Science.gov

Sample records for pyruvate dehydrogenase deficiency

  1. Genetics Home Reference: pyruvate dehydrogenase deficiency

    MedlinePlus

    ... control the activity of the complex: pyruvate dehydrogenase phosphatase turns on (activates) the complex, while pyruvate dehydrogenase ... binding protein (the PDHX gene), and pyruvate dehydrogenase phosphatase (the PDP1 gene) have been identified in people ...

  2. [Pyruvate dehydrogenase deficiency and cerebral malformations].

    PubMed

    Eirís, J; Alvarez-Moreno, A; Briones, P; Alonso-Alonso, C; Castro-Gago, M

    1996-10-01

    Pyruvate dehydrogenase (PDH) deficiency is a major cause of primary lactic acidosis and severe global developmental delay. A deficiency of PDH E1 alpha, a subunit of the PDH complex is a prominent cause of congenital lactic acidosis. The E1 alpha cDNA and corresponding genomic DNA have been located in the short arm of the X-chromosome (Xp22-1). A isolated 'cerebral' lactic acidosis with cerebral dysgenesis is a recognized pattern of presentation of PDH deficiency. Here, we report clinical features, magnetic resonance, and biochemical studies of two females aged 6 months (case 1) and 26 months (case 2). Both had severe development delay, minor dysmorphic features, microcephaly, severe hypoplasia of the corpus callosum, cerebral atrophy, ventricular dilatation and increase in serum lactate levels without systemic acidosis. Urinary organic acid profile was compatible with PDH deficiency. Increased CSF lactate and pyruvate levels and reduced total PDH and PDH E1 activities in muscle and fibroblasts were observed in case 1. Otherwise, decreased total PDH activity in muscle but not in fibroblasts was seen in case 2. The PDH E1á gene was sequenced in the case 1 and a deletion in exon 7 was demonstrated. Dysmorphism with severe cerebral malformations in female patients merits a metabolic evaluation, including determination of lactate and pyruvate levels in CSF. PMID:8983728

  3. Pyruvate dehydrogenase deficiency: molecular basis for intrafamilial heterogeneity.

    PubMed

    Fujii, T; Van Coster, R N; Old, S E; Medori, R; Winter, S; Gubits, R M; Matthews, P M; Brown, R M; Brown, G K; Dahl, H H

    1994-07-01

    Two half-brothers and their mother had symptomatic pyruvate dehydrogenase complex deficiency. The infants had severe congenital lactic acidosis, seizures, and apneic spells and died at the ages 3 and 4 months. The mother was less symptomatic with mental retardation, truncal ataxia, and dysarthria. The residual pyruvate dehydrogenase activities in cultured skin fibroblasts from the 2 infants and their mother were 7, 15, and 10% of control values. Immunoblot analysis showed negligible amounts of E1 alpha and E1 beta subunits of the complex. Northern blot analysis for the E1 alpha subunit showed normal results. In the 2 sons, complementary DNA sequence analysis revealed a cytosine to thymine mutation in exon 4, resulting in a change of arginine 127 to tryptophan in the E1 alpha subunit. Restriction enzyme analysis of the polymerase chain reaction product representing exon 4 of the E1 alpha gene revealed that the mother was a heterozygotes. Complementary DNA restriction analysis and methylation analysis of the X chromosome DXS255 loci revealed skewed activation of the mutant allele, consistent with the deficient pyruvate dehydrogenase activity in the mother's fibroblasts. The milder maternal phenotype is consistent with variable X-inactivation patterns in different organs of female heterozygotes. PMID:8024267

  4. Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis

    PubMed Central

    Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola

    2014-01-01

    Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562

  5. Heterogeneous expression of protein and mRNA in pyruvate dehydrogenase deficiency.

    PubMed Central

    Wexler, I D; Kerr, D S; Ho, L; Lusk, M M; Pepin, R A; Javed, A A; Mole, J E; Jesse, B W; Thekkumkara, T J; Pons, G

    1988-01-01

    Deficiency of pyruvate dehydrogenase [pyruvate:lipoamide 2-oxidoreductase (decarboxylating and acceptor-acetylating), EC 1.2.4.1], the first component of the pyruvate dehydrogenase complex, is associated with lactic acidosis and central nervous system dysfunction. Using both specific antibodies to pyruvate dehydrogenase and cDNAs coding for its two alpha and beta subunits, we characterized pyruvate dehydrogenase deficiency in 11 patients. Three different patterns were found on immunologic and RNA blot analyses. (i) Seven patients had immunologically detectable crossreactive material for the alpha and beta proteins of pyruvate dehydrogenase. (ii) Two patients had no detectable crossreactive protein for either the alpha or beta subunit but had normal amounts of mRNA for both alpha and beta subunits. (iii) The remaining two patients also had no detectable crossreactive protein but had diminished amounts of mRNA for the alpha subunit of pyruvate dehydrogenase only. These results indicate that loss of pyruvate dehydrogenase activity may be associated with either absent or catalytically inactive proteins, and in those cases in which this enzyme is absent, mRNA for one of the subunits may also be missing. When mRNA for one of the subunits is lacking, both protein subunits are absent, suggesting that a mutation affecting the expression of one of the subunit proteins causes the remaining uncomplexed subunit to be unstable. The results show that several different mutations account for the molecular heterogeneity of pyruvate dehydrogenase deficiency. Images PMID:3140238

  6. Pyruvate dehydrogenase complex deficiency and its relationship with epilepsy frequency--An overview.

    PubMed

    Bhandary, Suman; Aguan, Kripamoy

    2015-10-01

    The pyruvate dehydrogenase complex (PDHc) is a member of a family of multienzyme complexes that provides the link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the physiologically irreversible decarboxylation of various 2-oxoacid substrates to their corresponding acyl-CoA derivatives, NADH and CO2. PDHc deficiency is a metabolic disorder commonly associated with lactic acidosis, progressive neurological and neuromuscular degeneration that vary with age and gender. In this review, we aim to discuss the relationship between occurrence of epilepsy and PDHc deficiency associated with the pyruvate dehydrogenase complex (E1α subunit (PDHA1) and E1β subunit (PDHB)) and PDH phosphatase (PDP) deficiency. PDHc plays a crucial role in the aerobic carbohydrate metabolism and regulates the use of carbohydrate as the source of oxidative energy. In severe PDHc deficiency, the energy deficit impairs brain development in utero resulting in physiological and structural changes in the brain that contributes to the subsequent onset of epileptogenesis. Epileptogenesis in PDHc deficiency is linked to energy failure and abnormal neurotransmitter metabolism that progressively alters neuronal excitability. This metabolic blockage might be restricted via inclusion of ketogenic diet that is broken up by β-oxidation and directly converting it to acetyl-CoA, and thereby improving the patient's health condition. Genetic counseling is essential as PDHA1 deficiency is X-linked. The demonstration of the X-chromosome localization of PDHA1 resolved a number of questions concerning the variable phenotype displayed by patients with E1 deficiency. Most patients show a broad range of neurological abnormalities, with the severity showing some dependence on the nature of the mutation in the Elα gene, while PDHB and PDH phosphatase (PDP) deficiencies are of autosomal recessive inheritance. However, in females, the disorder is further complicated by the pattern of X

  7. Effect of pyruvate dehydrogenase complex deficiency on L-lysine production with Corynebacterium glutamicum.

    PubMed

    Blombach, Bastian; Schreiner, Mark E; Moch, Matthias; Oldiges, Marco; Eikmanns, Bernhard J

    2007-09-01

    Intracellular precursor supply is a critical factor for amino acid productivity of Corynebacterium glutamicum. To test for the effect of improved pyruvate availability on L-lysine production, we deleted the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex (PDHC) in the L-lysine-producer C. glutamicum DM1729 and characterised the resulting strain DM1729-BB1 for growth and L-lysine production. Compared to the host strain, C. glutamicum DM1729-BB1 showed no PDHC activity, was acetate auxotrophic and, after complete consumption of the available carbon sources glucose and acetate, showed a more than 50% lower substrate-specific biomass yield (0.14 vs 0.33 mol C/mol C), an about fourfold higher biomass-specific L-lysine yield (5.27 vs 1.23 mmol/g cell dry weight) and a more than 40% higher substrate-specific L-lysine yield (0.13 vs 0.09 mol C/mol C). Overexpression of the pyruvate carboxylase or diaminopimelate dehydrogenase genes in C. glutamicum DM1729-BB1 resulted in a further increase in the biomass-specific L-lysine yield by 6 and 56%, respectively. In addition to L-lysine, significant amounts of pyruvate, L-alanine and L-valine were produced by C. glutamicum DM1729-BB1 and its derivatives, suggesting a surplus of precursor availability and a further potential to improve L-lysine production by engineering the L-lysine biosynthetic pathway. PMID:17333167

  8. Pyruvate dehydrogenase kinase 2 and 4 gene deficiency attenuates nociceptive behaviors in a mouse model of acute inflammatory pain.

    PubMed

    Jha, Mithilesh Kumar; Rahman, Md Habibur; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Lee, Won-Ha; Suk, Kyoungho

    2016-09-01

    Pyruvate dehydrogenase (PDH) kinases (PDKs) 1-4, expressed in peripheral and central tissues, regulate the activity of the PDH complex (PDC). The PDC is an important mitochondrial gatekeeping enzyme that controls cellular metabolism. The role of PDKs in diverse neurological disorders, including neurometabolic aberrations and neurodegeneration, has been described. Implications for a role of PDKs in inflammation and neurometabolic coupling led us to investigate the effect of genetic ablation of PDK2/4 on nociception in a mouse model of acute inflammatory pain. Deficiency in Pdk2 and/or Pdk4 in mice led to attenuation of formalin-induced nociceptive behaviors (flinching, licking, biting, or lifting of the injected paw). Likewise, the pharmacological inhibition of PDKs substantially diminished the nociceptive responses in the second phase of the formalin test. Furthermore, formalin-provoked paw edema formation and mechanical and thermal hypersensitivities were significantly reduced in Pdk2/4-deficient mice. Formalin-driven neutrophil recruitment at the site of inflammation, spinal glial activation, and neuronal sensitization were substantially lessened in the second or late phase of the formalin test in Pdk2/4-deficient animals. Overall, our results suggest that PDK2/4 can be a potential target for the development of pharmacotherapy for the treatment of acute inflammatory pain. © 2016 Wiley Periodicals, Inc. PMID:26931482

  9. Mutations in the X-linked E{sub 1}{alpha} subunit of pyruvate dehydrogenase: Exon skipping, insertion of duplicate sequence, and missense mutations leading to the deficiency of the pyruvate dehydrogenase complex

    SciTech Connect

    Chun, K.; Mackay, N.; Petrova-Benedict, P.; Robinson, B.H.; Federico, A.; Fois, A.; Cole, D.E.C.; Robertson, E.

    1995-03-01

    Human pyruvate dehydrogenase (PDH)-complex deficiency is an inborn error of metabolism that is extremely heterogeneous in its presentation and clinical course. In a study of 14 patients (7 females and 7 males), we have found a mutation in the coding region of the E{sub 1}{alpha} gene in all 14 patients. Two female patients had the same 7-bp deletion at nt 927; another female patient had a 3-bp deletion at nt 931. Another female patient was found to have a deletion of exon 6 in her cDNA. Two other female patients were found to have insertions, one of 13 bp at nt 981 and one of 46 bp at nucleotide 1078. Two male patients were found to have a 4-bp insertion at nucleotide 1163. The remaining six patients all had missense mutations. A male patient and a female patient both had an A1133G mutation. The other missense mutations were C214T, C615A, and C787G (two patients). Five of these mutations are novel mutations, five had been previously reported in other patients, and two were published observations in other patients in an E{sub 1}{alpha}-mutation summary. In the four cases where parent DNA was available, only one mother was found to be a carrier of the same mutation as her child. 61 refs., 5 figs., 2 tabs.

  10. Phosphorylation site on yeast pyruvate dehydrogenase complex

    SciTech Connect

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the /sup 32/P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation.

  11. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma1

    PubMed Central

    Koukourakis, Michael I; Giatromanolaki, Alexandra; Sivridis, Efthimios; Gatter, Kevin C; Harris, Adrian L; “Tumor and Angiogenesis Research Group”

    2005-01-01

    Abstract Pyruvate dehydrogenase (PDH) catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP) to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs). Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5). In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect). Although hypoxic intratumoral conditions account for HIF1α stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIF1α stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIF1α stabilization and “aerobic glycolysis.” However, about half of PDH-deficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time. PMID:15736311

  12. Additive effects of clofibric acid and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) deficiency on hepatic steatosis in mice fed a high-saturated fat diet

    PubMed Central

    Hwang, Byounghoon; Wu, Pengfei; Harris, Robert A.

    2012-01-01

    SUMMARY Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) might prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it might induce detrimental effects by inhibiting fatty acid oxidation. PPARα agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment with a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild type and PDK4 knockout mice fed a high fat diet. As expected, treatment of wild type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, lowered blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid and a reduction in the capacity for fatty acid synthesis by PDK4 deficiency. PMID:22429297

  13. BACTERIAL EXPRESSION, PURIFICATION, AND CHARACTERIZATION OF ARABIDOPSIS THALIANA PYRUVATE DEHYDROGENASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pyruvate dehydrogenase complex (PDC) is a very large multi-component structure that catalyzes decarboxylation of pyruvate, yielding CO2, NADH, and acetyl-CoA as products. The decarboxylation reaction is catalyzed by pyruvate dehydrogenase (E1). The PDC occupies a key position in intermediary met...

  14. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    PubMed

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented. PMID:3593337

  15. Phosphorylation-dephosphorylation of yeast pyruvate dehydrogenase

    SciTech Connect

    Uhlinger, D.J.; Reed, L.J.

    1986-05-01

    Pyruvate dehydrogenase complex (PDC) was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). No pyruvate dehydrogenase (PDH) kinase activity was detected at any stage of the purification. However, the purified PDC was phosphorylated and inactivated by purified PDH kinase from bovine kidney mitochondria, Mg/sup 2 +/, and (..gamma..-/sup 32/P)ATP. The protein-bound radioactivity was localized in the PDH ..cap alpha.. subunit. The phosphorylated, inactivated PDC was dephosphorylated and reactivated with purified bovine PDH phosphatase, Mg/sup 2 +/, and Ca/sup 2 +/. From a tryptic digest of phosphorylated yeast PDC a radioactive peptide was isolated by anion and reverse phase HPLC. The sequence of this tetradecapeptide is Tyr-Gly-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Thr-Thr-Tyr-Arg. This sequence is very similar to the sequence of a tryptic phosphopeptide derived from the ..cap alpha.. subunit of bovine kidney and heart PDH: Tyr-His-Gly-His-Ser(P)-Met-Ser-Asp-Pro-Gly-Val-Ser-Tyr-Arg.

  16. Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L 1

    PubMed Central

    Williams, Michael; Randall, Douglas D.

    1979-01-01

    Pyruvate dehydrogenase complex is associated with intact chloroplasts and mitochondria of 9-day-old Pisum sativum L. seedlings. The ratio of the mitochondrial complex to the chloroplast complex activities is about 3 to 1. Maximal rates observed for chloroplast pyruvate dehydrogenase complex activity ranged from 6 to 9 micromoles of NADH produced per milligram of chlorophyll per hour. Osmotic rupture of pea chloroplasts released 88% of the complex activity, indicating that chloroplast pyruvate dehydrogenase complex is a stromal complex. The pH optimum for chloroplast pyruvate dehydrogenase complex was between 7.8 and 8.2, whereas the mitochondrial pyruvate dehydrogenase complex had a pH optimum between 7.3 and 7.7. Chloroplast pyruvate dehydrogenase complex activity was specific for pyruvate, dependent upon coenzyme A and NAD and partially dependent upon Mg2+ and thiamine pyrophosphate. Chloroplast-associated pyruvate dehydrogenase complex provides a direct link between pyruvate metabolism and chloroplast fatty acid biosynthesis by providing the substrate, acetyl-CoA, necessary for membrane development in young plants. Images PMID:16661100

  17. Genetics Home Reference: pyruvate kinase deficiency

    MedlinePlus

    ... National (UK) Information Centre for Metabolic Diseases National Organization for Rare Disorders (NORD): Pyruvate Kinase Deficiency Genetic Testing Registry (1 link) Pyruvate kinase deficiency of red cells Scientific articles on PubMed (1 link) PubMed OMIM (1 link) ...

  18. Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity

    PubMed Central

    Richards, Erica M.; Rosenthal, Robert E.; Kristian, Tibor; Fiskum, Gary

    2008-01-01

    The pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme that catalyzes the oxidative decarboxylation of pyruvate and represents the sole bridge between anaerobic and aerobic cerebral energy metabolism. Previous studies demonstrating loss of PDHC enzyme activity and immunoreactivity during reperfusion after cerebral ischemia suggest that oxidative modifications are involved. This study tested the hypothesis that hyperoxic reperfusion exacerbates loss of PDHC enzyme activity, possibly due to tyrosine nitration or S-nitrosation. We used a clinically relevant canine ventricular fibrillation cardiac arrest model in which, after resuscitation and ventilation on either 100% O2 (hyperoxic) or 21–30% O2 (normoxic), animals were sacrificed at 2 h reperfusion and the brains removed for enzyme activity and immunoreactivity measurements. Animals resuscitated under hyperoxic conditions exhibited decreased PDHC activity and elevated 3-nitrotyrosine immunoreactivity in the hippocampus but not the cortex, compared to nonischemic controls. These measures were unchanged in normoxic animals. In vitro exposure of purified PDHC to peroxynitrite resulted in a dose-dependent loss of activity and increased nitrotyrosine immunoreactivity. These results support the hypothesis that oxidative stress contributes to loss of hippocampal PDHC activity during cerebral ischemia and reperfusion and suggest that PDHC is a target of peroxynitrite. PMID:16716897

  19. Structural Studies of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand S.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Human pyruvate dehydrogenase (E1) catalyzes the irreversible decarboxylation of pyruvate in the presence of Mg(2+) and thiamin pyrophosphate (TPP) followed by the rate-limiting reductive acetylation of the lipoyl moiety linked to dihydrolipoamide acetyltransferase. The three-dimensional structure of human E1 is elucidated using the methods of macromolecular X-ray crystallography. The structure is an alpha, alpha', beta and beta' tetramer with the protein units being in the tetrahedral arrangement. Each 361-residue alpha-subunit and 329-residue beta-subunit is composed of a beta-sheet core surrounded by alpha-helical domains. Each subunit is in extensive contact with all the three subunits involving TPP and magnesium cofactors, and potassium ions. The two binding sites for TPP are at the alpha-beta' and alpha'-beta interfaces, each involving a magnesium ion and Phe6l, His63, Tyr89, and Met200 from the alpha-subunit (or alpha'-subunit), and Met81 Phe85, His128 from the beta-subunit (or beta'-subunit). K+ ions are nestled between two beta-sheets and the end of an alpha-helix in each beta-subunit, where they are coordinated by four carbonyl oxygen groups from Ile12, Ala160, Asp163, and Asnl65, and a water molecule. The catalytic C2 carbon of thiazolium ring in this structure forms a 3.2 A contact with a water molecule involved in a series of H-bonds with other water molecules, and indirectly with amino acids including those involved in the catalysis and regulation of the enzyme.

  20. Difficulties in recognition of pyruvate dehydrogenase complex deficiency on the basis of clinical and biochemical features. The role of next-generation sequencing.

    PubMed

    Ciara, E; Rokicki, D; Halat, P; Karkucińska-Więckowska, A; Piekutowska-Abramczuk, D; Mayr, J; Trubicka, J; Szymańska-Dębińska, T; Pronicki, M; Pajdowska, M; Dudzińska, M; Giżewska, M; Krajewska-Walasek, M; Książyk, J; Sperl, W; Płoski, R; Pronicka, E

    2016-06-01

    Pyruvate dehydrogenase complex (PDHc) defect is a well-known cause of mitochondrial disorders (MD) with at least six responsible genes (PDHA1, PDHB, DLAT, DLD, PDHX, PDP1). The aim of this work was to assess the diagnostic value of biochemical methods in recognition of PDHc defect in Polish patients with suspicion of MD. In the first step, Western blot of the E1α subunit was performed on 86 archive muscle bioptates with suspicion of MD. In the second step, Sanger PDHA1 sequencing was performed in 21 cases with low E1α expression. In the third step, 7 patients with negative results of PDHA1 sequencing were subjected to whole-exome sequencing (WES). This protocol revealed 4 patients with PDHA1 and one with DLD mutations. Four additional probands were diagnosed outside the protocol (WES or Sanger sequencing). The molecular characterization of PDHc defect was conducted in a total of 9 probands: 5 according to and 4 off the protocol. Additionally, two affected relatives were recognized by a family study. Altogether we identified seven different PDHA1 changes, including two novel variants [c.464T > C (p.Met155Thr) and c.856_859dupACTT (p.Arg288Leufs*10)] and one DLD variant. The lactate response to glucose load in the PDHA1 subset was compared to a subset of non PDHc-related MD. Opposite responses were observed, with an increase of 23% and decrease of 27%, respectively. The results show that determining lactate response to glucose load and muscle E1α expression may contribute to distinguishing PDHc-related and other MD, however, WES is becoming the method of choice for MD diagnostics. PMID:27144126

  1. Difficulties in recognition of pyruvate dehydrogenase complex deficiency on the basis of clinical and biochemical features. The role of next-generation sequencing

    PubMed Central

    Ciara, E.; Rokicki, D.; Halat, P.; Karkucińska-Więckowska, A.; Piekutowska-Abramczuk, D.; Mayr, J.; Trubicka, J.; Szymańska-Dębińska, T.; Pronicki, M.; Pajdowska, M.; Dudzińska, M.; Giżewska, M.; Krajewska-Walasek, M.; Książyk, J.; Sperl, W.; Płoski, R.; Pronicka, E.

    2016-01-01

    Pyruvate dehydrogenase complex (PDHc) defect is a well-known cause of mitochondrial disorders (MD) with at least six responsible genes (PDHA1, PDHB, DLAT, DLD, PDHX, PDP1). The aim of this work was to assess the diagnostic value of biochemical methods in recognition of PDHc defect in Polish patients with suspicion of MD. In the first step, Western blot of the E1α subunit was performed on 86 archive muscle bioptates with suspicion of MD. In the second step, Sanger PDHA1 sequencing was performed in 21 cases with low E1α expression. In the third step, 7 patients with negative results of PDHA1 sequencing were subjected to whole-exome sequencing (WES). This protocol revealed 4 patients with PDHA1 and one with DLD mutations. Four additional probands were diagnosed outside the protocol (WES or Sanger sequencing). The molecular characterization of PDHc defect was conducted in a total of 9 probands: 5 according to and 4 off the protocol. Additionally, two affected relatives were recognized by a family study. Altogether we identified seven different PDHA1 changes, including two novel variants [c.464T > C (p.Met155Thr) and c.856_859dupACTT (p.Arg288Leufs*10)] and one DLD variant. The lactate response to glucose load in the PDHA1 subset was compared to a subset of non PDHc-related MD. Opposite responses were observed, with an increase of 23% and decrease of 27%, respectively. The results show that determining lactate response to glucose load and muscle E1α expression may contribute to distinguishing PDHc-related and other MD, however, WES is becoming the method of choice for MD diagnostics. PMID:27144126

  2. Functional response of the isolated, perfused normoxic heart to pyruvate dehydrogenase activation by dichloroacetate and pyruvate

    PubMed Central

    Jaimes, Rafael; Kuzmiak-Glancy, Sarah; Brooks, Daina M.; Swift, Luther M.; Posnack, Nikki G.; Kay, Matthew W.

    2015-01-01

    Dichloroacetate (DCA) and pyruvate activate pyruvate dehydrogenase (PDH), a key enzyme that modulates glucose oxidation and mitochondrial NADH production. Both compounds improve recovery after ischemia in isolated hearts. However, the action of DCA and pyruvate in normoxic myocardium is incompletely understood. We measured the effect of DCA and pyruvate on contraction, mitochondrial redox state, and intracellular calcium cycling in isolated rat hearts during normoxic perfusion. Normalized epicardial NADH fluorescence (nNADH) and left ventricular developed pressure (LVDP) were measured before and after administering DCA (5 mM) or pyruvate (5 mM). Optical mapping of Rhod-2AM was used to measure cytosolic calcium kinetics. DCA maximally activated PDH, increasing the ratio of active to total PDH from 0.48±0.03 to 1.03 ±0.03. Pyruvate sub-maximally activated PDH to a ratio of 0.75±0.02. DCA and pyruvate increased LVDP. When glucose was the only exogenous fuel, pyruvate increased nNADH by 21.4±2.9 % while DCA reduced nNADH by 21.4±6.1 % and elevated the incidence of premature ventricular contractions (PVCs). When lactate, pyruvate, and glucose were provided together as exogenous fuels, nNADH increased with DCA, indicating that PDH activation with glucose as the only exogenous fuel depletes PDH substrate. Calcium transient time-to-peak was shortened by DCA and pyruvate and SR calcium re-uptake was 30 % longer. DCA and pyruvate increased SR calcium load in myocyte monolayers. Overall, during normoxia when glucose is the only exogenous fuel, DCA elevates SR calcium, increases LVDP and contractility, and diminishes mitochondrial NADH. Administering DCA with plasma levels of lactate and pyruvate mitigates the drop in mitochondrial NADH and prevents PVCs. PMID:26142699

  3. A mimic of the pyruvate dehydrogenase complex.

    PubMed

    Zhao, Huanyu; Breslow, Ronald

    2010-10-15

    Pyruvic acid undergo decarboxylation catalyzed by a hydrophobic thiazolium salt and reacts with a hydrophobic analog of lipoic acid to form a hydrophobic acylthioester that reacts with aniline to form acetanilide in water, but only in the presence of a hydrophobically modified polyaziridine that acts to gather the reactants just as the enzyme complex does. PMID:20826089

  4. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism

    PubMed Central

    Hitosugi, Taro; Fan, Jun; Chung, Tae-Wook; Lythgoe, Katherine; Wang, Xu; Xie, Jianxin; Ge, Qingyuan; Gu, Ting-Lei; Polakiewicz, Roberto D.; Roesel, Johannes L.; Chen, Zhuo (Georgia); Boggon, Titus J.; Lonial, Sagar; Fu, Haian; Khuri, Fadlo R.; Kang, Sumin; Chen, Jing

    2011-01-01

    SUMMARY Many tumor cells rely on aerobic glycolysis instead of oxidative phosphorylation for their continued proliferation and survival. Myc and HIF-1 are believed to promote such a metabolic switch by, in part, upregulating gene expression of pyruvate dehydrogenase (PDH) kinase 1 (PDHK1), which phosphorylates and inactivates mitochondrial PDH and consequently pyruvate dehydrogenase complex (PDC). Here we report that tyrosine phosphorylation enhances PDHK1 kinase activity by promoting ATP and PDC binding. Functional PDC can form in mitochondria outside of matrix in some cancer cells and PDHK1 is commonly tyrosine phosphorylated in human cancers by diverse oncogenic tyrosine kinases localized to different mitochondrial compartments. Expression of phosphorylation-deficient, catalytic hypomorph PDHK1 mutants in cancer cells leads to decreased cell proliferation under hypoxia and increased oxidative phosphorylation with enhanced mitochondrial utilization of pyruvate, and reduced tumor growth in xenograft nude mice. Together, tyrosine phosphorylation activates PDHK1 to promote the Warburg effect and tumor growth. PMID:22195962

  5. An amino acid substitution in the pyruvate dehydrogenase E1{alpha} gene, affecting mitochondrial import of the precursor protein

    SciTech Connect

    Takakubo, F.; Thorburn, D.R.; Dahl, H.H.M.

    1995-10-01

    A mutation in the mitochondrial targeting sequence was characterized in a male patient with X chromosome-linked pyruvate dehydrogenase E1{alpha} deficiency. The mutation was a base substitution of G by C at nucleotide 134 in the mitochondrial targeting sequence of the PDHA1 gene, resulting in an arginine-to-proline substitution at codon 10 (R10P). Pyruvate dehydrogenase activity in cultured skin fibroblasts was 28% of the control value, and immunoblot analysis revealed a decreased level of pyruvate dehydrogenase E1{alpha}immunoreactivity. Chimeric constructs in which the normal and mutant pyruvate dehydrogenase E1{alpha} targeting sequences were attached to the mitochondrial matrix protein ornithine transcarbamylase were synthesized in a cell free translation system, and mitochondrial import of normal and mutant proteins was compared in vitro. The results show that ornithine transcarbamylase targeted by the mutant pyruvate dehydrogenase E1{alpha} sequence was translocated into the mitochondrial matrix at a reduced rate, suggesting that defective import is responsible for the reduced pyruvate dehydrogenase level in mitochondria. The mutation was also present in an affected brother and the mildly affected mother. The clinical presentations of this X chromosome-linked disorder in affected family members are discussed. To our knowledge, this is the first report of an amino acid substitution in a mitochondrial targeting sequence resulting in a human genetic disease. 58 refs., 5 figs., 1 tab.

  6. Asp295 stabilizes the active-site loop structure of pyruvate dehydrogenase, facilitating phosphorylation of Ser292 by pyruvate dehydrogenase-kinase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have developed an invitro system for detailed analysis of reversible phosphorylation of the plant mitochondrial pyruvate dehydrogenase complex, comprising recombinant Arabidopsis thaliana a2b2-hetero tetrameric pyruvate dehydrogenase (E1) plus A.thaliana E1-kinase (AtPDK). Upon addition of MgATP...

  7. Complex genetic findings in a female patient with pyruvate dehydrogenase complex deficiency: Null mutations in the PDHX gene associated with unusual expression of the testis-specific PDHA2 gene in her somatic cells.

    PubMed

    Pinheiro, Ana; Silva, Maria João; Pavlu-Pereira, Hana; Florindo, Cristina; Barroso, Madalena; Marques, Bárbara; Correia, Hildeberto; Oliveira, Anabela; Gaspar, Ana; Tavares de Almeida, Isabel; Rivera, Isabel

    2016-10-15

    Human pyruvate dehydrogenase complex (PDC) catalyzes a key step in the generation of cellular energy and is composed by three catalytic elements (E1, E2, E3), one structural subunit (E3-binding protein), and specific regulatory elements, phosphatases and kinases (PDKs, PDPs). The E1α subunit exists as two isoforms encoded by different genes: PDHA1 located on Xp22.1 and expressed in somatic tissues, and the intronless PDHA2 located on chromosome 4 and only detected in human spermatocytes and spermatids. We report on a young adult female patient who has PDC deficiency associated with a compound heterozygosity in PDHX encoding the E3-binding protein. Additionally, in the patient and in all members of her immediate family, a full-length testis-specific PDHA2 mRNA and a 5'UTR-truncated PDHA1 mRNA were detected in circulating lymphocytes and cultured fibroblasts, being both mRNAs translated into full-length PDHA2 and PDHA1 proteins, resulting in the co-existence of both PDHA isoforms in somatic cells. Moreover, we observed that DNA hypomethylation of a CpG island in the coding region of PDHA2 gene is associated with the somatic activation of this gene transcription in these individuals. This study represents the first natural model of the de-repression of the testis-specific PDHA2 gene in human somatic cells, and raises some questions related to the somatic activation of this gene as a potential therapeutic approach for most forms of PDC deficiency. PMID:27343776

  8. Elevated plasma citrulline: look for dihydrolipoamide dehydrogenase deficiency.

    PubMed

    Haviv, Ruby; Zeharia, Avraham; Belaiche, Corinne; Haimi Cohen, Yishai; Saada, Ann

    2014-02-01

    The E3 subunit of the pyruvate dehydrogenase complex (dihydrolipoamide dehydrogenase/dihydrolipoyl dehydrogenase/DLD/lipoamide dehydrogenase/LAD), is a mitochondrial matrix enzyme and also a part of the branched-chain ketoacid dehydrogenase and alpha-ketoglutarate dehydrogenase complexes. DLD deficiency (MIM #246900), is relatively frequent in the Ashkenazi Jewish population but occurs in other populations as well. Early diagnosis is important to prevent episodes of metabolic decompensation, liver failure, and encephalopathy. The clinical presentations are varied and may include Reye-like syndrome, hepatic failure, myopathy, and myoglobinuria. Laboratory markers, such as elevated urinary alpha-ketoglutarate, blood pyruvate, lactate, and ammonia, are mostly nonspecific and not always present, making the diagnosis difficult. Since we observed elevated plasma citrulline levels in a number of confirmed cases, we retrospectively examined the value of citrulline as a biochemical marker for DLD deficiency. Data was gathered from the files of 17 pediatric patients with DLD deficiency, confirmed by enzymatic and genetic analysis. The control group included 19 patients in whom urea cycle defects were ruled out but DLD deficiency was suspected. Seven of the DLD-deficient patients presented with elevated plasma citrulline levels (median value 205 μM, range 59-282 μM) (normal range 1-45 μM) while none in the control patient group. In five patients, elevated citrulline was associated with elevated plasma glutamine and metabolic acidosis. Interestingly, elevated plasma citrulline was associated with the common G229C mutation. In conclusion, we suggest that elevated plasma citrulline in the absence of urea cycle defects warrants an investigation for DLD deficiency. PMID:23995961

  9. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue. PMID:27040960

  10. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    PubMed

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex. PMID:4556465

  11. Molecular Structure of the Pyruvate Dehydrogenase Complex from Escherichia coli K-12

    PubMed Central

    Vogel, Otto; Hoehn, Barbara; Henning, Ulf

    1972-01-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 × 106. All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This “excess” component is bound differently than are the eight dimers in the core complex. Images PMID:4556465

  12. Phenylbutyrate increases pyruvate dehydrogenase complex activity in cells harboring a variety of defects

    PubMed Central

    Ferriero, Rosa; Boutron, Audrey; Brivet, Michele; Kerr, Douglas; Morava, Eva; Rodenburg, Richard J; Bonafé, Luisa; Baumgartner, Matthias R; Anikster, Yair; Braverman, Nancy E; Brunetti-Pierri, Nicola

    2014-01-01

    Objective Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. PDHC deficiency is genetically heterogenous and most patients have defects in the X-linked E1-α gene but defects in the other components of the complex encoded by PDHB, PDHX, DLAT, DLD genes or in the regulatory enzyme encoded by PDP1 have also been found. Phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of pyruvate dehydrogenase kinases and thus, has potential for therapy of patients with PDHC deficiency. In the present study, we investigated response to phenylbutyrate of multiple cell lines harboring all known gene defects resulting in PDHC deficiency. Methods Fibroblasts of patients with PDHC deficiency were studied for their enzyme activity at baseline and following phenylbutyrate incubation. Drug responses were correlated with genotypes and protein levels by Western blotting. Results Large deletions affecting PDHA1 that result in lack of detectable protein were unresponsive to phenylbutyrate, whereas increased PDHC activity was detected in most fibroblasts harboring PDHA1 missense mutations. Mutations affecting the R349-α residue were directed to proteasome degradation and were consistently unresponsive to short-time drug incubation but longer incubation resulted in increased levels of enzyme activity and protein that may be due to an additional effect of phenylbutyrate as a molecular chaperone. Interpretation PDHC enzyme activity was enhanced by phenylbutyrate in cells harboring missense mutations in PDHB, PDHX, DLAT, DLD, and PDP1 genes. In the prospect of a clinical trial, the results of this study may allow prediction of in vivo response in patients with PDHC deficiency harboring a wide spectrum of molecular defects. PMID:25356417

  13. Transformation linked decrease of pyruvate dehydrogenase complex in human epidermis.

    PubMed

    Eboli, M L; Pasquini, A

    1994-10-14

    Epidermis exhibits glycolytic features peculiar to cancer cells. The activity of pyruvate dehydrogenase complex, both active (PDHa) and total (PDHt) forms, has been investigated and compared in epidermis and epidermal carcinomas from human source. Low or undetectable PDHa is found in either normal and neoplastic tissue. PDHt is unchanged in human epidermis between the second and seventh decades of life but is dramatically decreased following neoplastic transformation (0.107 and 0.026 units/g fresh tissue for epidermis and epidermal carcinoma, respectively). As PDH plays a key role in mitochondrial carbohydrate metabolism, the decrease of total enzymic capacity found in tumors suggest that different mechanisms regulate PDH expression and, in turn, glycolytic mechanisms of epidermis and cancer cells. PMID:7954343

  14. Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.

  15. Characterization of cDNAs encoding human pyruvate dehydrogenase alpha subunit.

    PubMed Central

    Ho, L; Wexler, I D; Liu, T C; Thekkumkara, T J; Patel, M S

    1989-01-01

    A cDNA clone (1423 base pairs) comprising the entire coding region of the precursor form of the alpha subunit of pyruvate dehydrogenase (E1 alpha) has been isolated from a human liver cDNA library in phage lambda gt11. The first 29 amino acids deduced from the open reading frame correspond to a typical mitochondrial targeting leader sequence. The remaining 361 amino acids, starting at the N terminus with phenylalanine, represent the mature mitochondrial E1 alpha peptide. The cDNA has 43 base pairs in the 5' untranslated region and 210 base pairs in the 3' untranslated region, including a polyadenylylation signal and a short poly(A) tract. The nucleotide sequence of human liver E1 alpha cDNA was confirmed by the nucleotide sequences of three overlapping fragments generated from human liver and fibroblast RNA by reverse transcription and DNA amplification by the polymerase chain reaction. This consensus nucleotide sequence of human liver E1 alpha cDNA resolves existing discrepancies among three previously reported human E1 alpha cDNAs and provides the unambiguous reference sequence needed for the characterization of genetic mutations in pyruvate dehydrogenase-deficient patients. Images PMID:2748588

  16. Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.

  17. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis.

    PubMed

    Cardaci, Simone; Zheng, Liang; MacKay, Gillian; van den Broek, Niels J F; MacKenzie, Elaine D; Nixon, Colin; Stevenson, David; Tumanov, Sergey; Bulusu, Vinay; Kamphorst, Jurre J; Vazquez, Alexei; Fleming, Stewart; Schiavi, Francesca; Kalna, Gabriela; Blyth, Karen; Strathdee, Douglas; Gottlieb, Eyal

    2015-10-01

    Succinate dehydrogenase (SDH) is a heterotetrameric nuclear-encoded complex responsible for the oxidation of succinate to fumarate in the tricarboxylic acid cycle. Loss-of-function mutations in any of the SDH genes are associated with cancer formation. However, the impact of SDH loss on cell metabolism and the mechanisms enabling growth of SDH-defective cells are largely unknown. Here, we generated Sdhb-ablated kidney mouse cells and used comparative metabolomics and stable-isotope-labelling approaches to identify nutritional requirements and metabolic adaptations to SDH loss. We found that lack of SDH activity commits cells to consume extracellular pyruvate, which sustains Warburg-like bioenergetic features. We further demonstrated that pyruvate carboxylation diverts glucose-derived carbons into aspartate biosynthesis, thus sustaining cell growth. By identifying pyruvate carboxylase as essential for the proliferation and tumorigenic capacity of SDH-deficient cells, this study revealed a metabolic vulnerability for potential future treatment of SDH-associated malignancies. PMID:26302408

  18. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication.

    PubMed

    Jung, Gwon-Soo; Jeon, Jae-Han; Choi, Yeon-Kyung; Jang, Se Young; Park, Soo Young; Kim, Sung-Woo; Byun, Jun-Kyu; Kim, Mi-Kyung; Lee, Sungwoo; Shin, Eui-Cheol; Lee, In-Kyu; Kang, Yu Na; Park, Keun-Gyu

    2016-01-01

    During replication, hepatitis C virus (HCV) utilizes macromolecules produced by its host cell. This process requires host cellular metabolic reprogramming to favor elevated levels of aerobic glycolysis. Therefore, we evaluated whether pyruvate dehydrogenase kinase (PDK), a mitochondrial enzyme that promotes aerobic glycolysis, can regulate HCV replication. Levels of c-Myc, hypoxia-inducible factor-1α (HIF-1α), PDK1, PDK3, glucokinase, and serine biosynthetic enzymes were compared between HCV-infected and uninfected human liver and Huh-7.5 cells infected with or without HCV. Protein and mRNA expression of c-Myc, HIF-1α, and glycolytic enzymes were significantly higher in HCV-infected human liver and hepatocytes than in uninfected controls. This increase was accompanied by upregulation of serine biosynthetic enzymes, suggesting cellular metabolism was altered toward facilitated nucleotide synthesis essential for HCV replication. JQ1, a c-Myc inhibitor, and dichloroacetate (DCA), a PDK inhibitor, decreased the expression of glycolytic and serine synthetic enzymes in HCV-infected hepatocytes, resulting in suppressed viral replication. Furthermore, when co-administered with IFN-α or ribavirin, DCA further inhibited viral replication. In summary, HCV reprograms host cell metabolism to favor glycolysis and serine biosynthesis; this is mediated, at least in part, by increased PDK activity, which provides a surplus of nucleotide precursors. Therefore, blocking PDK activity might have therapeutic benefits against HCV replication. PMID:27471054

  19. Pyruvate dehydrogenase kinase regulates hepatitis C virus replication

    PubMed Central

    Jung, Gwon-Soo; Jeon, Jae-Han; Choi, Yeon-Kyung; Jang, Se Young; Park, Soo Young; Kim, Sung-Woo; Byun, Jun-Kyu; Kim, Mi-Kyung; Lee, Sungwoo; Shin, Eui-Cheol; Lee, In-Kyu; Kang, Yu Na; Park, Keun-Gyu

    2016-01-01

    During replication, hepatitis C virus (HCV) utilizes macromolecules produced by its host cell. This process requires host cellular metabolic reprogramming to favor elevated levels of aerobic glycolysis. Therefore, we evaluated whether pyruvate dehydrogenase kinase (PDK), a mitochondrial enzyme that promotes aerobic glycolysis, can regulate HCV replication. Levels of c-Myc, hypoxia-inducible factor-1α (HIF-1α), PDK1, PDK3, glucokinase, and serine biosynthetic enzymes were compared between HCV-infected and uninfected human liver and Huh-7.5 cells infected with or without HCV. Protein and mRNA expression of c-Myc, HIF-1α, and glycolytic enzymes were significantly higher in HCV-infected human liver and hepatocytes than in uninfected controls. This increase was accompanied by upregulation of serine biosynthetic enzymes, suggesting cellular metabolism was altered toward facilitated nucleotide synthesis essential for HCV replication. JQ1, a c-Myc inhibitor, and dichloroacetate (DCA), a PDK inhibitor, decreased the expression of glycolytic and serine synthetic enzymes in HCV-infected hepatocytes, resulting in suppressed viral replication. Furthermore, when co-administered with IFN-α or ribavirin, DCA further inhibited viral replication. In summary, HCV reprograms host cell metabolism to favor glycolysis and serine biosynthesis; this is mediated, at least in part, by increased PDK activity, which provides a surplus of nucleotide precursors. Therefore, blocking PDK activity might have therapeutic benefits against HCV replication. PMID:27471054

  20. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering.

    PubMed

    Eikmanns, Bernhard J; Blombach, Bastian

    2014-12-20

    The pyruvate dehydrogenase complex (PDHC) catalyzes the oxidative thiamine pyrophosphate-dependent decarboxylation of pyruvate to acetyl-CoA and CO2. Since pyruvate is a key metabolite of the central metabolism and also the precursor for several relevant biotechnological products, metabolic engineering of this multienzyme complex is a promising strategy to improve microbial production processes. This review summarizes the current knowledge and achievements on metabolic engineering approaches to tailor the PDHC of Corynebacterium glutamicum for the bio-based production of l-valine, 2-ketosiovalerate, pyruvate, succinate and isobutanol and to improve l-lysine production. PMID:24486441

  1. Crystallization and initial X-ray diffraction analysis of human pyruvate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, E.; Korotchkina, L. G.; Hong, Y. S.; Joachimiak, A.; Patel, M. S.

    2001-01-01

    Human pyruvate dehydrogenase (E1) is a component enzyme of the pyruvate dehydrogenase complex. The enzyme catalyzes the irreversible decarboxylation of pyruvic acid and the rate-limiting reductive acetylation of the lipoyl moiety linked to the dihydrolipoamide acetyltransferase component of the pyruvate dehydrogenase complex. E1 is an alpha(2)beta(2) tetramer ( approximately 154 kDa). Crystals of this recombinant enzyme have been grown in polyethylene glycol 3350 using a vapor-diffusion method at 295 K. The crystals are characterized as orthorhombic, space group P2(1)2(1)2(1), with unit-cell parameters a = 64.2, b = 126.9, c = 190.2 A. Crystals diffracted to a minimum d spacing of 2.5 A. The asymmetric unit contains one alpha(2)beta(2) tetrameric E1 assembly; self-rotation function analysis showed a pseudo-twofold symmetry relating the two alphabeta dimers.

  2. Slow-binding inhibition of the Escherichia coli pyruvate dehydrogenase multienzyme complex by acetylphosphinate.

    PubMed

    Schönbrunn-Hanebeck, E; Laber, B; Amrhein, N

    1990-05-22

    The pyruvate analogue acetylphosphinate (CH3-CO-PO2H2) inhibits the pyruvate dehydrogenase component (E1) of the Escherichia coli pyruvate dehydrogenase multienzyme complex in a time-dependent process with biphasic reaction kinetics. The formation of an initial, rapidly reversible enzyme-inhibitor complex (EI) with an apparent Ki of 0.12 +/- 0.025 microM is followed by the conversion to a tighter complex (EI) at a maximal rate of k3 = 0.87 +/- 0.34 min-1. The inhibition is reversible (dissociation rate constant k4 = 0.038 +/- 0.002 min-1), requires the presence of the cofactors thiamin pyrophosphate and Mg2+, and is competitive with regard to pyruvate. The microscopic rate constants give a value of 5 nM for the overall dissociation constant [Ki = [E] [I]/[( EI] + [EI]) = Kik4/(k3 + k4)] compared with values of 10 and 3.5 nM obtained by steady-state methods. Thus acetylphosphinate binds by 5 orders of magnitude more tightly to pyruvate dehydrogenase than does pyruvate (Km = 0.35 mM). Acetylphosphinate also affects the pyruvate dehydrogenase complex fluorescence when excited at 290 nm in a time-dependent manner with a maximal rate constant of 0.99 min-1, suggesting a conformational change in the enzyme complex as the slow step in conversion of EI to EI (k3). All these features taken together suggest that the interaction of the pyruvate dehydrogenase with acetylphosphinate involves the formation of a thiamin pyrophosphate-acetylphosphinate adduct that resembles the normal reaction intermediate, 2-(1-carboxy-1-hydroxyethyl)thiamin pyrophosphate (alpha-lactylthiamin pyrophosphate). PMID:2194562

  3. Genetics Home Reference: pyruvate carboxylase deficiency

    MedlinePlus

    ... carboxylase deficiency is an inherited disorder that causes lactic acid and other potentially toxic compounds to accumulate in ... features include developmental delay and a buildup of lactic acid in the blood (lactic acidosis). Increased acidity in ...

  4. Glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    G-6-PD deficiency; Hemolytic anemia due to G6PD deficiency; Anemia - hemolytic due to G6PD deficiency ... Churchill Livingston; 2008:chap 45. Golan DER. Hemolytic anemias: red cell membrane and metabolic defects. In: Goldman ...

  5. Pyruvate dehydrogenase phosphatase 1 (PDP1) null mutation produces a lethal infantile phenotype.

    PubMed

    Cameron, J M; Maj, M; Levandovskiy, V; Barnett, C P; Blaser, S; Mackay, N; Raiman, J; Feigenbaum, A; Schulze, A; Robinson, B H

    2009-04-01

    Pyruvate dehydrogenase phosphatase deficiency has previously only been confirmed at the molecular level in two brothers and two breeds of dog with exercise intolerance. A female patient, who died at 6 months, presented with lactic acidemia in the neonatal period with serum lactate levels ranging from 2.5 to 17 mM. Failure of dichloroacetate to activate the PDH complex in skin fibroblasts was evident, but not in early passages. A homozygous c.277G > T (p.E93X) nonsense mutation in the PDP1 gene was identified in genomic DNA and immunoblotting showed a complete absence of PDP1 protein in mitochondria. Native PDHC activity could be restored by the addition of either recombinant PDP1 or PDP2. This highlights the role of PDP2, the second phosphatase isoform, in PDP1-deficient patients for the first time. We conclude that the severity of the clinical course associated with PDP1 deficiency can be quite variable depending on the exact nature of the molecular defect. PMID:19184109

  6. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species.

    PubMed

    Hurd, Thomas R; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T; Baranowski, Bartlomiej; Fearnley, Ian M; Prime, Tracy A; Murphy, Michael P; James, Andrew M

    2012-10-12

    Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H(2)O(2)) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H(2)O(2) derives from superoxide (O(2)(.)), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O(2)(.) production, such as may occur under nutrient excess and low ATP demand, the increase in O(2)() and H(2)O(2) may provide feedback signals to modulate mitochondrial metabolism. PMID:22910903

  7. Inactivation of Pyruvate Dehydrogenase Kinase 2 by Mitochondrial Reactive Oxygen Species*

    PubMed Central

    Hurd, Thomas R.; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T.; Baranowski, Bartlomiej; Fearnley, Ian M.; Prime, Tracy A.; Murphy, Michael P.; James, Andrew M.

    2012-01-01

    Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H2O2) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H2O2 derives from superoxide (O2˙̄), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O2˙̄ production, such as may occur under nutrient excess and low ATP demand, the increase in O2˙̄ and H2O2 may provide feedback signals to modulate mitochondrial metabolism. PMID:22910903

  8. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression.

    PubMed

    Meiser, Johannes; Krämer, Lisa; Sapcariu, Sean C; Battello, Nadia; Ghelfi, Jenny; D'Herouel, Aymeric Fouquier; Skupin, Alexander; Hiller, Karsten

    2016-02-19

    Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases. PMID:26679997

  9. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression*

    PubMed Central

    Meiser, Johannes; Krämer, Lisa; Sapcariu, Sean C.; Battello, Nadia; Ghelfi, Jenny; D'Herouel, Aymeric Fouquier; Skupin, Alexander; Hiller, Karsten

    2016-01-01

    Upon stimulation with Th1 cytokines or bacterial lipopolysaccharides, resting macrophages shift their phenotype toward a pro-inflammatory state as part of the innate immune response. LPS-activated macrophages undergo profound metabolic changes to adapt to these new physiological requirements. One key step to mediate this metabolic adaptation is the stabilization of HIF1α, which leads to increased glycolysis and lactate release, as well as decreased oxygen consumption. HIF1 abundance can result in the induction of the gene encoding pyruvate dehydrogenase kinase 1 (PDK1), which inhibits pyruvate dehydrogenase (PDH) via phosphorylation. Therefore, it has been speculated that pyruvate oxidation through PDH is decreased in pro-inflammatory macrophages. However, to answer this open question, an in-depth analysis of this metabolic branching point was so far lacking. In this work, we applied stable isotope-assisted metabolomics techniques and demonstrate that pyruvate oxidation is maintained in mature pro-inflammatory macrophages. Glucose-derived pyruvate is oxidized via PDH to generate citrate in the mitochondria. Citrate is used for the synthesis of the antimicrobial metabolite itaconate and for lipogenesis. An increased demand for these metabolites decreases citrate oxidation through the tricarboxylic acid cycle, whereas increased glutamine uptake serves to replenish the TCA cycle. Furthermore, we found that the PDH flux is maintained by unchanged PDK1 abundance, despite the presence of HIF1. By pharmacological intervention, we demonstrate that the PDH flux is an important node for M(LPS) macrophage activation. Therefore, PDH represents a metabolic intervention point that might become a research target for translational medicine to treat chronic inflammatory diseases. PMID:26679997

  10. Glucose-6-phosphate dehydrogenase deficiency

    MedlinePlus

    G6PD deficiency; Hemolytic anemia due to G6PD deficiency; Anemia - hemolytic due to G6PD deficiency ... Gallagher PG. Hemolytic anemias. In: Goldman L, Schafer AI, eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 161. Janz ...

  11. The pyruvate dehydrogenase complex in cancer: An old metabolic gatekeeper regulated by new pathways and pharmacological agents.

    PubMed

    Saunier, Elise; Benelli, Chantal; Bortoli, Sylvie

    2016-02-15

    Cancer cells exhibit an altered metabolism which is characterized by a preference for aerobic glycolysis more than mitochondrial oxidation of pyruvate. This provides anabolic support and selective growth advantage for cancer cells. Recently, a new concept has arisen suggesting that these metabolic changes may be due, in part, to an attenuated mitochondrial function which results from the inhibition of the pyruvate dehydrogenase complex (PDC). This mitochondrial complex links glycolysis to the Krebs cycle and the current understanding of its regulation involves the cyclic phosphorylation and dephosphorylation by specific pyruvate dehydrogenase kinases (PDKs) and pyruvate dehydrogenase phosphatases (PDPs). PMID:25868605

  12. Characterization of interactions of dihydrolipoamide dehydrogenase with its binding protein in the human pyruvate dehydrogenase complex

    SciTech Connect

    Park, Yun-Hee; Patel, Mulchand S.

    2010-05-07

    Unlike pyruvate dehydrogenase complexes (PDCs) from prokaryotes, PDCs from higher eukaryotes have an additional structural component, E3-binding protein (BP), for binding of dihydrolipoamide dehydrogenase (E3) in the complex. Based on the 3D structure of the subcomplex of human (h) E3 with the di-domain (L3S1) of hBP, the amino acid residues (H348, D413, Y438, and R447) of hE3 for binding to hBP were substituted singly by alanine or other residues. These substitutions did not have large effects on hE3 activity when measured in its free form. However, when these hE3 mutants were reconstituted in the complex, the PDC activity was significantly reduced to 9% for Y438A, 20% for Y438H, and 18% for D413A. The binding of hE3 mutants with L3S1 determined by isothermal titration calorimetry revealed that the binding affinities of the Y438A, Y438H, and D413A mutants to L3S1 were severely reduced (1019-, 607-, and 402-fold, respectively). Unlike wild-type hE3 the binding of the Y438A mutant to L3S1 was accompanied by an unfavorable enthalpy change and a large positive entropy change. These results indicate that hE3-Y438 and hE3-D413 play important roles in binding of hE3 to hBP.

  13. Mutants of Escherichia coli deficient in the fermentative lactate dehydrogenase.

    PubMed Central

    Mat-Jan, F; Alam, K Y; Clark, D P

    1989-01-01

    Mutants of Escherichia coli deficient in the fermentative NAD-linked lactate dehydrogenase (ldh) have been isolated. These mutants showed no growth defects under anaerobic conditions unless present together with a defect in pyruvate formate lyase (pfl). Double mutants (pfl ldh) were unable to grow anaerobically on glucose or other sugars even when supplemented with acetate, whereas pfl mutants can do so. The ldh mutation was found to map at 30.5 min on the E. coli chromosome. The ldh mutant FMJ39 showed no detectable lactate dehydrogenase activity and produced no lactic acid from glucose under anaerobic conditions as estimated by in vivo nuclear magnetic resonance measurements. We also found that in wild-type strains the fermentative lactate dehydrogenase was conjointly induced by anaerobic conditions and an acidic pH. Despite previous findings that phosphate concentrations affect the proportion of lactic acid produced during fermentation, we were unable to find any intrinsic effect of phosphate on lactate dehydrogenase activity, apart from the buffering effect of this ion. PMID:2644194

  14. Succinate dehydrogenase-deficient gastrointestinal stromal tumors

    PubMed Central

    Wang, Ya-Mei; Gu, Meng-Li; Ji, Feng

    2015-01-01

    Most gastrointestinal stromal tumors (GISTs) are characterized by KIT or platelet-derived growth factor alpha (PDGFRA) activating mutations. However, there are still 10%-15% of GISTs lacking KIT and PDGFRA mutations, called wild-type GISTs (WT GISTs). Among these so-called WT GISTs, a small subset is associated with succinate dehydrogenase (SDH) deficiency, known as SDH-deficient GISTs. In addition, GISTs that occur in Carney triad and Carney-Stratakis syndrome represent specific examples of SDH-deficient GISTs. SDH-deficient GISTs locate exclusively in the stomach, showing predilection for children and young adults with female preponderance. The tumor generally pursues an indolent course and exhibits primary resistance to imatinib therapy in most cases. Loss of succinate dehydrogenase subunit B expression and overexpression of insulin-like growth factor 1 receptor (IGF1R) are common features of SDH-deficient GISTs. In WT GISTs without succinate dehydrogenase activity, upregulation of hypoxia-inducible factor 1α may lead to increased growth signaling through IGF1R and vascular endothelial growth factor receptor (VEGFR). As a result, IGF1R and VEGFR are promising to be the novel therapeutic targets of GISTs. This review will update the current knowledge on characteristics of SDH-deficient GISTs and further discuss the possible mechanisms of tumorigenesis and clinical management of SDH-deficient GISTs. PMID:25741136

  15. Oxidation of an Adjacent Methionine Residue Inhibits Regulatory Seryl-phosphorylation of Pyruvate Dehydrogenase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Met residue is located adjacent to phosphorylation site 1 in the sequences of mitochondrial pyruvate dehydrogenase E1alpha subunits. When synthetic peptides including site 1 were treated with Hydrogen peroxide, the Met residue was oxidized to methionine sulfoxide (MetSO), and the peptides were no...

  16. EXPRESSION AND ASSEMBLY OF ARABIDOPSIS THALIANA PYRUVATE DEHYDROGENASE IN INSECT CELL CYTOPLASM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vector was constructed for expression of Arabidopsis thaliana mitochondrial pyruvate dehydrogenase (E1) in the cytoplasm of Trichoplusia ni cells. The construct, pDDR101, comprises the mature-E1alpha coding sequence under control of the polh promoter, plus the mature-E1beta coding sequence under ...

  17. Metabolism of 1-aminoethylphosphinate generates acetylphosphinate, a potent inhibitor of pyruvate dehydrogenase.

    PubMed Central

    Laber, B; Amrhein, N

    1987-01-01

    The alanine analogue 1-aminoethylphosphinate [H3C-CH(NH2)-PO2H2] effectively inhibited anthocyanin synthesis in buckwheat hypocotyls and caused an increase in the concentrations of alanine and alanine-derived metabolites. Aminotransferase inhibitors partially alleviated the effects of the analogue. 1-Aminoethylphosphinate did not affect the growth of Klebsiella pneumoniae under anaerobic conditions, but under aerobic conditions it inhibited growth and caused the massive excretion of pyruvate. The analogue inhibited the pyruvate dehydrogenase complex in vitro in the presence of an aminotransferase activity. The transamination product of 1-aminoethylphosphinate, acetylphosphinate (H3C-CO-PO2H2), was found to inhibit the pyruvate dehydrogenase complex in a time-dependent reaction that followed first-order and saturation kinetics and required the presence of thiamin pyrophosphate. PMID:3325039

  18. Metabolism of 1-aminoethylphosphinate generates acetylphosphinate, a potent inhibitor of pyruvate dehydrogenase.

    PubMed

    Laber, B; Amrhein, N

    1987-12-01

    The alanine analogue 1-aminoethylphosphinate [H3C-CH(NH2)-PO2H2] effectively inhibited anthocyanin synthesis in buckwheat hypocotyls and caused an increase in the concentrations of alanine and alanine-derived metabolites. Aminotransferase inhibitors partially alleviated the effects of the analogue. 1-Aminoethylphosphinate did not affect the growth of Klebsiella pneumoniae under anaerobic conditions, but under aerobic conditions it inhibited growth and caused the massive excretion of pyruvate. The analogue inhibited the pyruvate dehydrogenase complex in vitro in the presence of an aminotransferase activity. The transamination product of 1-aminoethylphosphinate, acetylphosphinate (H3C-CO-PO2H2), was found to inhibit the pyruvate dehydrogenase complex in a time-dependent reaction that followed first-order and saturation kinetics and required the presence of thiamin pyrophosphate. PMID:3325039

  19. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids.

    PubMed

    Mourtzakis, Marina; Saltin, Bengt; Graham, Terry; Pilegaard, Henriette

    2006-06-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44+/-1% peak oxygen consumption (mean+/-SE) until exhaustion (exhaustion at 3 h 23 min+/-11 min). Femoral arterial and venous blood, blood flow measurements, and muscle samples were obtained hourly during exercise and recovery (3 h). Carbohydrate oxidation peaked at 30 min of exercise and subsequently decreased for the remainder of the exercise bout (P<0.05). PDH activity peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced (approximately 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P<0.05) was also associated with decreasing PDH activity (P<0.05) and increased PDH kinase 4 mRNA (P<0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with pyruvate metabolism, and they comprised approximately 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in early exercise. PMID:16424076

  20. Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised 13C MRS.

    PubMed

    Atherton, Helen J; Schroeder, Marie A; Dodd, Michael S; Heather, Lisa C; Carter, Emma E; Cochlin, Lowri E; Nagel, Simon; Sibson, Nicola R; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-02-01

    Many diseases of the heart are characterised by changes in substrate utilisation, which is regulated in part by the activity of the enzyme pyruvate dehydrogenase (PDH). Consequently, there is much interest in the in vivo evaluation of PDH activity in a range of physiological and pathological states to obtain information on the metabolic mechanisms of cardiac diseases. Hyperpolarised [1-(13)C]pyruvate, detected using MRS, is a novel technique for the noninvasive evaluation of PDH flux. PDH flux has been assumed to directly reflect in vivo PDH activity, although to date this assumption remains unproven. Control animals and animals undergoing interventions known to modulate PDH activity, namely high fat feeding and dichloroacetate infusion, were used to investigate the relationship between in vivo hyperpolarised MRS measurements of PDH flux and ex vivo measurements of PDH enzyme activity (PDH(a)). Further, the plasma concentrations of pyruvate and other important metabolites were evaluated following pyruvate infusion to assess the metabolic consequences of pyruvate infusion during hyperpolarised MRS experiments. Hyperpolarised MRS measurements of PDH flux correlated significantly with ex vivo measurements of PDH(a), confirming that PDH activity influences directly the in vivo flux of hyperpolarised pyruvate through cardiac PDH. The maximum plasma concentration of pyruvate reached during hyperpolarised MRS experiments was approximately 250 µM, equivalent to physiological pyruvate concentrations reached during exercise or with dietary interventions. The concentrations of other metabolites, including lactate, glucose and β-hydroxybutyrate, did not vary during the 60 s following pyruvate infusion. Hence, during the 60-s data acquisition period, metabolism was minimally affected by pyruvate infusion. PMID:20799252

  1. Acetylphosphinate is the most potent mechanism-based substrate-like inhibitor of both the human and E. coli pyruvate dehydrogenase components of the pyruvate dehydrogenase complex

    PubMed Central

    Nemeria, Natalia S.; Korotchkina, Lioubov G.; Chakraborty, Sumit; Patel, Mulchand S.; Jordan, Frank

    2006-01-01

    Two analogues of pyruvate, acetylphosphinate and acetylmethylphosphinate were tested as inhibitors of the E1 (pyruvate dehydrogenase) component of the human and Escherichia coli pyruvate dehydrogenase complexes. This is the first instance of such studies on the human enzyme. The acetylphosphinate is a stronger inhibitor of both enzymes (Ki< 1 μM) than acetylmethylphosphinate. Both inhibitors are found to be reversible tight-binding inhibitors. With both inhibitors and with both enzymes, the inhibition apparently takes place by formation of a C2α-phosphinolactylthiamin diphosphate derivative, a covalent adduct of the inhibitor and the coenzyme, mimicking the behavior of substrate and forming a stable analogue of the C2α-lactylthiamin diphosphate. Formation of the intermediate analogue in each case is confirmed by the appearance of a positive circular dichroism signal in the 305-306 nm range, attributed to the 1',4'-iminopyrimidine tautomeric form of the coenzyme. It is further shown that the αHis63 residue of the human E1 has a role in the formation of C2α-lactylthiamin diphosphate since the αHis63Ala variant is only modestly inhibited by either inhibitor, nor did either compound generate the circular dichroism bands assigned to different tautomeric forms of the 4'-aminopyrimidine ring of the coenzyme seen with the wild type enzyme. Interestingly, opposite enantiomers of the carboligase side product acetoin are produced by the human and bacterial enzymes. PMID:17070897

  2. Acetylphosphinate is the most potent mechanism-based substrate-like inhibitor of both the human and Escherichia coli pyruvate dehydrogenase components of the pyruvate dehydrogenase complex.

    PubMed

    Nemeria, Natalia S; Korotchkina, Lioubov G; Chakraborty, Sumit; Patel, Mulchand S; Jordan, Frank

    2006-12-01

    Two analogues of pyruvate, acetylphosphinate and acetylmethylphosphinate were tested as inhibitors of the E1 (pyruvate dehydrogenase) component of the human and Escherichia coli pyruvate dehydrogenase complexes. This is the first instance of such studies on the human enzyme. The acetylphosphinate is a stronger inhibitor of both enzymes (Ki < 1 microM) than acetylmethylphosphinate. Both inhibitors are found to be reversible tight-binding inhibitors. With both inhibitors and with both enzymes, the inhibition apparently takes place by formation of a C2alpha-phosphinolactylthiamin diphosphate derivative, a covalent adduct of the inhibitor and the coenzyme, mimicking the behavior of substrate and forming a stable analogue of the C2alpha-lactylthiamin diphosphate. Formation of the intermediate analogue in each case is confirmed by the appearance of a positive circular dichroism band in the 305-306 nm range, attributed to the 1',4'-iminopyrimidine tautomeric form of the coenzyme. It is further shown that the alphaHis63 residue of the human E1 has a role in the formation of C2alpha-lactylthiamin diphosphate since the alphaHis63Ala variant is only modestly inhibited by either inhibitor, nor did either compound generate the circular dichroism bands assigned to different tautomeric forms of the 4'-aminopyrimidine ring of the coenzyme seen with the wild-type enzyme. Interestingly, opposite enantiomers of the carboligase side product acetoin are produced by the human and bacterial enzymes. PMID:17070897

  3. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    SciTech Connect

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-02-27

    Potassium tellurite (K{sub 2}TeO{sub 3}) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  4. Severe encephalopathy associated to pyruvate dehydrogenase mutations and unbalanced coenzyme Q10 content.

    PubMed

    Asencio, Claudio; Rodríguez-Hernandez, María A; Briones, Paz; Montoya, Julio; Cortés, Ana; Emperador, Sonia; Gavilán, Angela; Ruiz-Pesini, Eduardo; Yubero, Dèlia; Montero, Raquel; Pineda, Mercedes; O'Callaghan, María M; Alcázar-Fabra, María; Salviati, Leonardo; Artuch, Rafael; Navas, Plácido

    2016-03-01

    Coenzyme Q10 (CoQ10) deficiency is associated to a variety of clinical phenotypes including neuromuscular and nephrotic disorders. We report two unrelated boys presenting encephalopathy, ataxia, and lactic acidosis, who died with necrotic lesions in different areas of brain. Levels of CoQ10 and complex II+III activity were increased in both skeletal muscle and fibroblasts, but it was a consequence of higher mitochondria mass measured as citrate synthase. In fibroblasts, oxygen consumption was also increased, whereas steady state ATP levels were decreased. Antioxidant enzymes such as NQO1 and MnSOD and mitochondrial marker VDAC were overexpressed. Mitochondria recycling markers Fis1 and mitofusin, and mtDNA regulatory Tfam were reduced. Exome sequencing showed mutations in PDHA1 in the first patient and in PDHB in the second. These genes encode subunits of pyruvate dehydrogenase complex (PDH) that could explain the compensatory increase of CoQ10 and a defect of mitochondrial homeostasis. These two cases describe, for the first time, a mitochondrial disease caused by PDH defects associated with unbalanced of both CoQ10 content and mitochondria homeostasis, which severely affects the brain. Both CoQ10 and mitochondria homeostasis appears as new markers for PDH associated mitochondrial disorders. PMID:26014431

  5. Pyruvate dehydrogenase activity and quantity decreases after coronary artery bypass grafting: a prospective observational study

    PubMed Central

    Andersen, Lars W.; Liu, Xiaowen; Peng, Teng J.; Giberson, Tyler A.; Khabbaz, Kamal R.; Donnino, Michael W.

    2014-01-01

    Introduction Pyruvate dehydrogenase (PDH) is a key gatekeeper enzyme in aerobic metabolism. The main purpose of this study was to determine if PDH activity is affected by major stress in the form of coronary artery bypass grafting (CABG) which has previously been used as a model of critical illness. Methods We conducted a prospective, observational study of patients undergoing CABG at an urban, tertiary care hospital. We included adult patients undergoing CABG with or without concomitant valve surgery. Measurements of PDH activity and quantity and thiamine were obtained prior to surgery, at the completion of surgery, and 6 hours post-surgery. Results Fourteen patients were enrolled (age: 67 ± 10 years, 21 % female). Study subjects had a mean 41.7 % (SD: 27.7) reduction in PDH activity after surgery and a mean 32.0% (SD: 31.4) reduction 6 hours after surgery (p < 0.001). Eight patients were thiamine deficient (≤ 7 nmol/L) after surgery compared to none prior to surgery (p = 0.002). Thiamine level was a significantly associated with PDH quantity at all time points (p = 0.01). Post-surgery lactate levels were inversely correlated with post-surgery thiamine levels (r = −0.58 and p = 0.04). Conclusion The stress of major surgery causes decreased PDH activity and quantity, and depletion of thiamine levels. PMID:25526377

  6. Phosphorylation Status of Pyruvate Dehydrogenase Distinguishes Metabolic Phenotypes of Cultured Rat Brain Astrocytes and Neurons

    PubMed Central

    HALIM, NADER D.; McFATE, THOMAS; MOHYELDIN, AHMED; OKAGAKI, PETER; KOROTCHKINA, LIOUBOV G; PATEL, MULCHAND S; JEOUNG, NAM HO; HARRIS, ROBERT A.; SCHELL, MICHAEL J.; VERMA, AJAY

    2010-01-01

    Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons vs. astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDHα). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorlyated PDHα. Dephosphorylation of astrocytic PDHα restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. PMID:20544852

  7. Targeting Tumor Metabolism for Cancer Treatment: Is Pyruvate Dehydrogenase Kinases (PDKs) a Viable Anticancer Target?

    PubMed Central

    Zhang, Wen; Zhang, Shao-Lin; Hu, Xiaohui; Tam, Kin Yip

    2015-01-01

    Cancer remains a lethal threat to global lives. Development of novel anticancer therapeutics is still a challenge to scientists in the field of biomedicine. In cancer cells, the metabolic features are significantly different from those of normal ones, which are hallmarks of several malignancies. Recent studies brought atypical cellular metabolism, such as aerobic glycolysis or the Warburg effect, into the scientific limelight. Targeting these altered metabolic pathways in cancer cells presents a promising therapeutic strategy. Pyruvate dehydrogenase kinases (PDKs), key enzymes in the pathway of glucose metabolism, could inactivate the pyruvate dehydrogenase complex (PDC) by phosphorylating it and preserving the substrates pyruvate, lactate and alanine for gluconeogenesis. Overexpression of PDKs could block the oxidative decarboxylation of pyruvate to satisfy high oxygen demand in cancer cells, while inhibition of PDKs could upregulate the activity of PDC and rectify the balance between the demand and supply of oxygen, which could lead to cancer cell death. Thus, inhibitors targeting PDKs represent a promising strategy for cancer treatment by acting on glycolytic tumors while showing minimal side effects on the oxidative healthy organs. This review considers the role of PDKs as regulator of PDC that catalyzes the oxidative decarboxylation of pyruvate in mitochondrion. It is concluded that PDKs are solid therapeutic targets. Inhibition of PDKs could be an attractive therapeutic approach for the development of anti-cancer drugs. PMID:26681918

  8. Crystallization and Initial X-Ray Diffraction Analysis of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Hong, Young-Soo; Joachimiak, Andrzj; Patel, Mulchand S.; Rose, M. Franklin

    2000-01-01

    Human pyruvate dehydrogenase (E1) is a component enzyme of the pyruvate dehydrogenase complex. The enzyme catalyzes the decarboxylation of pyruvate followed by a reductive acetylation of lipoyl groups of the dihydrolipoamide acetyltransferase component of the pyruvate dehydrogenase complex. El is an alpha(sub 2)Beta(sub 2) tetrameric assembly of an approximate molecular mass of 154 kDa. The crystals of this recombinant enzyme have been grown from polyethylene glycol 3350 using vapor diffusion method at 295K. The crystals are characterized as orthorhombic, space group P2(sub 1)2(sub 1)2(sub 1), with cell parameters of a = 64.2, b = 126.9 and c = 190.2 A. Crystals diffracted to a minimum d-spacing of 2.5 A. The asymmetric unit contains one alpha(sub 2)Beta(sub 2) tetrameric El assembly, and self-rotation function analysis showed a pseudo-twofold symmetry relating the two monomers.

  9. Identification and analysis of the genes coding for the putative pyruvate dehydrogenase enzyme complex in Acholeplasma laidlawii.

    PubMed Central

    Wallbrandt, P; Tegman, V; Jonsson, B H; Wieslander, A

    1992-01-01

    A monospecific antibody recognizing two membrane proteins in Acholeplasma laidlawii identified a plasmid clone from a genomic library. The nucleotide sequence of the 4.6-kbp insert contained four sequential genes coding for proteins of 39 kDa (E1 alpha, N terminus not cloned), 36 kDa (E1 beta), 57 kDa (E2), and 36 kDa (E3; C terminus not cloned). The N termini of the cloned E2, E1 beta, and native A. laidlawii E2 proteins were verified by amino acid sequencing. Computer-aided searches showed that the translated DNA sequences were homologous to the four subenzymes of the pyruvate dehydrogenase complexes from gram-positive bacteria and humans. The plasmid-encoded 57-kDa (E2) protein was recognized by antibodies against the E2 subenzymes of the pyruvate and oxoglutarate dehydrogenase complexes from Bacillus subtilis. A substantial fraction of the E2 protein as well as part of the pyruvate dehydrogenase enzymatic activity was associated with the cytoplasmic membrane in A. laidlawii. In vivo complementation with three different Escherichia coli pyruvate dehydrogenase-defective mutants showed that the four plasmid-encoded proteins were able to restore pyruvate dehydrogenase enzyme activity in E. coli. Since A. laidlawii lacks oxoglutarate dehydrogenase and most likely branched-chain dehydrogenase enzyme complex activities, these results strongly suggest that the sequenced genes code for the pyruvate dehydrogenase complex. Images PMID:1735725

  10. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis

    PubMed Central

    Cardaci, Simone; Zheng, Liang; MacKay, Gillian; van den Broek, Niels J.F.; MacKenzie, Elaine D.; Nixon, Colin; Stevenson, David; Tumanov, Sergey; Bulusu, Vinay; Kamphorst, Jurre J.; Vazquez, Alexei; Fleming, Stewart; Schiavi, Francesca; Kalna, Gabriela; Blyth, Karen; Strathdee, Douglas; Gottlieb, Eyal

    2015-01-01

    Succinate dehydrogenase (SDH) is a hetero-tetrameric nuclear-encoded complex responsible for the oxidation of succinate to fumarate in the tricarboxylic acid (TCA) cycle. Loss-of-function mutations in any of the SDH genes are associated with cancer formation. However, the impact of SDH loss on cell metabolism and the mechanisms enabling growth of SDH-defective cells are largely unknown. Here, we generated Sdhb-ablated kidney mouse cells and employed comparative metabolomics and stable isotope-labelling approaches to identify nutritional requirements and metabolic adaptations to SDH loss. We found that lack of SDH activity commits cells to consume extracellular pyruvate, which sustains Warburg-like bioenergetic features. We further demonstrated that pyruvate carboxylation diverts glucose-derived carbons into aspartate biosynthesis, thus sustaining cell growth. By identifying pyruvate carboxylase as an essential gene for the proliferation and tumorigenic capacity of SDH-deficient cells, this study revealed a metabolic vulnerability for potential future treatment of SDH-associated malignancies. PMID:26302408

  11. Neuropathology in Succinic Semialdehyde Dehydrogenase Deficiency

    PubMed Central

    Knerr, Ina; Gibson, K. Michael; Murdoch, Geoffrey; Salomons, Gajja S.; Jakobs, Cornelis; Combs, Susan; Pearl, Phillip L.

    2010-01-01

    Reported here is the novel finding of neuropathology in a patient with succinic semialdehyde dehydrogenase deficiency, an inherited disorder of γ-aminobutyric acid metabolism characterized by intellectual deficiency, hypotonia, and epilepsy, with 4-hydroxybutyric aciduria and abnormalities of the globus pallidus on neuroimaging. A 19-year-old woman of European origin with a neurodevelopmental disorder and epilepsy died unexpectedly in 1998. A postmortem examination was performed, with a final diagnosis of sudden unexpected death in epilepsy patients. Eight years later, her sister with a neurodevelopmental disorder presented at 13 years of age with seizures and was diagnosed with succinic semialdehyde dehydrogenase deficiency. In the decedent, succinic semialdehyde dehydrogenase deficiency was established at the molecular level, 10 years after her death, using genomic DNA from brain tissue specimens. The neuropathologic findings revealed striking discoloration of the globi pallidi, leptomeningeal congestion, and a scar in the frontal cortex. After detection of the pathogenic homozygous mutation c.1226G>A, p.Gly409Asp in the living sister, it was confirmed in the decedent. An underlying metabolic disease may be an additional risk factor for sudden unexpected death in epilepsy patients. PMID:20304328

  12. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    SciTech Connect

    Savkur, Rajesh S.; Bramlett, Kelli S.; Michael, Laura F.; Burris, Thomas P. . E-mail: burris_thomas_p@lilly.com

    2005-04-01

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression.

  13. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation

    PubMed Central

    Misra, Santosh K.; Ye, Mao; Ostadhossein, Fatemeh; Pan, Dipanjan

    2016-01-01

    Anticancer agents based on haloacetic acids are developed for inhibition of pyruvate dehydrogenase kinase (PDK), an enzyme responsible for reversing the suppression of mitochondria-dependent apoptosis. Through molecular docking studies mono- and dihaloacetates are identified as potent PDK2 binders and matched their efficiency with dichloroacetic acid. In silico screening directed their conversion to phospholipid prodrugs, which were subsequently self-assembled to pro-haloacetate nanoparticles. Following a thorough physico-chemical characterization, the functional activity of these novel agents was established in wide ranges of human cancer cell lines in vitro and in vivo in rodents. Results indicated that the newly explored PDK modulators can act as efficient agent for cancer regression. A Pyruvate dehydrogenase (PDH) assay mechanistically confirmed that these agents trigger their activity through the mitochondria-dependent apoptosis. PMID:27323896

  14. Pro-haloacetate Nanoparticles for Efficient Cancer Therapy via Pyruvate Dehydrogenase Kinase Modulation

    NASA Astrophysics Data System (ADS)

    Misra, Santosh K.; Ye, Mao; Ostadhossein, Fatemeh; Pan, Dipanjan

    2016-06-01

    Anticancer agents based on haloacetic acids are developed for inhibition of pyruvate dehydrogenase kinase (PDK), an enzyme responsible for reversing the suppression of mitochondria-dependent apoptosis. Through molecular docking studies mono- and dihaloacetates are identified as potent PDK2 binders and matched their efficiency with dichloroacetic acid. In silico screening directed their conversion to phospholipid prodrugs, which were subsequently self-assembled to pro-haloacetate nanoparticles. Following a thorough physico-chemical characterization, the functional activity of these novel agents was established in wide ranges of human cancer cell lines in vitro and in vivo in rodents. Results indicated that the newly explored PDK modulators can act as efficient agent for cancer regression. A Pyruvate dehydrogenase (PDH) assay mechanistically confirmed that these agents trigger their activity through the mitochondria-dependent apoptosis.

  15. SIRT3 DEACETYLATES AND INCREASES PYRUVATE DEHYDROGENASE ACTIVITY IN CANCER CELLS

    PubMed Central

    Wagner, Brett A.; Song, Ha Yong; Zhu, Yueming; Vassilopoulos, Athanassios; Jung, Barbara; Buettner, Garry R.; Gius, David

    2015-01-01

    Pyruvate dehydrogenase E1 alpha (PDHE1α or PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex (PDC) that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321) and a PDHA1 mutant, mimicking a deacetylated lysine (PDHA1K321R) increases in PDH activity, as compared to the K321 acetylation mimic (PDHA1K321Q) or wild-type PDHA1. Finally, PDHA1K321Q exhibited a more transformed in vitro cellular phenotype as compared to PDHA1K321R. These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyl-lysine suggesting that the acetylome, as well as the kinome, links glycolysis to respiration. PMID:25152236

  16. Fermentation and alternative respiration compensate for NADH dehydrogenase deficiency in a prokaryotic model of DJ-1-associated Parkinsonism.

    PubMed

    Messaoudi, Nadia; Gautier, Valérie; Dairou, Julien; Mihoub, Mouhad; Lelandais, Gaëlle; Bouloc, Philippe; Landoulsi, Ahmed; Richarme, Gilbert

    2015-11-01

    YajL is the closest prokaryotic homologue of Parkinson's disease-associated DJ-1, a protein of undefined function involved in the oxidative stress response. We reported recently that YajL and DJ-1 protect cells against oxidative stress-induced protein aggregation by acting as covalent chaperones for the thiol proteome, including the NuoG subunit of NADH dehydrogenase 1, and that NADH dehydrogenase 1 activity is negligible in the yajL mutant. We report here that this mutant compensates for low NADH dehydrogenase activity by utilizing NADH-independent alternative dehydrogenases, including pyruvate oxidase PoxB and d-amino acid dehydrogenase DadA, and mixed acid aerobic fermentations characterized by acetate, lactate, succinate and ethanol excretion. The yajL mutant has a low adenylate energy charge favouring glycolytic flux, and a high NADH/NAD ratio favouring fermentations over pyruvate dehydrogenase and the Krebs cycle. DNA array analysis showed upregulation of genes involved in glycolytic and pentose phosphate pathways and alternative respiratory pathways. Moreover, the yajL mutant preferentially catabolized pyruvate-forming amino acids over Krebs cycle-related amino acids, and thus the yajL mutant utilizes pyruvate-centred respiro-fermentative metabolism to compensate for the NADH dehydrogenase 1 defect and constitutes an interesting model for studying eukaryotic respiratory complex I deficiencies, especially those associated with Alzheimer's and Parkinson's diseases. PMID:26377309

  17. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering.

    PubMed

    Lian, Jiazhang; Zhao, Huimin

    2016-07-15

    Acetyl-CoA is a key precursor for the biosynthesis of a wide range of fuels, chemicals, and value-added compounds, whose biosynthesis in Saccharomyces cerevisiae involves acetyl-CoA synthetase (ACS) and is energy intensive. Previous studies have demonstrated that functional expression of a pyruvate dehydrogenase (PDH) could fully replace the endogenous ACS-dependent pathway for cytosolic acetyl-CoA biosynthesis in an ATP-independent manner. However, the requirement for lipoic acid (LA) supplementation hinders its wide industrial applications. In the present study, we focus on the engineering of a de novo synthetic lipoylation machinery for reconstitution of a functional PDH in the cytosol of yeast. First, a LA auxotrophic yeast strain was constructed through the expression of the Escherichia coli PDH structural genes and a lipoate-protein ligase gene in an ACS deficient (acs1Δ acs2Δ) strain, based on which an in vivo acetyl-CoA reporter was developed for following studies. Then the de novo lipoylation pathway was reconstituted in the cytosol of yeast by coexpressing the yeast mitochondrial lipoylation machinery genes and the E. coli type II fatty acid synthase (FAS) genes. Alternatively, an unnatural de novo synthetic lipoylation pathway was constructed by combining the reversed β-oxidation pathway with an acyl-ACP synthetase gene. To the best of our knowledge, reconstitution of natural and unnatural de novo synthetic lipoylation pathways for functional expression of a PDH in the cytosol of yeast has never been reported. Our study has laid a solid foundation for the construction and further optimization of acetyl-CoA overproducing yeast strains. PMID:26991359

  18. Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation

    PubMed Central

    Jeoung, Nam Ho; Wu, Pengfei; Joshi, Mandar A.; Jaskiewicz, Jerzy; Bock, Cheryl B.; Depaoli-Roach, Anna A.; Harris, Robert A.

    2006-01-01

    The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4−/− mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4−/− mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4−/− mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4−/− mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4−/− mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4−/− mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4−/− mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis. PMID:16606348

  19. Structural Basis for Flip-Flop Action of Thiamin Pyrophosphate-dependent Enzymes Revealed by Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa M.; Korotchkina, Lioubov G.; Dominiak, Paulina M.; Sidhu, Sukdeep; Patel, Mulchand S.

    2003-01-01

    The derivative of vitamin B1, thiamin pyrophosphate, is a cofactor of enzymes performing catalysis in pathways of energy production. In alpha (sub 2) beta (sub 2)-heterotetrameric human pyruvate dehydrogenase, this cofactor is used to cleave the C(sup alpha) -C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites has not yet been understood. To understand the mechanism of action of this enzyme, we determined the crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95-Angstrom resolution. We propose a model for the flip-flop action of this enzyme through a concerted approximately 2-Angstrom shuttle-like motion of its heterodimers. Similarity of thiamin pyrophosphate binding in human pyruvate dehydrogenase with functionally related enzymes suggests that this newly defined shuttle-like motion of domains is common to the family of thiamin pyrophosphate-dependent enzymes.

  20. Dysfunctional TCA-Cycle Metabolism in Glutamate Dehydrogenase Deficient Astrocytes.

    PubMed

    Nissen, Jakob D; Pajęcka, Kamilla; Stridh, Malin H; Skytt, Dorte M; Waagepetersen, Helle S

    2015-12-01

    Astrocytes take up glutamate in the synaptic area subsequent to glutamatergic transmission by the aid of high affinity glutamate transporters. Glutamate is converted to glutamine or metabolized to support intermediary metabolism and energy production. Glutamate dehydrogenase (GDH) and aspartate aminotransferase (AAT) catalyze the reversible reaction between glutamate and α-ketoglutarate, which is the initial step for glutamate to enter TCA cycle metabolism. In contrast to GDH, AAT requires a concomitant interconversion of oxaloacetate and aspartate. We have investigated the role of GDH in astrocyte glutamate and glucose metabolism employing siRNA mediated knock down (KD) of GDH in cultured astrocytes using stable and radioactive isotopes for metabolic mapping. An increased level of aspartate was observed upon exposure to [U-(13) C]glutamate in astrocytes exhibiting reduced GDH activity. (13) C Labeling of aspartate and TCA cycle intermediates confirmed that the increased amount of aspartate is associated with elevated TCA cycle flux from α-ketoglutarate to oxaloacetate, i.e. truncated TCA cycle. (13) C Glucose metabolism was elevated in GDH deficient astrocytes as observed by increased de novo synthesis of aspartate via pyruvate carboxylation. In the absence of glucose, lactate production from glutamate via malic enzyme was lower in GDH deficient astrocytes. In conclusions, our studies reveal that metabolism via GDH serves an important anaplerotic role by adding net carbon to the TCA cycle. A reduction in GDH activity seems to cause the astrocytes to up-regulate activity in pathways involved in maintaining the amount of TCA cycle intermediates such as pyruvate carboxylation as well as utilization of alternate substrates such as branched chain amino acids. PMID:26221781

  1. Lactate dehydrogenase is the key enzyme for pneumococcal pyruvate metabolism and pneumococcal survival in blood.

    PubMed

    Gaspar, Paula; Al-Bayati, Firas A Y; Andrew, Peter W; Neves, Ana Rute; Yesilkaya, Hasan

    2014-12-01

    Streptococcus pneumoniae is a fermentative microorganism and causes serious diseases in humans, including otitis media, bacteremia, meningitis, and pneumonia. However, the mechanisms enabling pneumococcal survival in the host and causing disease in different tissues are incompletely understood. The available evidence indicates a strong link between the central metabolism and pneumococcal virulence. To further our knowledge on pneumococcal virulence, we investigated the role of lactate dehydrogenase (LDH), which converts pyruvate to lactate and is an essential enzyme for redox balance, in the pneumococcal central metabolism and virulence using an isogenic ldh mutant. Loss of LDH led to a dramatic reduction of the growth rate, pinpointing the key role of this enzyme in fermentative metabolism. The pattern of end products was altered, and lactate production was totally blocked. The fermentation profile was confirmed by in vivo nuclear magnetic resonance (NMR) measurements of glucose metabolism in nongrowing cell suspensions of the ldh mutant. In this strain, a bottleneck in the fermentative steps is evident from the accumulation of pyruvate, revealing LDH as the most efficient enzyme in pyruvate conversion. An increase in ethanol production was also observed, indicating that in the absence of LDH the redox balance is maintained through alcohol dehydrogenase activity. We also found that the absence of LDH renders the pneumococci avirulent after intravenous infection and leads to a significant reduction in virulence in a model of pneumonia that develops after intranasal infection, likely due to a decrease in energy generation and virulence gene expression. PMID:25245810

  2. Lactate Dehydrogenase Is the Key Enzyme for Pneumococcal Pyruvate Metabolism and Pneumococcal Survival in Blood

    PubMed Central

    Gaspar, Paula; Al-Bayati, Firas A. Y.; Andrew, Peter W.; Neves, Ana Rute

    2014-01-01

    Streptococcus pneumoniae is a fermentative microorganism and causes serious diseases in humans, including otitis media, bacteremia, meningitis, and pneumonia. However, the mechanisms enabling pneumococcal survival in the host and causing disease in different tissues are incompletely understood. The available evidence indicates a strong link between the central metabolism and pneumococcal virulence. To further our knowledge on pneumococcal virulence, we investigated the role of lactate dehydrogenase (LDH), which converts pyruvate to lactate and is an essential enzyme for redox balance, in the pneumococcal central metabolism and virulence using an isogenic ldh mutant. Loss of LDH led to a dramatic reduction of the growth rate, pinpointing the key role of this enzyme in fermentative metabolism. The pattern of end products was altered, and lactate production was totally blocked. The fermentation profile was confirmed by in vivo nuclear magnetic resonance (NMR) measurements of glucose metabolism in nongrowing cell suspensions of the ldh mutant. In this strain, a bottleneck in the fermentative steps is evident from the accumulation of pyruvate, revealing LDH as the most efficient enzyme in pyruvate conversion. An increase in ethanol production was also observed, indicating that in the absence of LDH the redox balance is maintained through alcohol dehydrogenase activity. We also found that the absence of LDH renders the pneumococci avirulent after intravenous infection and leads to a significant reduction in virulence in a model of pneumonia that develops after intranasal infection, likely due to a decrease in energy generation and virulence gene expression. PMID:25245810

  3. Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells.

    PubMed

    Bunik, Victoria I; Artiukhov, Artem; Kazantsev, Alexey; Goncalves, Renata; Daloso, Danilo; Oppermann, Henry; Kulakovskaya, Elena; Lukashev, Nikolay; Fernie, Alisdair; Brand, Martin; Gaunitz, Frank

    2015-11-24

    The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 μM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 μM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition. PMID:26503465

  4. Specific inhibition by synthetic analogs of pyruvate reveals that the pyruvate dehydrogenase reaction is essential for metabolism and viability of glioblastoma cells

    PubMed Central

    Bunik, Victoria I.; Artiukhov, Artem; Kazantsev, Alexey; Goncalves, Renata; Daloso, Danilo; Oppermann, Henry; Kulakovskaya, Elena; Lukashev, Nikolay; Fernie, Alisdair; Brand, Martin; Gaunitz, Frank

    2015-01-01

    The pyruvate dehydrogenase complex (PDHC) and its phosphorylation are considered essential for oncotransformation, but it is unclear whether cancer cells require PDHC to be functional or silenced. We used specific inhibition of PDHC by synthetic structural analogs of pyruvate to resolve this question. With isolated and intramitochondrial PDHC, acetyl phosphinate (AcPH, KiAcPH = 0.1 μM) was a much more potent competitive inhibitor than the methyl ester of acetyl phosphonate (AcPMe, KiAcPMe = 40 μM). When preincubated with the complex, AcPH also irreversibly inactivated PDHC. Pyruvate prevented, but did not reverse the inactivation. The pyruvate analogs did not significantly inhibit other 2-oxo acid dehydrogenases. Different cell lines were exposed to the inhibitors and a membrane-permeable precursor of AcPMe, dimethyl acetyl phosphonate, which did not inhibit isolated PDHC. Using an ATP-based assay, dependence of cellular viability on the concentration of the pyruvate analogs was followed. The highest toxicity of the membrane-permeable precursor suggested that the cellular action of charged AcPH and AcPMe requires monocarboxylate transporters. The relevant cell-specific transcripts extracted from Gene Expression Omnibus database indicated that cell lines with higher expression of monocarboxylate transporters and PDHC components were more sensitive to the PDHC inhibitors. Prior to a detectable antiproliferative action, AcPH significantly changed metabolic profiles of the investigated glioblastoma cell lines. We conclude that catalytic transformation of pyruvate by pyruvate dehydrogenase is essential for the metabolism and viability of glioblastoma cell lines, although metabolic heterogeneity causes different cellular sensitivities and/or abilities to cope with PDHC inhibition. PMID:26503465

  5. Cooperativity in highly aggregated enzyme systems. A slow transition model for the pyruvate dehydrogenase complex from Escherichia coli.

    PubMed

    Bisswanger, H

    1984-02-25

    Three models are compared describing cooperative phenomena in enzymatic reactions in order to explain sigmoidal saturation curves found with the pyruvate dehydrogenase complex from Escherichia coli: the concerted model, the sequential model, and the slow transition model. Both the concerted and the sequential model were considered especially with regard to the increasing number of identical interaction subunits (protomers) in order to get close to the situation found with the pyruvate dehydrogenase complex which consists of 24 protomers. Applying the sequential model to a great number of protomers results in a weak increase of the Hill coefficient, while, in addition to this effect, the concerted model drastically shifts the sigmoidal range of the saturation function to very low ligand concentrations. Such shift is seen with saturation curves of pyruvate and thiamine disphosphate with the pyruvate dehydrogenase complex and a good fit with theoretical curves derived from the concerted model is obtained. However, subcomplexes with a reduced number of protomers exhibited no change in saturation behavior, thus providing evidence against concerted conformational changes of all subunits of the enzyme complex. A scheme for the initial reaction of the pyruvate dehydrogenase complex based on slow transitions is presented and a rate equation has been derived. Ordered binding of thiamine diphosphate and pyruvate and a ligand-induced slow transition between a less active and a fully active enzyme form has been assumed. The curves simulated with this model are in agreement with all essential kinetic data, which are observed with the pyruvate dehydrogenase complex: the atypical shape of the saturation curves of pyruvate and thiamine diphosphate, the respective Hill coefficients and Michaelis constants, the hyperbolic binding behavior of thiamine diphosphate, and the inhibition pattern found for acetyl coenzyme A. PMID:6365912

  6. Acyloin production from aldehydes in the perfused rat heart: the potential role of pyruvate dehydrogenase.

    PubMed Central

    Montgomery, J A; Jetté, M; Huot, S; Des Rosiers, C

    1993-01-01

    Aldehydes represent an important class of cytotoxic products derived from free radical-induced lipid peroxidation which may contribute to reperfusion injury following myocardial infarct. Metabolism of aldehydes in the heart has not been well characterized aside from conjugation of unsaturated aldehydes with glutathione. However, aliphatic aldehydes like hexanal do not form stable glutathione conjugates. We have recently demonstrated in vitro that pig heart pyruvate dehydrogenase catalyses a reaction between pyruvate and saturated aldehydes to produce acyloins (3-hydroxyalkan-2-ones). In the present study, rat hearts were perfused with various aldehydes and pyruvate. Acyloins were generated from saturated aldehydes (butanal, hexanal or nonanal), but not from 2-hexanal (an unsaturated aldehyde) or malondialdehyde. Hearts perfused with 2 mM pyruvate and 10-100 microM hexanal rapidly took up hexanal in a dose-related manner (140-850 nmol/min), and released 3-hydroxyoctan-2-one (0.7-30 nmol/min), 2,3-octanediol (0-12 nmol/min) and hexanol (10-200 nmol/min). Small quantities of hexanoic acid (about 10 nmol/min) were also released. The rate of release of acyloin metabolites rose with increased concentration of hexanal, whereas hexanol release attained a plateau when hexanal infusion concentrations rose above 50 microM. Up to 50% of hexanal uptake could be accounted for by metabolite release. Less than 0.5% of hexanal uptake was found to be bound to acid-precipitable macromolecules. When hearts perfused with 50 microM hexanal and 2 mM pyruvate were subjected to a 15 min ischaemic period, the rates of release of 2,3-octanediol, 3-hydroxyoctan-2-one, hexanol and hexanoate during the reperfusion period were not significantly different from those in the pre-ischaemic period. Our results indicate that saturated aldehydes can be metabolically converted by the heart into stable diffusible compounds. PMID:8379929

  7. Modulation of pyruvate dehydrogenase kinase activity in cultured hepatocytes by glucagon and n-octanoate.

    PubMed Central

    Fatania, H R; Vary, T C; Randle, P J

    1986-01-01

    The activity of pyruvate dehydrogenase kinase in extracts of mitochondria from rat hepatocytes cultured for 21 h in medium 199 was increased 2.5-fold by the presence of 55 nM-glucagon and 1 mM-sodium n-octanoate in the culture medium. The change was comparable with that induced in vivo by 48 h starvation. The potential contribution of branched-chain complex to estimates of PDH-complex activity in rat liver mitochondria has been defined. PMID:3707545

  8. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex.

    PubMed

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-10-24

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  9. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress.

    PubMed

    Martin, Erica; Rosenthal, Robert E; Fiskum, Gary

    The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO(2). This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-L-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-L-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration. PMID:15562436

  10. Pyruvate Dehydrogenase Complex: Metabolic Link to Ischemic Brain Injury and Target of Oxidative Stress

    PubMed Central

    Martin, Erica; Rosenthal, Robert E.; Fiskum, Gary

    2008-01-01

    The mammalian pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme complex (greater than 7 million Daltons) that catalyzes the oxidative decarboxylation of pyruvate to form acetyl CoA, nicotinamide adenine dinucleotide (the reduced form, NADH), and CO2. This reaction constitutes the bridge between anaerobic and aerobic cerebral energy metabolism. PDHC enzyme activity and immunoreactivity are lost in selectively vulnerable neurons after cerebral ischemia and reperfusion. Evidence from experiments carried out in vitro suggests that reperfusion-dependent loss of activity is caused by oxidative protein modifications. Impaired enzyme activity may explain the reduced cerebral glucose and oxygen consumption that occurs after cerebral ischemia. This hypothesis is supported by the hyperoxidation of mitochondrial electron transport chain components and NAD(H) that occurs during reperfusion, indicating that NADH production, rather than utilization, is rate limiting. Additional support comes from the findings that immediate postischemic administration of acetyl-l-carnitine both reduces brain lactate/pyruvate ratios and improves neurologic outcome after cardiac arrest in animals. As acetyl-l-carnitine is converted to acetyl CoA, the product of the PDHC reaction, it follows that impaired production of NADH is due to reduced activity of either PDHC or one or more steps in glycolysis. Impaired cerebral energy metabolism and PDHC activity are associated also with neurodegenerative disorders including Alzheimer's disease and Wernicke-Korsakoff syndrome, suggesting that this enzyme is an important link in the pathophysiology of both acute brain injury and chronic neurodegeneration. PMID:15562436

  11. Mitochondrial pyruvate dehydrogenase. Molecular cloning of the E1 alpha subunit and expression analysis.

    PubMed Central

    Grof, C P; Winning, B M; Scaysbrook, T P; Hill, S A; Leaver, C J

    1995-01-01

    A polymerase chain reaction-based approach was used to isolate cDNA clones encoding the E1 alpha subunit of the mitochondrial pyruvate dehydrogenase from higher plants. Putative full-length clones were identified on the basis of similarity to E1 alpha sequences from nonplant sources. Southern blot analysis revealed a small family of genes in potato (Solanum tuberosum L.), whereas in cucumber (Cucumis sativus) there are only one or two genes. Tissue-specific variation in the relative amounts of E1 alpha mRNA was observed in northern blot analysis of different potato tissues, with the highest steady-state transcript levels found in floral tissue. Measurement of pyruvate dehydrogenase activity in cucumber cotyledons showed that there is a transient increase to a maximum at 4 to 5 d postimbibition. Western blot analysis revealed that the amount of E1 alpha protein also peaks at this time. Steady-state transcript levels in germinating cucumber cotyledons also show transient accumulation, peaking 2 d postimbibition. These data are consistent with regulation of E1 alpha at the level of transcription and/or mRNA stability in postgerminative cucumber cotyledons. PMID:7659754

  12. Myocardial steatosis and necrosis in atria and ventricles of rats given pyruvate dehydrogenase kinase inhibitors.

    PubMed

    Jones, Huw Bowen; Reens, Jaimini; Johnson, Elizabeth; Brocklehurst, Simon; Slater, Ian

    2014-12-01

    Pharmaceutical therapies for non-insulin-dependent diabetes mellitus (NIDDM) include plasma glucose lowering by enhancing glucose utilization. The mitochondrial pyruvate dehydrogenase (PDH) complex is important in controlling the balance between glucose and fatty acid substrate oxidation. Administration of pyruvate dehydrogenase kinase inhibitors (PDHKIs) to rats effectively lowers plasma glucose but results in myocardial steatosis that in some instances is associated primarily with atrial and to a lesser degree with ventricular pathology. Induction of myocardial steatosis is not dose-dependent, varies from minimal to moderate severity, and is either of multifocal or diffuse distribution. Ventricular histopathology was restricted to few myocardial degenerative fibers, while that in the atrium/atria was of either acute or chronic appearance with the former showing myocardial degeneration/necrosis, acute myocarditis, edema, endothelial activation (rounding up), endocarditis, and thrombosis associated with moderate myocardial steatosis and the latter with myocardial loss, replacement fibrosis, and no apparent or minimal association with steatosis. The evidence from these evaluations indicate that excessive intramyocardial accumulation of lipid may be either primarily adverse or represents an indicator of other adversely affected cellular processes. PMID:24742628

  13. Fluorescence energy-transfer studies on the pyruvate dehydrogenase complex isolated from Azotobacter vinelandii.

    PubMed

    Scouten, W H; De Graaf-Hess, A C; De Kok, A; Grande, H J; Visser, A J; Veeger, C

    1978-03-01

    Fluorescence energy transfer has been employed to estimate the minimum distance between each of the active sites of the 4 component enzymes of the pyruvate dehydrogenase multienzyme complex from Azotobacter vinelandii. No energy transfer was seen between thiochrome diphosphate, bound to the pyruvate decarboxylase active site, and the FAD of the lipoamide dehydrogenase active site. Likewise, several fluorescent sulfhydryl labels, which were specifically bound to the lipoyl moiety of lipoyl transacetylase, showed no energy transfer to either the flavin or thiochrome diphosphate. These observations suggest that all the active centers of the complex are quite far apart (greater than or equal to 40 nm), at least during some stages of catalysis. These results do not preclude the possibility that the distances change during catalysis. Several of the fluorescent probes used possessed multiple fluorescent lifetimes, as shown by determination of lifetime averages by both phase and modulation measurements on a phase fluorimeter. These lifetimes are shown to result from multiple factors, not necessarily related to multiple protein conformations. PMID:348464

  14. Involvement of Candida albicans pyruvate dehydrogenase complex protein X (Pdx1) in filamentation

    PubMed Central

    F.Vellucci, Vincent; Gygax, Scott; Hostetter, Margaret K.

    2007-01-01

    For 50 years, physiologic studies in Candida albicans have associated fermentation with filamentation and respiration with yeast morphology. Analysis of the mitochondrial proteome of a C. albicans NDH51 mutant, known to be defective in filamentation, identified increased expression of several proteins in the respiratory pathway. Most notable was a 15-fold increase in pyruvate dehydrogenase complex protein X (Pdx1), an essential component of the pyruvate dehydrogenase complex. In basal salts medium with 100 mM glucose as carbon source, two independent pdx1 mutants displayed a filamentation defect identical to ndh51; reintegration of one PDX1 allele restored filamentation. Concentrations of glucose ≤100 mM did not correct the filamentation defect. Expanding on previous work, these studies suggest that increased expression of proteins extraneous to the electron transport chain compensates for defects in the respiratory pathway to maintain yeast morphology. Mitochondrial proteomics can aid in the identification of C. albicans genes not previously implicated in filamentation. PMID:17254815

  15. Pyruvate Dehydrogenase Kinase 4 Promotes Vascular Calcification via SMAD1/5/8 Phosphorylation

    PubMed Central

    Lee, Sun Joo; Jeong, Ji Yun; Oh, Chang Joo; Park, Sungmi; Kim, Joon-Young; Kim, Han-Jong; Doo Kim, Nam; Choi, Young-Keun; Do, Ji-Yeon; Go, Younghoon; Ha, Chae-Myung; Choi, Je-Yong; Huh, Seung; Ho Jeoung, Nam; Lee, Ki-Up; Choi, Hueng-Sik; Wang, Yu; Park, Keun-Gyu; Harris, Robert A.; Lee, In-Kyu

    2015-01-01

    Vascular calcification, a pathologic response to defective calcium and phosphate homeostasis, is strongly associated with cardiovascular mortality and morbidity. In this study, we have observed that pyruvate dehydrogenase kinase 4 (PDK4) is upregulated and pyruvate dehydrogenase complex phosphorylation is increased in calcifying vascular smooth muscle cells (VSMCs) and in calcified vessels of patients with atherosclerosis, suggesting that PDK4 plays an important role in vascular calcification. Both genetic and pharmacological inhibition of PDK4 ameliorated the calcification in phosphate-treated VSMCs and aortic rings and in vitamin D3-treated mice. PDK4 augmented the osteogenic differentiation of VSMCs by phosphorylating SMAD1/5/8 via direct interaction, which enhances BMP2 signaling. Furthermore, increased expression of PDK4 in phosphate-treated VSMCs induced mitochondrial dysfunction followed by apoptosis. Taken together, our results show that upregulation of PDK4 promotes vascular calcification by increasing osteogenic markers with no adverse effect on bone formation, demonstrating that PDK4 is a therapeutic target for vascular calcification. PMID:26560812

  16. Structural Basis for Flip-Flop Action of Thiamin-Dependent Enzymes Revealed by Crystal Structure of Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina M.; Sidhu, Sukdeep; Patel, Mulchand S.

    2003-01-01

    The biologically active derivative of vitamin B1; thiamin pyrophosphate; is used as cofactor by many enzymes that perform a wide range of catalytic functions in the pathways of energy production. In alpha2beta2-heterotetrameric human pyruvate dehydrogenase, the first catalytic component enzyme of human pyruvate dehydrogenase complex, this cofactor is used to cleave the C(sup alpha)-C(=0) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase, the second catalytic component of the complex. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites have puzzled researchers from earlier functional studies of this enzyme. In order to gain insight into the mechanism of action of this enzyme, we determined the crystal structure of the holoform of human pyruvate dehydrogenase at 1.958, resolution. We propose a kinetic model for the flip-flop action of this enzyme through the concerted approx. 2A, shuttle-like motion of the heterodimers. The similarity of thiamin pyrophosphate binding in human pyruvate dehydrogenase and other functionally related enzymes suggests this newly defined mechanism of shuttle-like motion of domains to be common for the family of thiamin pyrophosphate-dependent enzymes.

  17. Dichloroacetate, the Pyruvate Dehydrogenase Complex and the Modulation of mESC Pluripotency

    PubMed Central

    Rodrigues, Ana Sofia; Correia, Marcelo; Gomes, Andreia; Pereira, Sandro L.; Perestrelo, Tânia; Sousa, Maria Inês; Ramalho-Santos, João

    2015-01-01

    Introduction The pyruvate dehydrogenase (PDH) complex is localized in the mitochondrial matrix catalyzing the irreversible decarboxylation of pyruvate to acetyl-CoA and NADH. For proper complex regulation the E1-α subunit functions as an on/off switch regulated by phosphorylation/dephosphorylation. In different cell types one of the four-pyruvate dehydrogenase kinase isoforms (PDHK1-4) can phosphorylate this subunit leading to PDH inactivation. Our previous results with human Embryonic Stem Cells (hESC), suggested that PDHK could be a key regulator in the metabolic profile of pluripotent cells, as it is upregulated in pluripotent stem cells. Therefore, we wondered if metabolic modulation, via inexpensive pharmacological inhibition of PDHK, could impact metabolism and pluripotency. Methods/Results In order to assess the importance of the PDH cycle in mouse Embryonic Stem Cells (mESC), we incubated cells with the PDHK inhibitor dichloroacetate (DCA) and observed that in its presence ESC started to differentiate. Changes in mitochondrial function and proliferation potential were also found and protein levels for PDH (both phosphorylated and non-phosphorylated) and PDHK1 were monitored. Interestingly, we were also able to describe a possible pathway that involves Hif-1α and p53 during DCA-induced loss of pluripotency. Results with ESCs treated with DCA were comparable to those obtained for cells grown without Leukemia Inhibitor Factor (LIF), used in this case as a positive control for differentiation. Conclusions DCA negatively affects ESC pluripotency by changing cell metabolism and elements related to the PDH cycle, suggesting that PDHK could function as a possible metabolic gatekeeper in ESC, and may be a good target to modulate metabolism and differentiation. Although further molecular biology-based experiments are required, our data suggests that inactive PDH favors pluripotency and that ESC have similar strategies as cancer cells to maintain a glycolytic

  18. Is there a signal transduction pathway that links events at the plasma membrane to the phosphorylation state of the mitochondrial pyruvate dehydrogenase complex?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monoclonal antibodies against the E1a subunit were used to quantify the mitochondrial pyruvate dehydrogenase complex (mtPDC) by enzyme-linked immunosorbent assay (ELISA). Recombinant Arabidopsis thaliana pyruvate dehydrogenase (E1) was used to calibrate the ELISA. Antibodies against a synthetic ph...

  19. Persistence of the effect of insulin on pyruvate dehydrogenase activity in rat white and brown adipose tissue during the preparation and subsequent incubation of mitochondria.

    PubMed

    Denton, R M; McCormack, J G; Marshall, S E

    1984-01-15

    Increases in the amount of the active non-phosphorylated form of pyruvate dehydrogenase in rat epididymal adipose tissue, as a result of incubation with insulin, persist not only during the preparation of mitochondria but also during subsequent incubation of coupled mitochondria in the presence of respiratory substrates. No effect on insulin was found if the hormone was added directly to mitochondria in the presence or absence of added plasma membranes. Concentrations of several possible regulators of pyruvate dehydrogenase kinase (ATP, ADP, NADH, NAD+, acetyl-CoA, CoA and potassium) were measured in rat epididymal-adipose-tissue mitochondria incubated under conditions where differences in pyruvate dehydrogenase activity persist as a result of insulin action. No alterations were found, and it is suggested that inhibition of the kinase is not the principal means by which insulin activates pyruvate dehydrogenase. The intramitochondrial concentration of magnesium was also unaffected. Differences in pyruvate dehydrogenase activity in interscapular brown adipose tissue associated with manipulation of plasma insulin concentrations of cold-adapted rats were also shown to persist during the preparation and subsequent incubation of mitochondria in the presence or absence of GDP. It is pointed out that the persistence of the effect of insulin on pyruvate dehydrogenase in incubated mitochondria will facilitate the recognition of the mechanism of this action of the hormone. Evidence that the short-term action of insulin involves an increase in pyruvate dehydrogenase phosphate phosphatase activity rather than inhibition of that of pyruvate dehydrogenase kinase is discussed. PMID:6320807

  20. Genetics Home Reference: lactate dehydrogenase deficiency

    MedlinePlus

    ... dehydrogenase-B pieces (subunits) of the lactate dehydrogenase enzyme. This enzyme is found throughout the body and is important ... cells. There are five different forms of this enzyme, each made up of four protein subunits. Various ...

  1. “Scanning mutagenesis” of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1alpha subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated...

  2. Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases

    PubMed Central

    Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun

    2016-01-01

    Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery. PMID:26959013

  3. Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by Its Structure

    NASA Technical Reports Server (NTRS)

    Korotchkina, Lioubov G.; Ciszak, E.; Patel, M.

    2004-01-01

    Pyruvate dehydrogenase (E1), an alpha 2 beta 2 tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of beta W135, alpha P188, alpha M181, alpha H15 and alpha R349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: beta W135 is the center residue in the hydrophobic interaction between beta and beta' subunits; alpha P188 and alpha M181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alpha H15, is necessary for the organization of the N-terminus of alpha and alpha'; subunits and alpha R349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.

  4. Pyruvate dehydrogenase kinase-4 contributes to the recirculation of gluconeogenic precursors during postexercise glycogen recovery

    PubMed Central

    Herbst, Eric A. F.; MacPherson, Rebecca E. K.; LeBlanc, Paul J.; Roy, Brian D.; Jeoung, Nam Ho; Harris, Robert A.

    2013-01-01

    During recovery from glycogen-depleting exercise, there is a shift from carbohydrate oxidation to glycogen resynthesis. The activity of the pyruvate dehydrogenase (PDH) complex may decrease to reduce oxidation of carbohydrates in favor of increasing gluconeogenic recycling of carbohydrate-derived substrates for this process. The precise mechanism behind this has yet to be elucidated; however, research examining mRNA content has suggested that the less-abundant pyruvate dehydrogenase kinase-4 (PDK4) may reduce PDH activation during exercise recovery. To investigate this, skeletal muscle and liver of wild-type (WT) and PDK4-knockout (PDK4-KO) mice were analyzed at rest (Rest), after exercise to exhaustion (Exh), and after 2 h of recovery with ad libitum feeding (Rec). Although there were no differences in exercise tolerance between genotypes, caloric consumption was doubled by PDK4-KO mice during Rec. Because of this, PDK4-KO mice at Rec supercompensated muscle glycogen to 120% of resting stores. Therefore, an extra group of PDK4-KO mice were pair-fed (PF) with WT mice during Rec for comparison. PF mice fully replenished muscle glycogen but recovered only 50% of liver glycogen stores. Concentrations of muscle lactate and alanine were also lower in PF than in WT mice, indicating that this decrease may lead to a potential reduction of recycled gluconeogenic substrates, due to oxidation of their carbohydrate precursors in skeletal muscle, leading to observed reductions in hepatic glucose and glycogen concentrations. Because of the impairments seen in PF PDK4-KO mice, these results suggest a role for PDK4 in regulating the PDH complex in muscle and promoting gluconeogenic precursor recirculation during recovery from exhaustive exercise. PMID:24305065

  5. Validation of the In Vivo Assessment of Pyruvate Dehydrogenase Activity Using Hyperpolarized 13C-Magnetic Resonance Spectroscopy

    PubMed Central

    Dodd, Michael S.; Heather, Lisa C.; Carter, Emma E.; Cochlin, Lowri E.; Nagel, Simon; Sibson, Nicola R.; Radda, George K.; Clarke, Kieran; Tyler, Damian J.

    2015-01-01

    Aim Many diseases of the heart are characterised by changes in substrate utilisation, which is in part regulated by the activity of the enzyme pyruvate dehydrogenase (PDH). Consequently, there is much interest in the in vivo evaluation of PDH activity in a range of physiological and pathological states to obtain information regarding the metabolic mechanisms of cardiac diseases. Hyperpolarized [1-13C]pyruvate, detected using MRS, is a novel technique for evaluating PDH flux non-invasively. PDH flux has been assumed to directly reflect in vivo PDH activity, although to date this assumption remains unproven. Methods Control animals and animals undergoing interventions known to modulate PDH activity, namely high fat feeding and dichloroacetate infusion, were used to investigate the relationship between in vivo hyperpolarized MRS measurements of PDH flux and ex vivo measurements of PDH enzyme activity (PDHa). Further, the plasma concentrations of pyruvate and other important metabolites were evaluated following pyruvate infusion to assess the metabolic consequences of the pyruvate infusion during hyperpolarized MRS experiments. Results Hyperpolarized MRS measurements of PDH flux significantly correlated with ex vivo measurements of PDHa, confirming that PDH activity directly influences the in vivo flux of hyperpolarized pyruvate through cardiac PDH. The maximum plasma concentration of pyruvate reached during hyperpolarized MRS experiments was ~250 μM, equivalent to physiological pyruvate concentrations reached during exercise or with dietary interventions. Concentrations of other metabolites, including lactate, glucose and β-hydroxybutyrate (BHB), did not vary during the 60 s following pyruvate infusion. Hence, during the 60 s data acquisition period, metabolism was minimally affected by pyruvate infusion. PMID:20799252

  6. A monomeric form of pyruvate kinase in human pyruvate kinase deficiency.

    PubMed Central

    Adachi, K; Ghory, P K; Asakura, T; Schwartz, E

    1977-01-01

    A mutant pyruvate kinase (ATP:pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from human erythrocytes which is easily separated into monomers and dimers by gel chromatography is described. Tht mutant enzyme shows almost the same pH optimum and thermostability as normal enzyme, but has a decreased stability on shaking with air, a decreased Km for phosphoenolpyruvate and a loss of allosteric properties. The apparent Km values for phosphoenolpyruvate of tetramers and monomers were the same. The tetrameric enzyme was slightly activated by fructose-1,6-diphosphate but the monomeric form was not. The tetrameric enzyme was found to dissociate spontaneously to dimeric and monomeric forms. PMID:15247

  7. Genetics Home Reference: 3-beta-hydroxysteroid dehydrogenase deficiency

    MedlinePlus

    ... not by hormone test. Clin Endocrinol (Oxf). 2003 Mar;58(3):323-31. Citation on PubMed Pang S, ... dehydrogenase deficiency. Endocrinol Metab Clin North Am. 2001 Mar;30(1):81-99, vi-vii. Review. Citation ...

  8. Distribution of Pyruvate Dehydrogenase Complex Activities between Chloroplasts and Mitochondria from Leaves of Different Species.

    PubMed Central

    Lernmark, U.; Gardestrom, P.

    1994-01-01

    Protoplasts from barley (Hordeum vulgare), pea (Pisum sativum), wheat (Triticum aestivum), and spinach (Spinacia oleracea) leaves were fractionated into chloroplast- and mitochondrion-enriched fractions. Pyruvate dehydrogenase complex capacities in mitochondria (mtPDC) and chloroplasts (cpPDC) were measured in appropriate fractions under conditions optimal for each isozyme. The total cellular capacity of PDC was similar in barley and pea but about 50% lower in wheat and spinach. In pea a distribution of 87% mtPDC and 13% cpPDC was found on a cellular basis. In barley, wheat, and spinach the subcellular distribution was the opposite, with about 15% mtPDC and 85% cpPDC. cpPDC activity was constant at about 0.1 nmol cell-1 h-1 in cells from different regions along the developing barley leaf and showed no correlation with developmental patterns of photosynthetic parameters, such as increasing Chl and NADP-glyceraldehyde-3-phosphate dehydrogenase activity. Similarly, the capacity of the mitochondrial isoform did not change during barley leaf development and had a developmental pattern similar to that of citrate synthase and fumarase. Differences in subcellular distribution of PDCs in barley and pea are proposed to be due to differences in regulation, not to changes in isozyme proportions during leaf development or to species-specific differences in phosphorylation state of mtPDC after organelle separation. PMID:12232437

  9. Decreasing lactate level and increasing antibody production in Chinese Hamster Ovary cells (CHO) by reducing the expression of lactate dehydrogenase and pyruvate dehydrogenase kinases.

    PubMed

    Zhou, Meixia; Crawford, Yongping; Ng, Domingos; Tung, Jack; Pynn, Abigail F J; Meier, Angela; Yuk, Inn H; Vijayasankaran, Natarajan; Leach, Kimberly; Joly, John; Snedecor, Bradley; Shen, Amy

    2011-04-20

    Large-scale fed-batch cell culture processes of CHO cells are the standard platform for the clinical and commercial production of monoclonal antibodies. Lactate is one of the major by-products of CHO fed-batch culture. In pH-controlled bioreactors, accumulation of high levels of lactate is accompanied by high osmolality due to the addition of base to control pH of the cell culture medium, potentially leading to lower cell growth and lower therapeutic protein production during manufacturing. Lactate dehydrogenase (LDH) is an enzyme that catalyzes the conversion of the substrate, pyruvate, into lactate and many factors including pyruvate concentration modulate LDH activity. Alternately, pyruvate can be converted to acetyl-CoA by pyruvate dehydrogenases (PDHs), to be metabolized in the TCA cycle. PDH activity is inhibited when phosphorylated by pyruvate dehydrogenase kinases (PDHKs). In this study, we knocked down the gene expression of lactate dehydrogenase A (LDHa) and PDHKs to investigate the effect on lactate metabolism and protein production. We found that LDHa and PDHKs can be successfully downregulated simultaneously using a single targeting vector carrying small inhibitory RNAs (siRNA) for LDHa and PDHKs. Moreover, our fed-batch shake flask evaluation data using siRNA-mediated LDHa/PDHKs knockdown clones showed that downregulating LDHa and PDHKs in CHO cells expressing a therapeutic monoclonal antibody reduced lactate production, increased specific productivity and volumetric antibody production by approximately 90%, 75% and 68%, respectively, without appreciable impact on cell growth. Similar trends of lower lactate level and higher antibody productivity on average in siRNA clones were also observed from evaluations performed in bioreactors. PMID:21392546

  10. Carbon Dioxide Effects on Ethanol Production, Pyruvate Decarboxylase, and Alcohol Dehydrogenase Activities in Anaerobic Sweet Potato Roots 1

    PubMed Central

    Chang, Ling A.; Hammett, Larry K.; Pharr, David M.

    1983-01-01

    The effect of varied anaerobic atmospheres on the metabolism of sweet potato (Ipomoea batatas [L.] Lam.) roots was studied. The internal gas atmospheres of storage roots changed rapidly when the roots were submerged under water. O2 and N2 gases disappeared quickly and were replaced by CO2. There were no appreciable differences in gas composition among the four cultivars that were studied. Under different anaerobic conditions, ethanol concentration in the roots was highest in a CO2 environment, followed by submergence and a N2 environment in all the cultivars except one. A positive relationship was found between ethanol production and pyruvate decarboxylase activity from both 100% CO2-treated and 100% N2-treated roots. CO2 atmospheres also resulted in higher pyruvate decarboxylase activity than did N2 atmospheres. Concentrations of CO2 were higher within anaerobic roots than those in the ambient anaerobic atmosphere. The level of pyruvate decarboxylase and ethanol in anaerobic roots was proportional to the ambient CO2 concentration. The measurable activity of pyruvate decarboxylase that was present in the roots was about 100 times less than that of alcohol dehydrogenase. Considering these observations, it is suggested that the rate-limiting enzyme for ethanol biosynthesis in sweet potato storage roots under anoxia is likely to be pyruvate decarboxylase rather than alcohol dehydrogenase. PMID:16662798

  11. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase

    SciTech Connect

    Catalanotti, C.; Dubini, A.; Subramanian, V.; Yang, W. Q.; Magneschi, L.; Mus, F.; Seibert, M.; Posewitz, M. C.; Grossman, A. R.

    2012-02-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism.

  12. Siblings with severe pyruvate kinase deficiency and a complex genotype.

    PubMed

    Christensen, Robert D; Yaish, Hassan M; Nussenzveig, Roberto H; Agarwal, Archana M

    2016-09-01

    Siblings presented as neonates with severe jaundice and transfusion-dependent hemolytic anemia. Next-generation sequencing revealed both to have three heterozygous mutations in the gene encoding erythrocyte pyruvate kinase (PKLR), plus a heterozygous splice mutation in the beta-spectrin gene (SPTB). In addition, both have a different 5th mutation in a gene encoding other erythrocyte membrane proteins. The asymptomatic parents and all three asymptomatic siblings have different sets of these mutations. © 2016 Wiley Periodicals, Inc. PMID:27354418

  13. Thiamine Pyrophosphokinase Deficiency in Encephalopathic Children with Defects in the Pyruvate Oxidation Pathway

    PubMed Central

    Mayr, Johannes A.; Freisinger, Peter; Schlachter, Kurt; Rolinski, Boris; Zimmermann, Franz A.; Scheffner, Thomas; Haack, Tobias B.; Koch, Johannes; Ahting, Uwe; Prokisch, Holger; Sperl, Wolfgang

    2011-01-01

    Thiamine pyrophosphate (TPP) is an essential cofactor of the cytosolic transketolase and of three mitochondrial enzymes involved in the oxidative decarboxylation of either pyruvate, α-ketoglutarate or branched chain amino acids. Thiamine is taken up by specific transporters into the cell and converted to the active TPP by thiamine pyrophosphokinase (TPK) in the cytosol from where it can be transported into mitochondria. Here, we report five individuals from three families presenting with variable degrees of ataxia, psychomotor retardation, progressive dystonia, and lactic acidosis. Investigation of the mitochondrial energy metabolism showed reduced oxidation of pyruvate but normal pyruvate dehydrogenase complex activity in the presence of excess TPP. A reduced concentration of TPP was found in the muscle and blood. Mutation analysis of TPK1 uncovered three missense, one splice-site, and one frameshift mutation resulting in decreased TPK protein levels. PMID:22152682

  14. Pyruvate Dehydrogenase Kinase-mediated Glycolytic Metabolic Shift in the Dorsal Root Ganglion Drives Painful Diabetic Neuropathy.

    PubMed

    Rahman, Md Habibur; Jha, Mithilesh Kumar; Kim, Jong-Heon; Nam, Youngpyo; Lee, Maan Gee; Go, Younghoon; Harris, Robert A; Park, Dong Ho; Kook, Hyun; Lee, In-Kyu; Suk, Kyoungho

    2016-03-11

    The dorsal root ganglion (DRG) is a highly vulnerable site in diabetic neuropathy. Under diabetic conditions, the DRG is subjected to tissue ischemia or lower ambient oxygen tension that leads to aberrant metabolic functions. Metabolic dysfunctions have been documented to play a crucial role in the pathogenesis of diverse pain hypersensitivities. However, the contribution of diabetes-induced metabolic dysfunctions in the DRG to the pathogenesis of painful diabetic neuropathy remains ill-explored. In this study, we report that pyruvate dehydrogenase kinases (PDK2 and PDK4), key regulatory enzymes in glucose metabolism, mediate glycolytic metabolic shift in the DRG leading to painful diabetic neuropathy. Streptozotocin-induced diabetes substantially enhanced the expression and activity of the PDKs in the DRG, and the genetic ablation of Pdk2 and Pdk4 attenuated the hyperglycemia-induced pain hypersensitivity. Mechanistically, Pdk2/4 deficiency inhibited the diabetes-induced lactate surge, expression of pain-related ion channels, activation of satellite glial cells, and infiltration of macrophages in the DRG, in addition to reducing central sensitization and neuroinflammation hallmarks in the spinal cord, which probably accounts for the attenuated pain hypersensitivity. Pdk2/4-deficient mice were partly resistant to the diabetes-induced loss of peripheral nerve structure and function. Furthermore, in the experiments using DRG neuron cultures, lactic acid treatment enhanced the expression of the ion channels and compromised cell viability. Finally, the pharmacological inhibition of DRG PDKs or lactic acid production substantially attenuated diabetes-induced pain hypersensitivity. Taken together, PDK2/4 induction and the subsequent lactate surge induce the metabolic shift in the diabetic DRG, thereby contributing to the pathogenesis of painful diabetic neuropathy. PMID:26769971

  15. Genetics Home Reference: succinic semialdehyde dehydrogenase deficiency

    MedlinePlus

    ... a chemical that transmits signals in the brain (neurotransmitter) called gamma-amino butyric acid (GABA). The primary ... Diseases National Organization for Rare Disorders (NORD) Pediatric Neurotransmitter Disease Association GeneReviews (1 link) Succinic Semialdehyde Dehydrogenase ...

  16. Structure-Derived Proton-Transfer Mechanism of Action Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2003-01-01

    The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of pyruvate dehydrogenase (E1p) that is involved in decarboxylation of pyruvate followed by reductive acetylation of lipoic acid covalently bound to a lysine residue of dihydrolipoamide acetyltransferase. The structure of E1p recently determined in our laboratory revealed patterns of association of foul subunits and specifics of two TPP binding sites. The mechanism of action in part includes a conserved hydrogen bond between the N1' atom of the aminopyrimidine ring of the cofactor and the carboxylate group of Glu59 from the beta subunits, and a V-conformation of the cofactor that brings the N4' atom of the aminopyrimidine ring to the distance of the intramolecular hydrogen bond formed with the C2-atom of the thiazolium moiety. The carboxylate group of Glu59 is the local proton acceptor that enables proton translocation within the aminopyrimidine ring and stabilization of the rare N4' - iminopyrimidine tautomer. Based on the analysis of E1p structure, we postulate that the protein environment drives N4' - amino/N4' - imino dynamics resulting in a concerted shuttle-like movement of the subunits. We also propose that this movement of the subunits is strictly coordinated with the two enzymatic reactions carried out in E1p by each of the two cofactor sites. It is proposed that these reactions are in alternating phases such that when one active site is involved in decarboxylation, the other is involved in acetylation of lipoyl noiety.

  17. Escherichia coli Pyruvate Dehydrogenase Complex Is an Important Component of CXCL10-Mediated Antimicrobial Activity

    PubMed Central

    Schutte, Kirsten M.; Fisher, Debra J.; Burdick, Marie D.; Mehrad, Borna; Mathers, Amy J.; Mann, Barbara J.; Nakamoto, Robert K.

    2015-01-01

    Chemokines are best recognized for their role within the innate immune system as chemotactic cytokines, signaling and recruiting host immune cells to sites of infection. Certain chemokines, such as CXCL10, have been found to play an additional role in innate immunity, mediating CXCR3-independent killing of a diverse array of pathogenic microorganisms. While this is still not clearly understood, elucidating the mechanisms underlying chemokine-mediated antimicrobial activity may facilitate the development of novel therapeutic strategies effective against antibiotic-resistant Gram-negative pathogens. Here, we show that CXCL10 exerts antibacterial effects on clinical and laboratory strains of Escherichia coli and report that disruption of pyruvate dehydrogenase complex (PDHc), which converts pyruvate to acetyl coenzyme A, enables E. coli to resist these antimicrobial effects. Through generation and screening of a transposon mutant library, we identified two mutants with increased resistance to CXCL10, both with unique disruptions of the gene encoding the E1 subunit of PDHc, aceE. Resistance to CXCL10 also occurred following deletion of either aceF or lpdA, genes that encode the remaining two subunits of PDHc. Although PDHc resides within the bacterial cytosol, electron microscopy revealed localization of immunogold-labeled CXCL10 to the bacterial cell surface in both the E. coli parent and aceE deletion mutant strains. Taken together, our findings suggest that while CXCL10 interacts with an as-yet-unidentified component on the cell surface, PDHc is an important mediator of killing by CXCL10. To our knowledge, this is the first description of PDHc as a key bacterial component involved in the antibacterial effect of a chemokine. PMID:26553462

  18. Hypoxic repression of pyruvate dehydrogenase activity is necessary for metabolic reprogramming and growth of model tumours.

    PubMed

    Golias, Tereza; Papandreou, Ioanna; Sun, Ramon; Kumar, Bhavna; Brown, Nicole V; Swanson, Benjamin J; Pai, Reetesh; Jaitin, Diego; Le, Quynh-Thu; Teknos, Theodoros N; Denko, Nicholas C

    2016-01-01

    Tumour cells fulfil the bioenergetic and biosynthetic needs of proliferation using the available environmental metabolites. Metabolic adaptation to hypoxia causes decreased mitochondrial function and increased lactate production. This work examines the biological importance of the hypoxia-inducible inhibitory phosphorylations on the pyruvate dehydrogenase E1α subunit. Pancreatic cancer cell lines were genetically manipulated to alter the net phosphorylation of PDH E1α through reduced kinase expression or enhanced phosphatase expression. The modified cells were tested for hypoxic changes in phosphorylated E1α, mitochondrial metabolism and growth as xenografted tumours. Even though there are four PDHK genes, PDHK1 is essential for inhibitory PDH phosphorylation of E1α at serine 232, is partially responsible for modification of serines 293 and 300, and these phosphorylations are necessary for model tumour growth. In order to determine the clinical relevance, a cohort of head and neck cancer patient biopsies was examined for phosphorylated E1α and expression of PDHK1. Patients with detectable 232 phosphorylation or expression of PDHK1 tend to have worse clinical outcome. These data show that PDHK1 activity is unique and non-redundant in the family of PHDK enzymes and a PDHK1 specific inhibitor would therefore have anti-cancer activity with reduced chance of side effects from inhibition of other PDHKs. PMID:27498883

  19. Mechanisms of Vascular Calcification: The Pivotal Role of Pyruvate Dehydrogenase Kinase 4

    PubMed Central

    2016-01-01

    Vascular calcification, abnormal mineralization of the vessel wall, is frequently associated with aging, atherosclerosis, diabetes mellitus, and chronic kidney disease. Vascular calcification is a key risk factor for many adverse clinical outcomes, including ischemic cardiac events and subsequent cardiovascular mortality. Vascular calcification was long considered to be a passive degenerative process, but it is now recognized as an active and highly regulated process similar to bone formation. However, despite numerous studies on the pathogenesis of vascular calcification, the mechanisms driving this process remain poorly understood. Pyruvate dehydrogenase kinases (PDKs) play an important role in the regulation of cellular metabolism and mitochondrial function. Recent studies show that PDK4 is an attractive therapeutic target for the treatment of various metabolic diseases. In this review, we summarize our current knowledge regarding the mechanisms of vascular calcification and describe the role of PDK4 in the osteogenic differentiation of vascular smooth muscle cells and development of vascular calcification. Further studies aimed at understanding the molecular mechanisms of vascular calcification will be critical for the development of novel therapeutic strategies. PMID:26996423

  20. Mechanisms of Vascular Calcification: The Pivotal Role of Pyruvate Dehydrogenase Kinase 4.

    PubMed

    Leem, Jaechan; Lee, In Kyu

    2016-03-01

    Vascular calcification, abnormal mineralization of the vessel wall, is frequently associated with aging, atherosclerosis, diabetes mellitus, and chronic kidney disease. Vascular calcification is a key risk factor for many adverse clinical outcomes, including ischemic cardiac events and subsequent cardiovascular mortality. Vascular calcification was long considered to be a passive degenerative process, but it is now recognized as an active and highly regulated process similar to bone formation. However, despite numerous studies on the pathogenesis of vascular calcification, the mechanisms driving this process remain poorly understood. Pyruvate dehydrogenase kinases (PDKs) play an important role in the regulation of cellular metabolism and mitochondrial function. Recent studies show that PDK4 is an attractive therapeutic target for the treatment of various metabolic diseases. In this review, we summarize our current knowledge regarding the mechanisms of vascular calcification and describe the role of PDK4 in the osteogenic differentiation of vascular smooth muscle cells and development of vascular calcification. Further studies aimed at understanding the molecular mechanisms of vascular calcification will be critical for the development of novel therapeutic strategies. PMID:26996423

  1. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy-consuming redox circuit.

    PubMed

    Fisher-Wellman, Kelsey H; Lin, Chien-Te; Ryan, Terence E; Reese, Lauren R; Gilliam, Laura A A; Cathey, Brook L; Lark, Daniel S; Smith, Cody D; Muoio, Deborah M; Neufer, P Darrell

    2015-04-15

    Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+/NADH) and anabolic (NADP+/NADPH) processes integrate during metabolism to maintain cellular redox homoeostasis, however, is unknown. The present work identifies a continuously cycling mitochondrial membrane potential (ΔΨm)-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced, however, is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyses the regeneration of NADPH from NADH at the expense of ΔΨm. The net effect is an automatic fine-tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy-expenditure rates, consistent with their well-known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homoeostasis is maintained and body weight is defended during periods of positive and negative energy balance. PMID:25643703

  2. Mitochondrial pyruvate dehydrogenase phosphatase 1 regulates the early differentiation of cardiomyocytes from mouse embryonic stem cells.

    PubMed

    Heo, Hye Jin; Kim, Hyoung Kyu; Youm, Jae Boum; Cho, Sung Woo; Song, In-Sung; Lee, Sun Young; Ko, Tae Hee; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-01-01

    Mitochondria are crucial for maintaining the properties of embryonic stem cells (ESCs) and for regulating their subsequent differentiation into diverse cell lineages, including cardiomyocytes. However, mitochondrial regulators that manage the rate of differentiation or cell fate have been rarely identified. This study aimed to determine the potential mitochondrial factor that controls the differentiation of ESCs into cardiac myocytes. We induced cardiomyocyte differentiation from mouse ESCs (mESCs) and performed microarray assays to assess messenger RNA (mRNA) expression changes at differentiation day 8 (D8) compared with undifferentiated mESCs (D0). Among the differentially expressed genes, Pdp1 expression was significantly decreased (27-fold) on D8 compared to D0, which was accompanied by suppressed mitochondrial indices, including ATP levels, membrane potential, ROS and mitochondrial Ca(2+). Notably, Pdp1 overexpression significantly enhanced the mitochondrial indices and pyruvate dehydrogenase activity and reduced the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate compared to a mock control. In confirmation of this, a knockdown of the Pdp1 gene promoted the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate. In conclusion, our results suggest that mitochondrial PDP1 is a potential regulator that controls cardiac differentiation at an early differentiation stage in ESCs. PMID:27538372

  3. Hypoxic repression of pyruvate dehydrogenase activity is necessary for metabolic reprogramming and growth of model tumours

    PubMed Central

    Golias, Tereza; Papandreou, Ioanna; Sun, Ramon; Kumar, Bhavna; Brown, Nicole V.; Swanson, Benjamin J.; Pai, Reetesh; Jaitin, Diego; Le, Quynh-Thu; Teknos, Theodoros N.; Denko, Nicholas C.

    2016-01-01

    Tumour cells fulfil the bioenergetic and biosynthetic needs of proliferation using the available environmental metabolites. Metabolic adaptation to hypoxia causes decreased mitochondrial function and increased lactate production. This work examines the biological importance of the hypoxia-inducible inhibitory phosphorylations on the pyruvate dehydrogenase E1α subunit. Pancreatic cancer cell lines were genetically manipulated to alter the net phosphorylation of PDH E1α through reduced kinase expression or enhanced phosphatase expression. The modified cells were tested for hypoxic changes in phosphorylated E1α, mitochondrial metabolism and growth as xenografted tumours. Even though there are four PDHK genes, PDHK1 is essential for inhibitory PDH phosphorylation of E1α at serine 232, is partially responsible for modification of serines 293 and 300, and these phosphorylations are necessary for model tumour growth. In order to determine the clinical relevance, a cohort of head and neck cancer patient biopsies was examined for phosphorylated E1α and expression of PDHK1. Patients with detectable 232 phosphorylation or expression of PDHK1 tend to have worse clinical outcome. These data show that PDHK1 activity is unique and non-redundant in the family of PHDK enzymes and a PDHK1 specific inhibitor would therefore have anti-cancer activity with reduced chance of side effects from inhibition of other PDHKs. PMID:27498883

  4. Structural Model for the Flip-Flop Action in Thiamin Pyrophosphate-Dependent Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2003-01-01

    The derivative of vitamin B1 thiamin pyrophosphate (TPP) is a cofactor of enzymes performing catalysis in pathways of energy production, including (i) decarboxylation of alpha-keto acids followed by (ii) transketolation. These enzymes have shown a common mechanism of TPP activation by imposing an active V-conformation of this coenzyme that brings the N4 atom of the aminopyrimidine ring to the distance required for the intramolecular C-H N hydrogen-bonding with the C2- atom of the thiazolium ring. The reactive C2 atom of TPP is the nucleophile that attacks the carbonyl carbon of different substrates used by the TPP-dependent enzymes. The structure of the heterotetrameric human pyruvate dehydrogenase (Elp) recently determined in our laboratory (1) revealed the association pattern of the subunits and the specifics of two chemically equivalent cofactor binding sites. Dynamic nonequivalence of these two cofactor sites directs the flip-flop action of this enzyme, depending upon which two active sites effect each other (2). The crystal structure derived from the holo-form of Elp provided the basis for the model of the flip-flop action of Elp in which different steps of the catalytic reaction are performed in each of the two cofactor sites at any given moment, where these steps are governed by the concerted shuttle-like motion of the subunits. It is further proposed that balancing a hydrogen-bond network and related cofactor geometry determine the continuity of catalytic events.

  5. Mitochondrial pyruvate dehydrogenase phosphatase 1 regulates the early differentiation of cardiomyocytes from mouse embryonic stem cells

    PubMed Central

    Heo, Hye Jin; Kim, Hyoung Kyu; Youm, Jae Boum; Cho, Sung Woo; Song, In-Sung; Lee, Sun Young; Ko, Tae Hee; Kim, Nari; Ko, Kyung Soo; Rhee, Byoung Doo; Han, Jin

    2016-01-01

    Mitochondria are crucial for maintaining the properties of embryonic stem cells (ESCs) and for regulating their subsequent differentiation into diverse cell lineages, including cardiomyocytes. However, mitochondrial regulators that manage the rate of differentiation or cell fate have been rarely identified. This study aimed to determine the potential mitochondrial factor that controls the differentiation of ESCs into cardiac myocytes. We induced cardiomyocyte differentiation from mouse ESCs (mESCs) and performed microarray assays to assess messenger RNA (mRNA) expression changes at differentiation day 8 (D8) compared with undifferentiated mESCs (D0). Among the differentially expressed genes, Pdp1 expression was significantly decreased (27-fold) on D8 compared to D0, which was accompanied by suppressed mitochondrial indices, including ATP levels, membrane potential, ROS and mitochondrial Ca2+. Notably, Pdp1 overexpression significantly enhanced the mitochondrial indices and pyruvate dehydrogenase activity and reduced the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate compared to a mock control. In confirmation of this, a knockdown of the Pdp1 gene promoted the expression of cardiac differentiation marker mRNA and the cardiac differentiation rate. In conclusion, our results suggest that mitochondrial PDP1 is a potential regulator that controls cardiac differentiation at an early differentiation stage in ESCs. PMID:27538372

  6. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit

    PubMed Central

    Fisher-Wellman, Kelsey H.; Lin, Chien-Te; Ryan, Terence E.; Reese, Lauren R.; Gilliam, Laura A. A.; Cathey, Brook L.; Lark, Daniel S.; Smith, Cody D.; Muoio, Deborah M.; Neufer, P. Darrell

    2015-01-01

    SUMMARY Cellular proteins rely on reversible redox reactions to establish and maintain biological structure and function. How redox catabolic (NAD+:NADH) and anabolic (NADP+:NADPH) processes integrate during metabolism to maintain cellular redox homeostasis however is unknown. The present work identifies a continuously cycling, mitochondrial membrane potential-dependent redox circuit between the pyruvate dehydrogenase complex (PDHC) and nicotinamide nucleotide transhydrogenase (NNT). PDHC is shown to produce H2O2 in relation to reducing pressure within the complex. The H2O2 produced however is effectively masked by a continuously cycling redox circuit that links, via glutathione/thioredoxin, to NNT, which catalyzes the regeneration of NADPH from NADH at the expense of the mitochondrial membrane potential. The net effect is an automatic fine tuning of NNT-mediated energy expenditure to metabolic balance at the level of PDHC. In mitochondria, genetic or pharmacological disruptions in the PDHC-NNT redox circuit negate counterbalance changes in energy expenditure. At the whole animal level, mice lacking functional NNT (C57BL/6J) are characterized by lower energy expenditure rates, consistent with their well known susceptibility to diet-induced obesity. These findings suggest the integration of redox sensing of metabolic balance with compensatory changes in energy expenditure provides a potential mechanism by which cellular redox homeostasis is maintained and body weight is defended during periods of positive and negative energy balance. PMID:25643703

  7. Regulation of pyruvate dehydrogenase activity and glucose metabolism in post-ischaemic myocardium.

    PubMed

    Schöder, H; Knight, R J; Kofoed, K F; Schelbert, H R; Buxton, D B

    1998-02-27

    Pyruvate dehydrogenase (PDH) is regulated both by covalent modification and through modulation of the active enzyme by metabolites. In the isolated heart, post-ischaemic inhibition of PDH, leading to uncoupling of glycolysis and glucose oxidation and a decrease in cardiac efficiency, has been described. In vivo, post-ischaemic reperfusion leads to metabolic abnormalities consistent with PDH inhibition, but the effects of ischaemia/reperfusion on PDH are not well characterized. We therefore investigated PDH regulation following transient ischaemia in vivo. In 33 open-chest dogs, the left anterior descending (LAD) was occluded for 20 min followed by 4 h reperfusion. In 17 dogs, dichloroacetate (DCA) was injected prior to reperfusion, while 16 dogs served as controls. In dogs without DCA, glucose oxidation and lactate uptake were lower in reperfused than in remote tissue, suggesting reduced flux through PDH. However, percent active and total PDH measured in myocardial biopsies were similar in both territories, excluding covalent enzyme modification or loss of functional enzyme. DCA activated PDH activity similarly in both regions and abolished differences in glucose oxidation and lactate uptake. Thus, decreased PDH flux in reperfused myocardium does not result from covalent modification or loss of total enzyme activity, but more likely from metabolite inhibition of the active enzyme. DCA leads to essentially complete activation of PDH, increases overall glucose utilization and abolishes post-ischaemic inhibition of glucose oxidation. PMID:9545535

  8. Overexpression of Pyruvate Dehydrogenase Kinase 3 Increases Drug Resistance and Early Recurrence in Colon Cancer

    PubMed Central

    Lu, Chun-Wun; Lin, Shau-Chieh; Chien, Chun-Wei; Lin, Shih-Chieh; Lee, Chung-Ta; Lin, Bo-Wen; Lee, Jenq-Chang; Tsai, Shaw-Jenq

    2011-01-01

    The switch of cellular metabolism from mitochondrial respiration to glycolysis is the hallmark of cancer cells and is associated with tumor malignancy. Pyruvate dehydrogenase kinase-1 (PDK1) and PDK3 participate in the metabolic switch of cancer cells; however, the medical significance of PDK1 and PDK3 in cancer progression is not known. Here, we assessed the expression profiles of PDK1 and PDK3 in colorectal cancer. Western blot analysis (n = 74) demonstrated that PDK3 was markedly increased in colon cancer compared to that in adjacent normal tissues, whereas PDK1 was decreased in cancer cells. In addition, PDK3 expression was positively correlated with that of hypoxia inducible factor-1α (HIF-1α) in cancer cells. Further analysis using immunohistochemical staining revealed that PDK3 levels were positively associated with severity of cancer and negatively associated with disease-free survival. In vitro studies using several colon cancer cell lines showed that PDK3 expression was controlled by HIF-1α and contributed to hypoxia-induced increased drug resistance, perhaps explaining why patients with PDK3 overexpression have a greater incidence of treatment failure. Taken together, our findings suggest that PDK3 plays an important role in the metabolic switch and drug resistance of colon cancer and is potentially a novel target for cancer therapy. PMID:21763680

  9. Dyserythropoiesis in a child with pyruvate kinase deficiency and coexistent unilateral multicystic dysplastic kidney.

    PubMed

    Haija, Marwa Abu El; Qian, You-Wen; Muthukumar, Akila

    2014-08-01

    Pyruvate kinase (PK) deficiency is the commonest enzyme deficiency in the glycolytic pathway leading to hemolytic anemia secondary to decreased Adenosine Triphosphate (ATP) synthesis in the red cells. synthesis. PK deficiency due to mutations in the PKLR (1q21) gene leads to highly variable clinical presentation ranging from severe fetal anemia to well compensated anemia in adults. We describe dyserythropoiesis in the bone marrow of a child with transfusion dependent anemia and unilateral multicystic dysplastic kidney (MCDK) mimicking Congenital Dyserythropoietic Anemia type I (CDA type I). Persistently low erythrocyte PK levels and double heterozygous mutations present in the PKLR gene confirmed the diagnosis of PK deficiency. PMID:24481986

  10. Structural Basis for Flip-Flop Action of Thiamin Pyrophosphate-Dependent Enzymes Revealed by Human Pyruvate Dehydrogenase

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina; Ciszak, Ewa M.; Korotchkina, Lioubov; Sidhu, Sukhdeep; Patel, Mulchand

    2003-01-01

    Thiamin pyrophosphate (TPP), the biologically active form of vitamin BI, is a cofactor of enzymes catalyzing reactions involving the cleavage of a carbon-carbon bond adjacent to an oxo group. TPP-dependent enzymes show a common mechanism of TPP activation by: (1) forming the ionic N-H...O(sup -) hydrogen bonding between the N1' atom of the aminopirymidine ring of the coenzyme and intrinsic gamma-carboxylate group of glutamate and (2) imposing an "active" V-conformation that brings the N4' atom of the aminopirymidine to the distance required for the intramolecular C-H.. .N hydrogen bonding with the thiazolium C2 atom. Within these two hydrogen bonds that rapidly exchange protons, protonation of the N1' atom is strictly coordinated with the deprotonation of the 4' -amino group and eventually abstraction of the proton from C2. The human pyruvate dehydrogenase Elp, component of human pyruvate dehydrogenase complex, catalyzes the irreversible decarboxylation of the pyruvate followed by the reductive acetylation of the lipoyl group of dihydrolipoyl acyltransferase. Elp is alpha(sub 2)beta(sub2)-heterotetrameric with a molecular mass of I54 kDa, which has two catalytic sites, each providing TPP and magnesium ion as cofactors and each formed on the interface between the PP and PYR domains. The dynamic nonequivalence of two otherwise chemically equivalent catalytic sites has been observed and the flip-flop mechanism was suggested, according to which two active sites affect each other and in which different steps of the catalytic reaction are performed in each of the sites at any given moment. Based on specific futures of human pyruvate dehydrogenase including rigid and flexible connections between domains that bind the cofactor we propose a mechanistic model for the flip-flop action of this enzyme. We postulate that the dynamic protein environment drives the exchange of tautomers in the 4' -aminopyrimidine ring of the cofactor through a concerted shuttl-like motion of

  11. The effects of season and temperature on D-lactate dehydrogenase, pyruvate kinase and arginine kinase in the foot of Helix pomatia L.

    PubMed

    Wieser, W; Wright, E

    1979-04-01

    The effects of pH, season, environmental and experimental temperatures on the activities and kinetic parameters of D-lactate dehydrogenase, pyruvate kinase and arginine kinase from the foot of the pulmonate snail Helix pomatia were analyzed. Both in phosphate and Tris buffers D-lactate dehydrogenase was the enzyme with the most acid maximum, arginine kinase that with the most alkaline, whilst pyruvate kinase occupied an intermediate position. Pyruvate kinase activity, measured at 20 degrees C, was positively correlated with the environmental temperature at the moment of collecting the animal, whereas neither arginine kinase nor D-lactate dehydrogenase showed such a relationship. A seasonal study based on approximately 100 specimens established that arginine kinase activity remained the same throughout the year. Pyruvate kinase activity was slightly lower, and D-lactate dehydrogenase activity significantly higher, in winter than in summer animals. Snails subjected in spring to a short warm-up period before enzyme extraction showed extreme variability and some extraordinarily high values of pyruvate kinase activity, suggesting that either season or elevated temperature may have an immediate effect on the activity of this enzyme. Individual variability of all three enzymes ranges from 300 to 400%. The activities of pyruvate kinase and D-lactate dehydrogenase are strongly correlated in summer, forming a "constant-proportion-group", whereas in winter, with D-lactate dehydrogenase activity increasing and pyruvate kinase activity decreasing these two enzymes become "uncoupled". The Km value of pyruvate kinase is independent of experimental temperature between 10 and 25 degrees C, whereas that of D-lactate dehydrogenase and arginine kinase increases about three-fold within this range. Thus the temperature relationship of a single enzymic reaction cannot be used as an arguemnt for or against the occurrence of temperature compensation of whole animal metabolism. The

  12. Solution Structure and Characterisation of the Human Pyruvate Dehydrogenase Complex Core Assembly

    PubMed Central

    Vijayakrishnan, S.; Kelly, S.M.; Gilbert, R.J.C.; Callow, P.; Bhella, D.; Forsyth, T.; Lindsay, J.G.; Byron, O.

    2010-01-01

    Mammalian pyruvate dehydrogenase complex (PDC) is a key multi-enzyme assembly that is responsible for glucose homeostasis maintenance and conversion of pyruvate into acetyl-CoA. It comprises a central pentagonal dodecahedral core consisting of two subunit types (E2 and E3BP) to which peripheral enzymes (E1 and E3) bind tightly but non-covalently. Currently, there are two conflicting models of PDC (E2 + E3BP) core organisation: the ‘addition’ model (60 + 12) and the ‘substitution’ model (48 + 12). Here we present the first ever low-resolution structures of human recombinant full-length PDC core (rE2/E3BP), truncated PDC core (tE2/E3BP) and native bovine heart PDC core (bE2/E3BP) obtained by small-angle X-ray scattering and small-angle neutron scattering. These structures, corroborated by negative-stain and cryo electron microscopy data, clearly reveal open pentagonal core faces, favouring the ‘substitution’ model of core organisation. The native and recombinant core structures are all similar to the truncated bacterial E2 core crystal structure obtained previously. Cryo-electron microscopy reconstructions of rE2/E3BP and rE2/E3BP:E3 directly confirm that the core has open pentagonal faces, agree with scattering-derived models and show density extending outwards from their surfaces, which is much more structurally ordered in the presence of E3. Additionally, analytical ultracentrifugation characterisation of rE2/E3BP, rE2 (full-length recombinant E2-only) and tE2/E3BP supports the substitution model. Superimposition of the small-angle neutron scattering tE2/E3BP and truncated bacterial E2 crystal structures demonstrates conservation of the overall pentagonal dodecahedral morphology, despite evolutionary diversity. In addition, unfolding studies using circular dichroism and tryptophan fluorescence spectroscopy show that the rE2/E3BP is less stable than its rE2 counterpart, indicative of a role for E3BP in core destabilisation. The architectural

  13. Pyruvate kinase deficiency as a cause of extreme hyperbilirubinemia in neonates from a polygamist community.

    PubMed

    Christensen, R D; Eggert, L D; Baer, V L; Smith, K N

    2010-03-01

    Neonatal hemolytic jaundice is a risk factor for kernicterus. Pyruvate kinase (PK) deficiency is a rare cause of neonatal hemolytic jaundice, with a prevalence estimated at 1 case per 20,000 births in the United States, but with a higher prevalence among the Amish communities in Pennsylvania and Ohio. We discovered four neonates with PK deficiency born in a small community of polygamists. All four had early, severe, hemolytic jaundice. PK deficiency should be considered in neonates with early hemolytic, Coombs-negative, non-spherocytic jaundice, particularly in communities with considerable consanguinity. Such cases should be recognized early and managed aggressively to prevent kernicterus. PMID:20182430

  14. Pyruvate dehydrogenase complex of ascites tumour. Activation by AMP and other properties of potential significance in metabolic regulation.

    PubMed Central

    Lazo, P A; Sols, A

    1980-01-01

    1. AMP is an activator of the pyruvate dehydrogenase complex of the Ehrlich--Lettré ascites tumour, increasing its V up to 2-fold, with Ka of 40 microM at pH 7.4. This activation appears to be an allosteric effect on the decarboxylase subunit of the complex. 2. The pyruvate dehydrogenase complex has a Km for pyruvate within the range 17--36 microM depending on the pH, the optimum pH being approx. 7.4, with a V of approx. 0.1 unit/g of cells. The rate-limiting step is dependent on the transformation of the enzyme--substrate complex. The Km for CoA is 15 microM. The Km for NAD+ is 0.7 mM for both the complex and the lipoamide dehydrogenase. The complex is inhibited by acetyl-CoA competitively with CoA; the Ki is 60 microM. The lipoamide dehydrogenase is inhibited by NADH and NADPH competitively with NAD+, with Ki values of 80 and 90 microM respectively. In the reverse reaction the Km values for NADH and NADPH are essentially equal to their Ki values for the forward reaction, the V for the latter being 0.09 of that of the former. Hence the reaction rate of the complex in vivo is likely to be markedly affected by feedback isosteric inhibition by reduced nicotinamide nucleotides and possibly acetyl-CoA. PMID:7193456

  15. Lack of Skeletal Muscle IL-6 Affects Pyruvate Dehydrogenase Activity at Rest and during Prolonged Exercise

    PubMed Central

    Gudiksen, Anders; Schwartz, Camilla Lindgren; Bertholdt, Lærke; Joensen, Ella; Knudsen, Jakob G.; Pilegaard, Henriette

    2016-01-01

    Pyruvate dehydrogenase (PDH) plays a key role in the regulation of skeletal muscle substrate utilization. IL-6 is produced in skeletal muscle during exercise in a duration dependent manner and has been reported to increase whole body fatty acid oxidation, muscle glucose uptake and decrease PDHa activity in skeletal muscle of fed mice. The aim of the present study was to examine whether muscle IL-6 contributes to exercise-induced PDH regulation in skeletal muscle. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) completed a single bout of treadmill exercise for 10, 60 or 120 min, with rested mice of each genotype serving as basal controls. The respiratory exchange ratio (RER) was overall higher (P<0.05) in IL-6 MKO than control mice during the 120 min of treadmill exercise, while RER decreased during exercise independent of genotype. AMPK and ACC phosphorylation also increased with exercise independent of genotype. PDHa activity was in control mice higher (P<0.05) at 10 and 60 min of exercise than at rest but remained unchanged in IL-6 MKO mice. In addition, PDHa activity was higher (P<0.05) in IL-6 MKO than control mice at rest and 60 min of exercise. Neither PDH phosphorylation nor acetylation could explain the genotype differences in PDHa activity. Together, this provides evidence that skeletal muscle IL-6 contributes to the regulation of PDH at rest and during prolonged exercise and suggests that muscle IL-6 normally dampens carbohydrate utilization during prolonged exercise via effects on PDH. PMID:27327080

  16. Communication between Thiamin Cofactors in the Escherichia coli Pyruvate Dehydrogenase Complex E1 Component Active Centers

    PubMed Central

    Nemeria, Natalia S.; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-01-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4′-aminopyrimidine N1′ atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu571, Glu235, and Glu237) and Arg606 resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu235 makes no direct contact with the cofactor. The role of the conserved Glu571 residue in both catalysis and cofactor orientation is revealed by the combined results for the first time. PMID:20106967

  17. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation

    PubMed Central

    Sharma, Naveen; Okere, Isidore C; Brunengraber, Daniel Z; McElfresh, Tracy A; King, Kristen L; Sterk, Joseph P; Huang, Hazel; Chandler, Margaret P; Stanley, William C

    2005-01-01

    A high rate of cardiac work increases citric acid cycle (CAC) turnover and flux through pyruvate dehydrogenase (PDH); however, the mechanisms for these effects are poorly understood. We tested the hypotheses that an increase in cardiac energy expenditure: (1) activates PDH and reduces the product/substrate ratios ([NADH]/[NAD+] and [acetyl-CoA]/[CoA-SH]); and (2) increases the content of CAC intermediates. Measurements were made in anaesthetized pigs under control conditions and during 15 min of a high cardiac workload induced by dobutamine (Dob). A third group was made hyperglycaemic (14 mm) to stimulate flux through PDH during the high work state (Dob + Glu). Glucose and fatty acid oxidation were measured with 14C-glucose and 3H-oleate. Compared with control, the high workload groups had a similar increase in myocardial oxygen consumption ( and cardiac power. Dob increased PDH activity and glucose oxidation above control, but did not reduce the [NADH]/[NAD+] and [acetyl-CoA]/[CoA-SH] ratios, and there were no differences between the Dob and Dob + Glu groups. An additional group was treated with Dob + Glu and oxfenicine (Oxf) to inhibit fatty acid oxidation: this increased [CoA-SH] and glucose oxidation compared with Dob; however, there was no further activation of PDH or decrease in the [NADH]/[NAD+] ratio. Content of the 4-carbon CAC intermediates succinate, fumarate and malate increased 3-fold with Dob, but there was no change in citrate content, and the Dob + Glu and Dob + Glu + Oxf groups were not different from Dob. In conclusion, compared with normal conditions, at high myocardial energy expenditure (1) the increase in flux through PDH is regulated by activation of the enzyme complex and continues to be partially controlled through inhibition by fatty acid oxidation, and (2) there is expansion of the CAC pool size at the level of 4-carbon intermediates that is largely independent of myocardial fatty acid oxidation. PMID:15550462

  18. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet.

    PubMed

    Vanderperre, Benoît; Herzig, Sébastien; Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-05-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  19. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    PubMed Central

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  20. Malaria, favism and glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Huheey, J E; Martin, D L

    1975-10-15

    Although glucose-6-phosphate dehydrogenase deficient individuals may suffer (sometimes fatally) from favism, a high incidence of this trait occurs in many Mediterranean populations. This apparent paradox is explained on the basis of a synergistic interaction between favism and G-6-PD deficiency that provides increased protection against malaria compared to that of the G-6-PD deficiency alone. This relationship is analogous to that between various hemoglobins and malaria in that there is selection for a more severe trait if it provides more protection against malaria. PMID:1107056

  1. Biochemical and physiological studies of Arabidopsis thaliana transgenic lines with repressed expression of the mitochondrial pyruvate dehydrogenase kinase.

    PubMed

    Marillia, Elizabeth-France; Micallef, Barry J; Micallef, Malgre; Weninger, Alan; Pedersen, Kalie K; Zou, Jitao; Taylor, David C

    2003-01-01

    Pyruvate dehydrogenase kinase (PDHK), a negative regulator of the mitochondrial pyruvate dehydrogenase complex (mtPDC), plays a pivotal role in controlling mtPDC activity, and hence, the TCA cycle and cell respiration. Previously, the cloning of a PDHK cDNA from Arabidopsis thaliana and the effects of constitutively down-regulating its expression on plant growth and development has been reported. The first detailed analyses of the biochemical and physiological effects of partial silencing of the mtPDHK in A. thaliana using antisense constructs driven by both constitutive and seed-specific promoters are reported here. The studies revealed an increased level of respiration in leaves of the constitutive antisense PDHK transgenics; an increase in respiration was also found in developing seeds of the seed-specific antisense transgenics. Both constitutive and seed-specific partial silencing of the mtPDHK resulted in increased seed oil content and seed weight at maturity. Feeding 3-(14)C pyruvate to bolted stems containing siliques (constitutive transgenics), or to isolated siliques or immature seeds (seed-specific transgenics) confirmed a higher rate of incorporation of radiolabel into all seed lipid species, particularly triacylglycerols. Neither constitutive nor seed-specific partial silencing of PDHK negatively affected overall silique and seed development. Instead, oil and seed yield, and overall plant productivity were improved. These findings suggest that a partial reduction of the repression of the mtPDC by antisense PDHK expression can alter carbon flux and, in particular, the contribution of carbon moieties from pyruvate to fatty acid biosynthesis and storage lipid accumulation in developing seeds, implicating a role for mtPDC in fatty acid biosynthesis in seeds. PMID:12493853

  2. The Role of Pyruvate Dehydrogenase and Acetyl-Coenzyme A Synthetase in Fatty Acid Synthesis in Developing Arabidopsis Seeds1

    PubMed Central

    Ke, Jinshan; Behal, Robert H.; Back, Stephanie L.; Nikolau, Basil J.; Wurtele, Eve Syrkin; Oliver, David J.

    2000-01-01

    Acetyl-coenzyme A (acetyl-CoA) formed within the plastid is the precursor for the biosynthesis of fatty acids and, through them, a range of important biomolecules. The source of acetyl-CoA in the plastid is not known, but two enzymes are thought to be involved: acetyl-CoA synthetase and plastidic pyruvate dehydrogenase. To determine the importance of these two enzymes in synthesizing acetyl-CoA during lipid accumulation in developing Arabidopsis seeds, we isolated cDNA clones for acetyl-CoA synthetase and for the ptE1α- and ptE1β-subunits of plastidic pyruvate dehydrogenase. To our knowledge, this is the first reported acetyl-CoA synthetase sequence from a plant source. The Arabidopsis acetyl-CoA synthetase preprotein has a calculated mass of 76,678 D, an apparent plastid targeting sequence, and the mature protein is a monomer of 70 to 72 kD. During silique development, the spatial and temporal patterns of the ptE1β mRNA level are very similar to those of the mRNAs for the plastidic heteromeric acetyl-CoA carboxylase subunits. The pattern of ptE1β mRNA accumulation strongly correlates with the formation of lipid within the developing embryo. In contrast, the level of mRNA for acetyl-CoA synthetase does not correlate in time and space with lipid accumulation. The highest level of accumulation of the mRNA for acetyl-CoA synthetase during silique development is within the funiculus. These mRNA data suggest a predominant role for plastidic pyruvate dehydrogenase in acetyl-CoA formation during lipid synthesis in seeds. PMID:10859180

  3. Disruption of the pdhB Pyruvate Dehydrogenase Gene Affects Colony Morphology, In Vitro Growth and Cell Invasiveness of Mycoplasma agalactiae

    PubMed Central

    Hegde, Shivanand; Rosengarten, Renate; Chopra-Dewasthaly, Rohini

    2015-01-01

    The utilization of available substrates, the metabolic potential and the growth rates of bacteria can play significant roles in their pathogenicity. This study concentrates on Mycoplasma agalactiae, which causes significant economic losses through its contribution to contagious agalactia in small ruminants by as yet unknown mechanisms. This lack of knowledge is primarily due to its fastidious growth requirements and the scarcity of genetic tools available for its manipulation and analysis. Transposon mutagenesis of M. agalactiae type strain PG2 resulted in several disruptions throughout the genome. A mutant defective in growth in vitro was found to have a transposon insertion in the pdhB gene, which encodes a component of the pyruvate dehydrogenase complex. This growth difference was quite significant during the actively dividing logarithmic phase but a gradual recovery was observed as the cells approached stationary phase. The mutant also exhibited a different and smaller colony morphology compared to the wild type strain PG2. For complementation, pdhAB was cloned downstream of a strong vpma promoter and upstream of a lacZ reporter gene in a newly constructed complementation vector. When transformed with this vector the pdhB mutant recovered its normal growth and colony morphology. Interestingly, the pdhB mutant also had significantly reduced invasiveness in HeLa cells, as revealed by double immunofluorescence staining. This deficiency was recovered in the complemented strain, which had invasiveness comparable to that of PG2. Taken together, these data indicate that pyruvate dehydrogenase might be an important player in infection with and colonization by M. agalactiae. PMID:25799063

  4. Complete knockout of the lactate dehydrogenase A gene is lethal in pyruvate dehydrogenase kinase 1, 2, 3 down-regulated CHO cells.

    PubMed

    Yip, Shirley S M; Zhou, Meixia; Joly, John; Snedecor, Bradley; Shen, Amy; Crawford, Yongping

    2014-09-01

    Accumulation of high level of lactate can negatively impact cell growth during fed-batch culture process. In this study, we attempted to knockout the lactate dehydrogenase A (LDHA) gene in CHO cells in order to attenuate the lactate level. To prevent the potential deleterious effect of pyruvate accumulation, consequent to LDHA knockout, on cell culture, we chose a pyruvate dehydrogenase kinase 1, 2, and 3 (PDHK1, 2, and 3) knockdown cell line in which to knock out LDHA alleles. Around 3,000 clones were screened to obtain 152 mutants. Only heterozygous mutants were identified. An attempt to knockout the remaining wild-type allele from one such heterozygote yielded only two mutants after screening 567 clones. One had an extra valine. Another evidenced a duplication event, possessing at lease one wild-type and two different frameshifted alleles. Both mutants still retained LDH activity. Together, our data strongly suggest that a complete knockout of LDHA is lethal in CHO cells, despite simultaneous down-regulation of PDHK1, 2, and 3. PMID:24841241

  5. 2-Oxoglutarate dehydrogenase is a more significant source of O2(·-)/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue.

    PubMed

    Mailloux, Ryan J; Gardiner, Danielle; O'Brien, Marisa

    2016-08-01

    Pyruvate dehydrogenase (Pdh) and 2-oxoglutarate dehydrogenase (Ogdh) are vital for Krebs cycle metabolism and sources of reactive oxygen species (ROS). O2(·-)/H2O2 formation by Pdh and Ogdh from porcine heart were compared when operating under forward or reverse electron transfer conditions. Comparisons were also conducted with liver and cardiac mitochondria. During reverse electron transfer (RET) from NADH, purified Ogdh generated ~3-3.5× more O2(·-)/H2O2 in comparison to Pdh when metabolizing 0.5-10µM NADH. Under forward electron transfer (FET) conditions Ogdh generated ~2-4× more O2(·-)/H2O2 than Pdh. In both liver and cardiac mitochondria, Ogdh displayed significantly higher rates of ROS formation when compared to Pdh. Ogdh was also a significant source of ROS in liver mitochondria metabolizing 50µM and 500µM pyruvate or succinate. Finally, we also observed that DTT directly stimulated O2(·-)/H2O2 formation by purified Pdh and Ogdh and in cardiac or liver mitochondria in the absence of substrates and cofactors. Taken together, Ogdh is a more potent source of ROS than Pdh in liver and cardiac tissue. Ogdh is also an important ROS generator regardless of whether pyruvate or succinate serve as the sole source of carbon. Our observations provide insight into the ROS generating capacity of either complex in cardiac and liver tissue. The evidence presented herein also indicates DTT, a reductant that is routinely added to biological samples, should be avoided when assessing mitochondrial O2(·-)/H2O2 production. PMID:27394173

  6. Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy.

    PubMed

    Mochel, Fanny; DeLonlay, Pascale; Touati, Guy; Brunengraber, Henri; Kinman, Renee P; Rabier, Daniel; Roe, Charles R; Saudubray, Jean-Marie

    2005-04-01

    A six-day-old girl was referred for severe hepatic failure, dehydratation, axial hypotonia, and both lactic acidosis and ketoacidosis. Biotin-unresponsive pyruvate carboxylase deficiency type B was diagnosed. Triheptanoin, an odd-carbon triglyceride, was administrated as a source for acetyl-CoA and anaplerotic propionyl-CoA. Although this patient succumbed to a severe infection, during the six months interval of her anaplerotic and biochemical management, the following important observations were documented: (1) the immediate reversal (less than 48 h) of major hepatic failure with full correction of all biochemical abnormalities, (2) on citrate supplementation, the enhanced export from the liver of triheptanoin's metabolites, namely 5 carbon ketone bodies, increasing the availability of these anaplerotic substrates for peripheral organs, (3) the demonstration of the transport of C5 ketone bodies-representing alternative energetic fuel for the brain-across the blood-brain barrier, associated to increased levels of glutamine and free gamma-aminobutyric acid (f-GABA) in the cerebrospinal fluid. Considering that pyruvate carboxylase is a key enzyme for anaplerosis, besides the new perspectives brought by anaplerotic therapies in those rare pyruvate carboxylase deficiencies, this therapeutic trial also emphasizes the possible extended indications of triheptanoin in various diseases where the citric acid cycle is impaired. PMID:15781190

  7. Frostbite: A Novel Presentation of Glucose-6-Phosphate Dehydrogenase Deficiency?

    PubMed

    Bowles, Justin M; Joas, Chris; Head, Steven

    2015-01-01

    Acute hemolytic anemia (AHA) due to glucose 6-phosphate dehydrogenase (G6PD) deficiency has rarely been recognized as a contributor to the development of frostbite. We discuss a case of frostbite in a 32-year-old male Marine with G6PD deficiency during military training on Mount McKinley in Alaska, which eventually led to a permanent disability. In this report, the pathophysiology of G6PD deficiency, the effects of hemolytic anemia, and factors that contribute to frostbite will be discussed, as well as the clinical findings, treatment course, and the outcome of this case. The patient was evacuated and admitted to Alaska Regional Hospital. He was treated for fourth-degree frostbite, ultimately resulting in the complete or partial amputation of all toes. Although it cannot be proved that AHA occurred in this patient, this case potentially adds frostbite to the list of rare but possible clinical presentations of G6PD deficiency. PMID:26360347

  8. Achromobacter denitrificans Strain YD35 Pyruvate Dehydrogenase Controls NADH Production To Allow Tolerance to Extremely High Nitrite Levels

    PubMed Central

    Doi, Yuki; Shimizu, Motoyuki; Fujita, Tomoya; Nakamura, Akira; Takizawa, Noboru

    2014-01-01

    We identified the extremely nitrite-tolerant bacterium Achromobacter denitrificans YD35 that can grow in complex medium containing 100 mM nitrite (NO2−) under aerobic conditions. Nitrite induced global proteomic changes and upregulated tricarboxylate (TCA) cycle enzymes as well as antioxidant proteins in YD35. Transposon mutagenesis generated NO2−-hypersensitive mutants of YD35 that had mutations at genes for aconitate hydratase and α-ketoglutarate dehydrogenase in the TCA cycle and a pyruvate dehydrogenase (Pdh) E1 component, indicating the importance of TCA cycle metabolism to NO2− tolerance. A mutant in which the pdh gene cluster was disrupted (Δpdh mutant) could not grow in the presence of 100 mM NO2−. Nitrite decreased the cellular NADH/NAD+ ratio and the cellular ATP level. These defects were more severe in the Δpdh mutant, indicating that Pdh contributes to upregulating cellular NADH and ATP and NO2−-tolerant growth. Exogenous acetate, which generates acetyl coenzyme A and then is metabolized by the TCA cycle, compensated for these defects caused by disruption of the pdh gene cluster and those caused by NO2−. These findings demonstrate a link between NO2− tolerance and pyruvate/acetate metabolism through the TCA cycle. The TCA cycle mechanism in YD35 enhances NADH production, and we consider that this contributes to a novel NO2−-tolerating mechanism in this strain. PMID:24413603

  9. Fusarium graminearum pyruvate dehydrogenase kinase 1 (FgPDK1) Is Critical for Conidiation, Mycelium Growth, and Pathogenicity

    PubMed Central

    Gao, Tao; Chen, Jian; Shi, Zhiqi

    2016-01-01

    Pyruvate dehydrogenase kinase (PDK) is an important mitochondrial enzyme that blocks the production of acetyl-CoA by selectively inhibiting the activity of pyruvate dehydrogenase (PDH) through phosphorylation. PDK is an effectively therapeutic target in cancer cells, but the physiological roles of PDK in phytopathogens are largely unknown. To address these gaps, a PDK gene (FgPDK1) was isolated from Fusarium graminearum that is an economically important pathogen infecting cereals. The deletion of FgPDK1 in F. graminearum resulted in the increase in PDH activity, coinciding with several phenotypic defects, such as growth retardation, failure in perithecia and conidia production, and increase in pigment formation. The ΔFgPDK1 mutants showed enhanced sensitivity to osmotic stress and cell membrane-damaging agent. Physiological detection indicated that reactive oxygen species (ROS) accumulation and plasma membrane damage (indicated by PI staining, lipid peroxidation, and electrolyte leakage) occurred in ΔFgPDK1 mutants. The deletion of FgPDK1 also prohibited the production of deoxynivalenol (DON) and pathogenicity of F. graminearum, which may resulted from the decrease in the expression of Tri6. Taken together, this study firstly identified the vital roles of FgPDK1 in the development of phytopathogen F. graminearum, which may provide a potentially novel clue for target-directed development of agricultural fungicides. PMID:27341107

  10. Tyr-phosphorylation of PDP1 toggles recruitment between ACAT1 and SIRT3 to regulate pyruvate dehydrogenase complex

    PubMed Central

    Fan, Jun; Shan, Changliang; Kang, Hee-Bum; Elf, Shannon; Xie, Jianxin; Tucker, Meghan; Gu, Ting-Lei; Aguiar, Mike; Lonning, Scott; Chen, Huaibin; Mohammadi, Moosa; Britton, Laura-Mae P.; Garcia, Benjamin A.; Aleckovic, Masa; Kang, Yibin; Kaluz, Stefan; Devi, Narra; Van Meir, Erwin; Hitosugi, Taro; Seo, Jae Ho; Lonial, Sagar; Gaddh, Manila; Arellano, Martha; Khoury, Hanna J.; Khuri, Fadlo R.; Boggon, Titus J.; Kang, Sumin; Chen, Jing

    2014-01-01

    SUMMARY Mitochondrial pyruvate dehydrogenase complex (PDC) is crucial for glucose homoeostasis in mammalian cells. The current understanding of PDC regulation involves inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) by PDH kinase (PDK), whereas dephosphorylation of PDH by PDH phosphatase (PDP) activates PDC. Here we report that lysine acetylation of PDHA1 and PDP1 is common in EGF-stimulated cells and diverse human cancer cells. K321 acetylation inhibits PDHA1 by recruiting PDK1 and K202 acetylation inhibits PDP1 by dissociating its substrate PDHA1, both of which are important to promote glycolysis in cancer cells and consequent tumor growth. Moreover, we identified mitochondrial ACAT1 and SIRT3 as the upstream acetyltransferase and deacetylase, respectively, of PDHA1 and PDP1, while knockdown of ACAT1 attenuates tumor growth. Furthermore, Y381 phosphorylation of PDP1 dissociates SIRT3 and recruits ACAT1 to PDC. Together, hierarchical, distinct post-translational modifications act in concert to control molecular composition of PDC and contribute to the Warburg effect. PMID:24486017

  11. Structure of the pyruvate dehydrogenase multienzyme complex E1 component from Escherichia coli at 1.85 A resolution.

    PubMed

    Arjunan, Palaniappa; Nemeria, Natalia; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Sax, Martin; Yan, Yan; Jordan, Frank; Guest, John R; Furey, William

    2002-04-23

    The crystal structure of the recombinant thiamin diphosphate-dependent E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined at a resolution of 1.85 A. The E. coli PDHc E1 component E1p is a homodimeric enzyme and crystallizes with an intact dimer in an asymmetric unit. Each E1p subunit consists of three domains: N-terminal, middle, and C-terminal, with all having alpha/beta folds. The functional dimer contains two catalytic centers located at the interface between subunits. The ThDP cofactors are bound in the "V" conformation in clefts between the two subunits (binding involves the N-terminal and middle domains), and there is a common ThDP binding fold. The cofactors are completely buried, as only the C2 atoms are accessible from solution through the active site clefts. Significant structural differences are observed between individual domains of E1p relative to heterotetrameric multienzyme complex E1 components operating on branched chain substrates. These differences may be responsible for reported alternative E1p binding modes to E2 components within the respective complexes. This paper represents the first structural example of a functional pyruvate dehydrogenase E1p component from any species. It also provides the first representative example for the entire family of homodimeric (alpha2) E1 multienzyme complex components, and should serve as a model for this class of enzymes. PMID:11955070

  12. Temporal changes in the involvement of pyruvate dehydrogenase complex in muscle lactate accumulation during lipopolysaccharide infusion in rats

    PubMed Central

    Alamdari, N; Constantin-Teodosiu, D; Murton, A J; Gardiner, S M; Bennett, T; Layfield, R; Greenhaff, P L

    2008-01-01

    A characteristic manifestation of sepsis is muscle lactate accumulation. This study examined any putative (causative) association between pyruvate dehydrogenase complex (PDC) inhibition and lactate accumulation in the extensor digitorum longus (EDL) muscle of rats infused with lipopolysaccharide (LPS), and explored the involvement of increased transcription of muscle-specific pyruvate dehydrogenase kinase (PDK) isoenzymes. Conscious, male Sprague–Dawley rats were infused i.v. with saline (0.4 ml h−1, control) or LPS (150 μg kg−1 h−1) for 2 h, 6 h or 24 h (n = 6–8). Muscle lactate concentration was elevated after 2, 6 and 24 h LPS infusion. Muscle PDC activity was the same at 2 h and 6 h, but was 65% lower after 24 h of LPS infusion (P < 0.01), when there was a 47% decrease in acetylcarnitine concentration (P < 0.05), and a 24-fold increase in PDK4 mRNA expression (P < 0.001). These changes were preceded by marked increases in tumour necrosis factor-α and interleukin-6 mRNA expression at 2 h. The findings indicate that the early (2 and 6 h) elevation in muscle lactate concentration during LPS infusion was not attributable to limited muscle oxygen availability or ATP production (evidenced by unchanged ATP and phosphocreatine (PCr) concentrations) or to PDC inhibition, whereas after 24 h, muscle lactate accumulation appears to have resulted from PDC activation status limiting pyruvate flux, most probably due to cytokine-mediated up-regulation of PDK4 transcription. PMID:18218678

  13. Theoretical study of the catalytic mechanism of E1 subunit of pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus.

    PubMed

    Sheng, Xiang; Liu, Yongjun

    2013-11-12

    Pyruvate dehydrogenase multienzyme complex (PDHc) is a member of a family of 2-oxo acid dehydrogenase (OADH) multienzyme complexes involved in several central points of oxidative metabolism, and the E1 subunit is the most important component in the entire PDHc catalytic system, which catalyzes the reversible transfer of an acetyl group from a pyruvate to the lipoyl group of E2 subunit lipoly domain. In this article, the catalytic mechanism of the E1 subunit has been systematically studied using density functional theory (DFT). Four possible pathways with different general acid/base catalysts in decarboxylation and reductive acylation processes were explored. Our calculation results indicate that the 4'-amino pyrimidine of ThDP and residue His128 are the most likely proton donors in the decarboxylation and reductive acylation processes, respectively. During the reaction, each C-C and C-S bond formation or cleavage process, except for the liberation of CO2, is always accompanied by a proton transfer between the substrates and proton donors. The liberation of CO2 is calculated to be the rate-limiting step for the overall reaction, with an energy barrier of 13.57 kcal/mol. The decarboxylation process is endothermic by 5.32 kcal/mol, whereas the reductive acylation process is exothermic with a value of 5.74 kcal/mol. The assignment of protonation states of the surrounding residues can greatly influence the reaction. Residues His128 and His271 play roles in positioning the first substrate pyruvate and second substrate lipoyl group, respectively. PMID:24171427

  14. Erythrocyte pyruvate kinase deficiency in the Ohio Amish: origin and characterization of the mutant enzyme.

    PubMed

    Muir, W A; Beutler, E; Wasson, C

    1984-05-01

    We have identified eight individuals in an Amish population in Geauga County, Ohio, who have a congenital hemolytic anemia and red cell pyruvate kinase (PK) deficiency. The mutant enzyme is a low Km phosphoenolpyruvate (PEP) variant associated with a slower (77.5% of normal) electrophoretic mobility in starch gel. Because of the high consanguinity in this population, we assume the affected individuals are homozygous for the mutant gene. Genealogical records allow us to trace all eight cases back to a common ancestor who lived in Mifflin County, Pennsylvania. His sister was a common ancestor to all cases of PK deficiency originally described in the Pennsylvania Amish isolate. Therefore, all cases of PK deficiency in the Amish arose from a common ancestral pair. PMID:6731438

  15. Kawasaki disease with Glucose-6-Phosphate Dehydrogenase deficiency, case report.

    PubMed

    Obeidat, Hesham Radi; Al-Dossary, Sahar; Asseri, Abdulsalam

    2015-09-01

    Kawasaki disease (KD) is an acute, self-limited vasculitis of unknown etiology that occurs predominantly in infants and children younger than 5 years of age. Coronary artery abnormalities are the most serious complication. Based on the literatures infusion of Intravenous Immunoglobulin of 2 g/kg and a high dose of oral aspirin up to 100 mg/kg/day are the standard treatment for Kawasaki disease in the acute stage, and should be followed by antiplatelet dose of aspirin for thrombocytosis. Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is an inherited X-linked hereditary disorder, and aspirin can induce hemolysis in patients with G6PD deficiency. We report a case of a 5 year and 8 month old male with KD and G6PD deficiency. PMID:27134550

  16. Conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active complex by the phosphate reaction in heart mitochondria is inhibited by alloxan-diabetes or starvation in the rat.

    PubMed

    Hutson, N J; Kerbey, A L; Randle, P J; Sugden, P H

    1978-08-01

    1. The conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active (dephosphorylated) complex by pyruvate dehydrogenase phosphate phosphatase is inhibited in heart mitochondria prepared from alloxan-diabetic or 48h-starved rats, in mitochondria prepared from acetate-perfused rat hearts and in mitochondria prepared from normal rat hearts incubated with respiratory substrates for 6 min (as compared with 1 min). 2. This conclusion is based on experiments with isolated intact mitochondria in which the pyruvate dehydrogenase kinase reaction was inhibited by pyruvate or ATP depletion (by using oligomycin and carbonyl cyanide m-chlorophenylhydrazone), and in experiments in which the rate of conversion of inactive complex into active complex by the phosphatase was measured in extracts of mitochondria. The inhibition of the phosphatase reaction was seen with constant concentrations of Ca2+ and Mg2+ (activators of the phosphatase). The phosphatase reaction in these mitochondrial extracts was not inhibited when an excess of exogenous pig heart pyruvate dehydrogenase phosphate was used as substrate. It is concluded that this inhibition is due to some factor(s) associated with the substrate (pyruvate dehydrogenase phosphate complex) and not to inhibition of the phosphatase as such. 3. This conclusion was verified by isolating pyruvate dehydrogenase phosphate complex, free of phosphatase, from hearts of control and diabetic rats an from heart mitochondria incubed for 1min (control) or 6min with respiratory substrates. The rates of re-activation of the inactive complexes were then measured with preparations of ox heart or rat heart phosphatase. The rates were lower (relative to controls) with inactive complex from hearts of diabetic rats or from heart mitochondria incubated for 6min with respiratory substrates. 4. The incorporation of 32Pi into inactive complex took 6min to complete in rat heart mitocondria. The extent of incorporation was consistent with

  17. Animal models for glutaryl-CoA dehydrogenase deficiency.

    PubMed

    Koeller, D M; Sauer, S; Wajner, M; de Mello, C F; Goodman, S I; Woontner, M; Mühlhausen, C; Okun, J G; Kölker, S

    2004-01-01

    In vitro studies suggest that excitotoxic cell damage is an underlying mechanism for the acute striatal damage in glutaryl-CoA dehydrogenase (GCDH) deficiency. It is believed to result from an imbalance of glutamatergic and GABAergic neurotransmission induced by the accumulating organic acids 3-hydroxyglutaric acid (3-OH-GA) and to a lesser extent glutaric acid (GA). Stereotaxic administration of 3-OH-GA and GA into the rat striatum have confirmed these results, but may not truly represent the effect of chronic exposure to these compounds. In an attempt to better understand the pathophysiology of GCDH deficiency in vivo , two animal models have been utilized. A mouse that lacks GCDH activity in all tissues was generated by gene targeting in embryonic stem cells. These animals develop the characteristic biochemical phenotype of the human disease. Pathologically, these mice have a diffuse spongiform myelinopathy similar to that in human patients; however, there is no evidence for acute striatal damage or sensitivity to acute encephalopathy induced by catabolism or inflammatory cytokines. A naturally occurring animal model, the fruit-eating bat Rousettus aegypticus, lacks hepatic and renal GCDH activity, but retains cerebral enzyme activity. Like the mouse, these bats develop the characteristic biochemical phenotype of glutaryl-CoA dehydrogenase deficiency, but lack overt neurological symptoms such as dystonia. It is not known whether they also develop the spongiform myelinopathy seen in the Gcdh-deficient mice. Otherwise, these constellations would suggest that cerebral GCDH deficiency is responsible for the development of neuronal damage. The lack of striatal damage in these two rodent models may also be related to species differences. However, they also highlight our lack of a comprehensive understanding of additional factors that might modulate the susceptibiliy of neurons to accumulating 3-OH-GA and GA in GCDH deficiency. Unravelling these mechanisms may be the

  18. Plesiomonas shigelloides Septic Shock Leading to Death of Postsplenectomy Patient with Pyruvate Kinase Deficiency and Hemochromatosis.

    PubMed

    Samannodi, Mohammed; Zhao, Andrew; Nemshah, Yaser; Shiley, Kevin

    2016-01-01

    Although Plesiomonas shigelloides, a water-borne bacterium of the Enterobacteriaceae family, usually causes self-limiting gastroenteritis with diarrhea, several cases of sepsis have been reported. We report the case of a 43-year-old male patient with hemochromatosis, pyruvate kinase deficiency, and asplenia via splenectomy who developed septic shock caused by P. shigelloides complicated by respiratory failure, renal failure, liver failure, and disseminated intravascular coagulation. Early aggressive antimicrobial therapy and resuscitation measures were unsuccessful and the patient passed away. We kindly suggest clinicians to implement early diagnosis of septic shock, empirical coverage with antibiotics, and prompt volume resuscitation based on the high mortality rate of P. shigelloides bacteremia. PMID:27610253

  19. Plesiomonas shigelloides Septic Shock Leading to Death of Postsplenectomy Patient with Pyruvate Kinase Deficiency and Hemochromatosis

    PubMed Central

    2016-01-01

    Although Plesiomonas shigelloides, a water-borne bacterium of the Enterobacteriaceae family, usually causes self-limiting gastroenteritis with diarrhea, several cases of sepsis have been reported. We report the case of a 43-year-old male patient with hemochromatosis, pyruvate kinase deficiency, and asplenia via splenectomy who developed septic shock caused by P. shigelloides complicated by respiratory failure, renal failure, liver failure, and disseminated intravascular coagulation. Early aggressive antimicrobial therapy and resuscitation measures were unsuccessful and the patient passed away. We kindly suggest clinicians to implement early diagnosis of septic shock, empirical coverage with antibiotics, and prompt volume resuscitation based on the high mortality rate of P. shigelloides bacteremia. PMID:27610253

  20. The response of the metabolic network of the red blood cell to pyruvate kinase deficiency.

    PubMed

    Sun, Xiaoliang; Lu, Zuhong

    2005-01-01

    The response of the metabolic network of human red blood cell is investigated using the E-Cell simulation system when pyruvate kinase (PK) is deficient. The results that several downstream metabolites of the glycolysis pathway accumulate are in a good agreement with experimental data reported in literatures. This accumulation results in the reaction that phosphoglycerate kinase (PGK) catalyzes reversing its direction. Mathematical analysis to the simulation results shows that the PGK-catalyzing reaction reversing its direction happens simultaneously with an abrupt change of the second derivative of the ATP quantity. PMID:17282332

  1. [Succinate dehydrogenase (SDH)-deficient renal cell carcinoma].

    PubMed

    Agaimy, A

    2016-03-01

    Succinate dehydrogenase (SDH) represents a type II mitochondrial complex related to the respiratory chain and Krebs cycle. The complex is composed of four major subunits, SDHA, SDHB, SDHC and SDHD. The oncogenic role of this enzyme complex has only recently been recognized and the complex is currently considered an important oncogenic signaling pathway with tumor suppressor properties. In addition to the familial paraganglioma syndromes (types 1-5) as prototypical SDH-related diseases, many other tumors have been defined as SDH-deficient, in particular a subset of gastrointestinal stromal tumors (GIST), rare hypophyseal adenomas, a subset of pancreatic neuroendocrine neoplasms (recently added) and a variety of other tumor entities, the latter mainly described as rare case reports. As a central core subunit responsible for the integrity of the SDH complex, the expression of SDHB is lost in all SDH-deficient neoplasms irrespective of the specific SDH subunit affected by a genetic mutation in addition to concurrent loss of the subunit specifically affected by genetic alteration. Accordingly, all SDH-deficient neoplasms are by definition SDHB-deficient. The SDH-deficient renal cell carcinoma (RCC) has only recently been well-characterized and it is included as a specific subtype of RCC in the new World Health Organization (WHO) classification published in 2016. In this review, the major clinicopathological, immunohistochemical and genetic features of this rare disease entity are presented and discussed in the context of the broad differential diagnosis. PMID:26979428

  2. Hypohidrotic ectodermal dysplasia associated with glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Ermertcan, Aylin Türel; Yaşar, Ali; Kayhan, Tuba Çelebı; Gülen, Hüseyin; Ertan, Pelin

    2011-09-01

    Hypohidrotic ectodermal dysplasia (HED) is a syndrome characterized by hypodontia, hypotrichosis, and partial or total ecrine sweat gland deficiency. The most prevalent form of HED is inherited as an X linked pattern. Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency is an X-linked recessive disease, which leads to hemolytic anemia and jaundice. It is expressed in males, while heterozygous females are usually clinically normal. A 12-year-old boy with the complaints of hair and eyebrow disturbances, teeth disfigurement, decreased sweating, and xerosis presented to the outpatient clinic. Dermatological examination revealed sparse hair and eyebrows, conical-shaped teeth, xerosis, syndactylia, transverse grooves, and discoloration of nails. Laboratory findings indicated anemia. His 3-year-old sister also had sparse hair and eyebrows, xerosis, and syndactylia. We learned that the patient had a previous history of neonatal jaundice and a diagnosis of G-6-PD deficiency. Although it has been shown that loci of ectodermal dysplasia and G-6-PD deficiency genes are near to one another, we did not find any case study reporting on occurrence of these two genetic diseases together. With the aspect of this rare and interesting case, the relationship between HED and G-6-PD deficiency was defined. PMID:22028581

  3. Hypohidrotic Ectodermal Dysplasia Associated with Glucose-6-Phosphate Dehydrogenase Deficiency

    PubMed Central

    Yaşar, Ali; Kayhan, Tuba Çelebİ; Gülen, Hüseyin; Ertan, Pelin

    2011-01-01

    Hypohidrotic ectodermal dysplasia (HED) is a syndrome characterized by hypodontia, hypotrichosis, and partial or total ecrine sweat gland deficiency. The most prevalent form of HED is inherited as an X linked pattern. Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency is an X-linked recessive disease, which leads to hemolytic anemia and jaundice. It is expressed in males, while heterozygous females are usually clinically normal. A 12-year-old boy with the complaints of hair and eyebrow disturbances, teeth disfigurement, decreased sweating, and xerosis presented to the outpatient clinic. Dermatological examination revealed sparse hair and eyebrows, conical-shaped teeth, xerosis, syndactylia, transverse grooves, and discoloration of nails. Laboratory findings indicated anemia. His 3-year-old sister also had sparse hair and eyebrows, xerosis, and syndactylia. We learned that the patient had a previous history of neonatal jaundice and a diagnosis of G-6-PD deficiency. Although it has been shown that loci of ectodermal dysplasia and G-6-PD deficiency genes are near to one another, we did not find any case study reporting on occurrence of these two genetic diseases together. With the aspect of this rare and interesting case, the relationship between HED and G-6-PD deficiency was defined. PMID:22028581

  4. Lack of mitochondria-generated acetyl-CoA by pyruvate dehydrogenase complex downregulates gene expression in the hepatic de novo lipogenic pathway.

    PubMed

    Mahmood, Saleh; Birkaya, Barbara; Rideout, Todd C; Patel, Mulchand S

    2016-07-01

    During the absorptive state, the liver stores excess glucose as glycogen and synthesizes fatty acids for triglyceride synthesis for export as very low density lipoproteins. For de novo synthesis of fatty acids from glucose, the mitochondrial pyruvate dehydrogenase complex (PDC) is the gatekeeper for the generation of acetyl-CoA from glucose-derived pyruvate. Here, we tested the hypothesis that limiting the supply of PDC-generated acetyl-CoA from glucose would have an impact on expression of key genes in the lipogenic pathway. In the present study, although the postnatal growth of liver-specific PDC-deficient (L-PDCKO) male mice was largely unaltered, the mice developed hyperinsulinemia with lower blood glucose levels in the fed state. Serum and liver lipid triglyceride and cholesterol levels remained unaltered in L-PDCKO mice. Expression of several key genes (ACL, ACC1) in the lipogenic pathway and their upstream regulators (LXR, SREBP1, ChREBP) as well as several genes in glucose metabolism (Pklr, G6pd2, Pck1) and fatty acid oxidation (FAT, Cpt1a) was downregulated in livers from L-PDCKO mice. Interestingly, there was concomitant upregulation of lipogenic genes in adipose tissue from L-PDCKO mice. Although, the total hepatic acetyl-CoA content remained unaltered in L-PDCKO mice, modified acetylation profiles of proteins in the nuclear compartment suggested an important role for PDC-generated acetyl-CoA in gene expression in de novo fatty acid synthesis in the liver. This finding has important implications for the regulation of hepatic lipid synthesis in pathological states. PMID:27166281

  5. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells

    PubMed Central

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Background Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). Results/Methodology We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Conclusion Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease. PMID:25826140

  6. Treatment of pyruvate carboxylase deficiency with high doses of citrate and aspartate.

    PubMed

    Ahmad, A; Kahler, S G; Kishnani, P S; Artigas-Lopez, M; Pappu, A S; Steiner, R; Millington, D S; Van Hove, J L

    1999-12-01

    A patient with severe pyruvate carboxylase deficiency presented at age 11 weeks with metabolic decompensation after routine immunization. She was comatose, had severe lactic acidemia (22 mM) and ketosis, low aspartate and glutamate, elevated citrulline and proline, and mild hyperammonemia. Head magnetic resonance imaging showed subdural hematomas and mild generalized brain atrophy. Biotin-unresponsive pyruvate carboxylase deficiency was diagnosed. To provide oxaloacetate, she was treated with high-dose citrate (7.5 mol/kg(-1)/day(-1)), aspartate (10 mmol/kg(-1)/day(-1)), and continuous drip feeding. Lactate and ketones diminished dramatically, and plasma amino acids normalized, except for arginine, which required supplementation. In the cerebrospinal fluid (CSF), glutamine remained low and lysine elevated, showing the treatment had not normalized brain chemistry. Metabolic decompensations, triggered by infections or fasting, diminished after the first year. They were characterized by severe lactic and ketoacidosis, hypernatremia, and a tendency to hypoglycemia. At age 3(1/2) years she has profound mental retardation, spasticity, and grand mal and myoclonic seizures only partially controlled by anticonvulsants. The new treatment regimen has helped maintain metabolic control, but the neurological outcome is still poor. PMID:10588840

  7. AB104. Glucose-6 phospate dehydrogenase deficiency among mongolian neonates

    PubMed Central

    Batjargal, Khishigjargal; Nansal, Gerelmaa; Zagd, Gerelmaa; Ganbaatar, Erdenetuya

    2015-01-01

    Background and objective Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency in humans, affecting 400 million people worldwide and a high prevalence in persons of African, Middle Asian countries. The most common clinical manifestations are neonatal jaundice and acute hemolytic anemia, which is caused by the impairment of erythrocyte’s ability to remove harmful oxidative stress triggered by exogenous agents such as drugs, infection, or fava bean ingestion. Neonatal hyperbilirubinemia caused by G6PD is strongly associated with mortality and long-term neurodevelopmental impairment. The study aims to determine a level of G6PD in healthy neonates. Methods We obtained blood spot samples from 268 infants around 24-72 hours in their age who has unsuspected intranatal and neonatal disorders. Glucose 6 phosphate dehydrogenase “Perkin Elmer, Finland” level is determined by Victor 2D Fluorometer assay, developing of neonatal jaundice is examined by recall. Results The76.5% of all participants (n=205) was assessed 4.36±1.15 Ug/Hb in normal reference range of G6PD, other 23.5% (n=63) was 0.96±0.51 Ug/Hb with G6PD deficiency. In the both sex, 51.5% of male 0.88±0.46 Ug/Hb (n=33) and 47.6% of female (n=30) 0.97±0.55 Ug/Hb was assessed with G6PD deficiency. Developing Jaundice period in number of 63 neonates with G6PD deficiency, 86% of neonates (n=54) was in 1-4 days, 4% of neonates (n=3) was in 5-7 days and there is no sign of jaundice in 9% (n=6). Therefore neonates with G6PD deficiency, 53.9% (n=34) continued jaundice more than two weeks. Conclusions G6PD deficiency was determined in male neonates (51.5%) more than female (47.6%). The 76.5% of all participants (n=205) was assessed 4.36±1.15 Ug/Hb in normal reference range of G6PDH other 23.5% (n=63) of all participants was 0.96±0.51 Ug/Hb with G6PD deficiency. It shows that G6PD might be one potential risk of neonatal jaundice and hyperbilirubinemia in neonates in Mongolia.

  8. Structural and Functional Insights into the Molecular Mechanisms Responsible for the Regulation of Pyruvate Dehydrogenase Kinase 2

    SciTech Connect

    Green, Todd; Grigorian, Alexei; Klyuyeva, Alla; Tuganova, Alina; Luo, Ming; Popov, Kirill M.

    2008-07-09

    PDHK2 is a mitochondrial protein kinase that phosphorylates pyruvate dehydrogenase complex, thereby down-regulating the oxidation of pyruvate. Here, we present the crystal structure of PDHK2 bound to the inner lipoyl-bearing domain of dihydrolipoamide transacetylase (L2) determined with or without bound adenylyl imidodiphosphate. Both structures reveal a PDHK2 dimer complexed with two L2 domains. Comparison with apo-PDHK2 shows that L2 binding causes rearrangements in PDHK2 structure that affect the L2- and E1-binding sites. Significant differences are found between PDHK2 and PDHK3 with respect to the structure of their lipoyllysine-binding cavities, providing the first structural support to a number of studies showing that these isozymes are markedly different with respect to their affinity for the L2 domain. Both structures display a novel type II potassium-binding site located on the PDHK2 interface with the L2 domain. Binding of potassium ion at this site rigidifies the interface and appears to be critical in determining the strength of L2 binding. Evidence is also presented that potassium ions are indispensable for the cross-talk between the nucleotide- and L2-binding sites of PDHK2. The latter is believed to be essential for the movement of PDHK2 along the surface of the transacetylase scaffold.

  9. Combination therapy of normobaric oxygen with hypothermia or ethanol modulates pyruvate dehydrogenase complex in thromboembolic cerebral ischemia.

    PubMed

    Cai, Lipeng; Thibodeau, Alexa; Peng, Changya; Ji, Xunming; Rastogi, Radhika; Xin, Ruiqiang; Singh, Sunpreet; Geng, Xiaokun; Rafols, Jose A; Ding, Yuchuan

    2016-08-01

    Pyruvate dehydrogenase complex (PDH) is a brain mitochondrial matrix enzyme. PDH impairment after stroke is particularly devastating given PDH's critical role in the link between anaerobic and aerobic metabolism. This study evaluates the restoration of oxidative metabolism and energy regulation with a therapeutic combination of normobaric oxygen (NBO) plus either therapeutic hypothermia (TH) or ethanol. Sprague-Dawley rats were subjected to middle cerebral artery occlusion with an autologous embolus. One hour after occlusion, tissue-type plasminogen activator (t-PA) was administered alone or with NBO (60%), EtOH (1.0 g/kg), or TH (33°C), either singly or in combination. Neurological deficit score and infarct volume were assessed 24 hr after t-PA-induced reperfusion. PDH activity and reactive oxygen species (ROS) levels were measured 3 and 24 hr after t-PA. Western blotting was used to detect PDH and pyruvate dehydrogenase kinase (PDK) protein expression. After t-PA in ischemic rats, NBO combined with TH or EtOH most effectively decreased infarct volume and neurological deficit. The combined therapies produced greater increases in PDH activity and protein expression as well as greater decreases in PDK expression. Compared with the monotherapeutic approaches, the combined therapies provided the most significant declines in ROS generation. Reperfusion with t-PA followed by 60% NBO improves the efficacy of EtOH or TH in neuroprotection by ameliorating oxidative injury and improving PDH regulation. Comparable neuroprotective effects were found when treating with either EtOH or TH, suggesting a similar mechanism of neuroprotection and the possibility of substituting EtOH for TH in clinical settings. © 2016 Wiley Periodicals, Inc. PMID:27027410

  10. Pyruvate Dehydrogenase Kinase-4 Structures Reveal a Metastable Open Conformation Fostering Robust Core-free Basal Activity

    SciTech Connect

    Wynn, R. Max; Kato, Masato; Chuang, Jacinta L.; Tso, Shih-Chia; Li, Jun; Chuang, David T.

    2008-10-21

    Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-{angstrom} crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp{sup 394}-Trp{sup 395}) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.

  11. Biochemical mechanisms of glucose-6-phosphate dehydrogenase deficiency.

    PubMed Central

    Morelli, A; Benatti, U; Gaetani, G F; De Flora, A

    1978-01-01

    A solid-phase radioimmunoassay for human glucose-6-phosphate dehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase; EC 1.1.1.49) was developed that allowed the specific activity of this enzyme protein to be measured in lysates from whole erythrocyte populations, in lysates from erythrocytes of different ages, and in purified samples. The enzyme was highly purified from erythrocytes of single donors by a simple procedure of affinity chromatography with insolubilized adenosine 2',5'-bisphosphate. These techniques were used in an attempt to elucidate the molecular mechanisms leading to deficiency of glucose-6-phosphate dehydrogenase activity in two genetic variants of the enzyme, i.e., the Mediterranean and the Seattle-like variants. The results indicate that the lowered activity of erythrocytes containing the Mediterranean variant of glucose-6-phosphate dehydrogenase is related to an enhanced rate of degradation of a catalytically defective protein synthesized at a nearly normal rate. Synthesis of a normally functioning protein and an increased breakdown of it are involved in the Seattle-like variant of the enzyme. Images PMID:273924

  12. Glucose-6-phosphate dehydrogenase deficiency in Nigerian children.

    PubMed

    Williams, Olatundun; Gbadero, Daniel; Edowhorhu, Grace; Brearley, Ann; Slusher, Tina; Lund, Troy C

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzymopathy and in Sub-Saharan Africa, is a significant cause of infection- and drug-induced hemolysis and neonatal jaundice. Our goals were to determine the prevalence of G6PD deficiency among Nigerian children of different ethnic backgrounds and to identify predictors of G6PD deficiency by analyzing vital signs and hematocrit and by asking screening questions about symptoms of hemolysis. We studied 1,122 children (561 males and 561 females) aged 1 month to 15 years. The mean age was 7.4 ± 3.2 years. Children of Yoruba ethnicity made up the largest group (77.5%) followed by those Igbo descent (10.6%) and those of Igede (10.2%) and Tiv (1.8%) ethnicity. G6PD status was determined using the fluorescent spot method. We found that the overall prevalence of G6PD deficiency was 15.3% (24.1% in males, 6.6% in females). Yoruba children had a higher prevalence (16.9%) than Igede (10.5%), Igbo (10.1%) and Tiv (5.0%) children. The odds of G6PD deficiency were 0.38 times as high in Igbo children compared to Yoruba children (p=0.0500). The odds for Igede and Tiv children were not significantly different from Yoruba children (p=0.7528 and 0.9789 respectively). Mean oxygen saturation, heart rate and hematocrit were not significantly different in G6PD deficient and G6PD sufficient children. The odds of being G6PD deficient were 2.1 times higher in children with scleral icterus than those without (p=0.0351). In conclusion, we determined the prevalence of G6PD deficiency in Nigerian sub-populations. The odds of G6PD deficiency were decreased in Igbo children compared to Yoruba children. There was no association between vital parameters or hematocrit and G6PD deficiency. We found that a history of scleral icterus may increase the odds of G6PD deficiency, but we did not exclude other common causes of icterus such as sickle cell disease or malarial infection. PMID:23874768

  13. Erythrocyte Pyruvate Kinase Deficiency mutation identified in multiple breeds of domestic cats

    PubMed Central

    2012-01-01

    Background Erythrocyte pyruvate kinase deficiency (PK deficiency) is an inherited hemolytic anemia that has been documented in the Abyssinian and Somali breeds as well as random bred domestic shorthair cats. The disease results from mutations in PKLR, the gene encoding the regulatory glycolytic enzyme pyruvate kinase (PK). Multiple isozymes are produced by tissue-specific differential processing of PKLR mRNA. Perturbation of PK decreases erythrocyte longevity resulting in anemia. Additional signs include: severe lethargy, weakness, weight loss, jaundice, and abdominal enlargement. In domestic cats, PK deficiency has an autosomal recessive mode of inheritance with high variability in onset and severity of clinical symptoms. Results Sequence analysis of PKLR revealed an intron 5 single nucleotide polymorphism (SNP) at position 304 concordant with the disease phenotype in Abyssinian and Somali cats. Located 53 nucleotides upstream of the exon 6 splice site, cats with this SNP produce liver and blood processed mRNA with a 13 bp deletion at the 3’ end of exon 5. The frame-shift mutation creates a stop codon at amino acid position 248 in exon 6. The frequency of the intronic SNP in 14,179 American and European cats representing 38 breeds, 76 western random bred cats and 111 cats of unknown breed is 6.31% and 9.35% when restricted to the 15 groups carrying the concordant SNP. Conclusions PK testing is recommended for Bengals, Egyptian Maus, La Perms, Maine Coon cats, Norwegian Forest cats, Savannahs, Siberians, and Singapuras, in addition to Abyssinians and Somalis as well an any new breeds using the afore mentioned breeds in out crossing or development programs. PMID:23110753

  14. Pathogenic mechanisms underlying X-linked Charcot-Marie-Tooth neuropathy (CMTX6) in patients with a pyruvate dehydrogenase kinase 3 mutation.

    PubMed

    Perez-Siles, Gonzalo; Ly, Carolyn; Grant, Adrienne; Drew, Alexander P; Yiu, Eppie M; Ryan, Monique M; Chuang, David T; Tso, Shih-Chia; Nicholson, Garth A; Kennerson, Marina L

    2016-10-01

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. An X-linked form of CMT (CMTX6) is caused by a missense mutation (R158H) in the pyruvate dehydrogenase kinase isoenzyme 3 (PDK3) gene. PDK3 is one of 4 isoenzymes that negatively regulate the activity of the pyruvate dehydrogenase complex (PDC) by reversible phosphorylation of its first catalytic component pyruvate dehydrogenase (designated as E1). Mitochondrial PDC catalyses the oxidative decarboxylation of pyruvate to acetyl CoA and links glycolysis to the energy-producing Krebs cycle. We have previously shown the R158H mutation confers PDK3 enzyme hyperactivity. In this study we demonstrate that the increased PDK3 activity in patient fibroblasts (PDK3(R158H)) leads to the attenuation of PDC through hyper-phosphorylation of E1 at selected serine residues. This hyper-phosphorylation can be reversed by treating the PDK3(R158H) fibroblasts with the PDK inhibitor dichloroacetate (DCA). In the patient cells, down-regulation of PDC leads to increased lactate, decreased ATP and alteration of the mitochondrial network. Our findings highlight the potential to develop specific drug targeting of the mutant PDK3 as a therapeutic approach to treating CMTX6. PMID:27388934

  15. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    PubMed Central

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  16. Cross-linking and 1H n.m.r. spectroscopy of the pyruvate dehydrogenase complex of Escherichia coli

    PubMed Central

    Packman, Leonard C.; Perham, Richard N.; Roberts, Gordon C. K.

    1982-01-01

    The pyruvate dehydrogenase complex of Escherichia coli was treated with o-phenylene bismaleimide in the presence of the substrate pyruvate, producing almost complete cross-linking of the lipoate acetyltransferase polypeptide chains as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This took place without effect on the catalytic activities of the other two component enzymes and with little evidence of cross-links being formed with other types of protein subunit. Limited proteolysis with trypsin indicated that the cross-links were largely confined to the lipoyl domains of the lipoate acetyltransferase component of the same enzyme particle. This intramolecular cross-linking had no effect on the very sharp resonances observed in the 1H n.m.r. spectrum of the enzyme complex, which derive from regions of highly mobile polypeptide chain in the lipoyl domains. Comparison of the spin–spin relaxation times, T2, with the measured linewidths supported the idea that the highly mobile region is best characterized as a random coil. Intensity measurements in spin-echo spectra showed that it comprises a significant proportion (probably not less than one-third) of a lipoyl domain and is thus much more than a small hinge region, but there was insufficient intensity in the resonances to account for the whole lipoyl domain. On the other hand, no evidence was found in the 1H n.m.r. spectrum for a substantial structured region around the lipoyl-lysine residues that was free to move on the end of this highly flexible connection. If such a structured region were bound to other parts of the enzyme complex for a major part of its time, its resonances might be broadened sufficiently to evade detection by 1H n.m.r. spectroscopy. ImagesFig. 2.Fig. 3. PMID:6753833

  17. Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study

    PubMed Central

    Le Page, Lydia M.; Rider, Oliver J.; Lewis, Andrew J.; Ball, Vicky; Clarke, Kieran; Johansson, Edvin; Carr, Carolyn A.; Heather, Lisa C.; Tyler, Damian J.

    2015-01-01

    Although diabetic cardiomyopathy is widely recognised, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate utilisation, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type-II diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate utilisation and improve cardiac function. All animals underwent in vivo hyperpolarized [1-13C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function respectively. Diabetic animals showed significantly higher blood glucose (10.8±0.7mM vs 8.4±0.5mM), lower PDH flux (0.005±0.001s−1 vs 0.017±0.002s−1) and significantly impaired diastolic function (E/E’ 12.2±0.8 vs 20±2) in keeping with early diabetic cardiomyopathy. Twenty-eight days treatment with dichloroacetate restored PDH flux to normal levels (0.018±0.002s−1), reversed diastolic dysfunction (E/E’ 14±1) and normalized blood glucose (7.5±0.7mM). Treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction and normalised blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy. PMID:25795215

  18. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae.

    PubMed

    Kozak, Barbara U; van Rossum, Harmen M; Luttik, Marijke A H; Akeroyd, Michiel; Benjamin, Kirsten R; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2014-01-01

    The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs(+) reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. Importance: Genetically engineered microorganisms are intensively investigated and applied for production of biofuels and chemicals from renewable sugars. To make such processes economically and environmentally sustainable, the energy

  19. Differential effects of acute and chronic fructose administration on pyruvate dehydrogenase activity and lipogenesis

    SciTech Connect

    Wilson, L.

    1988-01-01

    These studies were undertaken to distinguish between the acute and chronic effects of fructose administration. In vivo, liver lipogenesis, as measured by {sup 3}H{sub 2}O incorporation, was greater in rats fed 60% fructose than in their glucose fed controls. Both fructose feeding, and fructose feeding plus intraperitoneal fructose injection increased the activities of 6-phosphogluconate dehydrogenase and malic enzyme. Liver PDH activity was increased by fructose feeding, and was increased even more by fructose feeding and injection of fructose, but this was not associated with any changes in hepatic ATP concentrations.

  20. The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1α Phosphorylation.

    PubMed

    Cerniglia, George J; Dey, Souvik; Gallagher-Colombo, Shannon M; Daurio, Natalie A; Tuttle, Stephen; Busch, Theresa M; Lin, Alexander; Sun, Ramon; Esipova, Tatiana V; Vinogradov, Sergei A; Denko, Nicholas; Koumenis, Constantinos; Maity, Amit

    2015-08-01

    Inhibition of the PI3K/Akt pathway decreases hypoxia within SQ20B human head and neck cancer xenografts. We set out to understand the molecular mechanism underlying this observation. We measured oxygen consumption using both a Clark electrode and an extracellular flux analyzer. We made these measurements after various pharmacologic and genetic manipulations. Pharmacologic inhibition of the PI3K/mTOR pathway or genetic inhibition of Akt/PI3K decreased the oxygen consumption rate (OCR) in vitro in SQ20B and other cell lines by 30% to 40%. Pharmacologic inhibition of this pathway increased phosphorylation of the E1α subunit of the pyruvate dehydrogenase (PDH) complex on Ser293, which inhibits activity of this critical gatekeeper of mitochondrial respiration. Expressing wild-type PTEN in a doxycycline-inducible manner in a cell line with mutant PTEN led to an increase in PDH-E1α phosphorylation and a decrease in OCR. Pretreatment of SQ20B cells with dichloroacetate (DCA), which inhibits PDH-E1α phosphorylation by inhibiting dehydrogenase kinases (PDK), reversed the decrease in OCR in response to PI3K/Akt/mTOR inhibition. Likewise, introduction of exogenous PDH-E1α that contains serine to alanine mutations, which can no longer be regulated by phosphorylation, also blunted the decrease in OCR seen with PI3K/mTOR inhibition. Our findings highlight an association between the PI3K/mTOR pathway and tumor cell oxygen consumption that is regulated in part by PDH phosphorylation. These results have important implications for understanding the effects of PI3K pathway activation in tumor metabolism and also in designing cancer therapy trials that use inhibitors of this pathway. PMID:25995437

  1. Succinate Dehydrogenase Deficiency in Pediatric and Adult Gastrointestinal Stromal Tumors

    PubMed Central

    Belinsky, Martin G.; Rink, Lori; von Mehren, Margaret

    2013-01-01

    Gastrointestinal stromal tumors (GISTs) in adults are generally driven by somatic gain-of-function mutations in KIT or PDGFRA, and biological therapies targeted to these receptor tyrosine kinases comprise part of the treatment regimen for metastatic and inoperable GISTs. A minority (10–15%) of GISTs in adults, along with ∼85% of pediatric GISTs, lacks oncogenic mutations in KIT and PDGFRA. Not surprisingly these wild type (WT) GISTs respond poorly to kinase inhibitor therapy. A subset of WT GISTs shares a set of distinguishing clinical and pathological features, and a flurry of recent reports has convincingly demonstrated shared molecular characteristics. These GISTs have a distinct transcriptional profile including over-expression of the insulin-like growth factor-1 receptor, and exhibit deficiency in the succinate dehydrogenase (SDH) enzyme complex. The latter is often but not always linked to bi-allelic inactivation of SDH subunit genes, particularly SDHA. This review will summarize the molecular, pathological, and clinical connections that link this group of SDH-deficient neoplasms, and offer a view toward understanding the underlying biology of the disease and the therapeutic challenges implicit to this biology. PMID:23730622

  2. DLAT subunit of the pyruvate dehydrogenase complex is upregulated in gastric cancer-implications in cancer therapy

    PubMed Central

    Goh, Wen Quan Jonathan; Ow, Ghim Siong; Kuznetsov, Vladimir A; Chong, Shirly; Lim, Yoon Pin

    2015-01-01

    An iTRAQ-based tandem mass spectrometry approach was employed to relatively quantify proteins in the membrane proteome of eleven gastric cancer cell lines relative to a denominator non-cancer gastric epithelial cell line HFE145. Of the 882 proteins detected, 57 proteins were found to be upregulated with > 1.3-fold change in at least 6 of the 11 cell lines. Bioinformatics analysis revealed that these proteins are significantly associated with cancer, cell growth and proliferation, death, survival and cell movement. The catalogue of membrane proteins presented that are potential regulators/effectors of gastric cancer progression has implications in cancer therapy. DLAT, a subunit of the pyruvate dehydrogenase complex, was selected as a candidate protein for further studies as its function in gastric cancer has yet to be established. SiRNA studies supported a role of DLAT in gastric cancer cell proliferation and carbohydrate metabolism, reprogramming of which is a hallmark of cancer. Our study contributes to recent interest and discussion in cancer energetics and related phenomena such as the Warburg and Reverse Warburg effects. Future mechanistic studies should lead to the elucidation of the mode of action of DLAT in human gastric cancer and establish DLAT as a viable drug target. PMID:26279757

  3. Human Pyruvate Dehydrogenase Complex E2 and E3BP Core Subunits: New Models and Insights from Molecular Dynamics Simulations.

    PubMed

    Hezaveh, Samira; Zeng, An-Ping; Jandt, Uwe

    2016-05-19

    Targeted manipulation and exploitation of beneficial properties of multienzyme complexes, especially for the design of novel and efficiently structured enzymatic reaction cascades, require a solid model understanding of mechanistic principles governing the structure and functionality of the complexes. This type of system-level and quantitative knowledge has been very scarce thus far. We utilize the human pyruvate dehydrogenase complex (hPDC) as a versatile template to conduct corresponding studies. Here we present new homology models of the core subunits of the hPDC, namely E2 and E3BP, as the first time effort to elucidate the assembly of hPDC core based on molecular dynamic simulation. New models of E2 and E3BP were generated and validated at atomistic level for different properties of the proteins. The results of the wild type dimer simulations showed a strong hydrophobic interaction between the C-terminal and the hydrophobic pocket which is the main driving force in the intertrimer binding and the core self-assembly. On the contrary, the C-terminal truncated versions exhibited a drastic loss of hydrophobic interaction leading to a dimeric separation. This study represents a significant step toward a model-based understanding of structure and function of large multienzyme systems like PDC for developing highly efficient biocatalyst or bioreaction cascades. PMID:27104227

  4. Altered Fermentative Metabolism in Chlamydomonas reinhardtii Mutants Lacking Pyruvate Formate Lyase and Both Pyruvate Formate Lyase and Alcohol Dehydrogenase[W

    PubMed Central

    Catalanotti, Claudia; Dubini, Alexandra; Subramanian, Venkataramanan; Yang, Wenqiang; Magneschi, Leonardo; Mus, Florence; Seibert, Michael; Posewitz, Matthew C.; Grossman, Arthur R.

    2012-01-01

    Chlamydomonas reinhardtii, a unicellular green alga, often experiences hypoxic/anoxic soil conditions that activate fermentation metabolism. We isolated three Chlamydomonas mutants disrupted for the pyruvate formate lyase (PFL1) gene; the encoded PFL1 protein catalyzes a major fermentative pathway in wild-type Chlamydomonas cells. When the pfl1 mutants were subjected to dark fermentative conditions, they displayed an increased flux of pyruvate to lactate, elevated pyruvate decarboxylation, ethanol accumulation, diminished pyruvate oxidation by pyruvate ferredoxin oxidoreductase, and lowered H2 production. The pfl1-1 mutant also accumulated high intracellular levels of lactate, succinate, alanine, malate, and fumarate. To further probe the system, we generated a double mutant (pfl1-1 adh1) that is unable to synthesize both formate and ethanol. This strain, like the pfl1 mutants, secreted lactate, but it also exhibited a significant increase in the levels of extracellular glycerol, acetate, and intracellular reduced sugars and a decrease in dark, fermentative H2 production. Whereas wild-type Chlamydomonas fermentation primarily produces formate and ethanol, the double mutant reroutes glycolytic carbon to lactate and glycerol. Although the metabolic adjustments observed in the mutants facilitate NADH reoxidation and sustained glycolysis under dark, anoxic conditions, the observed changes could not have been predicted given our current knowledge of the regulation of fermentation metabolism. PMID:22353371

  5. Structure and function of the catalytic domain of the dihydrolipoyl acetyltransferase component in Escherichia coli pyruvate dehydrogenase complex.

    PubMed

    Wang, Junjie; Nemeria, Natalia S; Chandrasekhar, Krishnamoorthy; Kumaran, Sowmini; Arjunan, Palaniappa; Reynolds, Shelley; Calero, Guillermo; Brukh, Roman; Kakalis, Lazaros; Furey, William; Jordan, Frank

    2014-05-30

    The Escherichia coli pyruvate dehydrogenase complex (PDHc) catalyzing conversion of pyruvate to acetyl-CoA comprises three components: E1p, E2p, and E3. The E2p is the five-domain core component, consisting of three tandem lipoyl domains (LDs), a peripheral subunit binding domain (PSBD), and a catalytic domain (E2pCD). Herein are reported the following. 1) The x-ray structure of E2pCD revealed both intra- and intertrimer interactions, similar to those reported for other E2pCDs. 2) Reconstitution of recombinant LD and E2pCD with E1p and E3p into PDHc could maintain at least 6.4% activity (NADH production), confirming the functional competence of the E2pCD and active center coupling among E1p, LD, E2pCD, and E3 even in the absence of PSBD and of a covalent link between domains within E2p. 3) Direct acetyl transfer between LD and coenzyme A catalyzed by E2pCD was observed with a rate constant of 199 s(-1), comparable with the rate of NADH production in the PDHc reaction. Hence, neither reductive acetylation of E2p nor acetyl transfer within E2p is rate-limiting. 4) An unprecedented finding is that although no interaction could be detected between E1p and E2pCD by itself, a domain-induced interaction was identified on E1p active centers upon assembly with E2p and C-terminally truncated E2p proteins by hydrogen/deuterium exchange mass spectrometry. The inclusion of each additional domain of E2p strengthened the interaction with E1p, and the interaction was strongest with intact E2p. E2p domain-induced changes at the E1p active site were also manifested by the appearance of a circular dichroism band characteristic of the canonical 4'-aminopyrimidine tautomer of bound thiamin diphosphate (AP). PMID:24742683

  6. Structure and Function of the Catalytic Domain of the Dihydrolipoyl Acetyltransferase Component in Escherichia coli Pyruvate Dehydrogenase Complex*

    PubMed Central

    Wang, Junjie; Nemeria, Natalia S.; Chandrasekhar, Krishnamoorthy; Kumaran, Sowmini; Arjunan, Palaniappa; Reynolds, Shelley; Calero, Guillermo; Brukh, Roman; Kakalis, Lazaros; Furey, William; Jordan, Frank

    2014-01-01

    The Escherichia coli pyruvate dehydrogenase complex (PDHc) catalyzing conversion of pyruvate to acetyl-CoA comprises three components: E1p, E2p, and E3. The E2p is the five-domain core component, consisting of three tandem lipoyl domains (LDs), a peripheral subunit binding domain (PSBD), and a catalytic domain (E2pCD). Herein are reported the following. 1) The x-ray structure of E2pCD revealed both intra- and intertrimer interactions, similar to those reported for other E2pCDs. 2) Reconstitution of recombinant LD and E2pCD with E1p and E3p into PDHc could maintain at least 6.4% activity (NADH production), confirming the functional competence of the E2pCD and active center coupling among E1p, LD, E2pCD, and E3 even in the absence of PSBD and of a covalent link between domains within E2p. 3) Direct acetyl transfer between LD and coenzyme A catalyzed by E2pCD was observed with a rate constant of 199 s−1, comparable with the rate of NADH production in the PDHc reaction. Hence, neither reductive acetylation of E2p nor acetyl transfer within E2p is rate-limiting. 4) An unprecedented finding is that although no interaction could be detected between E1p and E2pCD by itself, a domain-induced interaction was identified on E1p active centers upon assembly with E2p and C-terminally truncated E2p proteins by hydrogen/deuterium exchange mass spectrometry. The inclusion of each additional domain of E2p strengthened the interaction with E1p, and the interaction was strongest with intact E2p. E2p domain-induced changes at the E1p active site were also manifested by the appearance of a circular dichroism band characteristic of the canonical 4′-aminopyrimidine tautomer of bound thiamin diphosphate (AP). PMID:24742683

  7. Succinic semialdehyde dehydrogenase deficiency: Lessons from mice and men

    PubMed Central

    Pearl, P. L.; Gibson, K. M.; Cortez, M. A.; Wu, Y.; Snead, O. Carter; Knerr, I.; Forester, K.; Pettiford, J. M.; Jakobs, C.; Theodore, W. H.

    2009-01-01

    Summary Succinic semialdehyde dehydrogenase (SSADH) deficiency, a disorder of GABA degradation with subsequent elevations in brain GABA and GHB, is a neurometabolic disorder with intellectual disability, epilepsy, hypotonia, ataxia, sleep disorders, and psychiatric disturbances. Neuroimaging reveals increased T2-weighted MRI signal usually affecting the globus pallidus, cerebellar dentate nucleus, and subthalamic nucleus, and often cerebral and cerebellar atrophy. EEG abnormalities are usually generalized spike-wave, consistent with a predilection for generalized epilepsy. The murine phenotype is characterized by failure-to-thrive, progressive ataxia, and a transition from generalized absence to tonic-clonic to ultimately fatal convulsive status epilepticus. Binding and electrophysiological studies demonstrate use-dependent downregulation of GABA(A) and (B) receptors in the mutant mouse. Translational human studies similarly reveal downregulation of GABAergic activity in patients, utilizing flumazenil-PET and transcranial magnetic stimulation for GABA(A) and (B) activity, respectively. Sleep studies reveal decreased stage REM with prolonged REM latencies and diminished percentage of stage REM. An ad libitum ketogenic diet was reported as effective in the mouse model, with unclear applicability to the human condition. Acute application of SGS–742, a GABA(B) antagonist, leads to improvement in epileptiform activity on electrocorticography. Promising mouse data using compounds available for clinical use, including taurine and SGS–742, form the framework for human trials. PMID:19172412

  8. An animal model of human aldehyde dehydrogenase deficiency

    SciTech Connect

    Chang, C.; Mann, J.; Yoshida, A.

    1994-09-01

    The genetic deficiency of ALDH2, a major mitochondrial aldehyde dehydrogenase, is intimately related to alcohol sensitivity and the degree of predisposition to alcoholic diseases in humans. The ultimate biological role of ALDH2 can be exposed by knocking out the ALDH2 gene in an animal model. As the first step for this line of studies, we cloned and characterized the ALDH2 gene from mouse C57/6J strain which is associated with a high alcohol preference. The gene spans 26 kbp and is composed of 13 exons. Embryonic stem cells were transfected with a replacement vector which contains a partially deleted exon3, a positive selection cassette (pPgk Neo), exon 4 with an artificial stop codon, exons 5, 6, 7, and a negative selection cassette (pMCI-Tk). Genomic DNAs prepared from drug resistant clones were analyzed by polymerase chain reaction and by Southern blot analysis to distinguish random integration from homologous recombination. Out of 132 clones examined, 8 had undergone homologous recombination at one of the ALDH2 alleles. The cloned transformed embryonic stem cells with a disrupted ALDH2 allele were injected into blastocysts. Transplantation of the blastocysts into surrogate mother mice yielded chimeric mice. The role of ALDH2 in alcohol preference, alcohol sensitivity and other biological and behavioral characteristics can be elucidated by examining the heterozygous and homozygous mutant strains produced by breeding of chimeric mice.

  9. Pyruvate Kinase M2 and Lactate Dehydrogenase A Are Overexpressed in Pancreatic Cancer and Correlate with Poor Outcome

    PubMed Central

    Mohammad, Goran Hamid; Olde Damink, S. W. M.; Malago, Massimo; Dhar, Dipok Kumar; Pereira, Stephen P.

    2016-01-01

    Pancreatic cancer has a 5-year survival rate of less than 4%. Despite advances in diagnostic technology, pancreatic cancer continues to be diagnosed at a late and incurable stage. Accurate biomarkers for early diagnosis and to predict treatment response are urgently needed. Since alteration of glucose metabolism is one of the hallmarks of cancer cells, we proposed that pyruvate kinase type M2 (M2PK) and lactate dehydrogenase A (LDHA) enzymes could represent novel diagnostic markers and potential therapeutic targets in pancreatic cancer. In 266 tissue sections from normal pancreas, pancreatic cystic neoplasms, pancreatic intraepithelial neoplasia (PanIN) and cancer, we evaluated the expression of PKM2, LDHA, Ki-67 and CD8+ by immunohistochemistry and correlated these markers with clinicopathological characteristics and patient survival. PKM2 and LDHA expression was also assessed by Western blot in 10 human pancreatic cancer cell lines. PKM2 expression increased progressively from cyst through PanIN to cancer, whereas LDHA was overexpressed throughout the carcinogenic process. All but one cell line showed high expression of both proteins. Patients with strong PKM2 and LDHA expression had significantly worse survival than those with weak PKM2 and/or LDHA expression (7.0 months vs. 27.9 months, respectively, p = 0.003, log rank test). The expression of both PKM2 and LDHA correlated directly with Ki-67 expression, and inversely with intratumoral CD8+ cell count. PKM2 was significantly overexpressed in poorly differentiated tumours and both PKM2 and LDHA were overexpressed in larger tumours. Multivariable analysis showed that combined expression of PKM2 and LDHA was an independent poor prognostic marker for survival. In conclusion, our results demonstrate a high expression pattern of two major glycolytic enzymes during pancreatic carcinogenesis, with increased expression in aggressive tumours and a significant adverse effect on survival. PMID:26989901

  10. Subunits of the Pyruvate Dehydrogenase Cluster of Mycoplasma pneumoniae Are Surface-Displayed Proteins that Bind and Activate Human Plasminogen

    PubMed Central

    Gründel, Anne; Friedrich, Kathleen; Pfeiffer, Melanie; Jacobs, Enno; Dumke, Roger

    2015-01-01

    The dual role of glycolytic enzymes in cytosol-located metabolic processes and in cell surface-mediated functions with an influence on virulence is described for various micro-organisms. Cell wall-less bacteria of the class Mollicutes including the common human pathogen Mycoplasma pneumoniae possess a reduced genome limiting the repertoire of virulence factors and metabolic pathways. After the initial contact of bacteria with cells of the respiratory epithelium via a specialized complex of adhesins and release of cell-damaging factors, surface-displayed glycolytic enzymes may facilitate the further interaction between host and microbe. In this study, we described detection of the four subunits of pyruvate dehydrogenase complex (PDHA-D) among the cytosolic and membrane-associated proteins of M. pneumoniae. Subunits of PDH were cloned, expressed and purified to produce specific polyclonal guinea pig antisera. Using colony blotting, fractionation of total proteins and immunofluorescence experiments, the surface localization of PDHA-C was demonstrated. All recombinant PDH subunits are able to bind to HeLa cells and human plasminogen. These interactions can be specifically blocked by the corresponding polyclonal antisera. In addition, an influence of ionic interactions on PDHC-binding to plasminogen as well as of lysine residues on the association of PDHA-D with plasminogen was confirmed. The PDHB subunit was shown to activate plasminogen and the PDHB-plasminogen complex induces degradation of human fibrinogen. Hence, our data indicate that the surface-associated PDH subunits might play a role in the pathogenesis of M. pneumoniae infections by interaction with human plasminogen. PMID:25978044

  11. Engineering Acetyl Coenzyme A Supply: Functional Expression of a Bacterial Pyruvate Dehydrogenase Complex in the Cytosol of Saccharomyces cerevisiae

    PubMed Central

    Kozak, Barbara U.; van Rossum, Harmen M.; Luttik, Marijke A. H.; Akeroyd, Michiel; Benjamin, Kirsten R.; Wu, Liang; de Vries, Simon; Daran, Jean-Marc; Pronk, Jack T.

    2014-01-01

    ABSTRACT The energetic (ATP) cost of biochemical pathways critically determines the maximum yield of metabolites of vital or commercial relevance. Cytosolic acetyl coenzyme A (acetyl-CoA) is a key precursor for biosynthesis in eukaryotes and for many industrially relevant product pathways that have been introduced into Saccharomyces cerevisiae, such as isoprenoids or lipids. In this yeast, synthesis of cytosolic acetyl-CoA via acetyl-CoA synthetase (ACS) involves hydrolysis of ATP to AMP and pyrophosphate. Here, we demonstrate that expression and assembly in the yeast cytosol of an ATP-independent pyruvate dehydrogenase complex (PDH) from Enterococcus faecalis can fully replace the ACS-dependent pathway for cytosolic acetyl-CoA synthesis. In vivo activity of E. faecalis PDH required simultaneous expression of E. faecalis genes encoding its E1α, E1β, E2, and E3 subunits, as well as genes involved in lipoylation of E2, and addition of lipoate to growth media. A strain lacking ACS that expressed these E. faecalis genes grew at near-wild-type rates on glucose synthetic medium supplemented with lipoate, under aerobic and anaerobic conditions. A physiological comparison of the engineered strain and an isogenic Acs+ reference strain showed small differences in biomass yields and metabolic fluxes. Cellular fractionation and gel filtration studies revealed that the E. faecalis PDH subunits were assembled in the yeast cytosol, with a subunit ratio and enzyme activity similar to values reported for PDH purified from E. faecalis. This study indicates that cytosolic expression and assembly of PDH in eukaryotic industrial microorganisms is a promising option for minimizing the energy costs of precursor supply in acetyl-CoA-dependent product pathways. PMID:25336454

  12. Oxygen uptake on-kinetics in dog gastrocnemius in situ following activation of pyruvate dehydrogenase by dichloroacetate.

    PubMed

    Grassi, Bruno; Hogan, Michael C; Greenhaff, Paul L; Hamann, Jason J; Kelley, Kevin M; Aschenbach, William G; Constantin-Teodosiu, Dumitru; Gladden, L Bruce

    2002-01-01

    The aim of the present study was to determine whether the activation of the pyruvate dehydrogenase complex (PDC) by dichloroacetate (DCA) is associated with faster O(2) uptake (V(O2)) on-kinetics. V(O2) on-kinetics was determined in isolated canine gastrocnemius muscles in situ (n = 6) during the transition from rest to 4 min of electrically stimulated isometric tetanic contractions, corresponding to approximately 60-70 % of peak V(O2). Two conditions were compared: (1) control (saline infusion, C); and (2) DCA infusion (300 mg (kg body mass)(-1), 45 min before contraction). Muscle blood flow (Q) was measured continuously in the popliteal vein; arterial and popliteal vein O(2) contents were measured at rest and at 5-7 s intervals during the transition. Muscle V(O2) was calculated as Q multiplied by the arteriovenous O(2) content difference. Muscle biopsies were taken before and at the end of contraction for determination of muscle metabolite concentrations. DCA activated PDC at rest, as shown by the 9-fold higher acetylcarnitine concentration in DCA (vs. C; P < 0.0001). Phosphocreatine degradation and muscle lactate accumulation were not significantly different between C and DCA. DCA was associated with significantly less muscle fatigue. Resting and steady-state V(O2) values during contraction were not significantly different between C and DCA. The time to reach 63 % of the V(O2) difference between the resting baseline and the steady-state V(O2) values during contraction was 22.3 +/- 0.5 s in C and 24.5 +/- 1.4 s in DCA (n.s.). In this experimental model, activation of PDC by DCA resulted in a stockpiling of acetyl groups at rest and less muscle fatigue, but it did not affect 'anaerobic' energy provision and V(O2) on-kinetics. PMID:11773328

  13. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase.

    PubMed

    Rius, Sebastián P; Casati, Paula; Iglesias, Alberto A; Gomez-Casati, Diego F

    2008-11-01

    Phosphorylating glyceraldehyde-3-P dehydrogenase (GAPC-1) is a highly conserved cytosolic enzyme that catalyzes the conversion of glyceraldehyde-3-P to 1,3-bis-phosphoglycerate; besides its participation in glycolysis, it is thought to be involved in additional cellular functions. To reach an integrative view on the many roles played by this enzyme, we characterized a homozygous gapc-1 null mutant and an as-GAPC1 line of Arabidopsis (Arabidopsis thaliana). Both mutant plant lines show a delay in growth, morphological alterations in siliques, and low seed number. Embryo development was altered, showing abortions and empty embryonic sacs in basal and apical siliques, respectively. The gapc-1 line shows a decrease in ATP levels and reduced respiratory rate. Furthermore, both lines exhibit a decrease in the expression and activity of aconitase and succinate dehydrogenase and reduced levels of pyruvate and several Krebs cycle intermediates, as well as increased reactive oxygen species levels. Transcriptome analysis of the gapc-1 mutants unveils a differential accumulation of transcripts encoding for enzymes involved in carbon partitioning. According to these studies, some enzymes involved in carbon flux decreased (phosphoenolpyruvate carboxylase, NAD-malic enzyme, glucose-6-P dehydrogenase) or increased (NAD-malate dehydrogenase) their activities compared to the wild-type line. Taken together, our data indicate that a deficiency in the cytosolic GAPC activity results in modifications of carbon flux and mitochondrial dysfunction, leading to an alteration of plant and embryo development with decreased number of seeds, indicating that GAPC-1 is essential for normal fertility in Arabidopsis plants. PMID:18820081

  14. Acquired multiple acyl-CoA dehydrogenase deficiency and marked selenium deficiency causing severe rhabdomyolysis in a horse

    PubMed Central

    Gomez, Diego E.; Valberg, Stephanie J.; Magdesian, K. Gary; Hanna, Paul E.; Lofstedt, Jeanne

    2015-01-01

    This report describes a case of severe rhabdomyolysis in a pregnant mare associated with histopathologic and biochemical features of both selenium deficiency and acquired multiple acyl-CoA dehydrogenase deficiency (MADD) due to seasonal pasture myopathy (SPM). This case highlights the importance of assessing plasma selenium levels in horses with clinical signs of pasture myopathy as this deficiency may be a contributing or exacerbating factor. PMID:26538673

  15. Elucidation of the Interaction Loci of the Human Pyruvate Dehydrogenase Complex E2·E3BP Core with Pyruvate Dehydrogenase Kinase 1 and Kinase 2 by H/D Exchange Mass Spectrometry and Nuclear Magnetic Resonance

    PubMed Central

    2015-01-01

    The human pyruvate dehydrogenase complex (PDC) comprises three principal catalytic components for its mission: E1, E2, and E3. The core of the complex is a strong subcomplex between E2 and an E3-binding protein (E3BP). The PDC is subject to regulation at E1 by serine phosphorylation by four kinases (PDK1–4), an inactivation reversed by the action of two phosphatases (PDP1 and -2). We report H/D exchange mass spectrometric (HDX-MS) and nuclear magnetic resonance (NMR) studies in the first attempt to define the interaction loci between PDK1 and PDK2 with the intact E2·E3BP core and their C-terminally truncated proteins. While the three lipoyl domains (L1 and L2 on E2 and L3 on E3BP) lend themselves to NMR studies and determination of interaction maps with PDK1 and PDK2 at the individual residue level, HDX-MS allowed studies of interaction loci on both partners in the complexes, PDKs, and other regions of the E2·E3BP core, as well, at the peptide level. HDX-MS suggested that the intact E2·E3BP core enhances the binding specificity of L2 for PDK2 over PDK1, while NMR studies detected lipoyl domain residues unique to interaction with PDK1 and PDK2. The E2·E3BP core induced more changes on PDKs than any C-terminally truncated protein, with clear evidence of greater plasticity of PDK1 than of PDK2. The effect of L1L2S paralleled HDX-MS results obtained with the intact E2·E3BP core; hence, L1L2S is an excellent candidate with which to define interaction loci with these two PDKs. Surprisingly, L3S′ induced moderate interaction with both PDKs according to both methods. PMID:25436986

  16. Riboflavin responsive mitochondrial myopathy is a new phenotype of dihydrolipoamide dehydrogenase deficiency. The chaperon-like effect of vitamin B2.

    PubMed

    Carrozzo, Rosalba; Torraco, Alessandra; Fiermonte, Giuseppe; Martinelli, Diego; Di Nottia, Michela; Rizza, Teresa; Vozza, Angelo; Verrigni, Daniela; Diodato, Daria; Parisi, Giovanni; Maiorana, Arianna; Rizzo, Cristiano; Pierri, Ciro Leonardo; Zucano, Stefania; Piemonte, Fiorella; Bertini, Enrico; Dionisi-Vici, Carlo

    2014-09-01

    Dihydrolipoamide dehydrogenase (DLD, E3) is a flavoprotein common to pyruvate, α-ketoglutarate and branched-chain α-keto acid dehydrogenases. We found two novel DLD mutations (p.I40Lfs*4; p.G461E) in a 19 year-old patient with lactic acidosis and a complex amino- and organic aciduria consistent with DLD deficiency, manifesting progressive exertional fatigue. Muscle biopsy showed mitochondrial proliferation and lack of DLD cross-reacting material. Riboflavin supplementation determined the complete resolution of exercise intolerance with the partial restoration of the DLD protein and disappearance of mitochondrial proliferation in the muscle. Morphological and functional studies support the riboflavin chaperon-like role in stabilizing DLD protein with rescue of its expression in the muscle. PMID:25251739

  17. An X-ray structural study of pyruvate dehydrogenase kinase: A eukaryotic serine kinase with a prokaryotic histidine-kinase fold

    NASA Astrophysics Data System (ADS)

    Steussy, Calvin Nicklaus, Jr.

    2001-07-01

    Pyruvate Dehydrogenase Kinase is an enzyme that controls the flow of glucose through the eukaryotic cell and contributes to the pathology of diabetes mellitus. Early work on this kinase demonstrated that it has an amino acid sequence much like bacterial histidine kinases, but an activity similar to that of modern serine/threonine kinases. This project utilized the techniques of X-ray crystallography to determine molecular structure of pyruvate dehydrogenase kinase, isozyme 2. The structure was phased using selenium substituted for sulfur in methionine residues, and data at multiple wavelengths was collected at the National Synchrotron Light Source, Brookhaven National Laboratories. PDK 2 was found to fold into a two-domain monomer that forms a dimer through two beta sheets in the C-terminal domain. The N-terminal domain is an alpha-helical bundle while the C-terminal domain is an alpha/beta sandwich. The fold of the C-terminal domain is very similar to that of the prokaryotic histidine kinases, indicating that they share a common ancestor. The catalytic mechanism, however, has evolved to use general base catalysis to activate the serine substrate, rather than the direct nucleophilic attack by the imidazole sidechain used in the prokaryotic kinases. Thus, the structure of the protein echoes its prokaryotic ancestor, while the chemical mechanism has adapted to a serine substrate. The electrostatic surface of PDK2 leads to the suggestion that the lipoyl domain of the pyruvate dehydrogenase kinase, an important associated structure, may bind in the cleft formed between the N- and C-terminal domains. In addition, a network of hydrogen bonds directly connects the nucleotide binding pocket to the dimer interface, suggesting that there may be some interaction between dimer formation and ATP binding or ADP release.

  18. Genetics Home Reference: short-chain acyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... Download PDF Open All Close All Description Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is a condition that prevents the body from converting certain fats into energy, especially during periods without food (fasting). Signs and symptoms of SCAD deficiency may ...

  19. G6PD Deficiency (Glucose-6-Phosphate Dehydrogenase) (For Parents)

    MedlinePlus

    ... are high-risk areas for the infectious disease malaria . Researchers have found evidence that the parasite that ... deficiency may have developed as a protection against malaria. continue G6PD Deficiency Symptom Triggers Kids with G6PD ...

  20. Glucose-6-phosphate dehydrogenase deficiency presented with convulsion: a rare case.

    PubMed

    Merdin, Alparslan; Avci, Fatma; Guzelay, Nihal

    2014-01-29

    Red blood cells carry oxygen in the body and Glucose-6-Phosphate Dehydrogenase protects these cells from oxidative chemicals. If there is a lack of Glucose-6-Phosphate Dehydrogenase, red blood cells can go acute hemolysis. Convulsion is a rare presentation for acute hemolysis due to Glucose-6-Phosphate Dehydrogenase deficiency. Herein, we report a case report of a Glucose-6-Phosphate Dehydrogenase deficiency diagnosed patient after presentation with convulsion. A 70 year-old woman patient had been hospitalized because of convulsion and fatigue. She has not had similar symptoms before. She had ingested fava beans in the last two days. Her hypophyseal and brain magnetic resonance imaging were normal. Blood transfusion was performed and the patient recovered. PMID:24711919

  1. Inflammation increases pyruvate dehydrogenase kinase 4 (PDK4) expression via the Jun N-Terminal Kinase (JNK) pathway in C2C12 cells.

    PubMed

    Park, Hana; Jeoung, Nam Ho

    2016-01-22

    Chronic inflammation augments the deleterious effects of several diseases, particularly diabetes, cancer, and sepsis. It is also involved in the process of metabolic shift from glucose oxidation to lactate production. Although several studies suggest that the change in activity of the pyruvate dehydrogenase complex (PDC) is a major factor causing this metabolic change, the exact mechanism of the inflammatory state remains unclear. In this study, we investigated the effect of lipopolysaccharide (LPS) on the expression of pyruvate dehydrogenase kinase 4 (PDK4), which is strongly associated with inactivation of the PDC in C2C12 myoblasts. In C2C12 myoblasts, LPS exposure led to increased PDK4 mRNA and protein expression levels as well as lactate production in culture medium. However, the expression levels of other PDK isoenzymes (PDK1 - 3) remained unchanged. Additionally, we observed that LPS treatment induced phosphorylation of Jun N-Terminal Kinases (JNK). To confirm the role of JNK, we inhibited the JNK pathway and observed that PDK4 expression and lactate production were decreased, but p38 and ERK were not significantly changed. Taken together, our results suggest that LPS induces PDK4 expression and alters glucose metabolism via the JNK pathway. PMID:26740179

  2. Genetic improvement of Escherichia coli for ethanol production: Chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II

    SciTech Connect

    Ohta, Kazuyoshi; Beall, D.S.; Mejia, J.P.; Shanmugam, K.T.; Ingram, L.O. )

    1991-04-01

    Zymomonas mobilis genes for pyruvate decarboxylase (pdc) and alcohol dehydrogenase II (adhB) were integrated into the Escherichia coli chromosome within or near the pyruvate formate-lyase gene (pfl). Integration improved the stability of the Z. mobilis genes in E. coli, but further selection was required to increase expression. Spontaneous mutants were selected for resistance to high levels of chloramphenicol that also expressed high levels of the Z. mobilis genes. Analogous mutants were selected for increased expression of alcohol dehydrogenase on aldehyde indicator plates. These mutants were functionally equivalent to the previous plasmid-based strains for the fermentation of xylose and glucose to ethanol. Ethanol concentrations of 54.4 and 41.6 g/liter were obtained from 10% glucose and 8% xylose, respectively. The efficiency of conversion exceeded theoretical limits (0.51 g of ethanol/g of sugar) on the basis of added sugars because of the additional production of ethanol from the catabolism of complex nutrients. Further mutations were introduced to inactivate succinate production (frd) and to block homologous recombination (recA).

  3. Acetate Utilization in Lactococcus lactis Deficient in Lactate Dehydrogenase: a Rescue Pathway for Maintaining Redox Balance

    PubMed Central

    Hols, Pascal; Ramos, Ana; Hugenholtz, Jeroen; Delcour, Jean; de Vos, Willem M.; Santos, Helena; Kleerebezem, Michiel

    1999-01-01

    Acetate was shown to improve glucose fermentation in Lactococcus lactis deficient in lactate dehydrogenase. 13C and 1H nuclear magnetic resonance studies using [2-13C]glucose and [2-13C]acetate as substrates demonstrated that acetate was exclusively converted to ethanol. This novel pathway provides an alternative route for NAD+ regeneration in the absence of lactate dehydrogenase. PMID:10464231

  4. Relative red blood cell enzyme levels as a clue to the diagnosis of pyruvate kinase deficiency.

    PubMed

    Titapiwatanakun, Ruetima; Hoyer, James D; Crain, Karen; Arndt, Carola A S

    2008-12-01

    Evaluation of two patients with transfusion dependent anemia revealed RBC pyruvate kinase to be 33% and 41% of the mean normal value, with normal or high values of other RBC enzymes. Parental PK activities were just below normal in three of four of the parents. Subsequent DNA analysis revealed both patients to be compound heterozygotes for PKLR gene mutations, two of which are previously undescribed. Borderline low pyruvate kinase activities with increased in other RBC enzyme activities should prompt consideration of measurement of parental enzyme activities, and confirmation by DNA analysis if available. PMID:18726918

  5. Genetics Home Reference: 3-hydroxyacyl-CoA dehydrogenase deficiency

    MedlinePlus

    ... step that metabolizes groups of fats called medium-chain fatty acids and short-chain fatty acids. Mutations in the HADH gene lead ... a shortage of 3-hydroxyacyl-CoA dehydrogenase. Medium-chain and short-chain fatty acids cannot be metabolized ...

  6. Genetics Home Reference: isobutyryl-CoA dehydrogenase deficiency

    MedlinePlus

    ... from food are broken down into parts called amino acids . Amino acids can be further processed to provide energy for ... an enzyme that helps break down a particular amino acid called valine. Most people with IBD deficiency are ...

  7. The lactate dehydrogenase--reduced nicotinamide--adenine dinucleotide--pyruvate complex. Kinetics of pyruvate binding and quenching of coeznyme fluorescence.

    PubMed

    Südi, J

    1974-04-01

    The stopped-flow kinetic studies described in this and the following paper (Südi, 1974) demonstrate that a Haldane-type description of the reversible lactate dehydrogenase reaction presents an experimentally feasible task. Combined results of these two papers yield numerical values for the six rate constants defined by the following equilibrium scheme, where E represents lactate dehydrogenase: [Formula: see text] The experiments were carried out at pH8.4 at a relatively low temperature (6.3 degrees C) with the pig heart enzyme. Identification of the above two intermediates and determination of the corresponding rate constants actually involve four series of independent observations in these studies, since (a) the reaction can be followed in both directions, and (b) both the u.v. absorption and the fluorescence of the coenzymes are altered in the reaction, and it is shown that these two spectral changes do not occur simultaneously. Kinetic observations made in the reverse direction are reported in this paper. It is demonstrated that the fluorescence of NADH can no longer be observed in the ternary complex E(NADH) (Pyr). Even though the oxidation-reduction reaction rapidly follows the formation of this complex, the numerical values of k(-4) (8.33x10(5)m(-1).s(-1)) and k(+4) (222s(-1)) are easily obtained from a directly observed second-order reaction step in which fluorescent but not u.v.-absorbing material is disappearing. U.v.-absorption measurements do not clearly resolve the subsequent oxidation-reduction step from the dissociation of lactate. It is shown that this must be due partly to the instrumental dead time, and partly to a low transient concentration of E(NAD+) (Lac) in the two-step sequential reaction in which the detectable disappearance of u.v.-absorbing material takes place. It is estimated that about one-tenth of the total change in u.v. absorption is due to a ;burst reaction' in which E(NAD+) (Lac) is produced, and this estimation yields, from k

  8. Methylmalonic semialdehyde dehydrogenase deficiency: demonstration of defective valine and beta-alanine metabolism and reduced malonic semialdehyde dehydrogenase activity in cultured fibroblasts

    SciTech Connect

    Gray, R.G.; Pollitt, R.J.; Webley, J.

    1987-08-01

    Intact cultured fibroblasts from a child with a new metabolic disorder, thought to be due to a deficiency of methylmalonic semialdehyde dehydrogenase, produced labeled CO/sub 2/ normally from (1-/sup 14/C)valine but not from (2-/sup 14/C)valine. CO/sub 2/ production from labeled beta-alanine was also much reduced, confirming the suspicion that malonic semialdehyde dehydrogenase is also deficient in this condition. An assay for malonic semialdehyde dehydrogenase in cell homogenates showed low activity but it was impossible to assess the degree of reduction.

  9. Metabolomic analysis reveals hepatic metabolite perturbations in citrin/mitochondrial glycerol-3-phosphate dehydrogenase double-knockout mice, a model of human citrin deficiency.

    PubMed

    Saheki, Takeyori; Inoue, Kanako; Ono, Hiromi; Tushima, Anmi; Katsura, Natsumi; Yokogawa, Mana; Yoshidumi, Yukari; Kuhara, Tomiko; Ohse, Morimasa; Eto, Kazuhiro; Kadowaki, Takashi; Sinasac, David S; Kobayashi, Keiko

    2011-12-01

    The citrin/mitochondrial glycerol-3-phosphate dehydrogenase (mGPD) double-knockout mouse displays phenotypic attributes of both neonatal intrahepatic cholestasis and adult-onset type II citrullinemia, making it a suitable model of human citrin deficiency. In the present study, we investigated metabolic disturbances in the livers of wild-type, citrin (Ctrn) knockout, mGPD knockout, and Ctrn/mGPD double-knockout mice following oral sucrose versus saline administration using metabolomic approaches. By using gas chromatography/mass spectrometry and capillary electrophoresis/mass spectrometry, we found three general groupings of metabolite changes in the livers of the double-knockout mice following sucrose administration that were subsequently confirmed using liquid chromatography/mass spectrometry or enzymatic methods: a marked increase of hepatic glycerol 3-phosphate, a generalized decrease of hepatic tricarboxylic acid cycle intermediates, and alterations of hepatic amino acid levels related to the urea cycle or lysine catabolism including marked increases in citrulline and lysine. Furthermore, concurrent oral administration of sodium pyruvate with sucrose ameliorated the hyperammonemia induced by sucrose, as had been shown previously, as well as almost completely normalizing the hepatic metabolite perturbations found. Overall, we have identified additional metabolic disturbances in double-KO mice following oral sucrose administration, and provided further evidence for the therapeutic use of sodium pyruvate in our mouse model of citrin deficiency. PMID:21908222

  10. Relation between Neonatal Icter and Gilbert Syndrome in Gloucose-6-Phosphate Dehydrogenase Deficient Subjects

    PubMed Central

    Zahedpasha, Yadollah; Ahmadpour, Mousa; Niaki, Haleh Akhavan; Alaee, Ehsan

    2014-01-01

    Background and Aim: The pathogenesis of neonatal hyperbilirubinemia hasn’t been completely defined in Gloucose-6-Phosphate Dehydrogenase (G6PD) deficient newborns. The aim of this study was to detect the relationship between Gilbert’s syndrome and hyperbilirubinemia in Gloucose-6-Phosphate Dehydrogenase (G6PD) deficient neonates. Materials and Methods: This case-control study was conducted in Amirkola pediatrics teaching hospital, Babol, Iran. A total number of one hundred four infants were included in the study (51 infants with neonatal jaundice and Gloucose-6-Phosphate Dehydrogenase (G6PD) deficiency admitted to phototherapy or transfusion were selected as the case group and 53 infants with Gloucose-6-Phosphate Dehydrogenase (G6PD) deficiency admitted for other reasons than jaundice were selected as the control group). Exclusion criteria were ABO or Rh incompatibility or other reasons that made Coombs test positive, sepsis, hepatosplenomegaly, metabolic diseases, medical treatment and phototherapy. The promoter and coding regions of Uridine diphosphate Glucuronosyl Transferase 1A1 (UGT1A1) of genomic DNA were amplified by polymerase chain reaction (PCR) isolated from leukocytes. We used chi-square test and t-test to compare cases and controls. Results: Distribution of Gilbert genome was not significantly different between the two groups; among cases, 33.3% were homozygote, 35.3% heterozygote, and 31.4% normal. Among controls, 22.6% were homozygote, 34% heterozygote, and 43.4% normal (p-value=xxx). Hyperbilirubinemia family history didn’t differ significantly between these two groups. Conclusions: We showed that in Gloucose-6-Phosphate Dehydrogenase (G6PD) deficient neonates, there was no significant association between Gilbert’s syndrome (promoter polymorphism) and hyperbilirubinemia. PMID:24783083

  11. Identification of a novel operon in Lactococcus lactis encoding three enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase, and lactate dehydrogenase.

    PubMed Central

    Llanos, R M; Harris, C J; Hillier, A J; Davidson, B E

    1993-01-01

    The discovery of a novel multicistronic operon that encodes phosphofructokinase, pyruvate kinase, and lactate dehydrogenase in the lactic acid bacterium Lactococcus lactis is reported. The three genes in the operon, designated pfk, pyk, and ldh, contain 340, 502, and 325 codons, respectively. The intergenic distances are 87 bp between pfk and pyk and 117 bp between pyk and ldh. Plasmids containing pfk and pyk conferred phosphofructokinase and pyruvate kinase activity, respectively, on their host. The identity of ldh was established previously by the same approach (R. M. Llanos, A. J. Hillier, and B. E. Davidson, J. Bacteriol. 174:6956-6964, 1992). Each of the genes is preceded by a potential ribosome binding site. The operon is expressed in a 4.1-kb transcript. The 5' end of the transcript was determined to be a G nucleotide positioned 81 bp upstream from the pfk start codon. The pattern of codon usage within the operon is highly biased, with 11 unused amino acid codons. This degree of bias suggests that the operon is highly expressed. The three proteins encoded on the operon are key enzymes in the Embden-Meyerhoff pathway, the central pathway of energy production and lactic acid synthesis in L. lactis. For this reason, we have called the operon the las (lactic acid synthesis) operon. Images PMID:8478320

  12. Age-related responses of right ventricle in swim-trained rats: changes in lactate and pyruvate contents and lactate dehydrogenase activity.

    PubMed

    Anitha, V; Asha Devi, S

    1996-09-18

    Age related changes in carbohydrate substrates such as, glucose, glycogen, pyruvic acid and lactic acid and the activity of lactate dehydrogenase (LDH) and LDH isoenzyme profile were evaluated in the right ventricle (RV) of swim-trained rats of 6- (adult), 12- (middle-aged) and 18- (old) months-of-age. Moderate hypertrophy was seen in the heart and RV in response to training in all age groups with the 12 months exhibiting a significant increase. While resting levels of pyruvate and glucose in the RV showed small elevations in adult and middle-aged rats, lactic acid showed reductions in all ages. Glycogen supercompensation was seen in the RV of trained animals. These age-related alterations in RV were associated with decreases in blood lactic acid and glucose in the trained rats belonging to all ages. Total protein of the RV decreased with age and exercise increased the content. Total LDH and M4-LDH activities decreased with age. However, training increased their activities in all ages. These changes in the RV suggests that swimming activity produces adaptations (e.g. increased LDH and M4) in all age groups. Considering the degree of adaptations, it can be suggested that adult and middle-aged are suitable for initiating swim-training programs, but not in old age. PMID:8869911

  13. [Succinate dehydrogenase-deficient tumors--a novel mechanism of tumor formation].

    PubMed

    Miettinen, Markku

    2015-01-01

    Succinate dehydrogenase (SDH) is a heterotetrameric enzyme complex participating in the Krebs cycle and electron transfer of oxidative phosphorylation. These tumors, discovered during the past 15 years, often occur in young patients and include 15% of paragangliomas, 7% of gastric gastrointestinal stromal tumors (GISTs), and <1% of renal cell carcinomas and pituitary adenomas. SDH-deficient tumors have lost SDH complex activity via bi-allelic genomic losses or epigenetic silencing. This deficiency is oncogenic, activating pseudohypoxia signaling. SDH deficiency has to be suspected in the above-cited tumor types presenting at a young age. Immunohistochemical testing of tumor tissue for SDHB loss is diagnostic. PMID:26749909

  14. Ischaemic Priapism and Glucose-6-Phosphate Dehydrogenase Deficiency: A Mechanism of Increased Oxidative Stress?

    PubMed Central

    Morrison, BF; Thompson, EB; Shah, SD; Wharfe, GH

    2014-01-01

    ABSTRACT Ischaemic priapism is a devastating urological condition that has the potential to cause permanent erectile dysfunction. The disorder has been associated with numerous medical conditions and the use of pharmacotherapeutic agents. The aetiology is idiopathic in a number of cases. There are two prior case reports of the association of ischaemic priapism and glucose-6-phosphate dehydrogenase (G6PD) deficiency. We report on a third case of priapism associated with G6PD deficiency and review recently described molecular mechanisms of increased oxidative stress in the pathophysiology of ischaemic priapism. The case report of a 32-year old Afro-Caribbean male with his first episode of major ischaemic priapism is described. Screening for common causes of ischaemic priapism, including sickle cell disease was negative. Glucose-6-phosphate dehydrogenase deficiency was discovered on evaluation for priapism. Penile aspiration was performed and erectile function was good post treatment. Glucose-6-phosphate dehydrogenase deficiency is a cause for ischaemic priapism and should be a part of the screening process in idiopathic causes of the disorder. Increased oxidative stress occurs in G6PD deficiency and may lead to priapism. PMID:25803385

  15. Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome.

    PubMed

    Dudek, Jan; Cheng, I-Fen; Chowdhury, Arpita; Wozny, Katharina; Balleininger, Martina; Reinhold, Robert; Grunau, Silke; Callegari, Sylvie; Toischer, Karl; Wanders, Ronald Ja; Hasenfuß, Gerd; Brügger, Britta; Guan, Kaomei; Rehling, Peter

    2015-01-01

    Barth syndrome (BTHS) is a cardiomyopathy caused by the loss of tafazzin, a mitochondrial acyltransferase involved in the maturation of the glycerophospholipid cardiolipin. It has remained enigmatic as to why a systemic loss of cardiolipin leads to cardiomyopathy. Using a genetic ablation of tafazzin function in the BTHS mouse model, we identified severe structural changes in respiratory chain supercomplexes at a pre-onset stage of the disease. This reorganization of supercomplexes was specific to cardiac tissue and could be recapitulated in cardiomyocytes derived from BTHS patients. Moreover, our analyses demonstrate a cardiac-specific loss of succinate dehydrogenase (SDH), an enzyme linking the respiratory chain with the tricarboxylic acid cycle. As a similar defect of SDH is apparent in patient cell-derived cardiomyocytes, we conclude that these defects represent a molecular basis for the cardiac pathology in Barth syndrome. PMID:26697888

  16. Strategies for Correcting Very Long Chain Acyl-CoA Dehydrogenase Deficiency*

    PubMed Central

    Tenopoulou, Margarita; Chen, Jie; Bastin, Jean; Bennett, Michael J.; Ischiropoulos, Harry; Doulias, Paschalis-Thomas

    2015-01-01

    Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237. Cysteine 237 S-nitrosylation was associated with an 8–17-fold increase in VLCAD-specific activity and concomitant correction of acylcarnitine profile and β-oxidation capacity, two hallmarks of the disorder. Overall, this study provides biochemical evidence for a potential therapeutic modality to correct β-oxidation deficiencies. PMID:25737446

  17. Prolonged QTc interval in association with medium-chain acyl-coenzyme A dehydrogenase deficiency.

    PubMed

    Wiles, Jason R; Leslie, Nancy; Knilans, Timothy K; Akinbi, Henry

    2014-06-01

    Medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency is the most common disorder of mitochondrial fatty acid oxidation. We report a term male infant who presented at 3 days of age with hypoglycemia, compensated metabolic acidosis, hypocalcemia, and prolonged QTc interval. Pregnancy was complicated by maternal premature atrial contractions and premature ventricular contractions. Prolongation of the QTc interval resolved after correction of metabolic derangements. The newborn screen was suggestive for MCAD deficiency, a diagnosis that was confirmed on genetic analysis that showed homozygosity for the disease-associated missense A985G mutation in the ACADM gene. This is the first report of acquired prolonged QTc in a neonate with MCAD deficiency, and it suggests that MCAD deficiency should be considered in the differential diagnoses of acute neonatal illnesses associated with electrocardiographic abnormality. We review the clinical presentation and diagnosis of MCAD deficiency in neonates. PMID:24799540

  18. Glucose-6-Phosphate Dehydrogenase Deficiency among Male Blood Donors in Sana’a City, Yemen

    PubMed Central

    Al-Nood, Hafiz A.; Bazara, Fakiha A.; Al-Absi, Rashad; Habori, Molham AL

    2012-01-01

    Objectives To determine the prevalence of Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency among Yemeni people from different regions of the country living in the capital city, Sana’a, giving an indication of its overall prevalence in Yemen. Methods A cross-sectional study was conducted among Yemeni male blood donors attending the Department of Blood Bank at the National Centre of the Public Health Laboratories in the capital city, Sana’a, Yemen. Fluorescent spot method was used for screening, spectrophotometeric estimation of G-6-PD activity and separation by electrophoresis was done to determine the G-6-PD phenotype. Results Of the total 508 male blood donors recruited into the study, 36 were G-6-PD deficient, giving a likely G-6-PD deficiency prevalence of 7.1%. None of these deficient donors had history of anemia or jaundice. Thirty-five of these deficient cases (97.2%) showed severe G-6-PD deficiency class II (<10% of normal activity), and their phenotyping presumptively revealed a G-6-PD-Mediterranean variant. Conclusion The results showed a significant presence of G-6-PD deficiency with predominance of a severe G-6-PD deficiency type in these blood donors in Sana’a City, which could represent an important health problem through occurrence of hemolytic anemia under oxidative stress. A larger sample size is needed to determine the overall prevalence of G-6-PD deficiency, and should be extended to include DNA analysis to identify its variants in Yemen. PMID:22359725

  19. Pyruvate kinase blood test

    MedlinePlus

    ... break down faster than normal, a condition called hemolytic anemia . This test helps diagnose pyruvate kinase deficiency (PKD) . ... Pa: Elsevier Saunders; 2011:chap 32. Gallagher PG. Hemolytic anemias: red cell membrane and metabolic defects In: Goldman ...

  20. Stenotrophomonas Infection in a Patient with Glucose-6-Phosphate Dehydrogenase Deficiency

    PubMed Central

    Harthan, Aaron A.; Heger, Margaret L

    2013-01-01

    The drug of choice for treatment of Stenotrophomonas maltophilia is sulfamethoxazole/trimethoprim, and second-line therapy usually consists of a fluoroquinolone. However, in patients with glucose-6-phosphate dehydrogenase deficiency, neither sulfamethoxazole/trimethoprim nor a fluoroquinolone is a preferred option as it may result in hemolysis. Currently, there is a paucity of data regarding treatment of S maltophilia infection in these patients. This case report presents a patient who was successfully treated with doxycycline and inhaled colistimethate. PMID:23798908

  1. Is glucose-6-phosphate dehydrogenase deficiency more prevalent in Carrion's disease endemic areas in Latin America?

    PubMed

    Mazulis, Fernando; Weilg, Claudia; Alva-Urcia, Carlos; Pons, Maria J; Del Valle Mendoza, Juana

    2015-12-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a cytoplasmic enzyme with an important function in cell oxidative damage prevention. Erythrocytes have a predisposition towards oxidized environments due to their lack of mitochondria, giving G6PD a major role in its stability. G6PD deficiency (G6PDd) is the most common enzyme deficiency in humans; it affects approximately 400 million individuals worldwide. The overall G6PDd allele frequency across malaria endemic countries is estimated to be 8%, corresponding to approximately 220 million males and 133 million females. However, there are no reports on the prevalence of G6PDd in Andean communities where bartonellosis is prevalent. PMID:26706684

  2. Glucose-6-Phosphate Dehydrogenase Deficiency and the Need for a Novel Treatment to Prevent Kernicterus.

    PubMed

    Cunningham, Anna D; Hwang, Sunhee; Mochly-Rosen, Daria

    2016-06-01

    Hyperbilirubinemia occurs frequently in newborns, and in severe cases can progress to kernicterus and permanent developmental disorders. Glucose-6-phosphate dehydrogenase (G6PD) deficiency, one of the most common human enzymopathies, is a major risk factor for hyperbilirubinemia and greatly increases the risk of kernicterus even in the developed world. Therefore, a novel treatment for kernicterus is needed, especially for G6PD-deficient newborns. Oxidative stress is a hallmark of bilirubin toxicity in the brain. We propose that the activation of G6PD via a small molecule chaperone is a potential strategy to increase endogenous defense against bilirubin-induced oxidative stress and prevent kernicterus. PMID:27235212

  3. 3-Phosphoglycerate dehydrogenase deficiency: description of two new cases in Tunisia and review of the literature.

    PubMed

    Kraoua, Ichraf; Wiame, Elsa; Kraoua, Lilia; Nasrallah, Fehmi; Benrhouma, Hanen; Rouissi, Aida; Turki, Ilhem; Chaabouni, Habiba; Briand, Gilbert; Kaabachi, Naziha; Van Schaftingen, Emile; Gouider-Khouja, Neziha

    2013-10-01

    3-Phosphoglycerate dehydrogenase (3-PGDH) deficiency is a rare autosomal recessive disorder of serine biosynthesis. It is typically characterized by congenital microcephaly, intractable seizures of infantile onset, and severe psychomotor retardation. Diagnosis is suspected on decreased l-serine levels in plasma and cerebrospinal fluid (CSF) and confirmed by genetic study. Early diagnosis in index cases allows supplementation in serine and prevention of fixed lesions. Prenatal diagnosis and genetic counseling allows prevention of secondary cases. We report on the two first unrelated Tunisian families with 3-PGDH deficiency confirmed by biochemical and genetic study. We discuss clinical, biochemical, imaging, electroencephalographic, and therapeutic aspects and review the literature. PMID:23564319

  4. 3-phosphoglycerate dehydrogenase deficiency: a case report of a treatable cause of seizures.

    PubMed

    Coşkun, Turgay; Aydin, Halil Ibrahim; Kiliç, Mustafa; Dursun, Ali; Haliloğlu, Göknur; Topaloğlu, Haluk; Karli-Oğuz, Kader; de Koning, Tom J

    2009-01-01

    Serine deficiency disorders are a new group of neurometabolic diseases resulting from a deficiency in one of the three enzymes in the biosynthetic pathway of L-serine. Deficiency of the enzyme 3-phosphoglycerate dehydrogenase (3-PGDH), which catalyzes the first step in the biosynthetic pathway, leads to congenital microcephaly, severe psychomotor retardation, and intractable seizures. We report a 4 1/2-year-old boy who presented with congenital microcephaly, psychomotor retardation, hypertonia, strabismus, and drug-resistant seizures due to 3-PGDH deficiency. His seizures responded to L-serine and glycine supplementation only. This potentially treatable disease should be borne in mind in patients with congenital microcephaly, psychomotor retardation and seizures. A timely diagnosis based on the detection of low cerebrospinal fluid levels of L-serine and glycine is expected to further increase the success of L-serine and glycine supplementation in these patients. PMID:20196394

  5. The suitability of saliva for detection of glucose-6-phosphate dehydrogenase deficiency.

    PubMed

    Beamont, A H; Miguel, A; Goos, C M; Vermeesch-Markslag, A M; Hermans, A; Vermorken, A J

    1988-01-01

    Saliva was investigated for its suitability as a biopsy tissue for the determination of glucose-6-phosphate dehydrogenase deficiency. It appears that there is a significant difference between the activity of the enzyme in patients and controls. However, some controls have very low values making discrimination between patients and controls using a qualitative method impossible. Glucose-6-phosphate dehydrogenase deficiency is a relevant clinical problem in many rural areas in developing countries. Existing methods for determination of the deficiency in blood and hair follicles do not meet the criteria necessary for their large scale introduction in the areas of the world that are concerned by the problem. The present study shows that saliva is not a suitable alternative. Between the three biopsy tissues compared: blood, hair follicles and saliva, hair follicles remain most attractive since their isolation hardly involves the risk of infection. A simplified method for the detection of glucose-6-phosphate dehydrogenase activity in hair follicles that would allow health service workers in the field to determine the carrier status of pregnant women might form the basis for a future kernicterus prevention programme. PMID:3221843

  6. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of L-lysine, L-valine, and 2-ketoisovalerate.

    PubMed

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J; Blombach, Bastian

    2013-09-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 Δpqo Δppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products. PMID:23835179

  7. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone.

    PubMed Central

    Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C

    2003-01-01

    Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or

  8. A Cluster of Four Homologous Small RNAs Modulates C1 Metabolism and the Pyruvate Dehydrogenase Complex in Rhodobacter sphaeroides under Various Stress Conditions

    PubMed Central

    Billenkamp, Fabian; Peng, Tao; Berghoff, Bork A.

    2015-01-01

    ABSTRACT In bacteria, regulatory RNAs play an important role in the regulation and balancing of many cellular processes and stress responses. Among these regulatory RNAs, trans-encoded small RNAs (sRNAs) are of particular interest since one sRNA can lead to the regulation of multiple target mRNAs. In the purple bacterium Rhodobacter sphaeroides, several sRNAs are induced by oxidative stress. In this study, we focused on the functional characterization of four homologous sRNAs that are cotranscribed with the gene for the conserved hypothetical protein RSP_6037, a genetic arrangement described for only a few sRNAs until now. Each of the four sRNAs is characterized by two stem-loops that carry CCUCCUCCC motifs in their loops. They are induced under oxidative stress, as well as by various other stress conditions, and were therefore renamed here sRNAs CcsR1 to CcsR4 (CcsR1–4) for conserved CCUCCUCCC motif stress-induced RNAs 1 to 4. Increased CcsR1–4 expression decreases the expression of genes involved in C1 metabolism or encoding components of the pyruvate dehydrogenase complex either directly by binding to their target mRNAs or indirectly. One of the CcsR1–4 target mRNAs encodes the transcriptional regulator FlhR, an activator of glutathione-dependent methanol/formaldehyde metabolism. Downregulation of this glutathione-dependent pathway increases the pool of glutathione, which helps to counteract oxidative stress. The FlhR-dependent downregulation of the pyruvate dehydrogenase complex reduces a primary target of reactive oxygen species and reduces aerobic electron transport, a main source of reactive oxygen species. Our findings reveal a previously unknown strategy used by bacteria to counteract oxidative stress. IMPORTANCE Phototrophic organisms have to cope with photo-oxidative stress due to the function of chlorophylls as photosensitizers for the formation of singlet oxygen. Our study assigns an important role in photo-oxidative stress resistance to a

  9. Glucose-6-Phosphate Dehydrogenase-Deficiency in Transfusion Medicine: The Unknown Risks

    PubMed Central

    Francis, Richard O.; Jhang, Jeffrey S.; Pham, Huy P.; Hod, Eldad A.; Zimring, James C.; Spitalnik, Steven L.

    2013-01-01

    The hallmark of glucose-6-phosphate dehydrogenase (G6PD) deficiency is red blood cell (RBC) destruction in response to oxidative stress. Patients requiring RBC transfusions may simultaneously receive oxidative medications or have concurrent infections, both of which can induce hemolysis in G6PD-deficient RBCs. Although it is not routine practice to screen healthy blood donors for G6PD deficiency, case reports identified transfusion of G6PD-deficient RBCs as causing hemolysis and other adverse events. In addition, some patient populations may be more at risk for complications associated with transfusions of G6PD-deficient RBCs because they receive RBCs from donors who are more likely to have G6PD deficiency. This review discusses G6PD deficiency, its importance in transfusion medicine, changes in the RBC antioxidant system (of which G6PD is essential) during refrigerated storage, and mechanisms of hemolysis. In addition, as yet unanswered questions that could be addressed by translational and clinical studies are identified and discussed. PMID:23815264

  10. Review of succinate dehydrogenase-deficient renal cell carcinoma with focus on clinical and pathobiological aspects.

    PubMed

    Kuroda, N; Yorita, K; Nagasaki, M; Harada, Y; Ohe, C; Jeruc, J; Raspollini, M R; Michal, M; Hes, O; Amin, M B

    2016-03-01

    Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) was first identified in 2004 and has been integrated into the 2016 WHO classification of RCC. Succinate dehydrogenase (SDH) is an enzyme complex composed of four protein subunits (SDHA, SDHB, SDHC and SDHD). The tumor which presents this enzyme mutation accounts for 0.05 to 0.2% of all renal carcinomas. Multiple tumors may occur in approximately 30% of affected patients. SDHB-deficient RCC is the most frequent, and the tumor histologically consists of cuboidal cells with eosinophilic cytoplasm, vacuolization, flocculent intracytoplasmic inclusion and indistinct cell borders. Ultrastructurally, the tumor contains abundant mitochondria. Immunohistochemically, tumor cells are positive for SDHA, but negative for SDHB in SDHB-, SDHC- and SDHD-deficient RCCs. However, SDHA-deficient RCC shows negativity for both SDHA and SDHB. In molecular genetic analyses, a germline mutation in the SDHB, SDHC or SDHD gene (in keeping with most patients having germline mutations in an SDH gene) has been identified in patients with or without a family history of renal tumors, paraganglioma/pheochromocytoma or gastrointestinal stromal tumor. While most tumors are low grade, some tumors may behave in an aggressive fashion, particularly if they are high nuclear grade, and have coagulative necrosis or sarcomatoid differentiation. PMID:27179267

  11. Glucose-6-phosphate dehydrogenase deficiency and Alzheimer's disease: Partners in crime? The hypothesis.

    PubMed

    Ulusu, N Nuray

    2015-08-01

    Alzheimer's disease is a multifaceted brain disorder which involves various coupled irreversible, progressive biochemical reactions that significantly reduce quality of life as well as the actual life expectancy. Aging, genetic predispositions, head trauma, diabetes, cardiovascular disease, deficiencies in insulin signaling, dysfunction of mitochondria-associated membranes, cerebrovascular changes, high cholesterol level, increased oxidative stress and free radical formation, DNA damage, disturbed energy metabolism, and synaptic dysfunction, high blood pressure, obesity, dietary habits, exercise, social engagement, and mental stress are noted among the risk factors of this disease. In this hypothesis review I would like to draw the attention on glucose-6-phosphate dehydrogenase deficiency and its relationship with Alzheimer's disease. This enzymopathy is the most common human congenital defect of metabolism and defined by decrease in NADPH+H(+) and reduced form of glutathione concentration and that might in turn, amplify oxidative stress due to essentiality of the enzyme. This most common enzymopathy may manifest itself in severe forms, however most of the individuals with this deficiency are not essentially symptomatic. To understand the sporadic Alzheimer's disease, the writer of this paper thinks that, looking into a crystal ball might not yield much of a benefit but glucose-6-phosphate dehydrogenase deficiency could effortlessly give some clues. PMID:26004559

  12. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo.

    PubMed

    Qvit, Nir; Disatnik, Marie-Hélène; Sho, Eiketsu; Mochly-Rosen, Daria

    2016-06-22

    Protein kinases regulate numerous cellular processes, including cell growth, metabolism, and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set out to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK's docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ∼50 nM and reducing cardiac injury IC50 of ∼5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 μM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors. PMID:27218445

  13. Development of a loop-mediated isothermal amplification targeting a gene within the pyruvate dehydrogenase complex, the pdhA gene, for rapid detection of Mycoplasma gallisepticum.

    PubMed

    Zhang, Fanqing; Bao, Shijun; Yu, Shengqing; Cheng, Jinghua; Tan, Lei; Qiu, Xvsheng; Song, Cuiping; Dai, Yabin; Fei, Rongmei; Ding, Chan

    2015-05-01

    Mycoplasma gallisepticum infections impose a significant economic burden on the poultry industry. In the current study, a loop-mediated isothermal amplification (LAMP) assay was developed and optimized to detect M. gallisepticum based on a gene within the pyruvate dehydrogenase complex, the pdhA gene, which codes for the major subunit (E1α) in the complex. The reaction conditions were optimized, and the specificity was confirmed by successful amplification of several M. gallisepticum strains, while no amplification was detected with 20 other major bacterial and viral pathogens of poultry. Additionally, the LAMP assay achieved 10-fold higher sensitivity than an existing polymerase chain reaction (PCR) method. The LAMP assay was applied to swab samples collected from poultry farms and compared with PCR. The positive detection rate was 20.2% (37/183) by LAMP and 13.1% (24/183) by PCR. The LAMP assay could provide a cost-effective, quick, and sensitive method for the detection of M. gallisepticum. PMID:26038479

  14. Glucose-6-Phosphate Dehydrogenase and Its Deficiency in Mutants of Corynebacterium glutamicum

    PubMed Central

    Ihnen, Ernel D.; Demain, Arnold L.

    1969-01-01

    Corynebacterium glutamicum is a member of a group of taxonomically related glutamate-excreting bacteria which utilize glucose both by the Embden-Meyerhof and the pentose phosphate pathways, the latter sequence accounting for 10 to 38% of the glucose metabolized. Some of the properties of glucose-6-phosphate dehydrogenase in crude extracts of C. glutamicum were studied. The enzyme was rapidly inactivated by dilution in tris (hydroxymethyl)aminomethane-hydrochloride buffer. This inactivation was prevented by the presence of 0.45 m NaCl. Mg++ was required for enzyme activity, but Mn++, Ca++, Sr++, and Ba++ were equally effective. Growth of the organism under differing conditions did not markedly affect the specific activity of the enzyme. A generally applicable method for detecting colonies deficient in glucose-6-phosphate dehydrogenase was developed. Mutants so obtained were found to be auxotrophic for tryptophan. Upon reversion of the tryptophan requirement, the revertants still retained the property of glucose-6-phosphate dehydrogenase deficiency. Neither the mutants nor the revertants could grow as rapidly as the parent culture in glucose, in gluconate, or in a complex medium. PMID:5788701

  15. Differentiating inflamed and normal lungs by the apparent reaction rate constants of lactate dehydrogenase probed by hyperpolarized 13C labeled pyruvate

    PubMed Central

    Xu, He N.; Kadlececk, Stephen; Shaghaghi, Hoora; Zhao, Huaqing; Profka, Harilla; Pourfathi, Mehrdad; Rizi, Rahim

    2016-01-01

    Background Clinically translatable hyperpolarized (HP) 13C-NMR can probe in vivo enzymatic reactions, e.g., lactate dehydrogenase (LDH)-catalyzed reaction by injecting HP 13C-pyruvate into the subject, which is converted to 13C labeled lactate by the enzyme. Parameters such as 13C-lactate signals and lactate-to-pyruvate signal ratio are commonly used for analyzing the HP 13C-NMR data. However, the biochemical/biological meaning of these parameters remains either unclear or dependent on experimental settings. It is preferable to quantify the reaction rate constants with a clearer physical meaning. Here we report the extraction of the kinetic parameters of the LDH reaction from HP 13C-NMR data and investigate if they can be potential predictors of lung inflammation. Methods Male Sprague-Dawley rats (12 controls, 14 treated) were used. One dose of bleomycin (2.5 U/kg) was administered intratracheally to the treatment group. The lungs were removed, perfused, and observed by the HP-NMR technique, where a HyperSense dynamic nuclear polarization system was used to generate the HP 13C-pyruvate for injecting into the lungs. A 20 mm 1H/13C dual-tuned coil in a 9.4-T Varian vertical bore NMR spectrometer was employed to acquire the 13C spectral data every 1 s over a time period of 300 s using a non-selective, 15-degree radiofrequency pulse. The apparent rate constants of the LDH reaction and their ratio were quantified by applying ratiometric fitting analysis to the time series data of 13C labeled pyruvate and lactate. Results The apparent forward rate constant kp=(3.67±3.31)×10−4 s−1, reverse rate constant kl=(4.95±2.90)×10−2 s−1, rate constant ratio kp/kl=(7.53±5.75)×10−3 for the control lungs; kp=(11.71±4.35)×10−4 s−1, kl=(9.89±3.89)×10−2 s−1, and kp/kl=(12.39±4.18)×10−3 for the inflamed lungs at the 7th day post treatment. Wilcoxon rank-sum test showed that the medians of these kinetic parameters of the 7-day cohort were significantly

  16. Humanized mouse model of glucose 6-phosphate dehydrogenase deficiency for in vivo assessment of hemolytic toxicity

    PubMed Central

    Rochford, Rosemary; Ohrt, Colin; Baresel, Paul C.; Campo, Brice; Sampath, Aruna; Magill, Alan J.; Tekwani, Babu L.; Walker, Larry A.

    2013-01-01

    Individuals with glucose 6-phosphate dehydrogenase (G6PD) deficiency are at risk for the development of hemolytic anemia when given 8-aminoquinolines (8-AQs), an important class of antimalarial/antiinfective therapeutics. However, there is no suitable animal model that can predict the clinical hemolytic potential of drugs. We developed and validated a human (hu)RBC-SCID mouse model by giving nonobese diabetic/SCID mice daily transfusions of huRBCs from G6PD-deficient donors. Treatment of SCID mice engrafted with G6PD-deficient huRBCs with primaquine, an 8-AQ, resulted in a dose-dependent selective loss of huRBCs. To validate the specificity of this model, we tested known nonhemolytic antimalarial drugs: mefloquine, chloroquine, doxycycline, and pyrimethamine. No significant loss of G6PD-deficient huRBCs was observed. Treatment with drugs known to cause hemolytic toxicity (pamaquine, sitamaquine, tafenoquine, and dapsone) resulted in loss of G6PD-deficient huRBCs comparable to primaquine. This mouse model provides an important tool to test drugs for their potential to cause hemolytic toxicity in G6PD-deficient populations. PMID:24101478

  17. Dihydrolipoyl dehydrogenase deficiency: a therapeutic trial with branched-chain amino acid restriction.

    PubMed

    Sakaguchi, Y; Yoshino, M; Aramaki, S; Yoshida, I; Yamashita, F; Kuhara, T; Matsumoto, I; Hayashi, T

    1986-09-01

    A patient with a deficiency of dihydrolipoyl dehydrogenase and neurological disease is described. The patient was placed on a branched-chain amino acid-restricted regimen. After the introduction of the regimen, there were some biochemical improvements and he achieved some developmental milestones, in contrast to previously reported patients whose neurological disease was progressive. Restriction of the branched-chain amino acids is worth trying among therapeutic measures for this disease, although restriction of the amino acids alone may not totally prevent progression of neurological disease. PMID:3769994

  18. Eye Findings on Vigabatrin and Taurine Treatment in Two Patients with Succinic Semialdehyde Dehydrogenase Deficiency.

    PubMed

    Horvath, Gabriella-Ana; Hukin, Juliette; Stockler-Ipsiroglu, Sylvia G; Aroichane, Maryam

    2016-08-01

    We describe for the first time two patients with succinic semialdehyde dehydrogenase (SSADH) deficiency, who were found to have abnormal electroretinogram (ERG) examinations at baseline, or 6 months after vigabatrin treatment was started. This was somewhat reversible with L-taurine treatment, or minimally progressive. The mechanism of injury to the retina may be induced by elevations of γ-aminobutyric acid causing peripheral photoreceptor and ganglion cell damage, and this can be exacerbated by the use of vigabatrin. The use of taurine supplementation in tandem with vigabatrin may allow reversal of retinopathy and mitigate or slow down further deterioration. Further prospective clinical trials are required to evaluate this further. We recommend starting L-taurine therapy together with vigabatrin if a trial of vigabatrin is commenced in a patient with SSADH deficiency. Close monitoring of visual fields or ERG is also recommended at baseline and during vigabatrin therapy. PMID:27104484

  19. Glucose-6-phosphate dehydrogenase deficiency enhances human coronavirus 229E infection.

    PubMed

    Wu, Yi-Hsuan; Tseng, Ching-Ping; Cheng, Mei-Ling; Ho, Hung-Yao; Shih, Shin-Ru; Chiu, Daniel Tsun-Yee

    2008-03-15

    The host cellular environment is a key determinant of pathogen infectivity. Viral gene expression and viral particle production of glucose-6-phosphate dehydrogenase (G6PD)-deficient and G6PD-knockdown cells were much higher than their counterparts when human coronavirus (HCoV) 229E was applied at 0.1 multiplicity of infection. These phenomena were correlated with increased oxidant production. Accordingly, ectopic expression of G6PD in G6PD-deficient cells or addition of antioxidant (such as alpha-lipoic acid) to G6PD-knockdown cells attenuated the increased susceptibility to HCoV 229E infection. All experimental data indicated that oxidative stress in host cells is an important factor in HCoV 229E infectivity. PMID:18269318

  20. BROWN ADIPOSE TISSUE FUNCTION IN SHORT-CHAIN ACYL-COA DEHYDROGENASE DEFICIENT MICE

    PubMed Central

    Skilling, Helen; Coen, Paul M.; Fairfull, Liane; Ferrell, Robert E.; Goodpaster, Bret H.; Vockley, Jerry; Goetzman, Eric S.

    2010-01-01

    Brown adipose tissue is a highly specialized organ that uses mitochondrial fatty acid oxidation to fuel nonshivering thermogenesis. In mice, mutations in the acyl-CoA dehydrogenase family of fatty acid oxidation genes are associated with sensitivity to cold. Brown adipose tissue function has not previously been characterized in these knockout strains. Short-chain acyl-CoA dehydrogenase (SCAD) deficient mice were found to have increased brown adipose tissue mass as well as modest cardiac hypertrophy. Uncoupling protein-1 was reduced by 70% in brown adipose tissue and this was not due to a change in mitochondrial number, nor was it due to decreased signal transduction through protein kinase A which is known to be a major regulator of uncoupling protein-1 expression. PKA activity and in vitro lipolysis were normal in brown adipose tissue, although in white adipose tissue a modest increase in basal lipolysis was seen in SCAD−/ − mice. Finally, an in vivo norepinephrine challenge of brown adipose tissue thermogenesis revealed normal heat production in SCAD−/− mice. These results suggest that reduced brown adipose tissue function is not the major factor causing cold sensitivity in acyl-CoA dehydrogenase knockout strains. We speculate that other mechanisms such as shivering capacity, cardiac function, and reduced hepatic glycogen stores are involved. PMID:20727852

  1. Evaluation of the blue formazan spot test for screening glucose 6 phosphate dehydrogenase deficiency.

    PubMed

    Pujades, A; Lewis, M; Salvati, A M; Miwa, S; Fujii, H; Zarza, R; Alvarez, R; Rull, E; Corrons, J L

    1999-06-01

    Several screening tests for glucose 6 phosphate dehydrogenase (G6PD) deficiency have been reported thus far, and a standardized method of testing was proposed by the International Council for Standardization in Hematology (ICSH). The screening test used in any particular laboratory depends upon a number of factors such as cost, time required, temperature, humidity, and availability of reagents. In this study, a direct comparison between three different G6PD screening methods has been undertaken. In 71 cases (50 hematologically normal volunteers, 9 hemizygous G6PD-deficient males, and 12 heterozygous deficient females), the blue formazan spot test (BFST) was compared with the conventional methemoglobin reduction test (HiRT) and the ICSH-recommended fluorescent spot test (FST-ICSH). In all cases, the results obtained with the three screening tests were correlated with the enzyme activity assayed spectrophotometrically. In hemizygous G6PD-deficient males, all cases were equally detected with the three methods: BFST (4.7-6.64, controls: 11.1-13.4), BMRT (score +3 in all 9 cases), and FST (no fluorescence in 9 cases). In heterozygous G6PD-deficient females, two methods detected 7 out of 12 cases (BFST: 8.71-11.75, controls: 11.1-13.4; and BMRT: score +3 in 7 cases), whereas the FST-ICSH missed all 12 cases that presented a variable degree of fluorescence. Although the sensitivity for G6PD-deficient carrier detection is the same for the BMRT and the BFST, the latter has the advantage of being semiquantitative and not merely qualitative. Unfortunately, none of the three screening tests compared here allowed the detection of the 100% heterozygote carrier state of G6PD deficiency. PMID:10407579

  2. Medications and glucose-6-phosphate dehydrogenase deficiency: an evidence-based review.

    PubMed

    Youngster, Ilan; Arcavi, Lidia; Schechmaster, Renata; Akayzen, Yulia; Popliski, Hen; Shimonov, Janna; Beig, Svetlana; Berkovitch, Matitiahu

    2010-09-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect and one of the most common genetic disorders worldwide, with an estimated 400 million people worldwide carrying a mutation in the G6PD gene that causes deficiency of the enzyme. Although drug-induced haemolysis is considered the most common adverse clinical consequence of G6PD deficiency, significant confusion exists regarding which drugs can cause haemolytic anaemia in patients with G6PD deficiency. In the absence of consensus among physicians, patients are subject to conflicting advice, causing uncertainty and distress. In the current review we aimed, by thorough search of the medical literature, to collect evidence on which to base decisions either to prohibit or allow the use of various medications in patients with G6PD deficiency. A literature search was conducted during May 2009 for studies and case reports on medication use and G6PD deficiency using the following sources: MEDLINE (1966-May 2009), PubMed (1950-May 2009), the Cochrane database of systematic reviews (2009), and major pharmacology, internal medicine, haematology and paediatric textbooks. After assessing the literature, we divided medications into one of three groups: medications that should be avoided in individuals with G6PD deficiency, medications that were considered unsafe by at least one source, but according to our review can probably be given safely in normal therapeutic dosages to individuals with G6PD deficiency as evidence does not contravene their use, and medications where no evidence at all was found to contravene their use in G6PD-deficient patients. It is reasonable to conclude that, over time, many compounds have been wrongly cited as causing haemolysis because they were administered to patients experiencing an infection-related haemolytic episode. We found solid evidence to prohibit only seven currently used medications: dapsone, methylthioninium chloride (methylene blue), nitrofurantoin

  3. Communication between thiamin cofactors in the Escherichia coli pyruvate dehydrogenase complex E1 component active centers: evidence for a "direct pathway" between the 4'-aminopyrimidine N1' atoms.

    PubMed

    Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Mossad, Madouna; Tittmann, Kai; Furey, William; Jordan, Frank

    2010-04-01

    Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4'-aminopyrimidine N1' atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu(571), Glu(235), and Glu(237)) and Arg(606) resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. 1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding in the second active center was affected. 2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. 3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. 4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu(235) makes no direct contact with the cofactor. The role of the conserved Glu(571) residue in both catalysis and cofactor orientation is revealed by the combined results for the first time. PMID:20106967

  4. Identification of Novel Immunogenic Proteins from Mycoplasma bovis and Establishment of an Indirect ELISA Based on Recombinant E1 Beta Subunit of the Pyruvate Dehydrogenase Complex

    PubMed Central

    Wei, Kai; Zhang, Haiyan; Zhang, Yuewei; Xu, Jian; Jiang, Fei; Liu, Xu; Xu, Wei; Wu, Wenxue

    2014-01-01

    The pathogen Mycoplasma bovis (M. bovis) is a major cause of respiratory disease, mastitis, and arthritis in cattle. Screening the key immunogenic proteins and updating rapid diagnostic techniques are necessary to the prevention and control of M. bovis infection. In this study, 19 highly immunogenic proteins from M. bovis strain PD were identified using 2-dimensional gel electrophoresis, immunoblotting and MALDI-TOF/TOF MS. Of these 19 proteins, pyruvate dehydrogenase E1 component beta subunit (PDHB) showed excellent immune reactivity and repeatability. PDHB was found to be conserved in different M. bovis isolates, as indicated by Western blot analysis. On the basis of these results, a rPDHB-based indirect ELISA (iELISA) was established for the detection of serum antibodies using prokaryotically expressed recombinant PDHB protein as the coating antigen. The specificity analysis result showed that rPDHB-based iELISA did not react with other pathogens assessed in our study except M. agalactiae (which infects sheep and goats). Moreover, 358 serum samples from several disease-affected cattle feedlots were tested using this iELISA system and a commercial kit, which gave positive rates of 50.8% and 39.9%, respectively. The estimated Kappa agreement coefficient between the two methods was 0.783. Notably, 39 positive serum samples that had been missed by the commercial kit were all found to be positive by Western blot analysis. The detection rate of rPDHB-based iELISA was significantly higher than that of the commercial kit at a serum dilution ratio of 1∶5120 to 1∶10,240 (P<0.05). Taken together, these results provide important information regarding the novel immunogenic proteins of M. bovis. The established rPDHB-based iELISA may be suitable for use as a new method of antibody detection in M. bovis. PMID:24520369

  5. Synthesis and antifungal activity of 5-iodo-1,4-disubstituted-1,2,3-triazole derivatives as pyruvate dehydrogenase complex E1 inhibitors.

    PubMed

    He, Jun-Bo; He, Hai-Feng; Zhao, Lu-Lu; Zhang, Li; You, Ge-Yun; Feng, Ling-Ling; Wan, Jian; He, Hong-Wu

    2015-04-01

    To identify new antifungal lead compound based on inhibitors of pyruvate dehydrogenase complex E1, a series of 5-iodo-1,4-disubstituted-1,2,3-triazole derivatives 3 were prepared and evaluated for their Escherichia coli PDHc-E1 inhibitory activity and antifungal activity. The in vitro bioassay for the PDHc-E1 inhibition indicated all the compounds exhibited significant inhibition against E. coli PDHc-E1 (IC50<21μM), special compound 3g showed the most potent inhibitory activity (IC50=4.21±0.11μM) and was demonstrated to act as a competitive inhibitor of PDHc-E1. Meanwhile, inhibitor 3g exhibited very good enzyme-selective inhibition of PDHc-E1 between pig heart and E. coli. The assay of antifungal activity showed compounds 3e, 3g, and 3n exhibited fair to good activity against Rhizoctonia solani and Botrytis cinerea even at 12.5μg/mL. Especially compound 3n (EC50=5.4μg/mL; EC90=21.1μg/mL) exhibited almost 5.50 times inhibitory potency against B. cinerea than that of pyrimethanil (EC50=29.6μg/mL; EC90=113.4μg/mL). Therefore, in this study, compound 3n was found to be a novel lead compound for further optimization to find more potent antifungal compounds as microbial PDHc-E1 inhibitors. PMID:25766628

  6. Identification of novel immunogenic proteins from Mycoplasma bovis and establishment of an indirect ELISA based on recombinant E1 beta subunit of the pyruvate dehydrogenase complex.

    PubMed

    Sun, Zhenhong; Fu, Ping; Wei, Kai; Zhang, Haiyan; Zhang, Yuewei; Xu, Jian; Jiang, Fei; Liu, Xu; Xu, Wei; Wu, Wenxue

    2014-01-01

    The pathogen Mycoplasma bovis (M. bovis) is a major cause of respiratory disease, mastitis, and arthritis in cattle. Screening the key immunogenic proteins and updating rapid diagnostic techniques are necessary to the prevention and control of M. bovis infection. In this study, 19 highly immunogenic proteins from M. bovis strain PD were identified using 2-dimensional gel electrophoresis, immunoblotting and MALDI-TOF/TOF MS. Of these 19 proteins, pyruvate dehydrogenase E1 component beta subunit (PDHB) showed excellent immune reactivity and repeatability. PDHB was found to be conserved in different M. bovis isolates, as indicated by Western blot analysis. On the basis of these results, a rPDHB-based indirect ELISA (iELISA) was established for the detection of serum antibodies using prokaryotically expressed recombinant PDHB protein as the coating antigen. The specificity analysis result showed that rPDHB-based iELISA did not react with other pathogens assessed in our study except M. agalactiae (which infects sheep and goats). Moreover, 358 serum samples from several disease-affected cattle feedlots were tested using this iELISA system and a commercial kit, which gave positive rates of 50.8% and 39.9%, respectively. The estimated Kappa agreement coefficient between the two methods was 0.783. Notably, 39 positive serum samples that had been missed by the commercial kit were all found to be positive by Western blot analysis. The detection rate of rPDHB-based iELISA was significantly higher than that of the commercial kit at a serum dilution ratio of 1∶5120 to 1∶10,240 (P<0.05). Taken together, these results provide important information regarding the novel immunogenic proteins of M. bovis. The established rPDHB-based iELISA may be suitable for use as a new method of antibody detection in M. bovis. PMID:24520369

  7. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.

    PubMed

    Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Sax, Martin; Brunskill, Andrew; Nemeria, Natalia; Jordan, Frank; Furey, William

    2004-03-01

    Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis. PMID:14992577

  8. Neuropsychiatric Morbidity in Adolescent and Adult Succinic Semialdehyde Dehydrogenase Deficiency Patients

    PubMed Central

    Knerr, Ina; Gibson, K. Michael; Jakobs, Cornelis; Pearl, Phillip L.

    2008-01-01

    Introduction Succinic semialdehyde dehydrogenase (SSADH) deficiency (γ-hydroxybutyric aciduria) is a rare neurometabolic disorder of γ-aminobutyric acid degradation. While neurological manifestations, such as developmental delay, are typical during infancy, limited data are available on adolescent and adult symptomatology. Methods We overview the phenotype of 33 adolescents and adults (10.1–39.5 years of age, mean: 17.1 years, 48% females) with SSADH deficiency. For this purpose, we applied a database with systematic questionnaire-based follow-up data. Results Two thirds of patients (n=21) presented by 6 months of age, 14% from 6–12 months of age, 5% from 1–2 years of age, and 14% from 2–4 years of age, mean age at first symptoms was 11±12 months. However, mean age at diagnosis was 6.6±6.4 years of age. Presenting symptoms encompassed motor delay, hypotonia, speech delay, autistic features, seizures, and ataxia. Eighty-two percent demonstrated behavioral problems, such as attention deficit, hyperactivity, anxiety, or aggression, and 33% had ≥3 behavior problems. Electroencephalograms showed background slowing or epileptiform discharges in 40% of patients. Treatment approaches are then summarized. Conclusion The variable phenotype in SSADH deficiency suggests the likelihood that this disease may be under-diagnosed. Families of patients with SSADH deficiency should be counseled and supported regarding the anticipated persistence of various neuropsychiatric symptoms into adulthood. PMID:18622364

  9. [Glucose-6-phosphate dehydrogenase (G6PD) deficiency--a cause of anaemia in pregnant women].

    PubMed

    Kuliszkiewicz-Janus, Małgorzata; Zimny, Anna

    2003-11-01

    Glucose-6-phosphate dehydrogenase (G6PD) is one of the most important cytoprotective enzymes for oxidative stress. The WHO classification of G6PD deficiency, based on enzyme activity and clinical significance, distinguishes five variants. Chronic haemolytic process is rare and the main factors causing haemolysis are: infections, substances derived from plants, drugs with high oxidation-reduction potential, stress, ketoacidosis in diabetes and surgery operations. We report two cases of women belonging to the class 3 of the WHO classification in whom haemolysis occured during pregnancy. One of the patients developed two incidents of haemolytic anaemia. The cause of the first episode, nine months before pregnancy, was probably infection of the urinary tract caused by Escherichia coli, but the influence of the drugs also cannot be excluded. Because of the genetic background of this enzymopathy we also examined members of the patients, families but did not find any evidence of G6PD deficiency among them. The reported cases indicate that haemolytic anaemia caused by G6PD deficiency may occur during pregnancy what can lead to many not only haematological but also serious obstetrical complications such as infertility, fetus malformations and even its death. We also draw attention to several difficulties in diagnosing G6PD deficiency especially during haemolysis. PMID:16737003

  10. Prevalence and Molecular Characterization of Glucose-6-Phosphate Dehydrogenase Deficiency at the China-Myanmar Border

    PubMed Central

    Liu, Rong; Luo, Lan; Yang, Yuling; Zhang, Lu; Liu, Huaie; Zhang, Wen; Fan, Zhixiang; Yang, Zhaoqing; Cui, Liwang; He, Yongshu

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo) ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females) of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770), among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males) were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs) in Southeast Asia (ten in exons and one in intron 11) using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198) of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198) cases and no mutation were found in 21.2% (42/198) cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87), followed by the Kaiping (8.0%; 7/87) and the Viangchan (2.2%; 2/87) variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (P<0.05). It is noteworthy that 24