011-04-13

    The photochemical properties of the DNA duplex (dA)(20)·(dT)(20) are compared with those of the parent single strands. It is shown that base pairing increases the probability of absorbing UVA photons, probably due to the formation of charge-transfer states. UVA excitation induces fluorescence peaking at ∼420 nm and decaying on the nanosecond time scale. The fluorescence quantum yield, the fluorescence lifetime, and the quantum yield for cyclobutane dimer formation increase upon base pairing. Such behavior contrasts with that of the UVC-induced processes. PMID:21417388

  7. Strongly frustrated triangular spin lattice emerging from triplet dimer formation in honeycomb Li2IrO3

    PubMed Central

    Nishimoto, Satoshi; Katukuri, Vamshi M.; Yushankhai, Viktor; Stoll, Hermann; Rößler, Ulrich K.; Hozoi, Liviu; Rousochatzakis, Ioannis; van den Brink, Jeroen

    2016-01-01

    Iridium oxides with a honeycomb lattice have been identified as platforms for the much anticipated Kitaev topological spin liquid: the spin-orbit entangled states of Ir4+ in principle generate precisely the required type of anisotropic exchange. However, other magnetic couplings can drive the system away from the spin-liquid phase. With this in mind, here we disentangle the different magnetic interactions in Li2IrO3, a honeycomb iridate with two crystallographically inequivalent sets of adjacent Ir sites. Our ab initio many-body calculations show that, while both Heisenberg and Kitaev nearest-neighbour couplings are present, on one set of Ir–Ir bonds the former dominates, resulting in the formation of spin-triplet dimers. The triplet dimers frame a strongly frustrated triangular lattice and by exact cluster diagonalization we show that they remain protected in a wide region of the phase diagram. PMID:26776664

  8. Strongly frustrated triangular spin lattice emerging from triplet dimer formation in honeycomb Li2IrO3

    NASA Astrophysics Data System (ADS)

    Nishimoto, Satoshi; Katukuri, Vamshi M.; Yushankhai, Viktor; Stoll, Hermann; Rößler, Ulrich K.; Hozoi, Liviu; Rousochatzakis, Ioannis; van den Brink, Jeroen

    2016-01-01

    Iridium oxides with a honeycomb lattice have been identified as platforms for the much anticipated Kitaev topological spin liquid: the spin-orbit entangled states of Ir4+ in principle generate precisely the required type of anisotropic exchange. However, other magnetic couplings can drive the system away from the spin-liquid phase. With this in mind, here we disentangle the different magnetic interactions in Li2IrO3, a honeycomb iridate with two crystallographically inequivalent sets of adjacent Ir sites. Our ab initio many-body calculations show that, while both Heisenberg and Kitaev nearest-neighbour couplings are present, on one set of Ir-Ir bonds the former dominates, resulting in the formation of spin-triplet dimers. The triplet dimers frame a strongly frustrated triangular lattice and by exact cluster diagonalization we show that they remain protected in a wide region of the phase diagram.

  9. Formation of H-type liquid crystal dimer at air-water interface

    SciTech Connect

    Karthik, C. Gupta, Adbhut Joshi, Aditya Manjuladevi, V. Gupta, Raj Kumar; Varia, Mahesh C.; Kumar, Sandeep

    2014-04-24

    We have formed the Langmuir monolayer of H-shaped Azo linked liquid crystal dimer molecule at the air-water interface. Isocycles of the molecule showed hysteresis suggesting the ir-reversible nature of the monolayer formed. The thin film deposited on the silicon wafer was characterized using Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The images showed uniform domains of the dimer molecule. We propose that these molecules tend to take book shelf configuration in the liquid phase.

  10. Dimer formation and transcription activation in the sporulation response regulator Spo0A.

    PubMed

    Lewis, Richard J; Scott, David J; Brannigan, James A; Ladds, Joanne C; Cervin, Marguerite A; Spiegelman, George B; Hoggett, James G; Barák, Imrich; Wilkinson, Anthony J

    2002-02-15

    The response regulator Spo0A is the master control element in the initiation of sporulation in Bacillus subtilis. Like many other multi-domain response regulators, the latent activity of the effector, C-terminal domain is stimulated by phosphorylation on a conserved aspartic acid residue in the regulatory, N-terminal domain. If a threshold concentration of phosphorylated Spo0A is achieved, the transcription of genes required for sporulation is activated, whereas the genes encoding stationary phase sentinels are repressed, and sporulation proceeds. Despite detailed genetic, biochemical and structural characterisation, it is not understood how the phosphorylation signal in the receiver domain is transduced into DNA binding and transcription activation in the distal effector domain. An obstacle to our understanding of Spo0A function is the uncertainty concerning changes in quaternary structure that accompany phosphorylation. Here we have revisited this question and shown unequivocally that Spo0A forms dimers upon phosphorylation and that the subunit interactions in the dimer are mediated principally by the receiver domain. Purified dimers of two mutants of Spo0A, in which the phosphorylatable aspartic acid residue has been substituted, activate transcription from the spoIIG promoter in vitro, whereas monomers do not. This suggests that dimers represent the activated form of Spo0A. PMID:11851334

  11. Possible Formation of Metastable PAH Dimers upon Pickup by Helium Droplets.

    PubMed

    Calvo, F; Yurtsever, E; Birer, Ö

    2016-03-17

    Using path-integral molecular dynamics simulations and two quantum-mechanical-based force fields, we have investigated the conformational stability of dimers of a polycyclic aromatic hydrocarbon, perylene (C20H12), produced under typical experimental conditions of successive pick-up under helium nanodroplet environment. The most stable configurations are found to be of the stacked form with different relative orientations of the main molecular axes, perpendicular or T-shaped dimers being energetically much disfavored; however, in the presence of helium our simulations suggest that the time for rearrangement and π-stacking may be rather long and exceed hundreds of picoseconds. In addition, highly metastable dimers that are stacked but with a helium monolayer sandwiched between the two molecules are also found as likely products upon successive pickup. This stabilization occurs owing to the stronger localization of the helium atoms facing the aromatic rings, which is further enhanced in the dimer. The implications of the present results are discussed in the perspective of possible identification by spectroscopic methods. PMID:26890583

  12. Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study.

    PubMed

    Banyasz, Akos; Douki, Thierry; Improta, Roberto; Gustavsson, Thomas; Onidas, Delphine; Vayá, Ignacio; Perron, Marion; Markovitsi, Dimitra

    2012-09-12

    The study addresses interconnected issues related to two major types of cycloadditions between adjacent thymines in DNA leading to cyclobutane dimers (T<>Ts) and (6-4) adducts. Experimental results are obtained for the single strand (dT)(20) by steady-state and time-resolved optical spectroscopy, as well as by HPLC coupled to mass spectrometry. Calculations are carried out for the dinucleoside monophosphate in water using the TD-M052X method and including the polarizable continuum model; the reliability of TD-M052X is checked against CASPT2 calculations regarding the behavior of two stacked thymines in the gas phase. It is shown that irradiation at the main absorption band leads to cyclobutane dimers (T<>Ts) and (6-4) adducts via different electronic excited states. T<>Ts are formed via (1)ππ* excitons; [2 + 2] dimerization proceeds along a barrierless path, in line with the constant quantum yield (0.05) with the irradiation wavelength, the contribution of the (3)ππ* state to this reaction being less than 10%. The formation of oxetane, the reaction intermediate leading to (6-4) adducts, occurs via charge transfer excited states involving two stacked thymines, whose fingerprint is detected in the fluorescence spectra; it involves an energy barrier explaining the important decrease in the quantum yield of (6-4) adducts with the irradiation wavelength. PMID:22894169

  13. Time-resolved FRET reports FGFR1 dimerization and formation of a complex with its effector PLCγ1.

    PubMed

    Perdios, Louis; Bunney, Tom D; Warren, Sean C; Dunsby, Christopher; French, Paul M W; Tate, Edward W; Katan, Matilda

    2016-01-01

    In vitro and in vivo imaging of protein tyrosine kinase activity requires minimally invasive, molecularly precise optical probes to provide spatiotemporal mechanistic information of dimerization and complex formation with downstream effectors. We present here a construct with genetically encoded, site-specifically incorporated, bioorthogonal reporter that can be selectively labelled with exogenous fluorogenic probes to monitor the structure and function of fibroblast growth factor receptor (FGFR). GyrB.FGFR1KD.TC contains a coumermycin-induced artificial dimerizer (GyrB), FGFR1 kinase domain (KD) and a tetracysteine (TC) motif that enables fluorescent labelling with biarsenical dyes FlAsH-EDT2 and ReAsH-EDT2. We generated bimolecular system for time-resolved FRET (TR-FRET) studies, which pairs FlAsH-tagged GyrB.FGFR1KD.TC and N-terminal Src homology 2 (nSH2) domain of phospholipase Cγ (PLCγ), a downstream effector of FGFR1, fused to mTurquoise fluorescent protein (mTFP). We demonstrated phosphorylation-dependent TR-FRET readout of complex formation between mTFP.nSH2 and GyrB.FGFR1KD.TC. By further application of TR-FRET, we also demonstrated formation of the GyrB.FGFR1KD.TC homodimer by coumermycin-induced dimerization. Herein, we present a spectroscopic FRET approach to facilitate and propagate studies that would provide structural and functional insights for FGFR and other tyrosine kinases. PMID:26482290

  14. Electron scattering from pyrimidine

    NASA Astrophysics Data System (ADS)

    Colmenares, Rafael; Fuss, Martina C.; Oller, Juan C.; Muñoz, Antonio; Blanco, Francisco; Almeida, Diogo; Limão-Vieira, Paulo; García, Gustavo

    2014-04-01

    Electron scattering from pyrimidine (C4H4N2) was investigated over a wide range of energies. Following different experimental and theoretical approaches, total, elastic and ionization cross sections as well as electron energy loss distributions were obtained.

  15. Indolizines and pyrrolo[1,2-c]pyrimidines decorated with a pyrimidine and a pyridine unit respectively.

    PubMed

    Popa, Marcel Mirel; Georgescu, Emilian; Caira, Mino R; Georgescu, Florentina; Draghici, Constantin; Stan, Raluca; Deleanu, Calin; Dumitrascu, Florea

    2015-01-01

    The three possible structural isomers of 4-(pyridyl)pyrimidine were employed for the synthesis of new pyrrolo[1,2-c]pyrimidines and new indolizines, by 1,3-dipolar cycloaddition reaction of their corresponding N-ylides generated in situ from their corresponding cycloimmonium bromides. In the case of 4-(3-pyridyl)pyrimidine and 4-(4-pyridyl)pyrimidine the quaternization reactions occur as expected at the pyridine nitrogen atom leading to pyridinium bromides and consequently to new indolizines via the corresponding pyridinium N-ylides. However, in the case of 4-(2-pyridyl)pyrimidine the steric hindrance directs the reaction to the pyrimidinium N-ylides and, subsequently, to the formation of the pyrrolo[1,2-c]pyrimidines. The new pyrrolo[1,2-c]pyrimidines and the new indolizines were structurally characterized through NMR spectroscopy. The X-ray structures of two of the starting materials, 4-(2-pyridyl)pyrimidine and 4-(4-pyridyl)pyrimidine, are also reported. PMID:26199663

  16. Indolizines and pyrrolo[1,2-c]pyrimidines decorated with a pyrimidine and a pyridine unit respectively

    PubMed Central

    Georgescu, Emilian; Georgescu, Florentina; Draghici, Constantin; Stan, Raluca; Deleanu, Calin; Dumitrascu, Florea

    2015-01-01

    Summary The three possible structural isomers of 4-(pyridyl)pyrimidine were employed for the synthesis of new pyrrolo[1,2-c]pyrimidines and new indolizines, by 1,3-dipolar cycloaddition reaction of their corresponding N-ylides generated in situ from their corresponding cycloimmonium bromides. In the case of 4-(3-pyridyl)pyrimidine and 4-(4-pyridyl)pyrimidine the quaternization reactions occur as expected at the pyridine nitrogen atom leading to pyridinium bromides and consequently to new indolizines via the corresponding pyridinium N-ylides. However, in the case of 4-(2-pyridyl)pyrimidine the steric hindrance directs the reaction to the pyrimidinium N-ylides and, subsequently, to the formation of the pyrrolo[1,2-c]pyrimidines. The new pyrrolo[1,2-c]pyrimidines and the new indolizines were structurally characterized through NMR spectroscopy. The X-ray structures of two of the starting materials, 4-(2-pyridyl)pyrimidine and 4-(4-pyridyl)pyrimidine, are also reported. PMID:26199663

  17. Nitrobenzene anti-parallel dimer formation in non-polar solvents

    NASA Astrophysics Data System (ADS)

    Shikata, Toshiyuki; Sakai, Yuji; Watanabe, Junji

    2014-06-01

    We investigated the dielectric and depolarized Rayleigh scattering behaviors of nitrobenzene (NO2-Bz), which is a benzene mono-substituted with a planar molecular frame bearing the large electric dipole moment 4.0 D, in non-polar solvents solutions, such as tetrachloromethane and benzene, at up to 3 THz for the dielectric measurements and 8 THz for the scattering experiments at 20 °C. The dielectric relaxation strength of the system was substantially smaller than the proportionality to the concentration in a concentrated regime and showed a Kirkwood correlation factor markedly lower than unity; gK ˜ 0.65. This observation revealed that NO2-Bz has a tendency to form dimers, (NO2-Bz)2, in anti-parallel configurations for the dipole moment with increasing concentration of the two solvents. Both the dielectric and scattering data exhibited fast and slow Debye-type relaxation modes with the characteristic time constants ˜7 and ˜50 ps in a concentrated regime (˜15 and ˜30 ps in a dilute regime), respectively. The fast mode was simply attributed to the rotational motion of the (monomeric) NO2-Bz. However, the magnitude of the slow mode was proportional to the square of the concentration in the dilute regime; thus, the mode was assigned to the anti-parallel dimer, (NO2-Bz)2, dissociation process, and the slow relaxation time was attributed to the anti-parallel dimer lifetime. The concentration dependencies of both the dielectric and scattering data show that the NO2-Bz molecular processes are controlled through a chemical equilibrium between monomers and anti-parallel dimers, 2NO2-Bz ↔ (NO2-Bz)2, due to a strong dipole-dipole interaction between nitro groups.

  18. Functionalization with C-terminal cysteine enhances transfection efficiency of cell-penetrating peptides through dimer formation

    SciTech Connect

    Amand, Helene L.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Reversible CPP dimerisation is a simple yet efficient strategy to improve delivery. Black-Right-Pointing-Pointer Dimer formation enhances peptiplex stability, resulting in increased transfection. Black-Right-Pointing-Pointer By dimerisation, the CPP EB1 even gain endosomal escape properties while lowering cytotoxicity. -- Abstract: Cell-penetrating peptides have the ability to stimulate uptake of macromolecular cargo in mammalian cells in a non-toxic manner and therefore hold promise as efficient and well tolerated gene delivery vectors. Non-covalent peptide-DNA complexes ('peptiplexes') enter cells via endocytosis, but poor peptiplex stability and endosomal entrapment are considered as main barriers to peptide-mediated delivery. We explore a simple, yet highly efficient, strategy to improve the function of peptide-based vectors, by adding one terminal cysteine residue. This allows the peptide to dimerize by disulfide bond formation, increasing its affinity for nucleic acids by the 'chelate effect' and, when the bond is reduced intracellularly, letting the complex dissociate to deliver the nucleic acid. By introducing a single C-terminal cysteine in the classical CPP penetratin and the penetratin analogs PenArg and EB1, we show that this minor modification greatly enhances the transfection capacity for plasmid DNA in HEK293T cells. We conclude that this effect is mainly due to enhanced thermodynamic stability of the peptiplexes as endosome-disruptive chloroquine is still required for transfection and the effect is more pronounced for peptides with lower inherent DNA condensation capacity. Interestingly, for EB1, addition of one cysteine makes the peptide able to mediate transfection in absence of chloroquine, indicating that dimerisation can also improve endosomal escape properties. Further, the cytotoxicity of EB1 peptiplexes is considerably reduced, possibly due to lower concentration of free peptide dimer resulting from

  19. A Short Sequence Motif in the 5′ Leader of the HIV-1 Genome Modulates Extended RNA Dimer Formation and Virus Replication*

    PubMed Central

    van Bel, Nikki; Das, Atze T.; Cornelissen, Marion; Abbink, Truus E. M.; Berkhout, Ben

    2014-01-01

    The 5′ leader of the HIV-1 RNA genome encodes signals that control various steps in the replication cycle, including the dimerization initiation signal (DIS) that triggers RNA dimerization. The DIS folds a hairpin structure with a palindromic sequence in the loop that allows RNA dimerization via intermolecular kissing loop (KL) base pairing. The KL dimer can be stabilized by including the DIS stem nucleotides in the intermolecular base pairing, forming an extended dimer (ED). The role of the ED RNA dimer in HIV-1 replication has hardly been addressed because of technical challenges. We analyzed a set of leader mutants with a stabilized DIS hairpin for in vitro RNA dimerization and virus replication in T cells. In agreement with previous observations, DIS hairpin stability modulated KL and ED dimerization. An unexpected previous finding was that mutation of three nucleotides immediately upstream of the DIS hairpin significantly reduced in vitro ED formation. In this study, we tested such mutants in vivo for the importance of the ED in HIV-1 biology. Mutants with a stabilized DIS hairpin replicated less efficiently than WT HIV-1. This defect was most severe when the upstream sequence motif was altered. Virus evolution experiments with the defective mutants yielded fast replicating HIV-1 variants with second site mutations that (partially) restored the WT hairpin stability. Characterization of the mutant and revertant RNA molecules and the corresponding viruses confirmed the correlation between in vitro ED RNA dimer formation and efficient virus replication, thus indicating that the ED structure is important for HIV-1 replication. PMID:25368321

  20. Orbital-selective singlet dimer formation and suppression of double exchange in 4d and 5d systems

    NASA Astrophysics Data System (ADS)

    Streltsov, Sergey; Cao, Gang; Khomskii, Daniel

    One of the main mechanisms of ferromagnetic ordering in conducting materials is the double exchange (DE). It is usually supposed in DE model that the Hund's coupling JH is much larger than electron hopping t; in this case one stabilizes the state with maximum spin per pair of ions, which finally leads to ferromagnetism in bulk systems. We show that in the dimerized 4 d / 5 d transition metal oxides for which JH is reduced and t is in contrast enhanced, another situation is possible, when formation of the spin-singlets on delocalized orbitals is more favorable. This leads to suppression of the DE and to a strong decrease of the total spin. The model calculations using the dynamical mean-field theory show that this effect survives even in the extended systems, not only for dimers. Such a situation is realized, e.g., in Y5Mo2O12, CrO2 under pressure and in many other 4 d / 5 d based materials. Another mechanism, which may suppress DE and which is also typical for 4 d / 5 d compounds is the spin-orbit coupling (SOC). We show on the example of Ba5AlIr2O11, that in this system it is the combination of molecular-orbital formation and SOC that strongly decreases magnetic moment on Ir. Civil Research and Development Foundation via FSCX-14-61025-0.

  1. Localized Dimerization and Nucleoid Binding Drive Gradient Formation by the Bacterial Cell Division Inhibitor MipZ

    PubMed Central

    Kiekebusch, Daniela; Michie, Katharine A.; Essen, Lars-Oliver; Löwe, Jan; Thanbichler, Martin

    2012-01-01

    Summary Protein gradients play a central role in the spatial organization of cells, but the mechanisms of their formation are incompletely understood. This study analyzes the determinants responsible for establishing bipolar gradients of the ATPase MipZ, a key regulator of division site placement in Caulobacter crescentus. We have solved the crystal structure of MipZ in different nucleotide states, dissected its ATPase cycle, and investigated its interaction with FtsZ, ParB, and the nucleoid. Our results suggest that the polar ParB complexes locally stimulate the formation of ATP-bound MipZ dimers, which are then retained near the cell poles through association with chromosomal DNA. Due to their intrinsic ATPase activity, dimers eventually dissociate into freely diffusible monomers that undergo spontaneous nucleotide exchange and are recaptured by ParB. These findings clarify the molecular function of a conserved gradient-forming system and reveal mechanistic principles that might be commonly used to sustain protein gradients within cells. PMID:22483621

  2. Formation of the Antarctic ozone hole by the ClO dimer mechanism

    NASA Technical Reports Server (NTRS)

    Barrett, J. W.; Solomon, P. M.; De Zafra, R. L.; Jaramillo, M.; Emmons, L.

    1988-01-01

    New measurements of the low-altitude ClO profile, made during September 1987, are presented along with detailed observations of ozone depletion over McMurdo Station, Antarctica during the same period. The results show that both the rate and altitude range of ozone depletion can be quantitatively accounted for by a mechanism in which the ClO dimer is the important intermediary in the catalytic destruction of ozone. An alternative bromine mechanism appears capable of contributing only 5-15 percent to the ozone loss rate.

  3. On the adsorption and formation of Pt dimers on the CeO2(111) surface

    NASA Astrophysics Data System (ADS)

    Bruix, Albert; Nazari, Fariba; Neyman, Konstantin M.; Illas, Francesc

    2011-12-01

    The direct adsorption of Pt2 dimers on CeO2(111) and their formation from isolated adsorbed Pt atoms have been studied using periodic slab model calculations based on density functional theory and including the so-called on-site Hubbard parameter (GGA + U). In the most stable configuration Pt2 is found to be almost parallel to the surface; the electronic ground state is closed shell and there is no evidence of charge transfer towards or from the surface. The formation of Pt2 from two single adsorbed Pt atoms involves a rather small energy barrier of ˜0.10 eV only. On the contrary, dissociation of adsorbed Pt2 requires to overcome a considerable barrier of ˜1.43 eV. This indicates that once Pt2 is formed it will remain on the surface, thus likely triggering the growth of larger supported Pt particles.

  4. Dimer formation upon deprotonation: synthesis and structure of a m-terphenyl substituted (R,S)-dilithium disiloxanolate disilanol.

    PubMed

    Čas, Daniel; Hurkes, Natascha; Spirk, Stefan; Belaj, Ferdinand; Bruhn, Clemens; Rechberger, Gerald N; Pietschnig, Rudolf

    2015-07-28

    The synthesis and structural characterization of the first dilithium salt of a tetrahydroxydisiloxane, [DmpSi(OH)OLi]2O (6), is described (Dmp = 2,6-dimesitylphenyl). The solid state structure reveals the presence of a dimeric motif where two disiloxane units are linked by coordinating lithium atoms which differs from those found for the sodium and potassium analogs. The arrangement imposed by the cluster formation leads to diastereomeric silicon atoms exhibiting (R,S) configuration in the solid state. In addition, the intermediates of the reaction, monolithiated and dilithiated silanetriol could be identified by means of high-resolution mass spectrometry and the formation of 6 is discussed. Moreover, the fully protonated tetrahydroxydisiloxane, [DmpSi(OH)2]2O has been obtained as well and its solid state structures with varying hydrogen bond acceptors have been surveyed. PMID:26098855

  5. Mapping Thymine Dimer Splitting in Damaged DNA by Photolyase

    NASA Astrophysics Data System (ADS)

    Liu, Zheyun; Tan, Chuang; Li, Jiang; Guo, Xunmin; Wang, Lijuan; Zhong, Dongping

    2010-06-01

    Photolyases uses light energy to convert UV-damaged cyclobutane pyrimidine dimer (CPD) to normal bases. We observed the formation and decay of semiquinone flavin and CPD anion intermediate, the recovery of hydroquinone flavin in ground state, and the formation of normal thymine bases in real time with femtosecond time resolution. By monitoring the decay and formation of all reactants, intermediates and products, the functional dynamics of the elementary steps during CPD repair have been mapped out. All elementary reaction steps, namely forward electron transfer, back electron transfer, bond breakage and electron return occur in sub-nanosecond scale. These dynamics are synergistically correlated for maximum of repair efficiency through a redox photocycle with no net change of electrons.

  6. Role of the cystine-knot motif at the C-terminus of rat mucin protein Muc2 in dimer formation and secretion.

    PubMed Central

    Bell, S L; Xu, G; Forstner, J F

    2001-01-01

    DNA constructs based on the 534-amino-acid C-terminus of rat mucin protein Muc2 (RMC), were transfected into COS cells and the resultant (35)S-labelled dimers and monomers were detected by SDS/PAGE of immunoprecipitates. The cystine-knot construct, encoding the C-terminal 115 amino acids, appeared in cell lysates as a 45 kDa dimer, but was not secreted. A construct, devoid of the cystine knot, failed to form dimers. Site-specific mutagenesis within the cystine knot was performed on a conserved unpaired cysteine (designated Cys-X), which has been implicated in some cystine-knot-containing growth factors as being important for intermolecular disulphide-bond formation. Dimerization of RMC was effectively abolished. Each cysteine (Cys-1-Cys-6) comprising the three intramolecular disulphide bonds of the cystine knot was then mutated. Dimer formation was impaired in each case, although much less so for the Cys-3 mutant than the others. Abnormal high-molecular-mass, disulphide-dependent aggregates formed with mutations Cys-1, Cys-2, Cys-4 and Cys-5(,) and were poorly secreted. It is concluded that the intact cystine-knot domain is essential for dimerization of the C-terminal domain of rat Muc2, and that residue Cys-X in the knot plays a key role. The structural integrity of the cystine knot, maintained by intramolecular bonds Cys-1-Cys-4, Cys-2-Cys-5 and Cys-3-Cys-6, also appears to be important for dimerization, probably by allowing correct positioning of the unpaired Cys-X residue for stable intermolecular cystine-bond formation. PMID:11415450

  7. Unanticipated role of melanin in causing carcinogenic cyclobutane pyrimidine dimmers.

    PubMed

    Premi, Sanjay; Brash, Douglas E

    2016-01-01

    Ultraviolet radiation (UVR) instantaneously generates cyclobutane pyrimidine dimers (CPDs). Paradoxically, we recently observed that UV enables the protective pigment melanin to create CPDs in the dark long after the exposure ends. UV-induced reactive oxygen species (ROS) oxidize melanin to create melanin carbonyls in a high-energy quantum state. These energetic melanin carbonyls transfer their energy to DNA in the dark, creating CPDs in the absence of UVR. PMID:27308551

  8. Purines and pyrimidines in sediments from lake erie.

    PubMed

    Van Der Velden, W; Schwartz, A W

    1974-08-23

    Quantitative analyses of purines and pyrimidines in sequential sections of cores from the central and eastern basins of Lake Erie show steeply increasing concentrations in the youngest sediments. This may be related to increased loading of nutrients and recent cultural eutrophication of the lake. The purine and pyrimidine distributions suggest the operation of a specific degradative process for uracil at an extremely early stage in, or prior to, sediment formation. PMID:17736373

  9. Gas dynamic effects on formation of carbon dimers in laser-produced plasmas

    NASA Astrophysics Data System (ADS)

    Al-Shboul, K. F.; Harilal, S. S.; Hassanein, A.

    2011-09-01

    We investigated the effect of helium and nitrogen pressures on the dynamics of molecular species formation during laser ablation of carbon. For producing plasmas, planar carbon targets were irradiated with 1064 nm, 6 ns pulses from an Nd:yttrium aluminum garnet laser. The emission from excited C2 and CN molecules was studied using space resolved optical time-of-flight emission spectroscopy and spectrally resolved fast imaging. The intensity oscillations in C2 and CN monochromatic fast imaging and their emission space-time contours suggest that recombination is the major mechanism of C2 formation within the laser ablation carbon plumes in the presence of ambient gas.

  10. Nucleation-dependent tau filament formation: the importance of dimerization and an estimation of elementary rate constants.

    PubMed

    Congdon, Erin E; Kim, Sohee; Bonchak, Jonathan; Songrug, Tanakorn; Matzavinos, Anastasios; Kuret, Jeff

    2008-05-16

    Filamentous inclusions composed of the microtubule-associated protein tau are found in Alzheimer disease and other tauopathic neurodegenerative diseases, but the mechanisms underlying their formation from full-length protein monomer under physiological conditions are unclear. To address this issue, the fibrillization of recombinant full-length four-repeat human tau was examined in vitro as a function of time and submicromolar tau concentrations using electron microscopy assay methods and a small-molecule inducer of aggregation, thiazine red. Data were then fit to a simple homogeneous nucleation model with rate constant constraints established from filament dissociation rate, critical concentration, and mass-per-unit length measurements. The model was then tested by comparing the predicted time-dependent evolution of length distributions to experimental data. Results indicated that once assembly-competent conformations were attained, the rate-limiting step in the fibrillization pathway was tau dimer formation. Filament elongation then proceeded by addition of tau monomers to nascent filament ends. Filaments isolated at reaction plateau contained approximately 2 tau protomers/beta-strand spacing on the basis of mass-per-unit length measurements. The model suggests four key steps in the aggregation pathway that must be surmounted for tau filaments to form in disease. PMID:18359772

  11. Benzamide prevention of ultraviolet radiation-induced transformation as measured by anchorage-independent growth and absence of correlation with thymidine dimer formation and DNA repair

    SciTech Connect

    Milo, G.E.; d'Ambrosio, S.; Kun, E.

    1989-01-01

    Synchronized human fibroblasts were exposed in early S phase to increasing doses of ultraviolet (UV) irradiation in the presence and absence of an antitransforming drug, benzamide. Cellular survival, initial thymidine dimer formation and its repair, and cellular phenotypic transformation were simultaneously monitored in the presence and absence of 1 mM externally added benzamide that reaches 8 to 15 microns intracellular levels. Cellular transformation as measured by an expression of anchorage-independent growth was inhibited by nontoxic doses of benzamide. Antitransforming action of benzamide is confined to low intracellular drug concentrations, which in the case of benzamide is in the 4-9 micons range. Because of the lack of effect of benzamide of the formation of UV-induced thymidine dimers and the specific repair of these dimers, these results suggest that the processes of thymidine dimer formation and its repair are not involved in the mode of action of benzamide that influences the expression of a transformed phenotype with low malignant vigor.

  12. A-type dimeric epigallocatechin-3-gallate (EGCG) is a more potent inhibitor against the formation of insulin amyloid fibril than EGCG monomer.

    PubMed

    Nie, Rong-Zu; Zhu, Wei; Peng, Jin-Ming; Ge, Zhen-Zhen; Li, Chun-Mei

    2016-06-01

    Because fibrillary protein aggregates is regarded to be closely associated with many diseases such as Alzheimer's disease, diabetes, and Parkinson's disease, growing interest and researches have been focused on finding potential fibrillation inhibitors. In the present study, the inhibitory effects of epigallocatechin-3-gallate (EGCG) and A-type dimeric epigallocatechin-3-gallate (A-type EGCG dimer) on the formation of insulin fibrillation were compared by multi-dimensional approaches including thioflavin-T (ThT) fluorescence assay, 1-anilinonaphthalene-8-sulfonic (ANS) fluorescence assay, dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and circular dichroism (CD) spectroscopy. Our results confirmed that A-type EGCG dimer is a more potent inhibitor against the formation of bovine insulin amyloid fibril than EGCG. In addition, A-type EGCG dimer could not only inhibit insulin amyloid fibril formation, but also change the aggregation pathway and induce bovine insulin into amorphous aggregates. The results of the present study may provide a new guide on finding novel anti-amyloidogenic agents. PMID:27079519

  13. Terthiophene radical cations end-capped by bicyclo[2.2.2]octene units: formation of bent pi-dimers mutually attracted at the central position.

    PubMed

    Yamazaki, Daisuke; Nishinaga, Tohru; Tanino, Nobuhide; Komatsu, Koichi

    2006-11-15

    A terthiophene fused with bicyclo[2.2.2]octene units only at both ends was newly synthesized. Since there is no steric hindrance at the central position, this terthiophene has a possibility to interact only at the central position. One-electron oxidation of this terthiophene afforded a highly stable radical-cation salt as deep blue crystals. The result of X-ray crystal structural analysis demonstrated a characteristically bent pi-dimereric structure, which is formed by mutual attraction of single radical-cation species at the central position to minimize the steric repulsion. Remarkably short intermolecular distances between the central thiophene rings of each unit of the dimeric pair, that is, 2.976(10) A for Cbeta-Cbeta, 3.091(10) A for Calpha-Calpha, and 3.779(3) A for S-S, are good indication of the existence of attracting interaction, which was confirmed by theoretical calculations. This interaction was experimentally demonstrated by the reversible formation of the pi-dimer in CH2Cl2 solution using ESR and UV-vis-NIR spectroscopy. The crystal of the pi-dimer is in its singlet state and ESR silent in the solid state at 300 K, but the signal of a triplet state of the pi-dimer was observed by heating the solid at 400 K. This indicates that this pi-dimer has a quite small triplet-singlet enegy gap and the triplet state is thermally accessible. PMID:17090025

  14. Removal of UV light-induced pyrimidine-pyrimidone(6-4) products from Escherichia coli DNA requires the uvrA, uvrB, and urvC gene products.

    PubMed Central

    Franklin, W A; Haseltine, W A

    1984-01-01

    Ultraviolet light induces the formation of cyclobutane pyrimidine dimers and pyrimidine- pyrimidone (6-4) photoproducts in cellular DNA. In Escherichia coli, the uvrA, uvrB, and uvrC genes are necessary for excision of cyclobutane dimers. To determine whether the uvrABC gene products are required for (6-4) product removal from DNA, a sensitive HPLC assay was developed that allows the separation and quantitation of both types of photoproducts. Both the T T cyclobutane dimer and the T-C(6-4) product were completely removed from the DNA after 2 hr of repair in a wild-type strain. Both products were also removed in the wild-type strain in the presence of chloramphenicol, an inhibitor of protein synthesis. No decrease in the amount of either T T cyclobutane dimer or of T-C(6-4) products was observed in strains that were deficient in any one of the three uvr gene products under similar conditions. We conclude the uvrABC enzyme complex is required for excision of (6-4) photoproducts from E. coli DNA. PMID:6374666

  15. Deuterium Enrichment of Vitamin A at the C20 Position Slows the Formation of Detrimental Vitamin A Dimers in Wild-type Rodents*

    PubMed Central

    Kaufman, Yardana; Ma, Li; Washington, Ilyas

    2011-01-01

    Degenerative eye diseases are the most common causes of untreatable blindness. Accumulation of lipofuscin (granular deposits) in the retinal pigment epithelium (RPE) is a hallmark of major degenerative eye diseases such as Stargardt disease, Best disease, and age-related macular degeneration. The intrinsic reactivity of vitamin A leads to its dimerization and to the formation of pigments such as A2E, and is believed to play a key role in the formation of ocular lipofuscin. We sought a clinically pragmatic method to slow vitamin A dimerization as a means to elucidate the pathogenesis of macular degenerations and to develop a therapeutic intervention. We prepared vitamin A enriched with the stable isotope deuterium at carbon twenty (C20-D3-vitamin A). Results showed that dimerization of deuterium-enriched vitamin A was considerably slower than that of vitamin A at natural abundance as measured in vitro. Administration of C20-D3-vitamin A to wild-type rodents with no obvious genetic defects in vitamin A processing, slowed A2E biosynthesis. This study elucidates the mechanism of A2E biosynthesis and suggests that administration of C20-D3-vitamin A may be a viable, long-term approach to retard vitamin A dimerization and by extension, may slow lipofuscin deposition and the progression of common degenerative eye diseases. PMID:21075840

  16. Thermal degradation of green tea flavan-3-ols and formation of hetero- and homocatechin dimers in model dairy beverages.

    PubMed

    Song, Brian J; Manganais, Chris; Ferruzzi, Mario G

    2015-04-15

    Interactions between polyphenols and macromolecules may impact polyphenol stability and bioavailability from foods. The impact of milk on tea flavan-3-ol stability to thermal treatment was investigated. Single strength (36.2 protein per L), quarter strength (9.0 g protein per L) milk, and control model beverages were incubated with epigallocatechin gallate and green tea extract at 62 or 37 °C for 180 min. Intact flavan-3-ols and select auto-oxidation products [theasinesins (THSNs) and P-2 dimers] were quantified by LC-MS. Generally, greater polyphenol to protein ratios increased first order degradation rates, consequently decreasing formation of oxidation products. The presence of galloyl and hydroxy moieties was associated with higher stability of monomeric flavan-3-ols with increasing protein concentrations suggesting potential for protein affinity to stabilise flavan-3-ols to thermal treatment. Absence of these moieties led to no observable improvements in stability. These results suggest that protein interactions may be useful in stabilising flavan-3-ols through thermal processing. PMID:25466027

  17. Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation.

    PubMed

    Ovsyannikov, Sergey V; Bykov, Maxim; Bykova, Elena; Kozlenko, Denis P; Tsirlin, Alexander A; Karkin, Alexander E; Shchennikov, Vladimir V; Kichanov, Sergey E; Gou, Huiyang; Abakumov, Artem M; Egoavil, Ricardo; Verbeeck, Johan; McCammon, Catherine; Dyadkin, Vadim; Chernyshov, Dmitry; van Smaalen, Sander; Dubrovinsky, Leonid S

    2016-05-01

    Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below ∼150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature. PMID:27102685

  18. Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation

    NASA Astrophysics Data System (ADS)

    Ovsyannikov, Sergey V.; Bykov, Maxim; Bykova, Elena; Kozlenko, Denis P.; Tsirlin, Alexander A.; Karkin, Alexander E.; Shchennikov, Vladimir V.; Kichanov, Sergey E.; Gou, Huiyang; Abakumov, Artem M.; Egoavil, Ricardo; Verbeeck, Johan; McCammon, Catherine; Dyadkin, Vadim; Chernyshov, Dmitry; van Smaalen, Sander; Dubrovinsky, Leonid S.

    2016-05-01

    Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials’ properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below ∼150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.

  19. Bis(2,4,6-tri-amino-pyrimidin-1-ium) sulfate penta-hydrate.

    PubMed

    Nimthong, Ruthairat; Chamchong, Siva; Pakawatchai, Chaveng; Mokhagul, Jedsada; Wattanakanjana, Yupa

    2013-01-01

    The asymmetric unit of the title salt, 2C4H8N5 (+)·SO4 (2-)·5H2O, contains four 2,4,6-tri-amino-pyrimidinium (TAPH(+)) cations, two sulfate anions and ten lattice water mol-ecules. Each two of the four TAPH(+) cations form dimers via N-H⋯N hydrogen bonds between the amino groups and the unprotonated pyrimidine N atoms [graph-set motif R 2 (2)(8)]. The (TAPH(+))2 dimers, in turn, form slightly offset infinite π-π stacks parallel to [010], with centroid-centroid distances between pyrimidine rings of 3.5128 (15) and 3.6288 (16) Å. Other amino H atoms, as well as the pyrimidinium N-H groups, are hydrogen-bonded to sulfate and lattice water O atoms. The SO4 (2-) anions and water mol-ecules are inter-connected with each other via O-H⋯O hydrogen bonds. The combination of hydrogen-bonding inter-actions and π-π stacking leads to the formation of a three-dimensional network with alternating columns of TAPH(+) cations and channels filled with sulfate anions and water mol-ecules. One of the sulfate anions shows a minor disorder by a ca 37° rotation around one of the S-O bonds [occupancy ratio of the two sets of sites 0.927 (3):0.073 (3)]. One water mol-ecule is disordered over two mutually exclusive positions with an occupancy ratio of 0.64 (7):0.36 (7). PMID:24109349

  20. Prebiotic syntheses of purines and pyrimidines

    NASA Astrophysics Data System (ADS)

    Basile, B.; Lazcano, A.; Oró, J.

    The work done in many laboratories during the last two decades has confirmed that hydrogen cyanide and cyanoacetylene are the two major precursors for the prebiotic synthesis of purines and pyrimidines, respectively. Although several different pathways for the synthesis of purines have been described, they are all variations of the initial mechanism proposed by Oró and Kimball, where hydrogen cyanide leads first to the formation of a 4,5-disubstituted imidazole derivative, and then to the closing of the purine ring with a C1 compound. A number of experiments have shown that purines and pyrimidines can also be obtained from methane, ammonia (nitrogen), and water mixtures, provided an activating source of energy (radiation, electric discharges, etc.) is available. However, in this case the yields are lower by about two orders of magnitude because of the intermediate formation of hydrogen cyanide and cyanoacetylene. The latter two compounds have been found in interstellar space, Titan and other bodies of the solar system. They were probably present in the primordial parent bodies from the solar nebula in concentrations of 10-2 to 10-3 M as inferred from recent calculations by Miller and coworkers obtained for the Murchison meteorite. These concentrations should have been sufficient to generate relatively large amounts of purine and pyrimidine bases on the primitive Earth.

  1. Thiamin Pyrimidine Biosynthesis in Candida albicans: A Remarkable Reaction between Histidine and Pyridoxal Phosphate

    SciTech Connect

    Lai, Rung-Yi; Huang, Siyu; Fenwick, Michael K.; Hazra, Amrita; Zhang, Yang; Rajashankar, Kanagalaghatta; Philmus, Benjamin; Kinsland, Cynthia; Sanders, Jennie Mansell; Ealick, Steven E.; Begley, Tadhg P.

    2012-06-26

    In Saccharomyces cerevisiae, thiamin pyrimidine is formed from histidine and pyridoxal phosphate (PLP). The origin of all of the pyrimidine atoms has been previously determined using labeling studies and suggests that the pyrimidine is formed using remarkable chemistry that is without chemical or biochemical precedent. Here we report the overexpression of the closely related Candida albicans pyrimidine synthase (THI5p) and the reconstitution and preliminary characterization of the enzymatic activity. A structure of the C. albicans THI5p shows PLP bound at the active site via an imine with Lys62 and His66 in close proximity to the PLP. Our data suggest that His66 of the THI5 protein is the histidine source for pyrimidine formation and that the pyrimidine synthase is a single-turnover enzyme.

  2. Dimerization of lipocalin allergens

    PubMed Central

    Niemi, Merja H.; Rytkönen-Nissinen, Marja; Miettinen, Ilja; Jänis, Janne; Virtanen, Tuomas; Rouvinen, Juha

    2015-01-01

    Lipocalins are one of the most important groups of inhalant animal allergens. The analysis of structural features of these proteins is important to get insights into their allergenicity. We have determined two different dimeric crystal structures for bovine dander lipocalin Bos d 2, which was earlier described as a monomeric allergen. The crystal structure analysis of all other determined lipocalin allergens also revealed oligomeric structures which broadly utilize inherent structural features of the β-sheet in dimer formation. According to the moderate size of monomer-monomer interfaces, most of these dimers would be transient in solution. Native mass spectrometry was employed to characterize quantitatively transient dimerization of two lipocalin allergens, Bos d 2 and Bos d 5, in solution. PMID:26346541

  3. A search for interstellar pyrimidine

    NASA Astrophysics Data System (ADS)

    Kuan, Yi-Jehng; Yan, Chi-Hung; Charnley, Steven B.; Kisiel, Zbigniew; Ehrenfreund, Pascale; Huang, Hui-Chun

    2003-10-01

    We have searched three hot molecular cores for submillimetre emission from the nucleic acid building block pyrimidine. We obtain upper limits to the total pyrimidine (beam-averaged) column densities towards Sgr B2(N), Orion KL and W51 e1/e2 of 1.7 × 1014, 2.4 × 1014 and 3.4 × 1014 cm-2, respectively. The associated upper limits to the pyrimidine fractional abundances lie in the range (0.3-3) × 10-10. Implications of this result for interstellar organic chemistry, and for the prospects of detecting nitrogen heterocycles in general, are discussed briefly.

  4. Studies on the Effect of Sub-zero Temperatures on the Formation of Extremely Low Volatility Dimer Esters in Secondary Organic Aerosol from Alpha-Pinene

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Normann Jensen, Louise; Bilde, Merete

    2016-04-01

    The oxidation of volatile organic compounds (VOC) is considered a major source of secondary organic aerosols (SOA) in the atmosphere. Recently, extremely low volatility organic compounds, or ELVOC, formed from the oxidation of VOCs have been shown to play a crucial role in new particle formation (Ehn et al., 2014). In addition, higher molecular weight dimer esters originating from the oxidation of the biogenic VOC alpha-pinene have been observed in both laboratory-generated and ambient SOA (Kristensen et al., 2013). The low volatility of the dimer esters along with an observed rapid formation makes these high molecular weight compounds likely candidates involved in new particle formation from the oxidation of alpha-pinene. Furthermore, laboratory experiments show that the dimer esters only form in the presence of ozone, thus may be used as tracers for the ozone-initiated oxidation of alpha-pinene, and are therefore indicative of enhanced anthropogenic activities. In this work, we present the results of a series of oxidation experiments performed in the newly constructed cold-room smog chamber at Aarhus University. This unique and state-of-the-art Teflon chamber allows for atmospheric simulations of the oxidation VOCs and subsequent SOA formation at temperatures down to -16 °C. In this study, ozonolysis and photochemical oxidations of alpha-pinene are performed at temperatures ranging from +20 to -16 °C. Chemical characterization of the formed SOA is performed using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The results show significant differences in the chemical composition related to the experiment temperature. In particularly, the concentration of the high molecular weight dimer esters showed to be highly affected by temperature. Interestingly, preliminary results show higher formation of dimer esters related to increased SOA formation rate, thus indicating that these particle-phase ELVOCs may be linked with new particle

  5. Quantifying Dimer and Trimer Formation of Tri-n-butyl Phosphates in Different Alkane Diluents: FTIR Study.

    PubMed

    Vo, Quynh N; Unangst, Jaclynn L; Nguyen, Hung D; Nilsson, Mikael

    2016-07-21

    Tri-n-butyl phosphate (TBP), a representative of neutral organophosphorous metal-ion-extracting reagents, is an important ligand used in solvent extraction processes for the recovery of uranium and plutonium from spent nuclear fuel, as well as other non-nuclear applications. Ligand-ligand and organic solvent-ligand interactions play an important role in these processes. The self-association behavior of TBP in various alkane diluents of different chain lengths (8, 12, and 16 carbons) and a branched alkane (iso-octane) was investigated by Fourier transform infrared spectroscopic measurements. By careful deconvolution of the spectra into multiple peaks, our results indicate that TBP self-associates to form not only dimers, as previous studies showed, but also trimers in the practical concentration range. Using a mathematical fitting procedure, the dimerization and trimerization constants were determined. As expected, these equilibrium constants are dependent on the solvent used. As the alkane chain for linear hydrocarbon solvents becomes longer, dimerization decreases whereas trimerization increases. For the more branched hydrocarbon, we observe a significantly higher dimerization constant. These effects are most likely due to the intermolecular van der Waals interactions between the butyl tails of each TBP molecule and the diluent hydrocarbon chain as all solvents in this study are relatively nonpolar. PMID:27399338

  6. Coherent vibration and ultrafast dynamics upon bond formation in excited dimers of an Au(i) complex.

    PubMed

    Iwamura, Munetaka; Wakabayashi, Ryo; Maeba, Junichi; Nozaki, Koichi; Takeuchi, Satoshi; Tahara, Tahei

    2016-02-10

    Au-Au bond strengthening in photoexcited dimers of an Au(i) complex is captured in solution as oscillations of femtosecond absorption signals. The subsequent dynamics, when compared to the trimer's data, confirm that the bent-to-linear structural change of the trimer occurs in the first few picoseconds. PMID:26821585

  7. Dimeric Sesquiterpenoids.

    PubMed

    Liao, Shang-Gao; Yue, Jian-Min

    2016-01-01

    It is widely accepted that a large number of proteins that are responsible for cellular function exist as dimers or need to be activated by dimerization before mediating certain signaling pathways. Simultaneously targeting both monomeric moieties of the dimeric proteins has shown potential in the development of various therapeutic agents. As dimeric molecules might be able to act on both moieties of a dimeric protein, dimeric sesquiterpenoids (DSs), which are generated biogenetically from coupling of two sesquiterpenoid molecules, are in essence potential biologically active molecules, and have attracted in recent years great attention for their peculiar structures and biological activities. In fact, a number of DSs are more potent than their monomeric precursors for some activities such as anti-inflammatory, anti-tumor, immunosuppressive, potassium channel blocking, antimalarial, anti-virus, and neurotrophic activities.The complex and diversified structures of DSs also attracted attention of chemists in their isolation, structural elucidation, and synthetic construction.In the contribution, a general view of the classification and distribution of DSs will be provided. Strategies for the structural elucidation of DSs and their analogues is presented. Chemical strategies for the convergence of the two sesquiterpenoid units is reviewed. Biological activities are discussed under each type of activity. PMID:26659108

  8. Use of Improved Orbitals for CCSD(T) Calculations for Predicting Heats of Formation of Group IV and Group VI Metal Oxide Monomers and Dimers and UCl6.

    PubMed

    Fang, Zongtang; Lee, Zachary; Peterson, Kirk A; Dixon, David A

    2016-08-01

    The prediction of the heats of formation of group IV and group VI metal oxide monomers and dimers with the coupled cluster CCSD(T) method has been improved by using Kohn-Sham density functional theory (DFT) and Brueckner orbitals for the initial wave function. The valence and core-valence contributions to the total atomization energies for the CrO3 monomer and dimer are predicted to be significantly larger than when using the Hartree-Fock (HF) orbitals. The predicted heat of formation of CrO3 with CCSD(T)/PW91 is consistent with previous calculations including high-order corrections beyond CCSD(T) and agrees well with the experiment. The improved heats of formation with the DFT and Brueckner orbitals are due to these orbitals being closer to the actual orbitals. Pure DFT functionals perform slightly better than the hybrid B3LYP functional due to the presence of exact exchange in the hybrid functional. Comparable heats of formation for TiO2 and the second- and the third-row group IV and group VI metal oxides are predicted well using either the DFT PW91 orbitals, Brueckner orbitals, or HF orbitals. The normalized clustering energies for the dimers are consistent with our previous work except for a larger value predicted for Cr2O6. The prediction of the reaction energy for UF6 + 3Cl2 → UCl6 + 3F2 was significantly improved with the use of DFT or Brueckner orbitals as compared to HF orbitals. PMID:27398941

  9. Dimerization of VirD2 Binding Protein Is Essential for Agrobacterium Induced Tumor Formation in Plants

    PubMed Central

    Padavannil, Abhilash; Jobichen, Chacko; Qinghua, Yang; Seetharaman, Jayaraman; Velazquez-Campoy, Adrian; Yang, Liu; Pan, Shen Q.; Sivaraman, J.

    2014-01-01

    The Type IV Secretion System (T4SS) is the only bacterial secretion system known to translocate both DNA and protein substrates. The VirB/D4 system from Agrobacterium tumefaciens is a typical T4SS. It facilitates the bacteria to translocate the VirD2-T-DNA complex to the host cell cytoplasm. In addition to protein-DNA complexes, the VirB/D4 system is also involved in the translocation of several effector proteins, including VirE2, VirE3 and VirF into the host cell cytoplasm. These effector proteins aid in the proper integration of the translocated DNA into the host genome. The VirD2-binding protein (VBP) is a key cytoplasmic protein that recruits the VirD2–T-DNA complex to the VirD4-coupling protein (VirD4 CP) of the VirB/D4 T4SS apparatus. Here, we report the crystal structure and associated functional studies of the C-terminal domain of VBP. This domain mainly consists of α-helices, and the two monomers of the asymmetric unit form a tight dimer. The structural analysis of this domain confirms the presence of a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) fold. Biophysical studies show that VBP is a dimer in solution and that the HEPN domain is the dimerization domain. Based on structural and mutagenesis analyses, we show that substitution of key residues at the interface disrupts the dimerization of both the HEPN domain and full-length VBP. In addition, pull-down analyses show that only dimeric VBP can interact with VirD2 and VirD4 CP. Finally, we show that only Agrobacterium harboring dimeric full-length VBP can induce tumors in plants. This study sheds light on the structural basis of the substrate recruiting function of VBP in the T4SS pathway of A. tumefaciens and in other pathogenic bacteria employing similar systems. PMID:24626239

  10. Ionization and Fragmentation of DCOOD Induced by Synchrotron Radiation at the Oxygen 1s Edge: The Role of Dimer Formation.

    PubMed

    Arruda, Manuela S; Medina, Aline; Sousa, Josenilton N; Mendes, Luiz A V; Marinho, Ricardo R T; Prudente, Frederico V

    2016-07-14

    The ionization and photofragmentation of molecules in the core region has been widely investigated for monomers and dimers of organic molecules in the gas phase. In this study, we used synchrotron radiation to excite electrons of the oxygen K-edge in an effusive molecular beam of doubly deuterated formic acid. We used time-of-flight mass spectrometry and employed the spectroscopic techniques photoelectron-photoion coincidence and photoelectron photoion-photoion coincidence to obtain spectra of single and double coincidences at different pressures. Our results indicate the presence of ions and ion pairs that have charge-to-mass ratio higher than the monomer DCOOD, as the (DCOOD)·D(+), and pairs (DCO(+), DCO(+)) and (CO(+), DCO(+)). Comparing the spectra obtained for different pressures we can ascertain that these ions are formed by the fragmentation of DCOOD dimers. PMID:27116397

  11. Using stable MutS dimers and tetramers to quantitatively analyze DNA mismatch recognition and sliding clamp formation.

    PubMed

    Groothuizen, Flora S; Fish, Alexander; Petoukhov, Maxim V; Reumer, Annet; Manelyte, Laura; Winterwerp, Herrie H K; Marinus, Martin G; Lebbink, Joyce H G; Svergun, Dmitri I; Friedhoff, Peter; Sixma, Titia K

    2013-09-01

    The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair. PMID:23821665

  12. Cy3 in AOT reverse micelles I. Dimer formation revealed through steady-state and time-resolved spectroscopy.

    PubMed

    McPhee, Jeffrey T; Scott, Eric; Levinger, Nancy E; Van Orden, Alan

    2011-08-11

    Cyanine-3 (Cy3) fluorescent dye molecules confined in sodium di-2-ethylhexyl sulfosuccinate (AOT) reverse micelles were examined using steady-state absorption and emission as well as time-resolved fluorescence spectroscopy to understand the effect of confinement on the spectroscopic properties of the dye. This study explored a wide range of reverse micelle sizes, with hydrodynamic radii ranging from ∼1.7 to ∼5 nm. The relative concentrations of Cy3 and AOT reverse micelles were such that, on average, one dye molecule was present for every 2 × 10(4) to 9 × 10(5) reverse micelles. In the smallest reverse micelles examined, observed changes in the absorption and emission spectra and fluorescence lifetime of the dye molecules indicated H-aggregation of Cy3 into side-by-side dimers. It is hypothesized that this dimerization is governed by the high local concentrations that result from the confinement of the Cy3 in the reverse micelles. What is notable about this study is that this dimer occurs even at overall dye concentrations in the nanomolar range. Such concentrations are too low for aggregation to occur in bulk solution. Hence, the reverse micelles serve as nanocatalysts for this aggregation process. PMID:21761942

  13. 5-Thiocyanato-2′-deoxyuridine as a Possible Radiosensitizer: Electron-Induced Formation of Uracil-C5-Thiyl Radical and Its Dimerization

    PubMed Central

    Zdrowowicz, Magdalena; Chomicz, Lidia; Żyndul, Michał; Wityk, Paweł; Wiegand, Tyler J.; Hanson, Cameron G.; Adhikary, Amitava

    2015-01-01

    In this work, we have synthesized 5-thiocyanato-2′-deoxyuridine (SCNdU) along with the C6-deuterated nucleobase 5-thiocyanatouracil (6-D-SCNU) and studied their reactions with radiation-produced electrons. ESR spectra in γ-irradiated nitrogen-saturated frozen homogeneous solutions (7.5 M LiCl in H2O or D2O) of these compounds show that electron-induced S-CN bond cleavage occurs to form a thiyl radical (dU-5-S• or 6-D-U-5-S•) and CN− via the initial π-anion radical (SCNdU•−) intermediate in which the excess electron is on the uracil base. HPLC and LC-MS/MS studies of γ-irradiated N2-saturated aqueous solutions of SCNdU in the presence of sodium formate as a OH-radical scavenger at ambient temperature show the formation of the dU-5S-5S-dU dimer in preference to dU by about 10 to 1 ratio. This shows that both possible routes of electron-induced bond cleavage (dUC5-SCN and S-CN) in SCNdU•− and dU-5-S• formation are preferred for the production of the σ-type uracilyl radical (dU•) by 10 fold. DFT/M06-2x/6-31++G(d,p) calculations employing the polarizable continuum model (PCM) for aqueous solutions show that dU-5-S• and CN− formation was thermodynamically favored by over 15 kcal/mol (ΔG) compared to dU• and SCN− production. The activation barriers for C5-S and S-CN bond cleavage in SCNdU•− amount to 8.7 and 4.0 kcal/mol, respectively, favoring dU-5-S• and CN− formation. These results support the experimental observation of S-CN bond cleavage by electron addition to SCNdU that results in the formation of dU-5-S• and the subsequent dU-5S-5S-dU dimer. This establishes SCNdU as a potential radiosensitizer that could cause intra- and inter-strand crosslinking as well as DNA-protein crosslinking via S-S dimer formation. PMID:26059609

  14. Stereoselective self-sorting in the self-assembly of a Phe-Phe extended guanidiniocarbonyl pyrrole carboxylate zwitterion: formation of two diastereomeric dimers with significantly different stabilities.

    PubMed

    Rodler, Fabian; Sicking, Wilhelm; Schmuck, Carsten

    2011-07-28

    The 'dipeptide extended' guanidiniocarbonyl pyrrole carboxylate zwitterion GCP-Phe-Phe 1 forms stable dimers in DMSO. However, dimerization is highly stereoselective. Only homochiral dimers are formed and the (L,L)·(L,L) dimer (K(dim) > 10(5) M(-1)) is significantly more stable by a factor of 10(3) than the diastereomeric (D,L)·(D,L) dimer (K(dim) = 120 M(-1)). PMID:21670799

  15. Mechanistic Analysis and Thermochemical Kinetic Simulation of the Pathways for Volatile Product Formation from Pyrolysis of Polystyrene, Especially of the Dimer

    SciTech Connect

    Poutsma, Marvin L

    2006-01-01

    Simulations of the initial distribution of volatiles from pyrolysis of polystyrene were based on propagation rate constants estimated by thermochemical kinetic procedures. The voluminous database exhibits a disturbing lack of consistency with respect to effects of conversion level, temperature, and reactor type. It therefore remains difficult to assign the true primary distribution of the major products, styrene, 2,4-diphenyl-1-butene (''dimer''), 2,4,6-triphenyl-1-hexene (''trimer''), 1,3-diphenylpropane, and toluene, and its dependence on conditions. Probable perturbations by secondary reactions and selective evaporation are considered. The rate constant for 1,3-hydrogen shift appears much too small to accommodate the commonly proposed ''back-biting'' mechanism for dimer formation. Dimer more likely arises by addition of benzyl radical to olefinic chain-ends, followed by {beta}-scission, although ambiguities remain in assigning rate constants for the addition and {beta}-scission steps. With this modification, the major products can be successfully associated with decay of the sec-benzylic chain-end radical. In contrast, the minimal formation of allylbenzene, 2,4-diphenyl-1-pentene, and 2,4,6-triphenyl-1-heptene suggests a minimal chain-propagating role for the prim chain-end radical. Compared with polyethylene, the much enhanced ''unzipping'' to form monomer from polystyrene and the more limited depth of ''back-biting'' into the chain arise from an enthalpy-driven acceleration of {beta}-scission coupled with a kinetically driven deceleration of intramolecular hydrogen transfer. In contrast, the greater ''unzipping'' of poly(isobutylene) compared with polyethylene is proposed to result from relief of steric strain.

  16. Characterization of mAb dimers reveals predominant dimer forms common in therapeutic mAbs.

    PubMed

    Plath, Friederike; Ringler, Philippe; Graff-Meyer, Alexandra; Stahlberg, Henning; Lauer, Matthias E; Rufer, Arne C; Graewert, Melissa A; Svergun, Dmitri; Gellermann, Gerald; Finkler, Christof; Stracke, Jan O; Koulov, Atanas; Schnaible, Volker

    2016-07-01

    The formation of undesired high molecular weight species such as dimers is an important quality attribute for therapeutic monoclonal antibody formulations. Therefore, the thorough understanding of mAb dimerization and the detailed characterization mAb dimers is of great interest for future pharmaceutical development of therapeutic antibodies. In this work, we focused on the analyses of different mAb dimers regarding size, surface properties, chemical identity, overall structure and localization of possible dimerization sites. Dimer fractions of different mAbs were isolated to a satisfactory purity from bulk material and revealed 2 predominant overall structures, namely elongated and compact dimer forms. The elongated dimers displayed one dimerization site involving the tip of the Fab domain. Depending on the stress applied, these elongated dimers are connected either covalently or non-covalently. In contrast, the compact dimers exhibited non-covalent association. Several interaction points were detected for the compact dimers involving the hinge region or the base of the Fab domain. These results indicate that mAb dimer fractions are rather complex and may contain more than one kind of dimer. Nevertheless, the overall appearance of mAb dimers suggests the existence of 2 predominant dimeric structures, elongated and compact, which are commonly present in preparations of therapeutic mAbs. PMID:27031922

  17. 6-Chloro-N 4,N 4-dimethyl­pyrimidine-2,4-diamine

    PubMed Central

    Pang, Yuan-Yuan; Yu, Kai; Sun, Bin; Guo, Dian-Shun

    2012-01-01

    The asymmetric unit of the title compound, C6H9ClN4, contains four independent mol­ecules (A, B, C and D). Their main difference is the torsion angles, ranging from 1.6 (5) to 5.9 (5)°, between the methyl group and the pyrimidine plane. A pair of inter­molecular N—H⋯N hydrogen bonds link mol­ecules A and C into a twisted dimer with a dihedral angle of 32.9 (1)° between the two pyrimidine rings, creating an R 2 2(8) motif. In the packing, each two mol­ecules of B, C and D form centrosymmetric dimers through two inter­molecular N—H⋯N hydrogen bonds, locally creating R 2 2(8) motifs. The dimers of C and D are alternately bridged by A into an infinite zigzag strip, locally creating two different R 2 2(8) motifs with dihedral angles of 32.9 (1) and 63.4 (1)° between the pyrimidine rings. Finally, these strips together with the dimers of B associate into a complicated three-dimensional framework. PMID:22590204

  18. Quantifying Dimer and Trimer Formation by Tri-n-butyl Phosphates in n-Dodecane: Molecular Dynamics Simulations.

    PubMed

    Vo, Quynh N; Dang, Liem X; Nilsson, Mikael; Nguyen, Hung D

    2016-07-21

    Tri-n-butyl phosphate (TBP), a representative of neutral organophosphorous ligands, is an important extractant used in the solvent extraction process for the recovery of uranium and plutonium from spent nuclear fuel. Microscopic pictures of TBP isomerism and its behavior in n-dodecane diluent were investigated utilizing MD simulations with previously optimized force field parameters for TBP and n-dodecane. Potential mean force (PMF) calculations on a single TBP molecule show seven probable TBP isomers. Radial distribution functions (RDFs) of TBP suggest the existence of TBP trimers at high TBP concentrations in addition to dimers. 2D PMF calculations were performed to determine the angle and distance criteria for TBP trimers. The dimerization and trimerization constants of TBP in n-dodecane were obtained and match our own experimental values using the FTIR technique. The new insights into the conformational behaviors of the TBP molecule as a monomer and as part of an aggregate could greatly aid in the understanding of the complexation between TBP and metal ions in a solvent extraction system. PMID:27398866

  19. Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport.

    PubMed

    Tiernan, Chelsea T; Combs, Benjamin; Cox, Kristine; Morfini, Gerardo; Brady, Scott T; Counts, Scott E; Kanaan, Nicholas M

    2016-09-01

    In Alzheimer's disease (AD), tau undergoes numerous modifications, including increased phosphorylation at serine-422 (pS422). In the human brain, pS422 tau protein is found in prodromal AD, correlates well with cognitive decline and neuropil thread pathology, and appears associated with increased oligomer formation and exposure of the N-terminal phosphatase-activating domain (PAD). However, whether S422 phosphorylation contributes to toxic mechanisms associated with disease-related forms of tau remains unknown. Here, we report that S422-pseudophosphorylated tau (S422E) lengthens the nucleation phase of aggregation without altering the extent of aggregation or the types of aggregates formed. When compared to unmodified tau aggregates, the S422E modification significantly increased the amount of SDS-stable tau dimers, despite similar levels of immunoreactivity with an oligomer-selective antibody (TOC1) and another antibody that reports PAD exposure (TNT1). Vesicle motility assays in isolated squid axoplasm further revealed that S422E tau monomers inhibited anterograde, kinesin-1 dependent fast axonal transport (FAT). Unexpectedly, and unlike unmodified tau aggregates, which selectively inhibit anterograde FAT, aggregates composed of S422E tau were found to inhibit both anterograde and retrograde FAT. Highlighting the relevance of these findings to human disease, pS422 tau was found to colocalize with tau oligomers and with a fraction of tau showing increased PAD exposure in the human AD brain. This study identifies novel effects of pS422 on tau biochemical properties, including prolonged nucleation and enhanced dimer formation, which correlate with a distinct inhibitory effect on FAT. Taken together, these findings identify a novel mechanistic basis by which pS422 confers upon tau a toxic effect that may directly contribute to axonal dysfunction in AD and other tauopathies. PMID:27373205

  20. C-C Bond Formation: Synthesis of C5 Substituted Pyrimidine and C8 Substituted Purine Nucleosides Using Water Soluble Pd-imidate Complex.

    PubMed

    Gayakhe, Vijay; Ardhapure, Ajaykumar V; Kapdi, Anant R; Sanghvi, Yogesh S; Serrano, Jose Luis; Schulzke, Carola

    2016-01-01

    The synthesis of a highly efficient, water soluble [Pd(Sacc)2 (TPA)2 ] complex for C-C bond formation is described. Additionally, application of the [Pd(Sacc)2 (TPA)2 ] complex for Suzuki-Miyaura arylation of all four nucleosides (5-iodo-2'-deoxyuridine [5-IdU], 5-iodo-2'-deoxycytidine [5-IdC], 8-bromo-2'-deoxyadenosine, and 8-bromo-2'-deoxyguanosine) with various aryl/heteroaryl boronic acids in plain water under milder conditions is demonstrated. © 2016 by John Wiley & Sons, Inc. PMID:27248782

  1. Activation of CO by Hydrogenated Magnesium(I) Dimers: Sterically Controlled Formation of Ethenediolate and Cyclopropanetriolate Complexes.

    PubMed

    Lalrempuia, Ralte; Kefalidis, Christos E; Bonyhady, Simon J; Schwarze, Benedikt; Maron, Laurent; Stasch, Andreas; Jones, Cameron

    2015-07-22

    This study details the formal hydrogenation of two magnesium(I) dimers {(Nacnac)Mg}2 (Nacnac = [{(C6H3R2-2,6)NCMe}2CH](-); R = Pr(i) ((Dip)Nacnac), Et ((Dep)Nacnac)) using 1,3-cyclohexadiene. These reactions afford the magnesium(II) hydride complexes, {(Nacnac)Mg(μ-H)}2. Their reactions with excess CO are sterically controlled and lead cleanly to different C-C coupled products, viz. the ethenediolate complex, ((Dip)Nacnac)Mg{κ(1)-O-[((Dip)Nacnac)Mg(κ(2)-O,O-O2C2H2)]}, and the first cyclopropanetriolate complex of any metal, cis-{((Dep)Nacnac)Mg}3{μ-C3(H3)O3}. Computational studies imply the CO activation processes proceed via very similar mechanisms to those previously reported for related reactions involving f-block metal hydride compounds. This work highlights the potential magnesium compounds hold for use in the "Fischer-Tropsch-like" transformation of CO/H2 mixtures to value added oxygenate products. PMID:26135846

  2. Influence of exogenous silicon on UV-B radiation-induced cyclobutane pyrimidine dimmers in soybean leaves and its alleviation mechanism.

    PubMed

    Chen, Jiana; Zhang, Mingcai; Eneji, A Egrinya; Li, Jianmin

    2016-06-01

    The DNA is particularly sensitive to UV-B radiation and can readily be damaged by UV-B stress, resulting to the formation of photoproducts like cyclobutane pyrimidine dimers (CPDs). Silicon has multifarious benefits to plants, especially under biotic and abiotic stress. In this study, we used soybean seedlings to determine whether silicon could alleviate damage to DNA caused by UV-B stress. Silicon significantly reduced the accumulation of CPDs, lessening the damage of UV-B stress to the seedlings by the following three mechanisms: (1) increasing the concentration of UV-B absorbing compounds to reduce damage; (2) strengthening the antioxidant capacity of plants represented by higher levels of non-enzymatic antioxidants and (3) increasing the photolyase gene expression, thus accelerating photorepair. PMID:27019132

  3. 4-Imino-2,7-dimethyl-5,6,7,8-tetra-hydro-4H-1-benzothieno[2,3-d]pyrimidin-3-amine.

    PubMed

    Kalashetti, Mallikarjun B; Fathima, Nikhath; Khan, Ashraf Y; Begum, Noor Shahina; Khazi, I M

    2012-08-01

    In the title compound, C(12)H(16)N(4)S, the fused benzothio-phene and the pyrimidine rings are coplanar [dihedral angle = 1.61 (6)°]. Three C atoms of the cyclohexene ring (at positions 3, 6 and 7) are disordered over two sites with an occupancy ratio of 0.702 (8):0.298 (8). The cyclo-hexene ring in both the major and minor components adopts a half-chair conformation. The crystal structure is stabilized by N-H⋯N and C-H⋯N inter-actions, resulting in the formation of inversion dimers with R(2) (2)(10) and R(2) (2)(12) graph-set motifs. PMID:22904911

  4. Synthesis of N-substituted pyrido[4,3-d]pyrimidines for the large-scale production of self-assembled rosettes and nanotubes.

    PubMed

    Durmus, Asuman; Gunbas, Gorkem; Farmer, Steven C; Olmstead, Marilyn M; Mascal, Mark; Legese, Belete; Cho, Jae-Young; Beingessner, Rachel L; Yamazaki, Takeshi; Fenniri, Hicham

    2013-11-15

    N-substituted pyrido[4,3-d]pyrimidines are heterocycles which exhibit the asymmetric hydrogen bonding codes of both guanine and cytosine at 60° angles to each other, such that the molecules self-organize unambiguously into a cyclic hexamer, assembled via 18 intermolecular hydrogen bonds. The synthesis is straightforward and can be concluded in six steps from the commercially available malononitrile dimer. X-ray crystallographic analysis of the supermacrocyclic structure shows an undulating disk with a ca. 10.5 Å cavity, the centers of which do not overlap sufficiently to describe a channel in the solid state. However, AFM, SEM, and TEM imaging in solution reveals the formation of 1D nanostructures in agreement with their self-assembly into rosette supermacrocycles, which then stack linearly to form rosette nanotubes. PMID:24131036

  5. [Theoretical study of hydrophobicity and hydrophilicity of uracil and its dimers].

    PubMed

    Ten, G N; Kadrov, D M; Baranov, V I

    2014-01-01

    The influence of hydrophilic and hydrophobic properties of the uracil elementary nucleic acids bases on its solubility and structure in aqueous solution was studied. Complexes of uracil with water molecules (from 1 to 14) were then calculated. The geometrical parameters of the hydrogen bridge of uracil and the changes in the frequency of valence vibrations of the bonds participating directly in hydrogen bond formation were calculated. It is shown that for the hydrogen bonds O(w)...HN(1) and O(w)...HN3 the hydrogen atom can tear, it may lead to tautomeric transformation of uracil. The results obtained having calculated the structure of uracil dimers, formed with the hydrogen bonds, in an isolated state and water solution, energy, dipole moments and the hydrogen bridge parameters made it possible to explain low solubility of uracil in water at room temperature. It is shown that water molecules with increase in their number are located mainly at one side of the plane of a pyrimidine uracil ring, that leads to the formation of stacking. Of two possible variants of stacking formation, the most profitable grouping is when a dipole moment of the formed dimer is equal to zero (anti-parallel stacking). PMID:25707232

  6. Structure and dynamics of poly(T) single-strand DNA: implications toward CPD formation.

    PubMed

    Johnson, Andrew T; Wiest, Olaf

    2007-12-27

    The formation of cyclobutane pyrimidine dimers between adjacent thymines by UV radiation is thought to be the first event in a cascade leading to skin cancer. Recent studies showed that thymine dimers are fully formed within 1 ps of UV irradiation, suggesting that the conformation at the moment of excitation is the determining factor in whether a given base pair dimerizes. MD simulations on the 50 ns time scale are used to study the populations of reactive conformers that exist at any given time in T18 single-strand DNA. Trajectory analysis shows that only a small percentage of the conformations fulfill distance and dihedral requirements for thymine dimerization, in line with the experimentally observed quantum yield of 3%. Plots of the pairwise interactions in the structures predict hot spots of DNA damage where dimerization in the ssT18 is predicted to be most favored. The importance of hairpin formation by intra-strand base pairing for distinguishing reactive and unreactive base pairs is discussed in detail. The data presented thus explain the structural origin of the results from the ultrafast studies of thymine dimer formation. PMID:18052367

  7. Fragmentation, auto-modification and post ionisation proton bound dimer ion formation: the differential mobility spectrometry of low molecular weight alcohols.

    PubMed

    Ruszkiewicz, D M; Thomas, C L P; Eiceman, G A

    2016-08-01

    Differential mobility spectrometry (DMS) is currently being used for environmental monitoring of space craft atmospheres and has been proposed for the rapid assessment of patients at accident and emergency receptions. Three studies investigated hitherto undescribed complexity in the DMS spectra of methanol, ethanol, propan-1-ol and butan-1-ol product ions formed from a (63)Ni ionisation source. 54 000 DMS spectra obtained over a concentration range of 0.01 mg m(-3)(g) to 1.80 g m(-3)(g) revealed the phenomenon of auto-modification of the product ions. This occurred when the neutral vapour concentration exceeded the level required to induce a neutral-ion collision during the low field portion of the dispersion field waveform. Further, post-ionisation cluster-ion formation or protonated monomer/proton bound dimer inter-conversion within the ion-filter was indicated by apparent shifts in the values of the protonated monomer compensation field maximum; indicative of post-ionisation conversion of the protonated monomer to a proton-bound dimer. APCI-DMS-quadrupole mass spectrometry studies enabled the ion dissociation products from dispersion-field heating to be monitored and product ion fragmentation relationships to be proposed. Methanol was not observed to dissociate, while propan-1-ol and butan-1-ol underwent dissociation reactions consistent with dehydration processes that led ultimately to the generation of what is tentatively assigned as a cyclo-C3H3(+) ion (m/z 39) and hydrated protons. Studies of the interaction of ion filter temperature with dispersion-field heating of product ions isolated dissociation/fragmentation product ions that have not been previously described in DMS. The implications of these combined findings with regard to data sharing and data interpretation were highlighted. PMID:27227997

  8. Dimerization of Human Growth Hormone by Zinc

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian C.; Mulkerrin, Michael G.; Wells, James A.

    1991-08-01

    Size-exclusion chromatography and sedimentation equilibrium studies demonstrated that zinc ion (Zn2+) induced the dimerization of human growth hormone (hGH). Scatchard analysis of 65Zn2+ binding to hGH showed that two Zn2+ ions associate per dimer of hGH in a cooperative fashion. Cobalt (II) can substitute for Zn2+ in the hormone dimer and gives a visible spectrum characteristic of cobalt coordinated in a tetrahedral fashion by oxygen- and nitrogen-containing ligands. Replacement of potential Zn2+ ligands (His18, His21, and Glu174) in hGH with alanine weakened both Zn2+ binding and hGH dimer formation. The Zn2+-hGH dimer was more stable than monomeric hGH to denaturation in guanidine-HCl. Formation of a Zn2+-hGH dimeric complex may be important for storage of hGH in secretory granules.

  9. Functional Significance of Serotonin Receptor Dimerization

    PubMed Central

    Herrick-Davis, Katharine

    2013-01-01

    The original model of G protein activation by a single G-protein-coupled receptor (GPCR) is giving way to a new model wherein two protomers of a GPCR dimer interact with a single G protein. This article will review the evidence suggesting that 5-HT receptors form dimers/oligomers and will compare the findings with results obtained from studies with other biogenic amine receptors. Topics to be covered include the origin or biogenesis of dimer formation, potential dimer interface(s), and oligomer size (dimer versus tetramer or higher order). The functional significance will be discussed in terms of G-protein activation following ligand binding to one or two protomers in a dimeric structure, the formation of heterodimers and the development of bivalent ligands. PMID:23811735

  10. Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4-H2O) and ternary (H2SO4-H2O-NH3) system

    NASA Astrophysics Data System (ADS)

    Kürten, A.; Münch, S.; Rondo, L.; Bianchi, F.; Duplissy, J.; Jokinen, T.; Junninen, H.; Sarnela, N.; Schobesberger, S.; Simon, M.; Sipilä, M.; Almeida, J.; Amorim, A.; Dommen, J.; Donahue, N. M.; Dunne, E. M.; Flagan, R. C.; Franchin, A.; Kirkby, J.; Kupc, A.; Makhmutov, V.; Petäjä, T.; Praplan, A. P.; Riccobono, F.; Steiner, G.; Tomé, A.; Tsagkogeorgas, G.; Wagner, P. E.; Wimmer, D.; Baltensperger, U.; Kulmala, M.; Worsnop, D. R.; Curtius, J.

    2015-09-01

    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary (H2SO4-H2O) system and the ternary system involving ammonia (H2SO4-H2O-NH3) may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary system the formation of H2SO4·NH3 is very likely an essential step in the formation of sulfuric acid dimers, which were measured at 210, 223, and 248 K. We estimate the thermodynamic properties (dH and dS) of the H2SO4·NH3 cluster using a simple heuristic model and the measured data. Furthermore, we report the first measurements of large neutral sulfuric acid clusters containing as many as 10 sulfuric acid molecules for the binary system using chemical ionization-atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry.

  11. Tracking Rh Atoms in Zeolite HY: First Steps of Metal Cluster Formation and Influence of Metal Nuclearity on Catalysis of Ethylene Hydrogenation and Ethylene Dimerization.

    PubMed

    Yang, Dong; Xu, Pinghong; Browning, Nigel D; Gates, Bruce C

    2016-07-01

    The initial steps of rhodium cluster formation from zeolite-supported mononuclear Rh(C2H4)2 complexes in H2 at 373 K and 1 bar were investigated by infrared and extended X-ray absorption fine structure spectroscopies and scanning transmission electron microscopy (STEM). The data show that ethylene ligands on the rhodium react with H2 to give supported rhodium hydrides and trigger the formation of rhodium clusters. STEM provided the first images of the smallest rhodium clusters (Rh2) and their further conversion into larger clusters. The samples were investigated in a plug-flow reactor as catalysts for the conversion of ethylene + H2 in a molar ratio of 4:1 at 1 bar and 298 K, with the results showing how the changes in catalyst structure affect the activity and selectivity; the rhodium clusters are more active for hydrogenation of ethylene than the single-site complexes, which are more selective for dimerization of ethylene to give butenes. PMID:27315020

  12. Interruption of electronically excited Xe dimer formation by the photoassociation of Xe(6s[3/2]2)-Xe(5p6 1S0) thermal collision pairs

    NASA Astrophysics Data System (ADS)

    Galvin, T. C.; Wagner, C. J.; Eden, J. G.

    2016-06-01

    The diatomic collisional intermediate responsible for the formation of an electronically excited molecule by teratomic recombination has been observed in both the spectral and temporal domains by laser spectroscopy. We report experiments demonstrating thermal Xe(6s[3/2]2)-Xe(5p6 1S0) atomic collision pairs to be the immediate precursor to the formation of Xe 2∗ ( a 3 Σu + , A 1 Σu +) by the three body process: Xe∗(6s) + 2Xe ⟶ Xe 2∗ + Xe, where the asterisk denotes an excited electronic state. Photoassociating Xe(6s)-Xe atomic pairs by free ⟵ free transitions of the collision complex interrupts the production of the electronically excited Xe dimer, thereby suppressing Xe2 spontaneous emission in the vacuum ultraviolet (VUV, λ ˜ 172 nm, A 1 Σu + → X 1 Σg +). Intercepting Xe(6s)-Xe pairs before the complex is stabilized by the arrival of the third atom in the teratomic collision process selectively depletes the pair population in a specific Franck-Condon region determined by the probe laser wavelength (λ). Measurements of the variation of VUV emission suppression with λ provide a spectral signature of the [Xe(6s[3/2]2) - Xe(1S0)]∗ complex and map the probe laser wavelength onto the thermal energy (ɛ″) of the incoming collision pairs.

  13. Nuclear magnetic resonance evidence for the dimer formation of beta amyloid peptide 1-42 in 1,1,1,3,3,3-hexafluoro-2-propanol.

    PubMed

    Shigemitsu, Yoshiki; Iwaya, Naoko; Goda, Natsuko; Matsuzaki, Mizuki; Tenno, Takeshi; Narita, Akihiro; Hoshi, Minako; Hiroaki, Hidekazu

    2016-04-01

    Alzheimer's disease involves accumulation of senile plaques in which filamentous aggregates of amyloid beta (Aβ) peptides are deposited. Recent studies demonstrate that oligomerization pathways of Aβ peptides may be complicated. To understand the mechanisms of Aβ(1-42) oligomer formation in more detail, we have established a method to produce (15)N-labeled Aβ(1-42) suited for nuclear magnetic resonance (NMR) studies. For physicochemical studies, the starting protein material should be solely monomeric and all Aβ aggregates must be removed. Here, we succeeded in fractionating a "precipitation-resistant" fraction of Aβ(1-42) from an "aggregation-prone" fraction by high-performance liquid chromatography (HPLC), even from bacterially overexpressed Aβ(1-42). However, both Aβ(1-42) fractions after 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) treatment formed amyloid fibrils. This indicates that the "aggregation seed" was not completely monomerized during HFIP treatment. In addition, Aβ(1-42) dissolved in HFIP was found to display a monomer-dimer equilibrium, as shown by two-dimensional (1)H-(15)N NMR. We demonstrated that the initial concentration of Aβ during the HFIP pretreatment altered the kinetic profiles of Aβ fibril formation in a thioflavin T fluorescence assay. The findings described here should ensure reproducible results when studying the Aβ(1-42) peptide. PMID:26772162

  14. Potassium Hexacyanoferrate (III)-Catalyzed Dimerization of Hydroxystilbene: Biomimetic Synthesis of Indane Stilbene Dimers.

    PubMed

    Xie, Jing-Shan; Wen, Jin; Wang, Xian-Fen; Zhang, Jian-Qiao; Zhang, Ji-Fa; Kang, Yu-Long; Hui, You-Wei; Zheng, Wen-Sheng; Yao, Chun-Suo

    2015-01-01

    Using potassium hexacyanoferrate (III)-sodium acetate as oxidant, the oxidative coupling reaction of isorhapontigenin and resveratrol in aqueous acetone resulted in the isolation of three new indane dimers 4, 6, and 7, together with six known stilbene dimers. Indane dimer 5 was obtained for the first time by direct transformation from isorhapontigenin. The structures and relative configurations of the dimers were elucidated using spectral analysis, and their possible formation mechanisms were discussed. The results indicate that this reaction could be used as a convenient method for the semi-synthesis of indane dimers because of the mild conditions and simple reaction products. PMID:26694345

  15. Supramolecular microfibrils of o-phenylenediamine dimers: oxidation-induced morphology change and the spontaneous formation of Ag nanoparticle decorated nanofibers.

    PubMed

    Tian, Jingqi; Liu, Sen; Sun, Xuping

    2010-10-01

    The direct mix of aqueous FeCl(3) and o-phenylenediamine (OPD) solutions at room temperature leads to supramolecular microfibrils of OPD dimers generated by the oxidation of OPD monomers by FeCl(3) (Sun, X.; Hagner, M. Langmuir 2007, 23, 10441). In this Letter, we report on our recent finding that the subsequent treatment of such microfibrils with a AgNO(3) aqueous solution transforms them into nanofibers decorated with spherical silver nanoparticles (AgNPs) with sizes in range of 5-20 nm. The possible formation mechanism involved is also discussed. It is interestingly found that as-formed AgNPs exhibit good catalytic activity toward the reduction of H(2)O(2), leading to an enzymeless sensor with a fast amperometric response time of less than 5 s. The linear detection range is estimated to be from 100 μM to 80 mM (r = 0.998), and the detection limit is estimated to be 62 μM at a signal-to-noise ratio of 3. PMID:20836571

  16. Homogeneous gas-phase formation of polychlorinated naphthalene from dimerization of 4-chlorophenoxy radicals and cross-condensation of phenoxy radical with 4-chlorophenoxy radical: Mechanism and kinetics study

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Zhang, Ruiming; Li, Yunfeng; Zhang, Qingzhu

    2015-10-01

    A direct density functional theory (DFT) calculation was performed for the formation of polychlorinated naphthalenes (PCNs) from dimerization of 4-chlorophenoxy radicals (4-CPRs) and cross-condensation of phenoxy radical (PhR) with 4-CPR, respectively. Several energetically feasible formation routes were proposed. The rate constants were computed by the canonical variational transition-state theory (CVT) with the small curvature tunneling (SCT) contribution over temperature range of 600-1200 K. This study shows that PCN productions from the dimerization of 4-CPRs just contain DCNs. All the monochlorinated naphthalene (MCN) detected in the experiment from 4-chlorophenol (4-CP) as precursor are formed form the cross-condensation of PhR with 4-CPR.

  17. The dimer of unsubstituted silole

    SciTech Connect

    Lei, Deqing; Chen, Yue-Shen; Gaspar, P.P.

    1992-02-01

    Gas-phase flow pyrolysis of 1-(trimethylsilyl)-1-silacyclopent-3-ene and 1-methoxy-1-(trimethylsilyl)-1-silacyclopent-3-ene leads to the formation of the dimer of silole, 3,8-disila-3a, 4,7,7a-tetrahydro-4,7-methano-1H-indene. Attempts to isolate or trap the silole monomer by means other than self-reaction have failed. It is suggested that the initially formed intermediate silylene, 1-silacyclopent-3-enylidene, undergoes rearrangement to silole and that silole is not very reactive in 2 + 4 cycloadditions, but does undergo dimerization. 19 refs., 1 fig.

  18. Mechanically Stabilized Tetrathiafulvalene Radical Dimers

    SciTech Connect

    Coskun, Ali; Spruell, Jason M.; Barin, Gokhan; Fahrenbach, Albert C.; Forgan, Ross S.; Colvin, Michael T.; Carmieli, Raanan; Benitez, Diego; Tkatchouk, Ekaterina; Friedman, Douglas C.; Sarjeant, Amy A.; Wasielewski, Michael R.; Goddard, William A.; Stoddart, J. Fraser

    2011-01-01

    Two donor-acceptor [3]catenanes—composed of a tetracationic molecular square, cyclobis(paraquat-4,4'-biphenylene), as the π-electron deficient ring and either two tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP) containing macrocycles or two TTF-butadiyne-containing macrocycles as the π-electron rich components—have been investigated in order to study their ability to form TTF radical dimers. It has been proven that the mechanically interlocked nature of the [3]catenanes facilitates the formation of the TTF radical dimers under redox control, allowing an investigation to be performed on these intermolecular interactions in a so-called “molecular flask” under ambient conditions in considerable detail. In addition, it has also been shown that the stability of the TTF radical-cation dimers can be tuned by varying the secondary binding motifs in the [3]catenanes. By replacing the DNP station with a butadiyne group, the distribution of the TTF radical-cation dimer can be changed from 60% to 100%. These findings have been established by several techniques including cyclic voltammetry, spectroelectrochemistry and UV-vis-NIR and EPR spectroscopies, as well as with X-ray diffraction analysis which has provided a range of solid-state crystal structures. The experimental data are also supported by high-level DFT calculations. The results contribute significantly to our fundamental understanding of the interactions within the TTF radical dimers.

  19. D-dimer test

    MedlinePlus

    D-dimer tests are used to check for blood clotting problems. Blood clots can cause health problems, such ... that you probably do not have problems with blood clotting. If you are getting the D-dimer test ...

  20. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    NASA Astrophysics Data System (ADS)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  1. Nucleobases and other Prebiotic Species from the Ultraviolet Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Nuevo, M.; Materese, C. K.; Milam, S. N.

    2012-01-01

    Nucleobases are N-heterocycles that are the informational subunits of DNA and RNA, and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no Nheterocycles have ever been observed in the ISM, the positions of the 6.2-m interstellar emission features suggest a population of such molecules is likely to be present. In this work we study the formation of pyrimidine-based molecules, including nucleobases, as well as other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in combinations of H2O, NH3, CH3OH, and CH4 ices at low temperature, in order to simulate the astrophysical conditions under which prebiotic species may be formed in the interstellar medium and icy bodies of the Solar System. Experimental: Gas mixtures are prepared in a glass mixing line (background pressure approx. 10(exp -6)-10(exp -5) mbar). Relative proportions between mixture components are determined by their partial pressures. Gas mixtures are then deposited on an aluminum foil attached to a cold finger (15-20 K) and simultaneously irradiated with an H2 lamp emitting UV photons (Lyman and a continuum at approx.160 nm). After irradiation samples are warmed to room temperature, at which time the remaining residues are recovered to be analyzed with liquid and gas chromatographies. Results: These experiments showed that the UV irradiation of pyrimidine mixed in these ices at low temperature leads to the formation of several photoproducts derived from pyrimidine, including the nucleobases uracil and cytosine, as well as their precursors 4(3H)-pyrimidone and 4-aminopyrimidine (Fig. 1). Theoretical quantum calculations on the formation of 4(3H)-pyrimidone and uracil from the irradiation of pyrimidine in pure H2O ices are in agreement with their experimental formation pathways. In

  2. Nucleobases and Other Prebiotic Species from the UV Irradiation of Pyrimidine in Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; Materese, Christopher; Nuevo, Michel

    2012-01-01

    Nucleobases are aromatic N-heterocycles that constitute the informational subunits of DNA and RNA and are divided into two families: pyrimidine bases (uracil, cytosine, and thymine) and purine bases (adenine and guanine). Nucleobases have been detected in meteorites and their extraterrestrial origin confirmed by isotope measurement. Although no N-heterocycles have been individually identified in the ISM, the 6.2-micron interstellar emission feature seen towards many astronomical objects suggests a population of such molecules is likely present. We report on a study of the formation of pyrimidine-based molecules, including nucleobases and other species of prebiotic interest, from the ultraviolet (UV) irradiation of pyrimidine in low temperature ices containing H2O, NH3, C3OH, and CH4, to simulate the astrophysical conditions under which prebiotic species may be formed in the Solar System.

  3. Photochemical dimerization of organic compounds

    SciTech Connect

    Crabtree, R.H.; Brown, S.H.; Muedas, C.A.; Ferguson, R.R.

    1992-04-14

    This patent describes improvement in a Group IIb photosensitized vapor phase dimerization of an organic compound in which a gaseous mixture of a Group IIB metal and the organic compound is irradiated in a reaction zone with a photosensitizing amount of radiant energy. The improvement comprises: a continuous stream of the gaseous mixture is passed as a vapor phase in a single pass through the reaction zone at a temperature at which the thus-produced dimer condenses immediately upon the formation thereof; the starting gaseous mixture comprises hydrogen and two ethylenically unsaturated compounds selected from the group consisting of alkenes of at least six carbon atoms, unsaturated nitriles, unsaturated epoxides, unsaturated silanes, unsaturated amines, unsaturated phosphines, and fluorinated alkenes; the gaseous mixture comprises nitrous oxide and the organic compound is a saturated compound with C-H bond strengths greater than 100 kcal/mol or a mixture of the saturated compound and an alkene; or the starting gaseous comprises an activating amount of hydrogen and the dimerization is a dehydrodimerization or cross-dimerization of a saturated hydrocarbon.

  4. Glycal Formation in Crystals of Uridine Phosphorylase

    SciTech Connect

    Paul, Debamita; O’Leary, Sen E.; Rajashankar, Kanagalaghatta; Bu, Weiming; Toms, Angela; Settembre, Ethan C.; Sanders, Jennie M.; Begley, Tadhg P.; Ealick, Steven E.

    2010-06-22

    Uridine phosphorylase is a key enzyme in the pyrimidine salvage pathway. This enzyme catalyzes the reversible phosphorolysis of uridine to uracil and ribose 1-phosphate (or 2{prime}-deoxyuridine to 2{prime}-deoxyribose 1-phosphate). Here we report the structure of hexameric Escherichia coli uridine phosphorylase treated with 5-fluorouridine and sulfate and dimeric bovine uridine phosphorylase treated with 5-fluoro-2{prime}-deoxyuridine or uridine, plus sulfate. In each case the electron density shows three separate species corresponding to the pyrimidine base, sulfate, and a ribosyl species, which can be modeled as a glycal. In the structures of the glycal complexes, the fluorouracil O2 atom is appropriately positioned to act as the base required for glycal formation via deprotonation at C2{prime}. Crystals of bovine uridine phosphorylase treated with 2{prime}-deoxyuridine and sulfate show intact nucleoside. NMR time course studies demonstrate that uridine phosphorylase can catalyze the hydrolysis of the fluorinated nucleosides in the absence of phosphate or sulfate, without the release of intermediates or enzyme inactivation. These results add a previously unencountered mechanistic motif to the body of information on glycal formation by enzymes catalyzing the cleavage of glycosyl bonds.

  5. Soft functional polynuclear coordination compounds containing pyrimidine bridges

    NASA Astrophysics Data System (ADS)

    Navarro, Jorge A. R.; Barea, Elisa; Galindo, Miguel A.; Salas, Juan M.; Romero, M. Angustias; Quirós, Miguel; Masciocchi, Norberto; Galli, Simona; Sironi, Angelo; Lippert, Bernhard

    2005-08-01

    In this account, we describe the use of simple pyrimidine derivatives in combination with metal ions to build highly structured molecular architectures containing functional nanoenvironments, cavities and surfaces that can interact with additional species. The supramolecular structure of these systems can be rationally controlled by metal fragment geometry, reaction conditions and presence of templating agents. Thus, the use of transition metals with low coordination numbers or blocked bonding positions in combination with pyrimidines (e.g. 2-hydroxypyrimidine, 4-hydroxypyrimidine, 2,4-dihydroxypyrimidine, 2-aminopyrimidine) leads to the formation of either discrete assemblies, 1D polymers or helixes. When metal ions with higher coordination possibilities are applied instead, 2D and 3D networks are generated. Some of the assemblies built in this way possess functional cavities, pores and surfaces that can interact with additional species by means of hydrophobic, electrostatic, H-bonding interactions and coordinative bonds to give rise to recognition processes. The latter range from molecular recognition in homogeneous phase as well as clathrate formation, to heterogeneous solid-gas and solid-liquid adsorption phenomena. It should be noted that these materials are not rigid but able to undergo guest-induced reorganisation processes even in the solid state. Finally, some of these materials also combine additional interesting magneto-optical properties. Thus, dual systems can be envisaged in which two or more of these properties are present in the same material.

  6. Thermodynamic properties and ideal-gas enthalpies of formation for dicyclohexyl sulfide, diethylenetriamine, di-n-octyl sulfide, dimethyl carbonate, piperazine, hexachloroprop-1-ene, tetrakis(dimethylamino)ethylene, N,N{prime}-bis-(2-hydroxyethyl)ethylenediamine, and 1,2,4-triazolo[1,5-a]pyrimidine

    SciTech Connect

    Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Smith, N.K.

    1997-11-01

    The results of the study are aimed at improvement of group-contribution methodology for estimation of thermodynamic properties of organic substances. Specific weaknesses where particular group-contribution terms were unknown, or estimated because of lack of experimental data, are addressed by experimental studies of enthalpies of combustion in the condensed phase, vapor-pressure measurements, and differential scanning calorimetric (DSC) heat-capacity measurements. Ideal-gas enthalpies of formation of hexachloroprop-1-ene, N,N{prime}-bis(2-hydroxyethyl)ethylenediamine, dimethyl carbonate, di-n-octyl sulfide, dicyclohexyl sulfide, diethylenetriamine, tetrakis(dimethylamino)ethylene, piperazine, and 1,2,4-triazolo[1,5-a]pyrimidine are reported. Enthalpies of fusion were determined for N,N{prime}-bis(2-hydroxyethyl)ethylenediamine, piperazine and 1,2,4-triazolo[1,5-a]pyrimidine. Two-phase (solid + vapor) or (liquid + vapor) heat capacities were determined from 300 K to the critical region or earlier decomposition temperature for each compound studied. Liquid-phase densities along the saturation line were measured for N,N{prime}-bis(2-hydroxyethyl)ethylenediamine, dimethyl carbonate, and dicyclohexyl sulfide. For dimethyl carbonate and piperazine, critical temperatures and critical densities were determined from the DSC results and corresponding critical pressures derived from the fitting procedures. Fitting procedures were used to derive critical temperatures, critical pressures, and critical densities for hexachloroprop-1-ene, di-n-octyl sulfide, dicyclohexyl sulfide, and diethylenetriamine. Group-additivity parameters and 1,4-interaction terms useful in the application of group-contribution correlations were derived.

  7. Steric and Electronic Control over the Reactivity of a Thiolate-Ligated Fe(II) Complex with Dioxygen and Superoxide: Reversible μ-Oxo Dimer Formation

    PubMed Central

    Theisen, Roslyn M.; Shearer, Jason; Kaminsky, Werner; Kovacs, Julie A.

    2015-01-01

    The reactivity between a thiolate-ligated five-coordinate complex [FeII(SMe2N4(tren))]+ (1) and dioxygen is examined in order to determine if O2 activation, resembling that of the metalloenzyme cytochrome P450, can be promoted even when O2 binds cis, as opposed to trans, to a thiolate. Previous work in our group showed that [FeII(SMe2N4-(tren))]+ (1) reacts readily with superoxide (O2−) in the presence of a proton source to afford H2O2 via an FeIII–OOH intermediate, thus providing a biomimetic model for the metalloenzyme superoxide reductase (SOR). Addition of O2 to 1 affords binuclear μ-oxo-bridged [FeIII(SMe2N4(tren))]2(μ2-O)(PF6)2•3MeCN (3). At low temperatures, in protic solvents, an intermediate is detected, the details of which will be the subject of a separate paper. Although the thiolate ligand does not appear to perturb the metrical parameters of the unsupported μ-oxo bridge (Fe–O=1.807(8) Å, and Fe–O–Fe= 155.3(5)° fall in the usual range), it decreases the magnetic coupling between the irons (J = −28 cm−1) and creates a rather basic oxo site. Protonation of this oxo using strong (HBF4, HCl) or weak (HOAc, NH4PF6, LutNHCl) acids results in bridge cleavage to cleanly afford the corresponding monomeric anion-ligated (OAc− (6), or Cl− (7)) or solvent-ligated (MeCN (4)) derivatives. Addition of OH− converts [FeIII(SMe2N4-(tren))(MeCN)]2+ (4) back to μ-oxo 3. Thus, μ-oxo bridge cleavage is reversible. The protonated μ-hydroxo-bridged intermediate is not observed. In an attempt to prevent μ-oxo dimer formation, and facilitate the observation of O2-bound intermediates, a bulkier tertiary amine ligand, tren-Et4= N-(2-amino-ethyl)-N-(2-diethylamino-ethyl)-N′,N′-diethyl-ethane-1,2-diamine, and the corresponding [FeII(SMe2N4(tren-Et4))]+ (5) complex was synthesized and structurally characterized. Steric repulsive interactions create unusually long FeII-N(3,4) amine bonds in 5 (mean distance = 2.219(1) Å). The [(tren-Et4)N4SMe2]1

  8. Dimeric Cinchona alkaloids.

    PubMed

    Boratyński, Przemysław J

    2015-05-01

    Nature is full of dimeric alkaloids of various types from many plant families, some of them with interesting biological properties. However, dimeric Cinchona alkaloids were not isolated from any species but were products of designed partial chemical synthesis. Although the Cinchona bark is amongst the sources of oldest efficient medicines, the synthetic dimers found most use in the field of asymmetric synthesis. Prominent examples include the Sharpless dihydroxylation and aminohydroxylation ligands, and dimeric phase transfer catalysts. In this article the syntheses of Cinchona alkaloid dimers and oligomers are reviewed, and their structure and applications are outlined. Various synthetic routes exploit reactivity of the alkaloids at the central 9-hydroxyl group, quinuclidine, and quinoline rings, as well as 3-vinyl group. This availability of reactive sites, in combination with a plethora of linker molecules, contributes to the diversity of the products obtained. PMID:25586655

  9. Enzymology of Pyrimidine Metabolism and Neurodegeneration.

    PubMed

    Vincenzetti, Silvia; Polzonetti, Valeria; Micozzi, Daniela; Pucciarelli, Stefania

    2016-01-01

    It is well known that disorders of pyrimidine pathways may lead to neurological, hematological, immunological diseases, renal impairments, and association with malignancies. Nucleotide homeostasis depends on the three stages of pyrimidine metabolism: de novo synthesis, catabolism and recycling of these metabolites. Cytidine and uridine, in addition to be used as substrates for pyrimidine nucleotide salvaging, also act as the precursors of cytidine triphosphate used in the biosynthetic pathway of both brain's phosphatidylcholine and phosphatidylethanolamine via the Kennedy cycle. The synthesis in the brain of phosphatidylcholine and other membrane phosphatides can utilize, in addition to glucose, three compounds present in the blood stream: choline, uridine, and a polyunsaturated fatty acids like docosahexaenoic acid. Some authors, using rat models, found that oral administration of two phospholipid precursors such as uridine and omega-3 fatty acids, along with choline from the diet, can increase the amount of synaptic membrane generated by surviving striatal neurons in rats with induced Parkinson's disease. Other authors found that in hypertensive rat fed with uridine and choline, cognitive deficit resulted improved. Uridine has also been recently considered as a neuroactive molecule, because of its involvement in important neurological functions by improving memory, sleep disorders, anti-epileptic effects, as well as neuronal plasticity. Cytidine and uridine are uptaken by the brain via specific receptors and successively salvaged to the corresponding nucleotides. The present review is devoted to the enzymology of pyrimidine pathways whose importance has attracted the attention of several researchers investigating on the mechanisms underlying the physiopathology of brain. PMID:27063261

  10. The Photochemistry of Pyrimidine in Realistic Astrophysical Ices and the Production of Nucleobases

    NASA Astrophysics Data System (ADS)

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C4H4N2) in H2O-rich ice mixtures that contain NH3, CH3OH, or CH4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H2O, CH3OH, and NH3, with or without CH4, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  11. Mass spectrometry and ion mobility spectrometry of G-quadruplexes. A study of solvent effects on dimer formation and structural transitions in the telomeric DNA sequence d(TAGGGTTAGGGT).

    PubMed

    Ferreira, Rubén; Marchand, Adrien; Gabelica, Valérie

    2012-05-01

    We survey here state of the art mass spectrometry methodologies for investigating G-quadruplexes, and will illustrate them with a new study on a simple model system: the dimeric G-quadruplex of the 12-mer telomeric DNA sequence d(TAGGGTTAGGGT), which can adopt either a parallel or an antiparallel structure. We will discuss the solution conditions compatible with electrospray ionisation, the quantification of complexes using ESI-MS, the interpretation of ammonium ion preservation in the complexes in the gas phase, and the use of ion mobility spectrometry to resolve ambiguities regarding the strand stoichiometry, or separate and characterise different structural isomers. We also describe that adding electrospray-compatible organic co-solvents (methanol, ethanol, isopropanol or acetonitrile) to aqueous ammonium acetate increases the stability and rate of formation of dimeric G-quadruplexes, and causes structural transitions to parallel structures. Structural changes were probed by circular dichroism and ion mobility spectrometry, and the excellent correlation between the two techniques validates the use of ion mobility to investigate G-quadruplex folding. We also demonstrate that parallel G-quadruplex structures are easier to preserve in the gas phase than antiparallel structures. PMID:22465284

  12. Intriguing H-aggregate and H-dimer formation of coumarin-481 dye in aqueous solution as evidenced from photophysical studies.

    PubMed

    Verma, Poonam; Pal, Haridas

    2012-05-10

    Photophysical properties of coumarin-481 (C481) dye in aqueous solution show intriguing presence of multiple emitting species. Concentration and wavelength dependent fluorescence decays and time-resolved emission spectra and area-normalized emission spectra suggest the coexistence of dye monomers, dimers, and higher aggregates (mostly trimers) in the solution. Because of the efficient intramolecular charge transfer (ICT) state to twisted intramolecular charge transfer (TICT) state conversion, the dye monomers show very short fluorescence lifetime of ~0.2 ns. Fluorescence lifetimes of dimers (~4.1 ns) and higher aggregates (~1.4 ns) are relatively longer due to steric constrain toward ICT to TICT conversion. Observed results indicate that the emission spectra of the aggregates are substantially blue-shifted compared to monomers, suggesting H-aggregation of the dye in the solution. Temperature-dependent fluorescence decays in water and time-resolved fluorescence results in water-acetonitrile solvent mixtures are also in support of the dye aggregation in the solution. Though dynamic light scattering studies could not recognize the dye aggregates in the solution due to their small size and low concentration, fluorescence up-conversion measurements show a relatively higher decay tail in water than in water-acetonitrile solvent mixture, in agreement with higher dye aggregation in aqueous solution. Time-resolved fluorescence results with structurally related non-TICT dyes, especially those of coumarin-153 dye, are also in accordance with the aggregation behavior of these dyes in aqueous solution. To the best of our knowledge, this is the first report on the aggregation of coumarin dyes in aqueous solution. Present results are important because coumarin dyes are widely used as fluorescent probes in various microheterogeneous systems where water is always a solvent component, and the dye aggregation in these systems, if overlooked, can easily lead to a misinterpretation of

  13. Chemical evolution. XXIX - Pyrimidines from hydrogen cyanide

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Joshi, P. C.; Lawless, J. G.

    1978-01-01

    Compounds obtained by hydrolysis of HCN oligomers formed by allowing pH 9.2, 0.1 M cyanide to stand at room temperature for 4 to 12 months were analyzed. Hydrolysis of HCN oligomers yielded 4,5-dihydroxypyrimidine and 5-hydroxyuracil; orotic acid was detected after hydrolysis at pH 8.5. A unified pathway from diaminofumaronitrile to the pyrimidines observed is suggested. As purines, pyrimidines and amino acids are released by hydrolysis of HCN oligomers in either acidic or mildly basic aqueous solutions, they could have been formed on the primitive earth in spite of fluctuations in pH. 4,5-dihydroxypyrimidines appear to be likely candidates for incorporation into primitive nucleic acids, as they should undergo Watson-Crick hydrogen bonding with adenine.

  14. Effect of carbon source on pyrimidine biosynthesis in Pseudomonas oryzihabitans.

    PubMed

    West, Thomas P

    2010-08-01

    The effect of carbon source on the regulation of pyrimidine biosynthesis in the opportunistic human pathogen Pseudomonas oryzihabitans was studied at the level of enzyme synthesis. Although pyrimidine supplementation of glucose-grown Ps. oryzihabitans cells produced a slight but statistically significant effect on the de novo pyrimidine biosynthetic pathway enzyme activities, catabolite repression of the enzyme activities by glucose appeared to be occurring. Pyrimidine limitation experiments undertaken using an orotidine 5'-monophosphate decarboxylase mutant strain grown on glucose indicated that repression of enzyme synthesis by pyrimidines was occurring. Following pyrimidine limitation of the mutant strain cells, dihydroorotase and dihydroorotate dehydrogenase activities were found to about double while aspartate transcarbamoylase and orotate phosphoribosyltransferase activities were slightly elevated compared to their activities in the mutant strain cells grown on excess uracil. PMID:20473969

  15. A facile environment-friendly one-pot two-step regioselective synthetic strategy for 3,7-diarylpyrazolo[1,5-a]pyrimidines related to zaleplon and 3,6-diarylpyrazolo[1,5-a]pyrimidine-7-amines assisted by KHSO[Formula: see text] in aqueous media.

    PubMed

    Devi, Asem Satyapati; Kaping, Shunan; Vishwakarma, Jai Narain

    2015-11-01

    3-Aminopyrazoles required for the synthesis of pyrazolo[1,5-a]pyrimidines were obtained by the reaction of enaminonitriles with hydrazine hydrate. The resulting aminopyrazoles are reacted with formylated acetophenones under reflux at [Formula: see text] assisted by KHSO[Formula: see text] in aqueous media to form regioselectively 3,7-diarylpyrazolo[1,5-a]pyrimidines and 3,6-diarylpyrazolo[1,5-a]pyrimidine-7-amines. X-ray crystallography of selected compounds 5b and 7i further confirmed the regioselective formation of these products. PMID:26016724

  16. Peptides Interfering 3A Protein Dimerization Decrease FMDV Multiplication

    PubMed Central

    de la Torre, Beatriz G.; Valle, Javier; Andreu, David; Sobrino, Francisco

    2015-01-01

    Nonstructural protein 3A is involved in relevant functions in foot-and-mouth disease virus (FMDV) replication. FMDV 3A can form homodimers and preservation of the two hydrophobic α-helices (α1 and α2) that stabilize the dimer interface is essential for virus replication. In this work, small peptides mimicking residues involved in the dimer interface were used to interfere with dimerization and thus gain insight on its biological function. The dimer interface peptides α1, α2 and that spanning the two hydrophobic α-helices, α12, impaired in vitro dimer formation of a peptide containing the two α-helices, this effect being higher with peptide α12. To assess the effect of dimer inhibition in cultured cells, the interfering peptides were N-terminally fused to a heptaarginine (R7) sequence to favor their intracellular translocation. Thus, when fused to R7, interference peptides (100 μM) were able to inhibit dimerization of transiently expressed 3A, the higher inhibitions being found with peptides α1 and α12. The 3A dimerization impairment exerted by the peptides correlated with significant, specific reductions in the viral yield recovered from peptide-treated FMDV infected cells. In this case, α2 was the only peptide producing significant reductions at concentrations lower than 100 μM. Thus, dimer interface peptides constitute a tool to understand the structure-function relationship of this viral protein and point to 3A dimerization as a potential antiviral target. PMID:26505190

  17. Genetic Dissection of Pyrimidine Biosynthesis and Salvage in Leishmania donovani*

    PubMed Central

    Wilson, Zachary N.; Gilroy, Caslin A.; Boitz, Jan M.; Ullman, Buddy; Yates, Phillip A.

    2012-01-01

    Protozoan parasites of the Leishmania genus express the metabolic machinery to synthesize pyrimidine nucleotides via both de novo and salvage pathways. To evaluate the relative contributions of pyrimidine biosynthesis and salvage to pyrimidine homeostasis in both life cycle stages of Leishmania donovani, individual mutant lines deficient in either carbamoyl phosphate synthetase (CPS), the first enzyme in pyrimidine biosynthesis, uracil phosphoribosyltransferase (UPRT), a salvage enzyme, or both CPS and UPRT were constructed. The Δcps lesion conferred pyrimidine auxotrophy and a growth requirement for medium supplementation with one of a plethora of pyrimidine nucleosides or nucleobases, although only dihydroorotate or orotate could circumvent the pyrimidine auxotrophy of the Δcps/Δuprt double knockout. The Δuprt null mutant was prototrophic for pyrimidines but could not salvage uracil or any pyrimidine nucleoside. The capability of the Δcps parasites to infect mice was somewhat diminished but still robust, indicating active pyrimidine salvage by the amastigote form of the parasite, but the Δcps/Δuprt mutant was completely attenuated with no persistent parasites detected after a 4-week infection. Complementation of the Δcps/Δuprt clone with either CPS or UPRT restored infectivity. These data establish that an intact pyrimidine biosynthesis pathway is essential for the growth of the promastigote form of L. donovani in culture, that all uracil and pyrimidine nucleoside salvage in the parasite is mediated by UPRT, and that both the biosynthetic and salvage pathways contribute to a robust infection of the mammalian host by the amastigote. These findings impact potential therapeutic design and vaccine strategies for visceral leishmaniasis. PMID:22367196

  18. Spectroscopic and Computational Characterization of Hydrated Pyrimidine Anions

    NASA Astrophysics Data System (ADS)

    Kelly, John T.; Hammer, Nathan I.

    2014-06-01

    Pyrimidine is known to possess a negative electron affinity. Anions created from such molecules, whose energies are higher than those of their neutral counterparts, are unstable with respect to autodetachment. The solvation of pyrimidine with just one water molecule results in a positive electron binding energy. The addition of water molecules stabilizes the excess charge and increase the binding energy. The most interesting feature is the orientation of the hydrated pyrimidine complex to help accommodate an excess electron.

  19. Urine Pyrimidine Metabolite Determination by HPLC Tandem Mass Spectrometry.

    PubMed

    Sun, Qin

    2016-01-01

    Pyrimidine diseases result from deficiencies in pyrimidine de novo synthesis, degradation, and salvage pathways. Enzymatic deficiencies in pyrimidine catabolism lead to mitochondrial neurogastrointestinal encephalopathy (MNGIE), pyrimidinuria, dihydropyrimidinuria, ureidopropionic aciduria, and other disorders. While MNGIE presents with gastrointestinal dysmotility, cachexia, and leukoencephalopathy, pyrimidinuria and dihydropyrimidinuria may show symptoms of epilepsy, autism, mental retardation, and dysmorphic features. The application of HPLC-MS/MS facilitates rapid screening of pyrimidine metabolites. Here we describe an LCMS method for determination of uracil, thymine, thymidine, dihydrouracil, and dihydrothymine that are diagnostic biomarkers of MNGIE, pyrimidinuria, and dihydropyrimidinuria. PMID:26602135

  20. Isolation and characterization of pyrimidine-psoralen-pyrimidine photodiadducts from DNA. [Ultraviolet radiation

    SciTech Connect

    Kanne, D.; Straub, K.; Hearst, J.E.; Rapoport, H.

    1982-12-01

    The isolation and characterization of pyrimidine-psoralen-pyrimidine photodiadducts from DNA are reported for the first time. For each of the four psoralens studied, a single pair of diastereomeric thymidine-psoralen-thymidine photodiadducts, each with cis-syn stereochemistry, was found to account for > 90% of the diadducts formed. Additionally, pulse-chase experiments that establish that these photo cross-links are formed by cycloaddition of a second thymidine residue to the 3,4 double bond (pyrone side) of an initially formed 4',5' (furan-side) psoralen-thymidine photomonoadduct have been carried out.

  1. Ethyl 4-(4-chloro­phen­yl)-6-methyl-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

    PubMed Central

    Nayak, Susanta K.; Venugopala, K. N.; Chopra, Deepak; Govender, Thavendran; Kruger, Hendrik G.; Maguire, Glenn E. M.; Guru Row, T. N.

    2009-01-01

    In the title compound, C14H15ClN2O2S, the tetra­hydro­pyrimidine ring adopts a twisted boat conformation with the carbonyl group in an s-trans conformation with respect to the C=C double bond of the six-membered tetra­hydro­pyrimidine ring. The mol­ecular conformation is determined by an intra­molecular C—H⋯π inter­action. The crystal structure is further stabilized by inter­molecular N—H⋯O mol­ecular chains and centrosymmetric N—H⋯S dimers. PMID:21577965

  2. Temperature measurement of sputtered metal dimers

    SciTech Connect

    Fayet, P.; Wolf, J.P.; Woeste, L.

    1986-05-15

    The temperatures of sputtered alkali-metal dimers have been measured using one- and two-photon ionization spectroscopy. They are estimated to be 1470 +- 300 K, 1025 +- 200 K, and 1000 +- 200 K for Cs/sub 2/, K/sub 2/, and Na/sub 2/, respectively. The vibrational and rotational temperatures are found to be very similar. No dependence of the dimer excitation is found, neither on target temperature nor on the primary-ion energy. The results are compared with some currently used models to explain cluster formation in sputtering experiments.

  3. 5-Propyl-6-(p-tolyl-sulfan-yl)pyrimidine-2,4(1H,3H)-dione.

    PubMed

    Al-Omary, Fatmah A M; Ghabbour, Hazem A; El-Emam, Ali A; Chidan Kumar, C S; Fun, Hoong-Kun

    2014-02-01

    In the title pymiridine-2,4-dione derivative, C14H16N2O2S, the dihedral angle between the six-membered rings is 66.69 (10)°. The mol-ecule is twisted about the Cp-S (p = pyrimidine) bond, with a C-S-C-N torsion angle of -19.57 (16)°. In the crystal, adjacent mol-ecules form inversion dimers through pairs of strong N-H⋯O hydrogen bonds, generating an R 2 (2)(8) ring motif. The dimers are connected into chains extending along the c-axis direction through additional N-H⋯O hydrogen bonds. PMID:24764894

  4. Moessbauer spectroscopic study of the initial stages of iron-core formation in horse spleen apoferritin: Evidence for both isolated Fe(III) atoms and oxo-bridged Fe(III) dimers as early intermediates

    SciTech Connect

    Bauminger, E.R.; Nowik, I. ); Harrison, P.M.; Treffry, A. )

    1989-06-27

    Ferritin stores iron within a hollow protein shell as a polynuclear Fe(III) hydrous oxide core. Although iron uptake into ferritin has been studied previously, the early stages in the creation of the core need to be clarified. These are dealt with in this paper by using Moessbauer spectroscopy, a technique that enables several types of Fe(II) and Fe(III) to be distinguished. Systematic Moessbauer studies were performed on samples prepared by adding {sup 57}Fe(II) atoms to apoferritin as a function of pH (5.6-7.0), n (the number of Fe/molecule (4-480)), and t{sub f} (the time the samples were held at room temperature before freezing). Four different Fe(III) species were identified: solitary Fe(III) atoms giving relaxation spectra, which can be identified with the species observed before by EPR and UV difference spectroscopy; oxo-bridged dimers giving doublet spectra with large splitting, observed for the first time in ferritin; small Fe(III) clusters giving doublets of smaller splitting and larger antiferromagnetically coupled Fe(III) clusters, similar to those found previously in larger ferritin iron cores, which, for samples with n {ge} 40, gave magnetically split spectra at 4.1 K. Both solitary Fe(III) and dimers diminished with time, suggesting that they are intermediates in the formation of the iron core. Two kinds of divalent iron were distinguished for n = 480, which may correspond to bound and free Fe(II).

  5. Kinase-mediated quasi-dimers of EGFR

    PubMed Central

    Bublil, Erez M.; Pines, Gur; Patel, Gargi; Fruhwirth, Gilbert; Ng, Tony; Yarden, Yosef

    2010-01-01

    Ligand-induced dimerization of the epidermal growth factor receptor (ErbB-1/EGFR) involves conformational changes that expose an extracellular dimerization interface. Subsequent alterations within the cytoplasmic kinase domain, which culminate in tyrosine phosphorylation, are less understood. Our study addressed this question by using two strategies: a chimeric receptor approach employed ErbB-3, whose defective kinase domain was replaced by the respective part of EGFR. The implanted full-length kinase, unlike its subdomains, conferred dimerization and catalysis. The data infer that the kinase function of EGFR is restrained by the carboxyl tail; once grafted distally to the ectopic tail of ErbB-3, the kinase domain acquires quasi-dimerization and activation. In an attempt to alternatively refold the cytoplasmic tail, our other approach employed kinase inhibitors. Biophysical measurements and covalent cross-linking analyses showed that inhibitors targeting the active conformation of EGFR, in contrast to a compound recognizing the inactive conformation, induce quasi-dimers in a manner similar to the chimeric ErbB-3 molecule. Collectively, these observations unveil kinase domain-mediated quasi-dimers, which are regulated by an autoinhibitory carboxyl tail. On the basis of these observations, we propose that quasi-dimers precede formation of ligand-induced, fully active dimers, which are stabilized by both extracellular and intracellular receptor-receptor interactions.—Bublil, E. M., Pines, G., Patel, G., Fruhwirth, G., Ng, T., Yosef Yarden. Kinase-mediated quasi-dimers of EGFR. PMID:20682838

  6. Dynamic combinatorial enrichment of polyconformational D-/L-peptide dimers.

    PubMed

    Jadhav, Kirtikumar B; Lichtenecker, Roman J; Bullach, Anke; Mandal, Bhubaneswar; Arndt, Hans-Dieter

    2015-04-01

    D-/L-peptides such as gramicidin A (gA) adopt unique dimeric β-helical structures of different topologies. To overcome their conformational promiscuity and enrich individual components, a dynamic combinatorial approach assisted by thiol tags was developed. This method led to identification of the preferential formation of antiparallel dimers under a broad range of conditions, which was independent of peptide side-chain polarity. Exclusive formation of an antiparallel cyclic dimer was achieved in the presence of cesium ions. PMID:25711604

  7. A previously undescribed pathway for pyrimidine catabolism

    PubMed Central

    Loh, Kevin D.; Gyaneshwar, Prasad; Markenscoff Papadimitriou, Eirene; Fong, Rebecca; Kim, Kwang-Seo; Parales, Rebecca; Zhou, Zhongrui; Inwood, William; Kustu, Sydney

    2006-01-01

    The b1012 operon of Escherichia coli K-12, which is composed of seven unidentified ORFs, is one of the most highly expressed operons under control of nitrogen regulatory protein C. Examination of strains with lesions in this operon on Biolog Phenotype MicroArray (PM3) plates and subsequent growth tests indicated that they failed to use uridine or uracil as the sole nitrogen source and that the parental strain could use them at room temperature but not at 37°C. A strain carrying an ntrB(Con) mutation, which elevates transcription of genes under nitrogen regulatory protein C control, could also grow on thymidine as the sole nitrogen source, whereas strains with lesions in the b1012 operon could not. Growth-yield experiments indicated that both nitrogens of uridine and thymidine were available. Studies with [14C]uridine indicated that a three-carbon waste product from the pyrimidine ring was excreted. After trimethylsilylation and gas chromatography, the waste product was identified by mass spectrometry as 3-hydroxypropionic acid. In agreement with this finding, 2-methyl-3-hydroxypropionic acid was released from thymidine. Both the number of available nitrogens and the waste products distinguished the pathway encoded by the b1012 operon from pyrimidine catabolic pathways described previously. We propose that the genes of this operon be named rutA–G for pyrimidine utilization. The product of the divergently transcribed gene, b1013, is a tetracycline repressor family regulator that controls transcription of the b1012 operon negatively. PMID:16540542

  8. UV-B Inhibition of Phytochrome-Mediated Anthocyanin Formation in Sinapis alba L. Cotyledons 1

    PubMed Central

    Wellmann, Eckard; Schneider-Ziebert, Ulricke; Beggs, Christopher J.

    1984-01-01

    An action spectrum was measured for ultraviolet (UV) radiation-induced damage to (inhibition of) phytochrome-induced anthocyanin formation in cotyledons of 40-hour-old Sinapis alba L. seedlings. The action spectrum showed maximum effectiveness in the 260 to 280 nanometer waveband with little effect above 295 nanometers. The damaging effect of UV could be photorepaired by subsequent exposure to sunlight or to long wavelength (360 nanometers) UV radiation. Because this form of damage is subject to photorepair (photoreactivation), it is probably due to the formation of pyrimidine dimers, and the results suggest that it would not be ecologically relevant even if there was an increase in solar UV due to a decrease in stratospheric ozone levels of about 30%. If a dark period of more than 1 hour is interspersed between the phytochrome induction and the UV irradiation, the inhibition of the phytochrome induction gradually decreases with increasing dark period. PMID:16663776

  9. A Light-Dependent Pathway for the Elimination of UV-Induced Pyrimidine (6-4) Pyrimidinone Photoproducts in Arabidopsis.

    PubMed Central

    Chen, J. J.; Mitchell, D. L.; Britt, A. B.

    1994-01-01

    Light-dependent repair of UV-induced cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidinone dimers (6-4 products) was investigated in an excision repair-deficient Arabidopsis mutant. As previously described, exposure to broad-spectrum lighting was found to greatly enhance the rate of repair of CPDs. We demonstrate that 6-4 products are also efficiently eliminated in a light-dependent manner and that this photoreactivation of 6-4 products occurs independently of the previously described 6-4 product dark repair pathway. The light-dependent repair of both 6-4 products and CPDs occurs in the presence of blue light (435 nm) but not upon exposure to light of longer wavelengths. We also found that high-level expression of the CPD-specific photoreactivating activity in the Arabidopsis seedling requires induction by exposure to light prior to as well as during the period of repair while the 6-4 photoreactivating activity is constitutively expressed. This differential regulation of the photoreactivating activities suggests that the Arabidopsis seedling produces at least two distinct photolyases: one specific for CPDs and the other specific for 6-4 products. PMID:12244273

  10. Crystal structure of 6-chloro-5-iso-propyl-pyrimidine-2,4(1H,3H)-dione.

    PubMed

    Haress, Nadia G; Ghabbour, Hazem A; El-Emam, Ali A; Chidan Kumar, C S; Fun, Hoong-Kun

    2014-11-01

    In the mol-ecule of the title compound, C7H9ClN2O2, the conformation is determined by intra-molecular C-H⋯O and C-H⋯Cl hydrogen bonds, which generate S(6) and S(5) ring motifs. The isopropyl group is almost perpendicular to the pyrimidine ring with torsion angles of -70.8 (3) and 56.0 (3)°. In the crystal, two inversion-related mol-ecules are linked via a pair of N-H⋯O hydrogen bonds into R 2 (2)(8) dimers; these dimers are connected into chains extending along the bc plane via an additional N-H⋯O hydrogen bond and weaker C-H⋯O hydrogen bonds. The crystal structure is further stabilized by a weak π-π inter-action [3.6465 (10) Å] between adjacent pyrimidine-dione rings arranged in a head-to-tail fashion, producing a three-dimensional network. PMID:25484791

  11. Crystal structure of (2-methyl-4-phenyl-4H-benzo[4,5]thia­zolo[3,2-a]pyrimidin-3-yl)(phen­yl)methanone

    PubMed Central

    Sankar, T.; Naveen, S.; Lokanath, N. K.; Gunasekaran, K.

    2015-01-01

    In the title compound, C24H18N2OS, the pyrimidine ring has a flat envelope conformation with the methine C atom as the flap. The attached phenyl and benzoyl rings are inclined to the mean plane of the pyrimidine ring by 84.87 (8) and 75.33 (9)°, respectively. The benzo­thia­zolo group is planar (r.m.s. deviation = 0.009 Å) and inclined to the mean plane of the pyrimidine ring by 3.27 (6)°. In the crystal, mol­ecules are linked by pairs of C—H⋯N hydrogen bonds, forming inversion dimers. PMID:25995902

  12. Dimer excision in Escherichia coli in the presence of caffeine

    SciTech Connect

    Rothman, R.H.

    1980-07-01

    The observation that polA1 and recL152 mutations result in both slow pyrimidine dimer excision and large repair patch size leads to the hypothesis that patch size is directly related to the rate of excision. In this study caffeine, a known inhibitor of excision repair, was used to examine the extent of correlation between excision rate and patch size by measuring patch size in the presence of several concentrations of caffeine. Both the rate of excision and the resistance to ultraviolet radiation were reduced with increasing concentrations of caffeine after irradiation. Caffeine also inhibited the rate at which incisions were made and prolonged the time required to rejoin the discontinuities. Patch size, however, was unaffected by caffeine treatment.

  13. Metalloporphines: Dimers and Trimers.

    PubMed

    Jentzen, Walter; Shelnutt, John A; Scheidt, W Robert

    2016-06-20

    Procedures for the purification and subsequent crystallization of the slightly soluble four-coordinate metallporphines, the simplest possible porphyrin derivatives, are described. Crystals of the porphine derivatives of cobalt(II), copper(II), platinum(II), and two polymorphs of zinc(II) were obtained. Analysis of the crystal and molecular structures shows that all except the platinum(II) derivative form an unusual trimeric species in the solid state. The isomorphous cobalt(II), copper(II), and one zinc(II) polymorph pack in the unit cell to form dimers as well as the trimers. Interplanar spacings between porphine rings are similar in both the dimers and trimers and range between 3.24 and 3.37 Å. Porphine rings are strongly overlapped with lateral shifts between ring centers in both the dimers and trimers with values between 1.52 and 1.70 Å or in Category S as originally defined by Scheidt and Lee. Periodic trends in the M-Np bond distances parallel those observed previously for tetraphenyl- and octaethylporphyrin derivatives. PMID:27276239

  14. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    SciTech Connect

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-10-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C{sub 4}H{sub 4}N{sub 2}) in H{sub 2}O-rich ice mixtures that contain NH{sub 3}, CH{sub 3}OH, or CH{sub 4} leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H{sub 2}O, CH{sub 3}OH, and NH{sub 3}, with or without CH{sub 4}, to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  15. N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­oxy­phen­yl)-2,4,6-trimethyl­benzene­sulfonamide

    PubMed Central

    Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni

    2012-01-01

    In the title compound, C25H29BrN4O3S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by 63.9 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 64.9 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular π–π stacking inter­action between the pyrimidine and the 2,4,6-trimethyl­benzene rings [centroid–centroid distance = 3.766 (2) Å]. The piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds and these dimers are further linked by C—H⋯O hydrogen bonds into chains propagating along [010]. PMID:22969648

  16. N-(2-{[5-Bromo-2-(morpholin-4-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­oxy­phen­yl)-4-chloro­benzene­sulfonamide

    PubMed Central

    Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni

    2012-01-01

    In the title compound, C21H20BrClN4O4S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by a dihedral angle of 70.2 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 69.5 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular π–π stacking inter­action between the pyrimidine and the 4-chloro­benzene rings [centroid–centroid distance = 3.978 (2) Å]. The morpholine ring adopts a chair conformation. In the crystal, mol­ecules are linked into inversion dimers by pairs of C—H⋯N hydrogen bonds and these dimers are further connected by N—H⋯O hydrogen bonds, forming a tape along the a axis. PMID:22969673

  17. The Talin Dimer Structure Orientation Is Mechanically Regulated

    PubMed Central

    Golji, Javad; Mofrad, Mohammad R.K.

    2014-01-01

    Formation of a stable cell-substrate contact can be regulated by mechanical force, especially at the focal adhesion. Individual proteins that make up the focal adhesions, such as talin, can exhibit mechanosensing. We previously described one mode of talin mechanosensing in which the vinculin-binding site of talin is exposed after force-induced stretch of a single talin rod domain. Here, we describe a second mode of talin mechanosensing in which the talin dimer itself can adopt different orientations in response to mechanical stimulation. Using molecular dynamics models, we demonstrate that the C-terminus region of the talin dimer is flexible mainly at the linker between the dimerization helices and the nearby actin-binding helical bundle. Our molecular dynamics simulations reveal two possible orientations of the talin dimer at its C-terminus. The extracellular matrix (ECM)-bound integrins cross-linked by talin can be forced apart leading to an elongated orientation of the talin dimer, and the ECM-bound integrins can be forced together by the ECM producing a collapsed orientation of the talin dimer. Formation of the elongated orientation is shown to be more favorable. Switching between the two talin dimer orientations constitutes a mode of mechanosensing. PMID:25418161

  18. Electric and magnetic hotspots in dielectric nanowire dimers.

    PubMed

    Mirzaei, Ali; Miroshnichenko, Andrey E

    2015-04-14

    We study the formation of the electric and magnetic near-field hotspots in dielectric cylindrical dimers. We compare dielectric and metallic dimers by using experimental data for all materials and consider both TM and TE polarizations of light. We demonstrate that dielectric dimers allow us to simultaneously achieve pure magnetic and electric near-field hotspots for both polarizations in contrast to plasmonic structures. This offers new approaches for near-field engineering such as sensing, control of spontaneous emission, and enhanced Raman scattering. PMID:25773044

  19. Adsorption of dimeric surfactants in lamellar silicates

    NASA Astrophysics Data System (ADS)

    Balcerzak, Mateusz; Pietralik, Zuzanna; Domka, Ludwik; Skrzypczak, Andrzej; Kozak, Maciej

    2015-12-01

    The adsorption of different types of cationic surfactants in lamellar silicates changes their surface character from hydrophilic to hydrophobic. This study was undertaken to obtain lamellar silicates modified by a series of novel dimeric (gemini) surfactants of different length alkyl chains and to characterise these organophilised materials. Synthetic sodium montmorillonite SOMASIF® ME 100 (M) and enriched bentonite of natural origin (Nanoclay - hydrophilic bentonite®) were organophilised with dimeric (gemini) surfactants (1,1‧-(1,4-butanediyl)bis(alkoxymethyl)imidazolium dichlorides). As a result of surfactant molecule adsorption in interlamellar space, the d-spacing (d001) increased from 0.97 nm (for the anhydrous structure) to 2.04 nm. A Fourier transform infrared spectroscopy (FTIR) analysis of the modified systems reveals bands assigned to the stretching vibrations of the CH2 and CH3 groups and the scissoring vibrations of the NH group from the structure of the dimeric surfactants. Thermogravimetric (TG) and derivative thermogravimetric (DTG) studies imply a four-stage process of surfactant decomposition. Scanning electron microscopy (SEM) images provide information on the influence of dimeric surfactant intercalation into the silicate structures. Particles of the modified systems show a tendency toward the formation of irregularly shaped agglomerates.

  20. 5-Nitro-N 4,N 6-diphenyl­pyrimidine-4,6-diamine: polarized mol­ecules linked into π-stacked chains via three-centre C—H⋯(O)2 hydrogen bonds

    PubMed Central

    Rodríguez, Ricaurte; Nogueras, Manuel; Cobo, Justo; Glidewell, Christopher

    2009-01-01

    Mol­ecules of the title compound, C16H13N5O2, have no inter­nal symmetry despite the symmetric pattern of substitution in the pyrimidine ring. The intra­molecular distances indicate polarization of the electronic structure. There are two intra­molecular N—H⋯O hydrogen bonds and mol­ecules are linked into centrosymmetric dimers by pairs of three-centre C—H⋯(O)2 hydrogen bonds. These dimers are linked into chains by means of a π–π stacking inter­action. PMID:19726856

  1. Search for Interstellar Pyrimidine using the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Kuan, Y.-J.; Wang, K.-S.; Charnley, S. B.; Kisiel, Z.; Liu, S.-Y.; Huang, H.-C.

    Molecular cloud cores contain many organic molecules that are known to be prebiotically important and are fundamental components of the large organic macromolecules central to biochemistry A key interstellar molecule for astrobiology would be pyrimidine c -C 4H 4N 2 the unsubstituted ring analogue for three of the DNA and RNA bases thymine cytosine and uracil A submillimeter spectral search using the James Clerk Maxwell Telescope resulted in a detection of a spectral feature corresponding to a pyrimidine bandhead If this feature is indeed due to pyrimidine other lines at submillimeter and millimeter frequencies should be detectable We have thus used the Submillimeter Array SMA to search for confirmatory evidence for the nucleic acid building-block pyrimidine in Orion KL which is known to contain the precursor molecules of this heterocyclic ring molecule Some of our preliminary SMA results will be presented in this meeting

  2. Synthetic strategies toward carbocyclic purine-pyrimidine hybrid nucleosides.

    PubMed

    Sadler, Joshua M; Mosley, Sylvester L; Dorgan, Kathleen M; Zhou, Zhaohui Sunny; Seley-Radtke, Katherine L

    2009-08-01

    The blending of key structural features from the purine and pyrimidine nucleobase scaffolds gives rise to a new class of hybrid nucleosides. The purine-pyrimidine hybrid nucleosides can be viewed as either N-3 ribosylated purines or 5,6-disubstituted pyrimidines, thus recognition by both purine- and pyrimidine-metabolizing enzymes is possible. Given the increasing reports of the development of resistance in many enzymatic systems, a drug that could be recognized by more than one enzyme could prove highly advantageous in overcoming resistance mechanisms related to binding site mutations. In that regard, the design, synthesis and results of preliminary biological activity for a series of carbocyclic uracil derivatives with either a fused imidazole or thiazole ring are presented herein. PMID:19592260

  3. Synthetic Strategies Toward Carbocyclic Purine-Pyrimidine Hybrid Nucleosides

    PubMed Central

    Sadler, Joshua M.; Mosley, Sylvester L.; Dorgan, Kathleen M.; Zhou, Zhaohui Sunny; Seley-Radtke, Katherine L.

    2009-01-01

    The blending of key structural features from the purine and pyrimidine nucleobase scaffolds gives rise to a new class of hybrid nucleosides. The purine-pyrimidine hybrid nucleosides can be viewed as either N-3 ribosylated purines or 5,6-disubstituted pyrimidines, thus recognition by both purine- and pyrimidine-metabolizing enzymes is possible. Given the increasing reports of the development of resistance in many enzymatic systems, a drug that could be recognized by more than one enzyme could prove highly advantageous in overcoming resistance mechanisms related to binding site mutations. In that regard, the design, synthesis and results of preliminary biological activity for a series of carbocyclic uracil derivatives with either a fused imidazole or thiazole ring are presented herein. PMID:19592260

  4. Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5'-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Ferris, J. P.

    1999-01-01

    The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.

  5. Intermolecular interactions and conformation of antibody dimers present in IgG1 biopharmaceuticals.

    PubMed

    Iwura, Takafumi; Fukuda, Jun; Yamazaki, Katsuyoshi; Kanamaru, Shuji; Arisaka, Fumio

    2014-01-01

    Intermolecular interactions and conformation in dimer species of Palivizumab, a monoclonal antibody (IgG1), were investigated to elucidate the physical and chemical properties of the dimerized antibody. Palivizumab solution contains ∼1% dimer and 99% monomer. The dimer species was isolated by size-exclusion chromatography and analysed by a number of methods including analytical ultracentrifugation-sedimantetion velocity (AUC-SV). AUC-SV in the presence of sodium dodecyl sulphate indicated that approximately half of the dimer fraction was non-covalently associated, whereas the other half was dimerized by covalent bond. Disulphide bond and dityrosine formation were likely to be involved in the covalent dimerization. Limited proteolysis of the isolated dimer by Lys-C and mass spectrometry for the resultant products indicated that the dimer species were formed by Fab-Fc or Fab-Fab interactions, whereas Fc-Fc interactions were not found. It is thus likely that the dimerization occurs mainly via the Fab region. With regard to the conformation of the dimer species, the secondary and tertiary structures were shown to be almost identical to those of the monomer. Furthermore, the thermal stability turned out also to be very similar between the dimer and monomer. PMID:24155259

  6. Crystal structure of 5,7-diphenyl-4,7-di­hydro­tetra­zolo[1,5-a]pyrimidine

    PubMed Central

    Price, Ivy K.; Rougeot, Celine; Hein, Jason E.

    2015-01-01

    In the title mol­ecule, C16H13N5, the plane of the tetra­zole ring forms dihedral angles of 16.37 (7) and 76.59 (7)° with the two phenyl rings. The dihedral angle between the phenyl rings is 68.05 (6)°. The pyrimidine ring is in a flattened boat conformation. In the crystal, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds, forming inversion dimers. PMID:25844243

  7. Ethyl 4-(1,3-benzodioxol-5-yl)-6-methyl-2-sulfanylidene-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

    PubMed Central

    Nayak, Susanta K.; Venugopala, K. N.; Govender, Thavendran; Kruger, Hendrik G.; Maguire, Glenn E. M.; Row, Tayur N. Guru

    2011-01-01

    In the title compound, C15H16N2O4S, the dihedral angles between the planes of the benzodioxole and ester groups and the plane of the six-membered tetra­hydro­pyrimidine ring are 89.5 (1) and 20.2 (1)°, respectively. Inter­molecular N—H⋯S hydrogen bonds assemble the mol­ecules into dimers, which are further connected via N—H⋯O inter­actions into chains parallel to [010]. Weak C—H⋯S and C—H⋯π inter­actions enhance the stability of the crystal structure. PMID:22220078

  8. Calculation and interpretation of vibronic absorption and fluorescence spectra of the first electronic nπ* transitions of pyridine and pyrimidine

    NASA Astrophysics Data System (ADS)

    Ten, G. N.; Kadrov, D. M.; Berezin, M. K.; Baranov, V. I.

    2014-11-01

    We have calculated vibronic spectra of the first electronic nπ* transitions of pyridine and pyrimidine in the isolated state using the DFT method in the Franck-Condon approximation. Vibrational spectra for the ground and excited states have been calculated in the anharmonic approximation, which allowed us to refine the assignment of normal vibrations of pyridine and pyrimidine. We have done a complete interpretation of the vibrational structure of the absorption and fluorescence spectra of pyridine and pyrimidine. It has been shown that Fermi resonances between fundamental and combination vibrations and overtones 12 and 16 b + 4, 6 a and 2 × 16 b affect the formation of the vibrational structure of electronic spectra of pyrimidine. Good agreement between calculated and experimental spectra confirms the correctness of the models of the two molecules in their ground and excited states, which makes it possible to use the models in further investigations of various properties of these molecules in electronically excited states, e.g., tautomerism of pyrimidine bases of nucleic acids.

  9. Delta-elimination by T4 endonuclease V at a thymine dimer site requires a secondary binding event and amino acid Glu-23.

    PubMed

    Latham, K A; Lloyd, R S

    1995-07-11

    Endonuclease V from bacteriophage T4 is a well characterized enzyme that initiates the repair of ultraviolet light induced pyrimidine dimers. Scission of the phosphodiester backbone between the pyrimidines within a dimer, or 3' to an abasic (AP) site, occurs by a beta-elimination mechanism. In addition, high concentrations of endonuclease V have been reported to catalyze the cleavage of the C5'-O-P bond in a reaction referred to as delta-elimination. To better understand the enzymology of endonuclease V, the delta-elimination reaction of the enzyme has been investigated using an oligonucleotide containing a site-specific cis-syn cyclobutane thymine dimer. The slower kinetics of the delta-elimination reaction compared to beta-elimination and the ability of unlabeled dimer-containing DNA to compete more efficiently for delta-elimination than beta-elimination indicate that delta-elimination most likely occurs during a separate enzyme encounter with the incised DNA. Previous studies have shown that both the alpha-amino group of the N-terminus and the acidic residue Glu-23 are necessary for the N-glycosylase and AP lyase activities of endonuclease V. Experiments with T2P, E23Q, and E23D mutants, which are defective in pyrimidine dimer-specific nicking, demonstrated that delta-elimination requires Glu-23, but not the primary amine at the N-terminus. In fact, the T2P mutant was much more efficient at promoting delta-elimination than the wild-type enzyme. Besides lending further proof that delta-elimination requires a second encounter between enzyme and DNA, this result may reflect an enhanced binding of the T2P mutant to dimer-containing DNA. PMID:7612620

  10. Mechanism of host-guest complex formation and identification of intermediates through NMR titration and diffusion NMR spectroscopy.

    PubMed

    Lamm, Jan-Hendrik; Niermeier, Philipp; Mix, Andreas; Chmiel, Jasmin; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2014-07-21

    The formation of host-guest (H-G) complexes between 1,8-bis[(diethylgallanyl)ethynyl]anthracene (H) and the N-heterocycles pyridine and pyrimidine (G) was studied in solution using a combination of NMR titration and diffusion NMR experiments. For the latter, diffusion coefficients of potential host-guest structures in solution were compared with those of tailor-made reference compounds of similar shape (synthesized and characterized by NMR, HRMS, and in part XRD). Highly dynamic behavior was observed in both cases, but with different host-guest species and equilibria. With increasing concentrations of the pyridine guest, the equilibrium H2⇄H2κ(1)-G1⇄HG2 is observed (in the second step a host dimer coordinates one guest molecule); for pyrimidine the equilibrium H2→H1κ(2)-G1⇄HG2 is observed (the formation of a 1:1 aggregate is the second step). PMID:24925835

  11. A dimeric form of prothrombin on membrane surfaces.

    PubMed Central

    Anderson, P J

    1998-01-01

    Blood coagulation requires the conversion of zymogens to active enzymes. These reactions are facilitated by Ca2+-dependent protein binding to membrane surfaces containing anionic phospholipids. Here it is shown that only in the presence of both Ca2+ and phospholipid vesicles composed of phosphatidylcholine and phosphatidylserine can a prothrombin dimer be chemically cross-linked. A cross-linker containing evenly spaced reactive groups was prepared by activating the carboxy groups of a ten-residue glutamic acid peptide and allowed to react with physiological concentrations of prothrombin. When Ca2+ and anionic phospholipids were both present during exposure to the cross-linker, it was found that more than 50% of the prothrombin was trapped as a chemically defined dimer with reaction times of the order of 1 min. The dimer yield remained high even when reactions were performed at high phospholipid-to-protein ratios at protein concentrations an order of magnitude less than physiological. Amino acid sequencing of a CNBr peptide produced from the purified dimer localized the cross-link to residues Lys341 and Lys427 of prothrombin. The specificity and high yield under mild conditions of the cross-linking suggest that dimeric membrane bound prothrombin might be a physiologically relevant substrate for the formation of thrombin. Prothrombinase converts this modified protein to an enzyme that catalyses the hydrolysis of a thrombin chromogenic substrate as efficiently as thrombin and is inhibited by a thrombin active-site directed inhibitor, but is a thrombin dimer. The thrombin dimer has impaired activity compared with thrombin with respect to physiological functions requiring binding to exosite I. A model based on the known structure of thrombin is presented that can account for the prothrombin dimer and the properties of the dimeric thrombin formed from it. PMID:9841875

  12. Purine and pyrimidine excretion in psoriasis

    PubMed Central

    Simmonds, H. A.; Bowyer, A.

    1974-01-01

    1 Urinary purine excretion has been investigated in two healthy controls and two patients with psoriasis, one a hyperuricaemic, one a normouricaemic. No difference was detected between the patients and controls. Therapy with allopurinol effectively lowered blood and urinary uric acid levels and produced a deficit in total urinary oxypurine excretion in both controls and patients with psoriasis. The concomitant increase in xanthine excretion was greater than the increase in hypoxanthine excretion and xanthine/hypoxanthine ratios (average 0.70 and 1.0 prior to therapy) were increased by allopurinol to an average of 3.0 and 3.8 respectively in the two groups. Allopurinol also reduced the excretion of 8-hydroxy-7-methyl guanine but no effect on the excretion levels of other minor purine bases was noted. 2 Allopurinol was metabolized similarly by both patients and controls, 84% of the administered allopurinol being accounted for as urinary metabolites. 74% of the drug in the urine was excreted as oxipurinol, 26% as unchanged allopurinol plus allopurinol riboside, the remainder being oxipurinol riboside. 3 Pseudouridine excretion in 25 healthy controls was 86.5 ± 17.8 mg/24 hours. Pseudouridine excretion was not excessive in the patients with psoriasis and was not altered by allopurinol therapy. 4 No abnormality or difference in purine or pyrimidine excretion in either patient was detected prior to or during therapy which could be related to the epidermal lesion. PMID:22454896

  13. Low-energy positron scattering by pyrimidine

    NASA Astrophysics Data System (ADS)

    Barbosa, Alessandra Souza; Pastega, Diego F.; Bettega, Márcio H. F.

    2015-12-01

    This work reports elastic integral and differential cross sections for positron collisions with pyrimidine, for energies up to 20 eV. The cross sections were computed with the Schwinger multichannel method in the static plus polarization approximation. We also employed the Born closure procedure to account for the long range potential due to the permanent dipole moment of the molecule. Our results are compared with the experimental total cross section of Zecca et al. [J. Phys. B 43, 215204 (2010)], the experimental grand-total, quasi-elastic integral and differential cross section of Palihawadana et al. [Phys. Rev. A 88, 12717 (2013)]. We also compare our results with theoretical integral and differential cross sections obtained by Sanz et al. [Phys. Rev. A 88, 62704 (2013)] with the R-matrix and the independent atom model with screening-corrected additivity rule methods, and with the results computed by Franz and Gianturco [Phys. Rev. A 88, 042711 (2013)] using model correlation-polarization potentials. The agreement between the theory and the experiment is encouraging.

  14. Low-energy positron scattering by pyrimidine

    SciTech Connect

    Barbosa, Alessandra Souza; Pastega, Diego F.; Bettega, Márcio H. F.

    2015-12-28

    This work reports elastic integral and differential cross sections for positron collisions with pyrimidine, for energies up to 20 eV. The cross sections were computed with the Schwinger multichannel method in the static plus polarization approximation. We also employed the Born closure procedure to account for the long range potential due to the permanent dipole moment of the molecule. Our results are compared with the experimental total cross section of Zecca et al. [J. Phys. B 43, 215204 (2010)], the experimental grand-total, quasi-elastic integral and differential cross section of Palihawadana et al. [Phys. Rev. A 88, 12717 (2013)]. We also compare our results with theoretical integral and differential cross sections obtained by Sanz et al. [Phys. Rev. A 88, 62704 (2013)] with the R-matrix and the independent atom model with screening-corrected additivity rule methods, and with the results computed by Franz and Gianturco [Phys. Rev. A 88, 042711 (2013)] using model correlation-polarization potentials. The agreement between the theory and the experiment is encouraging.

  15. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1988-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  16. Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1988-02-16

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary alcohols and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  17. On the correlation factor of pure polar fluids whose molecules dimerize to nonpolar dimers

    NASA Astrophysics Data System (ADS)

    Mognaschi, E. R.; Laboranti, L. M.; Chierico, A.

    The dipolar correlation of pure polar fluids whose molecules undergo dimerization, resulting in the formation of nonpolar ring dimers and polar monomers in statistical equilibrium, has been studied. Such a system has been treated as a solution of polar molecules (monomers) in an apolar solvent (dimers). This approach allowed us to introduce a new parameter that accounts for the correlation among polar monomers, besides the well known Kirkwood-Fröhlich correlation factor. A relation between the two correlation factors, involving the degree of association, has been established. The above summarized model was applied to the case of five monocarboxylic fatty acids: propionic, n-butyric, n-valeric, caprylic, and pelargonic. On going from high to low molecular mass terms the room temperature static dielectric constant of the considered series of acids increases together with the degree of association, obtained from adiabatic compressibility data on the hypothesis that only dimerization occurs. This behaviour of the static dielectric constant, unexpected on the basis of the decrease of polar monomer density due to the increase of the degree of association, has been interpreted taking into account the dipolar correlation among monomers.

  18. Inhibiting EGFR Dimerization Using Triazolyl-Bridged Dimerization Arm Mimics

    PubMed Central

    Hanold, Laura E.; Oruganty, Krishnadev; Ton, Norman T.; Beedle, Aaron M.; Kannan, Natarajan; Kennedy, Eileen J.

    2015-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed in multiple carcinomas and is the focus of a variety of targeted therapies. Here we report the design of peptide-based compounds that mimic the EGFR dimerization arm and inhibit allosteric activation of EGFR. These peptides are modified to contain a triazolyl bridge between the peptide strands to constrain the EGFR dimerization arm β-loop. In this study, we demonstrate that these peptides have significantly improved proteolytic stability over the non-modified peptide sequence, and their inhibitory effects are dependent on the number of the methylene units and orientation of the introduced triazolyl bridge. We identified a peptide, EDA2, which downregulates receptor phosphorylation and dimerization and reduces cell viability. This is the first example of a biologically active triazolyl-bridged peptide targeting the EGFR dimerization interface that effectively downregulates EGFR activation. PMID:25790232

  19. Chemotherapy of leishmaniasis. Part VII: synthesis and bioevaluation of substituted terpenyl pyrimidines.

    PubMed

    Suryawanshi, S N; Bhat, B A; Pandey, Susmita; Chandra, Naveen; Gupta, Suman

    2007-09-01

    Some novel 4-N-substituted terpenyl pyrimidines 5(a-d) and 7(a-g) have been synthesized using novel synthetic methods. The compounds were screened for in vivo antileishmanial screening. When compared to 4-thiomethoxy substituted pyrimidine 2 4-N-substituted terpenyl pyrimidines 5(a-d) and 7(a-g) were found inactive. PMID:17499393

  20. Significance and Biological Importance of Pyrimidine in the Microbial World

    PubMed Central

    Sharma, Vinita; Agarwal, Ajay Kumar

    2014-01-01

    Microbes are unique creatures that adapt to varying lifestyles and environment resistance in extreme or adverse conditions. The genetic architecture of microbe may bear a significant signature not only in the sequences position, but also in the lifestyle to which it is adapted. It becomes a challenge for the society to find new chemical entities which can treat microbial infections. The present review aims to focus on account of important chemical moiety, that is, pyrimidine and its various derivatives as antimicrobial agents. In the current studies we represent more than 200 pyrimidines as antimicrobial agents with different mono-, di-, tri-, and tetrasubstituted classes along with in vitro antimicrobial activities of pyrimidines derivatives which can facilitate the development of more potent and effective antimicrobial agents. PMID:25383216

  1. Assessment of naturally occurring covalent and total dimer levels in human IgG1 and IgG2.

    PubMed

    Yang, Jane; Goetze, Andrew M; Flynn, Gregory C

    2014-03-01

    Antibody dimers, two self-associated monomers, have been detected on both recombinantly expressed and endogenous human IgG proteins. Nearly 10 years ago, Yoo et al. (2003) described low levels of IgG2 covalent dimer, in human serum, but did not quantify the levels. Here we quantify the total and covalent dimer levels of IgG2 and IgG1 in human blood, and study the origin of covalent dimer formation. Low levels (<1%) of total IgG1 and IgG2 dimers were measured in freshly prepared human plasma. Both IgG1 and IgG2 covalent dimers were also found in plasma. Whereas IgG1 covalent dimer levels were significantly reduced by steps intended to eliminate artifacts during sample preparation, IgG2 covalent dimer levels remain stable in such conditions. About 0.4% of IgG2 in plasma was in a covalent dimer form, yet very little (<0.03%) of IgG1 covalent dimer could be considered naturally occurring. IgG2 dimer also formed in vitro under conditions designed to mimic those in blood, suggesting that formation occurs in vivo during circulation. Thus, small amounts of covalent IgG2 dimer do appear to form naturally. PMID:24321397

  2. Irradiation of pyrimidine in pure H2O ice with high-energy ultraviolet photons.

    PubMed

    Nuevo, Michel; Chen, Yu-Jung; Hu, Wei-Jie; Qiu, Jun-Ming; Wu, Shang-Ruei; Fung, Hok-Sum; Chu, Ching-Chi; Yih, Tai-Sone; Ip, Wing-Huen; Wu, C-Y Robert

    2014-02-01

    The detection of nucleobases, the informational subunits of DNA and RNA, in several meteorites suggests that these compounds of biological interest were formed via astrophysical, abiotic processes. This hypothesis is in agreement with recent laboratory studies of irradiation of pyrimidine in H2O-rich ices with vacuum UV photons emitted by an H2-discharge lamp in the 6.9-11.3 eV (110-180 nm) range at low temperature, shown to lead to the abiotic formation of several compounds including the nucleobases uracil, cytosine, and thymine. In this work, we irradiated H2O:pyrimidine ice mixtures under astrophysically relevant conditions (14 K, ≤10(-9) torr) with high-energy UV photons provided by a synchrotron source in three different ranges: the 0(th) order light (4.1-49.6 eV, 25-300 nm), the He i line (21.2 eV, 58.4 nm), and the He ii line (40.8 eV, 30.4 nm). The photodestruction of pyrimidine was monitored with IR spectroscopy, and the samples recovered at room temperature were analyzed with liquid and gas chromatographies. Uracil and its precursor 4(3H)-pyrimidone were found in all samples, with absolute and relative abundances varying significantly from one sample to another. These results support a scenario in which compounds of biological interest can be formed and survive in environments subjected to high-energy UV radiation fields. PMID:24512484

  3. Irradiation of Pyrimidine in Pure H2O Ice with High-Energy Ultraviolet Photons

    PubMed Central

    Chen, Yu-Jung; Hu, Wei-Jie; Qiu, Jun-Ming; Wu, Shang-Ruei; Fung, Hok-Sum; Chu, Ching-Chi; Yih, Tai-Sone; Ip, Wing-Huen; Wu, C.-Y. Robert

    2014-01-01

    Abstract The detection of nucleobases, the informational subunits of DNA and RNA, in several meteorites suggests that these compounds of biological interest were formed via astrophysical, abiotic processes. This hypothesis is in agreement with recent laboratory studies of irradiation of pyrimidine in H2O-rich ices with vacuum UV photons emitted by an H2-discharge lamp in the 6.9–11.3 eV (110–180 nm) range at low temperature, shown to lead to the abiotic formation of several compounds including the nucleobases uracil, cytosine, and thymine. In this work, we irradiated H2O:pyrimidine ice mixtures under astrophysically relevant conditions (14 K, ≤10−9 torr) with high-energy UV photons provided by a synchrotron source in three different ranges: the 0th order light (4.1–49.6 eV, 25–300 nm), the He i line (21.2 eV, 58.4 nm), and the He ii line (40.8 eV, 30.4 nm). The photodestruction of pyrimidine was monitored with IR spectroscopy, and the samples recovered at room temperature were analyzed with liquid and gas chromatographies. Uracil and its precursor 4(3H)-pyrimidone were found in all samples, with absolute and relative abundances varying significantly from one sample to another. These results support a scenario in which compounds of biological interest can be formed and survive in environments subjected to high-energy UV radiation fields. Key Words: Pyrimidine—Nucleobases—Interstellar ices—Cometary ices—High-energy photons—Molecular processes—Prebiotic chemistry. Astrobiology 14, 119–131. PMID:24512484

  4. Mechanism of dimerization of the human melanocortin 1 receptor

    SciTech Connect

    Zanna, Paola T.; Sanchez-Laorden, Berta L.; Perez-Oliva, Ana B.; Turpin, Maria C.; Herraiz, Cecilia; Jimenez-Cervantes, Celia; Garcia-Borron, Jose C.

    2008-04-04

    The melanocortin 1 receptor (MC1R) is a dimeric G protein-coupled receptor expressed in melanocytes, where it regulates the amount and type of melanins produced and determines the tanning response to ultraviolet radiation. We have studied the mechanisms of MC1R dimerization. Normal dimerization of a deleted mutant lacking the seventh transmembrane fragment and the C-terminal cytosolic extension excluded coiled-coil interactions as the basis of dimerization. Conversely, the electrophoretic pattern of wild type receptor and several Cys {yields} Ala mutants showed that four disulfide bonds are established between the monomers. Disruption of any of these bonds abolished MC1R function, but only the one involving Cys35 was essential for traffic to the plasma membrane. A quadruple Cys35-267-273-275Ala mutant migrating as a monomer in SDS-PAGE in the absence of reducing agents was able to dimerize with WT, suggesting that in addition to disulfide bond formation, dimerization involves non-covalent interactions, likely of domain swap type.

  5. Conformational stability of dimeric proteins: quantitative studies by equilibrium denaturation.

    PubMed Central

    Neet, K. E.; Timm, D. E.

    1994-01-01

    The conformational stability of dimeric globular proteins can be measured by equilibrium denaturation studies in solvents such as guanidine hydrochloride or urea. Many dimeric proteins denature with a 2-state equilibrium transition, whereas others have stable intermediates in the process. For those proteins showing a single transition of native dimer to denatured monomer, the conformational stabilities, delta Gu (H2O), range from 10 to 27 kcal/mol, which is significantly greater than the conformational stability found for monomeric proteins. The relative contribution of quaternary interactions to the overall stability of the dimer can be estimated by comparing delta Gu (H2O) from equilibrium denaturation studies to the free energy associated with simple dissociation in the absence of denaturant. In many cases the large stabilization energy of dimers is primarily due to the intersubunit interactions and thus gives a rationale for the formation of oligomers. The magnitude of the conformational stability is related to the size of the polypeptide in the subunit and depends upon the type of structure in the subunit interface. The practical use, interpretation, and utility of estimation of conformational stability of dimers by equilibrium denaturation methods are discussed. PMID:7756976

  6. The prebiotic synthesis of pyrimidines in frozen solution

    NASA Astrophysics Data System (ADS)

    Cleaves, H. James, II; Nelson, Kevin E.; Miller, Stanley L.

    2006-05-01

    Most prebiotic syntheses depend on the reaction of concentrated precursor compounds to produce bio-organic molecules. It is now believed that the early Earth’s atmosphere was not reducing enough to have permitted copious synthesis of precursor molecules. Freezing allows reaction to occur even from dilute solution. This reaction has been demonstrated for the purines but not for the pyrimidines. It is shown here that dilute solutions of simple prebiotic molecules produce the biological pyrimidines cytosine and uracil upon freezing. Cold environments may have allowed synthesis of all of the RNA bases even from low organic yielding atmospheres, such as those of the early Earth, Mars, Titan and Europa.

  7. Dimerization of the 3'UTR of bicoid mRNA involves a two-step mechanism.

    PubMed

    Wagner, C; Palacios, I; Jaeger, L; St Johnston, D; Ehresmann, B; Ehresmann, C; Brunel, C

    2001-10-26

    The proper localization of bicoid (bcd) mRNA requires cis-acting signals within its 3' untranslated region (UTR) and trans-acting factors such as Staufen. Dimerization of bcd mRNA through intermolecular base-pairing between two complementary loops of domain III of the 3'UTR was proposed to be important for particle formation in the embryo. The participation in the dimerization process of each domain building the 3'UTR was evaluated by thermodynamic and kinetic analysis of various mutated and truncated RNAs. Although sequence complementarity between the two loops of domain III is required for initiating mRNA dimerization, the initial reversible loop-loop complex is converted rapidly into an almost irreversible complex. This conversion involves parts of RNA outside of domain III that promote initial recognition, and dimerization can be inhibited by sense or antisense oligonucleotides only before conversion has proceeded. Injection of the different bcd RNA variants into living Drosophila embryos shows that all elements that inhibit RNA dimerization in vitro prevent formation of localized particles containing Staufen. Particle formation appeared to be dependent on both mRNA dimerization and other element(s) in domains IV and V. Domain III of bcd mRNA could be substituted by heterologous dimerization motifs of different geometry. The resulting dimers were converted into stable forms, independently of the dimerization module used. Moreover, these chimeric RNAs were competent in forming localized particles and recruiting Staufen. The finding that the dimerization domain of bcd mRNA is interchangeable suggests that dimerization by itself, and not the precise geometry of the intermolecular interactions, is essential for the localization process. This suggests that the stabilizing interactions that are formed during the second step of the dimerization process might represent crucial elements for Staufen recognition and localization. PMID:11676536

  8. 6-[(2-Methyl-phen-yl)sulfan-yl]-5-propyl-pyrimidine-2,4(1H,3H)-dione.

    PubMed

    Haress, Nadia G; Ghabbour, Hazem A; El-Emam, Ali A; Chidan Kumar, C S; Fun, Hoong-Kun

    2014-07-01

    In the title pyrimidine-2,4-dione derivative, C14H16N2O2S, the dihedral angle between the six-membered rings is 77.81 (10)°. The mol-ecule is twisted about the Cp-S (p = pyrimidine) bond, with a C-S-C-N torsion angle of -59.01 (17)°. An intramolecular C-H⋯S hydrogen bond generates an S(5) ring motif. In the crystal, bifurcated acceptor N-H⋯O and C-H⋯O hydrogen bonds generate inversion-related dimers incorporating R 2 (1)(9) and R 2 (2)(8) loops. These dimers are connected into a chain extending along the a-axis direction by a second pair of inversion-related N-H⋯O hydrogen bonds, forming another R 2 (2)(8) loop. The crystal structure is further stabilized by weak inter-molecular C-H⋯π inter-actions, generating a three-dimensional network. PMID:25161558

  9. Crystal structure of 6-chloro-5-iso­propyl­pyrimidine-2,4(1H,3H)-dione

    PubMed Central

    Haress, Nadia G.; Ghabbour, Hazem A.; El-Emam, Ali A.; Chidan Kumar, C. S.; Fun, Hoong-Kun

    2014-01-01

    In the mol­ecule of the title compound, C7H9ClN2O2, the conformation is determined by intra­molecular C—H⋯O and C—H⋯Cl hydrogen bonds, which generate S(6) and S(5) ring motifs. The isopropyl group is almost perpendicular to the pyrimidine ring with torsion angles of −70.8 (3) and 56.0 (3)°. In the crystal, two inversion-related mol­ecules are linked via a pair of N—H⋯O hydrogen bonds into R 2 2(8) dimers; these dimers are connected into chains extending along the bc plane via an additional N—H⋯O hydrogen bond and weaker C—H⋯O hydrogen bonds. The crystal structure is further stabilized by a weak π–π inter­action [3.6465 (10) Å] between adjacent pyrimidine-dione rings arranged in a head-to-tail fashion, producing a three-dimensional network. PMID:25484791

  10. Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H2O ices under astrophysical conditions

    NASA Astrophysics Data System (ADS)

    Bera, Partha P.; Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott A.; Lee, Timothy J.

    2010-09-01

    The UV photoirradiation of pyrimidine in pure H2O ices has been explored using second-order Møller-Plesset perturbation theory and density functional theory methods, and compared with experimental results. Mechanisms studied include those starting with neutral pyrimidine or cationic pyrimidine radicals, and reacting with OH radical. The ab initio calculations reveal that the formation of some key species, including the nucleobase uracil, is energetically favored over others. The presence of one or several water molecules is necessary in order to abstract a proton which leads to the final products. Formation of many of the photoproducts in UV-irradiated H2O:pyrimidine=20:1 ice mixtures was established in a previous experimental study. Among all the products, uracil is predicted by quantum chemical calculations to be the most favored, and has been identified in experimental samples by two independent chromatography techniques. The results of the present study strongly support the scenario in which prebiotic molecules, such as the nucleobase uracil, can be formed under abiotic processes in astrophysically relevant environments, namely in condensed phase on the surface of icy, cold grains before being delivered to the telluric planets, like Earth.

  11. Mechanism for the abiotic synthesis of uracil via UV-induced oxidation of pyrimidine in pure H{sub 2}O ices under astrophysical conditions

    SciTech Connect

    Bera, Partha P.; Nuevo, Michel; Sandford, Scott A.; Lee, Timothy J.; Milam, Stefanie N.

    2010-09-14

    The UV photoirradiation of pyrimidine in pure H{sub 2}O ices has been explored using second-order Moeller-Plesset perturbation theory and density functional theory methods, and compared with experimental results. Mechanisms studied include those starting with neutral pyrimidine or cationic pyrimidine radicals, and reacting with OH radical. The ab initio calculations reveal that the formation of some key species, including the nucleobase uracil, is energetically favored over others. The presence of one or several water molecules is necessary in order to abstract a proton which leads to the final products. Formation of many of the photoproducts in UV-irradiated H{sub 2}O:pyrimidine=20:1 ice mixtures was established in a previous experimental study. Among all the products, uracil is predicted by quantum chemical calculations to be the most favored, and has been identified in experimental samples by two independent chromatography techniques. The results of the present study strongly support the scenario in which prebiotic molecules, such as the nucleobase uracil, can be formed under abiotic processes in astrophysically relevant environments, namely in condensed phase on the surface of icy, cold grains before being delivered to the telluric planets, like Earth.

  12. Dimerization of SLX4 contributes to functioning of the SLX4-nuclease complex

    PubMed Central

    Yin, Jinhu; Wan, Bingbing; Sarkar, Jaya; Horvath, Kent; Wu, Jian; Chen, Yong; Cheng, Guangjuan; Wan, Ke; Chin, Peiju; Lei, Ming; Liu, Yie

    2016-01-01

    The Fanconi anemia protein SLX4 assembles a genome and telomere maintenance toolkit, consisting of the nucleases SLX1, MUS81 and XPF. Although it is known that SLX4 acts as a scaffold for building this complex, the molecular basis underlying this function of SLX4 remains unclear. Here, we report that functioning of SLX4 is dependent on its dimerization via an oligomerization motif called the BTB domain. We solved the crystal structure of the SLX4BTB dimer, identifying key contacts (F681 and F708) that mediate dimerization. Disruption of BTB dimerization abrogates nuclear foci formation and telomeric localization of not only SLX4 but also of its associated nucleases. Furthermore, dimerization-deficient SLX4 mutants cause defective cellular response to DNA interstrand crosslinking agent and telomere maintenance, underscoring the contribution of BTB domain-mediated dimerization of SLX4 in genome and telomere maintenance. PMID:27131364

  13. Dimerization of SLX4 contributes to functioning of the SLX4-nuclease complex.

    PubMed

    Yin, Jinhu; Wan, Bingbing; Sarkar, Jaya; Horvath, Kent; Wu, Jian; Chen, Yong; Cheng, Guangjuan; Wan, Ke; Chin, Peiju; Lei, Ming; Liu, Yie

    2016-06-01

    The Fanconi anemia protein SLX4 assembles a genome and telomere maintenance toolkit, consisting of the nucleases SLX1, MUS81 and XPF. Although it is known that SLX4 acts as a scaffold for building this complex, the molecular basis underlying this function of SLX4 remains unclear. Here, we report that functioning of SLX4 is dependent on its dimerization via an oligomerization motif called the BTB domain. We solved the crystal structure of the SLX4BTB dimer, identifying key contacts (F681 and F708) that mediate dimerization. Disruption of BTB dimerization abrogates nuclear foci formation and telomeric localization of not only SLX4 but also of its associated nucleases. Furthermore, dimerization-deficient SLX4 mutants cause defective cellular response to DNA interstrand crosslinking agent and telomere maintenance, underscoring the contribution of BTB domain-mediated dimerization of SLX4 in genome and telomere maintenance. PMID:27131364

  14. Synthesis of a distinct water dimer inside fullerene C70

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Murata, Michihisa; Aharen, Tomoko; Wakamiya, Atsushi; Shimoaka, Takafumi; Hasegawa, Takeshi; Murata, Yasujiro

    2016-05-01

    The water dimer is an ideal chemical species with which to study hydrogen bonds. Owing to the equilibrium between the monomer and oligomer structure, however, selective generation and separation of a genuine water dimer has not yet been achieved. Here, we report a synthetic strategy that leads to the successful encapsulation of one or two water molecules inside fullerene C70. These endohedral C70 compounds offer the opportunity to study the intrinsic properties of a single water molecule without any hydrogen bonding, as well as an isolated water dimer with a single hydrogen bond between the two molecules. The unambiguously determined off-centre position of water in (H2O)2@C70 by X-ray diffraction provides insights into the formation of (H2O)2@C70. Subsequently, the 1H NMR spectroscopic measurements for (H2O)2@C70 confirmed the formation of a single hydrogen bond rapidly interchanging between the encapsulated water dimer. Our theoretical calculations revealed a peculiar cis-linear conformation of the dimer resulting from confinement effects inside C70.

  15. Altered Dimer Interface Decreases Stability in an Amyloidogenic Protein

    SciTech Connect

    Baden, Elizabeth M.; Owen, Barbara A.L.; Peterson, Francis C.; Volkman, Brian F.; Ramirez-Alvarado, Marina; Thompson, James R.

    2008-07-21

    Amyloidoses are devastating and currently incurable diseases in which the process of amyloid formation causes fatal cellular and organ damage. The molecular mechanisms underlying amyloidoses are not well known. In this study, we address the structural basis of immunoglobulin light chain amyloidosis, which results from deposition of light chains produced by clonal plasma cells. We compare light chain amyloidosis protein AL-09 to its wild-type counterpart, the kl O18/O8 light chain germline. Crystallographic studies indicate that both proteins form dimers. However, AL-09 has an altered dimer interface that is rotated 90 degrees from the kl O18/O8 dimer interface. The three non-conservative mutations in AL-09 are located within the dimer interface, consistent with their role in the decreased stability of this amyloidogenic protein. Moreover, AL-09 forms amyloid fibrils more quickly than kl O18/O8 in vitro. These results support the notion that the increased stability of the monomer and delayed fibril formation, together with a properly formed dimer, may be protective against amyloidogenesis. This could open a new direction into rational drug design for amyloidogenic proteins.

  16. Effect of disorder on the dimer transition of the honeycomb-lattice compound Li2RuO3

    NASA Astrophysics Data System (ADS)

    Jimenez-Segura, Marco-Polo; Ikeda, Atsutoshi; Yonezawa, Shingo; Maeno, Yoshiteru

    2016-02-01

    We report the dependence of magnetic properties on the crystalline disorder in Li2RuO3 with Ru honeycomb lattice. This oxide exhibits unconventional Ru-dimer transition below Td˜540 K. We demonstrate that the cell parameters, related to the coherence of the dimer formation, are strongly dependent on the synthesis procedure. We show that the magnetic behavior at the dimer transition is closely related to the lattice parameters. In particular, we revealed that samples with well-ordered dimers exhibit a first-order magnetic transition with the onset exceeding 550 K, higher than that reported previously. We discuss possible dimer configurations leading to this magnetolattice coupling.

  17. Pyrimidine homeostasis is accomplished by directed overflow metabolism

    PubMed Central

    Reaves, Marshall Louis; Young, Brian D.; Hosios, Aaron M.; Xu, Yi-Fan; Rabinowitz, Joshua D.

    2015-01-01

    Cellular metabolism converts available nutrients into usable energy and biomass precursors. The process is regulated to facilitate efficient nutrient use and metabolic homeostasis. Feedback inhibition of the first committed step of a pathway by its final product is a classical means of controlling biosynthesis1–4. In a canonical example, the first committed enzyme in the pyrimidine pathway in Escherichia coli is allosterically inhibited by cytidine triphosphate1,4,5. The physiological consequences of disrupting this regulation, however, have not been previously explored. Here we identify an alternative regulatory strategy that enables precise control of pyrimidine pathway end-product levels, even in the presence of dysregulated biosynthetic flux. The mechanism involves cooperative feedback regulation of the near-terminal pathway enzyme uridine monophosphate kinase6. Such feedback leads to build-up of the pathway intermediate uridine monophosphate, which is in turn degraded by a conserved phosphatase, here termed UmpH, with previously unknown physiological function7,8. Such directed overflow metabolism allows homeostasis of uridine triphosphate and cytidine triphosphate levels at the expense of uracil excretion and slower growth during energy limitation. Disruption of the directed overflow regulatory mechanism impairs growth in pyrimidine-rich environments. Thus, pyrimidine homeostasis involves dual regulatory strategies, with classical feedback inhibition enhancing metabolic efficiency and directed overflow metabolism ensuring end-product homeostasis. PMID:23903661

  18. Synthesis of Pyrimidine Incorporated Piperazine Derivatives and their Antimicrobial Activity

    PubMed Central

    Thriveni, K. S.; Padmashali, B.; Siddesh, M. B.; Sandeep, C.

    2014-01-01

    Thiophene substituted chalcones (1a-e) were cyclised with thiourea in presence of potassium hydroxide to get 4-substituted-6-(thiophen-2-yl)pyrimidine-2-thiols (2a-e) which were then stirred with methyl iodide to obtain 4-substituted-2-(methylsulfanyl)-6-(thiophen-2-yl)pyrimidines (3a-e). Compounds (3a-e) were refluxed with different N-methylpiperazine and N-phenylpiperazine to afford 4-substituted-2-(4-methylpiperazin-1-yl)-6-(thiophen-2-yl)pyrimidines (4a-e) and 4-substituted-2-(4-phenylpiperazin-1-yl)-6-(thiophen-2-yl)pyrimidines (5a-e). The structures of all the newly synthesised compounds 4b, 4d, 5a and 5b showed good antibacterial activity at 40μg/mlconcentration. Compounds 4a, 4d, 4e, 5c and 5e showed significant antifungal activity at 40 μg/ml concentration compared with standard drugs. PMID:25284931

  19. Crystal structure of (E)-13-(pyrimidin-5-yl)parthenolide

    PubMed Central

    Bommagani, Shobanbabu; Penthala, Narsimha R.; Parkin, Sean; Crooks, Peter A.

    2015-01-01

    The title compound, C19H22N2O3, {systematic name (1aR,4E,7aS,8E,10aS,10bR)-1a,5-dimethyl-8-[(pyrimidin-5-yl)­methylid­ene]-2,3,6,7,7a,8,10a,10b-octa­hydro­oxireno[2′,3′:9,10]cyclo­deca­[1,2-b]furan-9(1aH)-one} was obtained from the reaction of parthenolide [systematic name (1aR,7aS,10aS,10bR,E)-1a,5-dimethyl-8-methyl­ene-2,3,6,7,7a,8,10a,10b-octa­hydro­oxireno[2′,3′:9,10]cyclodeca­[1,2-b]furan-9(1aH)-one] with 5-bromo­pyrimidine under Heck reaction conditions, and was identified as an E isomer. The mol­ecule possesses ten-, five- (lactone) and three-membered (epoxide) rings with a pyrimidine group as a substituent. The ten-membered ring displays an approximate chair–chair conformation, while the lactone ring shows a flattened envelope-type conformation. The dihedral angle between the pyrimidine moiety and the lactone ring system is 29.43 (7)°. PMID:26870423

  20. Carbocyclic pyrimidine nucleosides as inhibitors of S-adenosylhomocysteine hydrolase.

    PubMed

    Mosley, Sylvester L; Bakke, Brian A; Sadler, Joshua M; Sunkara, Naresh K; Dorgan, Kathleen M; Zhou, Zhaohui Sunny; Seley-Radtke, Katherine L

    2006-12-01

    The design, synthesis, and unexpected inhibitory activity against S-adenosyl-homocysteine (SAH) hydrolase (SAHase, EC 3.3.1.1) for a series of truncated carbocyclic pyrimidine nucleoside analogues is presented. Of the four nucleosides obtained, 10 was found to be active with a Ki value of 5.0 microM against SAHase. PMID:16904326

  1. Helical stacking in DNA three-way junctions containing two unpaired pyrimidines: proton NMR studies.

    PubMed Central

    Leontis, N B; Hills, M T; Piotto, M; Ouporov, I V; Malhotra, A; Gorenstein, D G

    1995-01-01

    The proton NMR spectra of DNA three-way junction complexes (TWJ) having unpaired pyrimidines, 5'-TT- and 5'-TC- on one strand at the junction site were assigned from 2D NOESY spectra acquired in H2O and D2O solvents and homonuclear 3D NOESY-TOCSY and 3D NOESY-NOESY in D2O solvent. TWJ are the simplest branched structures found in biologically active nucleic acids. Unpaired nucleotides are common features of such structures and have been shown to stabilize junction formation. The NMR data confirm that the component oligonucleotides assemble to form conformationally homogeneous TWJ complexes having three double-helical, B-form arms. Two of the helical arms stack upon each other. The unpaired pyrimidine bases lie in the minor groove of one of the helices and are partly exposed to solvent. The coaxial stacking arrangement deduced is different from that determined by Rosen and Patel (Rosen, M.A., and D.J. Patel. 1993. Biochemistry. 32:6576-6587) for a DNA three-way junction having two unpaired cytosines, but identical to that suggested by Welch et al. (Welch, J. B., D. R. Duckett, D. M. J. Lilley. 1993. Nucleic Acids Res. 21:4548-4555) on the basis of gel electrophoretic studies of DNA three-way junctions containing unpaired adenosines and thymidines. Images FIGURE 2 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 PMID:7711249

  2. EDEM1 targets misfolded HLA-B27 dimers for endoplasmic reticulum associated degradation

    PubMed Central

    Guiliano, David B.; Fussell, Helen; Lenart, Izabela; Tsao, Edward; Nesbeth, Darren; Fletcher, Adam J.; Campbell, Elaine C.; Yousaf, Nasim; Williams, Sarah; Santos, Susana; Cameron, Amy; Towers, Greg J.; Kellam, Paul; Hebert, Daniel N.; Gould, Keith; Powis, Simon J.; Antoniou, Antony N.

    2015-01-01

    Objective HLA-B27 forms misfolded heavy chain dimers, which may predispose individuals to inflammatory arthritis by inducing endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). We wanted to define the role of the UPR induced ER associated degradation (ERAD) pathway in the disposal of HLA-B27 dimeric conformers. Methods HeLa cell lines expressing only two copies of a carboxy terminally Sv5 tagged HLA-B27 were generated. The ER stress induced EDEM1 protein was over expressed by transfection and dimer levels monitored by immunoblotting. EDEM1, the UPR associated transcription factor XBP-1, the E3 ubiquitin ligase HRD1, the degradation associated derlin 1 and 2 proteins were inhibited by either short hairpin RNA or dominant negative mutants. The UPR associated ERAD of HLA-B27 was confirmed using ER stress inducing pharamacological agents in kinetic and pulse chase assays. Results We demonstrate that UPR induced machinery can target HLA-B27 dimers, and that dimer formation can be controlled by alterations to expression levels of components of the UPR induced ERAD pathway. HLA-B27 dimers and misfolded MHC class I monomeric molecules were detected bound to EDEM1, with overexpression of EDEM1 inhibiting HLA-B27 dimer formation. EDEM1 inhibition resulted in upregulation of HLA-B27 dimers, whilst UPR induced ERAD of dimers was prevented in the absence of EDEM1. HLA-B27 dimer formation was also enhanced in the absence of XBP-1, HRD1 and derlin1/2. Conclusion The UPR ERAD pathway as described here can dispose of HLA-B27 dimers and presents a potential novel therapeutic target for the modulation of HLA-B27 associated inflammatory disease. PMID:25132672

  3. Crystal structure of ethyl 6-chloro­methyl-2-oxo-4-(2,3,4-tri­meth­oxy­phen­yl)-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

    PubMed Central

    Suresh, M.; Padusha, M. Syed Ali; Novina, J. Josephine; Vasuki, G.; Viswanathan, Vijayan; Velmurugan, Devadasan

    2015-01-01

    In the title compound, C17H21ClN2O6, the di­hydro­pyrimidine ring adopts a flattened envelope conformation, with the sp 3-hybridized C atom forming the flap. The dihedral angle between the least-squares planes of the benzene and di­hydro­pyrimidine rings is 88.09 (6)°. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring. In the crystal, mol­ecules are linked via pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(8) ring motif, and the dimers are linked via further pairs of N—H⋯O hydrogen bonds, forming R 2 2(14) rings and chains of mol­ecules along [111]. Pairs of inversion-related chains are linked via weak C—H⋯π inter­actions. PMID:26279876

  4. Nitric Oxide Inhibitory Dimeric Sesquiterpenoids from Artemisia rupestris.

    PubMed

    Zhang, Chen; Wang, Shu; Zeng, Ke-Wu; Li, Jun; Ferreira, Daneel; Zjawiony, Jordan K; Liu, Bing-Yu; Guo, Xiao-Yu; Jin, Hong-Wei; Jiang, Yong; Tu, Peng-Fei

    2016-01-22

    Twelve new dimeric sesquiterpenoids (1-12) were isolated from the dried whole plants of Artemisia rupestris. Their structures were determined using MS and NMR data, and the absolute configurations were elucidated on the basis of experimental and calculated ECD spectra. Compounds 1-9 are presumably formed via biocatalyzed [2+2] or [4+2] cycloaddition reactions. Stereoselectivity of the [4+2] Diels-Alder reaction dictated the formation of endo-products. The dimeric sesquiterpenoids exhibited moderate inhibition on NO production stimulated by lipopolysaccharide in BV-2 microglial cells, with IC50 values in the range 17.0-71.8 μM. PMID:26696523

  5. N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­oxy­phen­yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni

    2012-01-01

    In the title compound, C23H25BrN4O3S2, the benzene rings bridged by the sulfonamide group are tilted relative to each other by 69.7 (1)° and the dihedral angle between the sulfur-bridged pyrimidine and benzene rings is 70.4 (1)°. The mol­ecular conformation is stabilized by a weak intra­molecular π–π stacking inter­action between the pyrimidine and the 4-methyl benzene rings [centroid–centroid distance = 3.633 (2) Å]. The piperidine ring adopts a chair conformation. In the crystal, mol­ecules are linked into inversion dimers by pairs of N—H⋯O hydrogen bonds. PMID:23125637

  6. Adventures in Holographic Dimer Models

    SciTech Connect

    Kachru, Shamit; Karch, Andreas; Yaida, Sho; /Stanford U., Phys. Dept.

    2011-08-12

    We abstract the essential features of holographic dimer models, and develop several new applications of these models. Firstly, semi-holographically coupling free band fermions to holographic dimers, we uncover novel phase transitions between conventional Fermi liquids and non-Fermi liquids, accompanied by a change in the structure of the Fermi surface. Secondly, we make dimer vibrations propagate through the whole crystal by way of double trace deformations, obtaining nontrivial band structure. In a simple toy model, the topology of the band structure experiences an interesting reorganization as we vary the strength of the double trace deformations. Finally, we develop tools that would allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard model.

  7. Dimerization in Highly Concentrated Solutions of Phosphoimidazolide Activated Mononucleotides

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia

    1997-01-01

    Phosphoimidazolide activated ribomononucleotides (*pN) are useful substrates for the non-enzymatic synthesis of polynucleotides. However, dilute neutral aqueous solutions of *pN typically yield small amounts of dimers and traces of polymers; most of *pN hydrolyzes to yield nucleoside 5'-monophosphate. Here we report the self-condensation of nucleoside 5'-phosphate 2- methylimidazolide (2-MeImpN with N = cytidine, uridine or guanosine) in the presence of Mg2(+) in concentrated solutions, such as might have been found in an evaporating lagoon on prebiotic Earth. The product distribution indicates that oligomerization is favored at the expense of hydrolysis. At 1.0 M, 2-MelmpU and 2-MelmpC produce about 65% of oligomers including 4% of the 3',5'-Iinked dimer. Examination of the product distribution of the three isomeric dimers in a self-condensation allows identification of reaction pathways that lead to dimer formation. Condensations in a concentrated mixture of all three nucleotides (U,C,G mixtures) is made possible by the enhanced solubility of 2-MeImpG in such mixtures. Although percent yield of intemucleotide linked dimers is enhanced as a function of initial monomer concentration, pyrophosphate dimer yields remain practically unchanged at about 20% for 2-MelmpU, 16% for 2-MeImpC and 25% of the total pyrophosphate in the U,C,G mixtures. The efficiency by which oligomers are produced in these concentrated solutions makes the evaporating lagoon scenario a potentially interesting medium for the prebiotic synthesis of dimers and short RNAs.

  8. Benchmarking of optical dimerizer systems.

    PubMed

    Pathak, Gopal P; Strickland, Devin; Vrana, Justin D; Tucker, Chandra L

    2014-11-21

    Optical dimerizers are a powerful new class of optogenetic tools that allow light-inducible control of protein-protein interactions. Such tools have been useful for regulating cellular pathways and processes with high spatiotemporal resolution in live cells, and a growing number of dimerizer systems are available. As these systems have been characterized by different groups using different methods, it has been difficult for users to compare their properties. Here, we set about to systematically benchmark the properties of four optical dimerizer systems, CRY2/CIB1, TULIPs, phyB/PIF3, and phyB/PIF6. Using a yeast transcriptional assay, we find significant differences in light sensitivity and fold-activation levels between the red light regulated systems but similar responses between the CRY2/CIB and TULIP systems. Further comparison of the ability of the CRY2/CIB1 and TULIP systems to regulate a yeast MAPK signaling pathway also showed similar responses, with slightly less background activity in the dark observed with CRY2/CIB. In the process of developing this work, we also generated an improved blue-light-regulated transcriptional system using CRY2/CIB in yeast. In addition, we demonstrate successful application of the CRY2/CIB dimerizers using a membrane-tethered CRY2, which may allow for better local control of protein interactions. Taken together, this work allows for a better understanding of the capacities of these different dimerization systems and demonstrates new uses of these dimerizers to control signaling and transcription in yeast. PMID:25350266

  9. ERAP1-ERAP2 dimerization increases peptide-trimming efficiency.

    PubMed

    Evnouchidou, Irini; Weimershaus, Mirjana; Saveanu, Loredana; van Endert, Peter

    2014-07-15

    The endoplasmic reticulum aminopeptidases (ERAP)1 and ERAP2 play a critical role in the production of final epitopes presented by MHC class I molecules. Formation of heterodimers by ERAP1 and ERAP2 has been proposed to facilitate trimming of epitope precursor peptides, but the effects of dimerization on ERAP function remain unknown. In this study, we produced stabilized ERAP1-ERAP2 heterodimers and found that they produced several mature epitopes more efficiently than a mix of the two enzymes unable to dimerize. Physical interaction with ERAP2 changes basic enzymatic parameters of ERAP1 and improves its substrate-binding affinity. Thus, by bringing the two enzymes in proximity and by producing allosteric effects on ERAP1, dimerization of ERAP1/2 creates complexes with superior peptide-trimming efficacy. Such complexes are likely to enhance Ag presentation by cells displaying coordinated expression of the two enzymes. PMID:24928998

  10. Nucleobases and prebiotic molecules in organic residues produced from the ultraviolet photo-irradiation of pyrimidine in NH(3) and H(2)O+NH(3) ices.

    PubMed

    Nuevo, Michel; Milam, Stefanie N; Sandford, Scott A

    2012-04-01

    Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases-the information subunits of DNA and RNA-are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab initio calculations have already shown that the irradiation of pyrimidine in pure H(2)O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH(3):pyrimidine and H(2)O:NH(3):pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces. PMID:22519971

  11. Nucleobases and Prebiotic Molecules in Organic Residues Produced from the Ultraviolet Photo-Irradiation of Pyrimidine in NH3 and H2O+NH3 Ices

    NASA Technical Reports Server (NTRS)

    Nuevo, Michel; Milam, Stefanie N.; Sandford, Scott

    2012-01-01

    Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases the information subunits of DNA and RNA are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab-initio calculations have already shown that the irradiation of pyrimidine in pure H2O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH3:pyrimidine and H2O:NH3:pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces.

  12. Highly stable tetrathiafulvalene radical dimers in [3]catenanes

    SciTech Connect

    Spruell, Jason M.; Coskun, Ali; Friedman, Douglas C.; Forgan, Ross S.; Sarjeant, Amy A.; Trabolsi, Ali; Fahrenbach, Albert C.; Barin, Gokhan; Paxton, Walter F.; Dey, Sanjeev K.; Olson, Mark A.; Benítez, Diego; Tkatchouk, Ekaterina; Colvin, Michael T.; Carmielli, Raanan; Caldwell, Stuart T.; Rosair, Georgina M.; Hewage, Shanika Gunatilaka; Duclairoir, Florence; Seymour, Jennifer L.; Slawin, Alexandra M.Z.; Goddard, III, William A.; Wasielewski, Michael R.; Cooke, Graeme; Stoddart, J. Fraser

    2010-12-03

    Two [3]catenane 'molecular flasks' have been designed to create stabilized, redox-controlled tetrathiafulvalene (TTF) dimers, enabling their spectrophotometric and structural properties to be probed in detail. The mechanically interlocked framework of the [3]catenanes creates the ideal arrangement and ultrahigh local concentration for the encircled TTF units to form stable dimers associated with their discrete oxidation states. These dimerization events represent an affinity umpolung, wherein the inversion in electronic affinity replaces the traditional TTF-bipyridinium interaction, which is over-ridden by stabilizing mixed-valence (TTF){sub 2}{sup {sm_bullet}+} and radical-cation (TTF{sup {sm_bullet}+}){sub 2} states inside the 'molecular flasks.' The experimental data, collected in the solid state as well as in solution under ambient conditions, together with supporting quantum mechanical calculations, are consistent with the formation of stabilized paramagnetic mixed-valence dimers, and then diamagnetic radical-cation dimers following subsequent one-electron oxidations of the [3]catenanes.

  13. Chemistry of the CO dimer at low temperatures

    NASA Technical Reports Server (NTRS)

    Demore, W. B.; Roux, E. T.

    1988-01-01

    Researchers conducted a series of experiments on the chlorine-catalyzed photodecomposition of O sub 3 both in the gas and in inert solvents such as CF sub 4 and CO sub 2 in the temperature range about 190 to 225 K. The liquid medium was chosen in order to minimize possible surface loss of long-lived ClO dimer, and to aid in the stabilization of transient excited intermediates. The mechanism of dimer formation was as follows: (1) Cl sub 2 + hv yields Cl + Cl; (2) Cl + O sub 3 yields ClO + O sub 2; (3) ClO + ClO yields Cl sub 2 O sub 2. The experiments were done in cooled low temperature cells, with irradiation from an Osram high pressure mercury arc, filtered to remove radiation below 325 nm. Spectral analysis was by means of a Cary Model 2200 UV spectrometer. The principal objectives were: (1) to determine the lifetime of the dimer as a function of temperature; (2) to observe spectral changes in the mixtures which could be attributed to dimer or related products; and (3) to observe chemical or photochemical reactions of the dimer.

  14. 6-[2-(Phosphonomethoxy)alkoxy]pyrimidines with antiviral activity.

    PubMed

    Holý, Antonín; Votruba, Ivan; Masojídková, Milena; Andrei, Graciela; Snoeck, Robert; Naesens, Lieve; De Clercq, Erik; Balzarini, Jan

    2002-04-25

    6-Hydroxypyrimidines substituted at positions 2 and 4 by hydrogen, methyl, amino, cyclopropylamino, dimethylamino, methylsulfanyl, or hydroxyl group afford by the reaction with diisopropyl 2-(chloroethoxy)methylphosphonate in the presence of NaH, Cs(2)CO(3), or DBU a mixture of N(1)- and O(6)-[2-(diisopropylphosphorylmethoxy)ethyl] isomers which were converted to the free phosphonic acids by treatment with bromotrimethylsilane followed by hydrolysis. Analogously, 2,4-diamino-6-hydroxypyrimidine gave on reaction with [(R)- and (S)-2-(diisopropylphosphorylmethoxy)propyl] tosylate, followed by deprotection, the enantiomeric 6-[2-(phosphonomethoxy)propoxy]pyrimidines. 2,4-Diamino-6-sulfanylpyrimidine gave, on treatment with diisopropyl 2-(chloroethoxy)methylphosphonate in the presence of NaH and subsequent deprotection, 2,4-diamino-6-[[2-(phosphonomethoxy)ethyl]sulfanyl]pyrimidine. 2-Amino-4-hydroxy-6-[2-(phosphonomethoxy)ethyl]pyrimidine was obtained from the appropriate 2-amino-4-chloropyrimidine derivative by alkaline hydrolysis and ester cleavage. Direct alkylation of 2-amino-4,6-dihydroxypyrimidine afforded a mixture of 2-amino-4,6-bis[2-(phosphonomethoxy)ethyl]- and 2-amino-1,4-bis[2-(phosphonomethoxy)ethyl]pyrimidine. None of the N(1)-[2-(phosphonomethoxy)ethyl] isomers exhibited any antiviral activity against DNA viruses or RNA viruses tested in vitro. On the contrary, the O(6)-isomers, namely the compounds derived from 2,4-diamino-, 2-amino-4-hydroxy-, or 2-amino-4-[2-(phosphonomethoxy)ethoxy]-6-hydroxypyrimidine, inhibited the replication of herpes viruses [herpes simplex type 1 (HSV-1) and type 2 (HSV-2), varicella-zoster virus (VZV), and cytomegalovirus (CMV)] and retroviruses [Moloney sarcoma virus (MSV) and human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2)], their activity being most pronounced against the latter. The antiviral activity was lower if the oxygen at the position 6 was replaced by a sulfur atom, as in 2,4-diamino-6

  15. Covalent intermolecular interaction of the nitric oxide dimer (NO)2

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zheng, Gui-Li; Lv, Gang; Geng, Yi-Zhao; Ji, Qing

    2015-09-01

    Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent character, the result from direct applications of classical simulation methods to the molecular system would be questionable. Here, we analyze the special intermolecular interaction between two NO molecules based on quantum chemical calculation. This weak intermolecular interaction, which is of covalent character, is responsible for the formation of the NO dimer, (NO)2, in its most stable conformation, a cis conformation. The natural bond orbital (NBO) analysis gives an intuitive illustration of the formation of the dimer bonding and antibonding orbitals concomitant with the breaking of the π bonds with bond order 0.5 of the monomers. The dimer bonding is counteracted by partially filling the antibonding dimer orbital and the repulsion between those fully or nearly fully occupied nonbonding dimer orbitals that make the dimer binding rather weak. The direct molecular mechanics (MM) calculation with the UFF force fields predicts a trans conformation as the most stable state, which contradicts the result of quantum mechanics (QM). The lesson from the investigation of this special system is that for the case where intermolecular interaction is of covalent character, a specific modification of the force fields of the molecular simulation method is necessary. Project supported by the National Natural Science Foundation of China (Grant Nos. 90403007 and 10975044), the Key Subject Construction Project of Hebei Provincial Universities, China, the Research Project of Hebei Education Department, China (Grant Nos. Z2012067 and Z2011133), the National Natural Science Foundation of China (Grant No. 11147103), and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y5

  16. The Renaissance of Metal-Pyrimidine Nucleobase Coordination Chemistry.

    PubMed

    Lippert, Bernhard; Sanz Miguel, Pablo J

    2016-08-16

    The significance of metal ions for the function and properties of DNA and RNA, long seen primarily under biological aspects and medicinal uses, has recently gained a renewed momentum. This is a consequence of the advent of novel applications in the fields of materials science, biotechnology, and analytical sensor chemistry that relate to the designed incorporation of transition metal ions into nucleic acid base pairs. Ag(+) and Hg(2+) ions, binding to pyrimidine (pym) nucleobases, represent major players in this development. Interestingly, these metal ions were the ones that some 60 years ago started the field! At the same time, the mentioned metal ions had demonstrated a "special relationship" with the pym nucleobases cytosine, thymine, and uracil! Parallel work conducted with oligonucleotides and model nucleobases fostered numerous significant details of these interactions, in particular when X-ray crystallography was involved, correcting earlier views occasionally. Our own activities during the past three to four decades have focused on, among others, the coordination chemistry of transition and main-group metal ions with pym model nucleobases, with an emphasis on Pt(II) and Pd(II). It has always been our goal to deduce, if possible, the potential relevance of our findings for biological processes. It is interesting to put our data, in particular for trans-a2Pt(II) (a = NH3 or amine), into perspective with those of other metal ions, notably Ag(+) and Hg(2+). Irrespective of major differences in kinetics and lability/inertness between d(8) and d(10) metal ions, there is also a lot of similarity in structural aspects as a result of the preferred linear coordination geometry of these species. Moreover, the apparent clustering of metal ions to the pym nucleobases, which is presumably essential for the formation of nanoclusters on oligonucleotide scaffolds, is impressively reflected in model systems, as are reasons for inter-nucleobase cross-links containing more

  17. Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria

    PubMed Central

    Mühleip, Alexander W.; Joos, Friederike; Wigge, Christoph; Frangakis, Achilleas S.; Kühlbrandt, Werner; Davies, Karen M.

    2016-01-01

    F1Fo-ATP synthases are universal energy-converting membrane protein complexes that synthesize ATP from ADP and inorganic phosphate. In mitochondria of yeast and mammals, the ATP synthase forms V-shaped dimers, which assemble into rows along the highly curved ridges of lamellar cristae. Using electron cryotomography and subtomogram averaging, we have determined the in situ structure and organization of the mitochondrial ATP synthase dimer of the ciliate Paramecium tetraurelia. The ATP synthase forms U-shaped dimers with parallel monomers. Each complex has a prominent intracrista domain, which links the c-ring of one monomer to the peripheral stalk of the other. Close interaction of intracrista domains in adjacent dimers results in the formation of helical ATP synthase dimer arrays, which differ from the loose dimer rows in all other organisms observed so far. The parameters of the helical arrays match those of the cristae tubes, suggesting the unique features of the P. tetraurelia ATP synthase are directly responsible for generating the helical tubular cristae. We conclude that despite major structural differences between ATP synthase dimers of ciliates and other eukaryotes, the formation of ATP synthase dimer rows is a universal feature of mitochondria and a fundamental determinant of cristae morphology. PMID:27402755

  18. Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria.

    PubMed

    Mühleip, Alexander W; Joos, Friederike; Wigge, Christoph; Frangakis, Achilleas S; Kühlbrandt, Werner; Davies, Karen M

    2016-07-26

    F1Fo-ATP synthases are universal energy-converting membrane protein complexes that synthesize ATP from ADP and inorganic phosphate. In mitochondria of yeast and mammals, the ATP synthase forms V-shaped dimers, which assemble into rows along the highly curved ridges of lamellar cristae. Using electron cryotomography and subtomogram averaging, we have determined the in situ structure and organization of the mitochondrial ATP synthase dimer of the ciliate Paramecium tetraurelia. The ATP synthase forms U-shaped dimers with parallel monomers. Each complex has a prominent intracrista domain, which links the c-ring of one monomer to the peripheral stalk of the other. Close interaction of intracrista domains in adjacent dimers results in the formation of helical ATP synthase dimer arrays, which differ from the loose dimer rows in all other organisms observed so far. The parameters of the helical arrays match those of the cristae tubes, suggesting the unique features of the P. tetraurelia ATP synthase are directly responsible for generating the helical tubular cristae. We conclude that despite major structural differences between ATP synthase dimers of ciliates and other eukaryotes, the formation of ATP synthase dimer rows is a universal feature of mitochondria and a fundamental determinant of cristae morphology. PMID:27402755

  19. Monoclonal antibodies with equal specificity to D-dimer and high-molecular-weight fibrin degradation products

    PubMed Central

    Kogan, Alexander E.; Mukharyamova, Kadriya S.; Bereznikova, Anastasia V.; Filatov, Vladimir L.; Koshkina, Ekaterina V.; Bloshchitsyna, Marina N.; Katrukha, Alexey G.

    2016-01-01

    Fibrin degradation results in the formation of fibrin degradation products (FDPs) of different molecular weights, which include D-dimer. Commercial D-dimer assays recognize multiple forms of FDP with different specificity. As a result, the absence of an international D-dimer standard and the marked discrepancy in the D-dimer values in the same samples measured by assays from different manufacturers have become the primary problems that clinicians face in the D-dimer determination. We consider that an assay with equal specificity to all FDP forms regardless of their molecular weights could help to solve these problems. We aimed to produce mAbs that could equally recognize high-molecular-weight FDP (HMW FDP) and D-dimer. mAbs against D-dimer were produced. The HMW FDP/D-dimer ratios in plasma samples were analyzed following protein separation by gel filtration using the developed fluoroimmunoassay. A sandwich immunoassay with equal specificity to HMW FDP and D-dimer was developed and applied to determine HMW FDP/D-dimer ratios in patients with different diseases. Although the HMW FDP levels prevailed in thrombotic patients, the FDP and D-dimer levels were comparable in septic patients. Meanwhile, the D-dimer levels often exceeded the HMW FDP levels in patients who had undergone surgery. The ‘D-dimer’ levels that were detected by different assays also varied greatly depending on the assay specificities to FDP and D-dimer. Our findings show that the introduction of assays with equal specificities to FDP and D-dimer in clinical practice is a possible way of standardizing D-dimer measurements. PMID:26656897

  20. Kinetics of DNA tile dimerization.

    PubMed

    Jiang, Shuoxing; Yan, Hao; Liu, Yan

    2014-06-24

    Investigating how individual molecular components interact with one another within DNA nanoarchitectures, both in terms of their spatial and temporal interactions, is fundamentally important for a better understanding of their physical behaviors. This will provide researchers with valuable insight for designing more complex higher-order structures that can be assembled more efficiently. In this report, we examined several spatial factors that affect the kinetics of bivalent, double-helical (DH) tile dimerization, including the orientation and number of sticky ends (SEs), the flexibility of the double helical domains, and the size of the tiles. The rate constants we obtained confirm our hypothesis that increased nucleation opportunities and well-aligned SEs accelerate tile-tile dimerization. Increased flexibility in the tiles causes slower dimerization rates, an effect that can be reversed by introducing restrictions to the tile flexibility. The higher dimerization rates of more rigid tiles results from the opposing effects of higher activation energies and higher pre-exponential factors from the Arrhenius equation, where the pre-exponential factor dominates. We believe that the results presented here will assist in improved implementation of DNA tile based algorithmic self-assembly, DNA based molecular robotics, and other specific nucleic acid systems, and will provide guidance to design and assembly processes to improve overall yield and efficiency. PMID:24794259

  1. Prebiotic syntheses of purines and pyrimidines

    NASA Technical Reports Server (NTRS)

    Basile, B.; Oro, J.; Lazcano, A.

    1984-01-01

    The results of experimental and theoretical investigations of the prebiotic synthesis of purines and pyramidines are surveyed. Topics examined include the synthesis of purines from HCN via 4,5-disubstituted imidazole derivatives in aqueous solutions or liquid NH3, simultaneous formation of amino acids and purines by electron irradiation of CH4-NH3-H2O mixtures, synthesis of pyrimadines from cynoacetylene, energetics, formation of bases under anhydrous or concentrated conditions, formation of bases under dilute conditions, Fischer-Tropsch-type reactions, and the role of activated intermediates. It is pointed out that the precursor compounds have been detected in the interstellar medium, on Titan, and in other solar-system bodies, and that solar-nebula HCN concentrations of the order of 1-10 mM have been estimated on the basis of meteorite measurements.

  2. Synthesis pharmacological evaluation and docking studies of pyrimidine derivatives.

    PubMed

    Giles, D; Roopa, Karki; Sheeba, F R; Gurubasavarajaswamy, P M; Divakar, Goli; Vidhya, Thomas

    2012-12-01

    A new group of pyrimidine derivatives of indane-1,3-dione were synthesized aiming at the synthesis of new compounds acting as analgesic, anti-inflammatory and antimicrobial activity in a single component. The title compounds (3a-l) were synthesized from chalcone derivatives of indane-1,3-dione (2a-l) through cyclization reaction with urea. The synthesized compounds were characterized by FT-IR, (1)H NMR, mass spectral data, elemental analysis and evaluated for anti-inflammatory, analgesic, antibacterial and antifungal activities. The most active compound 3e, was evaluated for its ulcerogenicity. Good anti-inflammatory property was observed for chlorophenyl substituted pyrimidine derivatives. It mainly binds with Pro 218 of 1CX2, and the ligand could have caused much conformational changes in the protein structure than other derivatives. It also exhibits good analgesic and antimicrobial agent in a single component. PMID:23159805

  3. Regulation of Pyrimidine Biosynthesis in Saccharomyces cerevisiae1

    PubMed Central

    Lacroute, Francois

    1968-01-01

    Biochemical steps of the pyrimidine pathway have been found to be the same in yeast as in bacteria, and all except one step have been characterized. The activities of the first two enzymes, carbamoyl phosphate synthetase and aspartic transcarbamylase, are simultaneously controlled by feedback inhibition and repression. Moreover, these enzymes are coded by the same genetic region (ura-2) and seem to form a single enzymatic complex. The enzymes that follow later in the pathway are induced in a sequential way by the intermediary products and are insensitive to pyrimidine repression. The corresponding genes (ura-4, ura-1, ura-3) are not linked to each other or to ura-2, the gene for carbamoyl phosphate synthetase and aspartic transcarbamylase. Mutants that have simultaneously lost feedback inhibition by uridine triphosphate for carbamoyl phosphate synthetase and for aspartic transcarbamylase have been found and mapped in the gene ura-2. PMID:5651325

  4. Infrared Spectroscopy of Charge Transfer Complexes of Purines and Pyrimidines

    SciTech Connect

    Rathod, Pravinsinh I.; Oza, A. T.

    2011-10-20

    The FTIR spectra of charge transfer complexes of purines and pyrimidines with organic acceptors such as TCNQ, TCNE, DDQ, chloranil and iodine are obtained and studied in the present work. Adenine, guanine, thymine, cytosine and uracil are the purines and pyrimidines which are found as constituent of DNA and RNA. Charge transfer induced hydrogen bonding is concluded on the basis of indirect transitions observed in the infrared range in these CTCs. Some CTCs show gaussian bands revealing delocalization of charge carriers. The CTCs show interband transition in three-dimensions rather than two-dimensions unlike CTCs of amino acids. There is no extended hydrogen bonded network spanning the whole crystal. This leads to indirect transition due to locally deformed lattice furnishing a phonon-assisted transition.

  5. Electron- and proton-induced ionization of pyrimidine

    SciTech Connect

    Champion, Christophe; Quinto, Michele; Weck, Philippe F

    2015-03-27

    This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.

  6. Electron- and proton-induced ionization of pyrimidine

    DOE PAGESBeta

    Champion, Christophe; Quinto, Michele; Weck, Philippe F

    2015-03-27

    This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolutemore » total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.« less

  7. Absolute total and partial dissociative cross sections of pyrimidine at electron and proton intermediate impact velocities

    SciTech Connect

    Wolff, Wania Luna, Hugo; Sigaud, Lucas; Montenegro, Eduardo C.; Tavares, Andre C.

    2014-02-14

    Absolute total non-dissociative and partial dissociative cross sections of pyrimidine were measured for electron impact energies ranging from 70 to 400 eV and for proton impact energies from 125 up to 2500 keV. MOs ionization induced by coulomb interaction were studied by measuring both ionization and partial dissociative cross sections through time of flight mass spectrometry and by obtaining the branching ratios for fragment formation via a model calculation based on the Born approximation. The partial yields and the absolute cross sections measured as a function of the energy combined with the model calculation proved to be a useful tool to determine the vacancy population of the valence MOs from which several sets of fragment ions are produced. It was also a key point to distinguish the dissociation regimes induced by both particles. A comparison with previous experimental results is also presented.

  8. Complex self-assembly of pyrimido[4,5-d]pyrimidine nucleoside supramolecular structures

    NASA Astrophysics Data System (ADS)

    Zhao, Hang; Guo, Xiurong; He, Shiliang; Zeng, Xin; Zhou, Xinglong; Zhang, Chaoliang; Hu, Jing; Wu, Xiaohua; Xing, Zhihua; Chu, Liangyin; He, Yang; Chen, Qianming

    2014-01-01

    Supramolecular self-assembly is not only one of the chemical roots of biological structure but is also drawing attention in different industrial fields. Here we study the mechanism of the formation of a complex flower-shaped supramolecular structure of pyrimido[4,5-d]pyrimidine nucleosides by dynamic light scattering, scanning electron microscopy, differential scanning calorimetry, nuclear magnetic resonance and X-ray analysis. Upon removing the hydroxyl group of sugars, different flower-shaped superstructures can be produced. These works demonstrate that complex self-assembly can indeed be attained through hierarchical non-covalent interactions of single molecules. Furthermore, chimerical structures built from molecular recognition by these monomers indicate their potential in other fields if combined with other chemical entities.

  9. Single residue modification of only one dimer within the hemoglobin tetramer reveals autonomous dimer function

    NASA Astrophysics Data System (ADS)

    Ackers, Gary K.; Dalessio, Paula M.; Lew, George H.; Daugherty, Margaret A.; Holt, Jo M.

    2002-07-01

    The mechanism of cooperativity in the human hemoglobin tetramer (a dimer of dimers) has historically been modeled as a simple two-state system in which a low-affinity structural form (T) switches, on ligation, to a high-affinity form (R), yielding a net loss of hydrogen bonds and salt bridges in the dimer-dimer interface. Modifications that weaken these cross-dimer contacts destabilize the quaternary T tetramer, leading to decreased cooperativity and enhanced ligand affinity, as demonstrated in many studies on symmetric double modifications, i.e., a residue site modified in both - or both -subunits. In this work, hybrid tetramers have been prepared with only one modified residue, yielding molecules composed of a wild-type dimer and a modified dimer. It is observed that the cooperative free energy of ligation to the modified dimer is perturbed to the same extent whether in the hybrid tetramer or in the doubly modified tetramer. The cooperative free energy of ligation to the wild-type dimer is unperturbed, even in the hybrid tetramer, and despite the overall destabilization of the T tetramer by the modification. This asymmetric response by the two dimers within the same tetramer shows that loss of dimer-dimer contacts is not communicated across the dimer-dimer interface, but is transmitted through the dimer that bears the modified residue. These observations are interpreted in terms of a previously proposed dimer-based model of cooperativity with an additional quaternary (T/R) component.

  10. Inhibition of dengue virus through suppression of host pyrimidine biosynthesis.

    PubMed

    Wang, Qing-Yin; Bushell, Simon; Qing, Min; Xu, Hao Ying; Bonavia, Aurelio; Nunes, Sandra; Zhou, Jing; Poh, Mee Kian; Florez de Sessions, Paola; Niyomrattanakit, Pornwaratt; Dong, Hongping; Hoffmaster, Keith; Goh, Anne; Nilar, Shahul; Schul, Wouter; Jones, Susan; Kramer, Laura; Compton, Teresa; Shi, Pei-Yong

    2011-07-01

    Viral replication relies on the host to supply nucleosides. Host enzymes involved in nucleoside biosynthesis are potential targets for antiviral development. Ribavirin (a known antiviral drug) is such an inhibitor that suppresses guanine biosynthesis; depletion of the intracellular GTP pool was shown to be the major mechanism to inhibit flavivirus. Along similar lines, inhibitors of the pyrimidine biosynthesis pathway could be targeted for potential antiviral development. Here we report on a novel antiviral compound (NITD-982) that inhibits host dihydroorotate dehydrogenase (DHODH), an enzyme required for pyrimidine biosynthesis. The inhibitor was identified through screening 1.8 million compounds using a dengue virus (DENV) infection assay. The compound contains an isoxazole-pyrazole core structure, and it inhibited DENV with a 50% effective concentration (EC(50)) of 2.4 nM and a 50% cytotoxic concentration (CC(50)) of >5 μM. NITD-982 has a broad antiviral spectrum, inhibiting both flaviviruses and nonflaviviruses with nanomolar EC(90)s. We also show that (i) the compound inhibited the enzymatic activity of recombinant DHODH, (ii) an NITD-982 analogue directly bound to the DHODH protein, (iii) supplementing the culture medium with uridine reversed the compound-mediated antiviral activity, and (iv) DENV type 2 (DENV-2) variants resistant to brequinar (a known DHODH inhibitor) were cross resistant to NITD-982. Collectively, the results demonstrate that the compound inhibits DENV through depleting the intracellular pyrimidine pool. In contrast to the in vitro potency, the compound did not show any efficacy in the DENV-AG129 mouse model. The lack of in vivo efficacy is likely due to the exogenous uptake of pyrimidine from the diet or to a high plasma protein-binding activity of the current compound. PMID:21507975

  11. Pyrimidine starvation induced by adenosine in fibroblasts and lymphoid cells: role of adenosine deaminase.

    PubMed

    Green, H; Chan, T

    1973-11-23

    In the presence of 10(-4) to 10(-5) molar adenosine, established cell lines of fibroblastic or lymphoid origin die of pyrimidine starvation. Less than lethal concentrations inhibit cell growth. Over a broad concentration range, the effects of adenosine are prevented by providing a suitable pyrimidine source. We suggest that the recently described immune deficiency disease associated with absence of adenosine deaminase may be the result of pyrimidine starvation induced by adenosine nucleotides in cells of the lymphoid system. PMID:4795749

  12. 2-Alkyl-4-aryl-pyrimidine fused heterocycles as selective 5-HT2A antagonists.

    PubMed

    Shireman, Brock T; Dvorak, Curt A; Rudolph, Dale A; Bonaventure, Pascal; Nepomuceno, Diane; Dvorak, Lisa; Miller, Kirsten L; Lovenberg, Timothy W; Carruthers, Nicholas I

    2008-03-15

    The synthesis and SAR for a novel series of 2-alkyl-4-aryl-tetrahydro-pyrido-pyrimidines and 2-alkyl-4-aryl-tetrahydro-pyrimido-azepines is described. Representative compounds were shown to be subtype selective 5-HT(2A) antagonists. Optimal placement of a basic nitrogen relative to the pyrimidine and the presence of a 4-fluorophenyl group in the pyrimidine 4-position was found to have a profound effect on affinity and selectivity. PMID:18282705

  13. Theoretical Study of Carborane:Pyridine and Carborane:Pyrimidine Aggregates and Polymers

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Han, Zhong-Kang; Shao, Nan; Mei, Wai-Ning

    The carboranes are cross-linked by the pyridines and pyrimidines to form aggregates and polymers. Their geometries and electronic structures are studied by the first-principle calculations. Our results show different connections influence the orientations of the aromatic rings of pyridines and pyrimidines, which would highly affect the electronic structures of carborane:pyridine and carborane:pyrimidine aggregates and polymers. This study might be helpful for the future design of new class of semiconducting boron carbides.

  14. Synthesis, cytostatic activity and ADME properties of C-5 substituted and N-acyclic pyrimidine derivatives.

    PubMed

    Kraljević, Tatjana Gazivoda; Klika, Mateja; Kralj, Marijeta; Martin-Kleiner, Irena; Jurmanović, Stella; Milić, Astrid; Padovan, Jasna; Raić-Malić, Silvana

    2012-01-01

    The synthesis of the novel 5-alkyl pyrimidine derivatives, 5,6-dihydrofuro[2,3-d]pyrimidines and 5-alkyl N-methoxymethyl pyrimidine derivatives and evaluation of their cytostatic activities are described. The mechanism of antiproliferative effect of 5-(2-chloroethyl)-substituted pyrimidine 3 that exerted the pronounced cytostatic activity was studied in further details on colon carcinoma (HCT116) cells. The cell cycle perturbation analysis demonstrated severe DNA damage (G2/M arrest) pointing to a potential DNA alkylating ability of 3. Preliminary ADME data of 3 and its 6-methylated structural congener (6-Me-3) showed their high permeability and good metabolic stability. PMID:22130132

  15. The Rate of Vitamin A Dimerization in Lipofuscinogenesis, Fundus Autofluorescence, Retinal Senescence and Degeneration.

    PubMed

    Washington, Ilyas; Saad, Leonide

    2016-01-01

    One of the earliest events preceding several forms of retinal degeneration is the formation and accumulation of vitamin A dimers in the retinal pigment epithelium (RPE) and underlying Bruch's membrane (BM). Such degenerations include Stargardt disease, Best disease, forms of retinitis pigmentosa, and age-related macular degeneration (AMD). Since their discovery in the 1990's, dimers of vitamin A, have been postulated as chemical triggers driving retinal senescence and degeneration. There is evidence to suggest that the rate at which vitamin A dimerizes and the eye's response to the dimerization products may dictate the retina's lifespan. Here, we present outstanding questions, finding the answers to which may help to elucidate the role of vitamin A dimerization in retinal degeneration. PMID:26427431

  16. Assembly Pathway of Hepatitis B Core Virus-like Particles from Genetically Fused Dimers*

    PubMed Central

    Holmes, Kris; Shepherd, Dale A.; Ashcroft, Alison E.; Whelan, Mike; Rowlands, David J.; Stonehouse, Nicola J.

    2015-01-01

    Macromolecular complexes are responsible for many key biological processes. However, in most cases details of the assembly/disassembly of such complexes are unknown at the molecular level, as the low abundance and transient nature of assembly intermediates make analysis challenging. The assembly of virus capsids is an example of such a process. The hepatitis B virus capsid (core) can be composed of either 90 or 120 dimers of coat protein. Previous studies have proposed a trimer of dimers as an important intermediate species in assembly, acting to nucleate further assembly by dimer addition. Using novel genetically-fused coat protein dimers, we have been able to trap higher-order assembly intermediates and to demonstrate for the first time that both dimeric and trimeric complexes are on pathway to virus-like particle (capsid) formation. PMID:25953902

  17. Functional Roles of the Dimer-Interface Residues in Human Ornithine Decarboxylase

    PubMed Central

    Lee, Chien-Yun; Liu, Yi-Liang; Lin, Chih-Li; Liu, Guang-Yaw; Hung, Hui-Chih

    2014-01-01

    Ornithine decarboxylase (ODC) catalyzes the decarboxylation of ornithine to putrescine and is the rate-limiting enzyme in the polyamine biosynthesis pathway. ODC is a dimeric enzyme, and the active sites of this enzyme reside at the dimer interface. Once the enzyme dissociates, the enzyme activity is lost. In this paper, we investigated the roles of amino acid residues at the dimer interface regarding the dimerization, protein stability and/or enzyme activity of ODC. A multiple sequence alignment of ODC and its homologous protein antizyme inhibitor revealed that 5 of 9 residues (residues 165, 277, 331, 332 and 389) are divergent, whereas 4 (134, 169, 294 and 322) are conserved. Analytical ultracentrifugation analysis suggested that some dimer-interface amino acid residues contribute to formation of the dimer of ODC and that this dimerization results from the cooperativity of these interface residues. The quaternary structure of the sextuple mutant Y331S/Y389D/R277S/D332E/V322D/D134A was changed to a monomer rather than a dimer, and the Kd value of the mutant was 52.8 µM, which is over 500-fold greater than that of the wild-type ODC (ODC_WT). In addition, most interface mutants showed low but detectable or negligible enzyme activity. Therefore, the protein stability of these interface mutants was measured by differential scanning calorimetry. These results indicate that these dimer-interface residues are important for dimer formation and, as a consequence, are critical for enzyme catalysis. PMID:25140796

  18. Mechanism of FGF receptor dimerization and activation

    NASA Astrophysics Data System (ADS)

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise.

  19. Mechanism of FGF receptor dimerization and activation.

    PubMed

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  20. Mechanism of FGF receptor dimerization and activation

    PubMed Central

    Sarabipour, Sarvenaz; Hristova, Kalina

    2016-01-01

    Fibroblast growth factors (fgfs) are widely believed to activate their receptors by mediating receptor dimerization. Here we show, however, that the FGF receptors form dimers in the absence of ligand, and that these unliganded dimers are phosphorylated. We further show that ligand binding triggers structural changes in the FGFR dimers, which increase FGFR phosphorylation. The observed effects due to the ligands fgf1 and fgf2 are very different. The fgf2-bound dimer structure ensures the smallest separation between the transmembrane (TM) domains and the highest possible phosphorylation, a conclusion that is supported by a strong correlation between TM helix separation in the dimer and kinase phosphorylation. The pathogenic A391E mutation in FGFR3 TM domain emulates the action of fgf2, trapping the FGFR3 dimer in its most active state. This study establishes the existence of multiple active ligand-bound states, and uncovers a novel molecular mechanism through which FGFR-linked pathologies can arise. PMID:26725515

  1. Singlet fission in pentacene dimers.

    PubMed

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B; Chernick, Erin T; Casillas, Rubén; Basel, Bettina S; Thoss, Michael; Tykwinski, Rik R; Guldi, Dirk M

    2015-04-28

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley-Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  2. Singlet fission in pentacene dimers

    PubMed Central

    Zirzlmeier, Johannes; Lehnherr, Dan; Coto, Pedro B.; Chernick, Erin T.; Casillas, Rubén; Basel, Bettina S.; Thoss, Michael; Tykwinski, Rik R.; Guldi, Dirk M.

    2015-01-01

    Singlet fission (SF) has the potential to supersede the traditional solar energy conversion scheme by means of boosting the photon-to-current conversion efficiencies beyond the 30% Shockley–Queisser limit. Here, we show unambiguous and compelling evidence for unprecedented intramolecular SF within regioisomeric pentacene dimers in room-temperature solutions, with observed triplet quantum yields reaching as high as 156 ± 5%. Whereas previous studies have shown that the collision of a photoexcited chromophore with a ground-state chromophore can give rise to SF, here we demonstrate that the proximity and sufficient coupling through bond or space in pentacene dimers is enough to induce intramolecular SF where two triplets are generated on one molecule. PMID:25858954

  3. Fiber optic D dimer biosensor

    DOEpatents

    Glass, R.S.; Grant, S.A.

    1999-08-17

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy. 4 figs.

  4. Fiber optic D dimer biosensor

    DOEpatents

    Glass, Robert S.; Grant, Sheila A.

    1999-01-01

    A fiber optic sensor for D dimer (a fibrinolytic product) can be used in vivo (e.g., in catheter-based procedures) for the diagnosis and treatment of stroke-related conditions in humans. Stroke is the third leading cause of death in the United States. It has been estimated that strokes and stroke-related disorders cost Americans between $15-30 billion annually. Relatively recently, new medical procedures have been developed for the treatment of stroke. These endovascular procedures rely upon the use of microcatheters. These procedures could be facilitated with this sensor for D dimer integrated with a microcatheter for the diagnosis of clot type, and as an indicator of the effectiveness, or end-point of thrombolytic therapy.

  5. An RSA study of dimers

    NASA Astrophysics Data System (ADS)

    Ciesla, Michal; Barbasz, Jakub

    2012-03-01

    The first theoretical study of a dimer adsorption process at a homogeneous surface is presented. By using the RSA algorithm, we show example monolayers, discuss estimations of random jamming coverages and measure the surface blocking function, which could be used for calculating real systems kinetics. We also find the correlation function for coverages generated and analyse the orientational ordering inside the adsorbed monolayer. The results are compared with theoretical and experimental data.

  6. Synchronized oscillations of dimers in biphasic charged fd-virus suspensions

    NASA Astrophysics Data System (ADS)

    Kang, K.; Piao, S. H.; Choi, H. J.

    2016-08-01

    Micron-sized colloidal spheres that are dispersed in an isotropic-nematic biphasic host suspension of charged rods (fd-virus particles) are shown to spontaneously form dimers, which exhibit a synchronized oscillatory motion. Dimer formation is not observed in the monophase of isotropic and nematic suspensions. The synchronized oscillations of dimers are connected to the inhomogeneous state of the host suspension of charged rods (fd viruses) where nematic domains are in coexistence with isotropic regions. The synchronization of oscillations occurs in bulk states, in the absence of an external field. With a low field strength of an applied electric field, the synchronization is rather reduced, but it recovers again when the field is turned off. In this Rapid Communication, we report this observation as an example of the strange attractor, occurring in the mixture of PS (polystyrene) dimers in an isotropic-nematic coexistence biphasic fd-virus network. Furthermore, we highlight that the synchronization of PS-dimer oscillations is the result of a global bifurcation diagram, driven by a delicate balance between the short-attractive "twisted" interaction of PS dimers and long-ranged electrostatic repulsive interactions of charged fd rods. The interest is then in the local enhancement of "twist-nematic" elasticity in reorientation of the dimer oscillations. An analysis of image-time correlations is provided with the data movies and Fourier transforms of averaged orientations for the synchronized oscillations of dimers in the biphasic I -N coexistence concentration of charged fd-virus suspensions.

  7. A Model for Dimerization of the SOX Group E Transcription Factor Family

    PubMed Central

    Ramsook, Sarah N.; Ni, Joyce; Shahangian, Shokofeh; Vakiloroayaei, Ana; Khan, Naveen; Kwan, Jamie J.

    2016-01-01

    Group E members of the SOX transcription factor family include SOX8, SOX9, and SOX10. Preceding the high mobility group (HMG) domain in each of these proteins is a thirty-eight amino acid region that supports the formation of dimers on promoters containing tandemly inverted sites. The purpose of this study was to obtain new structural insights into how the dimerization region functions with the HMG domain. From a mutagenic scan of the dimerization region, the most essential amino acids of the dimerization region were clustered on the hydrophobic face of a single, predicted amphipathic helix. Consistent with our hypothesis that the dimerization region directly contacts the HMG domain, a peptide corresponding to the dimerization region bound a preassembled HMG-DNA complex. Sequence conservation among Group E members served as a basis to identify two surface exposed amino acids in the HMG domain of SOX9 that were necessary for dimerization. These data were combined to make a molecular model that places the dimerization region of one SOX9 protein onto the HMG domain of another SOX9 protein situated at the opposing site of a tandem promoter. The model provides a detailed foundation for assessing the impact of mutations on SOX Group E transcription factors. PMID:27532129

  8. Redox properties of metalloporphyrin dimers

    SciTech Connect

    Collman, J.P.; Prodolliet, J.W.; Leidner, C.R.

    1986-05-28

    Cyclic and rotated disk voltammetry of two metalloporphyrin dimers, (Ru(OEP))/sub 2/ and (Os(OEP))/sub 2/, exhibit four oxidations and two reductions for each compound which are all chemically and electrochemically reversible on the voltammetric time scale. Comparison of the formal potentials of the six couples suggests that the first two oxidations are metal-centered redox processes; the remaining four couples are likely to be ligand centered. Controlled chemical oxidations using ferricinium hexafluorophosphate, silver tetrafluoroborate, and tris(4-bromophenyl)ammonium hexachloroantimonate cleanly generate the monocations (M(OEP))/sub 2//sup +/ and the dications (M(OEP))/sub 2//sup 2 +/. NMR, ESR, and electronic spectroscopy of these dimeric, cationic products support the assignment of the two oxidations as metal centered. These oxidations permit the preparation of the two series of metalloporphyrin dimers: paramagnetic (M(OEP))/sub 2/ with bond order = 2, paramagnetic (M(OEP))/sub 2//sup +/ with bond order = 2.5, and diamagnetic (M(OEP))/sub 2//sup 2 +/ with bond order = 3.

  9. Enzyme-Substrate Binding Kinetics Indicate That Photolyase Recognizes an Extrahelical Cyclobutane Thymidine Dimer.

    PubMed

    Schelvis, Johannes P M; Zhu, Xuling; Gindt, Yvonne M

    2015-10-13

    Escherichia coli DNA photolyase is a DNA-repair enzyme that repairs cyclobutane pyrimidine dimers (CPDs) that are formed on DNA upon exposure of cells to ultraviolet light. The light-driven electron-transfer mechanism by which photolyase catalyzes the CPD monomerization after the enzyme-substrate complex has formed has been studied extensively. However, much less is understood about how photolyase recognizes CPDs on DNA. It has been clearly established that photolyase, like many other DNA-repair proteins, requires flipping of the CPD site into an extrahelical position. Photolyase is unique in that it requires the two dimerized pyrimidine bases to flip rather than just a single damaged base. In this paper, we perform direct measurements of photolyase binding to CPD-containing undecamer DNA that has been labeled with a fluorophore. We find that the association constant of ∼2 × 10(6) M(-1) is independent of the location of the CPD on the undecamer DNA. The binding kinetics of photolyase are best described by two rate constants. The slower rate constant is ∼10(4) M(-1) s(-1) and is most likely due to steric interference of the fluorophore during the binding process. The faster rate constant is on the order of 2.5 × 10(5) M(-1) s(-1) and reflects the binding of photolyase to the CPD on the DNA. This result indicates that photolyase finds and binds to a CPD lesion 100-4000 times slower than other DNA-repair proteins. In light of the existing literature, we propose a mechanism in which photolyase recognizes a CPD that is flipped into an extrahelical position via a three-dimensional search. PMID:26393415

  10. Kinetics of cyclobutane thymine dimer splitting by DNA photolyase directly monitored in the UV

    PubMed Central

    Thiagarajan, Viruthachalam; Byrdin, Martin; Eker, André P. M.; Müller, Pavel; Brettel, Klaus

    2011-01-01

    CPD photolyase uses light to repair cyclobutane pyrimidine dimers (CPDs) formed between adjacent pyrimidines in UV-irradiated DNA. The enzyme harbors an FAD cofactor in fully reduced state (FADH-). The CPD repair mechanism involves electron transfer from photoexcited FADH- to the CPD, splitting of its intradimer bonds, and electron return to restore catalytically active FADH-. The two electron transfer processes occur on time scales of 10-10 and 10-9 s, respectively. Until now, CPD splitting itself has only been poorly characterized by experiments. Using a previously unreported transient absorption setup, we succeeded in monitoring cyclobutane thymine dimer repair in the main UV absorption band of intact thymine at 266 nm. Flavin transitions that overlay DNA-based absorption changes at 266 nm were monitored independently in the visible and subtracted to obtain the true repair kinetics. Restoration of intact thymine showed a short lag and a biexponential rise with time constants of 0.2 and 1.5 ns. We assign these two time constants to splitting of the intradimer bonds (creating one intact thymine and one thymine anion radical T∘-) and electron return from T∘- to the FAD cofactor with recovery of the second thymine, respectively. Previous model studies and computer simulations yielded various CPD splitting times between < 1 ps and < 100 ns. Our experimental results should serve as a benchmark for future efforts to model enzymatic photorepair. The technique and methods developed here may be applied to monitor other photoreactions involving DNA. PMID:21606324

  11. Molecular analysis of plasmid DNA repair within ultraviolet-irradiated Escherichia coli. II. UvrABC-initiated excision repair and photolyase-catalyzed dimer monomerization

    SciTech Connect

    Gruskin, E.A.; Lloyd, R.S.

    1988-09-05

    In this study, a novel approach to the analysis of DNA repair in Escherichia coli was employed which allowed the first direct determination of the mechanisms by which endogenous DNA repair enzymes encounter target sites in vivo. An in vivo plasmid DNA repair analysis was employed to discriminate between two possible mechanisms of target site location: a processive DNA scanning mechanism or a distributive random diffusion mechanism. The results demonstrate that photolyase acts by a distributive mechanism within E. coli. In contrast, UvrABC-initiated excision repair occurs by a limited processive DNA scanning mechanism. A majority of the dimer sites on a given plasmid molecule were repaired prior to the dissociation of the UvrABC complex. Furthermore, plasmid DNA repair catalyzed by the UvrABC complex occurs without a detectable accumulation of nicked plasmid intermediates despite the fact that the UvrABC complex generates dual incisions in the DNA at the site of a pyrimidine dimer. Therefore, the binding or assembly of the UvrABC complex on DNA at the site of a pyrimidine dimer represents the rate-limiting step in the overall process of UvrABC-initiated excision repair in vivo.

  12. Structural requirements for nucleocapsid protein-mediated dimerization of avian leukosis virus RNA.

    PubMed

    Ali, Moez Ben; Chaminade, Françoise; Kanevsky, Igor; Ennifar, Eric; Josset, Laurence; Ficheux, Damien; Darlix, Jean-Luc; Fossé, Philippe

    2007-09-28

    The avian leukosis virus (ALV) belongs to the alpha group of retroviruses that are widespread in nature. The 5'-untranslated region of ALV genome contains the L3 element that is important for virus infectivity and the formation of an unstable RNA dimer in vitro. The L3 sequence is predicted to fold into a long stem-loop structure with two internal loops and an apical one. Phylogenetic analysis predicts that the L3 stem-loop is conserved in alpharetroviruses. Furthermore, a significant selection mechanism maintains a palindrome in the apical loop. The nucleocapsid protein of the alpharetroviruses (NCp12) is required for RNA dimer formation and replication in vivo. It is not known whether L3 can be an NCp12-mediated RNA dimerization site able to bind NCp12 with high affinity. Here, we report that NCp12 chaperones formation of a stable ALV RNA dimer through L3. To investigate the NCp12-mediated L3 dimerization reaction, we performed site-directed mutagenesis, gel retardation and heterodimerization assays and analysis of thermostability of dimeric RNAs. We show that the affinity of NCp12 for L3 is lower than its affinity for the microPsi RNA packaging signal. Results show that conservation of a long stem-loop structure and a loop-loop interaction are not required for NCp12-mediated L3 dimerization. We show that the L3 apical stem-loop is sufficient to form an extended duplex and the whole stem-loop L3 cannot be converted by NCp12 into a duplex extending throughout L3. Three-dimensional modelling of the stable L3 dimer supports the notion that the extended duplex may represent the minimal dimer linkage structure found in the genomic RNA. PMID:17706668

  13. A redox-dependent dimerization switch regulates activity and tolerance for reactive oxygen species of barley seed glutathione peroxidase.

    PubMed

    Navrot, Nicolas; Skjoldager, Nicklas; Bunkenborg, Jakob; Svensson, Birte; Hägglund, Per

    2015-05-01

    Monomeric and dimeric forms of recombinant barley (Hordeum vulgare subsp. vulgare) glutathione peroxidase 2 (HvGpx2) are demonstrated to display distinctly different functional properties in vitro. Monomeric HvGpx2 thus has five fold higher catalytic efficiency than the dimer towards tert-butyl hydroperoxide, but is more sensitive to inactivation by hydrogen peroxide. Treatment of the monomer with hydrogen peroxide results in dimer formation. This observed new behavior of a plant glutathione peroxidase suggests a mechanism involving a switch from a highly catalytically competent monomer to a less active, but more oxidation-resistant dimer. PMID:25796076

  14. RNA Binding-independent Dimerization of Adenosine Deaminases Acting on RNA and Dominant Negative Effects of Nonfunctional Subunits on Dimer Functions*

    PubMed Central

    Valente, Louis; Nishikura, Kazuko

    2010-01-01

    RNA editing that converts adenosine to inosine in double-stranded RNA (dsRNA) is mediated by adenosine deaminases acting on RNA (ADAR). ADAR1 and ADAR2 form respective homodimers, and this association is essential for their enzymatic activities. In this investigation, we set out experiments aiming to determine whether formation of the homodimer complex is mediated by an amino acid interface made through protein-protein interactions of two monomers or via binding of the two subunits to a dsRNA substrate. Point mutations were created in the dsRNA binding domains (dsRBDs) that abolished all RNA binding, as tested for two classes of ADAR ligands, long and short dsRNA. The mutant ADAR dimer complexes were intact, as demonstrated by their ability to co-purify in a sequential affinity-tagged purification and also by their elution at the dimeric fraction position on a size fractionation column. Our results demonstrated ADAR dimerization independent of their binding to dsRNA, establishing the importance of protein-protein interactions for dimer formation. As expected, these mutant ADARs could no longer perform their catalytic function due to the loss in substrate binding. Surprisingly, a chimeric dimer consisting of one RNA binding mutant monomer and a wild type partner still abolished its ability to bind and edit its substrate, indicating that ADAR dimers require two subunits with functional dsRBDs for binding to a dsRNA substrate and then for editing activity to occur. PMID:17428802

  15. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, Robert H.; Brown, Stephen H.

    1989-01-01

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  16. Photochemical dimerization and functionalization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and silanes

    DOEpatents

    Crabtree, R.H.; Brown, S.H.

    1989-10-17

    The space-time yield and/or the selectivity of the photochemical dimerization of alkanes, ethers, primary and secondary alcohols, phosphine oxides and primary, secondary and tertiary silanes with Hg and U.V. light is enhanced by refluxing the substrate in the irradiated reaction zone at a temperature at which the dimer product condenses and remains condensed promptly upon its formation. Cross-dimerization of the alkanes, ethers and silanes with primary alcohols is disclosed, as is the functionalization to aldehydes of the alkanes with carbon monoxide.

  17. Relative stabilities and the spectral signatures of stacked and hydrogen-bonded dimers of serotonin

    NASA Astrophysics Data System (ADS)

    Dev, S.; Giri, K.; Majumder, M.; Sathyamurthy, N.

    2015-10-01

    The O-HṡṡṡN hydrogen-bonded dimer of serotonin is shown to be more stable than the stacked dimer in its ground electronic state, by using the Møller-Plesset second-order perturbation theory (MP2) and the 6-31g** basis set. The vertical excitation energy for the lowest π → π* transition for the monomer as well as the dimer is predicted by time-dependent density functional theory. The experimentally observed red shift of excitation wavelength on oligomerisation is explained in terms of the change in the HOMO-LUMO energy gap due to complex formation. The impact of dimer formation on the proton magnetic resonance spectrum of serotonin monomer is also examined.

  18. 2,4-Diamino-5-(4-chloro­phen­yl)-6-ethyl­pyrimidin-1-ium 2-propanamido­benzoate

    PubMed Central

    Natarajan, Sampath; Mathews, Rita

    2011-01-01

    In the title salt, C12H14ClN4 +·C10H10NO3 −, zwitterionic N—H⋯O inter­actions form an R 2 2(8) ring. The crystal structure is stabilized by N—H⋯O and N—H⋯N hydrogen bonds involving two different eight-membered rings. An N—H⋯O inter­action occurs between the pyrimidine ring (donor) and carboxyl­ate group (acceptor) while the other ring is formed by N—H⋯N inter­actions, which form a dimer between two symmetry-related salts. An intra­molecular N—H⋯O hydrogen bond forms a six-membered ring in the benzoate. Inter­molecular C—H⋯O inter­actions are also observed. PMID:22065507

  19. 2,4-Diamino-5-(4-chloro­phen­yl)-6-ethyl­pyrimidin-1-ium 2-acet­amido­benzoate

    PubMed Central

    Natarajan, Sampath; Mathews, Rita

    2011-01-01

    The title compound, C12H14ClN4 +·C9H8NO3 −, is a salt with a 1:1 ratio of cation and anion components inter­acting with each other forming an R 2 2(8) ring motif. The crystal structure is stabilized by hydrogen bonds (N—H⋯O) involving two different eight-membered rings. One of them is formed between the pyrimidine ring (donor) and the carboxylate group (acceptor) from the benzoate, whereas the other ring is formed by N—H⋯O interactions, which help to form a dimer between two symmetry-related salts in the unit cell. In addition, an intramolecular C—H⋯N and intermolecular C—H⋯Cl interactions help to control the molecules in the unit-cell packing. PMID:22065484

  20. Cyclic modulation of enzymes of pyrimidine nucleotide biosynthesis precedes sialoglycoconjugate changes during 2-acetylaminofluorene-induced hepatocarcinogenesis in the rat.

    PubMed

    Elliott, W L; Sawick, D P; DeFrees, S A; Heinstein, P F; Cassady, J M; Morré, D J

    1984-07-30

    Three enzymatic activities associated with pyrimidine nucleotide biosynthesis were monitored at weekly or bi-weekly intervals during 2-acetylaminofluorene- (0.025% in a Farber Basal Carcinogenic diet) induced hepatocarcinogenesis in the rat. Dihydroorotate dehydrogenase, the fourth of six enzymes in de novo pyrimidine biosynthesis, declined in activity while UDP kinase and CTP synthetase showed sequential increases in activity. The alterations in activity appeared to be cyclic, followed by a full or partial return to control values. Three full cycles were monitored. The first cycle preceded nodule formation. The second cycle accompanied nodule formation and preceded sialoglycoconjugate changes reported previously. The third cycle accompanied the early glycoconjugate changes. The cyclic pattern was reproducible in three separate experiments. In each cycle, the order of events was as follows: decrease in dihydroorotate dehydrogenase, sequential increases in UDP kinase, CTP synthetase and CMPsialic acid synthase, and finally increases in the enzyme lactosylceramide: CMPsialic acid sialyltransferase, lipid-soluble sialic acid and total sialic acid. In livers of animals fed 1.87% of the hepatotoxin, 4-acetamidophenol, no biochemical alterations resembling those induced by 2-acetylaminofluorene were obtained, despite acute centrilobular necrosis of the livers. The findings point to a biochemical cascade beginning with administration of carcinogen and continuing through the development of hyperplastic nodules and of frank carcinomas resulting not from hepatotoxicity but as events associated with the hepatocarcinogenic progression. PMID:6331524

  1. Dimerization of Matrix Protein Is Required for Budding of Respiratory Syncytial Virus

    PubMed Central

    Förster, Andreas; Maertens, Goedele N.; Farrell, Paul J.

    2015-01-01

    mechanism of RSV assembly is still poorly understood. Here we show that the RSV matrix protein forms dimers in solution and in crystals; the dimer is essential for formation of higher-order oligomers. Destabilizing the dimer interface resulted in the loss of RSV filament formation and a lack of budding of virus-like particles. Importantly, our findings can potentially lead to new structure-based RSV inhibitors targeting the assembly process. PMID:25673702

  2. Quantum criticality in dimerized spin ladders

    NASA Astrophysics Data System (ADS)

    Chitov, Gennady Y.; Ramakko, Brandon W.; Azzouz, Mohamed

    2008-06-01

    We analyze the possibility of quantum criticality (gaplessness) in dimerized antiferromagnetic two- and three-leg spin- (1)/(2) ladders. Contrary to earlier studies of these models, we examine different dimerization patterns in the ladder. We find that ladders with the columnar dimerization order have lower zero-temperature energies, and they are always gapped. For the staggered dimerization order, we find the quantum critical lines, in agreement with earlier analyses. The bond mean-field theory we apply demonstrates its quantitative accuracy and agrees with available numerical results. We conclude that unless some mechanism for locking dimerization into the energetically less favorable staggered configuration is provided, the dimerized ladders do not order into the phase where the quantum criticality occurs.

  3. Pyrimidine Salvage in Trypanosoma brucei Bloodstream Forms and the Trypanocidal Action of Halogenated Pyrimidiness

    PubMed Central

    Ali, Juma A. M.; Creek, Darren J.; Burgess, Karl; Allison, Harriet C.; Field, Mark C.; Mäser, Pascal; De Koning, Harry P.

    2016-01-01

    African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host. However, uptake of pyrimidines in bloodstream form trypanosomes has not been investigated, making it difficult to judge the relative importance of salvage and synthesis or to design a pyrimidine-based chemotherapy. Detailed characterization of pyrimidine transport activities in bloodstream form Trypanosoma brucei brucei found that these cells express a high-affinity uracil transporter (designated TbU3) that is clearly distinct from the procyclic pyrimidine transporters. This transporter had low affinity for uridine and 2′deoxyuridine and was the sole pyrimidine transporter expressed in these cells. In addition, thymidine was taken up inefficiently through a P1-type nucleoside transporter. Of importance, the anticancer drug 5-fluorouracil was an excellent substrate for TbU3, and several 5-fluoropyrimidine analogs were investigated for uptake and trypanocidal activity; 5F-orotic acid, 5F-2′deoxyuridine displayed activity in the low micromolar range. The metabolism and mode of action of these analogs was determined using metabolomic assessments of T. brucei clonal lines adapted to high levels of these pyrimidine analogs, and of the sensitive parental strains. The analysis showed that 5-fluorouracil is incorporated into a large number of metabolites but likely exerts toxicity through incorporation into RNA. 5F-2′dUrd and 5F-2′dCtd are not incorporated into nucleic acids but act as prodrugs by inhibiting thymidylate synthase as 5F-dUMP. We present the most complete model of pyrimidine salvage in T. brucei to date, supported by genome-wide profiling of the predicted pyrimidine biosynthesis and conversion enzymes. PMID:23188714

  4. Monomer-dimer problem on some networks

    NASA Astrophysics Data System (ADS)

    Wu, Ruijuan; Yan, Weigen

    2016-09-01

    Zhang et al. (2012) obtained the exact formula for the number of all possible monomer-dimer arrangements and the asymptotic growth constant on a scale-free small-world network. In this note, we generalize this result and obtain the exact solution on the monomer-dimer model on many networks. Particularly, we prove that these networks have the same asymptotic growth constant of the number of monomer-dimer arrangements.

  5. Free Energy Landscapes for Amyloidogenic Tetrapeptides Dimerization

    PubMed Central

    Baumketner, A.; Shea, J.-E.

    2005-01-01

    The oligomerization of four peptide sequences, KFFE, KVVE, KLLE, and KAAE is studied using replica-exchange molecular dynamics simulations with an atomically detailed peptide model. Previous experimental studies reported that of these four peptides, only those containing phenylalanine and valine residues form fibrils. We show that the fibrillogenic propensities of these peptides can be rationalized in terms of the equilibrium thermodynamics of their early oligomers. Thermodynamic stability of dimers, as measured by the temperature of monomer association, is seen to be higher for those peptides that are able to form fibrils. Although the relative high and low stabilities of the KFFE and KAAE dimers arise from their respective high and low interpeptide interaction energies, the higher stability of the KVVE dimer over the KLLE system results from the smaller loss of configurational entropy accompanying the dimerization of KVVE. Free energy landscapes for dimerization are found to be strongly sequence-dependent, with a high free energy barrier separating the monomeric and dimeric states for KVVE, KLLE, and KAAE sequences. In contrast, the most fibrillogenic peptide, KFFE, displayed downhill assembly, indicating enhanced kinetic accessibility of its dimeric states. The dimeric phase for all peptide sequences is found to be heterogeneous, containing both antiparallel β-sheet structures that can grow into full fibrils as well as disordered dimers acting as on- or off-pathway intermediates for fibrillation. PMID:16127168

  6. Sputtering of dimers off a silicon surface

    NASA Astrophysics Data System (ADS)

    Nietiadi, Maureen L.; Rosandi, Yudi; Kopnarski, Michael; Urbassek, Herbert M.

    2012-10-01

    We present experimental and molecular-dynamics simulation results of the sputtering of a Si surface by 2 keV Ar ions. Results on both the monomer and dimer distributions are presented. In simulation, these distributions follow a generalized Thompson law with power exponent n=2 and n=3, respectively. The experimental data, obtained via plasma post-ionization in an SNMS (secondary neutral mass spectrometry) apparatus, show good agreement with respect to the dimer fraction, and the relative energy distributions of dimers and monomers. The consequences for the dimer sputtering mechanism are discussed.

  7. Ultraviolet Light Inhibition of Phytochrome-Induced Flavonoid Biosynthesis and DNA Photolyase Formation in Mustard Cotyledons (Sinapis alba L.).

    PubMed Central

    Buchholz, G.; Ehmann, B.; Wellmann, E.

    1995-01-01

    In cotyledons of etiolated mustard (Sinapis alba L.) seedlings, phytochrome-far-red-absorbing form-induced flavonoid biosynthesis was found to be inhibited by short-term ultraviolet (UV) irradiations. UV inhibition was shown for the synthesis of quercetin, anthocyanin, and also for the accumulation of the mRNA for chalcone synthase, the key enzyme of this pathway. The UV effect was more pronounced on flavonoid biosynthesis, a process that selectively occurs in the epidermal layers, than on the synthesis of mRNA for chlorophyll a/b-binding protein localized in the mesophyll tissue. These UV inhibitory effects were accompanied by cyclobutane pyrimidine dimer (CPD) formation showing a linear fluence-response relationship. CPD formation and UV inhibition of flavonoid biosynthesis was found to be partially reversible by blue/UV-A light via DNA photolyase (PRE), allowing photoreactivation of the DNA by splitting of CPDs, which are the cause of the UV effect. Like flavonoid formation PRE was also induced by the far-red-absorbing form of phytochrome and induction was inhibited by UV. A potential risk of inhibition, in response to solar UV-B irradiation, was shown for anthocyanin formation. This inhibition, however, occurred only if photoreactivation was experimentally reduced. The PRE activity present in the etiolated seedlings (further increasing about 5-fold during light acclimatization) appears to be sufficient to prevent the persistence of CPDs even under conditions of high solar irradiation. PMID:12228467

  8. N-(2-{[5-Bromo-2-(piperidin-1-yl)pyrimidin-4-yl]sulfan­yl}-4-meth­oxy­phen­yl)benzene­sulfonamide

    PubMed Central

    Kumar, Mohan; Mallesha, L.; Sridhar, M. A.; Kapoor, Kamini; Gupta, Vivek K.; Kant, Rajni

    2012-01-01

    The title compound, C22H23BrN4O3S2, crystallizes with two mol­ecules, A and B, in the asymmetric unit. In one of these, the meth­oxy group is disordered over two sets of sites in a 0.565 (9):0.435 (9) ratio. The benzene rings bridged by the sulfonamide group are tilted relative to each other by 37.4 (1) and 56.1 (1)° in mol­ecules A and B, respectively, while the dihedral angles between the sulfur-bridged pyrimidine and benzene rings are 72.4 (1) and 70.2 (1)° for A and B, respectively. The piperidine ring adopts a chair conformation in both mol­ecules. In the crystal, inversion dimers linked by pairs of N—H⋯N hydrogen bonds occur for both A and B; the dimers are linked into [010] chains by C—H⋯O hydrogen bonds. The crystal structure also features inversion-generated aromatic π–π stacking inter­actions between the pyrimidine rings for both mol­ecules [centroid–centroid distances = 3.412 (2) (mol­ecule A) and 3.396 (2) Å (mol­ecule B)]. PMID:23284517

  9. 6-(3,5-Dimethyl­benz­yl)-5-ethyl-1-[(2-phenyl­eth­oxy)meth­yl]pyrimidine-2,4(1H,3H)dione

    PubMed Central

    El-Brollosy, Nasser R.; Attia, Mohamed I.; Ghabbour, Hazem A.; Chantrapromma, Suchada; Fun, Hoong-Kun

    2012-01-01

    In the title pyrimidine derivative, C24H28N2O3, the uracil unit is essentially planar with an r.m.s. deviation of 0.0054 (1) Å for the eight non-H atoms. The pyrimidine ring is tilted by a dihedral angle of 77.08 (7)° with respect to the aromatic ring of the 3,5-dimethyl­benzyl substituent, whereas it is nearly parallel to the benzene ring of the pheneth­oxy­methyl unit, with a dihedral angle of 8.17 (8)°. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked by a pair of amide–uracil N—H⋯O hydrogen bonds into an inversion R 2 2(8) dimer. These dimers are stacked along the b axis through π–π inter­actions with a centroid–centroid distance of 3.9517 (8) Å. Weak C—H⋯π inter­actions are also present. PMID:22589903

  10. Bovine leukemia virus matrix-associated protein MA(p15): further processing and formation of a specific complex with the dimer of the 5'-terminal genomic RNA fragment.

    PubMed Central

    Katoh, I; Kyushiki, H; Sakamoto, Y; Ikawa, Y; Yoshinaka, Y

    1991-01-01

    The retrovirus precursor protein has an arrangement of several characteristic domains with which it achieves selective and efficient packaging of the genome RNA during particle assembly. In this study, we analyzed the composition of the bovine leukemia virus (BLV) gag proteins and examined their RNA-binding properties in gel mobility shift assays, using various genomic RNA probes synthesized in vitro. Results obtained in amino acid sequence and composition analyses indicate that the matrix-associated protein MA(p15) is further processed by the BLV protease (PR) to generate MA(p10), a short peptide of seven amino acid residues, and p4. The gag precursor is now mapped as NH2-MA(p10)-p4-CA(p24)-NC(p12)-COOH. MA(p15) formed a specific complex with the dimer RNA of the U5-5' gag region presumed to contain the BLV packaging signal but not with other RNAs. The NH2-terminal cleavage product, MA(p10), bound all RNA fragments tested, while the COOH-terminal peptides with a sequence common to mammalian type C retroviruses had little affinity for RNA. The nucleocapsid protein NC(p12) bound to RNAs nonspecifically and randomly in the presence or absence of zinc ions. These results suggest a possible interaction of the NH2 terminus of the gag precursor with the 5' terminus of the genomic RNA in an early phase of particle assembly, when the conserved structure between the MA and CA domains might be involved. Images PMID:1658378

  11. Electron- and proton-induced ionization of pyrimidine

    NASA Astrophysics Data System (ADS)

    Champion, Christophe; Quinto, Michele A.; Weck, Philippe F.

    2015-05-01

    The present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. The theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  12. Isolation of Purines and Pyrimidines from the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Bada, J. K.

    2003-01-01

    The origin of life on Earth, and possibly on other planets such as Mars, would have required the presence of liquid water and a continuous supply of prebiotic organic compounds. The delivery of organic matter by asteroids, comets, and carbonaceous meteorites could have contributed to the early Earth's prebiotic inventory by seeding the planet with biologically important organic compounds. A wide variety of prebiotic organic compounds have previously been detected in the Murchison CM type carbonaceous chondrite including amino acids, purines and pyrimidines'. These compounds play a major role in terrestrial biochemistry and are integral components of proteins, DNA and RNA. In this study we developed a new extraction technique using sublimation in order to isolate purines and pyrimidines from Murchison2, which is cleaner and more time efficient that traditional methods3. Several purines including adenine, guanine, hypoxanthine and xanthine were positively identified by high performance liquid chromatography and ultraviolet absorption detection in our Murchison extracts. The purines detected in Murchison do not correlate with the distribution of nucleobases found in geological environments on Earth4. Moreover, the abundance of extraterrestrial amino acids and the low level of terrestrial amino acid contaminants found in Murchison', support the idea that the purines in t h s meteorite are extraterrestrial in origin.

  13. The regulatory domain of human tryptophan hydroxylase 1 forms a stable dimer.

    PubMed

    Zhang, Shengnan; Hinck, Cynthia S; Fitzpatrick, Paul F

    2016-08-01

    The three eukaryotic aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase have essentially identical catalytic domains and discrete regulatory domains. The regulatory domains of phenylalanine hydroxylase form ACT domain dimers when phenylalanine is bound to an allosteric site. In contrast the regulatory domains of tyrosine hydroxylase form a stable ACT dimer that does not bind the amino acid substrate. The regulatory domain of isoform 1 of human tryptophan hydroxylase was expressed and purified; mutagenesis of Cys64 was required to prevent formation of disulfide-linked dimers. The resulting protein behaved as a dimer upon gel filtration and in analytical ultracentrifugation. The sw value of the protein was unchanged from 2.7 to 35 μM, a concentration range over which the regulatory domain of phenylalanine hydroxylase forms both monomers and dimers, consistent with the regulatory domain of tryptophan hydroxylase 1 forming a stable dimer stable that does not undergo a monomer-dimer equilibrium. Addition of phenylalanine, a good substrate for the enzyme, had no effect on the sw value, consistent with there being no allosteric site for the amino acid substrate. PMID:27255998

  14. Theory and simulations of adhesion receptor dimerization on membrane surfaces.

    PubMed

    Wu, Yinghao; Honig, Barry; Ben-Shaul, Avinoam

    2013-03-19

    The equilibrium constants of trans and cis dimerization of membrane bound (2D) and freely moving (3D) adhesion receptors are expressed and compared using elementary statistical-thermodynamics. Both processes are mediated by the binding of extracellular subdomains whose range of motion in the 2D environment is reduced upon dimerization, defining a thin reaction shell where dimer formation and dissociation take place. We show that the ratio between the 2D and 3D equilibrium constants can be expressed as a product of individual factors describing, respectively, the spatial ranges of motions of the adhesive domains, and their rotational freedom within the reaction shell. The results predicted by the theory are compared to those obtained from a novel, to our knowledge, dynamical simulations methodology, whereby pairs of receptors perform realistic translational, internal, and rotational motions in 2D and 3D. We use cadherins as our model system. The theory and simulations explain how the strength of cis and trans interactions of adhesive receptors are affected both by their presence in the constrained intermembrane space and by the 2D environment of membrane surfaces. Our work provides fundamental insights as to the mechanism of lateral clustering of adhesion receptors after cell-cell contact and, more generally, to the formation of lateral microclusters of proteins on cell surfaces. PMID:23528081

  15. Mechanism for Controlling the Dimer-Monomer Switch and Coupling Dimerization to Catalysis of the Severe Acute Respiratory Syndrome Coronavirus 3C-Like Protease

    SciTech Connect

    Shi,J.; Sivaraman, J.; Song, J.

    2008-01-01

    Unlike 3C protease, the severe acute respiratory syndrome coronavirus (SARS-CoV) 3C-like protease (3CLpro) is only enzymatically active as a homodimer and its catalysis is under extensive regulation by the unique extra domain. Despite intense studies, two puzzles still remain: (i) how the dimer-monomer switch is controlled and (ii) why dimerization is absolutely required for catalysis. Here we report the monomeric crystal structure of the SARS-CoV 3CLpro mutant R298A at a resolution of 1.75 Angstroms . Detailed analysis reveals that Arg298 serves as a key component for maintaining dimerization, and consequently, its mutation will trigger a cooperative switch from a dimer to a monomer. The monomeric enzyme is irreversibly inactivated because its catalytic machinery is frozen in the collapsed state, characteristic of the formation of a short 310-helix from an active-site loop. Remarkably, dimerization appears to be coupled to catalysis in 3CLpro through the use of overlapped residues for two networks, one for dimerization and another for the catalysis.

  16. Bose and Mott glass phases in dimerized quantum antiferromagnets

    NASA Astrophysics Data System (ADS)

    Thomson, S. J.; Krüger, F.

    2015-11-01

    We examine the effects of disorder on dimerized quantum antiferromagnets in a magnetic field, using the mapping to a lattice gas of hard-core bosons with finite-range interactions. Combining a strong-coupling expansion, the replica method, and a one-loop renormalization-group analysis, we investigate the nature of the glass phases formed. We find that away from the tips of the Mott lobes, the transition is from a Mott insulator to a compressible Bose glass, however the compressibility at the tips is strongly suppressed. We identify this finding with the presence of a rare Mott glass phase and demonstrate that the inclusion of replica symmetry breaking is vital to correctly describe the glassy phases. This result suggests that the formation of Bose and Mott glass phases is not simply a weak localization phenomenon but is indicative of much richer physics. We discuss our results in the context of both ultracold atomic gases and spin-dimer materials.

  17. Single nucleotide polymorphism analysis using different colored dye dimer probes

    NASA Astrophysics Data System (ADS)

    Marmé, Nicole; Friedrich, Achim; Denapaite, Dalia; Hakenbeck, Regine; Knemeyer, Jens-Peter

    2006-09-01

    Fluorescence quenching by dye dimer formation has been utilized to develop hairpin-structured DNA probes for the detection of a single nucleotide polymorphism (SNP) in the penicillin target gene pbp2x, which is implicated in the penicillin resistance of Streptococcus pneumoniae. We designed two specific DNA probes for the identification of the pbp2x genes from a penicillin susceptible strain R6 and a resistant strain Streptococcus mitis 661 using green-fluorescent tetramethylrhodamine (TMR) and red-fluorescent DY-636, respectively. Hybridization of each of the probes to its respective target DNA sequence opened the DNA hairpin probes, consequently breaking the nonfluorescent dye dimers into fluorescent species. This hybridization of the target with the hairpin probe achieved single nucleotide specific detection at nanomolar concentrations via increased fluorescence.

  18. ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand-binding

    PubMed Central

    Low-Nam, Shalini T.; Lidke, Keith A.; Cutler, Patrick J.; Roovers, Rob C.; van Bergen en Henegouwen, Paul M.P.; Wilson, Bridget S.; Lidke, Diane S.

    2011-01-01

    The extent to which ligand occupancy and dimerization contribute to erbB1 signaling is controversial. To examine this, we utilized two-color Quantum Dot tracking for visualization of erbB1 homodimerization and quantification of the dimer off rate (koff) on living cells. Kinetic parameters were extracted using a 3-state Hidden Markov Model to identify transition rates between free, co-confined, and dimerized states. We report that dimers composed of 2 ligand-bound receptors are long-lived and their koff is independent of kinase activity. By comparison, unliganded dimers have >4-fold faster koff. Transient co-confinement of receptors promotes repeated encounters and enhances dimer formation. Mobility decreases >6-fold when ligand-bound receptors dimerize. Blockade of erbB1 kinase activity or disruption of actin networks results in faster diffusion of receptor dimers. These results implicate both signal propagation and the cortical cytoskeleton in reduced mobility of signaling-competent erbB1 dimers. PMID:22020299

  19. Novel mixed-valence Cu compounds formed by Cu(II) dimers with double oximato bridges: in situ formation of anionic layer [Cu2(SCN)3]n(n-).

    PubMed

    Dhal, Piu; Nandy, Madhusudan; Sadhukhan, Dipali; Zangrando, Ennio; Pilet, Guillaume; Gómez-García, Carlos J; Mitra, Samiran

    2013-10-28

    Two new N3O donor ketoxime Schiff bases (HL(1) and HL(2)) have been synthesized by condensing N,N-dimethylethylenediamine with diacetylmonoxime and benzilmonoxime, respectively in a 1:1 ratio. Reaction of Cu(ClO4)2·6H2O with HL(1) resulted in a discrete oximato-bridged dinuclear Cu(II) complex [Cu2(L(1))2(H2O)2](ClO4)2 (1). The same reaction in presence of NaSCN affords the complex {[Cu(II)2(L(1))2][Cu(I)4(μ(1,3)-SCN)4(μ(1,1,3)-SCN)2]}n (2), where partial Cu(II)→Cu(I) reduction is observed. In 2, arrays of [Cu(II)2(L(1))2](2+) cationic units are inserted in between 2D {[Cu(I)4(SCN)6](2-)}n layers and connected via μ(1,1,3)-SCN(-) links, thus forming a 3D network. On the other hand, reaction of Cu(CH3COO)2 and HL(2) in the presence of NaSCN gave rise to a mixed-valence pentanuclear cluster {[Cu(II)2(L(2))2(NCS)]2[Cu(I)(SCN)(μ(1,1)-SCN)(μ(1,3)-SCN)]} (3) where Cu(II) is also partly reduced to Cu(I). In compound 3, two cationic [Cu(II)2(L(2))2(NCS)](+) units are bridged by the anionic [Cu(I)(SCN)3](2-) unit through long Cu-SCN linkages. The ligands and the complexes have been characterized by elemental analysis, UV/Vis and IR spectroscopy. The complexes are further characterized by single crystal X-ray diffraction and variable temperature magnetic (VTM) studies. Finally a complete magneto-structural correlation has been established between compounds 1-3 and all the characterized Cu dimers with a double NO bridge. PMID:23979721

  20. The water dimer I: Experimental characterization

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Anamika; Cole, William T. S.; Saykally, Richard J.

    2015-07-01

    As the archetype of water hydrogen bonding, the water dimer has been studied extensively by both theory and experiment for nearly seven decades. In this article, we present a detailed chronological review of the experimental dimer studies and the insights into the complex nature of water and hydrogen bonding gained from them. A subsequent letter will review the corresponding theoretical advances.

  1. Stepwise charge transfer complexation of some pyrimidines with σ-acceptor iodine involving a new unconventional acceptor

    NASA Astrophysics Data System (ADS)

    Rabie, Usama. M.; Mohamed, Ramadan. A.; Abou-El-Wafa, Moustafa. H.

    2007-11-01

    Interactions of some pyrimidine derivatives, 4-amino-2,6-dimethylpyrimidine, kyanmethin, (4AP), 2-amino-4,6-dimethylpyrimidine (2AP), 2-aminopyrimidine (AP), 2-amino-4-methylpyrimidine (AMP), 2-amino-4-methoxy-6-methylpyrimidine (AMMP), and 4-amino-5-chloro-2,6-dimethylpyrimidine (ACDP) as electron donors, with iodine (I 2), as a typical σ-electron acceptor, have been studied. Electronic absorption spectra of these interactions in several organic solvents of different polarities have performed instant appearance of clear charge transfer (CT) bands. Formation constants ( KCT), molar absorption coefficients ( ɛCT) and thermodynamic properties, Δ H, Δ S, and Δ G, of these interactions have been determined and discussed. Electronic absorption spectra of the solutions of the synthesized pyrimidines-iodine, P-I 2, CT complexes have shown the characteristic bands of the triiodide ion, I 3-. UV/vis spectral tracking of these interactions have shown that by lapse of time the first formed CT complex, P-I 2, is transformed to the corresponding triiodide complex, P +I.I 3-, then, the later interacts as a new unconventional acceptor and it forms a CT complex of the form (P).(P +I.I 3-). Elemental analyses of these solid complexes have indicated the stoichiometric ratio 2:2, or formally 1:1, P:I 2.

  2. Stepwise charge transfer complexation of some pyrimidines with sigma-acceptor iodine involving a new unconventional acceptor.

    PubMed

    Rabie, Usama M; Mohamed, Ramadan A; Abou-El-Wafa, Moustafa H

    2007-11-01

    Interactions of some pyrimidine derivatives, 4-amino-2,6-dimethylpyrimidine, kyanmethin, (4AP), 2-amino-4,6-dimethylpyrimidine (2AP), 2-aminopyrimidine (AP), 2-amino-4-methylpyrimidine (AMP), 2-amino-4-methoxy-6-methylpyrimidine (AMMP), and 4-amino-5-chloro-2,6-dimethylpyrimidine (ACDP) as electron donors, with iodine (I(2)), as a typical sigma-electron acceptor, have been studied. Electronic absorption spectra of these interactions in several organic solvents of different polarities have performed instant appearance of clear charge transfer (CT) bands. Formation constants (KCT), molar absorption coefficients (epsilonCT) and thermodynamic properties, DeltaH, DeltaS, and DeltaG, of these interactions have been determined and discussed. Electronic absorption spectra of the solutions of the synthesized pyrimidines-iodine, P-I2, CT complexes have shown the characteristic bands of the triiodide ion, I3*. UV/vis spectral tracking of these interactions have shown that by lapse of time the first formed CT complex, P-I2, is transformed to the corresponding triiodide complex, P(+)I.I3*, then, the later interacts as a new unconventional acceptor and it forms a CT complex of the form (P).(P+I.I3*). Elemental analyses of these solid complexes have indicated the stoichiometric ratio 2:2, or formally 1:1, P:I2. PMID:17317281

  3. Surface-enhanced Raman scattering spectroscopy of topotecan-DNA complexes: Binding to DNA induces topotecan dimerization

    NASA Astrophysics Data System (ADS)

    Mochalov, K. E.; Strel'Tsov, S. A.; Ermishov, M. A.; Grokhovskii, S. L.; Zhuze, A. L.; Ustinova, O. A.; Sukhanova, A. V.; Nabiev, I. R.; Oleinikov, V. A.

    2002-09-01

    The interaction of topotecan (TPT), antitumor inhibitor of human DNA topoisomerase I, with calf thymus DNA was studied by surface-enhanced Raman scattering (SERS) spectroscopy. The SERS spectra of TPT are found to depend on its concentration in solution, which is associated with the dimerization of TPT. The spectral signatures of dimerization are identified. It is shown that binding to DNA induces the formation of TPT dimers. The formation of DNA-TPT-TPT-DNA complexes is considered as one of the possible mechanisms of human DNA topoisomerase I inhibition.

  4. Crystal structures of two 6-(2-hy-droxy-benzo-yl)-5H-thia-zolo[3,2-a]pyrimidin-5-ones.

    PubMed

    Gomes, Ligia R; Low, John Nicolson; Cagide, Fernando; Borges, Fernanda

    2015-07-01

    The title compounds, 6-(2-hy-droxy-benz-yl)-5H-thia-zolo[3,2-a]pyrimidin-5-one, C13H8N2O3S, (1), and 6-(2-hy-droxy-benz-yl)-3-methyl-5H-thia-zolo[3,2-a]pyrimidin-5-one, C14H10N2O3S, (2), were synthesized when a chromone-3-carb-oxy-lic acid, activated with (benzotriazol-1-yl-oxy)tripyrrolidinyl-phospho-nium hexa-fluorido-phosphate (PyBOP), was reacted with a primary heteromamine. Instead of the expected amidation, the unusual title thia-zolo-pyrimidine-5-one derivatives were obtained serendipitously and a mechanism of formation is proposed. Both compounds present an intra-molecular O-H⋯O hydrogen bond, which generates an S(6) ring. The dihedral angles between the heterocyclic moiety and the 2-hydroxybenzoyl ring are 55.22 (5) and 46.83 (6)° for (1) and (2), respectively. In the crystals, the mol-ecules are linked by weak C-H⋯O hydrogen bonds and π-π stacking inter-actions. PMID:26279863

  5. Biosynthesis of intestinal microvillar proteins. Dimerization of aminopeptidase N and lactase-phlorizin hydrolase

    SciTech Connect

    Danielsen, E.M. )

    1990-01-09

    The pig intestinal brush border enzymes aminopeptidase and lactase-phlorizin hydrolase are present in the microvilla membrane as homodimers. Dimethyl adipimidate was used to cross-link the two ({sup 35}S)methionine-labeled brush border enzymes from cultured mucosal explants. For aminopeptidase N, dimerization did not begin until 5-10 min after synthesis, and maximal dimerization by cross-linking of the transient form of the enzyme required 1 h, whereas the mature form of aminopeptidase N cross-linked with unchanged efficiency from 45 min to 3 h of labeling. Formation of dimers of this enzyme therefore occurs prior to the Golgi-associated processing, and the slow rate of dimerization may be the rate-limiting step in the transport from the endoplasmic reticulum to the Golgi complex. For lactase-phlorizin hydrolase, the posttranslational processing includes a proteolytic cleavage of its high molecular weight precursor. Since only the mature form and not the precursor of this enzyme could be cross-linked, formation of tightly associated dimers only takes place after transport out of the endoplasmic reticulum. Dimerization of the two brush border enzymes therefore seems to occur in different organelles of the enterocyte.

  6. Dimerization of Plant Defensin NaD1 Enhances Its Antifungal Activity*

    PubMed Central

    Lay, Fung T.; Mills, Grant D.; Poon, Ivan K. H.; Cowieson, Nathan P.; Kirby, Nigel; Baxter, Amy A.; van der Weerden, Nicole L.; Dogovski, Con; Perugini, Matthew A.; Anderson, Marilyn A.; Kvansakul, Marc; Hulett, Mark D.

    2012-01-01

    The plant defensin, NaD1, from the flowers of Nicotiana alata, is a member of a family of cationic peptides that displays growth inhibitory activity against several filamentous fungi, including Fusarium oxysporum. The antifungal activity of NaD1 has been attributed to its ability to permeabilize membranes; however, the molecular basis of this function remains poorly defined. In this study, we have solved the structure of NaD1 from two crystal forms to high resolution (1.4 and 1.58 Å, respectively), both of which contain NaD1 in a dimeric configuration. Using protein cross-linking experiments as well as small angle x-ray scattering analysis and analytical ultracentrifugation, we show that NaD1 forms dimers in solution. The structural studies identified Lys4 as critical in formation of the NaD1 dimer. This was confirmed by site-directed mutagenesis of Lys4 that resulted in substantially reduced dimer formation. Significantly, the reduced ability of the Lys4 mutant to dimerize correlated with diminished antifungal activity. These data demonstrate the importance of dimerization in NaD1 function and have implications for the use of defensins in agribiotechnology applications such as enhancing plant crop protection against fungal pathogens. PMID:22511788

  7. Dimerization of Tetherin Is Not Essential for Its Antiviral Activity against Lassa and Marburg Viruses

    PubMed Central

    Sakuma, Toshie; Sakurai, Akira; Yasuda, Jiro

    2009-01-01

    Tetherin (also known as BST2, CD317 or HM1.24) has recently been reported to inhibit a wide range of viruses. However, the antiviral mechanism of action of tetherin has not been determined. Both ends of the tetherin molecule are associated with the plasma membrane and it forms a homodimer. Therefore, a model in which progeny virions are retained on the cell surface by dimer formation between tetherin molecules on the viral envelope and plasma membrane has been proposed as the antiviral mechanism of action of this molecule. To investigate this possibility, we examined the correlation between dimerization and antiviral activity of tetherin in Lassa and Marburg virus-like particle production systems using tetherin mutants deficient in dimer formation. However, the tetherin mutant with complete loss of dimerization activity still showed apparent antiviral activity, indicating that dimerization of tetherin is not essential for its antiviral activity. This suggests that tetherin retains progeny virions on the cell surface by a mechanism other than dimerization. PMID:19742323

  8. Statistical transmutation in doped quantum dimer models.

    PubMed

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-01

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families. PMID:23031119

  9. Electronic transitions of palladium dimer

    SciTech Connect

    Qian, Yue; Ng, Y. W.; Chen, Zhihua; Cheung, A. S.-C.

    2013-11-21

    The laser induced fluorescence spectrum of palladium dimer (Pd{sub 2}) in the visible region between 480 and 700 nm has been observed and analyzed. The gas-phase Pd{sub 2} molecule was produced by laser ablation of palladium metal rod. Eleven vibrational bands were observed and assigned to the [17.1] {sup 3}II{sub g} - X{sup 3}Σ{sub u}{sup +} transition system. The bond length (r{sub o}) and vibrational frequency (ΔG{sub 1/2}) of the ground X{sup 3}Σ{sub u}{sup +} state were determined to be 2.47(4) Å and 211.4(5) cm{sup −1}, respectively. A molecular orbital energy level diagram was used to understand the observed ground and excited electronic states. This is the first gas-phase experimental investigation of the electronic transitions of Pd{sub 2}.

  10. Multistep π dimerization of tetrakis(n-decyl)heptathienoacene radical cations: a combined experimental and theoretical study.

    PubMed

    Ferrón, Cristina Capel; Capdevila-Cortada, Marçal; Balster, Russell; Hartl, František; Niu, Weijun; He, Mingqian; Novoa, Juan J; López Navarrete, Juan T; Hernández, Víctor; Ruiz Delgado, M Carmen

    2014-08-11

    Radical cations of a heptathienoacene α,β-substituted with four n-decyl side groups (D4T7(.) (+) ) form exceptionally stable π-dimer dications already at ambient temperature (Chem. Comm. 2011, 47, 12622). This extraordinary π-dimerization process is investigated here with a focus on the ultimate [D4T7(.) (+) ]2 π-dimer dication and yet-unreported transitory species formed during and after the oxidation. To this end, we use a joint experimental and theoretical approach that combines cyclic voltammetry, in situ spectrochemistry and spectroelectrochemistry, EPR spectroscopy, and DFT calculations. The impact of temperature, thienoacene concentration, and the nature and concentration of counteranions on the π-dimerization process is also investigated in detail. Two different transitory species were detected in the course of the one-electron oxidation: 1) a different transient conformation of the ultimate [D4T7(.) (+) ]2 π-dimer dications, the stability of which is strongly affected by the applied experimental conditions, and 2) intermediate [D4T7]2 (.) (+) π-dimer radical cations formed prior to the fully oxidized [D4T7]2 (.) (+) π-dimer dications. Thus, this comprehensive work demonstrates the formation of peculiar supramolecular species of heptathienoacene radical cations, the stability, nature, and structure of which have been successfully analyzed. We therefore believe that this study leads to a deeper fundamental understanding of the mechanism of dimer formation between conjugated aromatic systems. PMID:25043826

  11. Infrared spectroscopy of pyrrole-2-carboxaldehyde and its dimer: A planar β-sheet peptide model?

    NASA Astrophysics Data System (ADS)

    Rice, Corey A.; Dauster, Ingo; Suhm, Martin A.

    2007-04-01

    Intermolecular interactions relevant for antiparallel β-sheet formation between peptide strands are studied by Fourier transform infrared spectroscopy of the low temperature, vacuum-isolated model compound pyrrole-2-carboxaldehyde and its dimer in the N-H and C O stretching range. Comparison to quantum chemical predictions shows that even for some triple-zeta quality basis sets, hybrid density functionals and Møller-Plesset perturbation calculations fail to provide a consistent and fully satisfactory description of hydrogen bond induced frequency shifts and intensity ratios in the double-harmonic approximation. The latter approach even shows problems in reproducing the planar structure of the dimer and the correct sign of the C O stretching shift for standard basis sets. The effect of matrix isolation is modeled by condensing layers of Ar atoms on the isolated monomer and dimer. The dimer structure is discussed in the context of the peptide β-sheet motif.

  12. Infrared spectroscopy of pyrrole-2-carboxaldehyde and its dimer: a planar beta-sheet peptide model?

    PubMed

    Rice, Corey A; Dauster, Ingo; Suhm, Martin A

    2007-04-01

    Intermolecular interactions relevant for antiparallel beta-sheet formation between peptide strands are studied by Fourier transform infrared spectroscopy of the low temperature, vacuum-isolated model compound pyrrole-2-carboxaldehyde and its dimer in the N-H and C=O stretching range. Comparison to quantum chemical predictions shows that even for some triple-zeta quality basis sets, hybrid density functionals and Møller-Plesset perturbation calculations fail to provide a consistent and fully satisfactory description of hydrogen bond induced frequency shifts and intensity ratios in the double-harmonic approximation. The latter approach even shows problems in reproducing the planar structure of the dimer and the correct sign of the C=O stretching shift for standard basis sets. The effect of matrix isolation is modeled by condensing layers of Ar atoms on the isolated monomer and dimer. The dimer structure is discussed in the context of the peptide beta-sheet motif. PMID:17430038

  13. Flexible synthesis of pyrimidines with chiral monofluorinated and difluoromethyl side chains.

    PubMed

    Bannwarth, Pierre; Valleix, Alain; Grée, Danielle; Grée, René

    2009-06-19

    Chiral pyrimidines with a fluorine atom in the benzylic position are easily accessible in high enantiomeric excesses from optically active propargylic intermediates by two complementary routes. Both the use of optically active propargylic fluorides and the fluorination of the chiral pyrimidine in the final stage give excellent results in terms of enantiocontrol. On the other hand, original pyrimidines with a difluoromethyl side chain are also obtained in a few steps from new propargylic ketones bearing a CHF(2) substituent on the triple bond. PMID:19518154

  14. Novel developments in metabolic disorders of purine and pyrimidine metabolism and therapeutic applications of their analogs.

    PubMed

    Torres, Rosa J; Peters, Godefridus J; Puig, Juan G

    2014-01-01

    The biennial 15th symposium on Purine and Pyrimidine metabolism was held in Madrid, June 2013 (PP13). During the meeting, several novel developments on the diagnosis, pathophysiology, and treatment of several inborn errors of purine and pyrimidine metabolism were presented. These ranged from new drugs for gout to enzyme replacement therapies for mitochondrial diseases. A relatively novel aspect in this meeting was the interest in purine and pyrimidine metabolism in nonmammalian systems, such as parasites, mycoplasms, and bacteria. Development of novel analogs for parasite infections, cardiovascular diseases, inflammatory diseases, and cancer were also discussed. PMID:24940665

  15. Replica Exchange Molecular Dynamics Study of Dimerization in Prion Protein: Multiple Modes of Interaction and Stabilization.

    PubMed

    Chamachi, Neharika G; Chakrabarty, Suman

    2016-08-01

    The pathological forms of prions are known to be a result of misfolding, oligomerization, and aggregation of the cellular prion. While the mechanism of misfolding and aggregation in prions has been widely studied using both experimental and computational tools, the structural and energetic characterization of the dimer form have not garnered as much attention. On one hand dimerization can be the first step toward a nucleation-like pathway to aggregation, whereas on the other hand it may also increase the conformational stability preventing self-aggregation. In this work, we have used extensive all-atom replica exchange molecular dynamics simulations of both monomer and dimer forms of a mouse prion protein to understand the structural, dynamic, and thermodynamic stability of dimeric prion as compared to the monomeric form. We show that prion proteins can dimerize spontaneously being stabilized by hydrophobic interactions as well as intermolecular hydrogen bonding and salt bridge formation. We have computed the conformational free energy landscapes for both monomer and dimer forms to compare the thermodynamic stability and misfolding pathways. We observe large conformational heterogeneity among the various modes of interactions between the monomers and the strong intermolecular interactions may lead to as high as 20% β-content. The hydrophobic regions in helix-2, surrounding coil regions, terminal regions along with the natively present β-sheet region appear to actively participate in prion-prion intermolecular interactions. Dimerization seems to considerably suppress the inherent dynamic instability observed in monomeric prions, particularly because the regions of structural frustration constitute the dimer interface. Further, we demonstrate an interesting reversible coupling between the Q160-G131 interaction (which leads to inhibition of β-sheet extension) and the G131-V161 H-bond formation. PMID:27390876

  16. Double functionalization of carbon nanotubes with purine and pyrimidine derivatives.

    PubMed

    Singh, Prabhpreet; Ménard-Moyon, Cécilia; Battigelli, Alessia; Toma, Francesca Maria; Raya, Jesus; Kumar, Jitendra; Nidamanuri, Nagapradeep; Verma, Sandeep; Bianco, Alberto

    2013-07-01

    Herein, we have developed a synthetic strategy for the covalent double functionalization of single-walled carbon nanotubes (SWCNTs) with a combination of purine-pyrimidine and purine-purine nucleobase systems. The nucleobases were introduced on the sidewall of oxidized SWCNTs through 1,3-dipolar cycloaddition and by amidation of the carboxylic acids located at the tips and defect sites of the nanotubes. The new nanohybrids were characterized by transmission electron microscopy, thermogravimetric analysis, FTIR and Raman spectroscopy, magic-angle spinning NMR spectroscopy, and Kaiser test. The nucleobase/SWCNT conjugates can be envisaged for the modulation of the interactions with nucleic acids by means of base pairing, thereby opening new possibilities in the development of DNA/CNT nanobioconjugates. PMID:23703975

  17. Targeting Purine and Pyrimidine Metabolism in Human Apicomplexan Parasites

    PubMed Central

    Hyde, John E.

    2009-01-01

    Synthesis de novo, acquisition by salvage and interconversion of purines and pyrimidines represent the fundamental requirements for their eventual assembly into nucleic acids as nucleotides and the deployment of their derivatives in other biochemical pathways. A small number of drugs targeted to nucleotide metabolism, by virtue of their effect on folate biosynthesis and recycling, have been successfully used against apicomplexan parasites such as Plasmodium and Toxoplasma for many years, although resistance is now a major problem in the prevention and treatment of malaria. Many targets not involving folate metabolism have also been explored at the experimental level. However, the unravelling of the genome sequences of these eukaryotic unicellular organisms, together with increasingly sophisticated molecular analyses, opens up possibilities of introducing new drugs that could interfere with these processes. This review examines the status of established drugs of this type and the potential for further exploiting the vulnerability of apicomplexan human pathogens to inhibition of this key area of metabolism. PMID:17266529

  18. Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials.

    PubMed

    Norcross, Neil R; Baragaña, Beatriz; Wilson, Caroline; Hallyburton, Irene; Osuna-Cabello, Maria; Norval, Suzanne; Riley, Jennifer; Stojanovski, Laste; Simeons, Frederick R C; Porzelle, Achim; Grimaldi, Raffaella; Wittlin, Sergio; Duffy, Sandra; Avery, Vicky M; Meister, Stephan; Sanz, Laura; Jiménez-Díaz, Belén; Angulo-Barturen, Iñigo; Ferrer, Santiago; Martínez, María Santos; Gamo, Francisco Javier; Frearson, Julie A; Gray, David W; Fairlamb, Alan H; Winzeler, Elizabeth A; Waterson, David; Campbell, Simon F; Willis, Paul; Read, Kevin D; Gilbert, Ian H

    2016-07-14

    In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting. PMID:27314305

  19. Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials

    PubMed Central

    2016-01-01

    In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting. PMID:27314305

  20. Smectic Phase Formed by DNA Dimers

    NASA Astrophysics Data System (ADS)

    Salamonczyk, Miroslaw; Gleeson, James; Jakli, Antal; Sprunt, Samuel; Dhont, Jan; Stiakakis, Emmanuel

    The rapidly expanding bio market is driving the development and characterization of new multifunctional materials. In particular, nucleic acids are under intense study for gene therapy, drug delivery and other bio-safe applications [1,2,3]. DNA is well-known to form a cholesteric nematic liquid crystal in its native form; however, much recent research has focused on self-assembly and mesomorphic behavior in concentrated solutions of short DNA helices [4]. Our work focuses on DNA dimers, consisting of 48 base-pair double-stranded helices connected by a 5 to 20 base flexible single strand, and suspended in a natural buffer. Depending on temperature, concentration and length of the flexible spacer, polarizing optical microscopy and small angle x-ray scattering reveal cholesteric nematic and, remarkably, smectic liquid crystalline phases. A model for smectic phase formation in this system will be presented. 1] J.-L. Lim et al., Int. J. of. Pharm. 490 (2015) 2652] D.-H. Kim et al., Nature Biotech. 23 (2005) 2223] K. Liu et al., Chem. Eur. J. 21 (2015) 48984] M. Nakata et al., Science 318 (2007) 1276 NSF DMR 1307674.

  1. Photo-Irradiation of Pyrimidine in Interstellar Ice Analogs: Searching for Nucleobases

    NASA Astrophysics Data System (ADS)

    Milam, S. N.; Nuevo, M.; Sandford, S. A.; Elsila, J. E.; Dworkin, J. P.

    2009-03-01

    Nucleobases have been detected in meteorites and possibly form in space. The functionalization of PAHs from UV photons in mixed ices has proven effective in the lab. Here we investigate how irradiation affects pyrimidine in interstellar ice analogs.

  2. Nucleobases and Other Prebiotic Species from the Ultraviolet Irradiation of Pyrimidine in Astrophysical Ices

    NASA Astrophysics Data System (ADS)

    Sandford, S. A.; Nuevo, M.; Materese, C. K.; Milam, S. N.

    2012-03-01

    We discuss the results of UV irradiation of ices containing pyrimidine and show that such processing efficiently forms the nucleobases uracil and cytosine, but not thymine, a pattern similar to what is seen in carbonaceous meteorites.

  3. Single residue modification of only one dimer within the hemoglobin tetramer reveals autonomous dimer function

    PubMed Central

    Ackers, Gary K.; Dalessio, Paula M.; Lew, George H.; Daugherty, Margaret A.; Holt, Jo M.

    2002-01-01

    The mechanism of cooperativity in the human hemoglobin tetramer (a dimer of αβ dimers) has historically been modeled as a simple two-state system in which a low-affinity structural form (T) switches, on ligation, to a high-affinity form (R), yielding a net loss of hydrogen bonds and salt bridges in the dimer–dimer interface. Modifications that weaken these cross-dimer contacts destabilize the quaternary T tetramer, leading to decreased cooperativity and enhanced ligand affinity, as demonstrated in many studies on symmetric double modifications, i.e., a residue site modified in both α- or both β-subunits. In this work, hybrid tetramers have been prepared with only one modified residue, yielding molecules composed of a wild-type dimer and a modified dimer. It is observed that the cooperative free energy of ligation to the modified dimer is perturbed to the same extent whether in the hybrid tetramer or in the doubly modified tetramer. The cooperative free energy of ligation to the wild-type dimer is unperturbed, even in the hybrid tetramer, and despite the overall destabilization of the T tetramer by the modification. This asymmetric response by the two dimers within the same tetramer shows that loss of dimer–dimer contacts is not communicated across the dimer–dimer interface, but is transmitted through the dimer that bears the modified residue. These observations are interpreted in terms of a previously proposed dimer-based model of cooperativity with an additional quaternary (T/R) component. PMID:12119405

  4. Allosterically controlled threading of polymers through macrocyclic dimers.

    PubMed

    Cantekin, Seda; Markvoort, Albert J; Elemans, Johannes A A W; Rowan, Alan E; Nolte, Roeland J M

    2015-03-25

    As part of an ongoing study to construct a molecular Turing machine in which a polymer chain is encoded via allosteric information transfer between macrocyclic complexes, we describe the thermodynamic and kinetic characterization of a multicomponent self-assembled system based on a zinc porphyrin macrocyclic compound, a bidentate ligand (1,4-diazabicyclo[2.2.2]octane, DABCO), and a viologen-substituted polymer guest. Initial addition of DABCO to the porphyrin macrocycle in chloroform solution leads to the formation of a stable 2:1 (porphyrin:DABCO) dimeric complex, even under dilute conditions, by means of strong cooperative interactions involving hydrogen and metal-ligand bonds. Further titration of the porphyrin-DABCO mixtures with the polymer gives rise to a complex array of species in the solution. The system is analyzed in detail by a combination of spectroscopic measurements and computational modeling. Each association constant in the binding scheme and the fraction of each individual complex that is formed in solution are determined precisely using a mass-balance model. Kinetic studies revealed that the rates of the polymer threading and dethreading in and out of the dimeric system are remarkably slow, indicating that the polymer is locked inside the cavity of the stable 2:1 dimeric complex as a result of strong allosteric interactions. PMID:25734357

  5. Effects of Cd{sup 2+} on cis-dimer structure of E-cadherin in living cells

    SciTech Connect

    Takeda, Hiroshi

    2014-02-21

    Highlights: • The effects of Cd on the dimer of cadherin in living cells was analyzed. • Cd induced cadherin dimer formation was not detected in living cell with low Ca. • Ca mediated structural cooperativity and allostery in the native cadherin. • Ca concentration-dependent competitive displacement of Cd from cadherin is proposed. - Abstract: E-cadherin, a calcium (Ca{sup 2+})-dependent cell–cell adhesion molecule, plays a key role in the maintenance of tissue integrity. We have previously demonstrated that E-cadherin functions in vivo as a cis-dimer through chemical cross-linking reagents. Ca{sup 2+} plays an important role in the cis-dimer formation of cadherin. However, the molecular mechanisms by which Ca{sup 2+} interacts with the binding sites that regulate cis-dimer structures have not been completely elucidated. As expected for a Ca{sup 2+} antagonist, cadmium (Cd{sup 2+}) disrupts cadherin function by displacing Ca{sup 2+} from its binding sites on the cadherin molecules. We used Cd{sup 2+} as a probe for investigating the role of Ca{sup 2+} in the dynamics of the E-cadherin extracellular region that involve cis-dimer formation and adhesion. While cell–cell adhesion assembly was completely disrupted in the presence of Cd{sup 2+}, the amount of cis-dimers of E-cadherin that formed at the cell surface was not affected. In our “Cd{sup 2+}-switch” experiments, we did not find that Cd{sup 2+}-induced E-cadherin cis-dimer formation in EL cells when they were incubated in low-Ca{sup 2+} medium. In the present study, we demonstrated for the first time the effects of Cd{sup 2+} on the cis-dimer structure of E-cadherin in living cells using a chemical cross-link analysis.

  6. Quantum dimer model for the pseudogap metal

    PubMed Central

    Punk, Matthias; Allais, Andrea; Sachdev, Subir

    2015-01-01

    We propose a quantum dimer model for the metallic state of the hole-doped cuprates at low hole density, p. The Hilbert space is spanned by spinless, neutral, bosonic dimers and spin S=1/2, charge +e fermionic dimers. The model realizes a “fractionalized Fermi liquid” with no symmetry breaking and small hole pocket Fermi surfaces enclosing a total area determined by p. Exact diagonalization, on lattices of sizes up to 8×8, shows anisotropic quasiparticle residue around the pocket Fermi surfaces. We discuss the relationship to experiments. PMID:26195771

  7. Biomimetic synthesis: discovery of xanthanolide dimers.

    PubMed

    Shang, Hai; Liu, Junhua; Bao, Ruiyang; Cao, Yu; Zhao, Kun; Xiao, Chengqian; Zhou, Bing; Hu, Lihong; Tang, Yefeng

    2014-12-22

    Starting from xanthatin, the biomimetic synthesis of 4β,5β-epoxyxanthatin-1α,4α-endoperoxide, a novel monomeric xanthanolide, has been achieved. Moreover, four unprecedented xanthanolide dimers were synthesized by three different dimerizations of xanthatin, either in a head-to-head or head-to-tail fashion. Notably, these dimeric compounds were firstly identified as artifacts in the laboratory, and two of them, mogolides A and B, proved to be natural products present in the Xanthium mogolium Kitag plant. PMID:25430055

  8. Spin 3/2 dimer model

    NASA Astrophysics Data System (ADS)

    Rachel, S.

    2009-05-01

    We present a parent Hamiltonian for weakly dimerized valence bond solid states for arbitrary half-integral S. While the model reduces for S=1/2 to the Majumdar-Ghosh Hamiltonian, we discuss this model and its properties for S=3/2. Its degenerate ground state is the most popular toy model state for discussing dimerization in spin 3/2 chains. In particular, it describes the impurity-induced dimer phase in Cr8Ni as proposed recently. We point out that the explicit construction of the Hamiltonian and its main features apply to arbitrary half-integral spin S.

  9. Structural basis for controlling the dimerization and stability of the WW domains of an atypical subfamily.

    PubMed

    Ohnishi, Satoshi; Tochio, Naoya; Tomizawa, Tadashi; Akasaka, Ryogo; Harada, Takushi; Seki, Eiko; Sato, Manami; Watanabe, Satoru; Fujikura, Yukiko; Koshiba, Seizo; Terada, Takaho; Shirouzu, Mikako; Tanaka, Akiko; Kigawa, Takanori; Yokoyama, Shigeyuki

    2008-09-01

    The second WW domain in mammalian Salvador protein (SAV1 WW2) is quite atypical, as it forms a beta-clam-like homodimer. The second WW domain in human MAGI1 (membrane associated guanylate kinase, WW and PDZ domain containing 1) (MAGI1 WW2) shares high sequence similarity with SAV1 WW2, suggesting comparable dimerization. However, an analytical ultracentrifugation study revealed that MAGI1 WW2 (Leu355-Pro390) chiefly exists as a monomer at low protein concentrations, with an association constant of 1.3 x 10(2) M(-1). We determined its solution structure, and a structural comparison with the dimeric SAV1 WW2 suggested that an Asp residue is crucial for the inhibition of the dimerization. The substitution of this acidic residue with Ser resulted in the dimerization of MAGI1 WW2. The spin-relaxation data suggested that the MAGI1 WW2 undergoes a dynamic process of transient dimerization that is limited by the charge repulsion. Additionally, we characterized a longer construct of this WW domain with a C-terminal extension (Leu355-Glu401), as the formation of an extra alpha-helix was predicted. An NMR structural determination confirmed the formation of an alpha-helix in the extended C-terminal region, which appears to be independent from the dimerization regulation. A thermal denaturation study revealed that the dimerized MAGI1 WW2 with the Asp-to-Ser mutation gained apparent stability in a protein concentration-dependent manner. A structural comparison between the two constructs with different lengths suggested that the formation of the C-terminal alpha-helix stabilized the global fold by facilitating contacts between the N-terminal linker region and the main body of the WW domain. PMID:18562638

  10. Relative Angle-Differential Cross Sections for Elastic Electron Scattering from Pyrimidine

    NASA Astrophysics Data System (ADS)

    Maljkovic, J. B.; Milosavljevic, A. R.; Sevic, D.; Marinkovic, B. P.

    2008-07-01

    Angle-differential cross sections for elastic scattering of electrons from pyrimidine are reported for the incident energies from 50-300 eV. Measurements were performed using a cross-beam technique, for scattering angles from 20^o to 110^o. Experimental relative elastic differential cross sections are compared with recent theoretical results for uracil, which is a pyrimidine base and a component of ribonucleic acid.

  11. Evidence of σ- and π-dimerization in a series of phenalenyls.

    PubMed

    Mou, Zhongyu; Uchida, Kazuyuki; Kubo, Takashi; Kertesz, Miklos

    2014-12-31

    Phenalenyl and a wide variety of its derivatives form stable radicals, which often associate in various aggregates with interesting properties that include magnetism and high electrical conductivity. The two main modes of aggregation involve π-stacking pancake multicenter bond formation and σ-bond formation. We explore the energetics of the various σ- and π-dimers for six phenalenyl derivatives with both computational and experimental methods. A modern density functional theory (M05-2X) is used to survey the potential energy surface revealing the mechanism of the aggregation. In order to enrich experimental data, the triphenyl and trimethyl derivatives are newly prepared and their aggregation behaviors are investigated by various analytical methods including ESR, (1)H NMR, UV-vis, and single-crystal X-ray diffraction. The agreement between computations and experiments are very good forming the basis of describing trends in this series. We find that π-dimer formation can proceed via an asynchronous concerted path from the monomers or in a stepwise process via σ-dimers. The strength of the π-stacking pancake interaction depends strongly on substituents and covers a wide range both in terms of binding energies and contact distances. The spin densities in the π-stacking dimers reflect these trends and display a wide range of diradicaloid characters. Many σ-dimer configurations compete some of which are separated by small barriers leading to fluxional structures between σ-bonded configurations or σ- and π-bonded configurations. PMID:25394519

  12. Evidence from CD spectra that d(purine).r(pyrimidine) and r(purine).d(pyrimidine) hybrids are in different structural classes.

    PubMed Central

    Hung, S H; Yu, Q; Gray, D M; Ratliff, R L

    1994-01-01

    CD spectra and difference CD spectra of four d(oligopurine).r(oligopyrimidine) and four r(oligopurine).d(oligopyrimidine) hybrid duplexes containing mixed A.T(U) and G.C base pairs were compared with the spectra of four DNA.DNA and four RNA.RNA oligomer duplexes of similar repeating sequences. The 16 duplexes were formed by mixing oligomers that were 24 nucleotides long. The buffer was 0.05 M Na+ (phosphate), pH 7.0. DNA.DNA and RNA.RNA oligomer duplexes were used as reference B-form and A-form structures. We found that the CD spectra of d(purine).r(pyrimidine) and r(purine).d(pyrimidine) hybrid duplexes were different from the CD spectra of either DNA.DNA or RNA.RNA duplexes. The data suggested that these hybrids have intermediate structures between A-form RNA and B-form DNA structures. The CD spectra of d(purine).r(pyrimidine) and r(purine).d(pyrimidine) hybrid duplexes were different from each other, but the hybrids in each class had consistent CD spectra as indicated by nearest-neighbor comparisons. Thus, it appeared that the two types of hybrids belonged to different structural classes. The negative 210 nm band found in difference CD spectra was correlated with the presence of an r(purine) strand in the hybrid duplexes. The melting temperatures (Tm values) of these hybrids were compared with the Tm values of the DNA.DNA and RNA.RNA duplexes. The order of the thermal stability was: RNA.RNA duplex > r(purine).d(pyrimidine) hybrid > DNA.DNA duplex > d(purine).r(pyrimidine) hybrid, when comparing analogous sequences. PMID:7937162

  13. Investigating the role of vibrational excitation in simulating charged-particle tracks in liquid pyrimidine

    NASA Astrophysics Data System (ADS)

    Brunger, Michael J.; Ratnavelu, Kuru; Buckman, Stephen J.; Jones, Darryl B.; Muñoz, Antonio; Blanco, Francisco; García, Gustavo

    2016-03-01

    We report on our results of a study into the sensitivity of charged-particle (electron) track simulations in liquid pyrimidine, to the vibrational cross sections and vibrational energy loss distribution function employed in those simulations. We achieve this by repeating the earlier investigation of Fuss et al. [J. Appl. Phys. 117, 214701 (2015)], but now incorporating more accurate data for the vibrational integral cross sections and the energy loss distribution function that have recently become available. We find that while changes in absorbed dose or particle range are quite minor, due to the energy transferred via vibrational excitations being low in comparison to that for other processes such as ionisation, at the very end of the tracks, where non-ionizing interactions dominate, the significantly large numbers of vibrational excitation processes increases the electrons' ability to induce other effects (e.g. sample heating, bond breaking and radical formation) that might cause damage. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  14. Photochemistry and DNA-affinity of some pyrimidine-substituted styryl-azinium iodides.

    PubMed

    Mazzoli, Alessandra; Carlotti, Benedetta; Bonaccorso, Carmela; Fortuna, Cosimo G; Mazzucato, Ugo; Miolo, Giorgia; Spalletti, Anna

    2011-11-01

    The relaxation properties of the excited states of three iodides of trans-1,2-diarylethene analogues (where one aryl group is a methylpyridinium, methylquinolinium or dimethylimidazolium group and the other one is a phenyl ring para-substituted by a pyrimidine ring) have been investigated in buffered (pH = 7) aqueous solution. As found in previous works for several analogues, these quaternized salts undergo efficient trans→cis photoisomerization while the yield of the radiative deactivation is very small at room temperature. The solvent effect on the spectral behaviour indicates the occurrence of intramolecular charge transfer which can induce interesting non-linear optical properties. The results of a study of the interactions of these salts with DNA, which might affect the cell metabolism, showed a relatively modest binding affinity for the pyridinium and imidazolium salts and a more substantial affinity for the quinolinium analogue. The formation of ligand-DNA complexes affects only slightly the radiative relaxation yield while leading to a relevant reduction of the isomerization yield. Measurements of the linear dichroism behaviour of the three compounds and comparison with three analogues bearing furan or thienyl groups, which have been found to display different affinity with DNA in previous works, gave interesting information on the nature of the ligand-DNA binding of these compounds. PMID:21993496

  15. Repair of a Dimeric Azetidine Related to the Thymine-Cytosine (6-4) Photoproduct by Electron Transfer Photoreduction.

    PubMed

    Fraga-Timiraos, Ana B; Lhiaubet-Vallet, Virginie; Miranda, Miguel A

    2016-05-10

    Photolyases are intriguing enzymes that take advantage of sunlight to restore lesions like cyclobutane pyrimidine dimers or (6-4) photoproducts. This work focused on the photoreductive process responsible for splitting of the azetidine ring proposed to occur during (6-4) photoproduct repair at a thymine-cytosine sequence. A model compound formed by photocycloaddition between thymine and 6-azauracil has been designed to mimic the elusive azetidine intermediate. The photoinduced electron transfer process has been investigated by means of steady-state and time-resolved fluorescence using photosensitizers with oxidation potentials in the singlet excited state ranging from -3.3 to -2.1 V vs. SCE. Azetidine ring splitting and recovery of "repaired" bases were proven by HPLC analysis. PMID:27061458

  16. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  17. Coulomb bound states and resonances due to groups of Ca dimers adsorbed on suspended graphene

    NASA Astrophysics Data System (ADS)

    Saffarzadeh, Alireza; Kirczenow, George

    2014-10-01

    The electronic bound states and resonances in the vicinity of the Dirac point energy due to the adsorption of calcium dimers on a suspended graphene monolayer are explored theoretically using density functional theory (DFT) and an improved extended Hückel model that includes electrostatic potentials. The Mulliken atomic charges and the electrostatic potentials are obtained from DFT calculations and reveal charge transfer from the Ca dimers to the graphene which is responsible for the emergence of resonant states in the electronic spectrum. The number of resonant states increases as the number of adsorbed dimers is increased. We find a bound "atomic-collapse" state in the graphene local density of states, as has been observed experimentally [Wang et al., Science 340, 734 (2013), 10.1126/science.1234320]. We find the formation of the atomic-collapse state and its population with electrons to require fewer adsorbed Ca dimers than in the experiment, possibly due to the different spacing between dimers and the dielectric screening by a boron nitride substrate in the experiment. We also predict the onset of filling of a second atomic-collapse state with electrons when six Ca dimers are adsorbed on the suspended graphene monolayer. Experiments testing these predictions would be of interest.

  18. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGESBeta

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  19. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    SciTech Connect

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li -Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.

  20. Dominant negative actions of human prostacyclin receptor variant through dimerization: implications for cardiovascular disease

    PubMed Central

    Ibrahim, Salam; Tetruashvily, Mazell; Frey, Alex J; Wilson, Stephen J; Stitham, Jeremiah; Hwa, John; Smyth, Emer M

    2010-01-01

    Objective Prostacyclin and thromboxane mediate opposing cardiovascular effects through their receptors, the IP and TP, respectively. Individuals heterozygous for an IP variant, IPR212C, displayed exaggerated loss of platelet IP responsiveness and accelerated cardiovascular disease. We examined association of IPR212C into homo- and hetero- dimeric receptor complexes and the impact on prostacyclin and thromboxane biology. Methods and Results Dimerization of the IP, IPR212C and TPα and was examined by Bioluminescent Resonance Energy Transfer in transfected HEK293 cells. We observed an equal propensity for formation of IPIP homo- and IPTPα hetero- dimers. Compared to the IP alone, IPR212C displayed reduced cAMP generation and increased ER localization, but underwent normal homo- and hetero- dimerization. When the IPR212C and IP were co-expressed a dominant negative action of variant was evident with enhanced wild type IP localization to the ER and reduced agonist-dependent signaling. Further, the TPα activation response, which was shifted from inositol phosphate to cAMP generation following IPTPα heterodimerization, was normalized when the TPα instead dimerized with IPR212C. Conclusions IPR212C exerts a dominant action on the wild type IP and TPα through dimerization. This likely contributes to accelerated cardiovascular disease in individuals carrying one copy of the variant allele. PMID:20522800

  1. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.

    PubMed

    Griffiths, Scott; Mesarich, Carl H; Saccomanno, Benedetta; Vaisberg, Abraham; De Wit, Pierre J G M; Cox, Russell; Collemare, Jérôme

    2016-06-21

    Anthraquinones are a large family of secondary metabolites (SMs) that are extensively studied for their diverse biological activities. These activities are determined by functional group decorations and the formation of dimers from anthraquinone monomers. Despite their numerous medicinal qualities, very few anthraquinone biosynthetic pathways have been elucidated so far, including the enzymatic dimerization steps. In this study, we report the elucidation of the biosynthesis of cladofulvin, an asymmetrical homodimer of nataloe-emodin produced by the fungus Cladosporium fulvum A gene cluster of 10 genes controls cladofulvin biosynthesis, which begins with the production of atrochrysone carboxylic acid by the polyketide synthase ClaG and the β-lactamase ClaF. This compound is decarboxylated by ClaH to yield emodin, which is then converted to chrysophanol hydroquinone by the reductase ClaC and the dehydratase ClaB. We show that the predicted cytochrome P450 ClaM catalyzes the dimerization of nataloe-emodin to cladofulvin. Remarkably, such dimerization dramatically increases nataloe-emodin cytotoxicity against mammalian cell lines. These findings shed light on the enzymatic mechanisms involved in anthraquinone dimerization. Future characterization of the ClaM enzyme should facilitate engineering the biosynthesis of novel, potent, dimeric anthraquinones and structurally related compound families. PMID:27274078

  2. Synthesis and structures of Se analogues of the antithyroid drug 6-n-propyl-2-thiouracil and its alkyl derivatives: formation of dimeric Se-Se compounds and deselenation reactions of charge-transfer adducts of diiodine.

    PubMed

    Antoniadis, Constantinos D; Hadjikakou, Sotiris K; Hadjiliadis, Nick; Papakyriakou, Athanasios; Baril, Martin; Butler, Ian S

    2006-09-01

    Four selenium analogues of the antithyroid drug 6-n-propyl-2-thiouracil (PTU), of formulae RSeU, (R = methyl (Me) (1), ethyl (Et) (2), n-propyl (nPr) (3), and isopropyl (iPr) 4), have been synthesized. Reaction of 1-4 with diiodine in a 1:1 molar ratio in dichloromethane results in the formation of [(RSeU)I(2)] (R = methyl (5), ethyl (6), n-propyl (7) and isopropyl (8)). All compounds have been characterized by elemental analysis, FT-Raman, FT-IR, UV/Vis, (1)H-, (13)C-, (77)Se-1D and -2D NMR spectroscopy, and ESI-MS spectrometric techniques. Recrystallization of 4 from dichloromethane afforded (4CH(2)Cl(2)). Crystals of [(nPrSeU)I(2)] (7), a charge-transfer complex, were obtained from chloroform solutions, while crystallization of 6 and 7 from acetone afforded the diselenides [N-(6-Et-4-pyrimidone)(6-EtSeU)(2)] (92 H(2)O) and [N-(6-nPr-4-pyrimidone)(6-nPrSeU)(2)] (10) as oxidation products. Recrystallization of 7 from methanol/acetonitrile solutions led to deselenation with the formation of 6-n-propyl-2-uracil (nPrU) (11). [(nPrSeU)I(2)] (7) was found to be a charge-transfer complex with a Se--I bond. These results are discussed in relation to the mechanism of action of antithyroid drugs. PMID:16773663

  3. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae.

    PubMed

    Davies, Karen M; Anselmi, Claudio; Wittig, Ilka; Faraldo-Gómez, José D; Kühlbrandt, Werner

    2012-08-21

    We used electron cryotomography of mitochondrial membranes from wild-type and mutant Saccharomyces cerevisiae to investigate the structure and organization of ATP synthase dimers in situ. Subtomogram averaging of the dimers to 3.7 nm resolution revealed a V-shaped structure of twofold symmetry, with an angle of 86° between monomers. The central and peripheral stalks are well resolved. The monomers interact within the membrane at the base of the peripheral stalks. In wild-type mitochondria ATP synthase dimers are found in rows along the highly curved cristae ridges, and appear to be crucial for membrane morphology. Strains deficient in the dimer-specific subunits e and g or the first transmembrane helix of subunit 4 lack both dimers and lamellar cristae. Instead, cristae are either absent or balloon-shaped, with ATP synthase monomers distributed randomly in the membrane. Computer simulations indicate that isolated dimers induce a plastic deformation in the lipid bilayer, which is partially relieved by their side-by-side association. We propose that the assembly of ATP synthase dimer rows is driven by the reduction in the membrane elastic energy, rather than by direct protein contacts, and that the dimer rows enable the formation of highly curved ridges in mitochondrial cristae. PMID:22864911

  4. Environment assisted energy transfer in dimer system

    SciTech Connect

    Khan, Salman; Ibrahim, M.; Khan, M.K.

    2014-02-15

    The influence of collective and multilocal environments on the energy transfer between the levels of a dimer is studied. The dynamics of energy transfer are investigated by considering coupling of collective environment with the levels of the dimer in the presence of both two individuals and mutually correlated multilocal environments. It is shown that every way of coupling we consider assists, though differently, the probability of transition between the levels of dimer. The probability of transition is strongly enhanced when the two local environments are mutually correlated. -- Highlights: • The dynamics of energy transfer between the levels of a dimer are studied. • Coupling of collective as well as individual environments are considered. • The environments are in spin star configurations. • The environment assists the energy transfer between the levels. • For correlated multilocal environments, the transition probability is almost 100%.

  5. Molecular orbital analysis of the hydrogen bonded water dimer

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Jiang, Wanrun; Dai, Xin; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2016-02-01

    As an essential interaction in nature, hydrogen bonding plays a crucial role in many material formations and biological processes, requiring deeper understanding. Here, using density functional theory and post-Hartree-Fock methods, we reveal two hydrogen bonding molecular orbitals crossing the hydrogen-bond’s O and H atoms in the water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. Our finding sheds light on the essential understanding of hydrogen bonding in ice, liquid water, functional materials and biological systems.

  6. Molecular orbital analysis of the hydrogen bonded water dimer

    PubMed Central

    Wang, Bo; Jiang, Wanrun; Dai, Xin; Gao, Yang; Wang, Zhigang; Zhang, Rui-Qin

    2016-01-01

    As an essential interaction in nature, hydrogen bonding plays a crucial role in many material formations and biological processes, requiring deeper understanding. Here, using density functional theory and post-Hartree-Fock methods, we reveal two hydrogen bonding molecular orbitals crossing the hydrogen-bond’s O and H atoms in the water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. Our finding sheds light on the essential understanding of hydrogen bonding in ice, liquid water, functional materials and biological systems. PMID:26905305

  7. Synchronized oscillations of dimers in biphasic charged fd-virus suspensions.

    PubMed

    Kang, K; Piao, S H; Choi, H J

    2016-08-01

    Micron-sized colloidal spheres that are dispersed in an isotropic-nematic biphasic host suspension of charged rods (fd-virus particles) are shown to spontaneously form dimers, which exhibit a synchronized oscillatory motion. Dimer formation is not observed in the monophase of isotropic and nematic suspensions. The synchronized oscillations of dimers are connected to the inhomogeneous state of the host suspension of charged rods (fd viruses) where nematic domains are in coexistence with isotropic regions. The synchronization of oscillations occurs in bulk states, in the absence of an external field. With a low field strength of an applied electric field, the synchronization is rather reduced, but it recovers again when the field is turned off. In this Rapid Communication, we report this observation as an example of the strange attractor, occurring in the mixture of PS (polystyrene) dimers in an isotropic-nematic coexistence biphasic fd-virus network. Furthermore, we highlight that the synchronization of PS-dimer oscillations is the result of a global bifurcation diagram, driven by a delicate balance between the short-attractive "twisted" interaction of PS dimers and long-ranged electrostatic repulsive interactions of charged fd rods. The interest is then in the local enhancement of "twist-nematic" elasticity in reorientation of the dimer oscillations. An analysis of image-time correlations is provided with the data movies and Fourier transforms of averaged orientations for the synchronized oscillations of dimers in the biphasic I-N coexistence concentration of charged fd-virus suspensions. PMID:27627230

  8. Functional Role of Dimerization of Human Peptidylarginine Deiminase 4 (PAD4)

    PubMed Central

    Liu, Yi-Liang; Chiang, Yu-Hsiu; Liu, Guang-Yaw; Hung, Hui-Chih

    2011-01-01

    Peptidylarginine deiminase 4 (PAD4) is a homodimeric enzyme that catalyzes Ca2+-dependent protein citrullination, which results in the conversion of arginine to citrulline. This paper demonstrates the functional role of dimerization in the regulation of PAD4 activity. To address this question, we created a series of dimer interface mutants of PAD4. The residues Arg8, Tyr237, Asp273, Glu281, Tyr435, Arg544 and Asp547, which are located at the dimer interface, were mutated to disturb the dimer organization of PAD4. Sedimentation velocity experiments were performed to investigate the changes in the quaternary structures and the dissociation constants (Kd) between wild-type and mutant PAD4 monomers and dimers. The kinetic data indicated that disrupting the dimer interface of the enzyme decreases its enzymatic activity and calcium-binding cooperativity. The Kd values of some PAD4 mutants were much higher than that of the wild-type (WT) protein (0.45 µM) and were concomitant with lower kcat values than that of WT (13.4 s−1). The Kd values of the monomeric PAD4 mutants ranged from 16.8 to 45.6 µM, and the kcat values of the monomeric mutants ranged from 3.3 to 7.3 s−1. The kcat values of these interface mutants decreased as the Kd values increased, which suggests that the dissociation of dimers to monomers considerably influences the activity of the enzyme. Although dissociation of the enzyme reduces the activity of the enzyme, monomeric PAD4 is still active but does not display cooperative calcium binding. The ionic interaction between Arg8 and Asp547 and the Tyr435-mediated hydrophobic interaction are determinants of PAD4 dimer formation. PMID:21731701

  9. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis

    PubMed Central

    Lara-Gonzalez, Samuel; Estrella, Priscilla; Portillo, Carmen; Cruces, María E.; Jimenez-Sandoval, Pedro; Fattori, Juliana; Migliorini-Figueira, Ana C.; Lopez-Hidalgo, Marisol; Diaz-Quezada, Corina; Lopez-Castillo, Margarita; Trasviña-Arenas, Carlos H.; Sanchez-Sandoval, Eugenia; Gómez-Puyou, Armando; Ortega-Lopez, Jaime; Arroyo, Rossana; Benítez-Cardoza, Claudia G.; Brieba, Luis G.

    2015-01-01

    The dimeric nature of triosephosphate isomerases (TIMs) is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM) are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A) is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding. PMID:26618356

  10. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

    PubMed

    Lara-Gonzalez, Samuel; Estrella, Priscilla; Portillo, Carmen; Cruces, María E; Jimenez-Sandoval, Pedro; Fattori, Juliana; Migliorini-Figueira, Ana C; Lopez-Hidalgo, Marisol; Diaz-Quezada, Corina; Lopez-Castillo, Margarita; Trasviña-Arenas, Carlos H; Sanchez-Sandoval, Eugenia; Gómez-Puyou, Armando; Ortega-Lopez, Jaime; Arroyo, Rossana; Benítez-Cardoza, Claudia G; Brieba, Luis G

    2015-01-01

    The dimeric nature of triosephosphate isomerases (TIMs) is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM) are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A) is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding. PMID:26618356

  11. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface

    SciTech Connect

    Buryak, Ilya; Vigasin, Andrey A.

    2015-12-21

    The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.

  12. Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface

    NASA Astrophysics Data System (ADS)

    Buryak, Ilya; Vigasin, Andrey A.

    2015-12-01

    The present paper aims at deriving classical expressions which permit calculation of the equilibrium constant for weakly interacting molecular pairs using a complete multidimensional potential energy surface. The latter is often available nowadays as a result of the more and more sophisticated and accurate ab initio calculations. The water dimer formation is considered as an example. It is shown that even in case of a rather strongly bound dimer the suggested expression permits obtaining quite reliable estimate for the equilibrium constant. The reliability of our obtained water dimer equilibrium constant is briefly discussed by comparison with the available data based on experimental observations, quantum calculations, and the use of RRHO approximation, provided the latter is restricted to formation of true bound states only.

  13. SOXE transcription factors form selective dimers on non-compact DNA motifs through multifaceted interactions between dimerization and high-mobility group domains

    PubMed Central

    Huang, Yong-Heng; Jankowski, Aleksander; Cheah, Kathryn S. E.; Prabhakar, Shyam; Jauch, Ralf

    2015-01-01

    The SOXE transcription factors SOX8, SOX9 and SOX10 are master regulators of mammalian development directing sex determination, gliogenesis, pancreas specification and neural crest development. We identified a set of palindromic SOX binding sites specifically enriched in regulatory regions of melanoma cells. SOXE proteins homodimerize on these sequences with high cooperativity. In contrast to other transcription factor dimers, which are typically rigidly spaced, SOXE group proteins can bind cooperatively at a wide range of dimer spacings. Using truncated forms of SOXE proteins, we show that a single dimerization (DIM) domain, that precedes the DNA binding high mobility group (HMG) domain, is sufficient for dimer formation, suggesting that DIM : HMG rather than DIM:DIM interactions mediate the dimerization. All SOXE members can also heterodimerize in this fashion, whereas SOXE heterodimers with SOX2, SOX4, SOX6 and SOX18 are not supported. We propose a structural model where SOXE-specific intramolecular DIM:HMG interactions are allosterically communicated to the HMG of juxtaposed molecules. Collectively, SOXE factors evolved a unique mode to combinatorially regulate their target genes that relies on a multifaceted interplay between the HMG and DIM domains. This property potentially extends further the diversity of target genes and cell-specific functions that are regulated by SOXE proteins. PMID:26013289

  14. Photoelectron spectroscopy of the nitrogen dimer (N2)2 and clusters (N2)n: N2 dimer revealed as the chromophore in photoionization of condensed nitrogen

    NASA Astrophysics Data System (ADS)

    Carnovale, Frank; Peel, J. Barrie; Rothwell, Richard G.

    1988-01-01

    The He i photoelectron spectra of gas-phase nitrogen dimer and nitrogen clusters have been measured in a pulsed cluster beam. The dimer (N2)2 is characterized by broad bands with vertical ionization energies which are 0.3±0.1 eV lower than for N2 monomer. The bands observed for a mixture of small clusters, estimated to be of average size N¯=10, are identical to the dimer bands except for further shifts of 0.3 eV to lower ionization energies. The clusters bandwidths and band shapes are virtually the same as measured for thin films of condensed N2, indicating that the nitrogen dimer (N2)2 is the ionization chromophore in each case. This offers support for Haberland's hypothesis that ionization of any Mn cluster produces the ion M+2Mn-2 provided M is a closed-shell atom or molecule. The theory of electronic relaxation polarization of the dielectric medium, which explains the gas-to-solid ionization energy shifts, is modified for the case of finite clusters and to account for dimer ion formation.

  15. Rewiring of the Ppr1 Zinc Cluster Transcription Factor from Purine Catabolism to Pyrimidine Biogenesis in the Saccharomycetaceae.

    PubMed

    Tebung, Walters Aji; Choudhury, Baharul I; Tebbji, Faiza; Morschhäuser, Joachim; Whiteway, Malcolm

    2016-07-11

    Metabolic pathways are largely conserved in eukaryotes, but the transcriptional regulation of these pathways can sometimes vary between species; this has been termed "rewiring." Recently, it has been established that in the Saccharomyces lineage starting from Naumovozyma castellii, genes involved in allantoin breakdown have been genomically relocated to form the DAL cluster. The formation of the DAL cluster occurred along with the loss of urate permease (UAP) and urate oxidase (UOX), reducing the requirement for oxygen and bypassing the candidate Ppr1 inducer, uric acid. In Saccharomyces cerevisiae, this allantoin catabolism cluster is regulated by the transcription factor Dal82, which is not present in many of the pre-rearrangement fungal species. We have used ChIP-chip analysis, transcriptional profiling of an activated Ppr1 protein, bioinformatics, and nitrogen utilization studies to establish that in Candida albicans the zinc cluster transcription factor Ppr1 controls this allantoin catabolism regulon. Intriguingly, in S. cerevisiae, the Ppr1 ortholog binds the same DNA motif (CGG(N6)CCG) as in C. albicans but serves as a regulator of pyrimidine biosynthesis. This transcription factor rewiring appears to have taken place at the same phylogenetic step as the formation of the rearranged DAL cluster. This transfer of the control of allantoin degradation from Ppr1 to Dal82, together with the repositioning of Ppr1 to the regulation of pyrimidine biosynthesis, may have resulted from a switch to a metabolism that could exploit hypoxic conditions in the lineage leading to N. castellii and S. cerevisiae. PMID:27321996

  16. I2-Catalyzed Multicomponent Reactions for Accessing Densely Functionalized Pyrazolo[1,5-a]pyrimidines and Their Disulphenylated Derivatives.

    PubMed

    Sun, Jun; Qiu, Jiang-Kai; Jiang, Bo; Hao, Wen-Juan; Guo, Cheng; Tu, Shu-Jiang

    2016-04-15

    New I2-catalyzed multicomponent bicyclization reactions of β-ketonitriles with sulfonyl hydrazides have been established, providing a direct and metal-free access toward unreported pyrazolo[1,5-a]pyrimidin-4-ium sulfonates. The latter could be quantitatively converted into densely functionalized pyrazolo[1,5-a]pyrimidines in the presence of bases. Using sulfonyl hydrazides as a sulfenylating agent, the resulting pyrazolo[1,5-a]pyrimidines enabled I2-catalyzed unprecedented disulphenylations to access fully substituted pyrazolo[1,5-a]pyrimidines through direct C(sp(2))-H bond bifunctionalization. PMID:26991413

  17. Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology.

    PubMed

    Hahn, Alexander; Parey, Kristian; Bublitz, Maike; Mills, Deryck J; Zickermann, Volker; Vonck, Janet; Kühlbrandt, Werner; Meier, Thomas

    2016-08-01

    We determined the structure of a complete, dimeric F1Fo-ATP synthase from yeast Yarrowia lipolytica mitochondria by a combination of cryo-EM and X-ray crystallography. The final structure resolves 58 of the 60 dimer subunits. Horizontal helices of subunit a in Fo wrap around the c-ring rotor, and a total of six vertical helices assigned to subunits a, b, f, i, and 8 span the membrane. Subunit 8 (A6L in human) is an evolutionary derivative of the bacterial b subunit. On the lumenal membrane surface, subunit f establishes direct contact between the two monomers. Comparison with a cryo-EM map of the F1Fo monomer identifies subunits e and g at the lateral dimer interface. They do not form dimer contacts but enable dimer formation by inducing a strong membrane curvature of ∼100°. Our structure explains the structural basis of cristae formation in mitochondria, a landmark signature of eukaryotic cell morphology. PMID:27373333

  18. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level.

    PubMed

    Tabor, Alina; Weisenburger, Siegfried; Banerjee, Ashutosh; Purkayastha, Nirupam; Kaindl, Jonas M; Hübner, Harald; Wei, Luxi; Grömer, Teja W; Kornhuber, Johannes; Tschammer, Nuska; Birdsall, Nigel J M; Mashanov, Gregory I; Sandoghdar, Vahid; Gmeiner, Peter

    2016-01-01

    G protein-coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass. PMID:27615810

  19. Stabilization of sulfuric acid dimers by ammonia, methylamine, dimethylamine, and trimethylamine

    NASA Astrophysics Data System (ADS)

    Jen, Coty N.; McMurry, Peter H.; Hanson, David R.

    2014-06-01

    This study experimentally explores how ammonia (NH3), methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) affect the chemical formation mechanisms of electrically neutral clusters that contain two sulfuric acid molecules (dimers). Dimers may also contain undetectable compounds, such as water or bases, that evaporate upon ionization and sampling. Measurements were conducted using a glass flow reactor which contained a steady flow of humidified nitrogen with sulfuric acid concentrations of 107 to 109 cm-3. A known molar flow rate of a basic gas was injected into the flow reactor. The University of Minnesota Cluster Chemical Ionization Mass Spectrometer was used to measure the resulting sulfuric acid vapor and cluster concentrations. It was found that, for a given concentration of sulfuric acid vapor, the dimer concentration increases with increasing concentration of the basic gas, eventually reaching a plateau. The base concentrations at which the dimer concentrations saturate suggest NH3 < MA < TMA ≲ DMA in forming stabilized sulfuric acid dimers. Two heuristic models for cluster formation by acid-base reactions are developed to interpret the data. The models provide ranges of evaporation rate constants that are consistent with observations and leads to an analytic expression for nucleation rates that is consistent with atmospheric observations.

  20. De novo pyrimidine biosynthesis in the oomycete plant pathogen Phytophthora infestans.

    PubMed

    García-Bayona, Leonor; Garavito, Manuel F; Lozano, Gabriel L; Vasquez, Juan J; Myers, Kevin; Fry, William E; Bernal, Adriana; Zimmermann, Barbara H; Restrepo, Silvia

    2014-03-10

    The oomycete Phytophthora infestans, causal agent of the tomato and potato late blight, generates important economic and environmental losses worldwide. As current control strategies are becoming less effective, there is a need for studies on oomycete metabolism to help identify promising and more effective targets for chemical control. The pyrimidine pathways are attractive metabolic targets to combat tumors, virus and parasitic diseases but have not yet been studied in Phytophthora. Pyrimidines are involved in several critical cellular processes and play structural, metabolic and regulatory functions. Here, we used genomic and transcriptomic information to survey the pyrimidine metabolism during the P. infestans life cycle. After assessing the putative gene machinery for pyrimidine salvage and de novo synthesis, we inferred genealogies for each enzymatic domain in the latter pathway, which displayed a mosaic origin. The last two enzymes of the pathway, orotate phosphoribosyltransferase and orotidine-5-monophosphate decarboxylase, are fused in a multi-domain enzyme and are duplicated in some P. infestans strains. Two splice variants of the third gene (dihydroorotase) were identified, one of them encoding a premature stop codon generating a non-functional truncated protein. Relative expression profiles of pyrimidine biosynthesis genes were evaluated by qRT-PCR during infection in Solanum phureja. The third and fifth genes involved in this pathway showed high up-regulation during biotrophic stages and down-regulation during necrotrophy, whereas the uracil phosphoribosyl transferase gene involved in pyrimidine salvage showed the inverse behavior. These findings suggest the importance of de novo pyrimidine biosynthesis during the fast replicative early infection stages and highlight the dynamics of the metabolism associated with the hemibiotrophic life style of pathogen. PMID:24361203

  1. High-resolution characterization of CPD hotspot formation in human fibroblasts

    PubMed Central

    Zavala, Anamaria G.; Morris, Robert T.; Wyrick, John J.; Smerdon, Michael J.

    2014-01-01

    Repair of DNA lesions must occur within the chromatin landscape and is associated with alterations in histone modifications and nucleosome rearrangement. To directly associate these chromatin features with DNA damage and repair, it is necessary to be able to map DNA adducts. We have developed a cyclobutane pyrimidine dimer (CPD)-specific immunoprecipitation method and mapped ultraviolet damage hotspots across human chromosomes 1 and 6. CPD hotspots occur almost equally in genic and intergenic regions. However, these hotspots are significantly more prevalent adjacent to repeat elements, especially Alu repeats. Nucleosome mapping studies indicate that nucleosomes are consistently positioned at Alu elements where CPD hotspots form, but by 2 h post-irradiation, these same regions are significantly depleted of nucleosomes. These results indicate that nucleosomes associated with hotspots of CPD formation are readily rearranged, potentially making them accessible to DNA repair machinery. Our results represent the first chromosome scale map of ultraviolet-induced DNA lesions in the human genome, and reveal the sequence features and dynamic chromatin changes associated with CPD hotspots. PMID:24137003

  2. Pyrimidine base damage is increased in women with BRCA mutations.

    PubMed

    Budzinski, Edwin E; Patrzyc, Helen B; Dawidzik, Jean B; Freund, Harold G; Frederick, Peter; Godoy, Heidi E; Voian, Nicoleta C; Odunsi, Kunle; Box, Harold C

    2013-09-28

    Oxidatively-induced DNA damage was measured in the DNA of WBC from two groups of women: carriers of a BRCA mutation, but asymptomatic for disease, and healthy controls. Two oxidatively induced lesions were measured: a formamide remnant of pyrimidine base and the glycol modification of thymine. These lesions, employed previously in studies of the effects of smoking, antioxidant usage and ovarian cancer, are proving valuable indicators of oxidative stress. The BRCA carriers of mutations, with no overt sign of cancer, nevertheless had significantly higher levels of DNA damage than the controls. The level measured for the formamide lesion was 5.9 ± 1.0 (femtomoles/μg of DNA ± SEM) compared with 2.4 ± 0.3 in controls. The level of the glycol lesion was 2.9 ± 0.4 compared with 1.8 ± 0.2 in controls. The experimental design utilized DNA from WBC and employed LC-MS/MS to detect the lesions. PMID:23583677

  3. Fenarimol, a Pyrimidine-Type Fungicide, Inhibits Brassinosteroid Biosynthesis

    PubMed Central

    Oh, Keimei; Matsumoto, Tadashi; Yamagami, Ayumi; Hoshi, Tomoki; Nakano, Takeshi; Yoshizawa, Yuko

    2015-01-01

    The plant steroid hormone brassinosteroids (BRs) are important signal mediators that regulate broad aspects of plant growth and development. With the discovery of brassinoazole (Brz), the first specific inhibitor of BR biosynthesis, several triazole-type BR biosynthesis inhibitors have been developed. In this article, we report that fenarimol (FM), a pyrimidine-type fungicide, exhibits potent inhibitory activity against BR biosynthesis. FM induces dwarfism and the open cotyledon phenotype of Arabidopsis seedlings in the dark. The IC50 value for FM to inhibit stem elongation of Arabidopsis seedlings grown in the dark was approximately 1.8 ± 0.2 μM. FM-induced dwarfism of Arabidopsis seedlings could be restored by brassinolide (BL) but not by gibberellin (GA). Assessment of the target site of FM in BR biosynthesis by feeding BR biosynthesis intermediates indicated that FM interferes with the side chain hydroxylation of BR biosynthesis from campestanol to teasterone. Determination of the binding affinity of FM to purified recombinant CYP90D1 indicated that FM induced a typical type II binding spectrum with a Kd value of approximately 0.79 μM. Quantitative real-time PCR analysis of the expression level of the BR responsive gene in Arabidopsis seedlings indicated that FM induces the BR deficiency in Arabidopsis. PMID:26230686

  4. The (6-4) Dimeric Lesion as a DNA Photosensitizer.

    PubMed

    Vendrell-Criado, Victoria; Rodríguez-Muñiz, Gemma M; Lhiaubet-Vallet, Virginie; Cuquerella, M Consuelo; Miranda, Miguel A

    2016-07-01

    Based on our previous investigations into the photophysical properties of the 5-methyl-2-pyrimidone (Pyo) chromophore, we now extend our studies to the photobehavior of the dimeric (6-4) thymine photoproducts (6-4 PP) to evaluate their capability to act as instrinsic DNA photosensitizers. The lesion presents significant absorption in the UVB/UVA region, weak fluorescence emission, a singlet-excited-state energy of approximately 351 kJ mol(-1) , and a triplet-excited-state energy of 297 kJ mol(-1) . Its triplet transient absorption has a maximum at 420-440 nm, a lifetime of around 7 μs, and a high formation quantum yield, ΦISC =0.86. This species is efficiently quenched by thymidine. Its DNA photosensitizing properties are demonstrated by a series of experiments run on a pBR322 plasmid. The lesion photoinduces both single-strand breaks and the formation of cyclobutane thymine dimers. Altogether, these results show that, the substitution of the pyrimidone ring at C4 by a 5-hydroxy-5,6-dihydrothymine does not cancel out the photosensitization properties of the chromophore. PMID:26990589

  5. Multiply charged monopoles in cubic dimer model

    NASA Astrophysics Data System (ADS)

    Ganesh Jaya, Sreejith; Powell, Stephen

    2015-03-01

    The classical cubic dimer model is a 3D statistical mechanical system whose degrees of freedom are dimers that occupy the edges between nearest neighbour vertices of a cubic lattice. Dimer occupancies are subject to the local constraint that every vertex is associated with exactly one dimer. In the presence of an aligning interaction, it is known that the system exhibits an unconventional continuous thermal phase transition from a symmetry broken columnar phase to a Coulomb-phase. The transition is in the NCCP1 universality class, which also describes the Neel-VBS transition in the JQ model and the S =1/2 Heisenberg model with suppression of hedgehog defects. Using Monte-Carlo simulations of a pair of defects in a background of fluctuating dimers, we calculate the scaling exponents for fugacities of monopole defects of charge Q = 2 and 3 at this critical point. Our estimates suggest that Q = 3 monopoles are relevant and could therefore drive the JQ model away from the NCCP1 critical point on a hexagonal lattice.

  6. Synthesis, anticonvulsant and neurotoxicity evaluation of some new pyrimidine-5-carbonitrile derivatives

    PubMed Central

    Shaquiquzzaman, Mohammad; Khan, Suroor Ahmad; Amir, Mohammad; Alam, Mohammad Mumtaz

    2011-01-01

    A series of 2-[2-(substituted benzylidene) hydrazinyl]-4-(4-methoxyphenyl)-6-oxo-1,6-dihydro-pyrimidine-5-carbonitrile (3–16) were synthesized by refluxing 2-hydrazino-4-(4-methoxy-phenyl)-6-oxo-1,6-dihydro-pyrimidine-5-carbonitrile (2) with different substituted aromatic aldehydes in glacial acetic acid and absolute alcohol mixture (8:2). The compounds were evaluated for their anticonvulsant and neurotoxicity effect. In MES test compounds 2-[2-(4-bromo-benzylidene)-hydrazinyl]-4-(4-methoxyphenyl)-6-oxo-1,6-dihydro-pyrimidine-5-carbonitrile (5), 2-[2-(4-hydroxy-benzylidene)-hydrazinyl]-4-(4-methoxyphenyl)-6-oxo-1,6-dihydro-pyrimidine-5-carbonitrile (9), and 2-[2-(3-fluoro-benzylidene)-hydrazinyl]-4-(4-methoxyphenyl)-6-oxo-1,6-dihydro-pyrimidine-5-carbonitrile (16) were found to be highly active at a dose level of 30 mgkg−1 at 0.5 h time interval, indicating their ability to prevent seizure spread at a relatively low dose. PMID:23960786

  7. Synthesis, crystal structure, characterization and antifungal activity of pyrazolo[1,5-a]pyrimidines derivatives

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Peng, Ju-Fang; Wang, Tao; Wang, Ping; Zhang, Zun-Ting

    2016-09-01

    Under microwave radiation, isomers 2-(pyrazolo[1,5-a]pyrimidin-5-yl)phenols (3) and 2-(pyrazolo[1,5-a]pyrimidin-7-yl)phenols (4) were simultaneously obtained by the condensation of chromones and 3-aminopyrazoles. These two isomers were fully characterized by IR, 1H NMR, 13C NMR and HRMS. In addition, a representative product 5-chloro-2-(2-methyl-pyrazolo[1,5-a] pyrimidin-5-yl)phenol (3e) was further conformed by the single crystal X-ray diffraction. The antifungal abilities of the obtained products 3 and 4 were evaluated against five phytopathogenic fungi (Cytospora sp., Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria solani and Fusarium solani). The results revealed that 2-(pyrazolo[1,5-a]pyrimidin-5-yl)phenol (3a) and 4-chloro-2-(2-methylpyrazolo[1,5-a]pyrimidin-7-yl)phenol (4e) exhibited good antifungal abilities against Colletotrichum gloeosporioides with the IC50 values of 24.90 and 28.28 μg/mL, respectively.

  8. De novo pyrimidine biosynthesis is required for virulence of Toxoplasma gondii.

    PubMed

    Fox, Barbara A; Bzik, David J

    2002-02-21

    Toxoplasma gondii is a ubiquitous protozoan parasite that is responsible for severe congenital birth defects and fatal toxoplasmic encephalitis in immunocompromized people. Fundamental aspects of obligate intracellular replication and pathogenesis are only now beginning to emerge for protozoan parasites. T. gondii has a fragmented pathway for salvaging pyrimidine nucleobases derived from the parasite or host cell, and this limited pyrimidine salvage capacity is funnelled exclusively through uracil phosphoribosyltransferase. Disrupting the function of this enzyme does not affect the growth of T. gondii tachyzoites, which suggests that the de novo pyrimidine biosynthesis pathway may be necessary for growth. We have examined the virulence of T. gondii mutants that lack carbamoyl phosphate synthetase II (uracil auxotrophs) to determine whether de novo pyrimidine biosynthesis is required in vivo. Here we show that T. gondii uracil auxotrophs are completely avirulent not only in immune-competent BALB/c mice but also in mice that lack interferon-gamma. A single injection of the uracil auxotroph into BALB/c mice induces long-term protective immunity to toxoplasmosis. Our findings indicate the significance of the de novo pyrimidine biosynthesis pathway for the virulence of parasitic protozoa, and suggest routes for developing vaccines and chemotherapy. PMID:11859373

  9. Molecular interaction of the first 3 enzymes of the de novo pyrimidine biosynthetic pathway of Trypanosoma cruzi

    SciTech Connect

    Nara, Takeshi; Hashimoto, Muneaki; Hirawake, Hiroko; Liao, Chien-Wei; Fukai, Yoshihisa; Suzuki, Shigeo; Tsubouchi, Akiko; Morales, Jorge; Takamiya, Shinzaburo; Fujimura, Tsutomu; Taka, Hikari; Mineki, Reiko; Fan, Chia-Kwung; Inaoka, Daniel Ken; Inoue, Masayuki; Tanaka, Akiko; Harada, Shigeharu; Kita, Kiyoshi; and others

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer An Escherichia coli strain co-expressing CPSII, ATC, and DHO of Trypanosoma cruzi was constructed. Black-Right-Pointing-Pointer Molecular interactions between CPSII, ATC, and DHO of T. cruzi were demonstrated. Black-Right-Pointing-Pointer CPSII bound with both ATC and DHO. Black-Right-Pointing-Pointer ATC bound with both CPSII and DHO. Black-Right-Pointing-Pointer A functional tri-enzyme complex might precede the establishment of the fused enzyme. -- Abstract: The first 3 reaction steps of the de novo pyrimidine biosynthetic pathway are catalyzed by carbamoyl-phosphate synthetase II (CPSII), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO), respectively. In eukaryotes, these enzymes are structurally classified into 2 types: (1) a CPSII-DHO-ATC fusion enzyme (CAD) found in animals, fungi, and amoebozoa, and (2) stand-alone enzymes found in plants and the protist groups. In the present study, we demonstrate direct intermolecular interactions between CPSII, ATC, and DHO of the parasitic protist Trypanosoma cruzi, which is the causative agent of Chagas disease. The 3 enzymes were expressed in a bacterial expression system and their interactions were examined. Immunoprecipitation using an antibody specific for each enzyme coupled with Western blotting-based detection using antibodies for the counterpart enzymes showed co-precipitation of all 3 enzymes. From an evolutionary viewpoint, the formation of a functional tri-enzyme complex may have preceded-and led to-gene fusion to produce the CAD protein. This is the first report to demonstrate the structural basis of these 3 enzymes as a model of CAD. Moreover, in conjunction with the essentiality of de novo pyrimidine biosynthesis in the parasite, our findings provide a rationale for new strategies for developing drugs for Chagas disease, which target the intermolecular interactions of these 3 enzymes.

  10. T.C.G triplet in an antiparallel purine.purine.pyrimidine DNA triplex. Conformational studies by NMR.

    PubMed

    Dittrich, K; Gu, J; Tinder, R; Hogan, M; Gao, X

    1994-04-12

    The antiparallel purine.purine.pyrimidine DNA triplex, RRY6, which contains a T.C.G inverted triplet in the center of the sequence, was examined by proton and phosphorous two-dimensional NMR spectroscopy. The local conformation of the T.C.G triplet (T4.C11.G18) and the effect of this triplet on the global helical structure were analyzed in detail. The formation of the T.C.G triplet is confirmed by a set of cross-strand NOEs, including unusual cross-strand NOEs between the third strand and the pyrimidine strand as opposed to the purine strand of the duplex. NMR data suggest that the T.C.G triplet may be present in an equilibrium between a non-hydrogen-bonded form and a T(O4)-C(NH2) hydrogen-bonded form and that there is a distortion of the in-plane alignment of the three bases. The flanking G.G.C base triplets are well-defined on the 5'-side of T4, but somewhat interrupted on the 3'-side of T4. The effect of the third strand binding on the Watson-Crick duplex was probed by an NMR study of the free duplex RY6. NMR parameters are affected mostly around the T.C.G inversion site. The perturbations extend to at least two adjacent base triplets on either side. The binding of the third purine strand and the accommodation of a central T.C.G inversion in RRY6 does not require a readjustment in sugar pucker, which remains in the range of C2'-endo. 31P resonances of RRY6 distribute over a range of 2.2 ppm. The H-P coupling patterns of the third strand differ from those of the duplex. General spectral patterns defined by the marker protons of the RRY and YRY triplexes are compared. PMID:8155628

  11. Structure and dimerization of translation initiation factor aIF5B in solution

    SciTech Connect

    Rasmussen, Louise Caroe Vohlander; Oliveira, Cristiano Luis Pinto; Byron, Olwyn; Jensen, Janni Mosgaard; Pedersen, Jan Skov; Sperling-Petersen, Hans Uffe; Mortensen, Kim Kusk

    2011-12-09

    and a maximum dimension of {approx}130 A. The effects of glycerol on the formation of dimers are discussed. This new model of aIF5B in solution shows that there are universal structural differences between aIF5B and the homologous protein IF2 from Escherichia coli.

  12. Slab photonic crystals with dimer colloid bases

    SciTech Connect

    Riley, Erin K.; Liddell Watson, Chekesha M.

    2014-06-14

    The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd, even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.

  13. Structure of the human dimeric ATM kinase.

    PubMed

    Lau, Wilson C Y; Li, Yinyin; Liu, Zhe; Gao, Yuanzhu; Zhang, Qinfen; Huen, Michael S Y

    2016-01-01

    DNA-double strand breaks activate the serine/threonine protein kinase ataxia-telangiectasia mutated (ATM) to initiate DNA damage signal transduction. This activation process involves autophosphorylation and dissociation of inert ATM dimers into monomers that are catalytically active. Using single-particle electron microscopy (EM), we determined the structure of dimeric ATM in its resting state. The EM map could accommodate the crystal structure of the N-terminal truncated mammalian target of rapamycin (mTOR), a closely related enzyme of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family, allowing for the localization of the N- and the C-terminal regions of ATM. In the dimeric structure, the actives sites are buried, restricting the access of the substrates to these sites. The unanticipated domain organization of ATM provides a basis for understanding its mechanism of inhibition. PMID:27097373

  14. Structure of the human dimeric ATM kinase

    PubMed Central

    Lau, Wilson C. Y.; Li, Yinyin; Liu, Zhe; Gao, Yuanzhu; Zhang, Qinfen; Huen, Michael S. Y.

    2016-01-01

    ABSTRACT DNA-double strand breaks activate the serine/threonine protein kinase ataxia-telangiectasia mutated (ATM) to initiate DNA damage signal transduction. This activation process involves autophosphorylation and dissociation of inert ATM dimers into monomers that are catalytically active. Using single-particle electron microscopy (EM), we determined the structure of dimeric ATM in its resting state. The EM map could accommodate the crystal structure of the N-terminal truncated mammalian target of rapamycin (mTOR), a closely related enzyme of the phosphatidylinositol 3-kinase-related protein kinase (PIKK) family, allowing for the localization of the N- and the C-terminal regions of ATM. In the dimeric structure, the actives sites are buried, restricting the access of the substrates to these sites. The unanticipated domain organization of ATM provides a basis for understanding its mechanism of inhibition. PMID:27097373

  15. Non-equivalent Role of Inter- and Intramolecular Hydrogen Bonds in the Insulin Dimer Interface*

    PubMed Central

    Antolíková, Emília; Žáková, Lenka; Turkenburg, Johan P.; Watson, Christopher J.; Hančlová, Ivona; Šanda, Miloslav; Cooper, Alan; Kraus, Tomáš; Brzozowski, A. Marek; Jiráček, Jiří

    2011-01-01

    Apart from its role in insulin receptor (IR) activation, the C terminus of the B-chain of insulin is also responsible for the formation of insulin dimers. The dimerization of insulin plays an important role in the endogenous delivery of the hormone and in the administration of insulin to patients. Here, we investigated insulin analogues with selective N-methylations of peptide bond amides at positions B24, B25, or B26 to delineate their structural and functional contribution to the dimer interface. All N-methylated analogues showed impaired binding affinities to IR, which suggests a direct IR-interacting role for the respective amide hydrogens. The dimerization capabilities of analogues were investigated by isothermal microcalorimetry. Selective N-methylations of B24, B25, or B26 amides resulted in reduced dimerization abilities compared with native insulin (Kd = 8.8 μm). Interestingly, although the N-methylation in [NMeTyrB26]-insulin or [NMePheB24]-insulin resulted in Kd values of 142 and 587 μm, respectively, the [NMePheB25]-insulin did not form dimers even at high concentrations. This effect may be attributed to the loss of intramolecular hydrogen bonding between NHB25 and COA19, which connects the B-chain β-strand to the core of the molecule. The release of the B-chain β-strand from this hydrogen bond lock may result in its higher mobility, thereby shifting solution equilibrium toward the monomeric state of the hormone. The study was complemented by analyses of two novel analogue crystal structures. All examined analogues crystallized only in the most stable R6 form of insulin oligomers (even if the dimer interface was totally disrupted), confirming the role of R6-specific intra/intermolecular interactions for hexamer stability. PMID:21880708

  16. Role of pi dimers in coupling ("handcuffing") of plasmid R6K's gamma ori iterons.

    PubMed

    Kunnimalaiyaan, Selvi; Inman, Ross B; Rakowski, Sheryl A; Filutowicz, Marcin

    2005-06-01

    One proposed mechanism of replication inhibition in iteron-containing plasmids (ICPs) is "handcuffing," in which the coupling of origins via iteron-bound replication initiator (Rep) protein turns off origin function. In minimal R6K replicons, copy number control requires the interaction of plasmid-encoded pi protein with the seven 22-bp iterons of the gamma origin of replication. Like other related Rep proteins, pi exists as both monomers and dimers. However, the ability of pi dimers to bind iterons distinguishes R6K from most other ICPs, where only monomers have been observed to bind iterons. Here, we describe experiments to determine if monomers or dimers of pi protein are involved in the formation of handcuffed complexes. Standard ligation enhancement assays were done using pi variants with different propensities to bind iterons as monomers or dimers. Consistent with observations from several ICPs, a hyperreplicative variant (pi.P106L(wedge)F107S) exhibits deficiencies in handcuffing. Additionally, a novel dimer-biased variant of pi protein (pi.M36A(wedge)M38A), which lacks initiator function, handcuffs iteron-containing DNA more efficiently than does wild-type pi. The data suggest that pi dimers mediate handcuffing, supporting our previously proposed model of handcuffing in the gamma ori system. Thus, dimers of pi appear to possess three distinct inhibitory functions with respect to R6K replication: transcriptional autorepression of pi expression, in cis competition (for origin binding) with monomeric activator pi, and handcuffing-mediated inhibition of replication in trans. PMID:15901701

  17. A dominant negative inhibitor indicates that monocyte chemoattractant protein 1 functions as a dimer.

    PubMed Central

    Zhang, Y; Rollins, B J

    1995-01-01

    Monocyte chemoattractant protein 1 (MCP-1) is a member of the chemokine family of proinflammatory cytokines, all of which share a high degree of amino acid sequence similarity. Aberrant expression of chemokines occurs in a variety of diseases that have an inflammatory component, such as atherosclerosis. Although structural analyses indicate that chemokines form homodimers, there is controversy about whether dimerization is necessary for activity. To address this question for MCP-1, we obtained evidence in four steps. First, coprecipitation experiments demonstrated that MCP-1 forms dimers at physiological concentrations. Second, chemically cross-linked MCP-1 dimers attract monocytes in vitro with a 50% effective concentration of 400 pM, identical to the activity of non-cross-linked MCP-1. Third, an N-terminal deletion variant of MCP-1 (called 7ND) that inhibits MCP-1-mediated monocyte chemotaxis specifically forms heterodimers with wild-type MCP-1. Finally, although 7ND inhibits wild-type MCP-1 activity, it has no effect on cross-linked MCP-1. These results indicate that 7ND is a dominant negative inhibitor, implying that MCP-1 activates its receptor as a dimer. In addition, chemical cross-linking restores activity to an inactive N-terminal insertional variant of MCP-1, further supporting the need for dimerization. Since the reported Kd for MCP-1 monomer dissociation is much higher than its 50% effective concentration or Kd for receptor binding, active dimer formation may require high local concentrations of MCP-1. Our data further suggest that the dimer interface can be a target for MCP-1 inhibitory drugs. PMID:7651403

  18. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations

    SciTech Connect

    Kostko, Oleg; Bravaya, Ksenia; Krylov, Anna; Ahmed, Musahid

    2009-12-14

    We report a combined theoretical and experimental study of ionization of cytosine monomers and dimers. Gas-phase molecules are generated by thermal vaporization of cytosine followed by expansion of the vapor in a continuous supersonic jet seeded in Ar. The resulting species are investigated by single photon ionization with tunable vacuum-ultraviolet (VUV) synchrotron radiation and mass analyzed using reflectron mass spectrometry. Energy onsets for the measured photoionization efficiency (PIE) spectra are 8.60+-0.05 eV and 7.6+-0.1 eV for the monomer and the dimer, respectively, and provide an estimate for the adiabatic ionization energies (AIE). The first AIE and the ten lowest vertical ionization energies (VIEs) for selected isomers of cytosine dimer computed using equation-of-motion coupled-cluster (EOM-IP-CCSD) method are reported. The comparison of the computed VIEs with the derivative of the PIE spectra, suggests that multiple isomers of the cytosine dimer are present in the molecular beam. The calculations reveal that the large red shift (0.7 eV) of the first IE of the lowest-energy cytosine dimer is due to strong inter-fragment electrostatic interactions, i.e., the hole localized on one of the fragments is stabilized by the dipole moment of the other. A sharp rise in the CH+ signal at 9.20+-0.05 eV is ascribed to the formation of protonated cytosine by dissociation of the ionized dimers. The dominant role of this channel is supported by the computed energy thresholds for the CH+ appearance and the barrierless or nearly barrierless ionization-induced proton transfer observed for five isomers of the dimer.

  19. N-linked oligosaccharides play a role in disulphide-dependent dimerization of intestinal mucin Muc2.

    PubMed Central

    Bell, Sherilyn L; Xu, Gongqiao; Khatri, Ismat A; Wang, Rongquan; Rahman, Sameera; Forstner, Janet F

    2003-01-01

    Within the C-terminal domain of many secretory mucins is a 'cystine knot' (CK), which is needed for dimer formation in the endoplasmic reticulum. Previous studies indicate that in addition to an unpaired cysteine, the three intramolecular cystine bonds of the knot are important for stability of the dimers formed by rat intestinal mucin Muc2. The present study was undertaken to determine whether the two N-glycans N9 and N10, located near the first and second cysteines of the knot, also play a role in dimer formation. The C-terminal domain of rat Muc2 (RMC), a truncated RMC mutant containing the CK, and mutants lacking N9 and N10 sites, were expressed in COS-1 cells and the products monitored by radioactive [(35)S]Met/Cys metabolic pulse-chase and immunoprecipitation. Mutation of N9, but not N10, caused increased synthesis of dimers over a 2-h chase period. The N9 mutant remained associated with calreticulin for a prolonged period. About 34-38% of the total labelled products of RMC and its mutants was secreted into the media by 2 h, but the proportion in dimer form was dramatically reduced for the N9 mutant, suggesting lower dimer stability relative to RMC or its N10 mutant. We conclude that under normal conditions the presence of the N9 glycan functions to maintain a folding rate for mucin monomers that is sufficiently slow to allow structural maturation and stability of Muc2 dimers. To our knowledge this report is the first demonstration that a specific N-glycan plays a definitive role in mucin dimer formation. PMID:12744721

  20. Thermodynamics of porphyrin dimerization in aqueous solutions.

    PubMed Central

    Margalit, R; Rotenberg, M

    1984-01-01

    The dimerization equilibrium of deuteroporphyrin IX and of mesoporphyrin IX in aqueous solutions were studied by fluorimetric techniques over the 0.01-1 microM concentration range, where dimerization is the dominant aggregation process. Deuteroporphyrin IX was studied at several temperatures over the range 22-37 degrees C, and mesoporphyrin at 25 and 37 degrees C. The magnitudes determined for the dimerization equilibrium constants (25 degrees C, neutral pH, phosphate-buffered saline) are 2.3 X 10(6)M-1 and 5.4 X 10(6)M-1 for the deutero and meso derivatives respectively. The meso, deutero and haemato species tested show a similar temperature effect, namely dimerization decreasing with increasing temperature, indicating the involvement of a negative enthalpy change. Van't Hoff isochore of the dimerization constants determined for deuteroporphyrin IX was linear within the temperature range of 22-37 degrees C, allowing the calculation of the thermodynamic parameters. For deuteroporphyrin dimerization, those were found to be delta G0 = -36. 4kJ X mol-1; delta H0 = -46. 0kJ X mol-1 and delta S0 = -32.2J X K-1 X mol-1 (at neutral pH, 25 degrees C, phosphate-buffered saline), showing the process to be enthalpy-driven. Similar trends have been found for porphyrin species other than those studied here. Our data fit with a hypothesis giving a major role to the solvent in driving porphyrins to aggregate in aqueous solution. The magnitudes and directions of the energetic changes fit better with the expectation of the ' solvophobic force' theory predicting enthalpy-driven association, than with the classic hydrophobic bonding, predicting the association to be entropy-driven. PMID:6743228

  1. Thymine and other prebiotic molecules produced from the ultraviolet photo-irradiation of pyrimidine in simple astrophysical ice analogs.

    PubMed

    Materese, Christopher K; Nuevo, Michel; Bera, Partha P; Lee, Timothy J; Sandford, Scott A

    2013-10-01

    The informational subunits of RNA or DNA consist of substituted N-heterocyclic compounds that fall into two groups: those based on purine (C₅H₄N₄) (adenine and guanine) and those based on pyrimidine (C₄H₄N₂) (uracil, cytosine, and thymine). Although not yet detected in the interstellar medium, N-heterocycles, including the nucleobase uracil, have been reported in carbonaceous chondrites. Recent laboratory experiments and ab initio calculations have shown that the irradiation of pyrimidine in ices containing H₂O, NH₃, or both leads to the abiotic production of substituted pyrimidines, including the nucleobases uracil and cytosine. In this work, we studied the methylation and oxidation of pyrimidine in CH₃OH:pyrimidine, H₂O:CH₃OH:pyrimidine, CH₄:pyrimidine, and H₂O:CH₄:pyrimidine ices irradiated with UV photons under astrophysically relevant conditions. The nucleobase thymine was detected in the residues from some of the mixtures. Our results suggest that the abundance of abiotic thymine produced by ice photolysis and delivered to the early Earth may have been significantly lower than that of uracil. Insofar as the delivery of extraterrestrial molecules was important for early biological chemistry on early Earth, these results suggest that there was more uracil than thymine available for emergent life, a scenario consistent with the RNA world hypothesis. PMID:24143868

  2. Ethyl 6-methyl-2-sulfanyl­idene-4-[4-(trifluoro­meth­yl)phen­yl]-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

    PubMed Central

    Nayak, Susanta K.; Venugopala, K. N.; Govender, Thavendran; Kruger, Hendrik G.; Maguire, Glenn E. M.; Row, T. N. Guru

    2011-01-01

    The title compound, C15H15F3N2O2S, adopts a conformation with an intra­molecular C—H⋯π inter­action. The dihedral angles between the planes of the 4-(trifluoro­meth­yl)phenyl and ester groups with the plane of the six-membered tetra­hydro­pyrimidine ring are 81.8 (1) and 16.0 (1)°, respectively. In the crystal structure, inter­molecular N—H⋯S hydrogen bonds link pairs of mol­ecules into dimers and N—H⋯O inter­actions generate hydrogen-bonded mol­ecular chains along the crystallographic a axis. PMID:21836973

  3. Rubidium dimer destruction by a diode laser

    SciTech Connect

    Ban, T.; Aumiler, D.; Pichler, G.

    2005-02-01

    We observed rubidium dimer destruction by excitation of rubidium vapor with diode laser light tuned across the Rb D{sub 2} resonance line in a 2400 GHz tuning interval. The destruction was measured for rubidium atom concentrations in the (1-9)x10{sup 16} cm{sup -3} range, pump beam power up to 43 mW, and with a 5 Torr of the helium buffer gas. We discuss the physical mechanisms involved and specify the molecular pathways which may effectively lead to the observed dimer destruction.

  4. A detailed MSn study for the molecular identification of a dimer formed from oxidation of pinene

    NASA Astrophysics Data System (ADS)

    Beck, Martin; Hoffmann, Thorsten

    2016-04-01

    Dimeric products formed in the oxidation of α- and β-pinene have been frequently observed in laboratory and field studies of biogenic SOA formation. While their existence is undoubted, their exact chemical structures remain unclear. This study uses a combined two step approach aiming on the molecular identification of the most important of the various dimers that have been observed in biogenic secondary organic aerosol formation, a dimer with the molecular weight 358 g mol-1. The first step is the application of a functional group derivatization technique (esterification) to quantify the number of carboxylic acid groups in the target molecule. Based on the detailed interpretation of the MSn spectra (up to n = 7) of the derivatized product further information about the exact structure of the compound of interest is compiled. To increase the intensity of precursor ions for the MSn-studies and especially to facilitate successive fragmentation of the target molecule, which yields structurally informative product spectra, cationization reagents (Li+, NH4+) are introduced. The results clearly point to the formation of a dimer containing three carboxylic acid groups and a structure containing a terpenylic acid building block and a pinic acid building block, strongly supporting a structure suggestion by Claeys and coworkers (Yasmeen et al., 2010).

  5. Molecular Design Principles Underlying beta-strand Swapping in the Adhesive Dimerization of Cadherins

    SciTech Connect

    J Vendome; S Posy; X Jin; F Bahna; G Ahlsen; L Shapiro; B Honig

    2011-12-31

    Cell adhesion by classical cadherins is mediated by dimerization of their EC1 domains through the 'swapping' of N-terminal {beta}-strands. We use molecular simulations, measurements of binding affinities and X-ray crystallography to provide a detailed picture of the structural and energetic factors that control the adhesive dimerization of cadherins. We show that strand swapping in EC1 is driven by conformational strain in cadherin monomers that arises from the anchoring of their short N-terminal strand at one end by the conserved Trp2 and at the other by ligation to Ca{sup 2+} ions. We also demonstrate that a conserved proline-proline motif functions to avoid the formation of an overly tight interface where affinity differences between different cadherins, crucial at the cellular level, are lost. We use these findings to design site-directed mutations that transform a monomeric EC2-EC3 domain cadherin construct into a strand-swapped dimer.

  6. Site- and state-selected photofragmentation of 2Br-pyrimidine.

    PubMed

    Bolognesi, P; Kettunen, J A; Cartoni, A; Richter, R; Tosic, S; Maclot, S; Rousseau, P; Delaunay, R; Avaldi, L

    2015-10-01

    The fragmentation of the 2Br-pyrimidine molecule following direct valence photoionization or inner shell excitation has been studied by electron-ion coincidence experiments. 2Br-pyrimidine has been chosen as a model for the class of pyrimidinic building blocks of three nucleic acids and several radiosensitizers. It is known that the site- and state-localization of energy deposition, typical of inner shell excitation, results in the enhancement of the total ion yield as well as in changes in the relative intensity of the different fragmentation channels. Here we address the question of the origin of this selective fragmentation by using electron-ion coincidence techniques. The results show that the fragmentation is strongly selective in the final singly charged ion state, independently of the process that leads to the population of that state, and the dominant fragmentation patterns correlate with the nearest appearance potential. PMID:26314495

  7. Regioselectively Controlled Synthesis of N-Substituted (Trifluoromethyl)pyrimidin-2(1H)-ones.

    PubMed

    da Silva, Andreia M P W; da Silva, Fabio M; Bonacorso, Helio G; Frizzo, Clarissa P; Martins, Marcos A P; Zanatta, Nilo

    2016-05-01

    A simple and regioselectively controlled method for the preparation of both 1,4- and 1,6-regioisomers of 1-substituted 4(6)-trifluoromethyl-pyrimidin-2(1H)-ones is described. Both regioisomers were synthesized from the cyclocondensation reaction of 4-substituted 1,1,1-trifluoro-4-methoxybut-3-en-2-ones: with nonsymmetric ureas for the 1-substituted 4-(trifluoromethyl)pyrimidin-2(1H)-ones (1,4-isomer) and with nonsymmetric 1-substituted 2-methylisothiourea sulfates for the synthesis of 1-substituted 6-(trifluoromethyl)pyrimidin-2(1H)-ones (1,6-isomer). Each method furnished only the respective isomer in very good yields. The structure of the products was assigned based on the (1)H and (13)C NMR as well as 2D HMBC spectral analysis. PMID:27070191

  8. An expeditious four-component domino protocol for the synthesis of novel thiazolo[3,2-a]thiochromeno[4,3-d]pyrimidine derivatives as antibacterial and antibiofilm agents.

    PubMed

    Suresh, Lingala; Sagar Vijay Kumar, P; Poornachandra, Y; Ganesh Kumar, C; Babu, Nanubolu Jagadeesh; Chandramouli, G V P

    2016-08-15

    An efficient domino protocol has been developed for the synthesis of new pyrimidine scaffolds, through a one-pot four-component cascade transformation via [Bmim]HSO4 ionic liquid mediated reaction, using an equimolar mixture of thiochroman-4-one, benzaldehyde, thiourea and 3-bromo-1-phenylpropan-1-one leading to the formation of a double electrophilic pyrimidine-2(5H)-thione intermediate. The intermediate regioselectively undergoes cyclization through intramolecular NH bond activation followed by CS bond formation leading to highly functionalized thiazolo[3,2-a]thiochromeno[4,3-d]pyrimidines. The ionic liquid operates efficiently under mild conditions. The recyclability and scope for recovery of the ionic liquid makes this protocol environmentally benign. Further, the compounds 5d, 5g and 5k showed promising antimicrobial activity against the tested Gram-positive bacterial strains. Among them, the compound 5d was identified as a lead molecule exhibiting promising anti-biofilm activity towards Staphylococcus aureus MTCC 96, Bacillus subtilis MTCC 121, Staphylococcus aureus MLS16 MTCC 2940 and Micrococcus luteus MTCC 2470 with IC50 values of 2.1, 1.9, 2.4 and 5.3μg/mL, respectively. Further, the compound 5d showed increased levels of intracellular ROS accumulation in Staphylococcus aureus MTCC 96 suggesting that oxidative stress resulted in bacterial cell lysis and death. PMID:27344213

  9. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization

    PubMed Central

    Charbel Issa, Peter; Barnard, Alun R.; Herrmann, Philipp; Washington, Ilyas; MacLaren, Robert E.

    2015-01-01

    Stargardt disease, an ATP-binding cassette, subfamily A, member 4 (ABCA4)-related retinopathy, is a genetic condition characterized by the accelerated accumulation of lipofuscin in the retinal pigment epithelium, degeneration of the neuroretina, and loss of vision. No approved treatment exists. Here, using a murine model of Stargardt disease, we show that the propensity of vitamin A to dimerize is responsible for triggering the formation of the majority of lipofuscin and transcriptional dysregulation of genes associated with inflammation. Data further demonstrate that replacing vitamin A with vitamin A deuterated at the carbon 20 position (C20-D3-vitamin A) impedes the dimerization rate of vitamin A—by approximately fivefold for the vitamin A dimer A2E—and subsequent lipofuscinogenesis and normalizes the aberrant transcription of complement genes without impairing retinal function. Phenotypic rescue by C20-D3-vitamin A was also observed noninvasively by quantitative autofluorescence, an imaging technique used clinically, in as little as 3 months after the initiation of treatment, whereas upon interruption of treatment, the age-related increase in autofluorescence resumed. Data suggest that C20-D3-vitamin A is a clinically amiable tool to inhibit vitamin A dimerization, which can be used to determine whether slowing the dimerization of vitamin A can prevent vision loss caused by Stargardt disease and other retinopathies associated with the accumulation of lipofuscin in the retina. PMID:26106163

  10. Mutagenesis of the human IgA1 heavy chain tailpiece that prevents dimer assembly.

    PubMed

    Atkin, J D; Pleass, R J; Owens, R J; Woof, J M

    1996-07-01

    The structural features of the human IgA1 tailpiece required for interaction with J chain in IgA dimer assembly were investigated using a protein engineering approach. Wild-type and mutant forms of IgA1 were expressed in the mouse myeloma cell line, J558L, which endogenously expresses J chain. Wild-type IgA1 was secreted as a mixture of dimers and monomers. Deletion of the entire tailpiece by stop codon introduction completely prevented dimer formation. Similarly, substitution of the penultimate residue of the tailpiece, Cys471, with serine resulted in the secretion of IgA monomers alone. Substitution of Asn459 with alanine to prevent attachment of N-linked carbohydrate to the tailpiece also resulted in markedly reduced dimer assembly. These results indicate the critical role played by the tailpiece, and Cys471 in particular, in IgA dimerization. In addition, we found tailpiece-deleted IgA1 and the Cys to Ser471 mutant IgA1 were secreted as mixtures of covalently associated monomers (alpha 2L2) and alpha L half-molecules. The tailpiece may thus play some role in promoting the association of alpha-chains required for IgA monomer assembly. PMID:8683109

  11. Synthesis and photophysical properties of a "face-to-face" stacked tetracene dimer.

    PubMed

    Liu, Heyuan; Nichols, Valerie M; Shen, Li; Jahansouz, Setarah; Chen, Yuhan; Hanson, Kerry M; Bardeen, Christopher J; Li, Xiyou

    2015-03-01

    A covalently linked tetracene dimer has been prepared and its molecular structure is characterized by (1)H NMR and MALDI-TOF mass spectroscopy, and elemental analysis. The minimized molecular structure reveals that the tetracene subunits in a dimer adopt a "face-to-face" stacked configuration. Its absorption spectrum differs significantly from that of the monomeric counterpart in solution, suggesting the presence of strong interactions between the two tetracene subunits. In solution, the fluorescence spectrum is dominated by a band at around 535 nm, due to an oxidative impurity. In the longer wavelength range, a short-lived lower energy emission can be identified as the intrinsic emission of the dimer. In a polystyrene matrix or at low temperatures, the lifetime of the lower energy emission lengthens and it becomes more prominent. We suggest that the interactions between the two tetracene subunits produce a short-lived, lower energy "excimer-like" state. The fluorescence decays show no observable dependence on an applied magnetic field, and no obvious evidence of significant singlet fission is found in this dimer. This research suggests that even though there are strong electronic interactions between the tetracene subunits in the dimer, singlet fission cannot be achieved efficiently, probably because the formation of "excimer-like" states competes effectively with singlet fission. PMID:25656462

  12. Dimerization of elongator protein 1 is essential for Elongator complex assembly

    PubMed Central

    Xu, Huisha; Lin, Zhijie; Li, Fengzhi; Diao, Wentao; Dong, Chunming; Zhou, Hao; Xie, Xingqiao; Wang, Zheng; Shen, Yuequan; Long, Jiafu

    2015-01-01

    The evolutionarily conserved Elongator complex, which is composed of six subunits elongator protein 1 (Elp1 to -6), plays vital roles in gene regulation. The molecular hallmark of familial dysautonomia (FD) is the splicing mutation of Elp1 [also known as IκB kinase complex-associated protein (IKAP)] in the nervous system that is believed to be the primary cause of the devastating symptoms of this disease. Here, we demonstrate that disease-related mutations in Elp1 affect Elongator assembly, and we have determined the structure of the C-terminal portion of human Elp1 (Elp1-CT), which is sufficient for full-length Elp1 dimerization, as well as the structure of the cognate dimerization domain of yeast Elp1 (yElp1-DD). Our study reveals that the formation of the Elp1 dimer contributes to its stability in vitro and in vivo and is required for the assembly of both the human and yeast Elongator complexes. Functional studies suggest that Elp1 dimerization is essential for yeast viability. Collectively, our results identify the evolutionarily conserved dimerization domain of Elp1 and suggest that the pathological mechanisms underlying the onset and progression of Elp1 mutation-related disease may result from impaired Elongator activities. PMID:26261306

  13. Plasma D dimer: a useful marker of fibrin breakdown in renal failure.

    PubMed

    Gordge, M P; Faint, R W; Rylance, P B; Ireland, H; Lane, D A; Neild, G H

    1989-06-30

    D dimer and other large fragments produced during the breakdown of crosslinked fibrin may be measured by enzyme immunoassay using monoclonal antibodies. In 91 patients with renal disease and varying degrees of renal dysfunction, plasma D dimer showed no correlation with renal function, whereas FgE antigen, a fibrinogen derivative which is known to be cleared in part by the kidney, showed a significant negative correlation with creatinine clearance. Plasma concentrations of D dimer were, however, increased in patients with chronic renal failure (244 +/- 31 ng/ml) (mean +/- SEM) and diabetic nephropathy (308 +/- 74 ng/ml), when compared with healthy controls (96 +/- 13 ng/ml), and grossly elevated in patients with acute renal failure (2,451 +/- 1,007 ng/ml). The results indicate an increase in fibrin formation and lysis, and not simply reduced elimination of D dimer by the kidneys, and are further evidence of activated coagulation in renal disease. D dimer appears to be a useful marker of fibrin breakdown in renal failure. PMID:2799764

  14. Two transmembrane Cys residues are involved in 5-HT4 receptor dimerization.

    PubMed

    Berthouze, Magali; Rivail, Lucie; Lucas, Alexandre; Ayoub, Mohammed A; Russo, Olivier; Sicsic, Sames; Fischmeister, Rodolphe; Berque-Bestel, Isabelle; Jockers, Ralf; Lezoualc'h, Frank

    2007-05-11

    The 5-HT(4) receptor (5-HT(4)R) belongs to the G-protein-coupled receptor (GPCR) family and is of considerable interest for the development of new drugs to treat gastrointestinal diseases and memory disorders. The 5-HT(4)R exists as a constitutive dimer but its molecular determinants are still unknown. Using co-immunoprecipitation and Bioluminescence Resonance Energy Transfer (BRET) techniques, we show here that 5-HT(4)R homodimerization but not 5-HT(4)R-beta(2) adrenergic receptor (beta(2)AR) heterodimerization is largely decreased under reducing conditions suggesting the participation of disulfide bonds in 5-HT(4)R dimerization. Molecular modeling and protein docking experiments identified four cysteine (Cys) residues potentially involved in the dimer interface through intramolecular or intermolecular disulfide bonds. We show that disulfide bridges between Cys112 and Cys145 located within TM3 and TM4, respectively, are of critical importance for 5-HT(4)R dimer formation. Our data suggest that two disulfide bridges between two transmembrane Cys residues are involved in the dimerization interface of a GPCR. PMID:17379184

  15. Rescue of the Stargardt phenotype in Abca4 knockout mice through inhibition of vitamin A dimerization.

    PubMed

    Charbel Issa, Peter; Barnard, Alun R; Herrmann, Philipp; Washington, Ilyas; MacLaren, Robert E

    2015-07-01

    Stargardt disease, an ATP-binding cassette, subfamily A, member 4 (ABCA4)-related retinopathy, is a genetic condition characterized by the accelerated accumulation of lipofuscin in the retinal pigment epithelium, degeneration of the neuroretina, and loss of vision. No approved treatment exists. Here, using a murine model of Stargardt disease, we show that the propensity of vitamin A to dimerize is responsible for triggering the formation of the majority of lipofuscin and transcriptional dysregulation of genes associated with inflammation. Data further demonstrate that replacing vitamin A with vitamin A deuterated at the carbon 20 position (C20-D3-vitamin A) impedes the dimerization rate of vitamin A--by approximately fivefold for the vitamin A dimer A2E--and subsequent lipofuscinogenesis and normalizes the aberrant transcription of complement genes without impairing retinal function. Phenotypic rescue by C20-D3-vitamin A was also observed noninvasively by quantitative autofluorescence, an imaging technique used clinically, in as little as 3 months after the initiation of treatment, whereas upon interruption of treatment, the age-related increase in autofluorescence resumed. Data suggest that C20-D3-vitamin A is a clinically amiable tool to inhibit vitamin A dimerization, which can be used to determine whether slowing the dimerization of vitamin A can prevent vision loss caused by Stargardt disease and other retinopathies associated with the accumulation of lipofuscin in the retina. PMID:26106163

  16. Inhibition of Receptor Dimerization as a Novel Negative Feedback Mechanism of EGFR Signaling

    PubMed Central

    Kluba, Malgorzata; Engelborghs, Yves; Hofkens, Johan; Mizuno, Hideaki

    2015-01-01

    Dimerization of the epidermal growth factor receptor (EGFR) is crucial for initiating signal transduction. We employed raster image correlation spectroscopy to continuously monitor the EGFR monomer-dimer equilibrium in living cells. EGFR dimer formation upon addition of EGF showed oscillatory behavior with a periodicity of about 2.5 min, suggesting the presence of a negative feedback loop to monomerize the receptor. We demonstrated that monomerization of EGFR relies on phospholipase Cγ, protein kinase C, and protein kinase D (PKD), while being independent of Ca2+ signaling and endocytosis. Phosphorylation of the juxtamembrane threonine residues of EGFR (T654/T669) by PKD was identified as the factor that shifts the monomer-dimer equilibrium of ligand bound EGFR towards the monomeric state. The dimerization state of the receptor correlated with the activity of an extracellular signal-regulated kinase, downstream of the EGFR. Based on these observations, we propose a novel, negative feedback mechanism that regulates EGFR signaling via receptor monomerization. PMID:26465157

  17. Bax dimerizes via a symmetric BH3:groove interface during apoptosis

    PubMed Central

    Dewson, G; Ma, S; Frederick, P; Hockings, C; Tan, I; Kratina, T; Kluck, R M

    2012-01-01

    During apoptotic cell death, Bax and Bak change conformation and homo-oligomerize to permeabilize mitochondria. We recently reported that Bak homodimerizes via an interaction between the BH3 domain and hydrophobic surface groove, that this BH3:groove interaction is symmetric, and that symmetric dimers can be linked via the α6-helices to form the high order oligomers thought responsible for pore formation. We now show that Bax also dimerizes via a BH3:groove interaction after apoptotic signaling in cells and in mitochondrial fractions. BH3:groove dimers of Bax were symmetric as dimers but not higher order oligomers could be linked by cysteine residues placed in both the BH3 and groove. The BH3:groove interaction was evident in the majority of mitochondrial Bax after apoptotic signaling, and correlated strongly with cytochrome c release, supporting its central role in Bax function. A second interface between the Bax α6-helices was implicated by cysteine linkage studies, and could link dimers to higher order oligomers. We also found that a population of Bax:Bak heterodimers generated during apoptosis formed via a BH3:groove interaction, further demonstrating that Bax and Bak oligomerize via similar mechanisms. These findings highlight the importance of BH3:groove interactions in apoptosis regulation by the Bcl-2 protein family. PMID:22015607

  18. Dimerization kinetics and products of. alpha. -substituted o-quinodimethanes derived from benzene and furan

    SciTech Connect

    Leung, Man-kit.

    1992-07-20

    Effects of the {alpha}-substitutions on the termini of the reactive diene unit of o-quinodimethanes revealed a non-concerted mechanism for furan-based and benzene-based o-quinodimethane (o-QDM) dimerizations. In section one, the coexistence of the cisoid and transoid transition states in the diradical formation step is evidenced by the stereochemistry of the dimers. In view of the results of the furan-based o-QDM dimerizauons, it is believed that the regioselectivity in the diradical cyclization step is controlled mainly by the interaction between the active sites on the furan moieties in the diradical ring closure step, not by the intemal bond rotations of the carbon chain of the diradical intermediate. In section two, it was found that the trend of the regioselectivity. along the size of the {alpha}-substituents, of benzene-based o-QDM dimerizations is opposite to that of the Diels-Alder reactions. On the basis of the trends, it is suggested that the Diels-Alder reaction mechanism of benzene-based o-QDM's is concerted while the dimerization mechanism of benzene-based o-QDM's is stepwise. Because of their similar activation parameters, it is proposed that the parent o-xylylene and other o-xylylenes dimerize via a similar two step, diradical mechanism.

  19. Erwinia amylovora pyrC mutant causes fire blight despite pyrimidine auxotrophy.

    PubMed

    Ramos, L S; Sinn, J P; Lehman, B L; Pfeufer, E E; Peter, K A; McNellis, T W

    2015-06-01

    Erwinia amylovora bacteria cause fire blight disease, which affects apple and pear production worldwide. The Erw. amylovora pyrC gene encodes a predicted dihydroorotase enzyme involved in pyrimidine biosynthesis. Here, we discovered that the Erw. amylovora pyrC244::Tn5 mutant was a uracil auxotroph. Unexpectedly, the Erw. amylovora pyrC244::Tn5 mutant grew as well as the wild-type in detached immature apple and pear fruits. Fire blight symptoms caused by the pyrC244::Tn5 mutant in immature apple and pear fruits were attenuated compared to those caused by the wild-type. The pyrC244::Tn5 mutant also caused severe fire blight symptoms in apple tree shoots. A plasmid-borne copy of the wild-type pyrC gene restored prototrophy and symptom induction in apple and pear fruit to the pyrC244::Tn5 mutant. These results suggest that Erw. amylovora can obtain sufficient pyrimidine from the host to support bacterial growth and fire blight disease development, although de novo pyrimidine synthesis by Erw. amylovora is required for full symptom development in fruits. Significance and impact of the study: This study provides information about the fire blight host-pathogen interaction. Although the Erwinia amylovora pyrC mutant was strictly auxotrophic for pyrimidine, it grew as well as the wild-type in immature pear and apple fruits and caused severe fire blight disease in apple trees. This suggests that Erw. amylovora can obtain sufficient pyrimidines from host tissue to support growth and fire blight disease development. This situation contrasts with findings in some human bacterial pathogens, which require de novo pyrimidine synthesis for growth in host blood, for example. PMID:25789570

  20. Synthesis of N-substituted Cyclic Hydrocarbons, such as Pyrimidine, in The Ionosphere of Titan

    NASA Astrophysics Data System (ADS)

    Bera, P. P.; Peverati, R.; Head-Gordon, M.; Lee, T. J.

    2014-12-01

    The instruments on board the CASSINI spacecraft observed large carbonaceous molecules in the upper atmosphere of Titan. How these large polyatomic molecules are synthesized in such exotic conditions is, thus far, unknown. Molecular ions, including positive and negative ions, are in relative abundance in the ionosphere of Titan. Hence, barrierless ion-molecule interactions may play a major role in guiding molecules towards each other and initiating reactions. We study these condensation pathways to determine whether they are a viable means of forming large pure hydrocarbon molecules, and nitrogen-containing carbonaceous chains, stacks, and even cyclic compounds. By employing accurate quantum chemical methods we have investigated the processes of growth, structures, nature of bonding, mechanisms, and spectroscopic properties of the ensuing ionic products after pairing small carbon, hydrogen, and nitrogen-containing molecules with major ions observed in the upper atmosphere of Titan, e.g. C2H5+ and HCNH+. We have also studied the ion-neutral association pathways involving pure-carbon molecules e.g. acetylene, ethylene and other hydrocarbons, and their dissociation fragments in a plasma discharge. We have investigated how nitrogen atoms are incorporated into the carbon ring during growth. Specifically, we explored the mechanisms by which the synthesis of pyrimidine will be feasible in the atmosphere of Titan in conjunction with ion-mobility experiments. We have used accurate ab initio coupled cluster theory, Møller-Plesset perturbation theory, density functional theory, and coupled cluster theory quantum chemical methods together with large correlation consistent basis sets in these investigations. We found that a series of hydrocarbons with a specific stoichiometric composition prefers cyclic molecule formation rather than chains. Some of the association products we investigated have large oscillator strengths for charge-transfer type electronic excitations in the

  1. Terminal Interface Conformations Modulate Dimer Stability Prior to Amino Terminal Autoprocessing of HIV-1 Protease

    SciTech Connect

    Agniswamy, Johnson; Sayer, Jane M.; Weber, Irene T.; Louis, John M.

    2012-04-17

    The HIV-1 protease (PR) mediates its own release (autoprocessing) from the polyprotein precursor, Gag-Pol, flanked by the transframe region (TFR) and reverse transcriptase at its N- and C-termini, respectively. Autoprocessing at the N-terminus of PR mediates stable dimer formation essential for catalytic activity, leading to the formation of infectious virus. An antiparallel {beta}-sheet interface formed by the four N- and C-terminal residues of each subunit is important for dimer stability. Here, we present the first high-resolution crystal structures of model protease precursor-clinical inhibitor (PI darunavir or saquinavir) complexes, revealing varying conformations of the N-terminal flanking (S{sup -4}FNF{sup -1}) and interface residues (P{sup 1}QIT{sup 4}). A 180{sup o} rotation of the T{sup 4}-L{sup 5} peptide bond is accompanied by a new Q{sup 2}-L{sup 5} hydrogen bond and complete disengagement of PQIT from the {beta}-sheet dimer interface, which may be a feature for intramolecular autoprocessing. This result is consistent with drastically lower thermal stability by 14-20 C of PI complexes of precursors and the mature PR lacking its PQIT residues (by 18.3 C). Similar to the TFR-PR precursor, this deletion also results in a darunavir dissociation constant (2 x 10{sup 4})-fold higher and a markedly increased dimer dissociation constant relative to the mature PR. The terminal {beta}-sheet perturbations of the dimeric structure likely account for the drastically poorer inhibition of autoprocessing of TFR-PR relative to the mature PR, even though significant differences in active site-PI interactions in these structures were not observed. The novel conformations of the dimer interface may be exploited to target selectively the protease precursor prior to its N-terminal cleavage.

  2. 2-[(Pyrimidin-2-yl­amino)­meth­yl]phenol

    PubMed Central

    Xu, Jing; Gao, Shan; Ng, Seik Weng

    2011-01-01

    In the title compound, C11H11N3O, the aromatic rings at either ends of the –CH2–NH– link are twisted by 72.58 (8)°; the hy­droxy substituent is a hydrogen-bond donor to an N atom of the pyrimidine ring. The other N atom of the pyrimidine ring is a hydrogen-bond acceptor to the amino group of an inversion-related mol­ecule. PMID:22199767

  3. The first example of the Fischer–Hepp type rearrangement in pyrimidines

    PubMed Central

    Jonusis, Mantas; Jakubkiene, Virginija

    2013-01-01

    Summary A N-nitroso moiety can be used for the activation of chloropyrimidines toward a nucleophilic substitution reaction with amines. The subsequent treatment of the obtained products with aq H2SO4 can lead to either N-denitrosation to obtain 4,6-pyrimidinediamines or to a Fischer–Hepp type rearrangement to obtain 5-nitroso-4,6-pyrimidinediamines. It was found that the outcome of the reaction strongly depends on the structure of the pyrimidines. Activation of the pyrimidine ring by three groups with a positive mesomeric effect is crucial for the intramolecular nitroso group migration. PMID:24062848

  4. Pyrazolo-Pyrimidines: A Novel Heterocyclic Scaffold for Potent and Selective p38alpha Inhibitors

    SciTech Connect

    Das,J.; Moquin, R.; Pitt, S.; Zhang, R.; Shen, D.; McIntyre, K.; Gillooly, K.; Doweyko, A.; Sack, J.; et al

    2008-01-01

    The synthesis and structure-activity relationships (SAR) of p38a MAP kinase inhibitors based on a pyrazolo-pyrimidine scaffold are described. These studies led to the identification of compound 2x as a potent and selective inhibitor of p38a MAP kinase with excellent cellular potency toward the inhibition of TNFa production. Compound 2x was highly efficacious in vivo in inhibiting TNFa production in an acute murine model of TNFa production. X-ray co-crystallography of a pyrazolo-pyrimidine analog 2b bound to unphosphorylated p38a is also disclosed.

  5. Dimerization of HIV-1 genomic RNA of subtypes A and B: RNA loop structure and magnesium binding.

    PubMed Central

    Jossinet, F; Paillart, J C; Westhof, E; Hermann, T; Skripkin, E; Lodmell, J S; Ehresmann, C; Ehresmann, B; Marquet, R

    1999-01-01

    Retroviruses encapsidate their genome as a dimer of homologous RNA molecules noncovalently linked close to their 5' ends. The dimerization initiation site (DIS) of human immunodeficiency virus type 1 (HIV-1) RNA is a hairpin structure that contains in the loop a 6-nt self-complementary sequence flanked by two 5' and one 3' purines. The self-complementary sequence, as well as the flanking purines, are crucial for dimerization of HIV-1 RNA, which is mediated by formation of a "kissing-loop" complex between the DIS of each monomer. Here, we used chemical modification interference, lead-induced cleavage, and three-dimensional modeling to compare dimerization of subtype A and B HIV-1 RNAs. The DIS loop sequences of these RNAs are AGGUGCACA and AAGCGCGCA, respectively. In both RNAs, ethylation of most but not all phosphate groups in the loop and methylation of the N7 position of the G residues in the self-complementary sequence inhibited dimerization. These results demonstrate that small perturbations of the loop structure are detrimental to dimerization. Conversely, methylation of the N1 position of the first and last As in the loop were neutral or enhanced dimerization, a result consistent with these residues forming a noncanonical sheared base pair. Phosphorothioate interference, lead-induced cleavage, and Brownian-dynamics simulation revealed an unexpected difference in the dimerization mechanism of these RNAs. Unlike subtype B, subtype A requires binding of a divalent cation in the loop to promote RNA dimerization. This difference should be taken into consideration in the design of antidimerization molecules aimed at inhibiting HIV-1 replication. PMID:10496223

  6. Molecular mechanisms of asymmetric RAF dimer activation.

    PubMed

    Jambrina, Pablo G; Bohuszewicz, Olga; Buchete, Nicolae-Viorel; Kolch, Walter; Rosta, Edina

    2014-08-01

    Protein phosphorylation is one of the most common post-translational modifications in cell regulatory mechanisms. Dimerization plays also a crucial role in the kinase activity of many kinases, including RAF, CDK2 (cyclin-dependent kinase 2) and EGFR (epidermal growth factor receptor), with heterodimers often being the most active forms. However, the structural and mechanistic details of how phosphorylation affects the activity of homo- and hetero-dimers are largely unknown. Experimentally, synthesizing protein samples with fully specified and homogeneous phosphorylation states remains a challenge for structural biology and biochemical studies. Typically, multiple changes in phosphorylation lead to activation of the same protein, which makes structural determination methods particularly difficult. It is also not well understood how the occurrence of phosphorylation and dimerization processes synergize to affect kinase activities. In the present article, we review available structural data and discuss how MD simulations can be used to model conformational transitions of RAF kinase dimers, in both their phosphorylated and unphosphorylated forms. PMID:25109958

  7. Dimers on the 33 .42 lattice

    NASA Astrophysics Data System (ADS)

    Li, Shuli; Yan, Weigen

    2016-06-01

    In this work, we obtain explicit expression of the number of close-packed dimers (perfect matchings) of the 33 .42 lattice with cylindrical boundary condition. Particularly, we show that the entropy of 33 .42 lattice is the same for cylindrical and toroidal boundary conditions.

  8. Ligand regulation of a constitutively dimeric EGF receptor.

    PubMed

    Freed, Daniel M; Alvarado, Diego; Lemmon, Mark A

    2015-01-01

    Ligand-induced receptor dimerization has traditionally been viewed as the key event in transmembrane signalling by epidermal growth factor receptors (EGFRs). Here we show that the Caenorhabditis elegans EGFR orthologue LET-23 is constitutively dimeric, yet responds to its ligand LIN-3 without changing oligomerization state. SAXS and mutational analyses further reveal that the preformed dimer of the LET-23 extracellular region is mediated by its domain II dimerization arm and resembles other EGFR extracellular dimers seen in structural studies. Binding of LIN-3 induces only minor structural rearrangements in the LET-23 dimer to promote signalling. Our results therefore argue that EGFR can be regulated by allosteric changes within an existing receptor dimer--resembling signalling by insulin receptor family members, which share similar extracellular domain compositions but form covalent dimers. PMID:26060020

  9. Ligand regulation of a constitutively dimeric EGF receptor

    NASA Astrophysics Data System (ADS)

    Freed, Daniel M.; Alvarado, Diego; Lemmon, Mark A.

    2015-06-01

    Ligand-induced receptor dimerization has traditionally been viewed as the key event in transmembrane signalling by epidermal growth factor receptors (EGFRs). Here we show that the Caenorhabditis elegans EGFR orthologue LET-23 is constitutively dimeric, yet responds to its ligand LIN-3 without changing oligomerization state. SAXS and mutational analyses further reveal that the preformed dimer of the LET-23 extracellular region is mediated by its domain II dimerization arm and resembles other EGFR extracellular dimers seen in structural studies. Binding of LIN-3 induces only minor structural rearrangements in the LET-23 dimer to promote signalling. Our results therefore argue that EGFR can be regulated by allosteric changes within an existing receptor dimer--resembling signalling by insulin receptor family members, which share similar extracellular domain compositions but form covalent dimers.

  10. Pyrrolo[2,3-d]pyrimidines and pyrido[2,3-d]pyrimidines as conformationally restricted analogues of the antibacterial agent trimethoprim.

    PubMed

    Kuyper, L F; Garvey, J M; Baccanari, D P; Champness, J N; Stammers, D K; Beddell, C R

    1996-04-01

    Conformationally restricted analogues of the antibacterial agent trimethoprim (TMP) were designed to mimic the conformation of drug observed in its complex with bacterial dihydrofolate reductase (DHFR). This conformation of TMP was achieved by linking the 4-amino function to the methylene group by one- and two-carbon bridges. A pyrrolo[2,3-d]pyrimidine, a dihydro analogue, and a tetrahydropyrido[2,3-d]pyrimidine were synthesized and tested as inhibitors of DHFR. One analogue showed activity equivalent to that of TMP against DHFR from three species of bacteria. An X-ray crystal structure of this inhibitor bound to Escherichia coli DHFR was determined to evaluate the structural consequences of the conformational restriction. PMID:8735847

  11. Localized light-induced protein dimerization in living cells using a photocaged dimerizer

    PubMed Central

    Ballister, Edward R.; Aonbangkhen, Chanat; Mayo, Alyssa M.; Lampson, Michael A.; Chenoweth, David M.

    2015-01-01

    Regulated protein localization is critical for many cellular processes. Several techniques have been developed for experimental control over protein localization, including chemically induced and light-induced dimerization, which both provide temporal control. Light-induced dimerization offers the distinct advantage of spatial precision within subcellular length scales. A number of elegant systems have been reported that utilize natural light-sensitive proteins to induce dimerization via direct protein–protein binding interactions, but the application of these systems at cellular locations beyond the plasma membrane has been limited. Here we present a new technique to rapidly and reversibly control protein localization in living cells with subcellular spatial resolution using a cell-permeable, photoactivatable chemical inducer of dimerization. We demonstrate light-induced recruitment of a cytosolic protein to individual centromeres, kinetochores, mitochondria and centrosomes in human cells, indicating that our system is widely applicable to many cellular locations. PMID:25400104

  12. Dimerization of visual pigments in vivo.

    PubMed

    Zhang, Tao; Cao, Li-Hui; Kumar, Sandeep; Enemchukwu, Nduka O; Zhang, Ning; Lambert, Alyssia; Zhao, Xuchen; Jones, Alex; Wang, Shixian; Dennis, Emily M; Fnu, Amrita; Ham, Sam; Rainier, Jon; Yau, King-Wai; Fu, Yingbin

    2016-08-01

    It is a deeply engrained notion that the visual pigment rhodopsin signals light as a monomer, even though many G protein-coupled receptors are now known to exist and function as dimers. Nonetheless, recent studies (albeit all in vitro) have suggested that rhodopsin and its chromophore-free apoprotein, R-opsin, may indeed exist as a homodimer in rod disk membranes. Given the overwhelmingly strong historical context, the crucial remaining question, therefore, is whether pigment dimerization truly exists naturally and what function this dimerization may serve. We addressed this question in vivo with a unique mouse line (S-opsin(+)Lrat(-/-)) expressing, transgenically, short-wavelength-sensitive cone opsin (S-opsin) in rods and also lacking chromophore to exploit the fact that cone opsins, but not R-opsin, require chromophore for proper folding and trafficking to the photoreceptor's outer segment. In R-opsin's absence, S-opsin in these transgenic rods without chromophore was mislocalized; in R-opsin's presence, however, S-opsin trafficked normally to the rod outer segment and produced functional S-pigment upon subsequent chromophore restoration. Introducing a competing R-opsin transmembrane helix H1 or helix H8 peptide, but not helix H4 or helix H5 peptide, into these transgenic rods caused mislocalization of R-opsin and S-opsin to the perinuclear endoplasmic reticulum. Importantly, a similar peptide-competition effect was observed even in WT rods. Our work provides convincing evidence for visual pigment dimerization in vivo under physiological conditions and for its role in pigment maturation and targeting. Our work raises new questions regarding a potential mechanistic role of dimerization in rhodopsin signaling. PMID:27462111

  13. Path Forward for RAF Therapies: Inhibition of Monomers and Dimers.

    PubMed

    Kortum, Robert L; Morrison, Deborah K

    2015-09-14

    Current BRAF inhibitors block signaling from monomeric BRAF(V600E), but not from oncogenic RAS, which requires RAF dimerization. In this issue of Cancer Cell, Yao and colleagues investigate why current drugs are ineffective against RAF dimers, while Peng and colleagues describe a pan-RAF inhibitor targeting both monomeric and dimeric RAF. PMID:26373275

  14. Aging is associated with dimerization and inactivation of the brain-enriched tyrosine phosphatase STEP.

    PubMed

    Rajagopal, Sathyanarayanan; Deb, Ishani; Poddar, Ranjana; Paul, Surojit

    2016-05-01

    The STriatal-Enriched tyrosine Phosphatase (STEP) is involved in the etiology of several age-associated neurologic disorders linked to oxidative stress and is also known to play a role in neuroprotection by modulating glutamatergic transmission. However, the possible effect of aging on STEP level and activity in the brain is still unclear. In this study, using young (1 month), adult (4 months), and aged (18 months) rats, we show that aging is associated with increase in dimerization and loss of activity of STEP. Increased dimerization of STEP is primarily observed in the cortex and hippocampus and is associated with depletion of both reduced and total glutathione levels, suggesting an increase in oxidative stress. Consistent with this interpretation, studies in cell culture models of glutathione depletion and oxidative stress also demonstrate formation of dimers and higher order oligomers of STEP that involve intermolecular disulfide bond formation between multiple cysteine residues. Conversely, administration of N-acetyl cysteine, a major antioxidant that enhances glutathione biosynthesis, attenuates STEP dimerization both in the cortex and hippocampus. The findings indicate that loss of this intrinsic protective response pathway with age-dependent increase in oxidative stress may be a contributing factor for the susceptibility of the brain to age-associated neurologic disorders. PMID:27103516

  15. Thermochemical properties and contribution groups for ketene dimers and related structures from theoretical calculations.

    PubMed

    Morales, Giovanni; Martínez, Ramiro

    2009-07-30

    This research's main goals were to analyze ketene dimers' relative stability and expand group additivity value (GAV) methodology for estimating the thermochemical properties of high-weight ketene polymers (up to tetramers). The CBS-Q multilevel procedure and statistical thermodynamics were used for calculating the thermochemical properties of 20 cyclic structures, such as diketenes, cyclobutane-1,3-diones, cyclobut-2-enones and pyran-4-ones, as well as 57 acyclic base compounds organized into five groups. According to theoretical heat of formation predictions, diketene was found to be thermodynamically favored over cyclobutane-1,3-dione and its enol-tautomeric form (3-hydroxycyclobut-2-enone). This result did not agree with old combustion experiments. 3-Hydroxycyclobut-2-enone was found to be the least stable dimer and its reported experimental detection in solution may have been due to solvent effects. Substituted diketenes had lower stability than substituted cyclobutane-1,3-diones with an increased number of methyl substituents, suggesting that cyclobutane-1,3-dione type dimers are the major products because of thermodynamic control of alkylketene dimerization. Missing GAVs for the ketene dimers and related structures were calculated through linear regression on the 57 acyclic base compounds. Corrections for non next neighbor interactions (such as gauche, eclipses, and internal hydrogen bond) were needed for obtaining a highly accurate and precise regression model. To the best of our knowledge, the hydrogen bond correction for GAV methodology is the first reported in the literature; this correction was correlated to MP2/6-31Gdagger and HF/6-31Gdagger derived geometries to facilitate its application. GAVs assessed by the linear regression model were able to reproduce acyclic compounds' theoretical thermochemical properties and experimental heat of formation for acetylacetone. Ring formation and substituent position corrections were calculated by consecutively

  16. Magnetic anisotropy of heteronuclear dimers in the gas phase and supported on graphene: relativistic density-functional calculations.

    PubMed

    Błoński, Piotr; Hafner, Jürgen

    2014-04-01

    the relativistic electronic structure of free and supported dimers and it is demonstrated that the existence of a partially occupied quasi-degenerate state at the Fermi level favors the formation of a large magnetic anisotropy. PMID:24651700

  17. Cyclic M2(RL)2 coordination complexes of 5-(3-[N-tert-Butyl-N-aminoxyl]phenyl)pyrimidine with paramagnetic transition metal dications.

    PubMed

    Baskett, Martha; Lahti, Paul M; Paduan-Filho, Armando; Oliveira, Nei F

    2005-09-19

    5-(3-(N-tert-Butyl-N-aminoxyl)phenyl)pyrimidine (RL = 3NITPhPyrim) forms isostructural cyclic M2(RL)2 cyclic dimers with M(hfac)2 (M = Mn, Co, Cu; hfac = hexafluoroacetylacetonate). Mn2(hfac)4(RL)2 exhibits strong antiferromagnetic Mn-RL exchange, with weak ferromagnetic exchange (0.7 cm(-1)) between Mn-RL units that is consistent with a spin polarization exchange mechanism. The magnetic moment of Co2(hfac)4(RL)2 at higher temperatures is consistent with strongly antiferromagnetic exchange within the Co-NIT units and tends toward zero below 50 K at lower magnetic fields. Cu2(hfac)4(RL)2 shows more complex behavior, with no high-temperature plateau in chiT(T) up to 300 K but a monotonic decrease down to about 100 K. The Cu(II)-nitroxide bonds decrease by 0.2-0.3 A over the same temperature range, corresponding to a change of nitroxide coordination from axial to equatorial. This thermally reversible Jahn-Teller distortion leads to a thermally induced spin state conversion from a high-spin, paramagnetic state at higher temperature to a low-spin state at lower temperature. This spin state conversion is accompanied by a reversible solid-state thermochromic change between dull yellow-brown at room temperature and green at 77 K. PMID:16156631

  18. 7-Methyl-5,6,7,8-tetra-hydro-1-benzo-thieno[2,3-d]pyrimidin-4-amine.

    PubMed

    Ziaulla, Mohamed; Banu, Afshan; Begum, Noor Shahina; Panchamukhi, Shridhar I; Khazi, I M

    2011-07-01

    In the title compound, C(11)H(13)N(3)S, two of the C atoms of the cyclo-hexene ring and the methyl group attached to it are disordered over two sets of sites in a 0.544 (2):0.456 (2) ratio. The benzothiene and pyrimidine rings are almost coplanar with an angular tilt of 2.371 (9)° between them. The thio-phene ring is essentially planar (r.m.s. deviation 0.05 Å), while the cyclo-hexene ring in both the major- and minor-occupancy conformers adopts a half-chair conformation. In the crystal structure, pairs of intermolecular N-H⋯N hydrogen bonds involving the amino groups result in centrosymmetric head-to-head dimers about inversion centres, corresponding to an R(2) (2)(8) graph-set motif. Further, N-H⋯N hydrogen bonding generates a two-dimensional hydrogen-bonded network perpendicular to the ac plane and running along the diagonal of the ac plane. PMID:21837042

  19. Design and Synthesis of New Benzimidazole and Pyrimidine Derivatives as α-glucosidase Inhibitor

    PubMed Central

    Mobinikhaledi, Akbar; Asghari, Behvar; Jabbarpour, Mahsa

    2015-01-01

    In an endeavor to find a novel series of antihyperglycemic agents, new benzimidazole and pyrimidine derivatives were successfully synthesized efficiently in high yield with high purity, starting from amino acids in the presence of phosphorus oxychloride (POCl3). The synthesized compounds were identified by 1H-NMR, 13C-NMR, FT-IR spectroscopic techniques and elemental analysis. All products were assayed for their inhibitory effects on yeast and rat intestinal α-glucosidases. The results revealed that compounds with aromatic amino acids moiety showed significant inhibition activity on the tested enzymes. Among the benzimidazole derivatives 4c and 4d exhibited the best activity against both of the tested enzymes. Also, among the pyrimidine derivatives 5c and 5d possessed significant inhibition action on the enzymes. The IC50 values for the most potent benzimidazole yeast and intestinal α-glucosidases inhibitor (4d) were found to be 9.1 and 36.7 µM, respectively. The IC50 values for the inhibition of yeast and intestinal α-glucosidases by the most active pyrimidine compound (5d) were calculated to be 8.3 and 21.8 µM, respectively. Overall, this study proved that benzimidazole and pyrimidine derivatives with aromatic amino acids moieties can represent novel promising α-glucosidase inhibitors. PMID:26330860

  20. Novel inhibitors of Mycobacterium tuberculosis growth based on modified pyrimidine nucleosides and their analogues

    NASA Astrophysics Data System (ADS)

    Shmalenyuk, E. R.; Kochetkov, S. N.; Alexandrova, L. A.

    2013-09-01

    The review summarizes data on the synthesis and antituberculosis activity of pyrimidine nucleoside derivatives and their analogues. Enzymes from M. tuberculosis as promising targets for prototypes of new-generation drugs are considered. Nucleosides as inhibitors of drug-resistant M. tuberculosis strains are characterized. The bibliography includes 101 references.

  1. 2-Chloro-5-fluoro-6-methyl-N-o-tolyl­pyrimidin-4-amine

    PubMed Central

    Jiang, Yufei; Wu, Kong; Cui, Dongmei; Zhou, Wei

    2013-01-01

    In the title compound, C12H11ClFN3, the benzene ring forms a dihedral angle of 72.43 (5)° with the pyrimidine ring. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into a chain running along the c axis. PMID:23723793

  2. Synthesis, characterization and in silico biological activity of some 2-(N,N-dimethyl guanidinyl)-4,6-diaryl pyrimidines

    PubMed Central

    Kumarachari, Rajasekhar Komarla; Peta, Sivakumar; Surur, Abdrrahman Shemsu; Mekonnen, Yenus Tadesse

    2016-01-01

    Introduction: As pyrimidine is a basic nucleus in DNA and RNA, it has been found to be associated with diverse biological activities. Pyrimidine derivatives were reported to possess anticonvulsant, antimicrobial, anti-inflammatory, antitumor, and antihistaminic. Recently, our team reported the anti-inflammatory and antimicrobial evaluation of some pyrimidines. Objective: To synthesize, predict and evaluate biological activity of some 2-(N,N-dimethyl guanidinyl)-4,6-diaryl pyrimidines. Experimental: seven new pyrimidines were synthesized by following the standard procedures using substituted aromatic aldehydes, methyl ketones and metformin. After the biological activity was predicted using PASS, Molinspiration and Osiris property explorer, their anthelmintic activity was evaluated using Pheretima posthuma. The structural assignment of the title compounds (P1-7) has been made on the basis of elemental analysis, infrared, 1H-nuclear magnetic resonance and Mass spectral studies. Results: All the synthesized compounds were found to obey Lipinski's rule. All the synthesized compounds scored good bioactivity values as GPCR ligands and kinase inhibitors. Among the test compounds, P5 was found to be more potent anthelmintic inducing paralysis in 36-48 minutes and death in 40-51 minutes. Conclusion and Recommendation: The synthesized compound (P5) possessing methoxy group at position-4 of the benzene ring located at position-4 of pyrimidine exhibited good anthelmintic activity. The study revealed the necessity of synthesizing many more compounds with other substituents at position-4 of the benzene ring located at position-4 of pyrimidine. PMID:27413345

  3. Four-wave mixing spectroscopy of molecular dimers. Application to dimers of pentacene in p-terphenyl

    NASA Astrophysics Data System (ADS)

    Levinsky, Howard; Wiersma, Douwe A.

    1982-10-01

    Dispersive coherent Stokes-Raman scattering (CSRS) experiments on pentacene dimers in p-terphenyl were performed to locate the corresponding singly excited, delocalized, dimer levels. In addition the CNRS technique was used to locate the doubly excited dimer state. Future experiments exploring the dynamics of this novel state are discussed.

  4. Epidermal Growth Factor Receptor Dimerization and Activation Require Ligand-Induced Conformational Changes in the Dimer Interface

    PubMed Central

    Dawson, Jessica P.; Berger, Mitchell B.; Lin, Chun-Chi; Schlessinger, Joseph; Lemmon, Mark A.; Ferguson, Kathryn M.

    2005-01-01

    Structural studies have shown that ligand-induced epidermal growth factor receptor (EGFR) dimerization involves major domain rearrangements that expose a critical dimerization arm. However, simply exposing this arm is not sufficient for receptor dimerization, suggesting that additional ligand-induced dimer contacts are required. To map these contributions to the dimer interface, we individually mutated each contact suggested by crystallographic studies and analyzed the effects on receptor dimerization, activation, and ligand binding. We find that domain II contributes >90% of the driving energy for dimerization of the extracellular region, with domain IV adding little. Within domain II, the dimerization arm forms much of the dimer interface, as expected. However, a loop from the sixth disulfide-bonded module (immediately C-terminal to the dimerization arm) also makes a critical contribution. Specific ligand-induced conformational changes in domain II are required for this loop to contribute to receptor dimerization, and we identify a set of ligand-induced intramolecular interactions that appear to be important in driving these changes, effectively “buttressing” the dimer interface. Our data also suggest that similar conformational changes may determine the specificity of ErbB receptor homo- versus heterodimerization. PMID:16107719

  5. DFT study of small fullerene dimer complexes C20-Nm@Cn (m = 1-6 and n = 24, 28, 32, 36 and 40)

    NASA Astrophysics Data System (ADS)

    Kaur, Sandeep; Sharma, Amrish; Mudahar, Isha

    2016-05-01

    First principle calculations based on density functional theory were performed to calculate the structural and electronic properties of C20-Nm@Cn dimer complexes. The calculated binding energies of the complexes formed are comparable to C60 dimer which ensures their stability. The bond lengths of these dimer complexes were found to be nearly same as pure complexes C20-Cn. Further, nitrogen (N) atoms were encapsulated inside the secondary cage (Cn) of dimer complexes and the number of N atoms depends on diameter of the cage. The HOMO-LUMO gaps of new proposed complexes indicate the increase in gap as compared to pure complexes. Mulliken charge analysis of these complexes has been studied which shows the significant charge transfer from the N atoms to the secondary cage of these complexes. The study propose the formation of the new dimer complexes which are stable and are able to encapsulate atoms which are otherwise reactive in free space.

  6. Structure and Function of Nucleoside Hydrolases from Physcomitrella patens and Maize Catalyzing the Hydrolysis of Purine, Pyrimidine, and Cytokinin Ribosides1[W

    PubMed Central

    Kopečná, Martina; Blaschke, Hanna; Kopečný, David; Vigouroux, Armelle; Končitíková, Radka; Novák, Ondřej; Kotland, Ondřej; Strnad, Miroslav; Moréra, Solange; von Schwartzenberg, Klaus

    2013-01-01

    We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism. PMID:24170203

  7. Dispersion Energy Enforced Dimerization of a Cyclic Disilylated Plumbylene

    PubMed Central

    2012-01-01

    By reaction of 1,4-dipotassio-1,1,4,4-tetrakis(trimethylsilyl)tetramethyltetrasilane with PbBr2 in the presence of triethylphosphine a base adduct of a cyclic disilylated plumbylene could be obtained. Phosphine abstraction with B(C6F5)3 led to formation of a base-free plumbylene dimer, which features an unexpected single donor–acceptor PbPb bond. The results of density functional computations at the M06-2X and B3LYP level of theory indicate that the dominating interactions which hold the plumbylene subunits together and which define its actual molecular structure are attracting van der Waals forces between the two large and polarizable plumbylene subunits. PMID:22455750

  8. Targeting the cis-dimerization of LINGO-1 with low MW compounds affects its downstream signalling

    PubMed Central

    Cobret, L; De Tauzia, M L; Ferent, J; Traiffort, E; Hénaoui, I; Godin, F; Kellenberger, E; Rognan, D; Pantel, J; Bénédetti, H; Morisset-Lopez, S

    2015-01-01

    Background and Purpose The transmembrane protein LINGO-1 is a negative regulator in the nervous system mainly affecting axonal regeneration, neuronal survival, oligodendrocyte differentiation and myelination. However, the molecular mechanisms regulating its functions are poorly understood. In the present study, we investigated the formation and the role of LINGO-1 cis-dimers in the regulation of its biological activity. Experimental Approach LINGO-1 homodimers were identified in both HEK293 and SH-SY5Y cells using co-immunoprecipitation experiments and BRET saturation analysis. We performed a hypothesis-driven screen for identification of small-molecule protein–protein interaction modulators of LINGO-1 using a BRET-based assay, adapted for screening. The compound identified was further assessed for effects on LINGO-1 downstream signalling pathways using Western blotting analysis and AlphaScreen technology. Key Results LINGO-1 was present as homodimers in primary neuronal cultures. LINGO-1 interacted homotypically in cis-orientation and LINGO-1 cis-dimers were formed early during LINGO-1 biosynthesis. A BRET-based assay allowed us to identify phenoxybenzamine as the first conformational modulator of LINGO-1 dimers. In HEK-293 cells, phenoxybenzamine was a positive modulator of LINGO-1 function, increasing the LINGO-1-mediated inhibition of EGF receptor signalling and Erk phosphorylation. Conclusions and Implications Our data suggest that LINGO-1 forms constitutive cis-dimers at the plasma membrane and that low MW compounds affecting the conformational state of these dimers can regulate LINGO-1 downstream signalling pathways. We propose that targeting the LINGO-1 dimerization interface opens a new pharmacological approach to the modulation of its function and provides a new strategy for drug discovery. PMID:25257685

  9. Glutamate Racemase Dimerization Inhibits Dynamic Conformational Flexibility and Reduces Catalytic Rates

    SciTech Connect

    Mehboob, Shahila; Guo, Liang; Fu, Wentao; Mittal, Anuradha; Yau, Tiffany; Truong, Kent; Johlfs, Mary; Long, Fei; Fung, Leslie W.-M.; Johnson, Michael E.

    2009-09-15

    Glutamate racemase (RacE) is a bacterial enzyme that converts L-glutamate to D-glutamate, an essential precursor for peptidoglycan synthesis. In prior work, we have shown that both isoforms cocrystallize with D-glutamate as dimers, and the enzyme is in a closed conformation with limited access to the active site [May, M., et al. (2007) J. Mol. Biol. 371, 1219-1237]. The active site of RacE2 is especially restricted. We utilize several computational and experimental approaches to understand the overall conformational dynamics involved during catalysis when the ligand enters and the product exits the active site. Our steered molecular dynamics simulations and normal-mode analysis results indicate that the monomeric form of the enzyme is more flexible than the native dimeric form. These results suggest that the monomeric enzyme might be more active than the dimeric form. We thus generated site-specific mutations that disrupt dimerization and find that the mutants exhibit significantly higher catalytic rates in the D-Glu to L-Glu reaction direction than the native enzyme. Low-resolution models restored from solution X-ray scattering studies correlate well with the first six normal modes of the dimeric form of the enzyme, obtained from NMA. Thus, along with the local active site residues, global domain motions appear to be implicated in the catalytically relevant structural dynamics of this enzyme and suggest that increased flexibility may accelerate catalysis. This is a novel observation that residues distant from the catalytic site restrain catalytic activity through formation of the dimer structure.

  10. Internal energy selection in vacuum ultraviolet photoionization of ethanol and ethanol dimers

    NASA Astrophysics Data System (ADS)

    Bodi, Andras

    2013-10-01

    Internal energy selected ethanol monomer and ethanol dimer ions were prepared by threshold photoionization of a supersonic molecular beam seeded with ethanol. The dissociative photoionization processes of the monomer, the lowest-energy CH3-loss channel of the dimer, and the fragmentation of larger clusters were found to be disjunct from the ionization onset to about 12 eV, which made it possible to determine the 0 K appearance energy of C-C bond breaking in the H-donor unit of the ethanol dimer cation as 9.719 ± 0.004 eV. This reaction energy is used together with ab initio calculations in a thermochemical cycle to determine the binding energy change from the neutral ethanol dimer to a protonated ethanol-formaldehyde adduct. The cycle also shows general agreement between experiment, theory, and previously published enthalpies of formation. The role of the initial ionization site, or rather the initial photoion state, is also discussed based on the dimer breakdown diagram and excited state calculations. There is no evidence for isolated state behavior, and the ethanol dimer dissociative photoionization processes appear to be governed by statistical theory and the ground electronic state of the ion. In the monomer breakdown diagram, the smoothly changing branching ratio between H and CH3 loss is at odds with rate theory predictions, and shows that none of the currently employed few-parameter rate models, appropriate for experimental rate curve fitting, yields a correct description for this process in the experimental energy range.

  11. Proton-bound dimers of nitrogen heterocyclic molecules: Substituent effects on the structures and binding energies of homodimers of diazine, triazine, and fluoropyridine

    SciTech Connect

    Attah, Isaac K.; Platt, Sean P.; Meot-Ner, Michael; El-Shall, M. S.; Aziz, Saadullah G.; Alyoubi, Abdulrahman O.

    2014-03-21

    The bonding energies of proton-bound homodimers BH{sup +}B were measured by ion mobility equilibrium studies and calculated at the DFT B3LYP/6-311++G{sup **} level, for a series of nitrogen heterocyclic molecules (B) with electron-withdrawing in-ring N and on-ring F substituents. The binding energies (ΔH°{sub dissoc}) of the proton-bound dimers (BH{sup +}B) vary significantly, from 29.7 to 18.1 kcal/mol, decreasing linearly with decreasing the proton affinity of the monomer (B). This trend differs significantly from the constant binding energies of most homodimers of other organic nitrogen and oxygen bases. The experimentally measured ΔH°{sub dissoc} for (1,3-diazine){sub 2}H{sup +}, i.e., (pyrimidine){sub 2}H{sup +} and (3-F-pyridine){sub 2}H{sup +} are 22.7 and 23.0 kcal/mol, respectively. The measured ΔH°{sub dissoc} for the pyrimidine{sup ·+}(3-F-pyridine) radical cation dimer (19.2 kcal/mol) is signifcantly lower than that of the proton-bound homodimers of pyrimidine and 3-F-pyridine, reflecting the stronger interaction in the ionic H-bond of the protonated dimers. The calculated binding energies for (1,2-diazine){sub 2}H{sup +}, (pyridine){sub 2}H{sup +}, (2-F-pyridine){sub 2}H{sup +}, (3-F-pyridine){sub 2}H{sup +}, (2,6-di-F-pyridine){sub 2}H{sup +}, (4-F-pyridine){sub 2}H{sup +}, (1,3-diazine){sub 2}H{sup +}, (1,4-diazine){sub 2}H{sup +}, (1,3,5-triazine){sub 2}H{sup +}, and (pentafluoropyridine){sub 2}H{sup +} are 29.7, 24.9, 24.8, 23.3, 23.2, 23.0, 22.4, 21.9, 19.3, and 18.1 kcal/mol, respectively. The electron-withdrawing substituents form internal dipoles whose electrostatic interactions contribute to both the decreased proton affinities of (B) and the decreased binding energies of the protonated dimers BH{sup +}B. The bonding energies also vary with rotation about the hydrogen bond, and they decrease in rotamers where the internal dipoles of the components are aligned efficiently for inter-ring repulsion. For compounds substituted at the 3 or 4

  12. Proton-bound dimers of nitrogen heterocyclic molecules: Substituent effects on the structures and binding energies of homodimers of diazine, triazine, and fluoropyridine

    NASA Astrophysics Data System (ADS)

    Attah, Isaac K.; Platt, Sean P.; Meot-Ner Mautner, Michael; El-Shall, M. S.; Aziz, Saadullah G.; Alyoubi, Abdulrahman O.

    2014-03-01

    The bonding energies of proton-bound homodimers BH+B were measured by ion mobility equilibrium studies and calculated at the DFT B3LYP/6-311++G** level, for a series of nitrogen heterocyclic molecules (B) with electron-withdrawing in-ring N and on-ring F substituents. The binding energies (ΔH°dissoc) of the proton-bound dimers (BH+B) vary significantly, from 29.7 to 18.1 kcal/mol, decreasing linearly with decreasing the proton affinity of the monomer (B). This trend differs significantly from the constant binding energies of most homodimers of other organic nitrogen and oxygen bases. The experimentally measured ΔH°dissoc for (1,3-diazine)2H+, i.e., (pyrimidine)2H+ and (3-F-pyridine)2H+ are 22.7 and 23.0 kcal/mol, respectively. The measured ΔH°dissoc for the pyrimidine.+(3-F-pyridine) radical cation dimer (19.2 kcal/mol) is signifcantly lower than that of the proton-bound homodimers of pyrimidine and 3-F-pyridine, reflecting the stronger interaction in the ionic H-bond of the protonated dimers. The calculated binding energies for (1,2-diazine)2H+, (pyridine)2H+, (2-F-pyridine)2H+, (3-F-pyridine)2H+, (2,6-di-F-pyridine)2H+, (4-F-pyridine)2H+, (1,3-diazine)2H+, (1,4-diazine)2H+, (1,3,5-triazine)2H+, and (pentafluoropyridine)2H+ are 29.7, 24.9, 24.8, 23.3, 23.2, 23.0, 22.4, 21.9, 19.3, and 18.1 kcal/mol, respectively. The electron-withdrawing substituents form internal dipoles whose electrostatic interactions contribute to both the decreased proton affinities of (B) and the decreased binding energies of the protonated dimers BH+B. The bonding energies also vary with rotation about the hydrogen bond, and they decrease in rotamers where the internal dipoles of the components are aligned efficiently for inter-ring repulsion. For compounds substituted at the 3 or 4 (meta or para) positions, the lowest energy rotamers are T-shaped with the planes of the two rings rotated by 90° about the hydrogen bond, while the planar rotamers are weakened by repulsion between the

  13. Effect of pressure on heterocyclic compounds: Pyrimidine and s-triazine

    SciTech Connect

    Li, Shourui; Li, Qian; Li, Wenbo; Cui, Wen; Liu, Ran; Liu, Bingbing; Zou, Bo; Xiong, Lun; Li, Xiaodong; Liu, Jing; Yang, Ke

    2014-09-21

    We have examined the high-pressure behaviors of six-membered heterocyclic compounds of pyrimidine and s-triazine up to 26 and 26.5 GPa, respectively. Pyrimidine crystallizes in Pna2{sub 1} symmetry (phase I) with the freezing pressure of 0.3 GPa, and transforms to another phase (phase II) at 1.1 GPa. Raman spectra of several compression-decompression cycles demonstrate there is a critical pressure of 15.5 GPa for pyrimidine. Pyrimidine returns back to its original liquid state as long as the highest pressure is below 15.1 GPa. Rupture of the aromatic ring is observed once pressure exceeds 15.5 GPa during a compression-decompression cycle, evidenced by the amorphous characteristics of the recovered sample. As for s-triazine, the phase transition from R-3c to C2/c is well reproduced at 0.6 GPa, in comparison with previous Raman data. Detailed Raman scattering experiments corroborate the critical pressure for s-triazine may locate at 14.5 GPa. That is, the compression is reversible below 14.3 GPa, whereas chemical reaction with ring opening is detected when the final pressure is above 14.5 GPa. During compression, the complete amorphization pressure for pyrimidine and s-triazine is identified as 22.4 and 15.2 GPa, respectively, based on disappearance of Raman lattice modes. Synchrotron X-ray diffraction patterns and Fourier transform infrared spectra of recovered samples indicate the products in two cases comprise of extended nitrogen-rich amorphous hydrogenated carbon (a-C:H:N)

  14. Evidence for incorporation of intact dietary pyrimidine (but not purine) nucleosides into hepatic RNA.

    PubMed Central

    Berthold, H K; Crain, P F; Gouni, I; Reeds, P J; Klein, P D

    1995-01-01

    The absorption and metabolism of dietary nucleic acids have received less attention than those of other organic nutrients, largely because of methodological difficulties. We supplemented the rations of poultry and mice with the edible alga Spirulina platensis, which had been uniformly labeled with 13C by hydroponic culture in 13CO2. The rations were ingested by a hen for 4 wk and by four mice for 6 days; two mice were fed a normal diet and two were fed a nucleic acid-deficient diet. The animals were killed and nucleosides were isolated from hepatic RNA. The isotopic enrichment of all mass isotopomers of the nucleosides was analyzed by selected ion monitoring of the negative chemical ionization mass spectrum and the labeling pattern was deconvoluted by reference to the enrichment pattern of the tracer material. We found a distinct difference in the 13C enrichment pattern between pyrimidine and purine nucleosides; the isotopic enrichment of uniformly labeled [M + 9] isotopomers of pyrimidines exceeded that of purines [M + 10] by > 2 orders of magnitude in the avian nucleic acids and by 7- and 14-fold in the murine nucleic acids. The purines were more enriched in lower mass isotopomers, those less than [M + 3], than the pyrimidines. Our results suggest that large quantities of dietary pyrimidine nucleosides and almost no dietary purine nucleosides are incorporated into hepatic nucleic acids without hydrolytic removal of the ribose moiety. In addition, our results support a potential nutritional role for nucleosides and suggest that pyrimidines are conditionally essential organic nutrients. PMID:7479738

  15. Calcium-dependent Dimerization of Human Soluble Calcium Activated Nucleotidase: Characterization of the Dimer Interface

    SciTech Connect

    Yang,M.; Horii, K.; Herr, A.; Kirley, T.

    2006-01-01

    Mammals express a protein homologous to soluble nucleotidases used by blood-sucking insects to inhibit host blood clotting. These vertebrate nucleotidases may play a role in protein glycosylation. The activity of this enzyme family is strictly dependent on calcium, which induces a conformational change in the secreted, soluble human nucleotidase. The crystal structure of this human enzyme was recently solved; however, the mechanism of calcium activation and the basis for the calcium-induced changes remain unclear. In this study, using analytical ultracentrifugation and chemical cross-linking, we show that calcium or strontium induce noncovalent dimerization of the soluble human enzyme. The location and nature of the dimer interface was elucidated using a combination of site-directed mutagenesis and chemical cross-linking, coupled with crystallographic analyses. Replacement of Ile{sup 170}, Ser{sup 172}, and Ser{sup 226} with cysteine residues resulted in calcium-dependent, sulfhydryl-specific intermolecular cross-linking, which was not observed after cysteine introduction at other surface locations. Analysis of a super-active mutant, E130Y, revealed that this mutant dimerized more readily than the wild-type enzyme. The crystal structure of the E130Y mutant revealed that the mutated residue is found in the dimer interface. In addition, expression of the full-length nucleotidase revealed that this membrane-bound form can also dimerize and that these dimers are stabilized by spontaneous oxidative cross-linking of Cys{sup 30}, located between the single transmembrane helix and the start of the soluble sequence. Thus, calcium-mediated dimerization may also represent a mechanism for regulation of the activity of this nucleotidase in the physiological setting of the endoplasmic reticulum or Golgi.

  16. Cu(II) /TEMPO-promoted one-pot synthesis of highly substituted pyrimidines from amino acid esters.

    PubMed

    Zhou, Nini; Xie, Tao; Li, Zhongle; Xie, Zhixiang

    2014-12-22

    A novel, Cu(OAc)2/TEMPO promoted one-step approach for the preparation of fully substituted pyrimidines from readily available amino acid esters has been described. In this reaction, the amino acid esters act as the only N-C sources for the construction of corresponding pyrimidines. The mechanism of this process includes oxidative dehydrogenation, the generation of an imine radical, and a formal [3+3] cycloaddition. This methodology proves to be a high atom-economic and straightforward strategy for the synthesis of pyrimidines and diverse substrates which are substituted by various functional groups have been afforded in moderate to good yield. PMID:25377658

  17. Soluble Epoxide Hydrolase Dimerization Is Required for Hydrolase Activity*

    PubMed Central

    Nelson, Jonathan W.; Subrahmanyan, Rishi M.; Summers, Sol A.; Xiao, Xiangshu; Alkayed, Nabil J.

    2013-01-01

    Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity. To directly test the hypothesis that dimerization is essential for the proper function of sEH, we generated mutations within the sEH protein that would either disrupt or stabilize dimerization. We quantified the dimerization state of each mutant using a split firefly luciferase protein fragment-assisted complementation system. The hydrolase activity of each mutant was determined using a fluorescence-based substrate conversion assay. We found that mutations that disrupted dimerization also eliminated hydrolase enzymatic activity. In contrast, a mutation that stabilized dimerization restored hydrolase activity. Finally, we investigated the kinetics of sEH dimerization and found that the human R287Q polymorphism was metastable and capable of swapping dimer partners faster than the WT enzyme. These results indicate that dimerization is required for sEH hydrolase activity. Disrupting sEH dimerization may therefore serve as a novel therapeutic strategy for reducing sEH hydrolase activity. PMID:23362272

  18. Soluble epoxide hydrolase dimerization is required for hydrolase activity.

    PubMed

    Nelson, Jonathan W; Subrahmanyan, Rishi M; Summers, Sol A; Xiao, Xiangshu; Alkayed, Nabil J

    2013-03-15

    Soluble epoxide hydrolase (sEH) plays a key role in the metabolic conversion of the protective eicosanoid 14,15-epoxyeicosatrienoic acid to 14,15-dihydroxyeicosatrienoic acid. Accordingly, inhibition of sEH hydrolase activity has been shown to be beneficial in multiple models of cardiovascular diseases, thus identifying sEH as a valuable therapeutic target. Recently, a common human polymorphism (R287Q) was identified that reduces sEH hydrolase activity and is localized to the dimerization interface of the protein, suggesting a relationship between sEH dimerization and activity. To directly test the hypothesis that dimerization is essential for the proper function of sEH, we generated mutations within the sEH protein that would either disrupt or stabilize dimerization. We quantified the dimerization state of each mutant using a split firefly luciferase protein fragment-assisted complementation system. The hydrolase activity of each mutant was determined using a fluorescence-based substrate conversion assay. We found that mutations that disrupted dimerization also eliminated hydrolase enzymatic activity. In contrast, a mutation that stabilized dimerization restored hydrolase activity. Finally, we investigated the kinetics of sEH dimerization and found that the human R287Q polymorphism was metastable and capable of swapping dimer partners faster than the WT enzyme. These results indicate that dimerization is required for sEH hydrolase activity. Disrupting sEH dimerization may therefore serve as a novel therapeutic strategy for reducing sEH hydrolase activity. PMID:23362272

  19. Potential energy studies on silane dimers

    NASA Astrophysics Data System (ADS)

    Mahlanen, Riina; Pakkanen, Tapani A.

    2011-04-01

    Intermolecular interactions and parameters for use in MD studies of large molecule systems have earlier been determined for hydrocarbons, carbon tetrahalides and sulfur. The paper reports a model representing nonbonding interactions between silane molecules, which were examined in the same way as hydrocarbons in an earlier (neopentane, isopropane, propane, and ethane) study. Intermolecular potentials were determined for 11 combinations of silane compound pairs (silane SiH 4, disilane Si 2H 6, trisilane Si 3H 8, isotetrasilane Si 4H 10 and neopentasilane Si 5H 12) with MP2/aug(df)-6-311G ∗ab initio calculations. The most stable dimer configurations were identified. With use of the modified Morse potential model to represent the interactions, 276 new potential energy surfaces were generated for silane dimers. Separate and generic pair potentials were calculated for the silanes. The pair potentials can be used in MD studies of silanes.

  20. Nanoradar based on nonlinear dimer nanoantenna.

    PubMed

    Lapshina, Nadezhda; Noskov, Roman; Kivshar, Yuri

    2012-09-15

    We introduce the concept of a nanoradar based on the operation of a nonlinear plasmonic nanoantenna. The nanoradar action originates from modulational instability occurring in a dimer nanoantenna consisting of two subwavelength nonlinear nanoparticles. Modulation instability causes a dynamical energy exchange between the nanoantenna eigenmodes resulting in periodic scanning of the nanoantenna scattering pattern. Such nanoradar demonstrates a wide scanning sector, low operation threshold, and ultrafast time response being potentially useful for many applications in nanophotonics circuitry. PMID:23041904