Science.gov

Sample records for pyrophosphorylase gene final

  1. [Enhancement of photoassimilate utilization by manipulation of ADP-glucose pyrophosphorylase gene]. Final progress report

    SciTech Connect

    Okita, T.W.

    1999-04-01

    Part 1 of this research focuses on patterns of gene expression of ADPG-pyrophosphorylase in native and transgenic potato plants. To elucidate the mechanism controlling AGP expression during plant development, the expression of the potato tuber AGP small subunit (sAGP) gene was analyzed in transgenic potato plants using a promoter-{beta}-glucuronidase expression system. Part II evaluated the structure-function relationships of AGP.

  2. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, Eric E.; Roessler, Paul G.

    1999-01-01

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities.

  3. Isolated gene encoding an enzyme with UDP-glucose pyrophosphorylase and phosphoglucomutase activities from Cyclotella cryptica

    DOEpatents

    Jarvis, E.E.; Roessler, P.G.

    1999-07-27

    The present invention relates to a cloned gene which encodes an enzyme, the purified enzyme, and the applications and products resulting from the use of the gene and enzyme. The gene, isolated from Cyclotella cryptica, encodes a multifunctional enzyme that has both UDP-glucose pyrophosphorylase and phosphoglucomutase activities. 8 figs.

  4. Identification of a GDP-mannose pyrophosphorylase gene from Sulfolobus solfataricus.

    PubMed

    Sacchetti, Silvana; Bartolucci, Simonetta; Rossi, Mosè; Cannio, Raffaele

    2004-05-12

    An open reading frame (ORF) encoding a putative GDP-mannose pyrophosphorylase (SsoGMPP) was identified on the genome sequence of Sulfolobus solfataricus P2, the predicted gene product showing high amino acid sequence homology to several archaeal, bacterial, and eukaryal GDP-mannose pyrophosphorylases such as guanidine diphosphomannose pyrophosphorylases (GMPPs) from Saccharomyces cerevisiae and Arabidopsis thaliana. The sequence was PCR amplified from genomic DNA of S. solfataricus P2 and heterologous gene expression obtained as a fusion to glutathione S-transferase in Escherichia coli, under conditions suitable to reduce the formation of inclusion bodies. Specific assays performed at 60 degrees C revealed the presence of the archaeal synthesizing GDP-mannose enzyme activity in the cell extracts of the transformed E. coli. As a positive control, the same assays were performed at the mesophilic enzyme optimum temperature on the already characterized yeast recombinant GMPP. The recombinant protein was purified to homogeneity by glutathione sepharose affinity chromatography and its thermophilic nature could be verified. The enzyme was definitively identified by demonstrating its capability to catalyze also the reverse reaction of pyrophosphorolysis and, most interestingly, its high specificity for synthesizing GDP-mannose. PMID:15145064

  5. Characterization of an ADP-glucose Pyrophosphorylase Small Subunit Gene Expressed in Developing Cotton (Gossypium hirsutum) Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ADP-glucose pyrophosphorylase (ADPGp) plays a rate limiting role in the biosynthesis of starch and has been shown to be involved in cell expansion of tobacco sepals. A cotton gene encoding ADPGp small subunit was isolated and sequenced. The gene contains 8 introns similar to other ADPGp genes. The o...

  6. [Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase gene]. Progress report, [March 15, 1989--April 14, 1990

    SciTech Connect

    Okita, T.W.

    1990-12-31

    The long term aim of this project is to assess the feasibility of increasing the conversion of photosynthate into starch via manipulation of the gene that encodes for ADPglucose pyrophosphorylase, a key regulatory enzyme of starch biosynthesis. In developing storage tissues such as cereal seeds and tubers, starch biosynthesis is regulated by the gene activation and expression of ADPglucose pyrophosphorylase, starch synthase, branching enzyme and other ancillary starch modifying enzymes, as well as the allosteric-controlled behavior of ADPglucose pyrophosphorylase activity. During the last two years we have obtained information on the structure of this enzyme from both potato tuber and rice endosperm, using a combination of biochemical and molecular biological approaches. Moreover, we present evidence that this enzyme may be localized at discrete regions of the starch grain within the amyloplast, and plays a role in controlling overall starch biosynthesis in potato tubers.

  7. [Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase gene]. Summary of progress, [April 15, 1991--April 14, 1992

    SciTech Connect

    Okita, T.W.

    1992-12-31

    The long term aim of this project is to assess the feasibility of increasing the conversion of photosynthate into starch via manipulation of genes encoding enzymes that may be rate-limiting in starch biosynthesis. In developing storage tissues such as tubers, starch biosynthesis is regulated by the gene activation and expression of ADPglucose pyrophosphorylase, starch synthase, branching enzyme and other ancillary starch modifying enzymes, as well as the allosteric-controlled behavior of ADPglucose pyrophosphorylase activity. In view of the regulatory role of ADPglucose pyrophosphorylase in starch biosynthesis at both the genetic and biochemical level, we have focused our attention on the genes that encode for this enzyme in potato tubers. The proposed objectives of the grant were to (1) analyze the structure of the tuber enzyme, (2) isolate and characterize the structure of its genes, and (3) identify the regulatory elements controlling ADPglucose pyrophosphorylase during plant development. During the last two and 1/2 years we have met or have made considerable progress in achieving these objectives as discussed in more detail below.

  8. Overexpression of UDP-glucose pyrophosphorylase gene could increase cellulose content in Jute (Corchorus capsularis L.).

    PubMed

    Zhang, Gaoyang; Qi, Jianmin; Xu, Jiantang; Niu, Xiaoping; Zhang, Yujia; Tao, Aifen; Zhang, Liwu; Fang, Pingping; Lin, Lihui

    2013-12-13

    In this study, the full-length cDNA of the UDP-glucose pyrophosphorylase gene was isolated from jute by homologous cloning (primers were designed according to the sequence of UGPase gene of other plants) and modified RACE techniques; the cloned gene was designated CcUGPase. Using bioinformatic analysis, the gene was identified as a member of the UGPase gene family. Real-time PCR analysis revealed differential spatial and temporal expression of the CcUGPase gene, with the highest expression levels at 40 and 120d. PCR and Southern hybridization results indicate that the gene was integrated into the jute genome. Overexpression of CcUGPase gene in jute revealed increased height and cellulose content compared with control lines, although the lignin content remained unchanged. The results indicate that the jute UGPase gene participates in cellulose biosynthesis. These data provide an important basis for the application of the CcUGPase gene in the improvement of jute fiber quality. PMID:24269810

  9. Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase gene. Progress report, [April 15, 1988--April 14, 1989

    SciTech Connect

    Okita, T.W.

    1989-12-31

    During this period researchers have been successful in determining the structure of the rice pyrophosphorylase gene. Potato tuber ADPglucose pyrophosphorylse purification and structure studies were carried out as well as recombinant DNA studies. Evidence suggests that the tuber form is made up of subunits with similar molecular weights and immunological relatedness. In contrast, the spinach leaf enzyme and presumably the maize endosperm species is composed of two dissimilar sununits encoded by different genes.

  10. Sucrose regulation of ADP-glucose pyrophosphorylase subunit genes transcript levels in leaves and fruits

    NASA Technical Reports Server (NTRS)

    Li, Xiangyang; Xing, Jinpeng; Gianfagna, Thomas J.; Janes, Harry W.

    2002-01-01

    ADP-glucose pyrophosphorylase (AGPase, EC2.7.7.27) is a key regulatory enzyme in starch biosynthesis. The enzyme is a heterotetramer with two S and two B subunits. In tomato, there are three multiple forms of the S subunit gene. Agp S1, S2 and B are highly expressed in fruit from 10 to 25 days after anthesis. Agp S3 is only weakly expressed in fruit. Sucrose significantly elevates expression of Agp S1, S2 and B in both leaves and fruits. Agp S1 exhibits the highest degree of regulation by sucrose. In fact, sucrose may be required for Agp S1 expression. For excised leaves incubated in water, no transcripts for Agp S1 could be detected in the absence of sucrose, whereas it took up to 16 h in water before transcripts were no longer detectable for Agp S2 and B. Neither Agp S3 nor the tubulin gene is affected by sucrose, demonstrating that this response is specifically regulated by a carbohydrate metabolic signal, and is not due to a general increase in metabolism caused by sucrose treatment. Truncated versions of the promoter for Agp S1 indicate that a specific region 1.3-3.0 kb upstream from the transcription site is responsible for sucrose sensitivity. This region of the S1 promoter contains several cis-acting elements present in the promoters of other genes that are also regulated by sucrose. c2002 Elsevier Science Ireland Ltd. All rights reserved.

  11. ADP-glucose pyrophosphorylase gene plays a key role in the quality of corm and yield of cormels in gladiolus.

    PubMed

    Seng, Shanshan; Wu, Jian; Sui, Juanjuan; Wu, Chenyu; Zhong, Xionghui; Liu, Chen; Liu, Chao; Gong, Benhe; Zhang, Fengqin; He, Junna; Yi, Mingfang

    2016-05-20

    Starch is the main storage compound in underground organs like corms. ADP-glucose pyrophosphorylase (AGPase) plays a key role in regulating starch biosynthesis in storage organs and is likely one of the most important determinant of sink strength. Here, we identify an AGPase gene (GhAGPS1) from gladiolus. The highest transcriptional levels of GhAGPS1 were observed in cormels and corms. Transformation of GhAGPS1 into Arabidopsis rescued the phenotype of aps1 mutant. Silencing GhAGPS1 in gladiolus corms by virus-induced gene silencing (VIGS) decreased the transcriptional levels of two genes and starch content. Transmission electron microscopy analyses of leaf and corm sections confirmed that starch biosynthesis was inhibited. Corm weight and cormel number reduced significantly in the silenced plants. Taken together, these results indicate that inhibiting the expression of AGPase gene could impair starch synthesis, which results in the lowered corm quality and cormel yield in gladiolus. PMID:27107698

  12. Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase gene. Progress report, [April 15, 1987--April 14, 1988

    SciTech Connect

    Okita, T.W.

    1988-12-31

    Many agronomically important crops are viewed as significant resources of renewable energy. Overall crop productivity could be increased if the efficiency of photoassimilate conversion into dry matter such as starch were improved in storage tissues. Starch production is controlled by the catalytic activity of ADPglucose pyrophosphorylase in the first step of starch biosynthesis. This research focuses on the genetic structure and molecular mechanisms by which it is controlled during plant development and how it is affected by environmental and hormonal conditions. The current goal is to isolate the genes for this enzyme present in both cereal endosperm and potato tuber tissues, and to elucidate its structure and the controlling sequences responsible for gene expression. The long term goal is the improvement of starch production in storage organs by manipulating this gene so that it encodes an enzyme refractive to inorganic phosphate inhibition.

  13. Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase genes. Progress report, [April 15, 1990--April 14, 1991

    SciTech Connect

    Okita, T.W.

    1990-12-31

    The long term goal of this project is to assess the feasibility of increasing the conversion of photosynthate a key regulatory enzyme in starch biosynthesis. In developing storage tissues such as cereal seeds and tubers, starch biosynthesis is primarily regulated by the gene activation, expression, and allosteric regulation of ADPglucose pyrophosphorylase, as well as starch synthase, and branching enzyme. During the last year we have elucidated the structure of both subunits which compose this tetrameric enzyme and determined the temporal and spatial expression of the genes encoding each subunit as well as their correlation to starch biosynthesis. Genomic clones to both subunits have also been isolated and the gene structure of the small subunit determined. Transgenic potato plants have been produced containing deletions of the small subunit promoter. Currently, cis acting elements and their involvement in spatial and temporal expression are under investigation.

  14. Structure and expression analysis of genes encoding ADP-glucose pyrophosphorylase large subunit in wheat and its relatives.

    PubMed

    Zhang, Xiao-Wei; Li, Si-Yu; Zhang, Ling-Ling; Yang, Qiang; Jiang, Qian-Tao; Ma, Jian; Qi, Peng-Fei; Li, Wei; Chen, Guo-Yue; Lan, Xiu-Jin; Deng, Mei; Lu, Zhen-Xiang; Liu, Chunji; Wei, Yu-Ming; Zheng, You-Liang

    2016-07-01

    ADP-glucose pyrophosphorylase (AGP), which consists of two large subunits (AGP-L) and two small subunits (AGP-S), controls the rate-limiting step in the starch biosynthetic pathway. In this study, a full-length open reading frame (ORF) of AGP-L gene (named as Agp2) in wheat and a series of Agp2 gene sequences in wheat relatives were isolated. The coding region of Agp2 contained 15 exons and 14 introns including a full-length ORF of 1566 nucleotides, and the deduced protein contained 522 amino acids (57.8 kDa). Generally, the phylogenetic tree of Agp2 indicated that sequences from A- and D-genome donor species were most similar to each other and sequences from B-genome donor species contained more variation. Starch accumulation and Agp2 expression in wheat grains reached their peak at 21 and 15 days post anthesis (DPA), respectively. PMID:27299732

  15. Arabidopsis UDP-Sugar Pyrophosphorylase: Evidence for Two Isoforms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arabidopsis UDP-sugar pyrophosphorylase (AtUSP, EC 2.7.7.64) is a broad substrate pyrophosphorylase that exhibits activity with GlcA-1-P, Gal-1-P, and Glc-1-P. AtUSP, a single gene in Arabidopsis, is widely expressed in tissues. Although USP exhibits activity with GlcA-1-P, it is not clear whether U...

  16. Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana (thale cress).

    PubMed

    Sokolov, L N; Déjardin, A; Kleczkowski, L A

    1998-12-15

    Expression of four Arabidopsis (thale cress) genes corresponding to the small (ApS) and large subunits (ApL1, ApL2, ApL3) of ADP-glucose pyrophosphorylase (AGPase), a key enzyme of starch biosynthesis, was found to be profoundly and differentially regulated by sugar and light/dark exposures. Transcript levels of both ApL2 and ApL3, and to a lesser extent ApS, increased severalfold upon feeding sucrose or glucose to the detached leaves in the dark, whereas the mRNA content for ApL1 decreased under the same conditions. Glucose was, in general, less effective than sucrose in inducing regulation of AGPase genes, possibly due to observed limitations in its uptake when compared with sucrose uptake by detached leaves. Osmotic agents [sorbitol, poly(ethylene glycol)] had no effect on ApS, ApL2 and ApL3 transcript level, but they did mimic the effect of sucrose on ApL1 gene, suggesting that the latter is regulated by osmotic pressure rather than any particular sugar. For all the genes the sugar effect was closely mimicked by an exposure of the dark-pre-adapted leaves to the light. Under both dark and light conditions, sucrose fed to the detached leaves was found to be rapidly metabolized to hexoses and, to some extent, starch. Starch production reflected most probably an increase in substrate availability for AGPase reaction rather than being due to changes in AGPase protein content, since both the sugar feeding and light exposure had little or no effect on the activity of AGPase or on the levels of its small and large subunit proteins in leaf extracts. The data suggest tight translational or post-translational control, but they may also reflect spatial control of AGPase gene expression within a leaf. The sugar/light-dependent regulation of AGPase gene expression may represent a part of a general cellular response to the availability/allocation of carbohydrates during photosynthesis. PMID:9841881

  17. Analysis of GDP-D-mannose pyrophosphorylase gene promoter from acerola (Malpighia glabra) and increase in ascorbate content of transgenic tobacco expressing the acerola gene.

    PubMed

    Badejo, Adebanjo A; Tanaka, Nobukazu; Esaka, Muneharu

    2008-01-01

    GDP-D-mannose pyrophosphorylase (GMP) is an important enzyme in the Smirnoff-Wheeler's pathway for the biosynthesis of ascorbic acid (AsA) in plants. We have reported recently that the expression of the acerola (Malpighia glabra) GMP gene, designated MgGMP, correlates with the AsA content of the plant. The acerola plant has very high levels of AsA relative to better studied model plants such as Arabidopsis. Here we found that the GMP mRNA levels in acerola are higher than those from Arabidopsis and tomato. Also, the transient expression of the uidA reporter gene in the protoplasts of Nicotiana tabacum cultures showed the MgGMP gene promoter to have higher activity than the cauliflower mosaic virus 35S and Arabidopsis GMP promoters. The AsA content of transgenic tobacco plants expressing the MgGMP gene including its promoter was about 2-fold higher than that of the wild type. PMID:18037674

  18. Defect in cell wall integrity of the yeast saccharomyces cerevisiae caused by a mutation of the GDP-mannose pyrophosphorylase gene VIG9.

    PubMed

    Yoda, K; Kawada, T; Kaibara, C; Fujie, A; Abe, M; Hitoshi; Hashimoto; Shimizu, J; Tomishige, N; Noda, Y; Yamasaki, M

    2000-09-01

    The Saccharomyces cerevisiae VIG9 gene encodes GDP-mannose pyrophosphorylase, which synthesizes GDP-mannose from GTP and mannose-1-phosphate. Although the null mutant was lethal, the vig9 mutants so far obtained showed no growth defect but immature protein glycosylation and drug hypersensitivity. During our search for cell-wall mutants, we found a novel temperature-sensitive mutant, JS30, which required an osmotic stabilizer for viability. JS30 excreted cell surface proteins in the medium without any indication of cell lysis. Although conventional genetic analysis using mating was impossible, by detailed characterization of JS30 including an in vitro enzyme assay and nucleotide sequencing, we found the defect of JS30 was due to a mutation in the VIG9 gene. These results indicated a critical role of GDP-mannose in maintenance of cell-wall integrity. PMID:11055399

  19. Cloning and sequencing of the Candida albicans homologue of SRB1/PSA1/VIG9, the essential gene encoding GDP-mannose pyrophosphorylase in Saccharomyces cerevisiae.

    PubMed

    Warit, S; Walmsley, R M; Stateva, L I

    1998-09-01

    Two genomic fragments have been isolated from Candida albicans which strongly hybridize to SRB1/PSA1/VIG9, an essential gene which encodes GDP-mannose pyrophosphorylase in Saccharomyces cerevisiae. A common 2.5 kb Xbal-Pstl fragment has been identified, which Southern analysis suggests is most likely unique in the C. albicans genome. The fragment contains an ORF, which is 82% identical and 90% homologous to the Srb1p/Psa1p/Vig9p from S. cerevisiae, contains one additional amino acid at position 254 and is able to functionally complement the major phenotypic characteristics of S. cerevisiae srb1 null and conditional mutations. The authors therefore conclude that they have cloned and sequenced from C. albicans the bona fide homologue of SRB1/PSA1/VIG9, named hereafter CaSRB1. Northern analysis data indicate that the gene is expressed in C. albicans under conditions of growth in the yeast and hyphal form and suggest that its expression might be regulated. PMID:9782489

  20. Cloning and expression of GDP-D-mannose pyrophosphorylase gene and ascorbic acid content of acerola (Malpighia glabra L.) fruit at ripening stages.

    PubMed

    Badejo, Adebanjo A; Jeong, Seok T; Goto-Yamamoto, Nami; Esaka, Muneharu

    2007-09-01

    Acerola (Malpighia glabra L.) is one of the richest natural sources of L-ascorbic acid (AsA; vitamin C). GDP-D-mannose pyrophosphorylase (GMP; EC 2.7.7.13) was found to play a major role in the proposed AsA biosynthetic pathway in plants, considering that Arabidopsis vtc1-1 mutant with point mutation in this gene has a highly reduced AsA content. GMP cDNA was isolated from acerola fruits, designated MgGMP, using rapid amplification of cDNA ends (RACE), and its expression was monitored during fruit ripening. The full-length cDNA was found to have an ORF of 1083bp encoding a polypeptide of 361 amino acids. In silico analysis of the predicted amino acid sequence showed a pI of 6.45 and molecular mass of 39.7kD. MgGMP showed over 80% amino acid sequence identity with other plant GMP homologues. The phylogenetic tree shows the close relation of MgGMP to the GMP of other plants as against those from parasite, yeasts and mammals. Southern analysis indicated that M. glabra contains not less than two copies of GMP genes. Northern blot analysis showed the transcript abundance of MgGMP in all the organs of acerola examined, with the fruit having the highest expression. The relative transcript abundance of MgGMP mRNA levels in the fruits changes as the ripening process progresses, with the unripe green fruits having the highest relative mRNA level, and the lowest was found in the fruits at advanced ripening stage. A strong correlation was also observed between the relative MgGMP mRNA levels and the AsA contents of acerola during fruit ripening. PMID:17764967

  1. [Enhancement of photoassimilate utilization by manipulation of the ADPglucose pyrophosphorylase gene]. Progress report, April 1993--January 1994

    SciTech Connect

    Okita, T.W.

    1994-04-01

    Part I of this research concerns patterns of gene expression of ADPG-PP in native and transgenic potato plants. The expression of both potato ADPG-PP subunits were analyzed on the transcript and antigen levels. The small and large subunits were coordinately expressed during tuber development suggesting a role for the temporal regulation of ADPG-PP expression as well as providing further support for earlier work in the heterotetrameric subunit structure of the tuber enzyme. Part II involves studies on the structure-function relationships of ADPG-PP, more specifically the mutagenesis of the large and small subunit DNAs of ADPG-PP.

  2. A sepal-expressed ADP-glucose pyrophosphorylase gene (NtAGP) is required for petal expansion growth in 'Xanthi' tobacco.

    PubMed

    Kwak, Man Sup; Min, Sung Ran; Lee, Si-Myung; Kim, Kyung-Nam; Liu, Jang Ryol; Paek, Kyung-Hee; Shin, Jeong Sheop; Bae, Jung Myung

    2007-09-01

    In this study, a tobacco (Nicotiana tabacum 'Xanthi') ADP-glucose pyrophosphorylase cDNA (NtAGP) was isolated from a flower bud cDNA library and the role of NtAGP in the growth of the floral organ was characterized. The expression of NtAGP was high in the sepal, moderate in the carpel and stamen, and low in the petal tissues. NtAGP-antisense plants produced flowers with abnormal petal limbs due to the early termination of the expansion growth of the petal limbs between the corolla lobes. Microscopic observation of the limb region revealed that cell expansion was limited in NtAGP-antisense plants but that cell numbers remained unchanged. mRNA levels of NtAGP, ADP-glucose pyrophosphorylase activity, and starch content in the sepal tissues of NtAGP-antisense plants were reduced, resulting in significantly lower levels of sugars (sucrose, glucose, and fructose) in the petal limbs. The feeding of these sugars to flower buds of the NtAGP-antisense plants restored the expansion growth in the limb area between the corolla lobes. Expansion growth of the petal limb between the corolla lobes was severely arrested in 'Xanthi' flowers from which sepals were removed, indicating that sepal carbohydrates are essential for petal limb expansion growth. These results demonstrate that NtAGP plays a crucial role in the morphogenesis of petal limbs in 'Xanthi' through the synthesis of starch, which is the main carbohydrate source for expansion growth of petal limbs, in sepal tissues. PMID:17660352

  3. Both UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival, and fecundity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A bioinformatics search of the genome of the red flour beetle, Tribolium castaneum, resulted in the identification of two genes encoding proteins closely related to UDP-N-acetylglucosamine pyrophosphorylases (UAP), which provide the activated precursor, UDP-N-acetylglucosamine, for the synthesis of ...

  4. Structure Function Relationships of ADP-Glucose Pyrophosphorylase and Branching Enzyme: Manipulation of Their Genes for Alteration of Starch Quanlity and Quantity

    SciTech Connect

    Jack Preiss

    2006-02-16

    Conversion of the Potato tuber ADP-glucose Pyrophopshorylase Regulatory Subunit into a Catalytic Subunit. ADP-glucose synthesis, a rate-limiting reaction in starch synthesis, is catalyzed by ADP-glucose pyrophosphorylase (ADPGlc PPase). The enzyme in plants is allosterically activated by 3-phosphoglycerate (3PGA) and inhibited by inorganic phosphate (Pi) and is composed of two subunits as a heterotetramer, a2b2. Subunit a is the catalytic subunit and subunit b is designated as the regulatory subunit.The b subunit increases the affinty of the activator for the catalytic subunit. Recent results have shown that the subunits are derived from the same ancestor subunit as the regulatory subunit can be converted to a catalytically subunit via mutation of just two amino acids. Lys44 and Thr54 in the large subunit from potato tuber were converted to the homologous catalytic subunit residues, Arg33 and Lys43. The activity of the large subunit mutants cannot be readily tested with a co-expressed wild-type small (catalytic) subunit because of the intrinsic activity of the latter. We co-expressed the regulatory-subunit mutants with SmallD145N, an inactive S subunit in which the catalytic Asp145 was mutated. The activity of the small (catalytic) subunit was reduced more than three orders of magnitude. Coexpression of the L subunit double mutant LargeK44R/T54K with SmallD145N generated an enzyme with considerable activity, 10% and 18% of the wildtype enzyme, in the ADP-glucose synthetic and pyrophosphorolytic direction, respectively. Replacement of those two residues in the small subunit by the homologous amino acids in the L subunits (mutations R33K and K43T) decreased the activity one and two orders of magnitude. The wild-type enzyme and SmallD145NLargeK44R/T54K had very similar kinetic properties indicating that the substrate site has been conserved. The fact that only two mutations in the L subunit restored enzyme activity is very strong evidence that the large subunit is

  5. Arabidopsis UDP-sugar pyrophosphorylase: evidence for two isoforms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arabidopsis UDP-sugar pyrophosphorylase (AtUSP, EC 2.7.7.64) is a broad substrate pyrophosphorylase that exhibits activity with GlcA-1-P, Gal-1-P, and Glc-1-P. Immunoblots using polyclonal antibodies raised to recombinant AtUSP demonstrated the presence of two USP isoforms of approximately 70 kDa (U...

  6. Genetic and structural validation of Aspergillus fumigatus UDP-N-acetylglucosamine pyrophosphorylase as an antifungal target

    PubMed Central

    Fang, Wenxia; Du, Ting; Raimi, Olawale G; Hurtado-Guerrero, Ramon; Urbaniak, Michael D; Ibrahim, Adel F M; Ferguson, Michael A J; Jin, Cheng; Aalten, Daan M F

    2013-01-01

    The sugar nucleotide UDP-N-acetylglucosamine (UDP-GlcNAc) is an essential metabolite in both prokaryotes and eukaryotes. In fungi, it is the precursor for the synthesis of chitin, an essential component of the fungal cell wall. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is the final enzyme in eukaryotic UDP-GlcNAc biosynthesis, converting UTP and N-acetylglucosamine-1-phosphate (GlcNAc-1P) to UDP-GlcNAc. As such, this enzyme may provide an attractive target against pathogenic fungi. Here, we demonstrate that the fungal pathogen Aspergillus fumigatus possesses an active UAP (AfUAP1) that shows selectivity for GlcNAc-1P as the phosphosugar substrate. A conditional mutant, constructed by replacing the native promoter of the A. fumigatus uap1 gene with the Aspergillus nidulans alcA promoter, revealed that uap1 is essential for cell survival and important for cell wall synthesis and morphogenesis. The crystal structure of AfUAP1 was determined and revealed exploitable differences in the active site compared with the human enzyme. Thus AfUAP1 could represent a novel antifungal target and this work will assist the future discovery of small molecule inhibitors against this enzyme. PMID:23750903

  7. The different large subunit isoforms of Arabidopsis thaliana ADP-glucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme.

    PubMed

    Crevillén, Pedro; Ballicora, Miguel A; Mérida, Angel; Preiss, Jack; Romero, José M

    2003-08-01

    ADP-glucose pyrophosphorylase catalyzes the first and limiting step in starch biosynthesis and is allosterically regulated by the levels of 3-phosphoglycerate and phosphate in plants. ADP-glucose pyrophosphorylases from plants are heterotetramers composed of two types of subunits (small and large). In this study, the six Arabidopsis thaliana genes coding for ADP-glucose pyrophosphorylase isoforms (two small and four large subunits) have been cloned and expressed in an Escherichia coli mutant deficient in ADP-glucose pyrophosphorylase activity. The co-expression of the small subunit APS1 with the different Arabidopsis large subunits (APL1, APL2, APL3, and APL4) resulted in heterotetramers with different regulatory and kinetic properties. Heterotetramers composed of APS1 and APL1 showed the highest sensitivity to the allosteric effectors as well as the highest apparent affinity for the substrates (glucose-1-phosphate and ATP), whereas heterotetramers formed by APS1 and APL2 showed the lower response to allosteric effectors and the lower affinity for the substrates. No activity was detected for the second gene coding for a small subunit isoform (APS2) annotated in the Arabidopsis genome. This lack of activity is possibly due to the absence of essential amino acids involved in catalysis and/or in the binding of glucose-1-phosphate and 3-phosphoglycerate. Kinetic and regulatory properties of the different heterotetramers, together with sequence analysis has allowed us to make a distinction between sink and source enzymes, because the combination of different large subunits would provide a high plasticity to ADP-glucose pyrophosphorylase activity and regulation. This is the first experimental data concerning the role that all the ADP-glucose pyrophosphorylase isoforms play in a single plant species. This phenomenon could have an important role in vivo, because different large subunits would confer distinct regulatory properties to ADP-glucose pyrophosphorylase according

  8. Immunocytochemical localization of ADPglucose pyrophosphorylase in developing potato tuber cells

    SciTech Connect

    Kim, Woo Taek; Franceschi, V.R.; Okita, T.W. ); Robinson, N.L.; Morell, M.; Preiss, J. )

    1989-09-01

    The subcellular localization of ADPglucose pyrophosphorylase, a key regulatory enzyme in starch biosynthesis, was determined in developing potato tuber cells by immunocytochemical localization techniques at the light microscopy level. Specific labeling of ADPglucose pyrophosphorylase by either immunofluorescence or immunogold followed by silver enhancement was detected only in the amyloplasts and indicates that this enzyme is located exclusively in the amyloplasts in developing potato tuber cells. Labeling occurred on the starch grains and, in some instances, specific labeling patterns were evident which may be related to sites active in starch deposition.

  9. On the Ancestral UDP-Glucose Pyrophosphorylase Activity of GalF from Escherichia coli

    PubMed Central

    Ebrecht, Ana C.; Orlof, Agnieszka M.; Sasoni, Natalia; Figueroa, Carlos M.; Iglesias, Alberto A.; Ballicora, Miguel A.

    2015-01-01

    In bacteria, UDP-glucose is a central intermediate in carbohydrate metabolism. The enzyme responsible for its synthesis is encoded by the galU gene and its deletion generates cells unable to ferment galactose. In some bacteria, there is a second gene, galF, encoding for a protein with high sequence identity to GalU. However, the role of GalF has been contradictory regarding its catalytic capability and not well understood. In this work we show that GalF derives from a catalytic (UDP-glucose pyrophosphorylase) ancestor, but its activity is very low compared to GalU. We demonstrated that GalF has some residual UDP-glucose pyrophosphorylase activity by in vitro and in vivo experiments in which the phenotype of a galU- strain was reverted by the over-expression of GalF and its mutant. To demonstrate its evolutionary path of “enzyme inactivation” we enhanced the catalysis by mutagenesis and showed the importance of the quaternary structure. This study provides important information to understand the structural and functional evolutionary origin of the protein GalF in enteric bacteria. PMID:26617591

  10. PCR cloning and characterization of multiple ADP-glucose pyrophosphorylase cDNAs from tomato

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.; Gianfagna, T.

    1998-01-01

    Four ADP-glucose pyrophosphorylase (AGP) cDNAs were cloned from tomato fruit and leaves by the PCR techniques. Three of them (agp S1, agp S2, and agp S3) encode the large subunit of AGP, the fourth one (agp B) encodes the small subunit. The deduced amino acid sequences of the cDNAs show very high identities (96-98%) to the corresponding potato AGP isoforms, although there are major differences in tissue expression profiles. All four tomato AGP transcripts were detected in fruit and leaves; the predominant ones in fruit are agp B and agp S1, whereas in leaves they are agp B and agp S3. Genomic southern analysis suggests that the four AGP transcripts are encoded by distinct genes.

  11. Ostreococcus tauri ADP-glucose Pyrophosphorylase Reveals Alternative Paths for the Evolution of Subunit Roles*

    PubMed Central

    Kuhn, Misty L.; Falaschetti, Christine A.; Ballicora, Miguel A.

    2009-01-01

    ADP-glucose pyrophosphorylase controls starch synthesis in plants and is an interesting case to study the evolution and differentiation of roles in heteromeric enzymes. It includes two homologous subunits, small (S) and large (L), that originated from a common photosynthetic eukaryotic ancestor. In present day organisms, these subunits became complementary after loss of certain roles in a process described as subfunctionalization. For instance, the potato tuber enzyme has a noncatalytic L subunit that complements an S subunit with suboptimal allosteric properties. To understand the evolution of catalysis and regulation in this family, we artificially synthesized both subunit genes from the unicellular alga Ostreococcus tauri. This is among the most ancient species in the green lineage that diverged from the ancestor of all green plants and algae. After heterologous gene expression, we purified and characterized the proteins. The O. tauri enzyme was not redox-regulated, suggesting that redox regulation of ADP-glucose pyrophosphorylases appeared later in evolution. The S subunit had a typical low apparent affinity for the activator 3-phosphoglycerate, but it was atypically defective in the catalytic efficiency (Vmax/Km) for the substrate Glc-1-P. The L subunit needed the S subunit for soluble expression. In the presence of a mutated S subunit (to avoid interference), the L subunit had a high apparent affinity for 3-phosphoglycerate and substrates suggesting a leading role in catalysis. Therefore, the subfunctionalization of the O. tauri enzyme was different from previously described cases. To the best of our knowledge, this is the first biochemical description of a system with alternative subfunctionalization paths. PMID:19737928

  12. Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis

    PubMed Central

    Damerow, Sebastian; Hoppe, Carolin; Bandini, Giulia; Zarnovican, Patricia; Buettner, Falk F.R.; Ferguson, Michael A.J.; Routier, Françoise H.

    2015-01-01

    Leishmaniases are a set of tropical and sub-tropical diseases caused by protozoan parasites of the genus Leishmania whose severity ranges from self-healing cutaneous lesions to fatal visceral infections. Leishmania parasites synthesise a wide array of cell surface and secreted glycoconjugates that play important roles in infection. These glycoconjugates are particularly abundant in the promastigote form and known to be essential for establishment of infection in the insect midgut and effective transmission to the mammalian host. Since they are rich in galactose, their biosynthesis requires an ample supply of UDP-galactose. This nucleotide-sugar arises from epimerisation of UDP-glucose but also from an uncharacterised galactose salvage pathway. In this study, we evaluated the role of the newly characterised UDP-sugar pyrophosphorylase (USP) of Leishmania major in UDP-galactose biosynthesis. Upon deletion of the USP encoding gene, L. major lost the ability to synthesise UDP-galactose from galactose-1-phosphate but its ability to convert glucose-1-phosphate into UDP-glucose was fully maintained. Thus USP plays a role in UDP-galactose activation but does not significantly contribute to the de novo synthesis of UDP-glucose. Accordingly, USP was shown to be dispensable for growth and glycoconjugate biosynthesis under standard growth conditions. However, in a mutant seriously impaired in the de novo synthesis of UDP-galactose (due to deficiency of the UDP-glucose pyrophosphorylase) addition of extracellular galactose increased biosynthesis of the cell surface lipophosphoglycan. Thus under restrictive conditions, such as those encountered by Leishmania in its natural habitat, galactose salvage by USP may play a substantial role in biosynthesis of the UDP-galactose pool. We hypothesise that USP recycles galactose from the blood meal within the midgut of the insect for synthesis of the promastigote glycocalyx and thereby contributes to successful vector infection. PMID

  13. A truncated version of an ADP-glucose pyrophosphorylase promoter from potato specifies guard cell-selective expression in transgenic plants.

    PubMed Central

    Müller-Röber, B; La Cognata, U; Sonnewald, U; Willmitzer, L

    1994-01-01

    ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme in starch biosynthesis in higher plants. A 3.2-kb promoter of the large subunit gene of the AGPase from potato has been isolated and its activity analyzed in transgenic potato and tobacco plants using a promoter-beta-glucuronidase fusion system. The promoter was active in various starch-containing cells, including guard cells, tuber parenchyma cells, and the starch sheath layer of stems and petioles. No expression was observed in mesophyll cells. Analysis of various promoter derivatives showed that with respect to expression in petioles and stems, essential elements must be located in the 5' distal region of the promoter, whereas elements important for expression in tuber parenchyma cells are located in an internal fragment comprising nucleotides from positions -500 to -1200. Finally, a 0.3-kb 5' proximal promoter fragment was identified that was sufficient to obtain exclusive expression in guard cells of transgenic potato and tobacco plants. The implications of our observations are discussed with respect to starch synthesis in various tissues and the use of the newly identified promoter as a tool for stomatal biology. PMID:8038601

  14. On the Kinetic and Allosteric Regulatory Properties of the ADP-Glucose Pyrophosphorylase from Rhodococcus jostii: An Approach to Evaluate Glycogen Metabolism in Oleaginous Bacteria

    PubMed Central

    Cereijo, Antonela E.; Asencion Diez, Matías D.; Dávila Costa, José S.; Alvarez, Héctor M.; Iglesias, Alberto A.

    2016-01-01

    Rhodococcus spp. are oleaginous bacteria that accumulate glycogen during exponential growth. Despite the importance of these microorganisms in biotechnology, little is known about the regulation of carbon and energy storage, mainly the relationship between glycogen and triacylglycerols metabolisms. Herein, we report the molecular cloning and heterologous expression of the gene coding for ADP-glucose pyrophosphorylase (EC 2.7.7.27) of Rhodococcus jostii, strain RHA1. The recombinant enzyme was purified to electrophoretic homogeneity to accurately characterize its oligomeric, kinetic, and regulatory properties. The R. jostii ADP-glucose pyrophosphorylase is a homotetramer of 190 kDa exhibiting low basal activity to catalyze synthesis of ADP-glucose, which is markedly influenced by different allosteric effectors. Glucose-6P, mannose-6P, fructose-6P, ribose-5P, and phosphoenolpyruvate were major activators; whereas, NADPH and 6P-gluconate behaved as main inhibitors of the enzyme. The combination of glucose-6P and other effectors (activators or inhibitors) showed a cross-talk effect suggesting that the different metabolites could orchestrate a fine regulation of ADP-glucose pyrophosphorylase in R. jostii. The enzyme exhibited some degree of affinity toward ATP, GTP, CTP, and other sugar-1P substrates. Remarkably, the use of glucosamine-1P was sensitive to allosteric activation. The relevance of the fine regulation of R. jostii ADP-glucose pyrophosphorylase is further analyzed in the framework of proteomic studies already determined for the bacterium. Results support a critical role for glycogen as a temporal reserve that provides a pool of carbon able of be re-routed to produce long-term storage of lipids under certain conditions. PMID:27313571

  15. Structure and Dynamics of UDP-Glucose Pyrophosphorylase from Arabidopsis thaliana with Bound UDP-Glucose and UTP

    PubMed Central

    McCoy, Jason G.; Bitto, Eduard; Bingman, Craig A.; Wesenberg, Gary E.; Bannen, Ryan M.; Kondrashov, Dmitry A.; Phillips, George N.

    2007-01-01

    The structure of the UDP-glucose pyrophosphorylase encoded by Arabidopsis thaliana gene At3g03250 has been solved to a nominal resolution of 1.86 Å. In addition, the structure has been solved in the presence of the substrates/products UTP and UDP-glucose to nominal resolutions of 1.64 Å and 1.85 Å. The three structures revealed a catalytic domain similar to that of other nucleotidyl-glucose pyrophosphorylases with a carboxy-terminal β-helix domain in a unique orientation. Conformational changes are observed between the native and substrate-bound complexes. The nucleotide binding loop and the carboxy-terminal domain, including the suspected catalytically important Lys360, move in and out of the active site in a concerted fashion. TLS refinement was employed to initially model conformational heterogeneity in the UDP-glucose complex followed by the use of multiconformer refinement for the entire molecule. Normal mode analysis generated atomic displacement predictions in good agreement in magnitude and direction with the observed conformational changes and anisotropic displacement parameters generated by TLS refinement. The structures and the observed dynamic changes provide insight into the ordered mechanism of this enzyme and previously described oligomerization effects on catalytic activity. PMID:17178129

  16. UDP-glucose pyrophosphorylase is a novel plant cell death regulator.

    PubMed

    Chivasa, Stephen; Tomé, Daniel F A; Slabas, Antoni R

    2013-04-01

    Programmed cell death (PCD) is an essential process that functions in plant organ sculpture, tissue differentiation, nutrient recycling, and defense against pathogen attack. A full understanding of the mechanism of PCD in plants is hindered by the limited identification of protein components of the complex signaling circuitry that underpins this important physiological process. Here we have used Arabidopsis thaliana and fumonisin B1 (FB1) to identify proteins that constitute part of the PCD signaling network. We made an inadvertent, but important observation that exogenous sucrose modulates FB1-induced cell death and identified sucrose-induced genes from publicly available transcriptomic data sets for reverse genetic analyses. Using transfer-DNA gene knockout plants, UDP-glucose pyrophosphorylase 1 (UGP1), a sucrose-induced gene, was demonstrated to be a critical factor that regulates FB1-induced PCD. We employed 2D-DiGE to identify proteomic changes preceding PCD after exposure of Arabidopsis to FB1 and used UGP1 knockout plants to refine the analysis and isolate downstream candidate proteins with a putative PCD regulatory function. Our results reveal chloroplasts as the predominantly essential organelles in FB1-induced PCD. Overall, this study reveals a novel function of UGP1 as a cell death regulator and provides candidate proteins likely recruited downstream in the activation of plant PCD. PMID:23438466

  17. MUMMY, A UDP-N-ACETYLGLUCOSAMINE PYROPHOSPHORYLASE, MODULATES DPP SIGNALING IN THE EMBRYONIC EPIDERMIS OF DROSOPHILA

    PubMed Central

    HUMPHREYS, GREGORY B.; JUD, MOLLY C.; MONROE, KATHRYN M.; KIMBALL, SUZANNE S.; HIGLEY, MATTHEW; SHIPLEY, DANIELLE; VRABLIK, MARIE CLOUGHERTY; BATES, KATHERINE L.; LETSOU, ANTHEA

    2013-01-01

    The evolutionarily conserved JNK/AP-1 (Jun N-terminal kinase/activator protein 1) and BMP (Bone Morphogenetic Protein) signaling cascades are deployed hierarchically to regulate dorsal closure in the fruit fly Drosophila melanogaster. In this developmental context, the JNK/AP-1 signaling cascade transcriptionally activates BMP signaling in leading edge epidermal cells. Here we show that the mummy (mmy) gene product, which is required for dorsal closure, functions as a BMP signaling antagonist. Genetic and biochemical tests of Mmy’s role as a BMP-antagonist indicate that its function is independent of AP-1, the transcriptional trigger of BMP signal transduction in leading edge cells. pMAD (phosphorylated Mothers Against Dpp) activity data show the mmy gene product to be a new type of epidermal BMP regulator – one which transforms a BMP ligand from a long- to a short-range signal. mmy codes for the single UDP-N-acetylglucosamine pyrophosphorylase in Drosophila, and its requirement for attenuating epidermal BMP signaling during dorsal closure points to a new role for glycosylation in defining a highly restricted BMP activity field in the fly. These findings add a new dimension to our understanding of mechanisms modulating the BMP signaling gradient. PMID:23796903

  18. Two Arabidopsis ADP-Glucose Pyrophosphorylase Large Subunits (APL1 and APL2) Are Catalytic1

    PubMed Central

    Ventriglia, Tiziana; Kuhn, Misty L.; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A.; Preiss, Jack; Romero, José M.

    2008-01-01

    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (α2β2) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1–APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta. PMID:18614708

  19. Two Arabidopsis ADP-glucose pyrophosphorylase large subunits (APL1 and APL2) are catalytic.

    PubMed

    Ventriglia, Tiziana; Kuhn, Misty L; Ruiz, Ma Teresa; Ribeiro-Pedro, Marina; Valverde, Federico; Ballicora, Miguel A; Preiss, Jack; Romero, José M

    2008-09-01

    ADP-glucose (Glc) pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in starch biosynthesis. Higher plant ADP-Glc PPase is a heterotetramer (alpha(2)beta(2)) consisting of two small and two large subunits. There is increasing evidence that suggests that catalytic and regulatory properties of the enzyme from higher plants result from the synergy of both types of subunits. In Arabidopsis (Arabidopsis thaliana), two genes encode small subunits (APS1 and APS2) and four large subunits (APL1-APL4). Here, we show that in Arabidopsis, APL1 and APL2, besides their regulatory role, have catalytic activity. Heterotetramers formed by combinations of a noncatalytic APS1 and the four large subunits showed that APL1 and APL2 exhibited ADP-Glc PPase activity with distinctive sensitivities to the allosteric activator (3-phosphoglycerate). Mutation of the Glc-1-P binding site of Arabidopsis and potato (Solanum tuberosum) isoforms confirmed these observations. To determine the relevance of these activities in planta, a T-DNA mutant of APS1 (aps1) was characterized. aps1 is starchless, lacks ADP-Glc PPase activity, APS1 mRNA, and APS1 protein, and is late flowering in long days. Transgenic lines of the aps1 mutant, expressing an inactivated form of APS1, recovered the wild-type phenotype, indicating that APL1 and APL2 have catalytic activity and may contribute to ADP-Glc synthesis in planta. PMID:18614708

  20. Molecular characterization of multiple cDNA clones for ADP-glucose pyrophosphorylase from Arabidopsis thaliana.

    PubMed

    Villand, P; Olsen, O A; Kleczkowski, L A

    1993-12-01

    PCR amplification of cDNA prepared from poly(A)+ RNA from aerial parts of Arabidopsis thaliana, using degenerate nucleotide primers based on conserved regions between the large and small subunits of ADP-glucose pyrophosphorylase (AGP), yielded four different cDNAs of ca. 550 nucleotides each. Based on derived amino acid sequences, the identities between the clones varied from 49 to 69%. Sequence comparison to previously published cDNAs for AGP from various species and tissues has revealed that three of the amplified cDNAs (ApL1, ApL2 and ApL3) correspond to the large subunit of AGP, and one cDNA (ApS) encodes the small subunit of AGP. Both ApL1 and ApS were subsequently found to be present in a cDNA library made from Arabidopsis leaves. All four PCR products are encoded by single genes, as found by genomic Southern analysis. PMID:8292792

  1. Deciphering the kinetic mechanisms controlling selected plant ADP-glucose pyrophosphorylases.

    PubMed

    Boehlein, Susan K; Shaw, Janine R; Hwang, Seon K; Stewart, Jon D; Curtis Hannah, L

    2013-07-15

    ADP-Glc pyrophosphorylase (AGPase), a rate-limiting enzyme in starch biosynthesis, is controlled by thermostability and allosteric regulation. Previous studies suggested that redox affects turnover number and heat stability of AGPases. Here, we investigated how allostery and redox state affect kinetic mechanisms of the reduced, heat labile and the oxidized, heat stable potato tuber enzymes; the heat labile maize endosperm enzyme and a chimeric maize/potato heat stable enzyme that lacks the cysteine responsible for redox changes. With 3-PGA, all AGPases followed a Theorell-Chance Bi Bi mechanism with ATP binding first and ADP-Glc releasing last. 3-PGA increases the binding affinity for both substrates with little effect on velocity for the maize and MP isoforms. By contrast, 3-PGA increases the velocity and the affinity for G-1-P for the potato enzymes. Redox state does not affect kcat of the two potato isoforms. Without 3-PGA the oxidized potato enzyme exhibits a rapid equilibrium random Bi Bi mechanism with a dead end ternary complex. This fundamental change from rapid, ordered binding with little buildup of intermediates to a mechanism featuring relatively slow, random binding is unique to the oxidized potato tuber enzyme. Finally, ADP-Glc the physiologically relevant product of this enzyme has complex, isoform-specific effects on catalysis. PMID:23603314

  2. Multiple forms of ADP-glucose pyrophosphorylase from tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Janes, H. W.

    1997-01-01

    ADP-glucose pyrophosphorylase (AGP) was purified from tomato (Lycopersicon esculentum Mill.) fruit to apparent homogeneity. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis the enzyme migrated as two close bands with molecular weights of 50,000 and 51,000. Two-dimensional polyacrylamide gel electrophoresis analysis of the purified enzyme, however, revealed at least five major protein spots that could be distinguished by their slight differences in net charge and molecular weight. Whereas all of the spots were recognized by the antiserum raised against tomato fruit AGP holoenzyme, only three of them reacted strongly with antiserum raised against the potato tuber AGP large subunit, and the other two spots (with lower molecular weights) reacted specifically with antisera raised against spinach leaf AGP holoenzyme and the potato tuber AGP small subunit. The results suggest the existence of at least three isoforms of the AGP large subunit and two isoforms of the small subunit in tomato fruit in vivo. The native molecular mass of the enzyme determined by gel filtration was 220 +/- 10 kD, indicating a tetrameric structure for AGP from tomato fruit. The purified enzyme is very sensitive to 3-phosphoglycerate/inorganic phosphate regulation.

  3. Both subunits of ADP-glucose pyrophosphorylase are regulatory.

    PubMed

    Cross, Joanna M; Clancy, Maureen; Shaw, Janine R; Greene, Thomas W; Schmidt, Robert R; Okita, Thomas W; Hannah, L Curtis

    2004-05-01

    The allosteric enzyme ADP-Glc pyrophosphorylase (AGPase) catalyzes the synthesis of ADP-Glc, a rate-limiting step in starch synthesis. Plant AGPases are heterotetramers, most of which are activated by 3-phosphoglyceric acid (3-PGA) and inhibited by phosphate. The objectives of these studies were to test a hypothesis concerning the relative roles of the two subunits and to identify regions in the subunits important in allosteric regulation. We exploited an Escherichia coli expression system and mosaic AGPases composed of potato (Solanum tuberosum) tuber and maize (Zea mays) endosperm subunit fragments to pursue this objective. Whereas potato and maize subunits have long been separated by speciation and evolution, they are sufficiently similar to form active mosaic enzymes. Potato tuber and maize endosperm AGPases exhibit radically different allosteric properties. Hence, comparing the kinetic properties of the mosaics to those of the maize endosperm and potato tuber AGPases has enabled us to identify regions important in regulation. The data herein conclusively show that both subunits are involved in the allosteric regulation of AGPase. Alterations in the small subunit condition drastically different allosteric properties. In addition, extent of 3-PGA activation and extent of 3-PGA affinity were found to be separate entities, mapping to different regions in both subunits. PMID:15122037

  4. GDP-D-mannose pyrophosphorylase from Pogonatherum paniceum enhances salinity and drought tolerance of transgenic tobacco.

    PubMed

    Ai, Taobo; Liao, Xuehong; Li, Rui; Fan, Linhong; Luo, Fengxue; Xu, Ying; Wang, Shenghua

    2016-01-01

    Pogonatherum paniceum is a highly drought- and salt-tolerant plant species that is typically used for ecological restoration and the conservation of soil and water in many countries. Understanding the molecular mechanisms underlying plant abiotic stress responses, especially to salinity and drought stresses, in species such as P. paniceum could be important to broader crop improvement efforts. GDP-D-mannose pyrophosphorylase (GMPase) is the limiting enzyme in the synthesis of L-ascorbic acid (AsA), which plays a crucial role in the detoxification of reactive oxygen species (ROS). We have cloned and characterized the cDNA of the PpGMP gene of P. paniceum encoding a GMPase. The full-length cDNA sequence contains 1411 nucleotides encoding a putative protein with 361 amino acid residues and an approximate molecular mass of 39.68 kDa. The GMPase transcript was up-regulated in P. paniceum plants subjected to salinity and drought stress, respectively. Transgenic tobacco expressing PpGMPase exhibited enhanced salinity and drought resistance, a higher seed germination rate, better growth performance, a higher AsA content, a more stable redox state, higher superoxide dismutase (SOD) activity, and lower levels of malonaldehyde (MDA) and H2O2 under drought and salinity stress. Taken together, expression of PpGMPase in tobacco conferred salinity and drought stress tolerance by increasing the content of AsA, thereby enhancing ROS-detoxifying functions. Thus, PpGMP is a potential candidate gene for crop improvement. PMID:27442366

  5. Characterization of an autonomously activated plant ADP-glucose pyrophosphorylase.

    PubMed

    Boehlein, Susan K; Shaw, Janine R; Stewart, Jon D; Hannah, L Curtis

    2009-01-01

    ADP-glucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch biosynthesis in plants and changes in its catalytic and/or allosteric properties can lead to increased starch production. Recently, a maize (Zea mays)/potato (Solanum tuberosum) small subunit mosaic, MP [Mos(1-198)], containing the first 198 amino acids of the small subunit of the maize endosperm enzyme and the last 277 amino acids from the potato tuber enzyme, was expressed with the maize endosperm large subunit and was reported to have favorable kinetic and allosteric properties. Here, we show that this mosaic, in the absence of activator, performs like a wild-type AGPase that is partially activated with 3-phosphoglyceric acid (3-PGA). In the presence of 3-PGA, enzyme properties of Mos(1-198)/SH2 are quite similar to those of the wild-type maize enzyme. In the absence of 3-PGA, however, the mosaic enzyme exhibits greater activity, higher affinity for the substrates, and partial inactivation by inorganic phosphate. The Mos(1-198)/SH2 enzyme is also more stable to heat inactivation. The different properties of this protein were mapped using various mosaics containing smaller portions of the potato small subunit. Enhanced heat stability of Mos(1-198) was shown to originate from five potato-derived amino acids between 322 and 377. These amino acids were shown previously to be important in small subunit/large subunit interactions. These five potato-derived amino acids plus other potato-derived amino acids distributed throughout the carboxyl-terminal portion of the protein are required for the enhanced catalytic and allosteric properties exhibited by Mos(1-198)/SH2. PMID:18715954

  6. The ancestral activation promiscuity of ADP-glucose pyrophosphorylases from oxygenic photosynthetic organisms

    PubMed Central

    2013-01-01

    Background ADP-glucose pyrophosphorylase (ADP-Glc PPase) catalyzes the first committed step in the synthesis of glycogen in bacteria and starch in algae and plants. In oxygenic photosynthetic organisms, ADP-Glc PPase is mainly activated by 3-phosphoglycerate (3-PGA) and to a lesser extent by other metabolites. In this work, we analyzed the activation promiscuity of ADP-Glc PPase subunits from the cyanobacterium Anabaena PCC 7120, the green alga Ostreococcus tauri, and potato (Solanum tuberosum) tuber by comparing a specificity constant for 3-PGA, fructose-1,6-bisphosphate (FBP), fructose-6-phosphate, and glucose-6-phosphate. Results The 3-PGA specificity constant for the enzymes from Anabaena (homotetramer), O. tauri, and potato tuber was considerably higher than for other activators. O. tauri and potato tuber enzymes were heterotetramers comprising homologous small and large subunits. Conversely, the O. tauri small subunit (OtaS) homotetramer was more promiscuous because its FBP specificity constant was similar to that for 3-PGA. To explore the role of both OtaS and OtaL (O. tauri large subunit) in determining the specificity of the heterotetramer, we knocked out the catalytic activity of each subunit individually by site-directed mutagenesis. Interestingly, the mutants OtaSD148A/OtaL and OtaS/OtaLD171A had higher specificity constants for 3-PGA than for FBP. Conclusions After gene duplication, OtaS seemed to have lost specificity for 3-PGA compared to FBP. This was physiologically and evolutionarily feasible because co-expression of both subunits restored the specificity for 3-PGA of the resulting heterotetrameric wild type enzyme. This widespread promiscuity seems to be ancestral and intrinsic to the enzyme family. Its presence could constitute an efficient evolutionary mechanism to accommodate the ADP-Glc PPase regulation to different metabolic needs. PMID:23433303

  7. Improving starch yield in cereals by over-expression of ADPglucose pyrophosphorylase: expectations and unanticipated outcomes.

    PubMed

    Tuncel, Aytug; Okita, Thomas W

    2013-10-01

    Significant improvements in crop productivity are required to meet the nutritional requirements of a growing world population. This challenge is magnified by an increased demand for bioenergy as a means to mitigate carbon inputs into the environment. Starch is a major component of the harvestable organs of many crop plants, and various endeavors have been taken to improve the yields of starchy organs through the manipulation of starch synthesis. Substantial efforts have centered on the starch regulatory enzyme ADPglucose pyrophosphorylase (AGPase) due to its pivotal role in starch biosynthesis. These efforts include over-expression of this enzyme in cereal plants such as maize, rice and wheat as well as potato and cassava, as they supply the bulk of the staple food worldwide. In this perspective, we describe efforts to increase starch yields in cereal grains by first providing an introduction about the importance of source-sink relationship and the motives behind the efforts to alter starch biosynthesis and turnover in leaves. We then discuss the catalytic and regulatory properties of AGPase and the molecular approaches used to enhance starch synthesis by manipulation of this process during grain filling using seed-specific promoters. Several studies have demonstrated increases in starch content per seed using endosperm-specific promoters, but other studies have demonstrated an increase in seed number with only marginal impact on seed weight. Potential mechanisms that may be responsible for this paradoxical increase in seed number will also be discussed. Finally, we describe current efforts and future prospects to improve starch yield in cereals. These efforts include further enhancement of starch yield in rice by augmenting the process of ADPglucose transport into amyloplast as well as other enzymes involved in photoassimilate partitioning in seeds. PMID:23987811

  8. Functional inactivation of UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) induces early leaf senescence and defence responses in rice.

    PubMed

    Wang, Zhaohai; Wang, Ya; Hong, Xiao; Hu, Daoheng; Liu, Caixiang; Yang, Jing; Li, Yang; Huang, Yunqing; Feng, Yuqi; Gong, Hanyu; Li, Yang; Fang, Gen; Tang, Huiru; Li, Yangsheng

    2015-02-01

    Plant leaf senescence and defence responses are important biological processes, but the molecular mechanisms involved are not well understood. This study identified a new rice mutant, spotted leaf 29 (spl29). The SPL29 gene was identified by map-based cloning, and SPL29 was confirmed as UDP-N-acetylglucosamine pyrophosphorylase 1 (UAP1) by enzymatic analysis. The mutant spl29 lacks UAP activity. The biological phenotypes for which UAP is responsible have not previously been reported in plants. The spl29 mutant displayed early leaf senescence, confirmed by chlorophyll loss and photosystem II decline as physiological indicators, chloroplast degradation as a cellular characteristic, and both upregulation of senescence transcription factors and senescence-associated genes, and downregulation of photosynthesis-related genes, as molecular evidence. Defence responses were induced in the spl29 mutant, shown by enhanced resistance to bacterial blight inoculation and upregulation of defence response genes. Reactive oxygen species, including O2 (-) and H2O2, accumulated in spl29 plants; there was also increased malondialdehyde content. Enhanced superoxide dismutase activity combined with normal catalase activity in spl29 could be responsible for H2O2 accumulation. The plant hormones jasmonic acid and abscisic acid also accumulated in spl29 plants. ROS and plant hormones probably play important roles in early leaf senescence and defence responses in the spl29 mutant. Based on these findings, it is suggested that UAP1 is involved in regulating leaf senescence and defence responses in rice. PMID:25399020

  9. Molecular and functional analysis of UDP-N-acetylglucosamine Pyrophosphorylases from the Migratory Locust, Locusta migratoria.

    PubMed

    Liu, Xiaojian; Li, Feng; Li, Daqi; Ma, Enbo; Zhang, Wenqing; Zhu, Kun Yan; Zhang, Jianzhen

    2013-01-01

    UDP-N-acetylglucosamine pyrophosphorylases (UAP) function in the formation of extracellular matrix by producing N-acetylglucosamine (GlcNAc) residues needed for chitin biosynthesis and protein glycosylation. Herein, we report two UAP cDNA's derived from two different genes (LmUAP1 and LmUAP2) in the migratory locust Locusta migratoria. Both the cDNA and their deduced amino acid sequences showed about 70% identities between the two genes. Phylogenetic analysis suggests that LmUAP1 and LmUAP2 derive from a relatively recent gene duplication event. Both LmUAP1 and LmUAP2 were widely expressed in all the major tissues besides chitin-containing tissues. However, the two genes exhibited different developmental expression patterns. High expression of LmUAP1 was detected during early embryogenesis, then decreased greatly, and slowly increased before egg hatch. During nymphal development, the highest expression of LmUAP1 appeared just after molting but declined in each inter-molting period and then increased before molting to the next stage, whereas LmUAP2 was more consistently expressed throughout all these stages. When the early second- and fifth-instar nymphs (1-day-old) were injected with LmUAP1 double-stranded RNA (dsRNA), 100% mortality was observed 2 days after the injection. When the middle second- and fifth-instar nymphs (3- to 4-day-old) were injected with LmUAP1 dsRNA, 100% mortality was observed during their next molting process. In contrast, when the insects at the same stages were injected with LmUAP2 dsRNA, these insects were able to develop normally and molt to the next stage successfully. It is presumed that the lethality caused by RNAi of LmUAP1 is due to reduced chitin biosynthesis of the integument and midgut, whereas LmUAP2 is not essential for locust development at least in nymph stage. This study is expected to help better understand different functions of UAP1 and UAP2 in the locust and other insect species. PMID:23977188

  10. Molecular and Functional Analysis of UDP-N-Acetylglucosamine Pyrophosphorylases from the Migratory Locust, Locusta migratoria

    PubMed Central

    Li, Daqi; Ma, Enbo; Zhang, Wenqing; Zhu, Kun Yan; Zhang, Jianzhen

    2013-01-01

    UDP-N-acetylglucosamine pyrophosphorylases (UAP) function in the formation of extracellular matrix by producing N-acetylglucosamine (GlcNAc) residues needed for chitin biosynthesis and protein glycosylation. Herein, we report two UAP cDNA’s derived from two different genes (LmUAP1 and LmUAP2) in the migratory locust Locusta migratoria. Both the cDNA and their deduced amino acid sequences showed about 70% identities between the two genes. Phylogenetic analysis suggests that LmUAP1 and LmUAP2 derive from a relatively recent gene duplication event. Both LmUAP1 and LmUAP2 were widely expressed in all the major tissues besides chitin-containing tissues. However, the two genes exhibited different developmental expression patterns. High expression of LmUAP1 was detected during early embryogenesis, then decreased greatly, and slowly increased before egg hatch. During nymphal development, the highest expression of LmUAP1 appeared just after molting but declined in each inter-molting period and then increased before molting to the next stage, whereas LmUAP2 was more consistently expressed throughout all these stages. When the early second- and fifth-instar nymphs (1-day-old) were injected with LmUAP1 double-stranded RNA (dsRNA), 100% mortality was observed 2 days after the injection. When the middle second- and fifth-instar nymphs (3- to 4-day-old) were injected with LmUAP1 dsRNA, 100% mortality was observed during their next molting process. In contrast, when the insects at the same stages were injected with LmUAP2 dsRNA, these insects were able to develop normally and molt to the next stage successfully. It is presumed that the lethality caused by RNAi of LmUAP1 is due to reduced chitin biosynthesis of the integument and midgut, whereas LmUAP2 is not essential for locust development at least in nymph stage. This study is expected to help better understand different functions of UAP1 and UAP2 in the locust and other insect species. PMID:23977188

  11. Enhanced UDP-glucose and UDP-galactose by homologous overexpression of UDP-glucose pyrophosphorylase in Lactobacillus casei.

    PubMed

    Rodríguez-Díaz, Jesús; Yebra, María J

    2011-07-20

    UDP-sugars are widely used as substrates in the synthesis of oligosaccharides catalyzed by glycosyltransferases. In the present work a metabolic engineering strategy aimed to direct the carbon flux towards UDP-glucose and UDP-galactose biosynthesis was successfully applied in Lactobacillus casei. The galU gene coding for UDP-glucose pyrophosphorylase (GalU) enzyme in L. casei BL23 was cloned under control of the inducible nisA promoter and it was shown to be functional by homologous overexpression. Notably, about an 80-fold increase in GalU activity resulted in approximately a 9-fold increase of UDP-glucose and a 4-fold increase of UDP-galactose. This suggested that the endogenous UDP-galactose 4-epimerase (GalE) activity, which inter-converts both UDP-sugars, is not sufficient to maintain the UDP-glucose/UDP-galactose ratio. The L. casei galE gene coding for GalE was cloned downstream of galU and the resulting plasmid was transformed in L. casei. The new recombinant strain showed about a 4-fold increase of GalE activity, however this increment did not affect that ratio, suggesting that GalE has higher affinity for UDP-galactose than for UDP-glucose. The L. casei strains constructed here that accumulate high intracellular levels of UDP-sugars would be adequate hosts for the production of oligosaccharides. PMID:21663774

  12. The subunit structure of potato tuber ADPglucose pyrophosphorylase. [Solanum tuberosum L

    SciTech Connect

    Okita, T.W.; Nakata, P.A.; Anderson, J.M. ); Sowokinos, J. ); Morell, M.; Preiss, J. )

    1990-06-01

    ADPglucose pyrophosphorylase has been extensively purified from potato (Solanum tuberosum L.) tuber tissue to study its structure. By employing a modified published procedure together with Mono Q chromatography, a near homogeneous enzyme preparation was obtained with substantial improvement in enzyme yield and specific activity. In single dimensional sodium dodecyl sulfate polyacrylamide gels, the enzyme migrated as a single polypeptide band with a mobility of about 50,000 daltons. Analysis by two-dimensional polyacrylamide gel electrophoresis, however, revealed the presence of two types of subunits which could be distinguished by their slight differences in net charge and molecular weight. The smaller potato tuber subunit was recognized by antiserum prepared against the smaller spinach leaf 51 kilodalton ADPglucose pyrophosphorylase subunit. In contrast, the anti-54 kilodalton raised against the spinach leaf subunit did not significantly react to the tuber enzyme subunits. The results are consistent with the hypothesis that the potato tuber ADPglucose pyrophosphorylase is not composed of a simple homotetramer as previously suggested, but is a product of two separate and distinct subunits as observed for the spinach leaf and maize enzymes.

  13. Deletion of UDP-glucose pyrophosphorylase reveals a UDP-glucose independent UDP-galactose salvage pathway in Leishmania major

    PubMed Central

    Lamerz, Anne-Christin; Damerow, Sebastian; Kleczka, Barbara; Wiese, Martin; van Zandbergen, Ger; Lamerz, Jens; Wenzel, Alexander; Hsu, Fong-Fu; Turk, John; Beverley, Stephen M.; Routier, Françoise H.

    2010-01-01

    The nucleotide sugar UDP-galactose (UDP-Gal) is essential for the biosynthesis of several abundant glycoconjugates forming the surface glycocalyx of the protozoan parasite Leishmania major. Current data suggest that UDP-Gal could arise de novo by epimerization of UDP-glucose (UDP-Glc) or by a salvage pathway involving phosphorylation of Gal and the action of UDP-glucose:α-d-galactose-1-phosphate uridylyltransferase as described by Leloir. Since both pathways require UDP-Glc, inactivation of the UDP-glucose pyrophosphorylase (UGP) catalyzing activation of glucose-1 phosphate to UDP-Glc was expected to deprive parasites of UDP-Gal required for Leishmania glycocalyx formation. Targeted deletion of the gene encoding UGP, however, only partially affected the synthesis of the Gal-rich phosphoglycans. Moreover, no alteration in the abundant Gal-containing glycoinositolphospholipids was found in the deletion mutant. Consistent with these findings, the virulence of the UGP-deficient mutant was only modestly affected. These data suggest that Leishmania elaborates a UDP-Glc independent salvage pathway for UDP-Gal biosynthesis. PMID:20335578

  14. Mutagenesis of the potato ADPglucose pyrophosphorylase and characterization of an allosteric mutant defective in 3-phosphoglycerate activation

    SciTech Connect

    Greene, T.W.; Chantler, S.E.; Kahn, M.L.

    1996-02-20

    ADPglucose pyrophosphorylase (glucose-1-phosphate adenylytransferase; AD P:{alpha}-D-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27) catalyzes a key regulatory step in {alpha}-glucan synthesis in bacteria and higher plants. We have previously shown that the expression of the cDNA sequences of the potato tuber large (LS) and small (SS) subunits yielded a functional heterotetrameric enzyme capable of complementing a mutation in the single AGP (glgC) structural gene of Escherichia coli. This heterologous complementation provides a powerful genetic approach to obtain biochemical information on the specific roles of LS and SS in enzyme function. By mutagenizing the LS cDNA with hydroxylamine and then coexpressing with wild-type SS in an E. coli glgC{sup {minus}} strain, >350 mutant colonies were identified that were impaired in glycogen production. One mutant exhibited enzymatic and antigen levels comparable to the wild-type recombinant enzyme but required 45-fold greater levels of the activator 3-phosphoglycerate for maximum activity. Sequence analysis identified a single nucleotide change that resulted in the change of Pro-52 to Leu. This heterologous genetic system provides and efficient means to identify residues important for catalysis and allosteric functioning and should lead to novel approaches to increase plant productivity. 31 refs., 4 figs., 1 tab.

  15. ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm.

    PubMed

    Tang, Xiao-Jie; Peng, Cheng; Zhang, Jie; Cai, Yue; You, Xiao-Man; Kong, Fei; Yan, Hai-Gang; Wang, Guo-Xiang; Wang, Liang; Jin, Jie; Chen, Wei-Wei; Chen, Xin-Gang; Ma, Jing; Wang, Peng; Jiang, Ling; Zhang, Wen-Wei; Wan, Jian-Min

    2016-08-01

    ADP-glucose pyrophosphorylase (AGPase) controls a rate-limiting step in the starch biosynthetic pathway in higher plants. Here we isolated a shrunken rice mutant w24. Map-based cloning identified OsAGPL2, a large subunit of the cytosolic AGPase in rice endosperm, as the gene responsible for the w24 mutation. In addition to severe inhibition of starch synthesis and significant accumulation of sugar, the w24 endosperm showed obvious defects in compound granule formation and storage protein synthesis. The defect in OsAGPL2 enhanced the expression levels of the AGPase family. Meanwhile, the elevated activities of starch phosphorylase 1 and sucrose synthase in the w24 endosperm might possibly partly account for the residual starch content in the mutant seeds. Moreover, the expression of OsAGPL2 and its counterpart, OsAGPS2b, was highly coordinated in rice endosperm. Yeast two-hybrid and BiFC assays verified direct interactions between OsAGPL2 and OsAGPS2b as well as OsAGPL1 and OsAGPS1, supporting the model for spatiotemporal complex formation of AGPase isoforms in rice endosperm. Besides, our data provided no evidence for the self-binding of OsAGPS2b, implying that OsAGPS2b might not interact to form higher molecular mass aggregates in the absence of OsAGPL2. Therefore, the molecular mechanism of rice AGPase assembly might differ from that of Arabidopsis. PMID:27297991

  16. Cloning, expression, and mapping of GDP-D-mannose pyrophosphorylase cDNA from tomato (Lycopersicon esculentum).

    PubMed

    Zou, Li-Ping; Li, Han-Xia; Ouyang, Bo; Zhang, Jun-Hong; Ye, Zhi-Biao

    2006-08-01

    GDP-D-mannose pyrophosphorylase (GMP, EC 2.7.7.22) catalyzes the synthesis of GDP-D-mannose and represents the first committed step in plant ascorbic acid biosynthesis. Using potato GMP cDNA sequence as a querying probe, 65 highly homologous tomato ESTs were obtained from dbEST of GenBank and the putative cDNA sequence of tomato GMP was assembled. The full-length GMP cDNA of tomato was cloned by RACE-PCR with primers designed according to the assembled cDNA sequence. The full-length cDNA sequence contained a complete open reading frame (ORF) of 1,086 bp, which encoded 361 amino acid residues. This gene was designated as LeGMP (GenBank accession No. AY605668). Homology analysis of LeGMP showed a 96% identity with potato GMP and the deduced amino acid showed 99%, 97%, 91% and 89% homology with GMP from potato, tobacco, alfalfa and Arabidopsis thaliana, respectively. Northern blot analysis showed that LeGMP was constitutively expressed in roots, stems, leaves, flowers and fruits of tomato; but the expression levels varied. LeGMP was mapped to 3-D using 75 tomato introgression lines (ILs), each containing a single homozygous RFLP-defined chromosome segment from the green-fruited species Lycopersicon pennellii. PMID:16939010

  17. The ADP-glucose pyrophosphorylase from Streptococcus mutans provides evidence for the regulation of polysaccharide biosynthesis in Firmicutes.

    PubMed

    Asención Diez, Matías D; Demonte, Ana M; Guerrero, Sergio A; Ballicora, Miguel A; Iglesias, Alberto A

    2013-12-01

    Streptococcus mutans is the leading cause of dental caries worldwide. The bacterium accumulates a glycogen-like internal polysaccharide, which mainly contributes to its carionegic capacity. S.mutans has two genes (glgC and glgD) respectively encoding putative ADP-glucose pyrophosphorylases (ADP-Glc PPase), a key enzyme for glycogen synthesis in most bacteria. Herein, we report the molecular cloning and recombinant expression of both genes (separately or together) followed by the characterization of the respective enzymes. When expressed individually GlgC had ADP-Glc PPase activity, whereas GlgD was inactive. Interestingly, the coexpressed GlgC/GlgD protein was one order of magnitude more active than GlgC alone. Kinetic characterization of GlgC and GlgC/GlgD pointed out remarkable differences between them. Fructose-1,6-bis-phosphate activated GlgC by twofold, but had no effect on GlgC/GlgD. Conversely, phospho-enol-pyruvate and inorganic salts inhibited GlgC/GlgD without affecting GlgC. However, in the presence of fructose-1,6-bis-phosphate GlgC acquired a GlgC/GlgD-like behaviour, becoming sensitive to the stated inhibitors. Results indicate that S. mutans ADP-Glc PPase is an allosteric regulatory enzyme exhibiting sensitivity to modulation by key intermediates of carbohydrates metabolism in the cell. The particular regulatory properties of the S.mutans enzyme agree with phylogenetic analysis, where GlgC and GlgD proteins found in other Firmicutes arrange in distinctive clusters. PMID:24112771

  18. Comparison of Starch and ADP-Glucose Pyrophosphorylase Levels in Nonembryogenic Cells and Developing Embryos from Induced Carrot Cultures

    PubMed Central

    Keller, Gregory L.; Nikolau, Basil J.; Ulrich, Thomas H.; Wurtele, Eve Syrkin

    1988-01-01

    Cultures of carrot (Daucus carota L.) in a medium without added 2,4-dichlorophenoxyacetic acid were separated into fractions of embryos at different stages of development (large globular and heart, torpedo, and germinating) and nonembryogenic cells. The average starch content per cell in these fractions was similar. However, due to the smaller sizes of the cells of the embryos relative to the nonembryogenic cells, starch content per weight of tissue was higher in the embryos. The ADP-glucose pyrophosphorylase activity per cell in the nonembryogenic cells was double that of the embryo cells. Furthermore, the ratio of ADP-glucose pyrophosphorylase to starch was over 2-fold higher in the nonembryogenic cells, indicating that starch content is not simply determined by ADP-glucose pyrophosphorylase levels. ADP-glucose pyrophosphorylase activity of all culture fractions was directly proportional to the level of a single 50 kilodalton polypeptide detected by immunoblot analysis, using antiserum raised to the purified spinach leaf enzyme. In the same immunoblot analysis, novel polypeptides of 63 and 100 kilodalton were detected in embryos but were absent from nonembryogenic cells. This is one of the few reported examples of specific proteins which differentially accumulate in embryos and nonembryogenic cells. Images Fig. 2 PMID:16665929

  19. Isolation and characterization of cDNAs and genomic DNAs encoding ADP-glucose pyrophosphorylase large and small subunits from sweet potato.

    PubMed

    Zhou, Yu-Xi; Chen, Yu-Xiang; Tao, Xiang; Cheng, Xiao-Jie; Wang, Hai-Yan

    2016-04-01

    Sweet potato [Ipomoea batatas (L.) Lam.], the world's seventh most important food crop, is also a major industrial raw material for starch and ethanol production. In the plant starch biosynthesis pathway, ADP-glucose pyrophosphorylase (AGPase) catalyzes the first, rate-limiting step and plays a pivotal role in regulating this process. In spite of the importance of sweet potato as a starch source, only a few studies have focused on the molecular aspects of starch biosynthesis in sweet potato and almost no intensive research has been carried out on the AGPase gene family in this species. In this study, cDNAs encoding two small subunits (SSs) and four large subunits (LSs) of AGPase isoforms were cloned from sweet potato and the genomic organizations of the corresponding AGPase genes were elucidated. Expression pattern analysis revealed that the two SSs were constitutively expressed, whereas the four LSs displayed differential expression patterns in various tissues and at different developmental stages. Co-expression of SSs with different LSs in Escherichia coli yielded eight heterotetramers showing different catalytic activities. Interactions between different SSs and LSs were confirmed by a yeast two-hybrid experiment. Our findings provide comprehensive information about AGPase gene sequences, structures, expression profiles, and subunit interactions in sweet potato. The results can serve as a foundation for elucidation of molecular mechanisms of starch synthesis in tuberous roots, and should contribute to future regulation of starch biosynthesis to improve sweet potato starch yield. PMID:26499957

  20. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed)

    PubMed Central

    2012-01-01

    Background Aquatic plants differ in their development from terrestrial plants in their morphology and physiology, but little is known about the molecular basis of the major phases of their life cycle. Interestingly, in place of seeds of terrestrial plants their dormant phase is represented by turions, which circumvents sexual reproduction. However, like seeds turions provide energy storage for starting the next growing season. Results To begin a characterization of the transition from the growth to the dormant phase we used abscisic acid (ABA), a plant hormone, to induce controlled turion formation in Spirodela polyrhiza and investigated their differentiation from fronds, representing their growth phase, into turions with respect to morphological, ultra-structural characteristics, and starch content. Turions were rich in anthocyanin pigmentation and had a density that submerged them to the bottom of liquid medium. Transmission electron microscopy (TEM) of turions showed in comparison to fronds shrunken vacuoles, smaller intercellular space, and abundant starch granules surrounded by thylakoid membranes. Turions accumulated more than 60% starch in dry mass after two weeks of ABA treatment. To further understand the mechanism of the developmental switch from fronds to turions, we cloned and sequenced the genes of three large-subunit ADP-glucose pyrophosphorylases (APLs). All three putative protein and exon sequences were conserved, but the corresponding genomic sequences were extremely variable mainly due to the invasion of miniature inverted-repeat transposable elements (MITEs) into introns. A molecular three-dimensional model of the SpAPLs was consistent with their regulatory mechanism in the interaction with the substrate (ATP) and allosteric activator (3-PGA) to permit conformational changes of its structure. Gene expression analysis revealed that each gene was associated with distinct temporal expression during turion formation. APL2 and APL3 were highly

  1. Regulatory properties of potato-Arabidopsis hybrid ADP-glucose pyrophosphorylase.

    PubMed

    Ventriglia, Tiziana; Ballicora, Miguel A; Crevillén, Pedro; Preiss, Jack; Romero, José M

    2007-06-01

    In higher plants, ADP-glucose pyrophosphorylase (ADPGlc-PPase) is a heterotetrameric enzyme comprised of two small and two large subunits. Potato-Arabidopsis hybrid ADPGlc-PPases were generated and their regulatory properties analyzed. We show that ADPGlc-PPase subunits from two different species can interact, producing active enzymes with new regulatory properties. Depending on the subunit combinations, hybrid heterotetramers showed responses to allosteric effectors [3-phosphoglycerate (3-PGA) and Pi] in the micromolar or millimolar range. While hybrid potato small subunit (PSS) and the Arabidopsis large subunit APL1 showed an extremely sensitive response to 3-PGA and Pi, hybrid PSS/Arabidopsis APL2 was very insensitive to them. Intermediate responses were determined for other subunit combinations. PMID:17452341

  2. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    PubMed

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-01

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism. PMID:25953126

  3. Purification and Properties of Adenosine Diphosphoglucose Pyrophosphorylase from Sweet Corn 1

    PubMed Central

    Amir, Jacob; Cherry, Joe H.

    1972-01-01

    A 40-fold purification of adenosine diphosphoglucose pyrophosphorylase from sweet corn (Zea mays var. Golden Beauty) revealed the enzyme to be specific for adenosine triphosphate. The enzyme has an absolute requirement for Mg2+ and is activated by 3-phosphoglycerate and to a lesser extent by ribose-5-phosphate and fructose-6-phosphate. The apparent Km values of the enzyme for glucose-1-phosphate, adenosine triphosphate, pyrophosphate, and adenosine diphosphoglucose are 1.9 × 10−4, 3.2 × 10−5, 3.3 × 10−5, and 6.2 × 10−4m, respectively. Pyrophosphate inhibits adenosine diphosphoglucose synthesis competitively (Ki = 3.8 × 10−7m), while orthophosphate and sulfate appear to inhibit the reacion noncompetitively. These results show that the production of this sugar nucleotide can be controlled by the concentration of pyrophosphate. PMID:16658078

  4. Purification and characterization of adenosine diphosphate glucose pyrophosphorylase from maize/potato mosaics.

    PubMed

    Boehlein, Susan K; Sewell, Aileen K; Cross, Joanna; Stewart, Jon D; Hannah, L Curtis

    2005-07-01

    Adenosine diphosphate glucose pyrophosphorylase (AGPase) catalyzes a rate-limiting step in starch biosynthesis. The reaction produces ADP-glucose and pyrophosphate from glucose-1-P and ATP. Investigations from a number of laboratories have shown that alterations in allosteric properties as well as heat stability of this enzyme have dramatic positive effects on starch synthesis in the potato (Solanum tuberosum) tuber and seeds of important cereals. Here, we report the characterization of purified recombinant mosaic AGPases derived from protein motifs normally expressed in the maize (Zea mays) endosperm and the potato tuber. These exhibit properties that should be advantageous when expressed in plants. We also present an in-depth characterization of the kinetic and allosteric properties of these purified recombinant AGPases. These data point to previously unrecognized roles for known allosteric effectors. PMID:15951484

  5. Inflammatory bowel disease gene discovery. CRADA final report

    SciTech Connect

    1997-09-09

    The ultimate goal of this project is to identify the human gene(s) responsible for the disorder known as IBD. The work was planned in two phases. The desired products resulting from Phase 1 were BAC clone(s) containing the genetic marker(s) identified by gene/Networks, Inc. as potentially linked to IBD, plasmid subclones of those BAC(s), and new genetic markers developed from these plasmid subclones. The newly developed markers would be genotyped by gene/Networks, Inc. to ascertain evidence for linkage or non-linkage of IBD to this region. If non-linkage was indicated, the project would move to investigation of other candidate chromosomal regions. Where linkage was indicated, the project would move to Phase 2, in which a physical map of the candidate region(s) would be developed. The products of this phase would be contig(s) of BAC clones in the region exhibiting linkage to IBD, as well as plasmic subclones of the BACs and further genetic marker development. There would also be continued genotyping with new polymorphic markers during this phase. It was anticipated that clones identified and developed during these two phases would provide the physical resources for eventual disease gene discovery.

  6. Mutations in GDP-Mannose Pyrophosphorylase B Cause Congenital and Limb-Girdle Muscular Dystrophies Associated with Hypoglycosylation of α-Dystroglycan

    PubMed Central

    Carss, Keren J.; Stevens, Elizabeth; Foley, A. Reghan; Cirak, Sebahattin; Riemersma, Moniek; Torelli, Silvia; Hoischen, Alexander; Willer, Tobias; van Scherpenzeel, Monique; Moore, Steven A.; Messina, Sonia; Bertini, Enrico; Bönnemann, Carsten G.; Abdenur, Jose E.; Grosmann, Carla M.; Kesari, Akanchha; Punetha, Jaya; Quinlivan, Ros; Waddell, Leigh B.; Young, Helen K.; Wraige, Elizabeth; Yau, Shu; Brodd, Lina; Feng, Lucy; Sewry, Caroline; MacArthur, Daniel G.; North, Kathryn N.; Hoffman, Eric; Stemple, Derek L.; Hurles, Matthew E.; van Bokhoven, Hans; Campbell, Kevin P.; Lefeber, Dirk J.; Lin, Yung-Yao; Muntoni, Francesco

    2013-01-01

    Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG. PMID:23768512

  7. Analysis of Gene Targeting & Nonhomologous End-joining. Final Report

    SciTech Connect

    Haber, J. E.

    2002-11-30

    Overall, we identified a number of new proteins that participate in nonhomologous end-joining and also in telomere addition to the ends of broken chromosomes. We showed that NHEJ is severely reduced in cells expressing both yeast mating-type genes and then went on to identify the NEJ1 gene that was under this control. We showed the epistasis relations among a set of mutations that impair telomere addition and we showed that there are in fact two pathways to repair broken chromosomes in the absence of telomerase. We characterized the DNA damage checkpoint pathway in response to a single broken chromosome and characterized especially the adaptation of cells arrested by an unrepaired DSB. We demonstrated that the DNA damage response is nuclear-limited. We showed adaptation defects for Tid1and Srs2 proteins and showed that Srs2 was also recovery-defective, even when DNA was repaired.

  8. Carbon Dynamics, Development and Stress Responses in Arabidopsis: Involvement of the APL4 Subunit of ADP-Glucose Pyrophosphorylase (Starch Synthesis)

    PubMed Central

    Sulmon, Cécile; Gouesbet, Gwenola; Ramel, Fanny; Cabello-Hurtado, Francisco; Penno, Christophe; Bechtold, Nicole; Couée, Ivan; Amrani, Abdelhak El

    2011-01-01

    An Arabidopsis thaliana T-DNA insertional mutant was identified and characterized for enhanced tolerance to the singlet-oxygen-generating herbicide atrazine in comparison to wild-type. This enhanced atrazine tolerance mutant was shown to be affected in the promoter structure and in the regulation of expression of the APL4 isoform of ADP-glucose pyrophosphorylase, a key enzyme of the starch biosynthesis pathway, thus resulting in decrease of APL4 mRNA levels. The impact of this regulatory mutation was confirmed by the analysis of an independent T-DNA insertional mutant also affected in the promoter of the APL4 gene. The resulting tissue-specific modifications of carbon partitioning in plantlets and the effects on plantlet growth and stress tolerance point out to specific and non-redundant roles of APL4 in root carbon dynamics, shoot-root relationships and sink regulations of photosynthesis. Given the effects of exogenous sugar treatments and of endogenous sugar levels on atrazine tolerance in wild-type Arabidopsis plantlets, atrazine tolerance of this apl4 mutant is discussed in terms of perception of carbon status and of investment of sugar allocation in xenobiotic and oxidative stress responses. PMID:22073207

  9. Rice UDP-Glucose Pyrophosphorylase1 Is Essential for Pollen Callose Deposition and Its Cosuppression Results in a New Type of Thermosensitive Genic Male Sterility[W][OA

    PubMed Central

    Chen, Rongzhi; Zhao, Xiao; Shao, Zhe; Wei, Zhe; Wang, Yuanyuan; Zhu, Lili; Zhao, Jie; Sun, Mengxiang; He, Ruifeng; He, Guangcun

    2007-01-01

    UDP-glucose pyrophosphorylase (UGPase) catalyzes the reversible production of glucose-1-phosphate and UTP to UDP-glucose and pyrophosphate. The rice (Oryza sativa) genome contains two homologous UGPase genes, Ugp1 and Ugp2. We report a functional characterization of rice Ugp1, which is expressed throughout the plant, with highest expression in florets, especially in pollen during anther development. Ugp1 silencing by RNA interference or cosuppression results in male sterility. Expressing a double-stranded RNA interference construct in Ugp1-RI plants resulted in complete suppression of both Ugp1 and Ugp2, together with various pleiotropic developmental abnormalities, suggesting that UGPase plays critical roles in plant growth and development. More importantly, Ugp1-cosuppressing plants contained unprocessed intron-containing primary transcripts derived from transcription of the overexpression construct. These aberrant transcripts undergo temperature-sensitive splicing in florets, leading to a novel thermosensitive genic male sterility. Pollen mother cells (PMCs) of Ugp1-silenced plants appeared normal before meiosis, but during meiosis, normal callose deposition was disrupted. Consequently, the PMCs began to degenerate at the early meiosis stage, eventually resulting in complete pollen collapse. In addition, the degeneration of the tapetum and middle layer was inhibited. These results demonstrate that rice Ugp1 is required for callose deposition during PMC meiosis and bridges the apoplastic unloading pathway and pollen development. PMID:17400897

  10. UDP-glucose pyrophosphorylase Ugp1 is involved in oxidative stress response and long-term survival during stationary phase in Saccharomyces cerevisiae.

    PubMed

    Yi, Dae-Gwan; Huh, Won-Ki

    2015-11-27

    Ugp1, UDP-glucose pyrophosphorylase, plays an important role in carbohydrate metabolism because it provides UDP-glucose that is a pivotal metabolite in several metabolic pathways in Saccharomyces cerevisiae. In this study, we show that a considerable reduction of glycogen and trehalose content in ugp1 knockdown cells is rescued by complementing the expression of Ugp1, indicating that Ugp1 is required for the production of storage carbohydrates. Because of the specific function of trehalose as a stress protectant, Ugp1 expression contributed to oxidative stress response and long-term cell survival during stationary phase. Furthermore, the modulation of Ugp1 level readjusted glycogen and trehalose accumulation in the protein kinase A (PKA)-related gene mutants. The PKA-dependent phenotypes of oxidative stress resistance and long-term cell survival were also alleviated via adjustment of Ugp1 level. Collectively, our data suggest that the regulation of UPG1 influences several PKA-dependent processes by adjusting the levels of various carbohydrates. PMID:26498530

  11. Phylogenetic analysis of ADP-glucose pyrophosphorylase subunits reveals a role of subunit interfaces in the allosteric properties of the enzyme.

    PubMed

    Georgelis, Nikolaos; Shaw, Janine R; Hannah, L Curtis

    2009-09-01

    ADP-glucose pyrophosphorylase (AGPase) catalyzes a rate-limiting step in glycogen and starch synthesis in bacteria and plants, respectively. Plant AGPase consists of two large and two small subunits that were derived by gene duplication. AGPase large subunits have functionally diverged, leading to different kinetic and allosteric properties. Amino acid changes that could account for these differences were identified previously by evolutionary analysis. In this study, these large subunit residues were mapped onto a modeled structure of the maize (Zea mays) endosperm enzyme. Surprisingly, of 29 amino acids identified via evolutionary considerations, 17 were located at subunit interfaces. Fourteen of the 29 amino acids were mutagenized in the maize endosperm large subunit (SHRUNKEN-2 [SH2]), and resulting variants were expressed in Escherichia coli with the maize endosperm small subunit (BT2). Comparisons of the amount of glycogen produced in E. coli, and the kinetic and allosteric properties of the variants with wild-type SH2/BT2, indicate that 11 variants differ from the wild type in enzyme properties or in vivo glycogen level. More interestingly, six of nine residues located at subunit interfaces exhibit altered allosteric properties. These results indicate that the interfaces between the large and small subunits are important for the allosteric properties of AGPase, and changes at these interfaces contribute to AGPase functional specialization. Our results also demonstrate that evolutionary analysis can greatly facilitate enzyme structure-function analyses. PMID:19625637

  12. Maize endosperm ADP-glucose pyrophosphorylase SHRUNKEN2 and BRITTLE2 subunit interactions

    PubMed Central

    Greene, TW; Hannah, LC

    1998-01-01

    ADP-glucose pyrophosphorylase (AGP) represents a key regulatory step in polysaccharide synthesis in organisms ranging from bacteria to plants. Higher plant AGPs are complex in nature and are heterotetramers consisting of two similar but distinct subunits. How the subunits are assembled into enzymatically active polymers is not yet understood. Here, we address this issue by using naturally occurring null mutants of the Shrunken2 (Sh2) and Brittle2 (Bt2) loci of maize as well as the yeast two-hybrid expression system. In the absence of the maize endosperm large AGP subunit (SH2), the BT2 subunit remains as a monomer in the developing endosperm. In contrast, the SH2 protein, in the absence of BT2, is found in a complex of 100 kD. A direct interaction between SH2 and BT2 was proven when they were both expressed in yeast. Several motifs are essential for SH2:BT2 interaction because truncations removing the N or C terminus of either subunit eliminate SH2:BT2 interactions. Analysis of subunit interaction mutants (sim) also identified motifs essential for protein interactions. PMID:9707530

  13. Investigation of the interaction between the large and small subunits of potato ADP-glucose pyrophosphorylase.

    PubMed

    Baris, Ibrahim; Tuncel, Aytug; Ozber, Natali; Keskin, Ozlem; Kavakli, Ibrahim Halil

    2009-10-01

    ADP-glucose pyrophosphorylase (AGPase), a key allosteric enzyme involved in higher plant starch biosynthesis, is composed of pairs of large (LS) and small subunits (SS). Current evidence indicates that the two subunit types play distinct roles in enzyme function. Recently the heterotetrameric structure of potato AGPase has been modeled. In the current study, we have applied the molecular mechanics generalized born surface area (MM-GBSA) method and identified critical amino acids of the potato AGPase LS and SS subunits that interact with each other during the native heterotetrameric structure formation. We have further shown the role of the LS amino acids in subunit-subunit interaction by yeast two-hybrid, bacterial complementation assay and native gel. Comparison of the computational results with the experiments has indicated that the backbone energy contribution (rather than the side chain energies) of the interface residues is more important in identifying critical residues. We have found that lateral interaction of the LS-SS is much stronger than the longitudinal one, and it is mainly mediated by hydrophobic interactions. This study will not only enhance our understanding of the interaction between the SS and the LS of AGPase, but will also enable us to engineer proteins to obtain better assembled variants of AGPase which can be used for the improvement of plant yield. PMID:19876371

  14. Purification, crystallization and preliminary X-ray characterization of the human GTP fucose pyrophosphorylase

    SciTech Connect

    Quirk, Stephen; Seley-Radtke, Katherine L.

    2006-04-01

    The human GTP fucose pyrophosphohydrolase protein has been crystallized via the hanging-drop technique over a reservoir of polyethylene glycol (MW 8000) and ethylene glycol. The orthorhombic crystals diffract to 2.8 Å resolution. The human nucleotide-sugar metabolizing enzyme GTP fucose pyrophosphorylase (GFPP) has been purified to homogeneity by an affinity chromatographic procedure that utilizes a novel nucleoside analog. This new purification regime results in a protein preparation that produces significantly better crystals than traditional purification methods. The purified 66.6 kDa monomeric protein has been crystallized via hanging-drop vapor diffusion at 293 K. Crystals of the native enzyme diffract to 2.8 Å and belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}. There is a single GFPP monomer in the asymmetric unit, giving a Matthews coefficient of 2.38 Å{sup 3} Da{sup −1} and a solvent content of 48.2%. A complete native data set has been collected as a first step in determining the three-dimensional structure of this enzyme.

  15. Characterization of Arabidopsis Genes Involved in Gene Silencing. Final Progress Report

    SciTech Connect

    Grant, S. R.

    1999-02-05

    Enhancer of gene silencing 1 (egs1) is an Arabidopsis mutant that enhances post-transcriptional gene silencing of the rolB gene introduced by genetic engineering (transgene). The goal of our proposal was cloning EGS1 based on its map position. Although we screened more than 2000 chromosomes for recombination, we were unable to get closer than 2 cM to the gene. We experienced an unexpected tendency of the post-transcriptionally silenced transgene to switch to a more stable silenced state. This made it impossible to select egs1 homozygotes for map based cloning. This forced us to reconsider our cloning strategy. One possibility would have been to use a different transgene as the target of gene silencing. We tested two other transgenes. Both encoded proteins unrelated to the first but they were all expressed from the same type of promoter and they all had a similar tendency to become post-transcriptionally silenced. After screening over 80 F2 segregants from each cross between our egs1 mutant and Arabidopsis of the same ecotype homozygous for the new transgene, we were disappointed to find that the egs1 mutation did not enhance post-transcription silencing of the two new genes. In 80 plants we expected to have between 4 and 6 plants that were homozygous for the transgene and for the mutant egs1 allele. If egs1 mutations could enhance gene silencing of the new transgene, these plants would not express it. However all the double homozygotes still expressed the transgene. Therefore, we could not change the target transgene for mapping. This was the state of the cloning at the time for renewal of the grant in 1999. Because the selection of new meaningful recombinant plants had become extremely inefficient using the original rolB transgene, we abandoned the attempt at map based cloning and did not apply for further funding.

  16. Sequence differences between human muscle and liver cDNAs for UDPglucose pyrophosphorylase and kinetic properties of the recombinant enzymes expressed in Escherichia coli.

    PubMed

    Duggleby, R G; Chao, Y C; Huang, J G; Peng, H L; Chang, H Y

    1996-01-15

    UDP-Glc pyrophosphorylase (EC 2.7.7.9) catalyses the interconversion of MgUTP plus Glc1P and UDP-Glc plus MgPPi. Complementation of an Escherichia coli strain lacking this activity has allowed isolation of cDNA encoding this enzyme from a human muscle library. Two forms were identified and the nucleotide sequence of each was determined; they were found to differ only in the 5' region and we suggest that these arise from the use of a different first exon in the two transcripts. These nucleotide sequences are different from that of the cDNA which was isolated previously from a human liver library [Peng, H.-L. & Chang, H.-Y. (1993) FEBS Lett. 329, 153-158] and it is proposed that these liver and muscle forms are derived from different genes. The cDNA for muscle form I, muscle form II, the liver form, and the liver form fused to part of the lacZ gene were expressed in Escherichia coli and the kinetic properties of each enzyme were characterised. Muscle form I and the LacZ/liver fusion enzyme exhibit Michaelis-Menten kinetics towards all substrates while muscle form II has a sigmoidal dependence of rate upon the concentration of MgPPi. The liver form shows Michaelis-Menten kinetics towards MgUTP. For the remaining three substrates, complex kinetics were observed involving a combination of sigmoidicity at low substrate concentration and partial inhibition at high substrate concentration. PMID:8631325

  17. Structural Analysis of ADP-Glucose Pyrophosphorylase From the Bacterium Agrobacterium Tumefaciens

    SciTech Connect

    Cupp-Vickery, J.R.; Igarashi, R.Y.; Perez, M.; Poland, M.; Meyer, C.R.

    2009-05-14

    ADP-glucose pyrophosphorylase (ADPGlc PPase) catalyzes the conversion of glucose 1-phosphate and ATP to ADP-glucose and pyrophosphate. As a key step in glucan synthesis, the ADPGlc PPases are highly regulated by allosteric activators and inhibitors in accord with the carbon metabolism pathways of the organism. Crystals of Agrobacterium tumefaciens ADPGlc PPase were obtained using lithium sulfate as a precipitant. A complete anomalous selenomethionyl derivative X-ray diffraction data set was collected with unit cell dimensions a = 85.38 {angstrom}, b = 93.79 {angstrom}, and c = 140.29 {angstrom} ({alpha} = {beta} = {gamma} = 90{sup o}) and space group I{sub 222}. The A. tumefaciens ADPGlc PPase model was refined to 2.1 {angstrom} with an R{sub factor} = 22% and R{sub free} = 26.6%. The model consists of two domains: an N-terminal {alpha}{beta}{alpha} sandwich and a C-terminal parallel {beta}-helix. ATP and glucose 1-phosphate were successfully modeled in the proposed active site, and site-directed mutagenesis of conserved glycines in this region (G20, G21, and G23) resulted in substantial loss of activity. The interface between the N- and the C-terminal domains harbors a strong sulfate-binding site, and kinetic studies revealed that sulfate is a competitive inhibitor for the allosteric activator fructose 6-phosphate. These results suggest that the interface between the N- and C-terminal domains binds the allosteric regulator, and fructose 6-phosphate was modeled into this region. The A. tumefaciens ADPGlc PPase/fructose 6-phosphate structural model along with sequence alignment analysis was used to design mutagenesis experiments to expand the activator specificity to include fructose 1,6-bisphosphate. The H379R and H379K enzymes were found to be activated by fructose 1,6-bisphosphate.

  18. Probing allosteric binding sites of the maize endosperm ADP-glucose pyrophosphorylase.

    PubMed

    Boehlein, Susan K; Shaw, Janine R; Hannah, L Curtis; Stewart, Jon D

    2010-01-01

    Maize (Zea mays) endosperm ADP-glucose pyrophosphorylase (AGPase) is a highly regulated enzyme that catalyzes the rate-limiting step in starch biosynthesis. Although the structure of the heterotetrameric maize endosperm AGPase remains unsolved, structures of a nonnative, low-activity form of the potato tuber (Solanum tuberosum) AGPase (small subunit homotetramer) reported previously by others revealed that several sulfate ions bind to each enzyme. These sites are also believed to interact with allosteric regulators such as inorganic phosphate and 3-phosphoglycerate (3-PGA). Several arginine (Arg) side chains contact the bound sulfate ions in the potato structure and likely play important roles in allosteric effector binding. Alanine-scanning mutagenesis was applied to the corresponding Arg residues in both the small and large subunits of maize endosperm AGPase to determine their roles in allosteric regulation and thermal stability. Steady-state kinetic and regulatory parameters were measured for each mutant. All of the Arg mutants examined--in both the small and large subunits--bound 3-PGA more weakly than the wild type (A(50) increased by 3.5- to 20-fold). By contrast, the binding of two other maize AGPase allosteric activators (fructose-6-phosphate and glucose-6-phosphate) did not always mimic the changes observed for 3-PGA. In fact, compared to 3-PGA, fructose-6-phosphate is a more efficient activator in two of the Arg mutants. Phosphate binding was also affected by Arg substitutions. The combined data support a model for the binding interactions associated with 3-PGA in which allosteric activators and inorganic phosphate compete directly. PMID:19889875

  19. Purification, crystallization and preliminary X-ray diffraction studies of UDP-N-acetylglucosamine pyrophosphorylase from Candida albicans

    SciTech Connect

    Maruyama, Daisuke; Nishitani, Yuichi; Nonaka, Tsuyoshi; Kita, Akiko; Fukami, Takaaki A.; Mio, Toshiyuki; Yamada-Okabe, Hisafumi; Yamada-Okabe, Toshiko; Miki, Kunio

    2006-12-01

    UDP-N-acetylglucosamine pyrophosphorylase was purified and crystallized and X-ray diffraction data were collected to 2.3 Å resolution. UDP-N-acetylglucosamine pyrophosphorylase (UAP) is an essential enzyme in the synthesis of UDP-N-acetylglucosamine. UAP from Candida albicans was purified and crystallized by the sitting-drop vapour-diffusion method. The crystals of the substrate and product complexes both diffract X-rays to beyond 2.3 Å resolution using synchrotron radiation. The crystals of the substrate complex belong to the triclinic space group P1, with unit-cell parameters a = 47.77, b = 62.89, c = 90.60 Å, α = 90.01, β = 97.72, γ = 92.88°, whereas those of the product complex belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 61.95, b = 90.87, c = 94.88 Å.

  20. Genetic Variability in Carbon Fixation, Sucrose-P-Synthase and ADP Glucose Pyrophosphorylase in Maize Plants of Differing Growth Rate

    PubMed Central

    Rocher, J. P.; Prioul, J. L.; Lecharny, A.; Reyss, A.; Joussaume, M.

    1989-01-01

    The net photosynthetic rate and the activities of ribulose 1,5 bisphosphate carboxylase (RubisCo), phosphoenolpyruvate carboxylase, sucrose-P-synthase, and ADP glucose-pyrophosphorylase, key enzymes of the leaf carbohydrate metabolism were compared in eight maize (Zea mays L.) genotypes presenting large differences in growth rate. The sucrose-P-synthase activity varied in the ratio 1 to 3 from the less active to the more active genotype and this variation was highly correlated with those in growth rate. ADP glucose pyrophosphorylase activity was not significantly different from one genotype to another whatever the basis for expression, leaf area, or soluble protein. The photosynthetic rate varied with similar amplitude (1:1) to the RubisCo activity or RubisCo quantity but the correlation with growth rate was highly significant for photosynthesis and nonsignificant for RubisCo or phosphoenolpyruvate carboxylase. So, in our series of genotypes the sucrose synthesis capacities as expressed by sucrose phosphate synthase activity seem to have a good predicting value for mean growth rate at a young stage. PMID:16666558

  1. ADP-glucose pyrophosphorylase-deficient pea embryos reveal specific transcriptional and metabolic changes of carbon-nitrogen metabolism and stress responses.

    PubMed

    Weigelt, Kathleen; Küster, Helge; Rutten, Twan; Fait, Aaron; Fernie, Alisdair R; Miersch, Otto; Wasternack, Claus; Emery, R J Neil; Desel, Christine; Hosein, Felicia; Müller, Martin; Saalbach, Isolde; Weber, Hans

    2009-01-01

    We present a comprehensive analysis of ADP-glucose pyrophosphorylase (AGP)-repressed pea (Pisum sativum) seeds using transcript and metabolite profiling to monitor the effects that reduced carbon flow into starch has on carbon-nitrogen metabolism and related pathways. Changed patterns of transcripts and metabolites suggest that AGP repression causes sugar accumulation and stimulates carbohydrate oxidation via glycolysis, tricarboxylic acid cycle, and mitochondrial respiration. Enhanced provision of precursors such as acetyl-coenzyme A and organic acids apparently support other pathways and activate amino acid and storage protein biosynthesis as well as pathways fed by cytosolic acetyl-coenzyme A, such as cysteine biosynthesis and fatty acid elongation/metabolism. As a consequence, the resulting higher nitrogen (N) demand depletes transient N storage pools, specifically asparagine and arginine, and leads to N limitation. Moreover, increased sugar accumulation appears to stimulate cytokinin-mediated cell proliferation pathways. In addition, the deregulation of starch biosynthesis resulted in indirect changes, such as increased mitochondrial metabolism and osmotic stress. The combined effect of these changes is an enhanced generation of reactive oxygen species coupled with an up-regulation of energy-dissipating, reactive oxygen species protection, and defense genes. Transcriptional activation of mitogen-activated protein kinase pathways and oxylipin synthesis indicates an additional activation of stress signaling pathways. AGP-repressed embryos contain higher levels of jasmonate derivatives; however, this increase is preferentially in nonactive forms. The results suggest that, although metabolic/osmotic alterations in iAGP pea seeds result in multiple stress responses, pea seeds have effective mechanisms to circumvent stress signaling under conditions in which excessive stress responses and/or cellular damage could prematurely initiate senescence or apoptosis. PMID

  2. Conserved residues of the Pro103–Arg115 loop are involved in triggering the allosteric response of the Escherichia coli ADP-glucose pyrophosphorylase

    PubMed Central

    Hill, Benjamin L; Wong, Jennifer; May, Brian M; Huerta, Fidel B; Manley, Tara E; Sullivan, Peter RF; Olsen, Kenneth W; Ballicora, Miguel A

    2015-01-01

    The synthesis of glycogen in bacteria and starch in plants is allosterically controlled by the production of ADP-glucose by ADP-glucose pyrophosphorylase. Using computational studies, site-directed mutagenesis, and kinetic characterization, we found a critical region for transmitting the allosteric signal in the Escherichia coli ADP-glucose pyrophosphorylase. Molecular dynamics simulations and structural comparisons with other ADP-glucose pyrophosphorylases provided information to hypothesize that a Pro103–Arg115 loop is part of an activation path. It had strongly correlated movements with regions of the enzyme associated with regulation and ATP binding, and a network analysis showed that the optimal network pathways linking ATP and the activator binding Lys39 mainly involved residues of this loop. This hypothesis was biochemically tested by mutagenesis. We found that several alanine mutants of the Pro103–Arg115 loop had altered activation profiles for fructose-1,6-bisphosphate. Mutants P103A, Q106A, R107A, W113A, Y114A, and R115A had the most altered kinetic profiles, primarily characterized by a lack of response to fructose-1,6-bisphosphate. This loop is a distinct insertional element present only in allosterically regulated sugar nucleotide pyrophosphorylases that could have been acquired to build a triggering mechanism to link proto-allosteric and catalytic sites. PMID:25620658

  3. Reference gene validation for quantification of gene expression during final oocyte maturation induced by diethylstilbestrol and di-(2-ethylhexyl)-phthalate in common carp.

    PubMed

    Shi, Yanyan; Lu, Jie; Wang, Yilei; Wang, Shuhong

    2016-08-01

    Final oocyte maturation is the key step to successful spawning and fertilization. Quantitative real-time PCR (qPCR) is the technique of election to quantify the abundance of functional genes in such study. Reference gene is essential for correct interpretation of qPCR data. However, an ideal universal reference gene that is stable under all experimental circumstances has not been described. Researchers should validate their reference genes while performing qPCR analysis. The expression of 6 candidate reference genes: 18s rRNA, 28s rRNA, Cathepsin Z, Elongation factor 1-α, Glyceraldehyde-3-phosphate dehydrogenase and β-actin were investigated during final oocyte maturation induced by different compounds (DES and DEHP) in common carp (Cyprinus carpio). Four softwares (Bestkeeper, geNorm, NormFinder and RefFinder) were used to screen the most stable gene in order to evaluate their expression stability. The results revealed that EF1α was highly stable expressed when final oocyte maturation was induced by DES, while gapdh was the most stable gene when final oocyte maturation was induced by DEHP. Stable expressed reference gene selection is critical for all qPCR analysis to get accurate target gene mRNA expression information. PMID:27521935

  4. In silico analysis of a therapeutic target in Leishmania infantum: the guanosine-diphospho-D-mannose pyrophosphorylase.

    PubMed

    Pomel, S; Rodrigo, J; Hendra, F; Cavé, C; Loiseau, P M

    2012-02-01

    Leishmaniases are tropical and sub-tropical diseases for which classical drugs (i.e. antimonials) exhibit toxicity and drug resistance. Such a situation requires to find new chemical series with antileishmanial activity. This work consists in analyzing the structure of a validated target in Leishmania: the GDP-mannose pyrophosphorylase (GDP-MP), an enzyme involved in glycosylation and essential for amastigote survival. By comparing both human and L. infantum GDP-MP 3D homology models, we identified (i) a common motif of amino acids that binds to the mannose moiety of the substrate and, interestingly, (ii) a motif that is specific to the catalytic site of the parasite enzyme. This motif could then be used to design compounds that specifically inhibit the leishmanial GDP-MP, without any effect on the human homolog. PMID:22314241

  5. ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit

    NASA Technical Reports Server (NTRS)

    Chen, B. Y.; Wang, Y.; Janes, H. W.

    1998-01-01

    The intracellular location of ADP-glucose pyrophosphorylase (AGP) in developing pericarp of tomato (Lycopersicon esculentum Mill) has been investigated by immunolocalization. With the use of a highly specific anti-tomato fruit AGP antibody, the enzyme was localized in cytoplasm as well as plastids at both the light and electron microscope levels. The immunogold particles in plastids were localized in the stroma and at the surface of the starch granule, whereas those in the cytoplasm occurred in cluster-like patterns. Contrary to the fruit, the labeling in tomato leaf cells occurred exclusively in the chloroplasts. These data demonstrate that AGP is localized to both the cytoplasm and plastids in developing pericarp cells of tomato.

  6. UDP-glucose pyrophosphorylase influences polysaccharide synthesis, cell wall components, and hyphal branching in Ganoderma lucidum via regulation of the balance between glucose-1-phosphate and UDP-glucose.

    PubMed

    Li, Mengjiao; Chen, Tianxi; Gao, Tan; Miao, Zhigang; Jiang, Ailiang; Shi, Liang; Ren, Ang; Zhao, Mingwen

    2015-09-01

    UDP-glucose pyrophosphorylase (UGP) is a key enzyme involved in carbohydrate metabolism, but there are few studies on the functions of this enzyme in fungi. The ugp gene of Ganoderma lucidum was cloned, and enzyme kinetic parameters of the UGP recombinant protein were determined in vitro, revealing that this protein was functional and catalyzed the reversible conversion between Glc-1-P and UDP-Glc. ugp silencing by RNA interference resulted in changes in the levels of the intermediate metabolites Glc-1-P and UDP-Glc. The compounds and structure of the cell wall in the silenced strains were also altered compared with those in the wild-type strains. Moreover, the number of hyphal branches was also changed in the silenced strains. To verify the role of UGP in hyphal branching, a ugp-overexpressing strain was constructed. The results showed that the number of hyphal branches was influenced by UGP. The mechanism underlying hyphal branching was further investigated by adding exogenous Glc-1-P. Our results showed that hyphal branching was regulated by a change in the cytosolic Ca(2+) concentration, which was affected by the level of the intermediate metabolite Glc-1-P, in G. lucidum. Our findings indicate the existence of an interaction between carbon metabolism and Ca(2+) signaling in this fungus. PMID:26235043

  7. Phytoalexin detoxification genes and gene products: Implication for the evolution of host specific traits for pathogenicity. Final report

    SciTech Connect

    VanEtten, H.

    1997-06-01

    The overall objectives of this research were to determine which differences among PDA genes were associated with different levels of virulence on pea and to clone and characterize a MAK gene. The authors also proposed to characterize the pisatin detoxifying system in pea pathogens in addition to N. haematococca to assess whether pathogens of a common host had evolved similar pathogenicity genes.

  8. Identification, subcellular localization, biochemical properties, and high-resolution crystal structure of Trypanosoma brucei UDP-glucose pyrophosphorylase

    PubMed Central

    Mariño, Karina; Güther, Maria Lucia Sampaio; Wernimont, Amy K; Amani, Mernhaz; Hui, Raymond; Ferguson, Michael AJ

    2010-01-01

    The protozoan parasite Trypanosoma brucei is the causative agent of the cattle disease Nagana and human African sleeping sickness. Glycoproteins play key roles in the parasite’s survival and infectivity, and the de novo biosyntheses of the sugar nucleotides UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine, and GDP-fucose have been shown to be essential for their growth. The only route to UDP-Gal in T. brucei is through the epimerization of UDP-glucose (UDP-Glc) by UDP-Glc 4′-epimerase. UDP-Glc is also the glucosyl donor for the unfolded glycoprotein glucosyltransferase (UGGT) involved in glycoprotein quality control in the endoplasmic reticulum and is the presumed donor for the synthesis of base J (β-d-glucosylhydroxymethyluracil), a rare deoxynucleotide found in telomere-proximal DNA in the bloodstream form of T. brucei. Considering that UDP-Glc plays such a central role in carbohydrate metabolism, we decided to characterize UDP-Glc biosynthesis in T. brucei. We identified and characterized the parasite UDP-glucose pyrophosphorylase (TbUGP), responsible for the formation of UDP-Glc from glucose-1-phosphate and UTP, and localized the enzyme to the peroxisome-like glycosome organelles of the parasite. Recombinant TbUGP was shown to be enzymatically active and specific for glucose-1-phosphate. The high-resolution crystal structure was also solved, providing a framework for the design of potential inhibitors against the parasite enzyme. PMID:20724435

  9. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris.

    PubMed

    Choix, Francisco J; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-05-10

    ADP-glucose pyrophosphorylase (AGPase) regulates starch biosynthesis in higher plants and microalgae. This study measured the effect of the bacterium Azospirillum brasilense on AGPase activity in the freshwater microalga Chlorella vulgaris and formation of starch. This was done by immobilizing both microorganisms in alginate beads, either replete with or deprived of nitrogen or phosphorus and all under heterotrophic conditions, using d-glucose or Na-acetate as the carbon source. AGPase activity during the first 72h of incubation was higher in C. vulgaris when immobilized with A. brasilense. This happened simultaneously with higher starch accumulation and higher carbon uptake by the microalgae. Either carbon source had similar effects on enzyme activity and starch accumulation. Starvation either by N or P had the same pattern on AGPase activity and starch accumulation. Under replete conditions, the population of C. vulgaris immobilized alone was higher than when immobilized together, but under starvation conditions A. brasilense induced a larger population of C. vulgaris. In summary, adding A. brasilense enhanced AGPase activity, starch formation, and mitigation of stress in C. vulgaris. PMID:24576433

  10. A polymorphic motif in the small subunit of ADP-glucose pyrophosphorylase modulates interactions between the small and large subunits.

    PubMed

    Cross, Joanna M; Clancy, Maureen; Shaw, Janine R; Boehlein, Susan K; Greene, Thomas W; Schmidt, Robert R; Okita, Thomas W; Hannah, L Curtis

    2005-02-01

    The heterotetrameric, allosterically regulated enzyme, adenosine-5'-diphosphoglucose pyrophosphorylase (AGPase) catalyzes the rate-limiting step in starch synthesis. Despite vast differences in allosteric properties and a long evolutionary separation, heterotetramers of potato small subunit and maize large subunit have activity comparable to either parent in an Escherichia coli expression system. In contrast, co-expression of maize small subunit with the potato large subunit produces little activity as judged by in vivo activity stain. To pinpoint the region responsible for differential activity, we expressed chimeric maize/potato small subunits in E. coli. This identified a 55-amino acid motif of the potato small subunit that is critical for glycogen production when expressed with the potato large subunit. Potato and maize small subunit sequences differ at five amino acids in this motif. Replacement experiments revealed that at least four amino acids of maize origin were required to reduce staining. An AGPase composed of a chimeric potato small subunit containing the 55-amino acid maize motif with the potato large subunit exhibited substantially less affinity for the substrates, glucose-1-phosphate and ATP and an increased Ka for the activator, 3-phosphoglyceric acid. Placement of the potato motif into the maize small subunit restored glycogen synthesis with the potato large subunit. Hence, a small polymorphic motif within the small subunit influences both catalytic and allosteric properties by modulating subunit interactions. PMID:15686515

  11. Regulatory properties of ADP glucose pyrophosphorylase are required for adjustment of leaf starch synthesis in different photoperiods.

    PubMed

    Mugford, Sam T; Fernandez, Olivier; Brinton, Jemima; Flis, Anna; Krohn, Nicole; Encke, Beatrice; Feil, Regina; Sulpice, Ronan; Lunn, John E; Stitt, Mark; Smith, Alison M

    2014-12-01

    Arabidopsis (Arabidopsis thaliana) leaves synthesize starch faster in short days than in long days, but the mechanism that adjusts the rate of starch synthesis to daylength is unknown. To understand this mechanism, we first investigated whether adjustment occurs in mutants lacking components of the circadian clock or clock output pathways. Most mutants adjusted starch synthesis to daylength, but adjustment was compromised in plants lacking the GIGANTEA or FLAVIN-BINDING, KELCH REPEAT, F BOX1 components of the photoperiod-signaling pathway involved in flowering. We then examined whether the properties of the starch synthesis enzyme adenosine 5'-diphosphate-glucose pyrophosphorylase (AGPase) are important for adjustment of starch synthesis to daylength. Modulation of AGPase activity is known to bring about short-term adjustments of photosynthate partitioning between starch and sucrose (Suc) synthesis. We found that adjustment of starch synthesis to daylength was compromised in plants expressing a deregulated bacterial AGPase in place of the endogenous AGPase and in plants containing mutant forms of the endogenous AGPase with altered allosteric regulatory properties. We suggest that the rate of starch synthesis is in part determined by growth rate at the end of the preceding night. If growth at night is low, as in short days, there is a delay before growth recovers during the next day, leading to accumulation of Suc and stimulation of starch synthesis via activation of AGPase. If growth at night is fast, photosynthate is used for growth at the start of the day, Suc does not accumulate, and starch synthesis is not up-regulated. PMID:25293961

  12. Enhanced stability of maize endosperm ADP-glucose pyrophosphorylase is gained through mutants that alter subunit interactions.

    PubMed

    Greene, T W; Hannah, L C

    1998-10-27

    Temperature lability of ADP-glucose pyrophosphorylase (AGP; glucose-1-phosphate adenylyltransferase; ADP: alpha-D-glucose-1-phosphate adenylyltransferase, EC 2.7.7.27), a key starch biosynthetic enzyme, may play a significant role in the heat-induced loss in maize seed weight and yield. Here we report the isolation and characterization of heat-stable variants of maize endosperm AGP. Escherichia coli cells expressing wild type (WT) Shrunken2 (Sh2), and Brittle2 (Bt2) exhibit a reduced capacity to produce glycogen when grown at 42 degreesC. Mutagenesis of Sh2 and coexpression with WT Bt2 led to the isolation of multiple mutants capable of synthesizing copious amounts of glycogen at this temperature. An increase in AGP stability was found in each of four mutants examined. Initial characterization revealed that the BT2 protein was elevated in two of these mutants. Yeast two-hybrid studies were conducted to determine whether the mutant SH2 proteins more efficiently recruit the BT2 subunit into tetramer assembly. These experiments showed that replacement of WT SH2 with the heat-stable SH2HS33 enhanced interaction between the SH2 and BT2 subunits. In agreement, density gradient centrifugation of heated and nonheated extracts from WT and one of the mutants, Sh2hs33, identified a greater propensity for heterotetramer dissociation in WT AGP. Sequencing of Sh2hs33 and several other mutants identified a His-to-Tyr mutation at amino acid position 333. Hence, a single point mutation in Sh2 can increase the stability of maize endosperm AGP through enhanced subunit interactions. PMID:9789090

  13. Role of starvation genes in the survival of deep subsurface bacterial communities. Final report

    SciTech Connect

    Matin, A.; Schmidt, T.; Caldwell, D.

    1998-11-01

    The investigation dealt with several aspects of subsurface bacterial survival and their nature. Mutants of Pseudomonas putida, a common environmental bacterium with counterparts in the subsurface, were isolated by transposon mutagenesis. These mutants were highly sensitive to starvation stress. Reporter gene fusions also showed that these genes were starvation genes since they were induced several fold when the cultures were started. Since the regulatory religions (promoters) of starvation genes are of interest in bioremediation and in experiments designed to understand the roles of starvation genes in the maintenance of microbial community structure, the promoter of one of these genes (pstarv1, contained in strain MK107) was characterized in detail. As a preliminary to these studies, the growth characteristics of Pseudomonas putida MK1 and MK107 were compared for cells growing in batch cultures or as an attached monolayer in microstat cultures.

  14. Pine Gene Discovery Project - Final Report - 08/31/1997 - 02/28/2001

    SciTech Connect

    Whetten, R. W.; Sederoff, R. R.; Kinlaw, C.; Retzel, E.

    2001-04-30

    Integration of pines into the large scope of plant biology research depends on study of pines in parallel with study of annual plants, and on availability of research materials from pine to plant biologists interested in comparing pine with annual plant systems. The objectives of the Pine Gene Discovery Project were to obtain 10,000 partial DNA sequences of genes expressed in loblolly pine, to determine which of those pine genes were similar to known genes from other organisms, and to make the DNA sequences and isolated pine genes available to plant researchers to stimulate integration of pines into the wider scope of plant biology research. Those objectives have been completed, and the results are available to the public. Requests for pine genes have been received from a number of laboratories that would otherwise not have included pine in their research, indicating that progress is being made toward the goal of integrating pine research into the larger molecular biology research community.

  15. Transposon tagging of disease resistance genes. Final report, May 1, 1988--April 30, 1993

    SciTech Connect

    Michelmore, R.

    1994-09-01

    The goal of this project was to develop a transposon mutagenesis system for lettuce and to clone and characterize disease resistance genes by transposon tagging. The majority of studies were conducted with the Ac/Ds System. Researchers made and tested several constructs as well as utilized constructions shown to be functional in other plant species. Researchers demonstrated movement of Ac and DS in lettuce; however, they transposed at much lower frequencies in lettuce than in other plant species. Therefore, further manipulation of the system, particularly for flower specific expression of transposase, is required before a routine transposon system is available for lettuce. Populations of lettuce were generated and screened to test for the stability of resistance genes and several spontaneous mutations were isolated. Researchers also identified a resistance gene mutant in plants transformed with a Ds element and chimeric transposase gene. This is currently being characterized in detail.

  16. Structure and expression of nuclear genes encoding rubisco activase. Final technical report

    SciTech Connect

    Zielinski, R.E.

    1994-06-01

    Rubisco activase (Rca) is a soluble chloroplast protein that catalyzes the activation of rubisco, the enzyme that initiates the photosynthetic carbon reduction cycle, to catalytic competency. Rca in barley consists of three polypeptides, one of 46- and two of 42-kDa, but the quaternary structure of the protein is not known. The authors have isolated and completely sequenced 8.8 kb of barley genomic DNA containing two, tandemly oriented activase genes (RcaA and RcaB) and three different cDNAs encoding the 42- and 46-kDa Rca polypeptide isoforms. Genomic Southern blot assays indicate that these sequences represent the entire Rca gene family in barley. Pre-mRNAs transcribed from the RcaA gene are alternatively spliced to give mRNAs encoding both 46- (RcaA1) and 42-kDa (RcaA2) Rca isoforms. The RcaB gene encodes a single polypeptide of 42 kDa. Primer extension and northern blot assays indicate that RcaB mRNA is expressed at a level that is 10- to 100-fold lower than RcaA mRNA. Analyses at the mRNA and protein level showed that Rca gene expression is coordinated by that of the rubisco subunits during barley leaf development.

  17. Characterization of embryo-specific genes. Final report, April 1, 1987--March 31, 1992

    SciTech Connect

    Sung, R.

    1992-06-12

    The objective of the proposed research is to characterize the function and regulation of a set of embryonic genes which are expressed in the embryos, not in the plants. 22 cDNA clones were isolated from a cDNA library we constructed using mRNAS of -carrot somatic embryos. These cDNA clones identified mRNA species that are present in the somatic and zygotic embryos, but not in adult plants. The sequence of all 22cDNA clones were determined; genomic clones for three cDNA clones, DC8, DC59, and DC49 were isolated and gene sequences determined. DC8, DC49, and several other genes identified by the cDNA sequences belong to the category of late embryogenesis abundant protein genes, Lea. The function of these gens have not yet been determined, but they share common structural features, are regulated by ABA and are speculated to play a role in seed desiccation.

  18. Genetic analysis of the regulation of TCH gene expression, Final Report

    SciTech Connect

    Braam, Janet

    2008-10-28

    The Arabidopsis TCH genes, originally isolated as a consequence of their upregulation in response to the mechanical stimulus of touch, are also upregulated by a variety of seemingly disparate environmental and hormonal stimuli. To gain insight into the complexities of TCH gene regulation, a number of approaches were taken. Regulatory elements responsible for regulation were identified and characteristics of the regulation were evaluated. Reporter genes were used to monitor expression localization and dynamics. Microarray analyses of genome-wide expression behavior indicated that touch-inducible gene expression is more widespread than generally appreciated. Identification of all touch-regulated genes shed light on the types of cellular processes that may be altered in response to mechanical stress perturbations. Expression of the TCH2 gene, also called CML24, encoding a calmodulin (CaM)-like (CML) protein, was evaluated. CML24 shares over 40% amino acid sequence identity with CaM, has 4 EF hands and undergoes a Ca2+-dependent change in migration rate through denaturing gel electrophoresis, indicating that CML24 binds Ca2+ and, as a consequence, undergoes conformational changes. CML24 expression occurs in all major organs and is induced from 2- to 15-fold in plants subjected to touch, darkness, heat, cold, hydrogen peroxide, abscisic acid (ABA) and indole-3-acetic acid. The putative CML24 regulatory region confers reporter expression at sites of predicted mechanical stress, in regions undergoing growth, in vascular tissues and various floral organs and in stomata, trichomes and hydathodes. CML24 underexpressing transgenics are resistant to ABA inhibition of germination and seedling growth, defective in long-day induction of flowering, and have enhanced tolerance to CoCl2, molybdic acid, ZnSO4 and MgCl2. These data present evidence that CML24 encodes a potential Ca2+ sensor that may function to enable responses to ABA, day length and presence of various salts. Further

  19. Final Report [Function of the Arabidopsis TIR1 gene in auxin response

    SciTech Connect

    Estelle, Mark

    2000-12-18

    During this grant period substantial progress was made in the characterization of the TIR1 gene in Arabidopsis. Studies showed that the TIR1 protein is part of a protein complex that includes AtCUL1, ASK1 and RBX1. This complex, called SCF-TIR1, functions in the ubiquitin-mediated protein degradation pathway. Our work is the first report of an SCF complex in a plant system. The results of our studies are described in more detail in the report together with a publication resulting from this study.

  20. Imprinted genes and transpositions: epigenomic targets for low dose radiation effects. Final report

    SciTech Connect

    Jirtle, Randy L.

    2012-10-11

    The overall hypothesis of this grant application is that low dose ionizing radiation (LDIR) elicits adaptive responses in part by causing heritable DNA methylation changes in the epigenome. This novel postulate was tested by determining if the level of DNA methylation at the Agouti viable yellow (A{sup vy}) metastable locus is altered, in a dose-dependent manner, by low dose radiation exposure (<10 cGy) during early gestation. This information is particularly important to ascertain given the increased use of CT scans in disease diagnosis, increased number of people predicted to live and work in space, and the present concern about radiological terrorism. We showed for the first time that LDIR significantly increased DNA methylation at the A{sup vy} locus in a sex-specific manner (p=0.004). Average DNA methylation was significantly increased in male offspring exposed to doses between 0.7 cGy and 7.6 cGy with maximum effects at 1.4 cGy and 3.0 cGy (p<0.01). Offspring coat color was concomitantly shifted towards pseudoagouti (p<0.01). Maternal dietary antioxidant supplementation mitigated both the DNA methylation changes and coat color shift in the irradiated offspring (p<0.05). Thus, LDIR exposure during gestation elicits epigenetic alterations that lead to positive adaptive phenotypic changes that are negated with antioxidants, indicating they are mediated in part by oxidative stress. These findings provide evidence that in the isogenic Avy mouse model epigenetic alterations resulting from LDIR play a role in radiation hormesis, bringing into question the assumption that every dose of radiation is harmful. Our findings not only have significant implications concerning the mechanism of hormesis, but they also emphasize the potential importance of this phenomenon in determining human risk at low radiation doses. Since the epigenetic regulation of genes varies markedly between species, the effect of LDIR on other epigenetically labile genes (e.g. imprinted genes) in

  1. A Novel, Photosynthesis-Associated Thioredoxin-Like Gene: Final Technical Report

    SciTech Connect

    Collier, Jackie, L

    2005-09-13

    ''. These results are consistent with a role for TxlA in the synthesis of the cytochrome b6f complex, which is required for both photosynthetic and respiratory electron transport in cyanobacteria. In contrast, our PCC 7942 mutants in which the C-terminal domain of TxlA was removed are viable and appear to have normal cytochrome content, but have a subtle pigmentation phenotype (increased content of phycocyanin relative to chlorophyll) that depends on both light and CO2 availability. We have also found that PCC 6803 Sll1980 inactivation mutant merodiploids have a similar pigmentation phenotype to the PCC 7942 C-terminal truncation mutants when grown photoautotrophically. In addition, when grown heterotrophically the PCC 6803 Sll1980 inactivation mutant merodiploids remain green instead of turning a golden color like the wild-type, and they are more sensitive to the b6f complex inhibitor DBMIB than is wild type PCC 6803. That the PCC 6803 Sll1980 inactivation mutant merodiploids have these phenotypes despite the fact that they still contain normal copies of the sll1980 gene suggests that the presence of truncated Sll1980 protein interferes with the function of normal Sll1980 protein. Together, these physiological data suggest that TxlA has an essential redox role in cyanobacteria, perhaps a biosynthetic one, and may also have a nonessential regulatory role reflected in the phenotypes of the PCC 7942 C-terminal truncation mutants and the PCC 6803 Sll1980 inactivation mutant merodiploids.

  2. Correlation of Activities of the Enzymes α-Phosphoglucomutase, UDP-Galactose 4-Epimerase, and UDP-Glucose Pyrophosphorylase with Exopolysaccharide Biosynthesis by Streptococcus thermophilus LY03

    PubMed Central

    Degeest, Bart; De Vuyst, Luc

    2000-01-01

    The effects of different carbohydrates or mixtures of carbohydrates as substrates on bacterial growth and exopolysaccharide (EPS) production were studied for the yoghurt starter culture Streptococcus thermophilus LY03. This strain produces two heteropolysaccharides with the same monomeric composition (galactose and glucose in the ratio 4:1) but with different molecular masses. Lactose and glucose were fermented by S. thermophilus LY03 only when they were used as sole energy and carbohydrate sources. Fructose was also fermented when it was applied in combination with lactose or glucose. Both the amount of EPS produced and the carbohydrate source consumption rates were clearly influenced by the type of energy and carbohydrate source used, while the EPS monomeric composition remained constant (galactose-glucose, 4:1) under all circumstances. A combination of lactose and glucose resulted in the largest amounts of EPS. Measurements of the activities of enzymes involved in EPS biosynthesis, and of those involved in sugar nucleotide biosynthesis and the Embden-Meyerhof-Parnas pathway, demonstrated that the levels of activity of α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase are highly correlated with the amount of EPS produced. Furthermore, a weaker relationship or no relationship between the amounts of EPS and the enzymes involved in either the rhamnose nucleotide synthetic branch of the EPS biosynthesis or the pathway leading to glycolysis was observed for S. thermophilus LY03. PMID:10919816

  3. The potato tuber, maize endosperm and a chimeric maize-potato ADP-glucose pyrophosphorylase exhibit fundamental differences in Pi inhibition.

    PubMed

    Boehlein, Susan K; Shaw, Janine R; McCarty, Donald R; Hwang, Seon-Kap; Stewart, Jon D; Hannah, L Curtis

    2013-09-15

    ADP-glucose pyrophosphorylase (AGPase) is highly regulated by allosteric effectors acting both positively and negatively. Enzymes from various sources differ, however, in the mechanism of allosteric regulation. Here, we determined how the effector, inorganic phosphate (Pi), functions in the presence and absence of saturating amounts of the activator, 3-phosphoglyceric acid (3-PGA). This regulation was examined in the maize endosperm enzyme, the oxidized and reduced forms of the potato tuber enzyme as well as a small subunit chimeric AGPase (MP), which contains both maize endosperm and potato tuber sequences paired with a wild-type maize large subunit. These data, combined with our previous kinetic studies of these enzymes led to a model of Pi inhibition for the various enzymes. The Pi inhibition data suggest that while the maize enzyme contains a single effector site that binds both 3-PGA and Pi, the other enzymes exhibit more complex behavior and most likely have at least two separate interacting binding sites for Pi. The possible physiological implications of the differences in Pi inhibition distinguishing the maize endosperm and potato tuber AGPases are discussed. PMID:23906662

  4. Heat stability of maize endosperm ADP-glucose pyrophosphorylase is enhanced by insertion of a cysteine in the N terminus of the small subunit.

    PubMed

    Linebarger, Carla R Lyerly; Boehlein, Susan K; Sewell, Aileen K; Shaw, Janine; Hannah, L Curtis

    2005-12-01

    ADP-glucose pyrophosphorylase (AGPase) is a key regulatory enzyme in starch biosynthesis. However, plant AGPases differ in several parameters, including spatial and temporal expression, allosteric regulation, and heat stability. AGPases of cereal endosperms are heat labile, while those in other tissues, such as the potato (Solanum tuberosum) tuber, are heat stable. Sequence comparisons of heat-stable and heat-labile AGPases identified an N-terminal motif unique to heat-stable enzymes. Insertion of this motif into recombinant maize (Zea mays) endosperm AGPase increased the half-life at 58 degrees C more than 70-fold. Km values for physiological substrates were unaffected, although Kcat was doubled. A cysteine within the inserted motif gives rise to small subunit homodimers not found in the wild-type maize enzyme. Placement of this N-terminal motif into a mosaic small subunit containing the N terminus from maize endosperm and the C terminus from potato tuber AGPase increases heat stability more than 300-fold. PMID:16299180

  5. Evolution of regulatory genes governing biodegradation in acinetobacter calcoaceticus. Final report, 15 July 1991-31 December 1994

    SciTech Connect

    Ornston, L.N.

    1995-02-22

    The Acinetobacter calcoaceticus pca-qui-pob supraoperonic gene cluster encodes bacterial enzymes that metabolize aromatic and hydroaromatic compounds in the environment. Our investigation is directed to understanding how mutation, gene rearrangement and selection contributed to evolution of the transcriptional controls exercised over genes in the cluster. The complete nucleotide sequence of the 18 kbp gene cluster has been determined, and genetic manipulations have been used to explore mechanisms contributing to expression of the genes. The results reveal that structural gene expression is governed by complex interactions between the products of different regulatory genes some of which share common ancestry. Additional controls appear to be exercised by compartmentation of some catabolic enzymes outside the inner cell membrane. Recombination appears to have made a major contribution to the evolution of existing control mechanisms, and their maintenance may be influence by continuing recombination. Contributions of recombination to mutation and repair are under investigation as are specific molecular mechanisms underlying transcriptional controls.

  6. Regulatory Properties of ADP Glucose Pyrophosphorylase Are Required for Adjustment of Leaf Starch Synthesis in Different Photoperiods1[W][OPEN

    PubMed Central

    Mugford, Sam T.; Fernandez, Olivier; Brinton, Jemima; Flis, Anna; Krohn, Nicole; Encke, Beatrice; Feil, Regina; Sulpice, Ronan; Lunn, John E.; Stitt, Mark; Smith, Alison M.

    2014-01-01

    Arabidopsis (Arabidopsis thaliana) leaves synthesize starch faster in short days than in long days, but the mechanism that adjusts the rate of starch synthesis to daylength is unknown. To understand this mechanism, we first investigated whether adjustment occurs in mutants lacking components of the circadian clock or clock output pathways. Most mutants adjusted starch synthesis to daylength, but adjustment was compromised in plants lacking the GIGANTEA or FLAVIN-BINDING, KELCH REPEAT, F BOX1 components of the photoperiod-signaling pathway involved in flowering. We then examined whether the properties of the starch synthesis enzyme adenosine 5′-diphosphate-glucose pyrophosphorylase (AGPase) are important for adjustment of starch synthesis to daylength. Modulation of AGPase activity is known to bring about short-term adjustments of photosynthate partitioning between starch and sucrose (Suc) synthesis. We found that adjustment of starch synthesis to daylength was compromised in plants expressing a deregulated bacterial AGPase in place of the endogenous AGPase and in plants containing mutant forms of the endogenous AGPase with altered allosteric regulatory properties. We suggest that the rate of starch synthesis is in part determined by growth rate at the end of the preceding night. If growth at night is low, as in short days, there is a delay before growth recovers during the next day, leading to accumulation of Suc and stimulation of starch synthesis via activation of AGPase. If growth at night is fast, photosynthate is used for growth at the start of the day, Suc does not accumulate, and starch synthesis is not up-regulated. PMID:25293961

  7. Site-directed mutagenesis of Lysine{sup 382}, the activator-binding site, of ADP-Glucose pyrophosphorylase from Anabaena PCC 6120

    SciTech Connect

    Sheng, Jun; Charng, Yee-yung; Preiss, J.

    1996-03-05

    Previous studies have shown that a highly conserved lysyl residue (Lys{sup 419}) near the C-terminus of Anabaena ADP-glucose pyrophosphorylase is involved in the binding of 3-P-glycerate, the allosteric activator. Phosphopyridoxylation of the K419R mutant enzyme modified another conserved lysyl residue (Lys{sup 382}), suggesting that this residue might be also located within the activator-binding site. Site-directed mutagenesis of Lys{sup 382} of the Anabaena enzyme was performed to determine the role of this residue. Replacing Lys{sup 382} with either arginine, alanine, or glutamine produced mutant enzymes with apparent affinities for 3-P-glycerate 10-160-fold lower than that of the wild-type enzyme. The glutamic acid mutant enzyme was inhibited by 3-P-glycerate. These mutations had lesser impact on the kinetic constants for the substrates and inhibitor, P{sub i}, and on the thermal stability. These results indicate that both the charge and size of the residue at position 382 influence the binding of 3-P-glycerate. Site-directed mutagenesis was also performed to obtain a K382R-K419R double mutant. The apparent affinity for 3-P-glycerate of this double-mutant enzyme was 104-fold lower than that of the wild-type enzyme, and the specificity for activator of this mutant enzyme was altered. The K382R-K419R enzyme could not be phosphopyridoxylated, suggesting that other lysine residues are not involved in the binding of 3-P-glycerate. 32 refs., 2 figs., 3 tabs.

  8. Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana

    PubMed Central

    Lunn, John E.; Feil, Regina; Hendriks, Janneke H. M.; Gibon, Yves; Morcuende, Rosa; Osuna, Daniel; Scheible, Wolf-Rüdiger; Carillo, Petronia; Hajirezaei, Mohammad-Reza; Stitt, Mark

    2006-01-01

    Tre6P (trehalose 6-phosphate) is implicated in sugar-signalling pathways in plants, but its exact functions in vivo are uncertain. One of the main obstacles to discovering these functions is the difficulty of measuring the amount of Tre6P in plant tissues. We have developed a highly specific assay, using liquid chromatography coupled to MS-Q3 (triple quadrupole MS), to measure Tre6P in the femto-picomole range. The Tre6P content of sucrose-starved Arabidopsis thaliana seedlings in axenic culture increased from 18 to 482 pmol·g−1FW (fresh weight) after adding sucrose. Leaves from soil-grown plants contained 67 pmol·g−1FW at the end of the night, which rose to 108 pmol·g−1FW after 4 h of illumination. Even greater changes in Tre6P content were seen after a 6 h extension of the dark period, and in the starchless mutant, pgm. The intracellular concentration of Tre6P in wild-type leaves was estimated to range from 1 to 15 μM. It has recently been reported that the addition of Tre6P to isolated chloroplasts leads to redox activation of AGPase (ADPglucose pyrophosphorylase) [Kolbe, Tiessen, Schluepmann, Paul, Ulrich and Geigenberger (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 11118–11123]. Using the new assay for Tre6P, we found that rising sugar levels in plants are accompanied by increases in the level of Tre6P, redox activation of AGPase and the stimulation of starch synthesis in vivo. These results indicate that Tre6P acts as a signalling metabolite of sugar status in plants, and support the proposal that Tre6P mediates sucrose-induced changes in the rate of starch synthesis. PMID:16551270

  9. Relative turnover numbers of maize endosperm and potato tuber ADP-glucose pyrophosphorylases in the absence and presence of 3-phosphoglyceric acid.

    PubMed

    Burger, Brian T; Cross, Joanna M; Shaw, Janine R; Caren, Joel R; Greene, Thomas W; Okita, Thomas W; Hannah, L Curtis

    2003-07-01

    Adenosine diphosphate glucose pyrophosphorylase (AGPase; EC 2.7.7.27) synthesizes the starch precursor, ADP-glucose. It is a rate-limiting enzyme in starch biosynthesis and its activation by 3-phosphoglyceric acid (3PGA) and/or inhibition by inorganic phosphate (Pi) are believed to be physiologically important. Leaf, tuber and cereal embryo AGPases are highly sensitive to these effectors, whereas endosperm AGPases are much less responsive. Two hypotheses can explain the 3PGA activation differences. Compared to leaf AGPases, endosperm AGPases (i) lack the marked ability to be activated by 3PGA or (ii) they are less dependent on 3PGA for activity. The absence of purified preparations has heretofore negated answering this question. To resolve this issue, heterotetrameric maize ( Zea mays L.) endosperm and potato ( Solanum tuberosum L.) tuber AGPases expressed in Escherichia coli were isolated and the relative amounts of enzyme protein were measured by reaction to antibodies against a motif resident in both small subunits. Resulting reaction rates of both AGPases are comparable in the presence but not in the absence of 3PGA when expressed on an active-protein basis. We also placed the potato tuber UpReg1 mutation into the maize AGPase. This mutation greatly enhances 3PGA sensitivity of the potato AGPase but it has little effect on the maize AGPase. Thirdly, lysines known to bind 3PGA in potato tuber AGPase, but missing from the maize endosperm AGPase, were introduced into the maize enzyme. These had minimal effect on maize endosperm activity. In conclusion, the maize endosperm AGPase is not nearly as dependent on 3PGA for activity as is the potato tuber AGPase. PMID:14520572

  10. Identification of genes in anonymous DNA sequences. Final report: Report period, 15 April 1993--15 April 1994

    SciTech Connect

    Fields, C.A.

    1994-09-01

    This Report concludes the DOE Human Genome Program project, ``Identification of Genes in Anonymous DNA Sequence.`` The central goals of this project have been (1) understanding the problem of identifying genes in anonymous sequences, and (2) development of tools, primarily the automated identification system gm, for identifying genes. The activities supported under the previous award are summarized here to provide a single complete report on the activities supported as part of the project from its inception to its completion.

  11. Organ-specific gene expression in maize: The P-wr allele. Final report, August 15, 1993--August 14, 1996

    SciTech Connect

    Peterson, T.A.

    1997-06-01

    The ultimate aim of our work is to understand how a regulatory gene produces a specific pattern of gene expression during plant development. Our model is the P-wr gene of maize, which produces a distinctive pattern of pigmentation of maize floral organs. We are investigating this system using a combination of classical genetic and molecular approaches. Mechanisms of organ-specific gene expression are a subject of intense research interest, as it is the operation of these mechanisms during eukaryotic development which determine the characteristics of each organism Allele-specific expression has been characterized in only a few other plant genes. In maize, organ-specific pigmentation regulated by the R, B, and Pl genes is achieved by differential transcription of functionally conserved protein coding sequences. Our studies point to a strikingly different mechanism of organ-specific gene expression, involving post-transcriptional regulation of the regulatory P gene. The novel pigmentation pattern of the P-wr allele is associated with differences in the encoded protein. Furthermore, the P-wr gene itself is present as a unique tandemly amplified structure, which may affect its transcriptional regulation.

  12. Search for genes having TNT degrading capability for bioremediation. Final report, 25 October 1993-18 September 1996

    SciTech Connect

    Dutta, S.K.

    1996-11-22

    Several achievements are made through this initial collaborative project These are: (1) creation of enormous capability at this HBcU in enhancing this research; (2) extensive studies on identification of TNT biotransformation products in several bacterial species and one fungal species; (3) identification of several genes which are capable of catalyzing degradation of metabolites of ThT in several microbial species, particularly in the flingus P. chrysosporiwn; (4) isolation and DNA sequence of these genes for probe development; and (5) PCR amplification of 2,4-DNT gene using P. chrysosporiwn genomic DNA as template; (6) DNA:DNA hybridization, (32)P labeled 2,4-DNT dioxygenase gene (used as probe) to anneal with P. chrysosporiwn genomic DNAs; and (7) selection of proper combination of mixed genotypes of bacteria for very efficient degradation of TNT.

  13. Rice GDP-mannose pyrophosphorylase OsVTC1-1 and OsVTC1-3 play different roles in ascorbic acid synthesis.

    PubMed

    Qin, Hua; Deng, Zaian; Zhang, Chuanyu; Wang, Yayun; Wang, Juan; Liu, Hai; Zhang, Zhili; Huang, Rongfeng; Zhang, Zhijin

    2016-02-01

    GDP-D-mannose pyrophosphorylase (GMPase) catalyzes the synthesis of GDP-D-mannose, which is a precursor for ascorbic acid (AsA) synthesis in plants. The rice genome encodes three GMPase homologs OsVTC1-1, OsVTC1-3 and OsVTC1-8, but their roles in AsA synthesis are unclear. The overexpression of OsVTC1-1 or OsVTC1-3 restored the AsA synthesis of vtc1-1 in Arabidopsis, while that of OsVTC1-8 did not, indicating that only OsVTC1-1 and OsVTC1-3 are involved in AsA synthesis in rice. Similar to Arabidopsis VTC1, the expression of OsVTC1-1 was high in leaves, induced by light, and inhibited by dark. Unlike OsVTC1-1, the expression level of OsVTC1-3 was high in roots and quickly induced by the dark, while the transcription level of OsVTC1-8 did not show obvious changes under constant light or dark treatments. In OsVTC1-1 RNAi plants, the AsA content of rice leaves decreased, and the AsA production induced by light was limited. In contrast, OsVTC1-3 RNAi lines altered AsA synthesis levels in rice roots, but not in the leaves or under the light/dark treatment. The enzyme activity showed that OsVTC1-1 and OsVTC1-3 had higher GMPase activities than OsVTC1-8 in vitro. Our data showed that, unlike in Arabidopsis, the rice GPMase homologous proteins illustrated a new model in AsA synthesis: OsVTC1-1 may be involved in the AsA synthesis, which takes place in leaves, while OsVTC1-3 may be responsible for AsA synthesis in roots. The different roles of rice GMPase homologous proteins in AsA synthesis may be due to their differences in transcript levels and enzyme activities. PMID:26715595

  14. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  15. Changes in expression of genes encoding gonadotropin subunits and growth hormone/prolactin/somatolactin family hormones during final maturation and freshwater adaptation in prespawning chum salmon.

    PubMed

    Onuma, Takeshi; Kitahashi, Takashi; Taniyama, Shinya; Saito, Daisuke; Ando, Hironori; Urano, Akihisa

    2003-01-01

    The pituitary levels of mRNAs encoding gonadotropin (GTH) subunits (GTH alpha2 and IIbeta), prolactin (PRL), and somatolactin (SL) increased in chum salmon during the last stages of spawning migration. In the present study, changes in pituitary levels of mRNAs encoding GTH alpha2, Ibeta, and IIbeta; growth hormone (GH); PRL; and SL were examined in homing chum salmon of Sanriku stock to clarify whether the changes are associated with final maturation or freshwater (FW) adaptation. In 1993, fish were caught at four areas: off the coast of Sanriku (off-coast), the mouth of Otsuchi Bay (ocean), inside of Otsuchi Bay (bay), and the Otsuchi River (river). In addition, effects of hypoosmotic stimulation by transition from seawater (SW) to FW were examined in 1994 and 1995. The amounts of mRNAs were determined by dot-blot analyses or real-time polymerase chain reactions. The levels of GTH alpha2 and IIbeta mRNAs in the ocean, bay, and river fish were two to five times those in the off-coast fish, and the levels of SL mRNAs in the bay fish were two to four times those in the off-coast fish. The levels of GH and PRL mRNAs in the ocean and bay fish were significantly lower than those in the off-coast fish, and those in the river fish were three to five times those in the ocean and bay fish. In the SW-to-FW transition experiment in 1994, the levels of GTH alpha2, Ibeta, and IIbeta mRNAs transiently increased, whereas changes were insignificant in 1995. The levels of GH, PRL, and SL mRNAs increased in both SW and FW environments, and no apparent effects of SW-to-FW transition were observed. The present study suggests that in prespawning chum salmon, expression of genes encoding GTH alpha2, IIbeta, and SL elevates with final maturation regardless of osmotic environment. Hypoosmotic stimulation by transition from the SW-to-FW environment is not critical to modulate expression of genes for PRL. PRL gene expression can be elevated in SW fish that were sexually almost matured. PMID

  16. (Genetic engineering with a gene encoding a soybean storage protein to identify DNA sequences that control its expression): (Final) Progress report, April 1, 1985--March 31, 1988

    SciTech Connect

    Beachy, R.N.

    1988-01-01

    The goals of the research were to isolate and characterize genomic clones encoding subunits of ..beta..-conglycinin, a soybean seed storage protein. Subsequent to gene isolation the expression of these genes was to be studied via expression in transgenic plants, and the sequences that affect the expression of these genes in transgenic plants was to be identified. An additional goal of the work was to study the chromatin structure of one or more the ..beta..-conglycinin genes. Originally, a single gene (the ..cap alpha..'-subunit gene) was to be studied. In the course of the work, however, we were fortunate to screen a genomic library to find a second member of the gene family, the ..beta..-subunit gene. The identification of this gene adds tremendously to the breadth of the project because, as described previously, its program of gene expression is different than that of the ..cap alpha..'-subunit gene. By using both the ..cap alpha..' and ..beta.. genes we are able to study not only tissue specificity of gene expression, but the differences in temporal regulation of the expression of two members of the gene family. Research is described. 8 refs.

  17. Iron regulation of gene expression in the Bradyrhizobium japonicum/soybean symbiosis. Final technical report, June 1, 1991--May 31, 1995

    SciTech Connect

    Guerinot, M.L.

    1996-02-08

    B.japonicum produces ALA in a reaction catalyzed by the product of the hemA gene. Expression of the gene is affected by iron availability. To address the question of how the 5 prime untranslated region of the hemA transcript is involved in iron regulation, evenly spaced 10bp deletions within the hemA leader region was constructed and effects on hemA-lacZ expression were determined.

  18. Use of differential fluorescence induction and optical trapping to isolate environmentally induced genes.

    PubMed

    Allaway, D; Schofield, N A; Leonard, M E; Gilardoni, L; Finan, T M; Poole, P S

    2001-06-01

    The techniques of differential fluorescence induction (DFI) and optical trapping (OT) have been combined to allow the identification of environmentally induced genes in single bacterial cells. Designated DFI-OT, this technique allows the in situ isolation of genes driving the expression of green fluorescent protein (Gfp) using temporal and spatial criteria. A series of plasmid-based promoter probe vectors (pOT) was developed for the construction of random genomic libraries that are linked to gfpUV or egfp. Bacteria that do not express Gfp on laboratory medium (i.e. non-fluorescent) were inoculated into the environment, and induced genes were detected with a combined fluorescence/optical trapping microscope. Using this selection strategy, rhizosphere-induced genes with homology to thiamine pyrophosphorylase (thiE) and cyclic glucan synthase (ndvB) were isolated. Other genes were expressed late in the stationary phase or as a consequence of surface-dependent growth, including fixND and metX, and a putative ABC transporter of putrescine. This strategy provides a unique ability to combine spatial, temporal and physical information to identify environmental regulation of bacterial gene expression. PMID:11472504

  19. Effects of elevated ammonium on glycosylation gene expression in CHO cells.

    PubMed

    Chen, Peifeng; Harcum, Sarah W

    2006-03-01

    The negative effects of ammonium on recombinant protein productivity and glycosylation have been well documented, but the interaction of ammonium on glycosylation genes has not been completely elucidated. In this study, the effects of elevated ammonium on 12 glycosylation related genes in Chinese hamster ovary cells were evaluated by quantitative real time reverse transcriptase polymerase chain reaction. Numerous cytosol and endoplasmic reticulum (ER) localized genes associated with early glycosylation steps were insensitive to the ammonium condition. The initial expression of uridine diphosphate (UDP)-galactose transporter was higher for the ammonium-treated culture, while the initial expressions of cytosine monophosphate (CMP)-sialic acid transporter, beta(1,4)-galactosyltransferase, and UDP-glucose pyrophosphorylase were higher for the control culture. alpha(2,3)-sialyltransferase was observed to have lower expression level under the elevated ammonium condition compared to the control culture. This study indicates that galactosylation and sialylation inhibition is mainly due to decreased gene expression of galactosyltransferase, sialyltransferase, and CMP-sialic acid transporter and not due to sialidase. These unbalanced initial glycosylation and branching steps can explain the higher molecular heterogeneity under ammonium stress. Moreover, this study indicates that elevated ammonium has limited effects on the glycosylation genes associated with the ER and cytosol compared to the genes associated with the Golgi. PMID:16380282

  20. Final Scientific/Technical Report for DOE Award No. DE-FG02-03ER15426: Role of Arabidopsis PINHEAD gene in meristem function

    SciTech Connect

    Dr. M. Kathryn Barton

    2011-11-29

    The shoot apical meristems of land plants are small mounds of hundreds of cells located at the tips of branches. It is from these small clusters of cells that essentially all above ground plant biomass and therefore much of our energy supply originates. Several key genes have been discovered that are necessary for cells in the shoot apical meristem to take on stem cell properties. The goal of this project is to understand how the synthesis and accumulation of the mRNAs and proteins encoded by these genes is controlled. A thorough understanding of the molecules that control the growth of shoot apical meristems in plants will help us to manipulate food, fiber and biofuel crops to better feed, clothe and provide energy for humans.

  1. Horizontal gene transfer as adaptive response to heavy metal stress in subsurface microbial communities. Final report for period October 15, 1997 - October 15, 2000

    SciTech Connect

    Smets, B. F.

    2001-12-21

    Horizontal gene transfer as adaptive response to heavy metal stress in the presence of heavy metal stress was evaluated in oligotrophic subsurface soil laboratory scale microcosms. Increasing levels of cadmium (10, 100 and 1000 mM) were applied and an E. coli donor was used to deliver the target plasmids, pMOL187 and pMOL222, which contained the czc and ncc operons, and the helper plasmid RP4. Plasmid transfer was evaluated through monitoring of the heavy metal resistance and presence of the genes. The interactive, clearly revealed, effect of biological and chemical external factors on the extent of plasmid-DNA propagation in microbial communities in contaminated soil environments was observed in this study. Additionally, P.putida LBJ 415 carrying a suicide construct was used to evaluate selective elimination of a plasmid donor.

  2. Starch Synthesis in Arabidopsis Is Achieved by Spatial Cotranscription of Core Starch Metabolism Genes1[W][OA

    PubMed Central

    Tsai, Huang-Lung; Lue, Wei-Ling; Lu, Kuan-Jen; Hsieh, Ming-Hsiun; Wang, Shue-Mei; Chen, Jychian

    2009-01-01

    Starch synthesis and degradation require the participation of many enzymes, occur in both photosynthetic and nonphotosynthetic tissues, and are subject to environmental and developmental regulation. We examine the distribution of starch in vegetative tissues of Arabidopsis (Arabidopsis thaliana) and the expression of genes encoding core enzymes for starch synthesis. Starch is accumulated in plastids of epidermal, mesophyll, vascular, and root cap cells but not in root proper cells. We also identify cells that can synthesize starch heterotrophically in albino mutants. Starch synthesis in leaves is regulated by developmental stage and light. Expression of gene promoter-β-glucuronidase fusion constructs in transgenic seedlings shows that starch synthesis genes are transcriptionally active in cells with starch synthesis and are inactive in root proper cells except the plastidial phosphoglucose isomerase. In addition, ADG2 (for ADPG PYROPHOSPHORYLASE2) is not required for starch synthesis in root cap cells. Expression profile analysis reveals that starch metabolism genes can be clustered into two sets based on their tissue-specific expression patterns. Starch distribution and expression pattern of core starch synthesis genes are common in Arabidopsis and rice (Oryza sativa), suggesting that the regulatory mechanism for starch metabolism genes may be conserved evolutionarily. We conclude that starch synthesis in Arabidopsis is achieved by spatial coexpression of core starch metabolism genes regulated by their promoter activities and is fine-tuned by cell-specific endogenous and environmental controls. PMID:19759345

  3. Final report: FASEB Summer Research Conference on ''Post-transcriptional control of gene expression: Effectors of mRNA decay'' [agenda and attendees list

    SciTech Connect

    Maquat, Lynne

    2002-12-01

    The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryotic nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?

  4. [Language gene].

    PubMed

    Takahashi, Hiroshi

    2006-11-01

    The human capacity for acquiring speech and language must derive, at least in part, from the genome. Recent advance in the field of molecular genetics finally discovered 'Language Gene'. Disruption of FOXP2 gene, the firstly identified 'language gene' causes severe speech and language disorder. To elucidate the anatomical basis of language processing in the brain, we examined the expression pattern of FOXP2/Foxp2 genes in the monkey and rat brains through development. We found the preferential expression of FOXP2/Foxp2 in the striosomal compartment of the developing striatum. Thus, we suggest the striatum, particularly striosomal system may participate in neural information processing for language and speech. Our suggestion is consistent with the declarative/ procedural model of language proposed by Ullman (1997, 2001), which the procedural memory-dependent mental grammar is rooted in the basal ganglia and the frontal cortex, and the declarative memory-dependent mental lexicon is rooted in the temporal lobe. PMID:17432197

  5. Final Report Grant No. DE-FG02-98ER20307 Lipopolysaccharide Structures and Genes Required for Root Nodule Development August 1, 2004 to July 31, 2008

    SciTech Connect

    Noel, K. Dale

    2008-12-07

    the roles of other important bacterial factors at multiple stages of nodule development. The project also investigated the biosynthesis of this bacterial factor. It has a complex structure and the first accomplishment was the determination of the sequences of genetic regions known to be important. Next the discovered genes were mutated to identify the 26 that are required for its synthesis. In addition, six others were discovered that are believed to change its structure under various environmental conditions. By studying mutants affected in specific genes, genes were associated with each of the predicted steps in the biosynthesis. Current work is testing the predicted biosynthetic model with studies conducted in vitro with bacterial extracts. Overall, the work funded by this grant establishes this system as a model for host-bacterial interactions based on specific polysaccharide structure. All areas that are needed for a comprehensive model have been significantly advanced: the biological function, the structural features that are crucial, the complete set of bacterial genes involved, and a model for the biosynthesis.

  6. Genes and Gene Therapy

    MedlinePlus

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  7. Genes and Gene Therapy

    MedlinePlus

    ... a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  8. Comparative evolution of the recA gene of surface and deep subsurface microorganisms (an evolutionary clock of intermediate rate). Final report

    SciTech Connect

    Miller, R.V.

    1998-04-01

    Because of the ability of the recA protein product to maintain both DNA integrity and increase genetic diversity, this gene may be essential to the survival of microorganisms following the damaging effects of numerous environmental stresses such as exposure to solar UV radiation, exposure to gamma radiation, starvation, and changing environments. While the various activities and amino-acid sequence of recA have been highly conserved among the eubacteria and archaea, little is known as to whether a strict structure-function relationship has been conserved. In other words, are the same regions of this highly plastic, functionally heterogeneous protein involved in the same catalytic capacities throughout the bacterial kingdom? While it is reasonable to assume that this type of conservation has also occurred, we felt it necessary to test the assumption by demonstrating that mutations in different genera of bacteria which eliminate similar functions (i.e., lead to similar phenotypes) are caused by changes in the amino-acid sequence in the same regions of their recA proteins. Therefore, we located the changes in nucleotide sequence in two recA mutants of P. aeruginosa which displayed mutant phenotypes in recombination and UV resistance. Our assumption was that if structure-function relationships held, these mutations would be found in areas already identified as essential for the function of the E. coli recA protein.

  9. miR-199a-5p inhibits monocyte/macrophage differentiation by targeting the activin A type 1B receptor gene and finally reducing C/EBPα expression.

    PubMed

    Lin, Hai-Shuang; Gong, Jia-Nan; Su, Rui; Chen, Ming-Tai; Song, Li; Shen, Chao; Wang, Fang; Ma, Yan-Ni; Zhao, Hua-Lu; Yu, Jia; Li, Wei-Wei; Huang, Li-Xia; Xu, Xin-Hua; Zhang, Jun-Wu

    2014-12-01

    miRNAs are short, noncoding RNAs that regulate expression of target genes at post-transcriptional levels and function in many important cellular processes, including differentiation, proliferation, etc. In this study, we observed down-regulation of miR-199a-5p during monocyte/macrophage differentiation of HL-60 and THP-1 cells, as well as human CD34(+) HSPCs. This down-regulation of miR-199a-5p resulted from the up-regulation of PU.1 that was demonstrated to regulate transcription of the miR-199a-2 gene negatively. Overexpression of miR-199a-5p by miR-199a-5p mimic transfection or lentivirus-mediated gene transfer significantly inhibited monocyte/macrophage differentiation of the cell lines or HSPCs. The mRNA encoding an ACVR1B was identified as a direct target of miR-199a-5p. Gradually increased ACVR1B expression level was detected during monocyte/macrophage differentiation of the leukemic cell lines and HSPCs, and knockdown of ACVR1B resulted in inhibition of monocyte/macrophage differentiation of HL-60 and THP-1 cells, which suggested that ACVR1B functions as a positive regulator of monocyte/macrophage differentiation. We demonstrated that miR-199a-5p overexpression or ACVR1B knockdown promoted proliferation of THP-1 cells through increasing phosphorylation of Rb. We also demonstrated that the down-regulation of ACVR1B reduced p-Smad2/3, which resulted in decreased expression of C/EBPα, a key regulator of monocyte/macrophage differentiation, and finally, inhibited monocyte/macrophage differentiation. PMID:25258381

  10. Final Report

    SciTech Connect

    Balmain, Allan

    2007-03-28

    The specific aims of this project were as follows: Aim 1: Identify mouse genetic loci that affect the survival time of mice post radiation Aim 2: Identify somatic genetic alterations that are indicative of tumor suppressor and oncogene loci involved in radiation-induced cancers. Aim 3: Identify candidate radiation susceptibility genes by gene expression microarray analysis of the radiation response in normal tissues or in tumors from the strains used for aims 1 and 2.

  11. Final Report

    SciTech Connect

    Gurney, Kevin R

    2015-01-12

    This document constitutes the final report under DOE grant DE-FG-08ER64649. The organization of this document is as follows: first, I will review the original scope of the proposed research. Second, I will present the current draft of a paper nearing submission to Nature Climate Change on the initial results of this funded effort. Finally, I will present the last phase of the research under this grant which has supported a Ph.D. student. To that end, I will present the graduate student’s proposed research, a portion of which is completed and reflected in the paper nearing submission. This final work phase will be completed in the next 12 months. This final workphase will likely result in 1-2 additional publications and we consider the results (as exemplified by the current paper) high quality. The continuing results will acknowledge the funding provided by DOE grant DE-FG-08ER64649.

  12. Final Report

    SciTech Connect

    DeTar, Carleton

    2012-12-10

    This document constitutes the Final Report for award DE-FC02-06ER41446 as required by the Office of Science. It summarizes accomplishments and provides copies of scientific publications with significant contribution from this award.

  13. Evolution by gene loss.

    PubMed

    Albalat, Ricard; Cañestro, Cristian

    2016-07-01

    The recent increase in genomic data is revealing an unexpected perspective of gene loss as a pervasive source of genetic variation that can cause adaptive phenotypic diversity. This novel perspective of gene loss is raising new fundamental questions. How relevant has gene loss been in the divergence of phyla? How do genes change from being essential to dispensable and finally to being lost? Is gene loss mostly neutral, or can it be an effective way of adaptation? These questions are addressed, and insights are discussed from genomic studies of gene loss in populations and their relevance in evolutionary biology and biomedicine. PMID:27087500

  14. Improved polysaccharide production in a submerged culture of Ganoderma lucidum by the heterologous expression of Vitreoscilla hemoglobin gene.

    PubMed

    Li, Huan-Jun; Zhang, De-Huai; Yue, Tong-Hui; Jiang, Lu-Xi; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2016-01-10

    Expression of Vitreoscilla hemoglobin (VHb) gene was used to improve polysaccharide production in Ganoderma lucidum. The VHb gene, vgb, under the control of the constitutive glyceraldehyde-3-phosphate dehydrogenase gene promoter was introduced into G. lucidum. The activity of expressed VHb was confirmed by the observation of VHb specific CO-difference spectrum with a maximal absorption at 419 nm for the transformant. The effects of VHb expression on intracellular polysaccharide (IPS) content, extracellular polysaccharide (EPS) production and transcription levels of three genes encoding the enzymes involved in polysaccharide biosynthesis, including phosphoglucomutase (PGM), uridine diphosphate glucose pyrophosphorylase (UGP), and β-1,3-glucan synthase (GLS), were investigated. The maximum IPS content and EPS production in the vgb-bearing G. lucidum were 26.4 mg/100mg dry weight and 0.83 g/L, respectively, which were higher by 30.5% and 88.2% than those of the wild-type strain. The transcription levels of PGM, UGP and GLS were up-regulated by 1.51-, 1.55- and 3.83-fold, respectively, in the vgb-bearing G. lucidum. This work highlights the potential of VHb to enhance G. lucidum polysaccharide production by large scale fermentation. PMID:26603122

  15. A single gene mutation that increases maize seed weight

    SciTech Connect

    Giroux, M.J.; Shaw, J.; Hannah, L.C. |

    1996-06-11

    The maize endosperm-specific gene shrunken2 (Sh2) encodes the large subunit of the heterotetrameric starch synthetic enzyme adenosine diphosphoglucose pyrophosphorylase (AGP; EC 2.7.7.27). Here we exploit an in vivo, site-specific mutagenesis system to create short insertion mutations in a region of the gene known to be involved in the allosteric regulation of AGP. The site-specific mutagen is the transposable element dissociation (Ds). Approximately one-third (8 of 23) of the germinal revertants sequenced restored the wild-type sequence, whereas the remaining revertants contained insertions of 3 or 6 bp. All revertants retained the original reading frame 3 feet to the insertion site and involved the addition of tyrosine and/or serine. Each insertion revertant reduced total AGP activity and the amount of the SH2 protein. The revertant containing additional tyrosine and serine residues increased seed weight 11-18% without increasing or decreasing the percentage of starch. Other insertion revertants lacking an additional serine reduced seed weight. Reduced sensitivity to phosphate, a long-known inhibitor of AGP, was found in the high seed-weight revertant. This alteration is likely universally important since insertion of tyrosine and serine in the potato large subunit of AGP at the comparable position and expression in Escherichia coli also led to a phosphate-insensitive enzyme. These results show that single gene mutations giving rise to increased seed weight, and therefore perhaps yield, are clearly possible in a plant with a long history of intensive and successful breeding efforts. 20 refs., 5 figs., 5 tabs.

  16. Final Report

    SciTech Connect

    Normanly, J.

    1999-11-29

    The primary goal was the characterization of tryptophan (Trp)-independent biosynthesis of the auxin indole-3-acetic acid (IAA). Our work and that of others indicates that indole is a precursor to IAA in a Trp-independent pathway and the objectives of this grant have been the isolation of indole-metabolizing genes from Arabidopsis.

  17. Final Words

    ERIC Educational Resources Information Center

    Bers, Trudy

    2012-01-01

    This final chapter provides observations about institutional research in community colleges derived from the preceding chapters and the issue editors' own experiences. Taken as a whole, the chapters in this issue, as well as the editors' experiences, suggest several observations about institutional research in community colleges. These include the…

  18. Final report

    SciTech Connect

    Susan S. Golden

    2005-03-31

    The originally funded project was geared to pursue research on regulation of photosystem II (PSII) in the cyanobacterium Synechococcus elongatus PCC 7942. We characterized a locus, psfR, (psbA stimulating factor) that affects expression of the psbAI gene, which encodes the PSII protein D1. Over-expression of psfR, which encodes a protein with receiver and pseudo-receiver domains, acts at the promoter region to elevate expression of psbAI and a subset of other loci. We reoriented the remainder of the funding to make a greater impact through completion of a functional genomics project that had been initiated with funding from another agency. The goal is inactivation of each gene individually in the S. elongatus genome, and completion of the entire genome sequence. At the end of the project we will have screened all loci for involvement in circadian rhythms of gene expression and assembled an archived set of clones that can be used to create the mutations to screen for any other phenotype. During the project period we: (1) prepared a functional genomics website for S. elongatus PCC 7942 that posts sequences prior to GenBank release, and presents the strategy and progress for the genomics project (http://www.bio.tamu.edu/synecho/); (2) determined the sequence of and annotated the S. elongatus 46 kb plasmid, pANL; (3) submitted assembled sequences with annotation of 8 cosmid inserts to GenBank (313 kb), with sites of transposon insertions indicated; (4) mutagenized approximately an additional 600 kb of the genome (16 cosmids) and identified sequences flanking the mutations; (5) recombined mutagenesis substrates into the S. elongatus genome to produce gene inactivations (at the sites of transposon insertions) for approximately 415 kb of mutagenized sequence (85% of these have already been screened for circadian phenotypes) (6) identified the clpPIIclpX locus as important in determining circadian period; and (7) demonstrated effectiveness of antisense RNA for decreasing

  19. Final Report

    SciTech Connect

    R. Paul Drake

    2001-11-30

    This final report describes work involving 22 investigators from 11 institutions to explore the dynamics present in supernova explosions by means of experiments on the Omega laser. The specific experiments emphasized involved the unstable expansion of a spherical capsule and the coupling of perturbations at a first interface to a second interface by means of a strong shock. Both effects are present in supernovae. The experiments were performed at Omega and the computer simulations were undertaken at several institutions. B139

  20. Final Report

    SciTech Connect

    Marchant, Gary E.

    2013-04-23

    This is the final report of a two year project entitled "Governing Nanotechnology Risks and Benefits in the Transition to Regulation: Innovative Public and Private Approaches." This project examined the role of new governance or "soft law" mechanisms such as codes of conduct, voluntary programs and partnership agreements to manage the risks of emerging technologies such as nanotechnology. A series of published or in publication papers and book chapters are attached.

  1. Transcriptional Profiles of Hybrid Eucalyptus Genotypes with Contrasting Lignin Content Reveal That Monolignol Biosynthesis-related Genes Regulate Wood Composition

    PubMed Central

    Shinya, Tomotaka; Iwata, Eiji; Nakahama, Katsuhiko; Fukuda, Yujiroh; Hayashi, Kazunori; Nanto, Kazuya; Rosa, Antonio C.; Kawaoka, Akiyoshi

    2016-01-01

    Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected 3-year old hybrid Eucalyptus (Eucalyptus urophylla × Eucalyptus grandis) genotypes (AM063 and AM380) that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0 and 48.2%, α-cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA) and sucrose synthase (SUSY) were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase and xyloglucan endotransglucoxylase than those in AM380. Most monolignol biosynthesis-related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase, cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL). Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF, and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents in Eucalyptus plants. PMID

  2. Transcriptional Profiles of Hybrid Eucalyptus Genotypes with Contrasting Lignin Content Reveal That Monolignol Biosynthesis-related Genes Regulate Wood Composition.

    PubMed

    Shinya, Tomotaka; Iwata, Eiji; Nakahama, Katsuhiko; Fukuda, Yujiroh; Hayashi, Kazunori; Nanto, Kazuya; Rosa, Antonio C; Kawaoka, Akiyoshi

    2016-01-01

    Eucalyptus species constitutes the most widely planted hardwood trees in temperate and subtropical regions. In this study, we compared the transcript levels of genes involved in lignocellulose formation such as cellulose, hemicellulose and lignin biosynthesis in two selected 3-year old hybrid Eucalyptus (Eucalyptus urophylla × Eucalyptus grandis) genotypes (AM063 and AM380) that have different lignin content. AM063 and AM380 had 20.2 and 35.5% of Klason lignin content and 59.0 and 48.2%, α-cellulose contents, respectively. We investigated the correlation between wood properties and transcript levels of wood formation-related genes using RNA-seq with total RNAs extracted from developing xylem tissues at a breast height. Transcript levels of cell wall construction genes such as cellulose synthase (CesA) and sucrose synthase (SUSY) were almost the same in both genotypes. However, AM063 exhibited higher transcript levels of UDP-glucose pyrophosphorylase and xyloglucan endotransglucoxylase than those in AM380. Most monolignol biosynthesis-related isozyme genes showed higher transcript levels in AM380. These results indicate monolignol biosynthesis-related genes may regulate wood composition in Eucalyptus. Flavonoids contents were also observed at much higher levels in AM380 as a result of the elevated transcript levels of common phenylpropanoid pathway genes, phenylalanine ammonium lyase, cinnamate-4-hydroxylase (C4H) and 4-coumarate-CoA ligase (4CL). Secondary plant cell wall formation is regulated by many transcription factors. We analyzed genes encoding NAC, WRKY, AP2/ERF, and KNOX transcription factors and found higher transcript levels of these genes in AM380. We also observed increased transcription of some MYB and LIM domain transcription factors in AM380 compared to AM063. All these results show that genes related to monolignol biosynthesis may regulate the wood composition and help maintain the ratio of cellulose and lignin contents in Eucalyptus plants. PMID

  3. Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice (Oryza sativa L.)

    PubMed Central

    Woo, Mi-Ok; Ham, Tae-Ho; Ji, Hyeon-So; Choi, Min-Seon; Jiang, Wenzhu; Chu, Sang-Ho; Piao, Rihua; Chin, Joong-Hyoun; Kim, Jung-A; Park, Bong Soo; Seo, Hak Soo; Jwa, Nam-Soo; McCouch, Susan; Koh, Hee-Jong

    2008-01-01

    A rice genic male-sterility gene ms-h is recessive and has a pleiotropic effect on the chalky endosperm. After fine mapping, nucleotide sequencing analysis of the ms-h gene revealed a single nucleotide substitution at the 3′-splice junction of the 14th intron of the UDP-glucose pyrophosphorylase 1 (UGPase1; EC2.7.7.9) gene, which causes the expression of two mature transcripts with abnormal sizes caused by the aberrant splicing. An in vitro functional assay showed that both proteins encoded by the two abnormal transcripts have no UGPase activity. The suppression of UGPase by the introduction of a UGPase1-RNAi construct in wild-type plants nearly eliminated seed set because of the male defect, with developmental retardation similar to the ms-h mutant phenotype, whereas overexpression of UGPase1 in ms-h mutant plants restored male fertility and the transformants produced T1 seeds that segregated into normal and chalky endosperms. In addition, both phenotypes were co-segregated with the UGPase1 transgene in segregating T1 plants, which demonstrates that UGPase1 has functional roles in both male sterility and the development of a chalky endosperm. Our results suggest that UGPase1 plays a key role in pollen development as well as seed carbohydrate metabolism. PMID:18182026

  4. Genes involved in the synthesis of the exopolysaccharide methanolan by the obligate methylotroph Methylobacillus sp strain 12S.

    PubMed

    Yoshida, Takako; Ayabe, Yuko; Yasunaga, Masaaki; Usami, Yusuke; Habe, Hiroshi; Nojiri, Hideaki; Omori, Toshio

    2003-02-01

    Methylobacillus sp. strain 12S produces an exopolysaccharide (EPS), methanolan, composed of glucose, mannose and galactose. Twenty-four ORFs flanking a Tn5 insertion site in an EPS-deficient mutant were identified, and 21 genes (epsCBAKLDEFGHIJMNOPQRSTU) were predicted to participate in methanolan synthesis on the basis of the features of the primary sequence. Gene disruption analyses revealed that epsABCEFGIJNOP and epsR are required for methanolan synthesis, whereas epsKD and epsH are not essential. EpsFG and EpsE showed homology with Wzc (chain length regulator) and Wza (export protein) of group 1 capsule-producing Escherichia coli, suggesting that methanolan was synthesized via a Wzy-like biosynthesis system. This possibility was supported by the fact that the putative hydropathy profiles of EpsH and EpsM were similar to those of Wzx and Wzy, which are also involved in the flipping of the repeating unit in the cytoplasmic membrane and the polymerization of the capsule in the Wzy-dependent system. EpsBJNOP and EpsR are probably glycosyltransferases involved in the synthesis of the repeating unit onto the lipid carrier. In particular, EpsB appeared to catalyse the initial transfer of the glucose moiety. On the basis of their predicted location in the cells, it is proposed that EpsI and EpsL are involved in methanolan export to the cell surface. E. coli strains expressing EpsQ, EpsS and EpsT showed enhanced activities of GDP-mannose pyrophosphorylase, UDP-galactose 4-epimerase and UDP-glucose pyrophosphorylase, respectively, revealing that they were responsible for the production of the activated compositional sugars of methanolan. EpsU contains a conserved a lytic transglycosylase motif, indicating that it could participate in the degradation of polysaccharides. EpsA and EpsK, which have conserved DNA-binding and cAMP-binding motifs, respectively, were deduced to be transcriptional regulators. In particular, EpsA seems to positively regulate the transcription of

  5. Final Report

    SciTech Connect

    Freeling, Michael

    2002-07-01

    OAK-B135 Well-studied maize gene Adh1 has been shown to carry tissue-specific, anaerobic induction-specific and pollen-specific information in the sequences near protein-coding sequences.-- The grass ligule network of function proves to be one of the simplest systems of organogenesis known in plants, requiring two specific transcription factors. -- Programmed cell death happens at the maize ligule, and kernels situated ''backwards'' in the ear occur due to timed identity transformations caused during a dosage-sensitive regulatory step. B263

  6. Final Report

    SciTech Connect

    R Paul Drake

    2004-01-12

    OAK-B135 This is the final report from the project Hydrodynamics by High-Energy-Density Plasma Flow and Hydrodynamics and Radiation Hydrodynamics with Astrophysical Applications. This project supported a group at the University of Michigan in the invention, design, performance, and analysis of experiments using high-energy-density research facilities. The experiments explored compressible nonlinear hydrodynamics, in particular at decelerating interfaces, and the radiation hydrodynamics of strong shock waves. It has application to supernovae, astrophysical jets, shock-cloud interactions, and radiative shock waves.

  7. Gene expression of ascorbic acid biosynthesis related enzymes of the Smirnoff-Wheeler pathway in acerola (Malpighia glabra).

    PubMed

    Badejo, Adebanjo A; Fujikawa, Yukichi; Esaka, Muneharu

    2009-04-01

    The Smirnoff-Wheeler (SW) pathway has been proven to be the only significant source of l-ascorbic acid (AsA; vitamin C) in the seedlings of the model plant Arabidopsis thaliana. It is yet uncertain whether the same pathway holds for all other plants and their various organs as AsA may also be synthesized through alternative pathways. In this study, we have cloned some of the genes involved in the SW-pathway from acerola (Malpighia glabra), a plant containing enormous amount of AsA, and examined the expression patterns of these genes in the plant. The AsA contents of acerola leaves were about 8-fold more than that of Arabidopsis with 5-700-fold higher mRNA abundance in AsA-biosynthesizing genes. The unripe fruits have the highest AsA content but the accumulation was substantially repressed as the fruit transitions to maturation. The mRNAs encoding these genes showed correlation in their expression with the AsA contents of the fruits. Although very little AsA was recorded in the seeds the mRNAs encoding all the genes, with the exception of the mitochondrially located L-galactono-1,4-lactone dehydrogenase, were clearly detected in the seeds of the unripe fruits. In young leaves of acerola, the expression of most genes were repressed by the dark and induced by light. However, the expression of GDP-D-mannose pyrophosphorylase similar to that encoded by A. thaliana VTC1 was induced in the dark. The expressions of all the genes surged after 24h following wounding stress on the young leaves. These findings will advance the investigation into the molecular factors regulating the biosynthesis of abundant AsA in acerola. PMID:18952318

  8. Final Report

    SciTech Connect

    Webb, Robert C.; Kamon, Teruki; Toback, David; Safonov, Alexei; Dutta, Bhaskar; Dimitri, Nanopoulos; Pope, Christopher; White, James

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  9. Genes and gene regulation

    SciTech Connect

    MacLean, N.

    1988-01-01

    Genetics has long been a central topic for biologists, and recent progress has captured the public imagination as well. This book addresses questions that are at the leading edge of this continually advancing discipline. In tune with the increasing emphasis on molecular biology and genetic engineering, this text emphasizes the molecular aspects of gene expression, and the evolution of gene sequence organization and control. It reviews the genetic material of viruses, bacteria, and of higher organisms. Cells and organisms are compared in terms of gene numbers, their arrangements within a cell, and the control mechanisms which regulate the activity of genes.

  10. Final Report

    SciTech Connect

    Wessels, B. W.

    2002-08-02

    Final report for program on the study of structure and properties of epitaxial oxide films. The defect structure of epitaxial oxide thin films was investigated. Both binary and complex oxides were studied. Epitaxial oxides were synthesized by organometallic chemical vapor deposition (OMCVD). This technique has been found to be highly versatile for the synthesis of a wide range of epitaxial oxide including dielectrics, ferroelectrics and high T{sub c} superconductors. Systems investigated include the binary oxides ZnO and TiO{sub 2} and ferroelectric oxides BaTiO{sub 3}, BaSrTiO{sub 3} and KNbO{sub 3}. Techniques used to evaluate the defect structure included deep level transient spectroscopy (DLTS), photocapacitance spectroscopy, and photoluminescence (PL) spectroscopy. High purity, stoichiometric oxide films were deposited and their defect structure evaluated. Epitaxial ZnO was deposited at temperatures as low as 250 C. PL indicated only near band edge ultraviolet emission showing that both extrinsic and intrinsic point defects could be significantly lowered in OMCVD derived thin films compared to that of the bulk. This presumably was a result of low deposition temperatures and high purity starting materials. Ferroelectric oxides epitaxial thin films of BaTiO{sub 3} and the solid solution BaSrTiO{sub 3} were synthesized and the defect structure determined. Photocapacitance spectroscopy was developed to quantify electrically active defects in the oxides. Defects with concentrations as low as 10{sup 14} cm{sup -3} were observed and their properties determined. A new model was developed for the electronic transport properties of intrinsic and extrinsic BaTiO{sub 3}. A transport model was proposed whereby conduction in La doped films occurs via hopping in localized states within a pseudogap formed between a lower Hubbard band and the conduction band edge. The influence of the size effect on the ferroelectric phase transition in the thin films was investigated. The

  11. The gap gene network

    PubMed Central

    2010-01-01

    Gap genes are involved in segment determination during the early development of the fruit fly Drosophila melanogaster as well as in other insects. This review attempts to synthesize the current knowledge of the gap gene network through a comprehensive survey of the experimental literature. I focus on genetic and molecular evidence, which provides us with an almost-complete picture of the regulatory interactions responsible for trunk gap gene expression. I discuss the regulatory mechanisms involved, and highlight the remaining ambiguities and gaps in the evidence. This is followed by a brief discussion of molecular regulatory mechanisms for transcriptional regulation, as well as precision and size-regulation provided by the system. Finally, I discuss evidence on the evolution of gap gene expression from species other than Drosophila. My survey concludes that studies of the gap gene system continue to reveal interesting and important new insights into the role of gene regulatory networks in development and evolution. PMID:20927566

  12. Final report

    SciTech Connect

    Dobbs, Fred C.

    2003-01-15

    species of flagellates, Spumella sp. and Bodo sp. (identifications are tentative) were isolated from South Oyster sediments by repetitive serial dilution/extinction method. Protistan cells were cultured with Cereal leaf Prescott medium and pelleted by centrifugation. Protistan DNAs were extracted with a DNA extraction kit (Sigma Co.) and the sequencing of their SSrDNA is underway. Finally, to follow up on our collaboration of Dr. Bill Johnson (Univ. of Utah), one of the co-PIs under the same NABIR umbrella, we are pleased to report we have successfully tested antibody-ferrographic capture of protists (See previous year's report for more background). Polyclonal FITC-conjugated antibody specific for a flagellate, Spumella sp., was produced by Rockland Inc., and we now are able to enumerate that species using ferrographic capture. There are, however, some issues of non-specific staining that remain to be resolved.

  13. Studying Genes

    MedlinePlus

    ... Area What are genes? Genes are sections of DNA that contain instructions for making the molecules—many ... material in an organism. This includes genes and DNA elements that control the activity of genes. Does ...

  14. GeneCards Version 3: the human gene integrator.

    PubMed

    Safran, Marilyn; Dalah, Irina; Alexander, Justin; Rosen, Naomi; Iny Stein, Tsippi; Shmoish, Michael; Nativ, Noam; Bahir, Iris; Doniger, Tirza; Krug, Hagit; Sirota-Madi, Alexandra; Olender, Tsviya; Golan, Yaron; Stelzer, Gil; Harel, Arye; Lancet, Doron

    2010-01-01

    GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73,000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards' unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene's functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite. Database

  15. Comparative Genomic and Phylogenetic Analyses of Gammaproteobacterial glg Genes Traced the Origin of the Escherichia coli Glycogen glgBXCAP Operon to the Last Common Ancestor of the Sister Orders Enterobacteriales and Pasteurellales

    PubMed Central

    Almagro, Goizeder; Viale, Alejandro M.; Montero, Manuel; Rahimpour, Mehdi; Muñoz, Francisco José; Baroja-Fernández, Edurne; Bahaji, Abdellatif; Zúñiga, Manuel; González-Candelas, Fernando; Pozueta-Romero, Javier

    2015-01-01

    Production of branched α-glucan, glycogen-like polymers is widely spread in the Bacteria domain. The glycogen pathway of synthesis and degradation has been fairly well characterized in the model enterobacterial species Escherichia coli (order Enterobacteriales, class Gammaproteobacteria), in which the cognate genes (branching enzyme glgB, debranching enzyme glgX, ADP-glucose pyrophosphorylase glgC, glycogen synthase glgA, and glycogen phosphorylase glgP) are clustered in a glgBXCAP operon arrangement. However, the evolutionary origin of this particular arrangement and of its constituent genes is unknown. Here, by using 265 complete gammaproteobacterial genomes we have carried out a comparative analysis of the presence, copy number and arrangement of glg genes in all lineages of the Gammaproteobacteria. These analyses revealed large variations in glg gene presence, copy number and arrangements among different gammaproteobacterial lineages. However, the glgBXCAP arrangement was remarkably conserved in all glg-possessing species of the orders Enterobacteriales and Pasteurellales (the E/P group). Subsequent phylogenetic analyses of glg genes present in the Gammaproteobacteria and in other main bacterial groups indicated that glg genes have undergone a complex evolutionary history in which horizontal gene transfer may have played an important role. These analyses also revealed that the E/P glgBXCAP genes (a) share a common evolutionary origin, (b) were vertically transmitted within the E/P group, and (c) are closely related to glg genes of some phylogenetically distant betaproteobacterial species. The overall data allowed tracing the origin of the E. coli glgBXCAP operon to the last common ancestor of the E/P group, and also to uncover a likely glgBXCAP transfer event from the E/P group to particular lineages of the Betaproteobacteria. PMID:25607991

  16. GeneCards Version 3: the human gene integrator

    PubMed Central

    Safran, Marilyn; Dalah, Irina; Alexander, Justin; Rosen, Naomi; Iny Stein, Tsippi; Shmoish, Michael; Nativ, Noam; Bahir, Iris; Doniger, Tirza; Krug, Hagit; Sirota-Madi, Alexandra; Olender, Tsviya; Golan, Yaron; Stelzer, Gil; Harel, Arye; Lancet, Doron

    2010-01-01

    GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73 000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards’ unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene’s functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite

  17. UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli.

    PubMed Central

    Böhringer, J; Fischer, D; Mosler, G; Hengge-Aronis, R

    1995-01-01

    The sigma S subunit of RNA polymerase is the master regulator of a regulatory network that controls stationary-phase induction as well as osmotic regulation of many genes in Escherichia coli. In an attempt to identify additional regulatory components in this network, we have isolated Tn10 insertion mutations that in trans alter the expression of osmY and other sigma S-dependent genes. One of these mutations conferred glucose sensitivity and was localized in pgi (encoding phosphoglucose isomerase). pgi::Tn10 strains exhibit increased basal levels of expression of osmY and otsBA in exponentially growing cells and reduced osmotic inducibility of these genes. A similar phenotype was also observed for pgm and galU mutants, which are deficient in phosphoglucomutase and UDP-glucose pyrophosphorylase, respectively. This indicates that the observed effects on gene expression are related to the lack of UDP-glucose (or a derivative thereof), which is common to all three mutants. Mutants deficient in UDP-galactose epimerase (galE mutants) and trehalose-6-phosphate synthase (otsA mutants) do not exhibit such an effect on gene expression, and an mdoA mutant that is deficient in the first step of the synthesis of membrane-derived oligosaccharides, shows only a partial increase in the expression of osmY. We therefore propose that the cellular content of UDP-glucose serves as an internal signal that controls expression of osmY and other sigma S-dependent genes. In addition, we demonstrate that pgi, pgm, and galU mutants contain increased levels of sigma S during steady-state growth, indicating that UDP-glucose interferes with the expression of sigma S itself. PMID:7814331

  18. Progress Report for DOE DE-FG03-98ER20317 ''Regulation of the floral homeotic gene AGAMOUS'' Current and Final Funding Period: September 1, 2002, to December 31, 2002

    SciTech Connect

    Weigel, D.

    2003-03-11

    OAK-B135 Results obtained during this funding period: (1) Phylogenetic footprinting of AG regulatory sequences Sequences necessary and sufficient for AGAMOUS (AG) expression in the center of Arabidopsis flowers are located in the second intron, which is about 3 kb in size. This intron contains binding sites for two transcription factors, LEAFY (LFY) and WUSCHEL (WUS), which are direct activators of AG. We used the new method of phylogenetic shadowing to identify new regulatory elements. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally important for activity of AG regulatory sequences in A. thaliana. (2) Repression of AG by MADS box genes A candidate for repressing AG in the shoot apical meristem has been the MADS box gene FUL, since it is expressed in the shoot apical meristem and since an activated version (FUL:VP16) leads to ectopic AG expression in the shoot apical meristem. However, there is no ectopic AG expression in full single mutants. We therefore started to generate VP16 fusions of several other MADS box genes expressed in the shoot apical meristem, to determine which of these might be candidates for FUL redundant genes. We found that AGL6:VP16 has a similar phenotype as FUL:VP16, suggesting that AGL6 and FUL interact. We are now testing this hypothesis. (3) Two candidate AG regulators, WOW and ULA Because the phylogenetic footprinting project has identified several new candidate regulatory motifs, of which at least one (the CCAATCA motif) has rather strong effects, we had decided to put the analysis of WOW and ULA on hold, and to focus on using the newly identified motifs as tools. We conduct ed yeast one-hybrid screen with two of the conserved motifs, and identified several classes of transcription factors that can interact with them. One of these is encoded by the PAN gene

  19. Verb-Final Typology

    ERIC Educational Resources Information Center

    Ogihara, Saeko

    2010-01-01

    This dissertation is a typological study of verb-final languages, the purpose of which is to examine various grammatical phenomena in verb-final languages to discover whether there are correlations between the final position of the verb and other aspects of grammar. It examines how finality of the verb interacts with argument coding in simple…

  20. Changes in gravity affect gene expression, protein modulation and metabolite pools of arabidopsis

    NASA Astrophysics Data System (ADS)

    Hampp, R.; Martzivanou, M.; Maier, R. M.; Magel, E.

    Callus cultures of Arabidopsis thaliana (cv. Columbia) in Petri dishes / suspension cultures were exposed to altered g-forces by centrifugation (1 to 10 g), klinorotation, and μ g (sounding rocket flights). Using semi-quantitative RT-PCR, transcripts of genes coding for metabolic key enzymes (ADP-glucose pyrophosphorylase, ADPG-PP; ß-amylase, fructose-1,6-bisphosphatase, FBPase; glyceraldehyde-P dehydrogenase, GAPDH; hydroxymethylglutaryl-CoA reductase, HMG; phenylalanine-ammonium-lyase, PAL; PEP carboxylase, PEPC) were used to monitor threshold conditions for g-number (all) and time of exposure (ß-amylase) which led to altered amounts of the gene product. Exposure to approx. 5 g and higher for 1h resulted in altered transcript levels: transcripts of ß-amylase, PAL, and PEPC were increased, those of ADPG-PP decreased, while those of FBPase, GAPDH, and HMG were not affected. This probably indicates a shift from starch synthesis to starch degradation and increased rates of anaplerosis (PEPC: supply of ketoacids for amino acid synthesis). In order to get more information about g-related effects on gene expression, we used a 1h-exposure to 7 g for a microarray analysis. Transcripts of more than 200 genes were significantly increased in amount (ratio 7g / 1g control; 21.6 and larger). They fall into several categories. Transcripts coding for enzymes of major pathways form the largest group (25%), followed by gene products involved in cellular organisation and cell wall formation / rearrangement (17%), signalling, phosphorylation/dephosphorylation (12%), proteolysis and transport (10% each), hormone synthesis plus related events (8%), defense (4%), stress-response (2%), and gravisensing (2%). Many of the alterations are part of a general stress response, but some changes related to the synthesis / rearrangement of cell wall components could be more hyper-g-specific. Using macroarrays with selected genes according to our hypergravity study (metabolism / signalling

  1. Gene expression networks.

    PubMed

    Thomas, Reuben; Portier, Christopher J

    2013-01-01

    With the advent of microarrays and next-generation biotechnologies, the use of gene expression data has become ubiquitous in biological research. One potential drawback of these data is that they are very rich in features or genes though cost considerations allow for the use of only relatively small sample sizes. A useful way of getting at biologically meaningful interpretations of the environmental or toxicological condition of interest would be to make inferences at the level of a priori defined biochemical pathways or networks of interacting genes or proteins that are known to perform certain biological functions. This chapter describes approaches taken in the literature to make such inferences at the biochemical pathway level. In addition this chapter describes approaches to create hypotheses on genes playing important roles in response to a treatment, using organism level gene coexpression or protein-protein interaction networks. Also, approaches to reverse engineer gene networks or methods that seek to identify novel interactions between genes are described. Given the relatively small sample numbers typically available, these reverse engineering approaches are generally useful in inferring interactions only among a relatively small or an order 10 number of genes. Finally, given the vast amounts of publicly available gene expression data from different sources, this chapter summarizes the important sources of these data and characteristics of these sources or databases. In line with the overall aims of this book of providing practical knowledge to a researcher interested in analyzing gene expression data from a network perspective, the chapter provides convenient publicly accessible tools for performing analyses described, and in addition describe three motivating examples taken from the published literature that illustrate some of the relevant analyses. PMID:23086841

  2. Possession, use, and transfer of select agents and toxins--reconstructed replication competent forms of the 1918 pandemic influenza virus containing any portion of the coding regions of all eight gene segments. Interim final rule.

    PubMed

    2005-10-20

    We are adding reconstructed replication competent forms of the 1918 pandemic influenza virus containing any portion of the coding regions of all eight gene segments to the list of HHS select agents and toxins. We are taking this action for several reasons. First the pandemic influenza virus of 1918-19 killed up to 50 million people worldwide, including an estimated 675,000 deaths in the United States. Also, the complete coding sequence for the 1918 pandemic influenza A H1N1 virus was recently identified, which will make it possible for those with knowledge of reverse genetics to reconstruct this virus. In addition, the first published study on a reconstructed 1918 pandemic influenza virus demonstrated the high virulence of this virus in cell culture, embryonated eggs, and in mice relative to other human influenza viruses. Therefore, we have determined that the reconstructed replication competent forms of the 1918 pandemic influenza virus containing any portion of the coding regions of all eight gene segments have the potential to pose a severe threat to public health and safety. PMID:16237858

  3. Delivery of genes into the CF airway.

    PubMed

    Gill, Deborah R; Hyde, Stephen C

    2014-10-01

    Gene therapy was suggested as a potential treatment for cystic fibrosis (CF), even before the identification of the CFTR gene. Initial enthusiasm has been tempered as it became apparent that reintroduction of the CFTR gene into the cells of the lung is more difficult than anticipated. Here, we review the major gene delivery vectors evaluated clinically, and suggest that advances in either plasmid DNA design and/or hybrid lentivirus biology may finally facilitate lung gene transfer with efficiencies sufficient for CF gene therapy to offer clinical benefit. PMID:25015239

  4. Fibrinogen gene regulation.

    PubMed

    Fish, Richard J; Neerman-Arbez, Marguerite

    2012-09-01

    The Aα, Bβ and γ polypeptide chains of fibrinogen are encoded by a three gene cluster on human chromosome four. The fibrinogen genes (FGB-FGA-FGG) are expressed almost exclusively in hepatocytes where their output is coordinated to ensure a sufficient mRNA pool for each chain and maintain an abundant plasma fibrinogen protein level. Fibrinogen gene expression is controlled by the activity of proximal promoters which contain binding sites for hepatocyte transcription factors, including proteins which influence fibrinogen transcription in response to acute-phase inflammatory stimuli. The fibrinogen gene cluster also contains cis regulatory elements; enhancer sequences with liver activities identified by sequence conservation and functional genomics. While the transcriptional control of this gene cluster is fascinating biology, the medical impetus to understand fibrinogen gene regulation stems from the association of cardiovascular disease risk with high level circulating fibrinogen. In the general population this level varies from about 1.5 to 3.5 g/l. This variation between individuals is influenced by genotype, suggesting there are genetic variants contributing to fibrinogen levels which reside in fibrinogen regulatory loci. A complete picture of how fibrinogen genes are regulated will therefore point towards novel sources of regulatory variants. In this review we discuss regulation of the fibrinogen genes from proximal promoters and enhancers, the influence of acute-phase stimulation, post-transcriptional regulation by miRNAs and functional regulatory variants identified in genetic studies. Finally, we discuss the fibrinogen locus in light of recent advances in understanding chromosomal architecture and suggest future directions for researching the mechanisms that control fibrinogen expression. PMID:22836683

  5. Vectors for cancer gene therapy.

    PubMed

    Zhang, J; Russell, S J

    1996-09-01

    Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers. PMID:9034598

  6. Starch biosynthetic genes and enzymes are expressed and active in the absence of starch accumulation in sugar beet tap-root

    PubMed Central

    2014-01-01

    Background Starch is the predominant storage compound in underground plant tissues like roots and tubers. An exception is sugar beet tap-root (Beta vulgaris ssp altissima) which exclusively stores sucrose. The underlying mechanism behind this divergent storage accumulation in sugar beet is currently not fully known. From the general presence of starch in roots and tubers it could be speculated that the lack in sugar beet tap-roots would originate from deficiency in pathways leading to starch. Therefore with emphasis on starch accumulation, we studied tap-roots of sugar beet using parsnip (Pastinaca sativa) as a comparator. Results Metabolic and structural analyses of sugar beet tap-root confirmed sucrose as the exclusive storage component. No starch granules could be detected in tap-roots of sugar beet or the wild ancestor sea beet (Beta vulgaris ssp. maritima). Analyses of parsnip showed that the main storage component was starch but tap-root tissue was also found to contain significant levels of sugars. Surprisingly, activities of four main starch biosynthetic enzymes, phosphoglucomutase, ADP-glucose pyrophosphorylase, starch synthase and starch branching enzyme, were similar in sugar beet and parsnip tap-roots. Transcriptional analysis confirmed expression of corresponding genes. Additionally, expression of genes involved in starch accumulation such as for plastidial hexose transportation and starch tuning functions could be determined in tap-roots of both plant species. Conclusion Considering underground storage organs, sugar beet tap-root upholds a unique property in exclusively storing sucrose. Lack of starch also in the ancestor sea beet indicates an evolved trait of biological importance. Our findings in this study show that gene expression and enzymatic activity of main starch biosynthetic functions are present in sugar beet tap-root during storage accumulation. In view of this, the complete lack of starch in sugar beet tap-roots is enigmatic. PMID

  7. Vet Centers. Final rule.

    PubMed

    2016-03-01

    The Department of Veterans Affairs (VA) adopts as final an interim final rule that amends its medical regulation that governs Vet Center services. The National Defense Authorization Act for Fiscal Year 2013 (the 2013 Act) requires Vet Centers to provide readjustment counseling services to broader groups of veterans, members of the Armed Forces, including a member of a reserve component of the Armed Forces, and family members of such veterans and members. This final rule adopts as final the regulatory criteria to conform to the 2013 Act, to include new and revised definitions. PMID:26934755

  8. Gene networks controlling petal organogenesis.

    PubMed

    Huang, Tengbo; Irish, Vivian F

    2016-01-01

    One of the biggest unanswered questions in developmental biology is how growth is controlled. Petals are an excellent organ system for investigating growth control in plants: petals are dispensable, have a simple structure, and are largely refractory to environmental perturbations that can alter their size and shape. In recent studies, a number of genes controlling petal growth have been identified. The overall picture of how such genes function in petal organogenesis is beginning to be elucidated. This review will focus on studies using petals as a model system to explore the underlying gene networks that control organ initiation, growth, and final organ morphology. PMID:26428062

  9. The Ensembl gene annotation system.

    PubMed

    Aken, Bronwen L; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J; Murphy, Daniel N; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul; Searle, Stephen M J

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail.Database URL: http://www.ensembl.org/index.html. PMID:27337980

  10. The Ensembl gene annotation system

    PubMed Central

    Aken, Bronwen L.; Ayling, Sarah; Barrell, Daniel; Clarke, Laura; Curwen, Valery; Fairley, Susan; Fernandez Banet, Julio; Billis, Konstantinos; García Girón, Carlos; Hourlier, Thibaut; Howe, Kevin; Kähäri, Andreas; Kokocinski, Felix; Martin, Fergal J.; Murphy, Daniel N.; Nag, Rishi; Ruffier, Magali; Schuster, Michael; Tang, Y. Amy; Vogel, Jan-Hinnerk; White, Simon; Zadissa, Amonida; Flicek, Paul

    2016-01-01

    The Ensembl gene annotation system has been used to annotate over 70 different vertebrate species across a wide range of genome projects. Furthermore, it generates the automatic alignment-based annotation for the human and mouse GENCODE gene sets. The system is based on the alignment of biological sequences, including cDNAs, proteins and RNA-seq reads, to the target genome in order to construct candidate transcript models. Careful assessment and filtering of these candidate transcripts ultimately leads to the final gene set, which is made available on the Ensembl website. Here, we describe the annotation process in detail. Database URL: http://www.ensembl.org/index.html PMID:27337980

  11. NARSTO Texas Final Report

    Atmospheric Science Data Center

    2013-03-06

    Final Report for the Texas PM2.5 Sampling and Analysis Study (March 11, ... Tropp,et al, 1998     NOTE: The Final Report is separated into the following PDF files: Section 1: ... Mass and Chemical Composition (PDF) Section 5: Summary, Conclusions, and Recommendations and Section 6 Bibliography (PDF) ...

  12. Gene Therapy

    PubMed Central

    Baum, Bruce J

    2014-01-01

    Applications of gene therapy have been evaluated in virtually every oral tissue, and many of these have proved successful at least in animal models. While gene therapy will not be used routinely in the next decade, practitioners of oral medicine should be aware of the potential of this novel type of treatment that doubtless will benefit many patients with oral diseases. PMID:24372817

  13. Trichoderma genes

    DOEpatents

    Foreman, Pamela; Goedegebuur, Frits; Van Solingen, Pieter; Ward, Michael

    2012-06-19

    Described herein are novel gene sequences isolated from Trichoderma reesei. Two genes encoding proteins comprising a cellulose binding domain, one encoding an arabionfuranosidase and one encoding an acetylxylanesterase are described. The sequences, CIP1 and CIP2, contain a cellulose binding domain. These proteins are especially useful in the textile and detergent industry and in pulp and paper industry.

  14. (Unraveling photosystems: Final report)

    SciTech Connect

    Bogorad, L.

    1987-01-09

    This project addresses the identification and characterization of thylakoid proteins and to understand their organization and function in photosynthesis. One segment of the work is to develop a reliable system for transforming, with foreign DNA, the cyanobacterium Synechocystis 6803 (S. 6803), which carries out oxygenic photosynthesis in the same manner as higher plants do and is a facultative photoheterotroph. The second part of the program deals with identifying photosynthetic genes coded by chloroplast DNA in higher plants. In the course of sequencing maize chloroplast DNA, unidentified open reading frames for proteins have been encountered. The protein products of these genes are found in photosynthetic membranes of chloroplasts and cyanobacteria; in some cases traced to a functional thylakoid complex. To date, two S. 6803 genes corresponding to chloroplast genes for hitherto unrecognized thylakoid proteins have been identified and cloned. Another objective of the development of the transformation-gene deletion-gene replacement system is to be able to study functions of parts of a protein for which an individual gene codes and thus to understand the function of each component of the photosynthetic apparatus and its relationship with other proteins. We have explored the mechanism by which Cu/sup 2 +/ regulates the expression of plastocyanin vs cyt c/sub 552/ in Chlamydomonas rheinhardi. 65 refs.

  15. Final technical report

    SciTech Connect

    Edward DeLong

    2011-10-07

    Our overarching goals in this project were to: Develop and improve high-throughput sequencing methods and analytical approaches for quantitative analyses of microbial gene expression at the Hawaii Ocean Time Series Station and the Bermuda Atlantic Time Series Station; Conduct field analyses following gene expression patterns in picoplankton microbial communities in general, and Prochlorococcus flow sorted from that community, as they respond to different environmental variables (light, macronutrients, dissolved organic carbon), that are predicted to influence activity, productivity, and carbon cycling; Use the expression analyses of flow sorted Prochlorococcus to identify horizontally transferred genes and gene products, in particular those that are located in genomic islands and likely to confer habitat-specific fitness advantages; Use the microbial community gene expression data that we generate to gain insights, and test hypotheses, about the variability, genomic context, activity and function of as yet uncharacterized gene products, that appear highly expressed in the environment. We achieved the above goals, and even more over the course of the project. This includes a number of novel methodological developments, as well as the standardization of microbial community gene expression analyses in both field surveys, and experimental modalities. The availability of these methods, tools and approaches is changing current practice in microbial community analyses.

  16. Cassini's Grand Finale: The Final Orbits

    NASA Astrophysics Data System (ADS)

    Spilker, Linda; Edgington, Scott

    2016-04-01

    The Cassini-Huygens mission, a joint collaboration between NASA, ESA and the Italian Space Agency, is approaching its last year of operations after nearly 12 years in orbit around Saturn. Cassini will send back its final bits of unique data on September 15th, 2017 as it plunges into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Before that time Cassini will continue its legacy of exploration and discovery with 12 close flybys of Titan in 2016 and 2017 that will return new science data as well as sculpt the inclinations and periods of the final orbits. Even though all of our close icy satellite flybys, including those of Enceladus, are now completed, numerous Voyager-class flybys (<100,000 km) of Mimas and Enceladus remain as well as some of our best flybys of the tiny ring moons. Cassini will also continue to study seasonal and temporal changes in the system as northern summer solstice approaches. In November 2016 Cassini will transition to a series of orbits with peripases just outside Saturn's F ring. These 20 orbits will include close flybys of some tiny ring moons and excellent views of the F ring and outer A ring. The 126th and final close flyby of Titan will propel Cassini across Saturn's main rings and into its final orbits. Cassini's Grand Finale, starting in April 2017, is comprised of 22 orbits at an inclination of 63 degrees. Cassini will repeatedly dive between the innermost rings and the upper atmosphere of the planet providing insights into fundamental questions unattainable during the rest of the mission. Cassini will be the first spacecraft to explore this region. These close orbits provide the highest resolution observations of both the rings and Saturn, and direct in situ sampling of the ring particles, composition, plasma, Saturn's exosphere and the innermost radiation belts. Saturn's gravitational field will be measured to unprecedented accuracy, providing information on the interior structure of the planet

  17. Final Technical Report

    SciTech Connect

    Simon Silver

    2009-05-28

    The work done with DOE support during this 15 year period was extensive and successful. It is best summarized by the list of 58 publications (below) which reported progress made with DOE support. These are from the grant period and a few more recent reporting on grant research. Mostly these are primary research reports in reviewed journals. There are also, however, many summary reviews in review journals and in scientific monographs, as they also are key places for reporting research progress. What we did during this grant period (and much longer) was to characterize genetic determinants for bacterial resistances to additional toxic heavy metals of DOE concern, through starting with phenotypic properties of the resistant bacteria to DNA sequence determination and characterization of the genes involved. Over the years (and as shown in the list of publications), the toxic metal-forming elements we have studied included Ag, As, Cd, Cr, and Hg. In each case, we started with basically nothing (or very little) known, progressed through quite detailed understanding, until other laboratory groups also became strongly involved in related studies. More recently, with DOE support, we were the first laboratory group in the world to identify genes for bacterial resistance to silver salts (sil genes) and the closely related silver-and-copper resistance genes cus. This was initially reported in detail in Gupta et al. (1999; see publications list below). We also identified the first toxic metal 'gene island' (multiple transcripts and perhaps 25 genes each in need of detailed study) which encodes the subunits of arsenite oxidase (which we called aso; Silver and Phung, 2005; but most other researchers have subsequently settled on aox for the gene mnemonic). Both of these systems were firsts. Now a few years later, a search on GenBank shows that each is now represented by gene families with more than a dozen examples that have been identified and sequenced. Most of the additional

  18. Final Technical Report

    SciTech Connect

    Stuart B. Levy, M.D.

    2008-07-07

    P. fluorescens PfO-1 is a soil bacterium isolated by this laboratory from sandy loam soil (4). Because of the importance of adhesion for persistence in natural environments, we utilized adherence to sand as an assay to screen a library of PfO-1 mutants for defects in adhesion. Three adhesion defective mutants, PfO-5, PfO-10, and PfO-15 were recovered. PfO-5 and PfO-10 had different insertions in the same gene, which we called adnA, and also showed motility defects (3). PfO-15 was motile, but was hyper-flagellated. The insertion was in a different gene, adnB, which shows similarity to mot genes involved in flagella functions (Strain and Levy, unpublished). These early studies demonstrated the important but separable requirements for flagella and motility in adherence. In a field study, the adnA mutant PfO-5 was less able to persist than the wildtype PfO-1 and did not spread as fast or as far from the point of inoculation as did PfO-1 (7), linking adhesion and soil fitness. DNA sequencing revealed that AdnA shares 82% identity with the flagella regulator FleQ from P. aeruginosa (3). FleQ is required for adhesion of P. aeruginosa to respiratory mucin, which is important for pathogenesis (1, 2). Using a gene fusion approach, seven loci that are expressed in an AdnA-dependent manner were identified (8). The loci were called ''aba'', for affected by AdnA. We uncovered genes involved in motility, chemotaxis, LPS synthesis, and two genes of no known function. Four of the aba genes were not reported to be in the FleQ regulon (5). We recently began using the IVET (in vivo expression technology) promoter-trap to identify genes whose expression is upregulated in soil. We identified 22 sequences (termed iiv for induced in vivo) that are upregulated in sterile soil (9). Ten of these genes are similar to sequences present in genbank, and two sequences are classed as ''hypothetical''. We also found ten iiv genes that are antisense to known genes, providing new insight into genome

  19. Aurora final report

    SciTech Connect

    Robert, Dross; Amedeo, Conti

    2013-12-06

    Final Technical report detailing the work done by Nuvera and its partners to fulfill the goals of the program "Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks" (a.k.a. AURORA)

  20. Final focus test beam

    SciTech Connect

    Not Available

    1991-03-01

    This report discusses the following: the Final Focus Test Beam Project; optical design; magnets; instrumentation; magnetic measurement and BPM calibration; mechanical alignment and stabilization; vacuum system; power supplies; control system; radiation shielding and personnel protection; infrastructure; and administration.

  1. Cassini's Grand Finale

    NASA Astrophysics Data System (ADS)

    Edgington, Scott G.; Spilker, Linda J.

    2016-07-01

    After more than a decade exploring Saturn and its moons, the Cassini mission is in its closing act. Cassini's last year is an encore performance stuffed with science, including a final plunge into Saturn's atmosphere.

  2. Endeavour's Final Voyage

    NASA Video Gallery

    After nearly two decades of achievements in space, Endeavour makes one last reach for the stars on its 25th and final mission, STS-134. This webcast examines the mission to come and explores the st...

  3. Expedition 34 Final Training

    NASA Video Gallery

    The Expedition 34 crew members conduct final training at the Gagarin Cosmonaut Training Center before their Dec. 19 launch to the International Space Station. Flight Engineers Chris Hadfield, Roman...

  4. Detecting sequence homology at the gene cluster level with MultiGeneBlast.

    PubMed

    Medema, Marnix H; Takano, Eriko; Breitling, Rainer

    2013-05-01

    The genes encoding many biomolecular systems and pathways are genomically organized in operons or gene clusters. With MultiGeneBlast, we provide a user-friendly and effective tool to perform homology searches with operons or gene clusters as basic units, instead of single genes. The contextualization offered by MultiGeneBlast allows users to get a better understanding of the function, evolutionary history, and practical applications of such genomic regions. The tool is fully equipped with applications to generate search databases from GenBank or from the user's own sequence data. Finally, an architecture search mode allows searching for gene clusters with novel configurations, by detecting genomic regions with any user-specified combination of genes. Sources, precompiled binaries, and a graphical tutorial of MultiGeneBlast are freely available from http://multigeneblast.sourceforge.net/. PMID:23412913

  5. Genes V.

    SciTech Connect

    Lewin, B.

    1994-12-31

    This fifth edition book encompasses a wide range of topics covering 1,272 pages. The book is arranged into nine parts with a total of 36 chapters. These nine parts include Introduction; DNA as a Store of Information; Translation; Constructing Cells; Control of Prokaryotypic Gene Expression; Perpetuation of DNA; Organization of the Eukaryotypic Genome; Eukaryotypic Transcription and RNA Processing; The Dynamic Genome; and Genes in Development.

  6. 10 CFR 950.37 - Final agreement or final decision.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Final agreement or final decision. 950.37 Section 950.37 Energy DEPARTMENT OF ENERGY STANDBY SUPPORT FOR CERTAIN NUCLEAR PLANT DELAYS Dispute Resolution Process § 950.37 Final agreement or final decision. (a) If the parties reach a Final Agreement on a...

  7. Gene transcription and electromagnetic fields. Final progress report

    SciTech Connect

    Henderson, A.S.

    1992-12-31

    Our overall aim is to obtain sufficient information to allow us to ultimately determine whether ELF EM field exposure is an initiating factor in neoplastic transformation and/or if exposure can mimic characteristics of the second-step counterpart in neoplastic disease. This aim is based on our previous findings that levels of some transcripts are increased in cells exposed to EM fields. While the research is basic in nature, the ramifications have bearing on the general safety of exposure to EM fields in industrial and everyday life. A large array of diverse biological effects are reported to occur as the result of exposure to elf EM fields, suggesting that the cell response to EM fields is at a basic level, presumably initiated by molecular and/or biophysical events at the cell membrane. The hypothesized route is a signal transduction pathway involving membrane calcium fluxes. Information flow resulting from signal transduction can mediate the induction of regulatory factors in the cell, and directly affect how transcription is regulated.

  8. Final Technical Report

    SciTech Connect

    Church, Bruce W

    2008-10-15

    Most prokaryotes of interest to DOE are poorly understood. Even when full genomic sequences are available, the function of only a small number of gene products are clear. The critical question is how to best infer the most probable network architectures in cells that are poorly characterized. The project goal is to create a computational hypothesis testing (CHT) framework that combines large-scale dynamical simulation, a database of bioinformatics-derived probable interactions, and numerical parallel architecture data-fitting routines to explore many “what if ?” hypotheses about the functions of genes and proteins within pathways and their downstream effects on molecular concentration profiles and corresponding phenotypes. From this framework we expect to infer signal transduction pathways and gene expression networks in prokaryotes. Detailed mechanistic models of E. Coli have been developed that directly incorporate DNA sequence information. The CHT framework is implemented in the NIEngine network inference software. NIEngine has been applied to recover gene regulatory networks in E. coli to assess performance. Application to Shewanel la oneidensi and other organism of interest DOE will be conducted in partnership with Jim Collin's Lab at Boston University and other academic partners. The CHT framework has also found broad application in the automated learning of biology for purposes of improving human health.

  9. Gene Electrotransfer: A Mechanistic Perspective.

    PubMed

    Rosazza, Christelle; Meglic, Sasa Haberl; Zumbusch, Andreas; Rols, Marie-Pierre; Miklavcic, Damijan

    2016-01-01

    Gene electrotransfer is a powerful method of DNA delivery offering several medical applications, among the most promising of which are DNA vaccination and gene therapy for cancer treatment. Electroporation entails the application of electric fields to cells which then experience a local and transient change of membrane permeability. Although gene electrotransfer has been extensively studied in in vitro and in vivo environments, the mechanisms by which DNA enters and navigates through cells are not fully understood. Here we present a comprehensive review of the body of knowledge concerning gene electrotransfer that has been accumulated over the last three decades. For that purpose, after briefly reviewing the medical applications that gene electrotransfer can provide, we outline membrane electropermeabilization, a key process for the delivery of DNA and smaller molecules. Since gene electrotransfer is a multipart process, we proceed our review in describing step by step our current understanding, with particular emphasis on DNA internalization and intracellular trafficking. Finally, we turn our attention to in vivo testing and methodology for gene electrotransfer. PMID:27029943

  10. GENIE final state interactions

    NASA Astrophysics Data System (ADS)

    Dytman, Steven

    2015-10-01

    Final state interactions are an important component of any neutrino-nucleus Monte Carlo program. GENIE has 2 FSI programs which serve different purposes. Each has fair-good agreement with a wide range of hadron-nucleus data. Recent improvements and planned advancements are described.

  11. Space Station Final Configuration

    NASA Technical Reports Server (NTRS)

    1994-01-01

    An artist's conception of what the final configuration of the International Space Station (ISS) will look like when it is fully built and deployed. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  12. Final Technical Report

    SciTech Connect

    Gilbert, Chris

    2014-11-13

    The project, Capital Investment to Fund Equipment Purchases and Facility Modifications to Create a Sustainable Future for EnergyXchange served to replace landfill gas energy with alternative energy resources, primarily solar and wood waste. This is the final project closeout report.

  13. Project Adobe. Final Report.

    ERIC Educational Resources Information Center

    Van Curen, Sallie A.

    This final report describes activities and accomplishments of Project Adobe, the New Mexico Parent Training and Information Center, which provides information, support, education and training to families with school-aged children with disabilities in their local communities. Achievements include: (1) completion and printing of a booklet on the…

  14. GENIE final state interactions

    SciTech Connect

    Dytman, Steven

    2015-10-15

    Final state interactions are an important component of any neutrino-nucleus Monte Carlo program. GENIE has 2 FSI programs which serve different purposes. Each has fair-good agreement with a wide range of hadron-nucleus data. Recent improvements and planned advancements are described.

  15. Perception of Final Lengthening.

    ERIC Educational Resources Information Center

    Edwards, Jan; Beckman, Mary

    A series of phonetic production and perception experiments were designed to describe the phonological or phonetic domains of two effects in spoken English: final lengthening, generally interpreted as a mark for the edge of some linguistically-defined unit of speech production, and stress-timed shortening, generally interpreted as evidence for…

  16. Rosetta: The Final Furlong

    NASA Astrophysics Data System (ADS)

    Wright, I. P.; Andrews, D. J.; Barber, S. J.; Sheridan, S.; Morgan, G. H.; Morse, A. D.

    2014-09-01

    By the time of the meeting, the Rosetta spacecraft will have formally arrived at its target comet, and final landing site selection will be in progress. One of the instruments that will be sent down to the surface of the comet is Ptolemy (a GC-MS).

  17. Final Prep on SSME

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Alvin Pittman Sr., lead electronics technician with Pratt & Whitney Rocketdyne, and Janine Cuevas, a mechanical technician with PWR, perform final preparations on the space shuttle main engine tested Oct. 25, 2005, at NASA's Stennis Space Center. It was the first main engine test since Hurricane Katrina hit the Gulf Coast on Aug. 29.

  18. Attention Genes

    ERIC Educational Resources Information Center

    Posner, Michael I.; Rothbart, Mary K.; Sheese, Brad E.

    2007-01-01

    A major problem for developmental science is understanding how the cognitive and emotional networks important in carrying out mental processes can be related to individual differences. The last five years have seen major advances in establishing links between alleles of specific genes and the neural networks underlying aspects of attention. These…

  19. Designer Genes.

    ERIC Educational Resources Information Center

    Miller, Judith; Miller, Mark

    1983-01-01

    Genetic technologies may soon help fill some of the most important needs of humanity from food to energy to health care. The research of major designer genes companies and reasons why the initial mad rush for biotechnology has slowed are reviewed. (SR)

  20. Final Technical Report

    SciTech Connect

    Maxwell, Mike, J., P.E.

    2012-08-30

    The STI product is the Final Technical Report from ReliOn, Inc. for contract award DE-EE0000487: Recovery Act PEM Fuel Cell Systems Providing Emergency Reserve and Backup Power. The program covered the turnkey deployment of 431 ReliOn fuel cell systems at 189 individual sites for AT&T and PG&E with ReliOn functioning as the primary equipment supplier and the project manager. The Final Technical Report provides an executive level summary, a comparison of the actual accomplishments vs. the goals and objectives of the project, as well as a summary of the project activity from the contract award date of August 1, 2009 through the contract expiration date of December 31, 2011. Two photos are included in the body of the report which show hydrogen storage and bulk hydrogen refueling technologies developed as a result of this program.

  1. Caregivers program. Final rule.

    PubMed

    2015-01-01

    The Department of Veterans Affairs (VA) adopts, with changes, the interim final rule concerning VA's Program of Comprehensive Assistance for Family Caregivers. VA administers this program to provide certain medical, travel, training, and financial benefits to caregivers of certain veterans and servicemembers who were seriously injured during service on or after September 11, 2001. Also addressed in this rulemaking is the Program of General Caregiver Support Services that provides support services to caregivers of veterans from all eras who are enrolled in the VA health care system. Specifically, changes in this final rule include a requirement that Veterans be notified in writing should a Family Caregiver request revocation (to no longer be a Family Caregiver), an extension of the application timeframe from 30 days to 45 days for a Family Caregiver, and a change in the stipend calculation to ensure that Primary Family Caregivers do not experience unexpected decreases in stipend amounts from year to year. PMID:25581943

  2. Geolocation Technologies Final Report

    SciTech Connect

    Magnoli, D E

    2003-06-02

    This paper is the final report for LL998 In Situ Sensing Subtask 7 (Geo-location) undertaken for NNSA NA-22 enabling technologies R&D for Counterproliferation Detection. A few state-of-the-art resolution parameters are presented for accelerometers, indoor and outdoor GPS (Global Positioning Satellite) systems, and INSs (Inertial Navigation Systems). New technologies are described, including one which has demonstrated the ability to track within a building to a resolution of under a foot.

  3. Final Technical Report

    SciTech Connect

    Klein, Stephen A.

    2005-10-27

    In this final technical report, a summary of work is provided. Work toward an improved representation of frontal clouds in global climate models occurred. This involved analysis of cloud variability in ARM observations and the careful contrast of single column model solutions with ARM data. In addition, high resolution simulations of frontal clouds were employed to diagnosis processes that are important for the development of frontal clouds.

  4. Production and clinical development of nanoparticles for gene delivery

    PubMed Central

    Chen, Jie; Guo, Zhaopei; Tian, Huayu; Chen, Xuesi

    2016-01-01

    Gene therapy is a promising strategy for specific treatment of numerous gene-associated human diseases by intentionally altering the gene expression in pathological cells. A successful clinical application of gene-based therapy depends on an efficient gene delivery system. Many efforts have been attempted to improve the safety and efficiency of gene-based therapies. Nanoparticles have been proved to be the most promising vehicles for clinical gene therapy due to their tunable size, shape, surface, and biological behaviors. In this review, the clinical development of nanoparticles for gene delivery will be particularly highlighted. Several promising candidates, which are closest to clinical applications, will be briefly reviewed. Then, the recent developments of nanoparticles for clinical gene therapy will be identified and summarized. Finally, the development of nanoparticles for clinical gene delivery in future will be prospected. PMID:27088105

  5. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    PubMed Central

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  6. The MHC class I genes of zebrafish

    PubMed Central

    Dirscherl, Hayley; McConnell, Sean C.; Yoder, Jeffrey A.; de Jong, Jill L. O.

    2014-01-01

    Major histocompatibility complex (MHC) molecules play a central role in the immune response and in the recognition of non-self. Found in all jawed vertebrate species, including zebrafish and other teleosts, MHC genes are considered the most polymorphic of all genes. In this review we focus on the multi-faceted diversity of zebrafish MHC class I genes, which are classified into three sequence lineages: U, Z, and L. We examine the polygenic, polymorphic, and haplotypic diversity of the zebrafish MHC class I genes, discussing known and postulated functional differences between the different class I lineages. In addition, we provide the first comprehensive nomenclature for the L lineage genes in zebrafish, encompassing at least 15 genes, and characterize their sequence properties. Finally, we discuss how recent findings have shed new light on the remarkably diverse MHC loci of this species. PMID:24631581

  7. Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner

    PubMed Central

    Yin, Yong-Gen; Kobayashi, Yoshie; Sanuki, Atsuko; Kondo, Satoru; Fukuda, Naoya; Ezura, Hiroshi; Sugaya, Sumiko; Matsukura, Chiaki

    2010-01-01

    Salinity stress enhances sugar accumulation in tomato (Solanum lycopersicum) fruits. To elucidate the mechanisms underlying this phenomenon, the transport of carbohydrates into tomato fruits and the regulation of starch synthesis during fruit development in tomato plants cv. ‘Micro-Tom’ exposed to high levels of salinity stress were examined. Growth with 160 mM NaCl doubled starch accumulation in tomato fruits compared to control plants during the early stages of development, and soluble sugars increased as the fruit matured. Tracer analysis with 13C confirmed that elevated carbohydrate accumulation in fruits exposed to salinity stress was confined to the early development stages and did not occur after ripening. Salinity stress also up-regulated sucrose transporter expression in source leaves and increased activity of ADP-glucose pyrophosphorylase (AGPase) in fruits during the early development stages. The results indicate that salinity stress enhanced carbohydrate accumulation as starch during the early development stages and it is responsible for the increase in soluble sugars in ripe fruit. Quantitative RT-PCR analyses of salinity-stressed plants showed that the AGPase-encoding genes, AgpL1 and AgpS1 were up-regulated in developing fruits, and AgpL1 was obviously up-regulated by sugar at the transcriptional level but not by abscisic acid and osmotic stress. These results indicate AgpL1 and AgpS1 are involved in the promotion of starch biosynthesis under the salinity stress in ABA- and osmotic stress-independent manners. These two genes are differentially regulated at the transcriptional level, and AgpL1 is suggested to play a regulatory role in this event. PMID:19995825

  8. Metagenomics and novel gene discovery

    PubMed Central

    Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin

    2014-01-01

    Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics. PMID:24317337

  9. Genes and Hearing Loss

    MedlinePlus

    ... Meeting Calendar Find an ENT Doctor Near You Genes and Hearing Loss Genes and Hearing Loss Patient ... mutation may only have dystopia canthorum. How Do Genes Work? Genes are a road map for the ...

  10. Service dogs. Final rule.

    PubMed

    2012-09-01

    The Department of Veterans Affairs (VA) amends its regulations concerning veterans in need of service dogs. Under this final rule, VA will provide to veterans with visual, hearing, or mobility impairments benefits to support the use of a service dog as part of the management of such impairments. The benefits include assistance with veterinary care, travel benefits associated with obtaining and training a dog, and the provision, maintenance, and replacement of hardware required for the dog to perform the tasks necessary to assist such veterans. PMID:22950145

  11. Final Technical Report

    SciTech Connect

    Sobecky, Patricia A; Taillefert, Martial

    2013-03-29

    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.

  12. The biology of novel animal genes: Mouse APEX gene knockout

    SciTech Connect

    MacInnes, M.; Altherr, M.R.; Ludwig, D.; Pedersen, R.; Mold, C.

    1997-07-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The controlled breeding of novel genes into mice, including the gene knockout (KO), or conversely by adding back transgenes provide powerful genetic technologies that together suffice to determine in large part the biological role(s) of novel genes. Inbred mouse remains the best understood and most useful mammalian experimental system available for tackling the biology of novel genes. The major mammalian apurinic/apyrimidinic (AP) endonuclease (APE), is involved in a key step in the repair of spontaneous and induced AP sites in DNA. Efficient repair of these lesions is imperative to prevent the stable incorporation of mutations into the cellular genome which may lead to cell death or transformation. Loss or modulation of base excison repair activity in vivo may elevate the spontaneous mutation rate in cells, and may lead to a substantial increase in the incidence of cancer. Despite extensive biochemical analysis, however, the significance of these individual APE functions in vivo has not been elucidated. Mouse embryonic stem (ES) cells heterozygous for a deletion mutation in APE have been generated and whole animals containing the APE mutation have been derived from these ES cells. Animals homozygous for the APE null mutation die early in gestation, underscoring the biological significance of this DNA repair gene.

  13. Final Technical Report

    SciTech Connect

    John M. Davis

    2005-03-31

    The forest products industry consumes large amounts of energy. Understanding how genetic variation in trees actually controls the characteristics of wood, the major raw material utilized by the industry, is an opportunity for energy savings. For companies that are vertically integrated (i.e., have both tree production and processing operations), energy savings can accrue for both production and processing. Tree production demands nitrogen fertilizers, the manufacture of which is highly energy intensive. Wood processing for paper product manufacturing requires digestion and bleaching, both of which are more efficient when the lignin content of wood is reduced. This project identified genes involved in utilization of nitrogen from fertilizer, and the coupling of nitrogen demand to lignin content, establishing a framework for reducing tree nitrogen demand per unit carbon gained. This creates opportunities for genetic manipulation of trees for greater energy efficiency.

  14. Final Progress Report

    SciTech Connect

    Josef Michl

    2011-10-31

    In this project we have established guidelines for the design on organic chromophores suitable for producing high triplet yields via singlet fission. We have proven their utility by identifying a chromophore of a structural class that had never been examined for singlet fission before, 1,3-diphenylisobenzofuran, and demonstrating in two independent ways that a thin layer of this material produces a triplet yield of 200% within experimental error. We have also designed a second chromophore of a very different type, again of a structural class that had not been examined for singlet fission before, and found that in a thin layer it produces a 70% triplet yield. Finally, we have enhanced the theoretical understanding of the quantum mechanical nature of the singlet fission process.

  15. Final Meeting of NACA

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Final meeting of National Advisory Committee for Aeronautics, August 21, 1958. After the launch of the Soviet Union's Sputnik I satellite in October 1957, the United States realized that it needed a space program to keep up with the technological advancements made by the Soviets. On July 29, 1958, President Dwight D. Eisenhower signed Public Law 85-568 and established the National Aeronautics and Space Administration (NASA). T. Keith Glennan was sworn in as the first Administrator of NASA on August 19, 1958, and by October 1, the official effective date of the new agency, the National Advisory Committee for Aeronautics (NACA) was absorbed by NASA. Left to right: T. Keith Glennan, NASA Administrator; Mr. Preston R. Bassett, member of the NACA Committee on Aerodynamics; Mr. Charles J. McCarthy, Chairman of the Board, Chance Vought Aircraft, Inc.

  16. FINAL/ SCIENTIFIC TECHNICAL REPORT

    SciTech Connect

    McDonald, Henry; Singh, Suminderpal

    2006-08-28

    The overall objective of the Chattanooga fuel cell demonstrations project was to develop and demonstrate a prototype 5-kW grid-parallel, solid oxide fuel cell (SOFC) system that co-produces hydrogen, based on Ion America’s technology. The commercial viability of the 5kW SOFC system was tested by transporting, installing and commissioning the SOFC system at the Alternative Energy Laboratory at the University of Tennessee – Chattanooga. The system also demonstrated the efficiency and the reliability of the system running on natural gas. This project successfully contributed to the achievement of DOE technology validation milestones from the Technology Validation section of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan. Results of the project can be found in the final technical report.

  17. AIPM Final Report

    SciTech Connect

    John Mookken

    2006-06-30

    The final AIPM project report consists of six sections. Each section includes information on the original AIPM project and extension work on the high temperature design. The first section (1) provides an overview of the program and highlights the significant targets to meet at the end of the program. The next section (2) summarizes the significant technical accomplishments by the SEMIKRON AIPM team during the course of the project. Greater technical details are provided in a collection of all the quarterly reports which can be found in the appendix. Section three (3) presents some the more significant technical data collected from technology demonstrators. Section four (4) analyzes the manufacturing cost or economic aspects of producing 100,000 units/yr. Section five (5) describes the commercialization efforts of the AIPM technology into the automotive market. The last section (6) recommends follow on work that will build on the efforts and achievements of the AIPM program.

  18. Final Scientific EFNUDAT Workshop

    ScienceCinema

    None

    2011-10-06

    The Final Scientific EFNUDAT Workshop - organized by the CERN/EN-STI group on behalf of n_TOF Collaboration - will be held at CERN, Geneva (Switzerland) from 30 August to 2 September 2010 inclusive.EFNUDAT website: http://www.efnudat.euTopics of interest include: Data evaluationCross section measurementsExperimental techniquesUncertainties and covariancesFission propertiesCurrent and future facilities  International Advisory Committee: C. Barreau (CENBG, France)T. Belgya (IKI KFKI, Hungary)E. Gonzalez (CIEMAT, Spain)F. Gunsing (CEA, France)F.-J. Hambsch (IRMM, Belgium)A. Junghans (FZD, Germany)R. Nolte (PTB, Germany)S. Pomp (TSL UU, Sweden) Workshop Organizing Committee: Enrico Chiaveri (Chairman)Marco CalvianiSamuel AndriamonjeEric BerthoumieuxCarlos GuerreroRoberto LositoVasilis Vlachoudis Workshop Assistant: Géraldine Jean

  19. Final Technical Report

    SciTech Connect

    John Tanis

    2005-11-25

    This document comprises the final technical report for atomic collisions research supported by DOE grant No. DE-FG02-87ER13778 from September 1, 2001 through August 31, 2004. The research involved the experimental investigation of excitation and charge-changing processes occurring in ion-atom and ion-molecule collisions. Major emphases of the study were: (1) interference effects resulting from coherent electron emission in H2, (2) production of doubly vacant K-shell (hollow ion) states due to electron correlation, and (3) formation of long-lived metastable states in electron transfer processes. During the period of the grant, this research resulted in 23 publications, 12 invited presentations, and 39 contributed presentations at national and international meetings and other institutions. Brief summaries of the completed research are presented below.

  20. Final cook temperature monitoring

    NASA Astrophysics Data System (ADS)

    Stewart, John; Matthews, Michael; Glasco, Marc

    2006-04-01

    Fully cooked, ready-to-eat products represent one of the fastest growing markets in the meat and poultry industries. Modern meat cooking facilities typically cook chicken strips and nuggets at rates of 6000 lbs per hour, and it is a critical food safety issue to ensure the products on these lines are indeed fully cooked. Common practice now employs oven technicians to constantly measure final cook temperature with insertion-type thermocouple probes. Prior research has demonstrated that thermal imagery of chicken breasts and other products can be used to predict core temperature of products leaving an oven. In practice, implementation of a system to monitor core temperature can be difficult for several reasons. First, a wide variety of products are typically produced on the same production line and the system must adapt to all products. Second, the products can be often hard to find because they often leave the process in random order and may be touching or even overlapping. Another issue is finite measurement time which is typically only a few seconds. Finally, the system is subjected to a rigorous sanitation cycle and must hold up under wash down conditions. To address these problems, a calibrated 320x240 micro-bolometer camera was used to monitor the temperature of formed, breaded poultry products on a fully cooked production line for a period of one year. The study addressed the installation and operation of the system as well as the development of algorithms used to identify the product on a cluttered conveyor belt. It also compared the oven tech insertion probe measurements to the non-contact monitoring system performance.

  1. Compare Gene Profiles

    SciTech Connect

    2014-05-31

    Compare Gene Profiles (CGP) performs pairwise gene content comparisons among a relatively large set of related bacterial genomes. CGP performs pairwise BLAST among gene calls from a set of input genome and associated annotation files, and combines the results to generate lists of common genes, unique genes, homologs, and genes from each genome that differ substantially in length from corresponding genes in the other genomes. CGP is implemented in Python and runs in a Linux environment in serial or parallel mode.

  2. Final Technical Report

    SciTech Connect

    Aristos Aristidou Natureworks); Robert Kean; Tom Schechinger; Stuart Birrell; Jill Euken

    2007-10-01

    The two main objectives of this project were: 1) to develop and test technologies to harvest, transport, store, and separate corn stover to supply a clean raw material to the bioproducts industry, and 2) engineer fermentation systems to meet performance targets for lactic acid and ethanol manufacturers. Significant progress was made in testing methods to harvest corn stover in a “single pass” harvest mode (collect corn grain and stover at the same time). This is technically feasible on small scale, but additional equipment refinements will be needed to facilitate cost effective harvest on a larger scale. Transportation models were developed, which indicate that at a corn stover yield of 2.8 tons/acre and purchase price of $35/ton stover, it would be unprofitable to transport stover more than about 25 miles; thus suggesting the development of many regional collection centers. Therefore, collection centers should be located within about 30 miles of the farm, to keep transportation costs to an acceptable level. These collection centers could then potentially do some preprocessing (to fractionate or increase bulk density) and/or ship the biomass by rail or barge to the final customers. Wet storage of stover via ensilage was tested, but no clear economic advantages were evident. Wet storage eliminates fire risk, but increases the complexity of component separation and may result in a small loss of carbohydrate content (fermentation potential). A study of possible supplier-producer relationships, concluded that a “quasi-vertical” integration model would be best suited for new bioproducts industries based on stover. In this model, the relationship would involve a multiyear supply contract (processor with purchase guarantees, producer group with supply guarantees). Price will likely be fixed or calculated based on some formula (possibly a cost plus). Initial quality requirements will be specified (but subject to refinement).Producers would invest in harvest

  3. Cyclodextrins in non-viral gene delivery.

    PubMed

    Lai, Wing-Fu

    2014-01-01

    Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides. They consist of (α-1,4)-linked glucose units, and possess a basket-shaped topology with an "inner-outer" amphiphilic character. Over the years, substantial efforts have been undertaken to investigate the possible use of CDs in drug delivery and controlled drug release, yet the potential of CDs in gene delivery has received comparatively less discussion in the literature. In this article, we will first discuss the properties of CDs for gene delivery, followed by a synopsis of the use of CDs in development and modification of non-viral gene carriers. Finally, areas that are noteworthy in CD-based gene delivery will be highlighted for future research. Due to the application prospects of CDs, it is anticipated that CDs will continue to emerge as an important tool for vector development, and will play significant roles in facilitating non-viral gene delivery in the forthcoming decades. PMID:24103652

  4. Application of multidisciplinary analysis to gene expression.

    SciTech Connect

    Wang, Xuefel; Kang, Huining; Fields, Chris; Cowie, Jim R.; Davidson, George S.; Haaland, David Michael; Sibirtsev, Valeriy; Mosquera-Caro, Monica P.; Xu, Yuexian; Martin, Shawn Bryan; Helman, Paul; Andries, Erik; Ar, Kerem; Potter, Jeffrey; Willman, Cheryl L.; Murphy, Maurice H.

    2004-01-01

    Molecular analysis of cancer, at the genomic level, could lead to individualized patient diagnostics and treatments. The developments to follow will signal a significant paradigm shift in the clinical management of human cancer. Despite our initial hopes, however, it seems that simple analysis of microarray data cannot elucidate clinically significant gene functions and mechanisms. Extracting biological information from microarray data requires a complicated path involving multidisciplinary teams of biomedical researchers, computer scientists, mathematicians, statisticians, and computational linguists. The integration of the diverse outputs of each team is the limiting factor in the progress to discover candidate genes and pathways associated with the molecular biology of cancer. Specifically, one must deal with sets of significant genes identified by each method and extract whatever useful information may be found by comparing these different gene lists. Here we present our experience with such comparisons, and share methods developed in the analysis of an infant leukemia cohort studied on Affymetrix HG-U95A arrays. In particular, spatial gene clustering, hyper-dimensional projections, and computational linguistics were used to compare different gene lists. In spatial gene clustering, different gene lists are grouped together and visualized on a three-dimensional expression map, where genes with similar expressions are co-located. In another approach, projections from gene expression space onto a sphere clarify how groups of genes can jointly have more predictive power than groups of individually selected genes. Finally, online literature is automatically rearranged to present information about genes common to multiple groups, or to contrast the differences between the lists. The combination of these methods has improved our understanding of infant leukemia. While the complicated reality of the biology dashed our initial, optimistic hopes for simple answers from

  5. Final project report

    SciTech Connect

    Nitin S. Baliga and Leroy Hood

    2008-11-12

    The proposed overarching goal for this project was the following: Data integration, simulation and visualization will facilitate metabolic and regulatory network prediction, exploration, and formulation of hypotheses. We stated three specific aims to achieve the overarching goal of this project: (1) Integration of multiple levels of information such as mRNA and protein levels, predicted protein-protein interactions/associations and gene function will enable construction of models describing environmental response and dynamic behavior. (2) Flexible tools for network inference will accelerate our understanding of biological systems. (3) Flexible exploration and queries of model hypotheses will provide focus and reveal novel dependencies. The underlying philosophy of these proposed aims is that an iterative cycle of experiments, experimental design, and verification will lead to a comprehensive and predictive model that will shed light on systems level mechanisms involved in responses elicited by living systems upon sensing a change in their environment. In the previous years report we demonstrated considerable progress in development of data standards, regulatory network inference and data visualization and exploration. We are pleased to report that several manuscripts describing these procedures have been published in top international peer reviewed journals including Genome Biology, PNAS, and Cell. The abstracts of these manuscripts are given and they summarize our accomplishments in this project.

  6. Final Technical Report

    SciTech Connect

    Judy D. Wall

    2009-02-27

    Bioremediation of radionuclides and metals in the subsurface necessitate an understanding of the metabolic capacities and interactions of the anaerobic microorganisms that are found there, including members of the sulfate-reducing bacteria (SRB). Genetic investigation into the pathway of reductant flow to U(VI) in the SRB belonging to the genus Desulfovibrio has been the focus of this project. In Dv. desulfuricans strain G20, we confirmed the importance of the tetraheme cytochrome c3 by disruption of the gene encoding that cytochrome, cycA, and demonstrated a decrease in the ability of the mutant (I2) to reduce U(VI). We found that the cytochrome c3 was necessary for electrons from pyruvate to reach sulfate or fumarate as terminal electron acceptors. It was not needed for electrons from lactate to reach sulfate, from which we infer that a different pathway is used for the electrons from these two substrates. Cyrstal structure of the tetraheme cytochrome c3 was obtained and site-directed mutations of the protein indicated a binding site for metals at heme 4 of the structure. Kinetic studies for oxidation of reduced cytochrome c3 with U(VI) or molybdate revealed a preference for U(VI) as a substrate. Evidence for a role for sodium gradients in the energetic scheme for this soil organism was obtained.

  7. Electrocatalytic hydrocracking. Final report

    SciTech Connect

    Vaart, D.R. van der

    1992-06-01

    This report describes an electrocatalytic method for the chemical addition of hydrogen to a model hydrocarbon compound. In the method, hydrogen formed by water electrolysis at the counter electrode of an electrochemical cell is delivered via conduction through a proton-conducting solid electrolyte. The working electrode of the cell is, at the same time, a hydrocracking catalyst and therefore promotes the reaction of the hydrogen with the hydrocarbon. This process would have clear and distinct advantages over conventional hydroprocessing technologies in that the hydrogen concentration at the catalyst surface could be controlled and maintained by the applied electromotive force. This control would allow operation of the electrocatalytic reactor at ambient pressures instead of the extremely high hydrogen partial pressures required of conventional reactors. In addition, the direct delivery of hydrogen to the catalyst surface should inhibit coke formation and thus prolong the life of the catalyst. Finally, hydrogen utilization efficiencies should be greatly improved since the hydrogen is delivered directly to the reaction site thereby eliminating hydrogen solubility loss in the effluent stream. This report details the demonstration of (a) the ability of a solid electrolyte to perform as a catalyst, (b) the conduction of hydrogen through a solid electrolyte and (c) the simultaneous exploitation of these two properties. Hence, the essential concept of electrocatalytic hydrocracking has been demonstrated. An objective of future work in this area should be to determine whether the hydrocracking or hydrogenation reactions are actually enhanced during the electrocatalytic process when compared to the conventional catalytic process.

  8. Final Technical Report

    SciTech Connect

    Velasco, Mayda

    2013-11-01

    This work is focused on the design and construction of novel beam diagnostic and instrumentation for charged particle accelerators required for the next generation of linear colliders. Our main interest is in non-invasive techniques. The Northwestern group of Velasco has been a member of the CLIC Test Facility 3 (CTF3) collaboration since 2003, and the beam instrumentation work is developed mostly at this facility1. This 4 kW electron beam facility has a 25-170 MeV electron LINAC. CTF3 performed a set of dedicated measurements to finalize the development of our RF-Pickup bunch length detectors. The RF-pickup based on mixers was fully commissioned in 2009 and the RF-pickup based on diodes was finished in time for the 2010-11 data taking. The analysis of all the data taken in by the summer of 2010 was finish in time and presented at the main conference of the year, LINAC 2010 in Japan.

  9. Final Technical Report

    SciTech Connect

    Alexander Fridman

    2005-06-01

    This DOE project DE-FC36-04GO14052 ''Plasma Pilot Plant Test for Treating VOC Emissions from Wood Products Plants'' was conducted by Drexel University in cooperation with Georgia-Pacific (G-P) and Kurchatov Institute (KI). The objective of this project was to test the Plasma Pilot Plant capabilities in wood industry. The final goal of the project was to replace the current state-of-the-art, regenerative thermal oxidation (RTO) technology by Low-Temperature Plasma Technology (LTPT) in paper and wood industry for Volatile Organic Components (VOC) destruction in High Volume Low Concentration (HVLC) vent emissions. MetPro Corporation joined the team as an industrial partner from the environmental control business and a potential leader for commercialization. Concurrent Technology Corporation (CTC) has a separate contract with DOE for this technology evaluation. They prepared questionnaires for comparison of this technology and RTO, and made this comparison. These data are presented in this report along with the description of the technology itself. Experiments with the pilot plant were performed with average plasma power up to 3.6 kW. Different design of the laboratory and pilot plant pulsed coronas, as well as different analytical methods revealed many new peculiarities of the VOC abatement process. The work reported herein describes the experimental results for the VOCs removal efficiency with respect to energy consumption, residence time, water effect and initial concentration.

  10. Final Report to DOE

    SciTech Connect

    Ismail Gultepe

    2012-05-15

    This final report summarizes the accomplished goals and provide a list of the publications and presentations made during the project. The goals of the project were accomplished through the various publications submitted to Journals and presentations done at the DOE and international meetings and conferences. The 8 journal articles related to the goals of this project were accepted or submitted. The 23 presentations related to goals of the project were presented at the meetings. There were some minor changes regarding to project goals because of issues encountered during the analysis of the data. For example, a total water probe sensor mounted on the Convair-580 that can be used for defining mixed phase conditions and parameterization, had some problems to estimate magnitude of total water mass, and this resulted in issues providing an accurate parameterization for cloud fraction. Variability related aerosol number concentrations and their composition for direct and indirect effects were studied and published. Results were given to explain aerosol and ice microphysical effects on climate change studies. It is suggested that developed parameterizations should consider the variability in aerosol and ice parameters over the Arctic regions.

  11. Final technical report.

    SciTech Connect

    Emmanuel J. Candes

    2007-11-06

    In the last two dcades or so, many multiscale algorthms have been proposed to enable large scale computations which were thought as nearly intractable. For example, the fast multipole algorithm and other similar ideas have allowed to considerably speed up fundamental computations in electromagnetism, and many other fields. The thesis underlying this proposal is that traditional multiscale methods have been well-developed and it is clear that we now need new ideas in areas where traditional spatial multiscaling is ill-suited. In this context, the proposal argues that clever phase-space computations is bound to plan a crucial role in advancing algorithms and high-performance scientific computing. Our research past accomplishments have shown the existence of ideas beyond the traditional scale-space viewpoint such as new multiscale geometric representations of phase-space. We have shown that these clever representations lead to enhanced sparsity. We have shown that enhanced sparsity has significant important implications both for analysis, and for numerical applications, where sparsity allows for faster algorithms. We have implemented these ideas and built computational tools to be used as new building blocks of a new generation of wave propagation solvers. Finally, we have deployed these ideas into novel algorithms. In this last year, we assembled all these techniques and made significant progress in solving a variety of computational problems, which we then applied in selected areas of considerable scientific interest.

  12. Final Technical Report

    SciTech Connect

    Dmitriy Y. Anistratov; Marvin L. Adams; Todd S. Palmer; Kord S. Smith; Kevin Clarno; Hikaru Hiruta; Razvan Nes

    2003-08-04

    OAK B202 Final Technical Report. The present generation of reactor analysis methods uses few-group nodal diffusion approximations to calculate full-core eigenvalues and power distributions. The cross sections, diffusion coefficients, and discontinuity factors (collectively called ''group constants'') in the nodal diffusion equations are parameterized as functions of many variables, ranging from the obvious (temperature, boron concentration, etc.) to the more obscure (spectral index, moderator temperature history, etc.). These group constants, and their variations as functions of the many variables, are calculated by assembly-level transport codes. The current methodology has two main weaknesses that this project addressed. The first weakness is the diffusion approximation in the full-core calculation; this can be significantly inaccurate at interfaces between different assemblies. This project used the nodal diffusion framework to implement nodal quasidiffusion equations, which can capture transport effects to an arbitrary degree of accuracy. The second weakness is in the parameterization of the group constants; current models do not always perform well, especially at interfaces between unlike assemblies. The project developed a theoretical foundation for parameterization and homogenization models and used that theory to devise improved models. The new models were extended to tabulate information that the nodal quasidiffusion equations can use to capture transport effects in full-core calculations.

  13. Tiger LDRD final report

    SciTech Connect

    Steich, D J; Brugger, S T; Kallman, J S; White, D A

    2000-02-01

    This final report describes our efforts on the Three-Dimensional Massively Parallel CEM Technologies LDRD project (97-ERD-009). Significant need exists for more advanced time domain computational electromagnetics modeling. Bookkeeping details and modifying inflexible software constitute a vast majority of the effort required to address such needs. The required effort escalates rapidly as problem complexity increases. For example, hybrid meshes requiring hybrid numerics on massively parallel platforms (MPPs). This project attempts to alleviate the above limitations by investigating flexible abstractions for these numerical algorithms on MPPs using object-oriented methods, providing a programming environment insulating physics from bookkeeping. The three major design iterations during the project, known as TIGER-I to TIGER-III, are discussed. Each version of TIGER is briefly discussed along with lessons learned during the development and implementation. An Application Programming Interface (API) of the object-oriented interface for Tiger-III is included in three appendices. The three appendices contain the Utilities, Entity-Attribute, and Mesh libraries developed during the project. The API libraries represent a snapshot of our latest attempt at insulated the physics from the bookkeeping.

  14. Enhanced superconductors. Final report

    SciTech Connect

    Olsen, R.B.

    1992-05-01

    One of the major challenges facing high temperature superconductors is the making of non-brittle materials. Based on the successful discovery of high temperature perovskite superconductors, a new class of superconducting materials is hypothesized. The proposed class will be mechanically tough and may have high critical temperatures. The proposed material will be inexpensive to manufacture and easily formed into wires and bands. The project's research goal was to detect a superconducting transition in a specific material within this proposed new class. Substantial progress was made toward this objective. In Phase I a major milestone, the bulk conversion of a precursor material, was successfully accomplished. The second model precursor polymer, Polychlorofluoroethylene (PCFE), was synthesized for this study. This allowed the possibility of making low defect polyfluoroacetylene. This synthesis route yielded poly(fluoroacetylene) with a significantly lower defect density when compared to HF-eliminated fluoropolymer films. The final phase of this work was directed to synthesis of poly(2,3,5,6-tetrafluoro-para-phenylene vinylene) (PTFPPV). While making significant progress in synthesizing conducting polymers with polar or polarizable groups, this study did not reach its ultimate goal of producing a model compound with all of the necessary chemical properties to test the exciton model of superconductivity.

  15. MIST final report

    SciTech Connect

    Gloudemans, J.R. )

    1991-08-01

    The multiloop integral system test (MIST) was part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock Wilcox-designed plants. MIST was sponsored by the US Nuclear Regulatory Commission, the Babcock Wilcox Owners Group, the Electric Power Research Institute, and Babcock Wilcox. The unique features of the Babcock Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to addresss the thermal-hydraulic SBLOCA questions. MIST was specifically designed and constructed for this program, and an existing facility -- the once-through integral system (OTIS) -- was also used. Data from MIST and OTIS are used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The MIST program is reported in eleven volumes; Volumes 2 through 8 pertain to groups of Phase 3 tests by type, Volume 9 presents inter-group comparisons. Volume 10 provides comparisons between the RELAP5 MOD2 calculations and MIST observations, and Volume 11 (with addendum) presents the later, Phase 4 tests. This is Volume 1 of the MIST final report, a summary of the entire MIST program. Major topics include: test advisory grop (TAG) issues; facility scaling and design; test matrix; observations; comparisons of RELAP5 calculations to MIST observations; and MIST versus the TAG issues. 11 refs., 29 figs., 9 tabs.

  16. Final Technical Report

    SciTech Connect

    Alexander Pigarov

    2012-06-05

    This is the final report for the Research Grant DE-FG02-08ER54989 'Edge Plasma Simulations in NSTX and CTF: Synergy of Lithium Coating, Non-Diffusive Anomalous Transport and Drifts'. The UCSD group including: A.Yu. Pigarov (PI), S.I. Krasheninnikov and R.D. Smirnov, was working on modeling of the impact of lithium coatings on edge plasma parameters in NSTX with the multi-species multi-fluid code UEDGE. The work was conducted in the following main areas: (i) improvements of UEDGE model for plasma-lithium interactions, (ii) understanding the physics of low-recycling divertor regime in NSTX caused by lithium pumping, (iii) study of synergistic effects with lithium coatings and non-diffusive ballooning-like cross-field transport, (iv) simulation of experimental multi-diagnostic data on edge plasma with lithium pumping in NSTX via self-consistent modeling of D-Li-C plasma with UEDGE, and (v) working-gas balance analysis. The accomplishments in these areas are given in the corresponding subsections in Section 2. Publications and presentations made under the Grant are listed in Section 3.

  17. Aplysia californica neurons express microinjected neuropeptide genes.

    PubMed Central

    DesGroseillers, L; Cowan, D; Miles, M; Sweet, A; Scheller, R H

    1987-01-01

    Neuropeptide genes are expressed in specific subsets of large polyploid neurons in Aplysia californica. We have defined the transcription initiation sites of three of these neuropeptide genes (the R14, L11, and ELH genes) and determined the nucleotide sequence of the promoter regions. The genes contain the usual eucaryotic promoter signals as well as other structures of potential regulatory importance, including inverted and direct repeats. The L11 and ELH genes, which are otherwise unrelated, have homology in the promoter regions, while the R14 promoter was distinct. When cloned plasmids were microinjected into Aplysia neurons in organ culture, transitions between supercoiled, relaxed circular, and linear DNAs occurred along with ligation into high-molecular-weight species. About 20% of the microinjected neurons expressed the genes. The promoter region of the R14 gene functioned in expression of the microinjected DNA in all cells studied. When both additional 5' and 3' sequences were included, the gene was specifically expressed only in R14, suggesting that the specificity of expression is generated by a multicomponent repression system. Finally, the R14 peptide could be expressed in L11, demonstrating that it is possible to alter the transmitter phenotype of these neurons by introduction of cloned genes. Images PMID:3670293

  18. Chromosomal Redistribution of Male-Biased Genes in Mammalian Evolution with Two Bursts of Gene Gain on the X Chromosome

    PubMed Central

    Zhang, Yong E.; Vibranovski, Maria D.; Landback, Patrick; Marais, Gabriel A. B.; Long, Manyuan

    2010-01-01

    Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution. PMID:20957185

  19. Gene gymnastics

    PubMed Central

    Vijayachandran, Lakshmi S; Thimiri Govinda Raj, Deepak B; Edelweiss, Evelina; Gupta, Kapil; Maier, Josef; Gordeliy, Valentin; Fitzgerald, Daniel J; Berger, Imre

    2013-01-01

    Most essential activities in eukaryotic cells are catalyzed by large multiprotein assemblies containing up to ten or more interlocking subunits. The vast majority of these protein complexes are not easily accessible for high resolution studies aimed at unlocking their mechanisms, due to their low cellular abundance and high heterogeneity. Recombinant overproduction can resolve this bottleneck and baculovirus expression vector systems (BEVS) have emerged as particularly powerful tools for the provision of eukaryotic multiprotein complexes in high quality and quantity. Recently, synthetic biology approaches have begun to make their mark in improving existing BEVS reagents by de novo design of streamlined transfer plasmids and by engineering the baculovirus genome. Here we present OmniBac, comprising new custom designed reagents that further facilitate the integration of heterologous genes into the baculovirus genome for multiprotein expression. Based on comparative genome analysis and data mining, we herein present a blueprint to custom design and engineer the entire baculovirus genome for optimized production properties using a bottom-up synthetic biology approach. PMID:23328086

  20. MTX final report

    SciTech Connect

    Hooper, E.B.; Allen, S.L.; Brown, M.D.; Byers, J.A.; Casper, T.A.; Cohen, B.I.; Cohen, R.H.; Fenstermacher, M.E.; Foote, J.H.; Hoshino, K.

    1994-01-01

    The MTX experiment was proposed in 1986 to apply high frequency microwaves generated by a free-electron laser (FEL) to electron cyclotron resonance heating (ECRH) in a high field, high density tokamak. As the absorption of microwaves at the electron cyclotron resonance requires high frequencies, the opportunity of applying a free-electron laser has appeal as the device is not limited to frequencies in the microwave or long millimeter wavelength regions, in contrast to many other sources. In addition, the FEL is inherently a high power source of microwaves, which would permit single units of 10 MW or more, optimum for reactors. Finally, it was recognized early in the study of the application of the FEL based on the induction linear accelerator, that the nonlinear effects associated with the intense pulses of microwaves naturally generated would offer several unique opportunities to apply ECRH to current drive, MHD control, and other plasma effects. It was consequently decided to adapt the induction accelerator based FEL to heating and controlling the tokamak, and to conduct experiments on the associated physics. To this end, the Alcator C tokamak was moved from the Massachusetts Institute of Technology (MIT) to the Lawrence Livermore National Laboratory where it was installed in Building 431 and operated from March, 1989, until the conclusion of the experiment in October, 1992. The FEL, based on the ETA-11 accelerator and IMP wiggler was brought into operation by the LLNL Electron Beam Group and power injected into the tokamak during an experimental run in the Fall, 1989. Following an upgrade by the MTX group, a second experimental run was made lasting from the Winter, 1992 through the end of the experiment. Significant contributions to the ECRH experiments were made by the Japan Atomic Energy Research Institute (JAERI).

  1. Enthalpy studies. Final report

    SciTech Connect

    Mathias, P.M.; Stein, F.P.

    1984-05-01

    This report describes the evaluation and enhancement of the enthalpy model developed for the SRC-I process (as well as the other coal-liquefaction processes). A preliminary version of the model was used in the Post-Baseline review of the SRC-I process design (Duffy et al., 1983), and the final version will be employed by APCI in the ASPEN PLUS Model of the SRC-I Demonstration Plant (APCI, 1984). ICRC, recognizing the need for thermophysical data on coal liquids and coal-fluid model compounds, embarked upon a 2-year experimental program. Specifically, the overall program objectives were to obtain vapor/liquid equilibrium (VLE) and enthalpy data to develop correlations and verify the designs of several important pieces of process equipment in the SRC-I demonstration plant. The enthalpy model uses a modification of the Peng-Robinson (1976) equation of state proposed by Mathias ad Copeman (1983). It was developed mainly from publicly available data on coal fluids and related model compounds (Mathias and Monks, 1982). The generalized (predictive) model has provided good agreement with experimental data on coal fluids. Surprisingly, the agreement with the data on model-compound mixtures is not as good. The practical conclusion is that, within the frame work of the present model, it is better to lump various types of components within the same pseudocomponent. The enthalpy model has achieved the main objective of an improved model for the design of several key heat exchangers in the SRC-I process. Further, the work has identified deficiencies in existing models, which suggest the focus of future research. 24 references.

  2. World Cup Final

    NASA Technical Reports Server (NTRS)

    2006-01-01

    On July 9, hundreds of millions of fans worldwide will be glued to their television sets watching the final match of the 2006 FIFA World Cup, played in Berlin's Olympic stadium (Olympiastadion). The stadium was originally built for the 1936 Summer Olympics. The Olympic Stadium seats 76,000,; its roof rises 68 meters over the seats and is made up of transparent panels that allow sunlight to stream in during the day.

    With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products.

    The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

    Size: 12.1 by 15.9 kilometers (7.5 by 9.5 miles) Location: 52.5 degrees North latitude, 13.3 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49.2 feet) Dates Acquired: October 15, 2005

  3. Investigation of factors affecting RNA-seq gene expression calls

    PubMed Central

    Harati, Sahar; Phan, John H.; Wang, May D.

    2016-01-01

    RNA-seq enables quantification of the human transcriptome. Estimation of gene expression is a fundamental issue in the analysis of RNA-seq data. However, there is an inherent ambiguity in distinguishing between genes with very low expression and experimental or transcriptional noise. We conducted an exploratory investigation of some factors that may affect gene expression calls. We observed that the distribution of reads that map to exonic, intronic, and intergenic regions are distinct. These distributions may provide useful insights into the behavior of gene expression noise. Moreover, we observed that these distributions are qualitatively similar between two sequence mapping algorithms. Finally, we examined the relationship between gene length and gene expression calls, and observed that they are correlated. This preliminary investigation is important for RNA-seq gene expression analysis because it may lead to more effective algorithms for distinguishing between true gene expression and experimental or transcriptional noise. PMID:25571173

  4. 40 CFR 22.31 - Final order.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Final order. 22.31 Section 22.31... PERMITS Final Order § 22.31 Final order. (a) Effect of final order. A final order constitutes the final Agency action in a proceeding. The final order shall not in any case affect the right of the Agency...

  5. Gene expression profiling in developing human hippocampus.

    PubMed

    Zhang, Yan; Mei, Pinchao; Lou, Rong; Zhang, Michael Q; Wu, Guanyun; Qiang, Boqin; Zhang, Zhengguo; Shen, Yan

    2002-10-15

    The gene expression profile of developing human hippocampus is of particular interest and importance to neurobiologists devoted to development of the human brain and related diseases. To gain further molecular insight into the developmental and functional characteristics, we analyzed the expression profile of active genes in developing human hippocampus. Expressed sequence tags (ESTs) were selected by sequencing randomly selected clones from an original 3'-directed cDNA library of 150-day human fetal hippocampus, and a digital expression profile of 946 known genes that could be divided into 16 categories was generated. We also used for comparison 14 other expression profiles of related human neural cells/tissues, including human adult hippocampus. To yield more confidence regarding differential expression, a method was applied to attach normalized expression data to genes with a low false-positive rate (<0.05). Finally, hierarchical cluster analysis was used to exhibit related gene expression patterns. Our results are in accordance with anatomical and physiological observations made during the developmental process of the human hippocampus. Furthermore, some novel findings appeared to be unique to our results. The abundant expression of genes for cell surface components and disease-related genes drew our attention. Twenty-four genes are significantly different from adult, and 13 genes might be developing hippocampus-specific candidate genes, including wnt2b and some Alzheimer's disease-related genes. Our results could provide useful information on the ontogeny, development, and function of cells in the human hippocampus at the molecular level and underscore the utility of large-scale, parallel gene expression analyses in the study of complex biological phenomena. PMID:12271469

  6. Final Technical Report

    SciTech Connect

    Lewis, Randolph

    2013-11-11

    Spider silks have the potential to provide new bio-inspired materials for numerous applications in bioenergetics and products ranging from protective clothing to artificial ligaments and tendons. A number of spider silk genes have been cloned and sequenced by the Lewis laboratory revealing the basis for understanding the key elements of spider silk proteins with respect to their materials performance. In particular, specific amino acid motifs have been identified which have been conserved for over 125 million years in all spiders that use their silk to physically trap prey. The key element in taking the next step toward generating bio-based materials from spider silks will be to move from the current descriptive data to predictive knowledge. Current efforts are focused on mimicking spider silk through synthetic proteins. In developing synthetic silk fibers, we first need to understand the complete secondary and tertiary structure of natural silk so that we can compare synthetic constructs to the natural material. Being able to compare the structure on a single fiber level is critical to the future of molecular directed mimic development because we can vary mechanical properties by different spinning methods. The new generation of synchrotron x-ray diffraction and neutron beamlines will allow, for the first time, determination of the molecular structure of silk fibers and synthetic mimics. We propose an exciting new collaborative research team working jointly between Argonne National Laboratory, Arizona State U. and the University of Wyoming to address the ?characterization of synthetic and natural spider silk fibers using x-ray and neutron diffraction.? Thus these new methodologies will provide understanding of current fibers and determine changes needed to produce fibers with specific properties. The following specific aims are proposed: ? Synthesize spider silk fibers with molecular structures mimicking that of natural silks. Test the mechanic properties of these

  7. HARE: Final Report

    SciTech Connect

    Mckie, Jim

    2012-01-09

    This report documents the results of work done over a 6 year period under the FAST-OS programs. The first effort was called Right-Weight Kernels, (RWK) and was concerned with improving measurements of OS noise so it could be treated quantitatively; and evaluating the use of two operating systems, Linux and Plan 9, on HPC systems and determining how these operating systems needed to be extended or changed for HPC, while still retaining their general-purpose nature. The second program, HARE, explored the creation of alternative runtime models, building on RWK. All of the HARE work was done on Plan 9. The HARE researchers were mindful of the very good Linux and LWK work being done at other labs and saw no need to recreate it. Even given this limited funding, the two efforts had outsized impact: _ Helped Cray decide to use Linux, instead of a custom kernel, and provided the tools needed to make Linux perform well _ Created a successor operating system to Plan 9, NIX, which has been taken in by Bell Labs for further development _ Created a standard system measurement tool, Fixed Time Quantum or FTQ, which is widely used for measuring operating systems impact on applications _ Spurred the use of the 9p protocol in several organizations, including IBM _ Built software in use at many companies, including IBM, Cray, and Google _ Spurred the creation of alternative runtimes for use on HPC systems _ Demonstrated that, with proper modifications, a general purpose operating systems can provide communications up to 3 times as effective as user-level libraries Open source was a key part of this work. The code developed for this project is in wide use and available at many places. The core Blue Gene code is available at https://bitbucket.org/ericvh/hare. We describe details of these impacts in the following sections. The rest of this report is organized as follows: First, we describe commercial impact; next, we describe the FTQ benchmark and its impact in more detail; operating

  8. Final Technical Report

    SciTech Connect

    Bohdan W. Oppenheim; Rudolf Marloth

    2007-10-26

    Executive Summary The document contains Final Technical Report on the Industrial Assessment Center Program at Loyola Marymount University in Los Angeles, covering the contract period of 9/1/2002 to 11/30/2006, under the contract DE-FC36-02GO 12073. The Report describes six required program tasks, as follows: TASK 1 is a summary of the assessments performed over the life of the award: 77 assessments were performed, 595 AR were recommended, covering a very broad range of manufacturing plants. TASK 2 is a description of the efforts to promote and increase the adoption of assessment recommendations and employ innovative methods to assist in accomplishing these goals. The LMU IAC has been very successful in accomplishing the program goals, including implemented savings of $5,141,895 in energy, $10,045,411 in productivity and $30,719 in waste, for a total of $15,218,025. This represents 44% of the recommended savings of $34,896,392. TASK 3 is a description of the efforts promoting the IAC Program and enhancing recruitment efforts for new clients and expanded geographic coverage. LMU IAC has been very successful recruiting new clients covering Southern California. Every year, the intended number of clients was recruited. TASK 4 describes the educational opportunities, training, and other related activities for IAC students. A total of 38 students graduated from the program, including 2-3 graduate students every semester, and the remainder undergraduate students, mostly from the Mechanical Engineering Department. The students received formal weekly training in energy (75%) and productivity (25). All students underwent extensive safety training. All students praised the IAC experience very highly. TASK 5 describes the coordination and integration of the Center activities with other Center and IAC Program activities, and DOE programs. LMU IAC worked closely with MIT, and SDSU IAC and SFSU IAC, and enthusiastically supported the SEN activities. TASK 6 describes other tasks

  9. ASEDRA Evaluation Final Report.

    SciTech Connect

    Mitchell, Dean James; Detwiler, Dr. Rebecca; Sjoden, Dr, Glenn E.

    2008-09-01

    The performance of the Advanced Synthetically Enhanced Detector Resolution Algorithm (ASEDRA) was evaluated by performing a blind test of 29 sets of gamma-ray spectra that were provided by DNDO. ASEDRA is a post-processing algorithm developed at the Florida Institute of Nuclear Detection and Security at the University of Florida (UF/FINDS) that extracts char-acteristic peaks in gamma-ray spectra. The QuickID algorithm, also developed at UF/FINDS, was then used to identify nuclides based on the characteristic peaks generated by ASEDRA that are inferred from the spectra. The ASEDRA/QuickID analysis results were evaluated with respect to the performance of the DHSIsotopeID algorithm, which is a mature analysis tool that is part of the Gamma Detector Response and Analysis Software (GADRAS). Data that were used for the blind test were intended to be challenging, and the radiation sources included thick shields around the radioactive materials as well as cargo containing naturally occurring radio-active materials, which masked emission from special nuclear materials and industrial isotopes. Evaluation of the analysis results with respect to the ground truth information (which was provided after the analyses were finalized) showed that neither ASEDRA/QuickID nor GADRAS could identify all of the radiation sources correctly. Overall, the purpose of this effort was primarily to evaluate ASEDRA, and GADRAS was used as a standard against which ASEDRA was compared. Although GADRAS was somewhat more accurate on average, the performance of ASEDRA exceeded that of GADRAS for some of the unknowns. The fact that GADRAS also failed to identify many of the radiation sources attests to the difficulty of analyzing the blind-test data that were used as a basis for the evaluation. This evaluation identified strengths and weaknesses of the two analysis approaches. The importance of good calibration data was also clear because the performance of both analysis methods was impeded by the

  10. [Nonlinear magnetohydrodynamics]. Final report

    SciTech Connect

    Montgomery, D.C.

    1998-11-01

    This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant`s lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the