Science.gov

Sample records for q resonances

  1. High Q Miniature Sapphire Acoustic Resonator

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, R. L.

    2010-01-01

    We have demonstrated high Q measurements in a room temperature Miniature Sapphire Acoustic Resonator (MSAR). Initial measurements of bulk acoustic modes in room temperature sapphire at 39 MHz have demonstrated a Q of 8.8 x 10(exp 6). The long term goal of this work is to integrate such a high Q resonator with small, low noise quartz oscillator electronics, providing a fractional frequency stability better than 1 x 10(exp -14) @ 1s.

  2. Lumped elements characterize Q in dielectric resonators

    NASA Technical Reports Server (NTRS)

    Hearn, Chase P.

    1993-01-01

    It has been earlier observed (Podcameni et al., 1981) that, as the coupling factor between a microstrip-coupled dielectric resonator and the line becomes much larger than unity, the unloaded quality factor (Q) of the resonator decreases. In this paper it is shown that this effect can be explained using lumped-element models of the coupling line, when the dielectric resonator is either overcoupled or undercoupled to the line.

  3. High Q silicon carbide microdisk resonator

    SciTech Connect

    Lu, Xiyuan; Lee, Jonathan Y.; Feng, Philip X.-L.; Lin, Qiang

    2014-05-05

    We demonstrate a silicon carbide (SiC) microdisk resonator with optical Q up to 5.12 × 10{sup 4}. The high optical quality, together with the diversity of whispering-gallery modes and the tunability of external coupling, renders SiC microdisk a promising platform for integrated quantum photonics applications.

  4. Effects of electromagnetic radiation on the Q of quartz resonators.

    PubMed

    Yong, Yook-Kong; Patel, Mihir; Vig, John; Ballato, Arthur

    2009-02-01

    The quartz resonator Q with aluminum electrodes was studied with respect to its fundamental thickness shear mode frequency and its viscoelastic, viscopiezoelectric, and viscopiezoelectromagnetic behaviors. The governing equations for viscoelasticity, viscopiezoelectricity, and viscopiezoelectromagnetism were implemented for an AT-cut quartz resonator. To simulate the radiation conditions at infinity for the viscopiezoelectromagnetic model, perfectly matched layers over a surface enclosing the resonator were implemented to absorb all incident electromagnetic radiation. The shape of the radiation spectrum of a 5.6 MHz AT-cut quartz resonator was found to compare relatively well the measured results by Campbell and Weber. The mesa-plate resonator was studied for a frequency range of 1.4 GHz to 3.4 GHz. The resonator Q was determined to be influenced predominantly by the quartz viscoelasticity; however at frequencies greater than 2.3 GHz, the quartz electromagnetic radiation had an increasingly significant effect on the resonator Q. At 3.4 GHz, the electromagnetic radiation accounted for about 14% of the loss in resonator Q. At frequencies less than 2 GHz, the calculated resonator Q compared well with the intrinsic Q(x) provided by the formula Q(x) = 16 x 10(6)/f where f was in MHz. At frequencies higher than 2.3 GHz, the aluminum electrodes had significant effects on the resonator Q. At 3.4 GHz, the electromagnetic radiation loss in the electrodes was an order of magnitude greater than their viscoelastic loss; hence, the vibrating aluminum electrodes became an efficient emitter of electromagnetic waves. The effects of electrical resistance in both the electrodes and quartz were determined to be negligible. PMID:19251522

  5. Monolithic Cylindrical Fused Silica Resonators with High Q Factors.

    PubMed

    Pan, Yao; Wang, Dongya; Wang, Yanyan; Liu, Jianping; Wu, Suyong; Qu, Tianliang; Yang, Kaiyong; Luo, Hui

    2016-01-01

    The cylindrical resonator gyroscope (CRG) is a typical Coriolis vibratory gyroscope whose performance is determined by the Q factor and frequency mismatch of the cylindrical resonator. Enhancing the Q factor is crucial for improving the rate sensitivity and noise performance of the CRG. In this paper, for the first time, a monolithic cylindrical fused silica resonator with a Q factor approaching 8 × 10⁵ (ring-down time over 1 min) is reported. The resonator is made of fused silica with low internal friction and high isotropy, with a diameter of 25 mm and a center frequency of 3974.35 Hz. The structure of the resonator is first briefly introduced, and then the experimental non-contact characterization method is presented. In addition, the post-fabrication experimental procedure of Q factor improvement, including chemical and thermal treatment, is demonstrated. The Q factor improvement by both treatments is compared and the primary loss mechanism is analyzed. To the best of our knowledge, the work presented in this paper represents the highest reported Q factor for a cylindrical resonator. The proposed monolithic cylindrical fused silica resonator may enable high performance inertial sensing with standard manufacturing process and simple post-fabrication treatment. PMID:27483263

  6. Gyrotron cavity resonator with an improved value of Q

    DOEpatents

    Stone, David S.; Shively, James F.

    1982-10-26

    A gyrotron cavity resonator is connected smoothly and directly to an output waveguide with a very gradually tapered wall so that values of external Q lower than twice the diffraction limit are obtainable.

  7. High-Q BBO whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Lin, Guoping; Fürst, Josef U.; Strekalov, Dmitry V.; Grudinin, Ivan S.; Yu, Nan

    2013-02-01

    We report an investigation on optical whispering gallery mode (WGM) resonators made from non z-cut beta barium borate (BBO) crystals. We first fabricated high quality (Q) factor WGM resonators made of an angle-cut BBO crystal. Q factors of 1×108 level have been demonstrated at various wavelengths including UV. They led to new upper bounds for the absorption coefficients of BBO at 1560 nm, 980 nm and 370 nm. We observed only one set of ordinarily polarized WGMs with polarization rotating along the resonator circumference. We also fabricated xy-cut BBO WGM resonators, in which the optic axis is parallel to the resonator plane. In that case, two WGM families with different polarization exist, one with constant the other with oscillatory phase velocity. This enables a novel way of broadband phase matching in WGM resonators with cyclic gain. We experimentally demonstrated efficient second harmonic generation (SHG) to a wide harmonic wavelength range from 780 nm at near infrared to 317 nm in UV. It is also the first reported direct UV SHG in a high-Q WGM resonator. This work lays a foundation for further investigations of WGM properties of non-z cut birefringent resonators and their applications in nonlinear optics.

  8. Ultra-high Q even eigenmode resonance in terahertz metamaterials

    SciTech Connect

    Al-Naib, Ibraheem Dignam, Marc M.; Yang, Yuping; Zhang, Weili; Singh, Ranjan

    2015-01-05

    We report the simultaneous excitation of the odd and the even eigenmode resonances in a periodic array of square split-ring resonators, with four resonators per unit cell. When the electric field is parallel to their gaps, only the two well-studied odd eigenmodes are excited. As the resonators are rotated relative to one another, we observe the emergence and excitation of an extremely sharp even eigenmode. In uncoupled split-ring resonators, this even eigenmode is typically radiative in nature with a broad resonance linewidth and low Q-factor. However, in our coupled system, for specific range of rotation angles, our simulations revealed a remarkably high quality factor (Q ∼ 100) for this eigenmode, which has sub-radiant characteristics. This type of quad-supercell metamaterial offers the advantage of enabling access to all the three distinct resonance features of the split-ring resonator, which consists of two odd eigenmodes in addition to the high-Q even eigenmode, which could be exploited for high performance multiband filters and absorbers. The high Q even eigenmode could find applications in designing label free bio-sensors and for studying the enhanced light matter interaction effects.

  9. Preventing Raman Lasing in High-Q WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitry; Maleki, Lute

    2007-01-01

    A generic design has been conceived to suppress the Raman effect in whispering- gallery-mode (WGM) optical resonators that have high values of the resonance quality factor (Q). Although it is possible to exploit the Raman effect (even striving to maximize the Raman gain to obtain Raman lasing), the present innovation is intended to satisfy a need that arises in applications in which the Raman effect inhibits the realization of the full potential of WGM resonators as frequency-selection components. Heretofore, in such applications, it has been necessary to operate high-Q WGM resonators at unattractively low power levels to prevent Raman lasing. (The Raman-lasing thresholds of WGM optical resonators are very low and are approximately proportional to Q(sup -2)). Heretofore, two ways of preventing Raman lasting at high power levels have been known, but both entail significant disadvantages: A resonator can be designed so that the optical field is spread over a relatively large mode volume to bring the power density below the threshold. For any given combination of Q and power level, there is certain mode volume wherein Raman lasing does not start. Unfortunately, a resonator that has a large mode volume also has a high spectral density, which is undesirable in a typical photonic application. A resonator can be cooled to the temperature of liquid helium, where the Raman spectrum is narrower and, therefore, the Raman gain is lower. However, liquid-helium cooling is inconvenient. The present design overcomes these disadvantages, making it possible to operate a low-spectral-density (even a single-mode) WGM resonator at a relatively high power level at room temperature, without risk of Raman lasing.

  10. High Q diamond hemispherical resonators: fabrication and energy loss mechanisms

    NASA Astrophysics Data System (ADS)

    Bernstein, Jonathan J.; Bancu, Mirela G.; Bauer, Joseph M.; Cook, Eugene H.; Kumar, Parshant; Newton, Eric; Nyinjee, Tenzin; Perlin, Gayatri E.; Ricker, Joseph A.; Teynor, William A.; Weinberg, Marc S.

    2015-08-01

    We have fabricated polycrystalline diamond hemispheres by hot-filament CVD (HFCVD) in spherical cavities wet-etched into a high temperature glass substrate CTE matched to silicon. Hemispherical resonators 1.4 mm in diameter have a Q of up to 143 000 in the fundamental wineglass mode, for a ringdown time of 2.4 s. Without trimming, resonators have the two degenerate wineglass modes frequency matched as close as 2 Hz, or 0.013% of the resonant frequency (~16 kHz). Laser trimming was used to match resonant modes on hemispheres to 0.3 Hz. Experimental and FEA energy loss studies on cantilevers and hemispheres examine various energy loss mechanisms, showing that surface related losses are dominant. Diamond cantilevers with a Q of 400 000 and a ringdown time of 15.4 s were measured, showing the potential of polycrystalline diamond films for high Q resonators. These resonators show great promise for use as hemispherical resonant gyroscopes (HRGs) on a chip.

  11. High Q printed helical resonators for oscillators and filters.

    PubMed

    Everard, Jeremy K A; Broomfield, Carl D

    2007-09-01

    High Q compact printed helical resonators which operate from around 1.8 to 2 GHz are described. These consist of a multilayer printed circuit board (PCB) incorporating a printed helical transmission line. Loss in the via hole is reduced by ensuring that the standing wave current at this point is near zero. This ensures a significant increase in Q. Further increased energy storage per unit volume is achieved due to the 3-D helical nature of the resonator. Unloaded Qs of 235 and 195 have been obtained on low loss PCBs with dielectric constants of 2.2 and 10.5, respectively. Two applications for these resonators are described in this paper. The first is the design of a compact low noise oscillator where the ratio of QL/Q0, and hence insertion loss, is adjusted for low noise. The 2-GHz oscillator demonstrates a phase noise of -120 dBc/Hz at 10 kHz which is predicted exactly by the theory. The second is a three-section filter designed to offer the response required by the front end filter of a modern GSM mobile telephone. In the filter design three helical resonators are coupled together to produce a completely printed triplate bandpass filter. PMID:17941381

  12. Engineered Carbon Nanotube Materials for High-Q Nanomechanical Resonators

    NASA Technical Reports Server (NTRS)

    Choi, Daniel S.; Hunt, Brian; Bronikowski, Mike; Epp, Larry; Hoenk, Michael; Hoppe, Dan; Kowalczyk, Bob; Wong, Eric; Xu, Jimmy; Adam, Douglas; Young, Rob

    2003-01-01

    This document represents a presentation offered by the Jet Propulsion Laboratory, with assistance from researchers from Brown University and Northrop Grumman. The presentation took place in Seoul, Korea in July 2003 and attempted to demonstrate the fabrication approach regarding the development of high quality factor (high-Q) mechanical oscillators (in the forms of a tunable nanotube resonator and a nanotube array radio frequency [RF] filter) aimed at signal processing and based on carbon nanotubes. The presentation also addressed parallel efforts to develop both in-plane single nanotube resonators as well as vertical array power devices.

  13. Formation of q{bar q} resonances in the {bar N}N system

    SciTech Connect

    Ivanov, N.Ya.

    1995-11-01

    The formation of q{bar q} resonances lying on the leading Regge trajectories in the {bar N}N system is studied in the quark-gluon string model. The model predicts strong suppression of the decays of q{bar q} states into {bar N}N pairs in relation to two-meson modes. The author`s analysis shows that the contributions of the resonances f{sub 4}(2050) (I{sup G}J{sup PC}= 0{sup +}4{sup ++}), {rho}{sub 5}(2240) (I{sup G}J{sup PC} = 1{sup +}5{sup {minus}{minus}}), and f{sub 6}(2510) (I{sup G}J{sup PC} = 0{sup +}6{sup ++}) to the processes of two-meson {bar N}N annihilation ({bar p}p {yields} {pi}{pi}, {bar K}K, {hor_ellipsis}) are about 1% of the corresponding experimental integrated cross sections. 30 refs., 2 figs., 1 tab.

  14. Meta-metallic coils and resonators: Methods for high Q-value resonant geometries.

    PubMed

    Mett, R R; Sidabras, J W; Hyde, J S

    2016-08-01

    A novel method of decreasing ohmic losses and increasing Q-value in metallic resonators at high frequencies is presented. The method overcomes the skin-depth limitation of rf current flow cross section. The method uses layers of conductive foil of thickness less than a skin depth and capacitive gaps between layers. The capacitive gaps can substantially equalize the rf current flowing in each layer, resulting in a total cross-sectional dimension for rf current flow many times larger than a skin depth. Analytic theory and finite-element simulations indicate that, for a variety of structures, the Q-value enhancement over a single thick conductor approaches the ratio of total conductor thickness to skin depth if the total number of layers is greater than one-third the square of the ratio of total conductor thickness to skin depth. The layer number requirement is due to counter-currents in each foil layer caused by the surrounding rf magnetic fields. We call structures that exhibit this type of Q-enhancement "meta-metallic." In addition, end effects due to rf magnetic fields wrapping around the ends of the foils can substantially reduce the Q-value for some classes of structures. Foil structures with Q-values that are substantially influenced by such end effects are discussed as are five classes of structures that are not. We focus particularly on 400 MHz, which is the resonant frequency of protons at 9.4 T. Simulations at 400 MHz are shown with comparison to measurements on fabricated structures. The methods and geometries described here are general for magnetic resonance and can be used at frequencies much higher than 400 MHz. PMID:27587143

  15. Resonant period and Q of the Celtic Sea and Bristol Channel

    NASA Astrophysics Data System (ADS)

    Heath, R. A.

    1981-03-01

    A simple linear resonant response model fitted to the semi-diurnal tidal constitutents in the Celtic Sea gives estimates of the resonant period of 10.8 to 11.1 with values of Q of about 3. The resonant period of the Bristol Channel is well below that of the semi-diurnal tidal band making estimates of the resonant period and Q less reliable. Estimates based on data near the entrance to the Bristol Channel give periods of 7.3 to 9 h, the lower value of 7.3 h with a Q of between 6 and 9 being probably the best estimate.

  16. High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging.

    PubMed

    Haines, K; Neuberger, T; Lanagan, M; Semouchkina, E; Webb, A G

    2009-10-01

    At high magnetic fields radiation losses, wavelength effects, self-resonance, and the high resistance of typical components all contribute to increased losses in conventional RF coil designs. High permittivity ceramic dielectric resonators create strong uniform magnetic fields in a compact structure at high frequencies and can potentially solve some of the challenges of high field coil design. In this study an NMR probe was constructed for operation at 600 MHz (14.1T) using an inductively fed CaTiO(3) (relative permittivity of 156) cylindrical hollow bore dielectric resonator. The design has an unmatched Q value greater than 2000, and the electric field is largely confined to the dielectric itself, with near zero values in the hollow bore which accommodates the sample. Experimental and simulation mapping of the RF field show good agreement, with the ceramic resonator giving a pulse width approximately 25% less than a loop gap resonator of similar inner dimensions. High resolution images, with voxel dimensions less than 50 microm(3), have been acquired from fixed zebrafish samples, showing excellent delineation of several fine structures. PMID:19656696

  17. High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging

    NASA Astrophysics Data System (ADS)

    Haines, K.; Neuberger, T.; Lanagan, M.; Semouchkina, E.; Webb, A. G.

    2009-10-01

    At high magnetic fields radiation losses, wavelength effects, self-resonance, and the high resistance of typical components all contribute to increased losses in conventional RF coil designs. High permittivity ceramic dielectric resonators create strong uniform magnetic fields in a compact structure at high frequencies and can potentially solve some of the challenges of high field coil design. In this study an NMR probe was constructed for operation at 600 MHz (14.1 T) using an inductively fed CaTiO 3 (relative permittivity of 156) cylindrical hollow bore dielectric resonator. The design has an unmatched Q value greater than 2000, and the electric field is largely confined to the dielectric itself, with near zero values in the hollow bore which accommodates the sample. Experimental and simulation mapping of the RF field show good agreement, with the ceramic resonator giving a pulse width approximately 25% less than a loop gap resonator of similar inner dimensions. High resolution images, with voxel dimensions less than 50 μm 3, have been acquired from fixed zebrafish samples, showing excellent delineation of several fine structures.

  18. Coupling Light from a High-Q Microsphere Resonator Using a UV-induced Surface Grating

    NASA Technical Reports Server (NTRS)

    Ilchenko, V. S.; Starodubov, D. S.; Gorodetsky, M. L.; Maleki, L.; Feinberg, J.

    2000-01-01

    High-Q microspheres with whispering-gallery modes have very narrow resonances that can be used for fiber-optic filters, ultra-compact narrow-linewidth lasers and optical/microwave oscillators. Whispering-gallery modes were previously excited in microspheres using evanescent optical fields. The necessary phase synchronism was obtained by adjusting the incident angle of input light beam (prism coupler) or adjustment of the waveguide propagation constant (fiber taper coupler). For many applications, however, bulky near-field couplers are undesirable. They compromise the symmetry and generate stray fields. Also, the control of coupling is crucial for the performance of microsphere resonators: in analogy with radio frequency circuits, the loading Q-factor should be less than the intrinsic Q-factor, Q(sub L) less than or equal to Q(sub O). Ideally one should combine a stable coupling element and a resonator into a single microsphere component.

  19. High-temperature measurements of Q-factor in rotated X-cut quartz resonators

    NASA Technical Reports Server (NTRS)

    Fritz, I. J.

    1981-01-01

    The Q-factors of piezoelectric resonators fabricated from natural and synthetic quartz with a 34 deg rotated X-cut orientation were measured at temperatures up to 325 C. The synthetic material, which was purified by electrolysis, retains a higher enough Q to be suitable for high temperature pressure-transducer applications, whereas the natural quartz is excessively lossy above 200 C for this application. The results are compared to results obtained previously at AT-cut resonators.

  20. High Resolution and Large Dynamic Range Resonant Pressure Sensor Based on Q-Factor Measurement

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor); Stell, Christopher B. (Inventor); Tang, Tony K. (Inventor); Vorperian, Vatche (Inventor); Wilcox, Jaroslava (Inventor); Shcheglov, Kirill (Inventor); Kaiser, William J. (Inventor)

    2000-01-01

    A pressure sensor has a high degree of accuracy over a wide range of pressures. Using a pressure sensor relying upon resonant oscillations to determine pressure, a driving circuit drives such a pressure sensor at resonance and tracks resonant frequency and amplitude shifts with changes in pressure. Pressure changes affect the Q-factor of the resonating portion of the pressure sensor. Such Q-factor changes are detected by the driving/sensing circuit which in turn tracks the changes in resonant frequency to maintain the pressure sensor at resonance. Changes in the Q-factor are reflected in changes of amplitude of the resonating pressure sensor. In response, upon sensing the changes in the amplitude, the driving circuit changes the force or strength of the electrostatic driving signal to maintain the resonator at constant amplitude. The amplitude of the driving signals become a direct measure of the changes in pressure as the operating characteristics of the resonator give rise to a linear response curve for the amplitude of the driving signal. Pressure change resolution is on the order of 10(exp -6) torr over a range spanning from 7,600 torr to 10(exp -6) torr. No temperature compensation for the pressure sensor of the present invention is foreseen. Power requirements for the pressure sensor are generally minimal due to the low-loss mechanical design of the resonating pressure sensor and the simple control electronics.

  1. Triple-band high Q factor Fano resonances in bilayer THz metamaterials

    NASA Astrophysics Data System (ADS)

    Ding, Chunfeng; Wu, Liang; Xu, Degang; Yao, Jianquan; Sun, Xiaohong

    2016-07-01

    In this paper, we proposed a bilayer THz metamaterials, which is constructed by two sets of asymmetric split-ring resonators (ASRRs) with different sizes. Simulation results show that three high Q Fano resonances are excited in the bilayer metamaterials at 0.268, 0.418 THz, and 25 at 0.560 THz, and the Q values are 33, 42, and 25, respectively. The field distributions show that resonances at 0.268 and 0.560 THz originate from one of ASRRs, whereas the resonance at 0.418 THz originates from the other set of ASRRs. Further analysis indicates that the three high Q Fano resonances results from a combined action of the in-plane coupling and the interlayer coupling in the metamaterials: the in-plane coupling lead to resonances enhanced and the interlayer coupling lead to the eigenmode of each set of the ASRRs split into two discrete Fano resonances. This triple-band high Q factor Fano resonance metamaterials would open new degrees of freedom for designing advanced chemical and biological sensors and detectors in the terahertz regime.

  2. Super defect inside photonic crystal ring resonator to enhance Q factor

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, Tupakula; Kolli, Venkateswara Rao; Tarimala, Badrinarayana; Hegde, Gopalkrishna; Sangineni, Mohan; Talabattula, Srinivas

    2016-03-01

    A design is proposed to enhance the quality factor of a photonic crystal ring resonator. A super defect is employed inside the ring resonator, which consists of variation of hole dimensions inside the ring resonator in such a way that the radiation field components of the resonant nanocavity are forced to get cancelled in order to reduce radiation loss. After this forced cancellation, the improved Q factor is calculated as 18,000. This photonic crystal ring resonator can be used for sensing applications like force sensing, pressure sensing, biochemical sensing, and communication applications like demultiplexing.

  3. High Q-factor resonant photoluminescence from Ge-on-insulator micro-disks

    NASA Astrophysics Data System (ADS)

    Xu, Xuejun; Hashimoto, Hideaki; Yoshida, Keisuke; Sawano, Kentarou; Maruizumi, Takuya

    2016-05-01

    Micro-disk resonators with high Q-factor have been experimentally demonstrated on germanium-on-insulator (GOI). GOI substrates fabricated by direct wafer bonding show better crystal quality that germanium films directly grown on Si. Sharp resonant peaks with Q-factor around 1000-4000 have been observed from micro-disks fabricated on GOI substrate by low-temperature photoluminescence measurements. The light emission properties against pump laser power and device temperature are also investigated. Our results indicating that GOI micro-disks are promising resonators for low threshold, ultra-compact Ge lasers on Si.

  4. Efficient coupling into and out of high-Q resonators.

    PubMed

    Harbers, Rik; Moll, Nikolaj; Erni, Daniel; Bona, Gian-Luca; Bächtold, Werner

    2004-08-01

    The temporal-coupled-mode theory is directly applied to the design of devices that feature a resonator with a high quality factor. For the temporal-coupled-mode theory we calculate the decay rate of the resonator to determine the transmission properties of the device. The analysis using the decay rates requires little computational effort, and therefore the optimum device properties can be determined quickly. Two examples, a wavelength filter and a resonator crossing, are presented to illustrate the use of the analysis. PMID:15330480

  5. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.

    PubMed

    Patel, Mihir S; Yong, Yook-Kong

    2009-05-01

    Theoretical analyses and designs of high-Q, quartz thin film resonators are presented. The resonators operate at an ultra-high frequency of 3.4 GHz for application to high-frequency timing devices such as cesium chip-scale atomic clocks. The frequency spectra for the 3.4-GHz thin film quartz resonators, which serve as design aids in selecting the resonator dimensions/configurations for simple electrodes, and ring electrode mesa designs are presented here for the first time. The thin film aluminum electrodes are found to play a major role in the resonators because the electrodes are only one third the thickness and mass of the active areas of the plate resonator. Hence, in addition to the material properties of quartz, the elastic, viscoelastic, and thermal properties of the electrodes are included in the models. The frequency-temperature behavior is obtained for the best resonator designs. To improve the frequency-temperature behavior of the resonators, new quartz cuts are proposed to compensate for the thermal stresses caused by the aluminum electrodes and the mounting supports. Frequency response analyses are performed to determine the Q-factor, motional resistance, capacitance ratio, and other figures of merit. The resonators have Q's of about 3800, resistance of about 1300 to 1400 ohms, and capacitance ratios of 1100 to 2800. PMID:19473909

  6. 1/f frequency noise of 2-GHZ high-Q thin-film sapphire resonators.

    PubMed

    Ferre-Pikal, E S; Delgado Arámburo, M C; Walls, F L; Lakin, K M

    2001-03-01

    We present experimental results on intrinsic 1/f frequency modulation (FM) noise in high-overtone thin-film sapphire resonators that operate at 2 GHz. The resonators exhibit several high-Q resonant modes approximately 100 kHz apart, which repeat every 13 MHz. A loaded Q of approximately 20,000 was estimated from the phase response. The results show that the FM noise of the resonators varied between Sy (10 Hz) = -202 dB relative (rel) to 1/Hz and -210 dB rel to 1/Hz. The equivalent phase modulation (PM) noise of an oscillator using these resonators (assuming a noiseless amplifier) would range from [symbol: see text](10 Hz) = -39 to -47 dBc/Hz. PMID:11370364

  7. High-Q lattice mode matched structural resonances in terahertz metasurfaces

    NASA Astrophysics Data System (ADS)

    Xu, Ningning; Singh, Ranjan; Zhang, Weili

    2016-07-01

    The quality (Q) factor of metamaterial resonances is limited by the radiative and non-radiative losses. At terahertz frequencies, the dominant loss channel is radiative in nature since the non-radiative losses are low due to high conductivity of metals. Radiative losses could be suppressed by engineering the meta-atom structure. However, such suppression usually occurs at the fundamental resonance mode which is typically a closed mode resonance such as an inductive-capacitive resonance or a Fano resonance. Here, we report an order of magnitude enhancement in Q factor of all the structural eigenresonances of a split-ring resonator fueled by the lattice mode matching. We match the fundamental order diffractive mode to each of the odd and even eigenresonances, thus leading to a tremendous line-narrowing of all the resonances. Such precise tailoring and control of the structural resonances in a metasurface lattice could have potential applications in low-loss devices, sensing, and design of high-Q metamaterial cavities.

  8. High Q-factor distributed bragg reflector resonators with reflectors of arbitrary thickness.

    PubMed

    Le Floch, Jean-Michel; Tobar, Michael E; Cros, Dominique; Krupka, Jerzy

    2007-12-01

    The Bragg reflection technique improves the Q-factor of a resonator by reducing conductor and dielectric losses. This is achieved by designing a low-loss inner resonant region (usually free space) surrounded by an outer anti-resonant region made of distributed Bragg reflector layers. In this paper we develop a simple non-Maxwellian model and apply it to design three distinct cylindrical Bragg resonators based on the same set of single-crystal sapphire plates and rings by changing only the dimension of the cavity that supports the structure. To accomplish this, the simple model allows an arbitrary thickness for either the horizontal or the cylindrical dielectric reflectors by relaxing the condition that they must be lambda/4 thick. The model also allows for higher-order field variations in both the resonant and the anti-resonant regions. The resonators were constructed and experimental results were compared with the simple model and the rigorous method of lines analysis. For the fundamental mode, an unloaded Q-factor of 234,000 at 9.7 GHz was obtained. This is larger than that for a whispering gallery mode resonator. The resonator also exhibited a greatly reduced spurious mode density when compared to an overmoded whispering gallery mode resonator. PMID:18276575

  9. Platybasia in 22q11.2 Deletion Syndrome Is Not Correlated with Speech Resonance

    PubMed Central

    Kon, Moshe; Mink van der Molen, Aebele B

    2014-01-01

    Background An abnormally obtuse cranial base angle, also known as platybasia, is a common finding in patients with 22q11.2 deletion syndrome (22q11DS). Platybasia increases the depth of the velopharynx and is therefore postulated to contribute to velopharyngeal dysfunction. Our objective was to determine the clinical significance of platybasia in 22q11DS by exploring the relationship between cranial base angles and speech resonance. Methods In this retrospective chart review at a tertiary hospital, 24 children (age, 4.0-13.1 years) with 22q11.2DS underwent speech assessments and lateral cephalograms, which allowed for the measurement of the cranial base angles. Results One patient (4%) had hyponasal resonance, 8 (33%) had normal resonance, 10 (42%) had hypernasal resonance on vowels only, and 5 (21%) had hypernasal resonance on both vowels and consonants. The mean cranial base angle was 136.5° (standard deviation, 5.3°; range, 122.3-144.8°). The Kruskal-Wallis test showed no significant relationship between the resonance ratings and cranial base angles (P=0.242). Cranial base angles and speech ratings were not correlated (Spearman correlation=0.321, P=0.126). The group with hypernasal resonance had a significantly more obtuse mean cranial base angle (138° vs. 134°, P=0.049) but did not have a greater prevalence of platybasia (73% vs. 56%, P=0.412). Conclusions In this retrospective chart review of patients with 22q11DS, cranial base angles were not correlated with speech resonance. The clinical significance of platybasia remains unknown. PMID:25075355

  10. Analysis of silicon-on-insulator slot waveguide ring resonators targeting high Q-factors.

    PubMed

    Zhang, Weiwei; Serna, Samuel; Le Roux, Xavier; Alonso-Ramos, Carlos; Vivien, Laurent; Cassan, Eric

    2015-12-01

    Vertical slot waveguide micro-ring resonators in silicon photonics have already been demonstrated in previous works and applied to several schemes, including sensing and hybrid nonlinear optics. Their performances, first quantified by the reachable Q-factors, are still perceived to be restrained by larger intrinsic propagation losses than those suffered by simple Si wire waveguides. In this Letter, the optical loss mechanisms of slot waveguide micro-ring resonators are thoroughly investigated with a special focus on the coupler loss contribution that turns out to be the key obstacle to achieving high Q-factors. By engineering the coupler design, slotted ring resonators with a 50 μm radius are experienced with a loaded Q-factor up to 10 times improvement from Q=3,000 to Q=30,600. The intrinsic losses due to the light propagation in the bent slot ring itself are proved to be as low as 1.32±0.87  dB/cm at λ=1,550  nm. These investigations of slot ring resonators open high performance potentials for on-chip nonlinear optical processing or sensing in hybrid silicon photonics. PMID:26625052

  11. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    SciTech Connect

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E.; Galliou, S.; Bourquin, R.

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  12. High-Q polymer resonators with spatially controlled photo-functionalization for biosensing applications

    NASA Astrophysics Data System (ADS)

    Beck, Torsten; Mai, Martin; Grossmann, Tobias; Wienhold, Tobias; Hauser, Mario; Mappes, Timo; Kalt, Heinz

    2013-03-01

    We demonstrate the applicability of polymeric whispering gallery mode resonators fabricated on silicon as biosensors. Optical measurements on the passive resonators in the visible spectral range yield Q-factors as high as 1.3×107. Local, covalent surface functionalization, is achieved by spatially controlled UV-exposure of a derivative of the photoreactive crosslinker benzophenone. Protein detection is shown using the specific binding of the biotin-streptavidin system.

  13. High-Q 3D coaxial resonators for cavity QED

    NASA Astrophysics Data System (ADS)

    Yoon, Taekwan; Owens, John C.; Naik, Ravi; Lachapelle, Aman; Ma, Ruichao; Simon, Jonathan; Schuster, David I.

    Three-dimensional microwave resonators provide an alternative approach to transmission-line resonators used in most current circuit QED experiments. Their large mode volume greatly reduces the surface dielectric losses that limits the coherence of superconducting circuits, and the well-isolated and controlled cavity modes further suppress coupling to the environment. In this work, we focus on unibody 3D coaxial cavities which are only evanescently coupled and free from losses due to metal-metal interfaces, allowing us to reach extremely high quality-factors. We achieve quality-factor of up to 170 million using 4N6 Aluminum at superconducting temperatures, corresponding to an energy ringdown time of ~4ms. We extend our methods to other materials including Niobium, NbTi, and copper coated with Tin-Lead solder. These cavities can be further explored to study their properties under magnetic field or upon coupling to superconducting Josephson junction qubits, e.g. 3D transmon qubits. Such 3D cavity QED system can be used for quantum information applications, or quantum simulation in coupled cavity arrays.

  14. Efficient upconversion of subterahertz radiation in a high-Q whispering gallery resonator.

    PubMed

    Strekalov, D V; Savchenkov, A A; Matsko, A B; Yu, N

    2009-03-15

    We demonstrate efficient upconversion of subterahertz radiation into the optical domain in a high-Q whispering gallery mode resonator with quadratic optical nonlinearity. The 5x10(-3) power conversion efficiency of a cw 100 GHz signal is achieved with only 16 mW of optical pump. PMID:19282908

  15. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source

    SciTech Connect

    Yang, Y.; Sun, L. T.; Feng, Y. C.; Fang, X.; Lu, W.; Zhang, W. H.; Cao, Y.; Zhang, X. Z.; Zhao, H. W.

    2014-08-15

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented.

  16. Studies on a Q/A selector for the SECRAL electron cyclotron resonance ion source.

    PubMed

    Yang, Y; Sun, L T; Feng, Y C; Fang, X; Lu, W; Zhang, W H; Cao, Y; Zhang, X Z; Zhao, H W

    2014-08-01

    Electron cyclotron resonance ion sources are widely used in heavy ion accelerators in the world because they are capable of producing high current beams of highly charged ions. However, the design of the Q/A selector system for these devices is challenging, because it must have a sufficient ion resolution while controlling the beam emittance growth. Moreover, this system has to be matched for a wide range of ion beam species with different intensities. In this paper, research on the Q/A selector system at the SECRAL (Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou) platform both in experiment and simulation is presented. Based on this study, a new Q/A selector system has been designed for SECRAL II. The features of the new design including beam simulations are also presented. PMID:25173256

  17. L-shell resonant transfer excitation in Cuq++H2 (q=18,19) collisions

    NASA Astrophysics Data System (ADS)

    Závodszky, P. A.; Wroblewski, J. A.; Ferguson, S. M.; Gorczyca, T. W.; Houck, J. H.; Woitke, O.; Tanis, J. A.; Badnell, N. R.

    1997-09-01

    Resonant transfer excitation (RTE) involving L-1Mn (n>=M) resonant states has been investigated for Na-like and Ne-like Cuq++H2 collisions (q=18 and 19). The M- to L-shell x-ray production cross sections (RTEX's) of these resonance states are studied by x-ray projectile ion coincidences. Previous measurements of L-shell RTEX for Nbq+ (q=28-31) ions showed the measured cross sections to be nearly a factor of 2 smaller than the calculated ones. For Cu18+ the present results show the position and width of the measured RTEX maximum cross section to be in agreement with the calculations; however, the measured absolute cross sections are about 60% higher than the predicted ones. In the case of Ne-like Cu19+ projectiles, the metastable component in the beam made it impossible to observe RTEX's.

  18. Laser-machined ultra-high-Q microrod resonators for nonlinear optics

    NASA Astrophysics Data System (ADS)

    Del'Haye, Pascal; Diddams, Scott A.; Papp, Scott B.

    2013-06-01

    Optical whispering-gallery microresonators are useful tools in microphotonics and non-linear optics at very low threshold powers. Here, we present details about the fabrication of ultra-high-Q whispering-gallery-mode resonators made by CO2-laser lathe machining of fused-quartz rods. The resonators can be fabricated in less than 1 min and the obtained optical quality factors exceed Q = 1 × 109. Demonstrated resonator diameters are in the range between 170 μm and 8 mm (free spectral ranges between 390 GHz and 8 GHz). Using these microresonators, a variety of optical nonlinearities are observed, including Raman scattering, Brillouin scattering, and four-wave mixing.

  19. Active Q switching of a fiber laser with a microsphere resonator.

    PubMed

    Kieu, Khanh; Mansuripur, Masud

    2006-12-15

    We propose and demonstrate an active Q-switched fiber laser using a high-Q microsphere resonator as the Q-switching element. The laser cavity consists of an Er-doped fiber as the gain medium, a glass microsphere reflector (coupled through a fiber taper) at one end of the cavity, and a fiber Bragg grating reflector at the other end. The reflectivity of the microsphere is modulated by changing the gap between the microsphere and the fiber taper. Active Q switching is realized by oscillating the microsphere in and out of contact with the taper. Using this novel technique, we have obtained giant pulses (maximum peak power approximately 102 W, duration approximately 160 ns) at a low pump-power threshold (approximately 3 mW). PMID:17130905

  20. Fano resonances in a multimode waveguide coupled to a high-Q silicon nitride ring resonator.

    PubMed

    Ding, Dapeng; de Dood, Michiel J A; Bauters, Jared F; Heck, Martijn J R; Bowers, John E; Bouwmeester, Dirk

    2014-03-24

    Silicon nitride (Si3N4) optical ring resonators provide exceptional opportunities for low-loss integrated optics. Here we study the transmission through a multimode waveguide coupled to a Si3N4 ring resonator. By coupling single-mode fibers to both input and output ports of the waveguide we selectively excite and probe combinations of modes in the waveguide. Strong asymmetric Fano resonances are observed and the degree of asymmetry can be tuned through the positions of the input and output fibers. The Fano resonance results from the interference between modes of the waveguide and light that couples resonantly to the ring resonator. We develop a theoretical model based on the coupled mode theory to describe the experimental results. The large extension of the optical modes out of the Si3N4 core makes this system promising for sensing applications. PMID:24664026

  1. Development of high- Q superconducting resonators for use as kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Baselmans, J. J. A.; Yates, S. J. C.; de Korte, P.; Hoevers, H.; Barends, R.; Hovenier, J. N.; Gao, J. R.; Klapwijk, T. M.

    One of the greatest challenges in the development of future space based instruments for sub-mm astronomy is the fabrication of very sensitive and large detector arrays. Within this context we have started the development of Microwave Kinetic Inductance Detectors (MKID's). The heart of each detector consists of a high- Q superconducting quarter wavelength microwave resonator. As a result it is easy to multiplex the readout by frequency division multiplexing. The predicted fundamental sensitivity limit of the MKID is due to quasiparticle creation-recombination noise, leading to a NEP˜1×10-20W/√{Hz}, low enough for any envisionable application in the sub-mm, optical and X-ray wavelength ranges. We describe experiments with these resonators, made of 150 nm Ta films with a 5 nm Nb seed layer on high purity Si substrates with a resonance frequency around 3 GHz. We measure the Q factors, responsivity, noise and noise equivalent power of several resonators. We find Q factors in excess of 1 × 10 5, high enough for the multiplexing of more than 10 4 pixels. The quasiparticle lifetime in our film is measured to be 25 μs. which gives, together with the measured phase noise, a NEP of ˜4×10-16W/√{Hz} at 1 kHz. At lower frequencies the noise increases.

  2. High-Q X-band distributed Bragg resonator utilizing an aperiodic alumina plate arrangement.

    PubMed

    Bale, Simon; Everard, Jeremy

    2010-01-01

    This paper describes a high-Q X-band distributed Bragg resonator that uses an aperiodic arrangement of non-lambda/4 low loss alumina plates mounted in a cylindrical waveguide. An ABCD parameter waveguide model was developed to simulate and optimize the cavity. The dielectric plates and air waveguide dimensions were optimized to achieve maximum quality factor by redistributing the energy loss within the cavity. An unloaded quality factor (Q(0)) of 196,000 was demonstrated at 9.93 GHz. PMID:20040428

  3. Selective excitation of high-Q resonant modes in a bottle/quasi-cylindrical microresonator

    NASA Astrophysics Data System (ADS)

    Dong, Yongchao; Jin, Xueying; Wang, Keyi

    2016-08-01

    We fabricate a bottle/quasi-cylindrical microresonator by using a fusion splicer. This method does not require a real-time control of the translation stages and can easily fabricate a resonator with expected size and shape. Selective excitation of whispering gallery modes (WGMs) in the resonator is realized with a fiber taper coupled at various positions of the resonator along the bottle axis. Most importantly, we obtain a clean and regular spectrum with very high quality factor (Q) modes up to 3.1×107 in the quasi-cylindrical region of the resonator. Moreover, we package the coupling system into a whole device that can be moved freely. The vibration performance tests of the packaged device show that the coupling system with the taper coupled at the quasi-cylindrical region has a remarkable anti-vibration ability. The portability and robustness of the device make it attractive in practical applications.

  4. Multiple folded resonator for LD pulse end pumped Q-switched Yb:YAG slab laser.

    PubMed

    Jun, Liu; Jianguo, Xin; Ye, Lang; Jiabin, Chen

    2014-09-01

    In this paper, a multiple folded resonator is presented which consists of a multiple optical folding setup, a flat total reflector, a flat output coupler, a Q-switch crystal and a polarizer. By this technique, the output energy of 32.6mJ and pulse width of 13.4ns with a repetition rate of 5Hz was obtained, which is three times higher than that reported in the past publications by the use of the currently existing technique of the Q-switched slab gain lasers with the unstable resonator. The output beam with a quality of M² = 1.55 in the slow axis and M² = 1.40 in the fast axis was also obtained. PMID:25321590

  5. High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Saurabh, Sunny; Ward, Jonathan M.; Nic Chormaic, Síle

    2016-01-01

    Sensors based on whispering gallery resonators have minute footprints and can push achievable sensitivities and resolutions to their limits. Here, we use a microbubble resonator, with a wall thickness of 500 nm and an intrinsic Q-factor of $10^7$ in the telecommunications C-band, to investigate aerostatic pressure sensing via stress and strain of the material. The microbubble is made using two counter-propagating CO$_2$ laser beams focused onto a microcapillary. The measured sensitivity is 19 GHz/bar at 1.55 $\\mu$m. We show that this can be further improved to 38 GHz/bar when tested at the 780 nm wavelength range. In this case, the resolution for pressure sensing can reach 0.17 mbar with a Q-factor higher than $5\\times10^7$.

  6. Package of a dual-tapered-fiber coupled microsphere resonator with high Q factor

    NASA Astrophysics Data System (ADS)

    Dong, Yongchao; Wang, Keyi; Jin, Xueying

    2015-09-01

    We package a high-quality (Q) factor optical whispering gallery mode (WGM) microsphere resonator side coupled to two tapered fibers without changing the initial coupling conditions, achieving a final Q as high as 2.7×106. The mechanical stability of the coupling system is improved by placing the tapers in contact with the microsphere. The packaged device can be easily sealed in a targeted hermetic box according to different practical applications, which provides long term maintenance of the coupling efficiency and high-Q factor. Moreover, we test the temperature dependence of the packaged device and demonstrate its capability for thermal tuning of the drop wavelength. This device has a variety of advantages, such as portability, low-cost, and ease of fabrication.

  7. AlN/3C-SiC composite plate enabling high-frequency and high-Q micromechanical resonators.

    PubMed

    Lin, Chih-Ming; Chen, Yung-Yu; Felmetsger, Valery V; Senesky, Debbie G; Pisano, Albert P

    2012-05-22

    An AlN/3C-SiC composite layer enables the third-order quasi-symmetric (QS(3)) Lamb wave mode with a high quality factor (Q) characteristic and an ultra-high phase velocity up to 32395 ms(-1). A Lamb wave resonator utilizing the QS(3) mode exhibits a low motional impedance of 91 Ω and a high Q of 5510 at a series resonance frequency (f(s)) of 2.92 GHz, resulting in the highest f(s)·Q product of 1.61 × 10(13) Hz among the suspended piezoelectric thin film resonators reported to date. PMID:22495881

  8. μ-'Diving suit' for liquid-phase high-Q resonant detection.

    PubMed

    Yu, Haitao; Chen, Ying; Xu, Pengcheng; Xu, Tiegang; Bao, Yuyang; Li, Xinxin

    2016-03-01

    A resonant cantilever sensor is, for the first time, dressed in a water-proof 'diving suit' for real-time bio/chemical detection in liquid. The μ-'diving suit' technology can effectively avoid not only unsustainable resonance due to heavy liquid-damping, but also inevitable nonspecific adsorption on the cantilever body. Such a novel technology ensures long-time high-Q resonance of the cantilever in solution environment for real-time trace-concentration bio/chemical detection and analysis. After the formation of the integrated resonant micro-cantilever, a patterned photoresist and hydrophobic parylene thin-film are sequentially formed on top of the cantilever as sacrificial layer and water-proof coat, respectively. After sacrificial-layer release, an air gap is formed between the parylene coat and the cantilever to protect the resonant cantilever from heavy liquid damping effect. Only a small sensing-pool area, located at the cantilever free-end and locally coated with specific sensing-material, is exposed to the liquid analyte for gravimetric detection. The specifically adsorbed analyte mass can be real-time detected by recording the frequency-shift signal. In order to secure vibration movement of the cantilever and, simultaneously, reject liquid leakage from the sensing-pool region, a hydrophobic parylene made narrow slit structure is designed surrounding the sensing-pool. The anti-leakage effect of the narrow slit and damping limited resonance Q-factor are modelled and optimally designed. Integrated with electro-thermal resonance excitation and piezoresistive frequency readout, the cantilever is embedded in a micro-fluidic chip to form a lab-chip micro-system for liquid-phase bio/chemical detection. Experimental results show the Q-factor of 23 in water and longer than 20 hours liquid-phase continuous working time. Loaded with two kinds of sensing-materials at the sensing-pools, two types of sensing chips successfully show real-time liquid-phase detection to ppb

  9. Compact, high-Q, zero temperature coefficient, TE011 sapphire-rutile microwave distributed Bragg reflector resonators.

    PubMed

    Tobar, M E; Cros, D; Blondy, P; Ivanov, E N

    2001-05-01

    Some novel new resonator designs based on the distributed Bragg reflector are presented. The resonators implement a TE011 resonance in a cylindrical sapphire dielectric, which is confined by the addition of rutile and sapphire dielectric reflectors at the end faces. Finite element calculations are utilized to optimize the dimensions to obtain the highest Q-factors and zero frequency-temperature coefficient for a resonator operating near 0 degree C. We show that a Q-factor of 70,000 and 65,000 can be achieved with and without the condition of zero frequency-temperature coefficients, respectively. PMID:11381707

  10. Radiation-induced conductivity and high-temperature Q changes in quartz resonators

    SciTech Connect

    Koehler, D R

    1981-01-01

    While high temperature electrolysis has proven beneficial as a technique to remove interstitial impurities from quartz, reliable indices to measure the efficacy of such a processing step are still under development. The present work is directed toward providing such an index. Two techniques have been investigated - one involves measurement of the radiation induced conductivity in quartz along the optic axis, and the second involves measurement of high temperature Q changes. Both effects originate when impurity charge compensators are released from their traps, in the first case resulting in ionic conduction and in the second case resulting in increased acoustic losses. Radiation induced conductivity measurements have been carried out with a 200 kV, 14 mA x-ray machine producing 5 rads/s. With electric fields of the order of 10/sup 4/ V/cm, the noise level in the current measuring system is equivalent to an ionic current generated by quartz impurities in the 1 ppB range. The accuracy of the high temperature ( 300 to 800/sup 0/K) Q/sup -1/ measurement technique will be determined. A number of resonators constructed of quartz material of different impurity contents have been tested and both the radiation induced conductivity and the high temperature Q/sup -1/ results compared with earlier radiation induced frequency and resonator resistance changes. 10 figures.

  11. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.

    PubMed

    Yong, Yook-Kong; Patel, Mihir S; Tanaka, Masako

    2010-08-01

    A novel analytical/numerical method for calculating the resonator Q and its equivalent electrical parameters due to viscoelastic, conductivity, and mounting supports losses is presented. The method presented will be quite useful for designing new resonators and reducing the time and costs of prototyping. There was also a necessity for better and more realistic modeling of the resonators because of miniaturization and the rapid advances in the frequency ranges of telecommunication. We present new 3-D finite elements models of quartz resonators with viscoelasticity, conductivity, and mounting support losses. The losses at the mounting supports were modeled by perfectly matched layers (PMLs). A previously published theory for dissipative anisotropic piezoelectric solids was formulated in a weak form for finite element (FE) applications. PMLs were placed at the base of the mounting supports to simulate the energy losses to a semi-infinite base substrate. FE simulations were carried out for free vibrations and forced vibrations of quartz tuning fork and AT-cut resonators. Results for quartz tuning fork and thickness shear AT-cut resonators were presented and compared with experimental data. Results for the resonator Q and the equivalent electrical parameters were compared with their measured values. Good equivalences were found. Results for both low- and high-Q AT-cut quartz resonators compared well with their experimental values. A method for estimating the Q directly from the frequency spectrum obtained for free vibrations was also presented. An important determinant of the quality factor Q of a quartz resonator is the loss of energy from the electrode area to the base via the mountings. The acoustical characteristics of the plate resonator are changed when the plate is mounted onto a base substrate. The base affects the frequency spectra of the plate resonator. A resonator with a high Q may not have a similarly high Q when mounted on a base. Hence, the base is an

  12. A fast way for calculating longitudinal wakefields for high Q resonances

    SciTech Connect

    Cheng-Yang Tan and James M Steimel

    2001-12-03

    We have come up with a way for calculating longitudinal wakefields for high Q resonances by mapping the wake functions to a two dimension vector space. Then in this space, a transformation which is basically a scale change and a rotation, allows us to calculate the new wakefield by knowing only one previous wakefield and one previous particle passage through the cavity. We will also compare this method to the brute force method which needs to know all the passages of the previous particles through the cavity.

  13. Discovery of Bragg confined hybrid modes with high Q factor in a hollow dielectric resonator

    NASA Astrophysics Data System (ADS)

    le Floch, Jean-Michel; Tobar, Michael E.; Mouneyrac, David; Cros, Dominique; Krupka, Jerzy

    2007-10-01

    The authors report on observation of Bragg confined mode in a hollow cylindrical dielectric cavity. A resonance was observed at 13.4GHz with an unloaded Q factor of order 2×105, which is more than a factor of 6 above the dielectric loss limit. Previously, such modes have only been realized from pure transverse electric modes with no azimuthal variations and only the Eϕ component. From rigorous numeric simulations, it is shown that the mode is a hybrid mode with nonzero azimuthal variations and with dominant Er and Eϕ electric field components and Hz magnetic field component.

  14. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  15. Resonant photoacoustic detection of NO2 traces with a Q-switched green laser

    NASA Astrophysics Data System (ADS)

    Slezak, Verónica; Codnia, Jorge; Peuriot, Alejandro L.; Santiago, Guillermo

    2003-01-01

    Resonant photoacoustic detection of NO2 traces by means of a high repetition pulsed green laser is presented. The resonator is a cylindrical Pyrex glass cell with a measured Q factor 380 for the first radial mode in air at atmospheric pressure. The system is calibrated with known mixtures in dry air and a minimum detectable volume concentration of 50 parts in 109 is obtained (S/N=1). Its sensitivity allows one to detect and quantify NO2 traces in the exhaust gases of cars. Previously, the analysis of gas adsorption and desorption on the walls and of changes in the sample composition is carried out in order to minimize errors in the determination of NO2 content upon application of the extractive method. The efficiency of catalytic converters of several models of automobiles is studied and the NO2 concentration in samples from exhausts of different types of engine (gasoline, diesel, and methane gas) at idling operation are measured.

  16. Neutral Pion Electroproduction in the Resonance Region at High $Q^2$

    SciTech Connect

    Villano, A N; Bosted, P E; Connell, S H; Dalton, M M; Jones, M K; Adams, G S; Afanasev, A; Ahmidouch, A; Angelescu, T; Arrington, J; Asaturyan, R; Baker, O K; Benmouna, N; Berman, B L; Breuer, H; Christy, M E; Cui, Y; Danagoulian, S; Day, D; Dodario, T; Dunne, J A; Dutta, D; El Khayari, N; Elliot, B; Ent, R; Fenker, H C; Frolov, V V; Gan, L; Gaskell, D; Gasparian, A; Grullon, S; Hafidi, K; Hinton, W; Holt, R J; Huber, G M; Hungerford, E; Joo, K; Kalantarians, N; Keppel, C E; Kinney, E R; Kubarovsky, V; Li, Y; Liang, Y; Lu, M; Lung, A; Mack, D; Malace, S; Markowitz, P; McKee, P; Meekins, D G; Mkrtchhyan, H; Napolitano, J; Niculescu, G; Niculescu, I; Opper, A K; Pamela, P; Potterveld, D H; Reimer, Paul E; Reinhold, J; Roche, J; Rock, S E; Schulte, E; Segbefia, E; Smith, C; Smith, G R

    2009-09-01

    The process $ep \\to e^{\\prime}p^{\\prime}\\pi^0$ has been measured at $Q^2$ = 6.4 and 7.7 \\ufourmomts in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center of mass frame considering the process $\\gamma^{\\ast}p \\to p^{\\prime}\\pi^0$. Various details relating to the background subtractions, radiative corrections and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well known $\\Delta(1232)$ resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios $R_{EM}$ and $R_{SM}$ along with the magnetic transition form factor $G_M^{\\ast}$. It is found that the rapid fall off of the $\\Delta(1232)$ contribution continues into this region of momentum transfer and that other resonances

  17. Frequency Locking and Stabilization Regimes in High-Power Gyrotrons with Low-Q Resonators

    NASA Astrophysics Data System (ADS)

    Zotova, I. V.; Ginzburg, N. S.; Denisov, G. G.; Rozental', R. M.; Sergeev, A. S.

    2016-02-01

    Using a nonstationary self-consistent model, we analyze the frequency locking and stabilization regimes arising in gyrotrons with low-Q resonators under the action of an external signal or when reflections from a remote nonresonant load are introduced. In the simulations, we used the parameters of high-power gyrotrons designed for controlled thermonuclear fusion with optimized resonator profile. This approach makes it possible to determine output characteristics of the gyrotrons operated in considered regimes taking into account the effect of the incident wave (external or reflected) on the longitudinal field structure with greater precision compared with the earlier results based on the fixed RF-field structure approximation, while qualitative results of the two approaches coincide. Analysis of the effect of reflections from a remote load has demonstrated a substantial dependence of the efficiency of the gyrotron frequency stabilization on the ratio between the characteristic time scale of the synchronism detuning fluctuations and the signal delay time.

  18. Development of high-Q superconducting resonators for use as Kinetic Inductance detectors

    NASA Astrophysics Data System (ADS)

    Baselmans, J.; Barends, R.; Hovenier, N.; Gao, J.; Hoevers, H.; de Korte, P.; Klapwijk, T.

    One of the largest challenges in the development of future radiation detectors for space applications is the fabrication of large detector arrays This because future missions require camera s with many pixels in combination with background limited sensitivity Within this context we have started the development of Microwave Kinetic Inductance Detectors MKID s The MKID is a relatively new detector concept pioneered by J Zmuidzinas and P Day et al 1 which belongs to the class of pair breaking detectors where radiation is absorbed in a superconducting film by breaking Cooper pairs into quasiparticles The operating temperature of the device is 1 10 of the transition temperature of the superconducting film Hence an Aluminum KID should be operated at 100 mK The MKID measures the change in quasiparticle and Cooper pair density by probing the complex surface impedance of the superconductor This is done by making use of an extremely high Q superconducting quarter wavelength microwave thin film resonator Every resonator each with slightly different resonance frequency can be observed simultaneously With only one wideband cryogenic amplifier 2 coaxial cables from room temperature to the cold stage and commercially available readout electronics a camera with in excess of 100 000 pixels could become a reality KIDs can address the spectrum from far infrared to X-ray depending on the antenna or absorber coupled to the microwave resonator 1 P K Day H G LeDuc B A Mazin A Vayonakis and J Zmuidzinas Nature 425 p 817-821 2003

  19. High-Q sapphire-rutile frequency-temperature compensated microwave dielectric resonators.

    PubMed

    Tobar, M E; Krupka, J; Hartnett, J G; Ivanov, E N; Woode, R A

    1998-01-01

    A sapphiro-rutile composite resonator was constructed from a cylindrical sapphire monocrystal with two thin disks of monocrystal rutile held tightly against the ends. Because rutile exhibits low loss and an opposite temperature coefficient of permittivity to sapphire, it is an ideal material for compensating the frequency-temperature dependence of a sapphire resonator. Most of the electromagnetic modes in the composite structure exhibited turning points (or compensation points) in the frequency-temperature characteristic. The temperatures of compensation for the WG quasi TM modes were measured to be below 90 K with Q-factors of the order of a few million depending on the mode. For WG quasi TE modes, the temperatures of compensation were measured to be between 100 to 160 K with Q-factors of the order of a few hundreds of thousands, depending on the mode. The second derivatives of the compensation points were measured to be of the order 0.1 ppm/K(2 ), which agreed well with the predicted values. PMID:18244235

  20. High-Q microsphere resonators for angular velocity sensing in gyroscopes

    SciTech Connect

    An, Panlong; Zheng, Yongqiu; Yan, Shubin Xue, Chenyang Liu, Jun; Wang, Wanjun

    2015-02-09

    A resonator gyroscope based on the Sagnac effect is proposed using a core unit that is generated by water-hydrogen flame melting. The relationship between the quality factor Q and diameter D is revealed. The Q factor of the spectral lines of the microsphere cavity coupling system, which uses tapered fibers, is found to be 10{sup 6} or more before packaging with a low refractive curable ultraviolet polymer, although it drops to approximately 10{sup 5} after packaging. In addition, a rotating test platform is built, and the transmission spectrum and discriminator curves of a microsphere cavity with Q of 3.22×10{sup 6} are measured using a semiconductor laser (linewidth less than 1 kHz) and a real-time proportional-integral circuit tracking and feedback technique. Equations fitting the relation between the voltage and angular rotation rate are obtained. According to the experimentally measured parameters, the sensitivity of the microsphere-coupled system can reach 0.095{sup ∘}/s.

  1. High-Q microsphere resonators for angular velocity sensing in gyroscopes

    NASA Astrophysics Data System (ADS)

    An, Panlong; Zheng, Yongqiu; Yan, Shubin; Xue, Chenyang; Wang, Wanjun; Liu, Jun

    2015-02-01

    A resonator gyroscope based on the Sagnac effect is proposed using a core unit that is generated by water-hydrogen flame melting. The relationship between the quality factor Q and diameter D is revealed. The Q factor of the spectral lines of the microsphere cavity coupling system, which uses tapered fibers, is found to be 106 or more before packaging with a low refractive curable ultraviolet polymer, although it drops to approximately 105 after packaging. In addition, a rotating test platform is built, and the transmission spectrum and discriminator curves of a microsphere cavity with Q of 3.22 ×106 are measured using a semiconductor laser (linewidth less than 1 kHz) and a real-time proportional-integral circuit tracking and feedback technique. Equations fitting the relation between the voltage and angular rotation rate are obtained. According to the experimentally measured parameters, the sensitivity of the microsphere-coupled system can reach 0.095∘/s .

  2. Differentially piezoresistive transduction of high-Q encapsulated SOI-MEMS resonators with sub-100 nm gaps.

    PubMed

    Li, Cheng-Syun; Li, Ming-Huang; Li, Sheng-Shian

    2015-01-01

    A differentially piezoresistive (piezo-R) readout proposed for single-crystal-silicon (SCS) microelectromechanical systems (MEMS) resonators is implemented in a foundrybased resonator platform, demonstrating effective feedthrough cancellation using just simple piezoresistors from the resonator supports while maximizing their capacitively transduced driving areas. The SCS resonators are fabricated by a CMOS foundry using an SOI-MEMS technology together with a polysilicon refill process. A high electromechanical coupling coefficient is attained by the use of 50-nm transducer gap spacing. Moreover, a vacuum package of the fabricated resonators is carried out through wafer-level bonding process. In this work, the corner supporting beams of the resonator serve not only mechanical supports but also piezoresistors for detecting the motional signal, hence substantially simplifying the overall resonator design to realize the piezo-R sensing. In addition, the fabricated resonators are capable of either capacitive sensing or piezo-R detection under the same capacitive drive. To mitigate feedthrough signals from parasitics, a differential measurement configuration of the piezo-R transduction is implemented in this work, featuring more than 30-dB improvement on the feedthrough level as compared with the single-ended piezo-R counterpart and purely capacitive sensing readout. Furthermore, the high-Q design of the mechanical supports is also investigated, offering Q more than 10 000 with efficient piezo-R transduction for MEMS resonators. PMID:25585404

  3. Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators.

    PubMed

    Lin, Guoping; Diallo, Souleymane; Dudley, John M; Chembo, Yanne K

    2016-06-27

    Universal nonlinear scattering processes such as Brillouin, Raman, and Kerr effects are fundamental light-matter interactions of particular theoretical and experimental importance. They originate from the interaction of a laser field with an optical medium at the lattice, molecular, and electronic scale, respectively. These nonlinear effects are generally observed and analyzed separately, because they do not often occur concomitantly. In this article, we report the simultaneous excitation of these three fundamental interactions in mm-size ultra-high Q whispering gallery mode resonators under continuous wave pumping. Universal nonlinear scattering is demonstrated in barium fluoride and strontium fluoride, separately. We further propose a unified theory based on a spatiotemporal formalism for the understanding of this phenomenology. PMID:27410640

  4. Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators

    SciTech Connect

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.

    2015-03-15

    A time-domain theory of frequency-locking gyrotron oscillators with low-Q resonators has been developed. The presented theory is based on the description of wave propagation by a parabolic equation taking into account the external signal by modification of boundary conditions. We show that the developed model can be effectively used for simulations of both single- and multi-mode operation regimes in gyrotrons driven by an external signal. For the case of low-Q resonators typical for powerful gyrotrons, the external signal can influence the axial field profile inside the interaction space significantly and, correspondingly, the value of the electron orbital efficiency.

  5. Time-domain self-consistent theory of frequency-locking regimes in gyrotrons with low-Q resonators

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.

    2015-03-01

    A time-domain theory of frequency-locking gyrotron oscillators with low-Q resonators has been developed. The presented theory is based on the description of wave propagation by a parabolic equation taking into account the external signal by modification of boundary conditions. We show that the developed model can be effectively used for simulations of both single- and multi-mode operation regimes in gyrotrons driven by an external signal. For the case of low-Q resonators typical for powerful gyrotrons, the external signal can influence the axial field profile inside the interaction space significantly and, correspondingly, the value of the electron orbital efficiency.

  6. Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Tobar, Michael E.

    Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire ``Whispering Gallery'' (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 x10^5 at room temperature, 5 x10^7 at liquid nitrogen temperature and 5 x10^9 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency-temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100parts per million/K above 77K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed

  7. Panels with low-Q-factor resonators with theoretically infinite sound-proofing ability at a single frequency

    NASA Astrophysics Data System (ADS)

    Lazarev, L. A.

    2015-07-01

    An infinite panel with two types of resonators regularly installed on it is theoretically considered. Each resonator is an air-filled cavity hermetically closed by a plate, which executes piston vibrations. The plate and air inside the cavity play the roles of mass and elasticity, respectively. Every other resonator is reversed. At a certain ratio between the parameters of the resonators at the tuning frequency of the entire system, the acoustic-pressure force that directly affects the panel can be fully compensated by the action forces of the resonators. In this case, the sound-proofing ability (transmission loss) tends to infinity. The presented calculations show that a complete transmission-loss effect can be achieved even with low- Q resonators.

  8. Aliasing Effects of Q-bursts on Background Spectra of Schumann Resonances

    NASA Astrophysics Data System (ADS)

    Guha, A.; Mushtak, V. C.; Williams, E.; Neska, M.; Nagy, T. G.; Satori, G.

    2013-12-01

    The Earth's Schumann resonances (SR) manifest as a 'background' signal and as an occasional transient excitation (Q-burst) of substantially larger amplitude. The background signal is generally attributed to the superposition of radiated ELF signal from average lightning flashes originating in convective scale thunderstorms predominant in the late afternoon, and whose waveforms are all overlapping. The larger transient excitations are attributed to exceptionally energetic lightning flashes in larger mesoscale convective systems. These flashes stand out strongly against the background signal, and often produce sprites in the mesosphere. These exceptional events are often delayed in the diurnal cycle by many hours into the evening and even the early morning over land areas. This study is concerned with the idea that the spectral energy of a single transient event can compete with the background energy over 5-15 minute time scales, and so serve to alias the background spectrum and destroy that 'fingerprint' for the geographical origin of the background lightning. In the present work, an attempt is made to detect these large by simultaneous observation of SR electric field spectra from two stations in Europe, Belsk, Poland (BLK: 49.190 N, 22.550 E) and Nagycenk, Hungary (NCK: 47.60 N, 16.70 E), separated by 0.47 Mm, along with the same strokes identified by the World Wide Lighting Location Network (WWLLN). First, the energy contents (EC) for each five second spectra with up to four SR modes for the two stations are computed. Q-burst events are selected if: (1) the Core Standard Deviation (CSD) in any 5 second segment is above 16 CSD (2) the ratio of CSDs at both stations is within 0.5 to 2, and (3) the event occurs within 1-3 time samples at each station. Simultaneous observations at these nearby stations enable us to distinguish the cultural noise and lightning strokes originating close to each station. At the same time, the propagation path form the originating Q

  9. Neutral pion electroproduction in the resonance region at high Q{sup 2}

    SciTech Connect

    Villano, A. N.; Stoler, P.; Kubarovsky, V.; Adams, G. S.; Napolitano, J.; Bosted, P. E.; Jones, M. K.; Ent, R.; Fenker, H. C.; Gaskell, D.; Lung, A.; Mack, D.; Meekins, D. G.; Roche, J.; Smith, G. R.; Wojtsekhowski, B.; Wood, S. A.; Connell, S. H.; Dalton, M. M.; Ahmidouch, A.

    2009-09-15

    The process ep{yields}ep{pi}{sup 0} has been measured at Q{sup 2}=6.4 and 7.7 (GeV/c{sup 2}){sup 2} in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center-of-mass frame considering the process {gamma}*p{yields}p{pi}{sup 0}. Various details relating to the background subtractions, radiative corrections, and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well-known {delta}(1232) resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios R{sub EM} and R{sub SM} along with the magnetic transition form factor G{sub M}*. It is found that the rapid falloff of the {delta}(1232) contribution continues into this region of momentum transfer and that other resonances may be making important contributions in this region.

  10. Neutral pion electroproduction in the resonance region at high Q{sup 2}.

    SciTech Connect

    Villano, A. N.; Stoler, P.; Bosted, P. E.; Connell, S. H.; Dalton, M. M.; Arrington, J.; Hafidi, K.; Holt, R. J.; Schulte, E.; Reimer, P. E.; Zheng, X.; Physics; Rensselaer Polytechnic Inst.; Thomas Jefferson National Accelerator Facility; Univ. of the Johannesburg; Univ. of the Witwatersrand

    2009-09-01

    The process ep {yields} ep{pi}{sup 0} has been measured at Q{sup 2} = 6.4 and 7.7 (GeV/c{sup 2}){sup 2} in Jefferson Lab's Hall C. Unpolarized differential cross sections are reported in the virtual photon-proton center-of-mass frame considering the process {gamma}*p {yields} p{pi}{sup 0}. Various details relating to the background subtractions, radiative corrections, and systematic errors are discussed. The usefulness of the data with regard to the measurement of the electromagnetic properties of the well-known {Delta}(1232) resonance is covered in detail. Specifically considered are the electromagnetic and scalar-magnetic ratios R{sub EM} and R{sub SM} along with the magnetic transition form factor G*{sub M}. It is found that the rapid falloff of the {Delta}(1232) contribution continues into this region of momentum transfer and that other resonances may be making important contributions in this region.

  11. Distributed bragg reflector resonators with cylindrical symmetry and extremely high Q-factors.

    PubMed

    Tobar, Michael E; le Floch, Jean-Michel; Cros, Dominique; Hartnett, John G

    2005-01-01

    A simple non-Maxwellian method is presented that allows the approximate solution of all the dimensions of a multilayered dielectric TE0qp mode cylindrical resonant cavity that constitutes a distributed Bragg reflection (DBR) resonator. The analysis considers an arbitrary number of alternating dielectric and free-space layers of cylindrical geometry enclosed by a metal cylinder. The layers may be arranged along the axial direction, the radial direction, or both. Given only the aspect ratio of the cavity, the desired frequency and the dielectric constants of the material layers, the relevant dimensions are determined from only a set of simultaneous equations, and iterative techniques are not required. The formulas were verified using rigorous method of lines (MoL) calculations and previously published experimental work. We show that the simple approximation gives dimensions close to the values of the optimum Bragg reflection condition determined by the rigorous analysis. The resulting solution is more compact with a higher Q-factor when compared to other reported cylindrical DBR structures. This is because it properly takes into account the effect of the aspect ratio on the Bragg antiresonance condition along the z-axis of the resonator. Previous analyses assumed the propagation in the z-direction was independent of the aspect ratio, and the layers of the Bragg reflector were a quarter of a wavelength thick along the z-direction. When the aspect ratio is properly taken into account, we show that the thickness of the Bragg reflectors are equivalent to the thickness of plane wave Bragg reflectors (or quarter wavelength plates). Thus it turns out that the sizes of the reflectors are related to the free-space propagation constant rather than the propagation constant in the z-direction. PMID:15742559

  12. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  13. Photoelastic ultrasound detection using ultra-high-Q silica optical resonators.

    PubMed

    Chistiakova, Maria V; Armani, Andrea M

    2014-11-17

    As a result of its non-invasive and non-destructive nature, ultrasound imaging has found a variety of applications in a wide range of fields, including healthcare and electronics. One accurate and sensitive approach for detecting ultrasound waves is based on optical microcavities. Previous research using polymer microring resonators demonstrated detection based on the deformation of the cavity induced by the ultrasound wave. An alternative detection approach is based on the photoelastic effect in which the ultrasound wave induces a strain in the material that is converted to a refractive index change. In the present work, photoelastic-based ultrasound detection is experimentally demonstrated using ultra high quality factor silica optical microcavities. As a result of the increase in Q and in coupled power, the noise equivalent pressure is reduced, and the device response is increased. A finite element method model that includes both the acoustics and optics components of this system is developed, and the predictive accuracy of the model is determined. PMID:25402057

  14. A time domain based method for the accurate measurement of Q-factor and resonance frequency of microwave resonators

    SciTech Connect

    Gyüre, B.; Márkus, B. G.; Bernáth, B.; Simon, F.; Murányi, F.

    2015-09-15

    We present a novel method to determine the resonant frequency and quality factor of microwave resonators which is faster, more stable, and conceptually simpler than the yet existing techniques. The microwave resonator is pumped with the microwave radiation at a frequency away from its resonance. It then emits an exponentially decaying radiation at its eigen-frequency when the excitation is rapidly switched off. The emitted microwave signal is down-converted with a microwave mixer, digitized, and its Fourier transformation (FT) directly yields the resonance curve in a single shot. Being a FT based method, this technique possesses the Fellgett (multiplex) and Connes (accuracy) advantages and it conceptually mimics that of pulsed nuclear magnetic resonance. We also establish a novel benchmark to compare accuracy of the different approaches of microwave resonator measurements. This shows that the present method has similar accuracy to the existing ones, which are based on sweeping or modulating the frequency of the microwave radiation.

  15. High-energy resonantly diode-pumped Q-switched Er:YAG laser at 1617 nm

    NASA Astrophysics Data System (ADS)

    Yu, Zhenzhen; Wang, Mingjian; Hou, Xia; Chen, Weibiao

    2016-04-01

    We report high-energy linearly polarized operation of an Er:YAG laser at 1617 nm, resonantly pumped by quasi-continuous-wave 1470-nm laser diodes. A U-shape resonator incorporating two 0.25 at.% Er:YAG rods and an acousto-optic Q-switch was employed. Polarized output with pulse energy of 20.5 mJ and pulse width of 52 ns at a 50 Hz repetition rate was obtained. At the maximum output energy, the output beam quality M 2 was approximately 1.02 and 1.03 in horizontal and vertical directions, respectively. To the best of our knowledge, this polarized pulse energy is the highest ever reported for a directly diode-pumped Q-switched Er:YAG laser operating at 1617 nm.

  16. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation.

    PubMed

    Wang, Jie; Bo, Fang; Wan, Shuai; Li, Wuxia; Gao, Feng; Li, Junjie; Zhang, Guoquan; Xu, Jingjun

    2015-09-01

    Lithium niobate (LN) microdisk resonators on a LN-silica-LN chip were fabricated using only conventional semiconductor fabrication processes. The quality factor of the LN resonator with a 39.6-μm radius and a 0.5-μm thickness is up to 1.19 × 10(6), which doubles the record of the quality factor 4.84 × 10(5) of LN resonators produced by microfabrication methods allowing batch production. Electro-optic modulation with an effective resonance-frequency tuning rate of 3.0 GHz/V was demonstrated in the fabricated LN microdisk resonator. PMID:26368411

  17. Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Al-Naib, Ibraheem; Singh, Ranjan; Rockstuhl, Carsten; Lederer, Falk; Delprat, Sebastien; Rocheleau, David; Chaker, Mohamed; Ozaki, Tsuneyuki; Morandotti, Roberto

    2012-08-01

    We propose a mirrored arrangement of asymmetric single split ring resonators (ASRs) that dramatically enhances the quality factor of the inductive-capacitive resonance. In a regular non-mirrored arrangement, the surface current modes are all oriented in phase. Hence, light scattered by individual ASRs interferes constructively. In contrast, the proposed configuration sustains surface currents that are oppositely oriented for neighboring ASRs, in turn leading to the cancellation of the net dipole moment accompanied by destructive interference of the scattered fields. The proposed arrangement holds promise to suppress radiation losses in terahertz, microwave and infrared plasmonic metamaterials.

  18. Continuous-wave and Q-switched operation of a resonantly pumped Ho:YAlO3 laser.

    PubMed

    Yao, Bao-Quan; Duan, Xiao-Ming; Zheng, Liang-Liang; Ju, You-Lun; Wang, Yue-Zhu; Zhao, Guang-Jun; Dong, Qin

    2008-09-15

    We demonstrated continuous-wave (CW) and Q-switched operation of a room-temperature Ho:YAlO(3) laser that is resonantly end-pumped by a diode-pumped Tm:YLF laser at 1.91 microm. The CW Ho:YAlO(3) laser generated 5.5 W of linearly polarized (EII c ) output at 2118 nm with beam quality factor of M(2) approximately 1.1 for an incident pump power of 13.8 W, corresponding to optical-to-optical conversion efficiency of 40%. Up to 1- mJ energy per pulse at pulse repetition frequency (PRF) of 5 kHz, and the maximum average power of 5.3-W with FWHM pulse duration of 30.5 ns at 20 kHz were achieved in Q-switched mode. PMID:18795004

  19. Computation of diffusion function measures in q-space using magnetic resonance hybrid diffusion imaging.

    PubMed

    Wu, Yu-Chien; Field, Aaron S; Alexander, Andrew L

    2008-06-01

    The distribution of water diffusion in biological tissues may be estimated by a 3-D Fourier transform (FT) of diffusion-weighted measurements in q-space. In this study, methods for estimating diffusion spectrum measures (the zero-displacement probability, the mean-squared displacement, and the orientation distribution function) directly from the q-space signals are described. These methods were evaluated using both computer simulations and hybrid diffusion imaging (HYDI) measurements on a human brain. The HYDI method obtains diffusion-weighted measurements on concentric spheres in q-space. Monte Carlo computer simulations were performed to investigate effects of noise, q-space truncation, and sampling interval on the measures. This new direct computation approach reduces HYDI data processing time and image artifacts arising from 3-D FT and regridding interpolation. In addition, it is less sensitive to the noise and q-space truncation effects than conventional approach. Although this study focused on data using the HYDI scheme, this computation approach may be applied to other diffusion sampling schemes including Cartesian diffusion spectrum imaging. PMID:18541492

  20. System test of an optoelectronic gyroscope based on a high Q-factor InP ring resonator

    NASA Astrophysics Data System (ADS)

    Dell'Olio, Francesco; Indiveri, Fabrizio; Innone, Filomena; Dello Russo, Pasquale; Ciminelli, Caterina; Armenise, Mario N.

    2014-12-01

    The experimental results of the system test of an optical resonant passive gyroscope based on a high Q-factor ring resonator in InP technology are reported. The open loop configuration based on the phase modulation was preferred among the analyzed configuration options, especially because it is potentially suitable for the monolithic integration of the entire sensor on a single chip. The setup components are described with a special emphasis on a custom digital readout board based on a field-programmable gate array. The board processes the input signals according to the proportional-integral algorithm which has been implemented through an optimized firmware. For the system test, the sensor rotation has been simulated using two properly driven acousto-optic modulators. The results reported here prove the gyro functionality and are a good starting point for the full development of the sensor.

  1. Photon trapping in a high-Q cavity by non-resonant atoms coupled with an external broadband vacuum field

    NASA Astrophysics Data System (ADS)

    Basharov, A. M.

    2012-05-01

    A new effect of the decay suppression of photon mode non-resonant to the cavity atoms coupled with an external broadband vacuum field has been described. At a certain number Nacr of cavity atoms, the emission of cavity photons due to the non-resonant interaction with cavity atoms has been stopped by the Stark interaction of cavity atoms with the external broadband vacuum field. In the case of high-Q cavity this provides the effect of radiation trapping. The cavity photon has obtained an additional energy shift. These results have been obtained on the basis of a theory of localized quantum open systems developed with the help of the quantum stochastic differential equation of the generalized Langevin (non-Wiener) type.

  2. Encapsulated high frequency (235 kHz), high-Q (100 k) disk resonator gyroscope with electrostatic parametric pump

    NASA Astrophysics Data System (ADS)

    Ahn, C. H.; Nitzan, S.; Ng, E. J.; Hong, V. A.; Yang, Y.; Kimbrell, T.; Horsley, D. A.; Kenny, T. W.

    2014-12-01

    In this paper, we explore the effects of electrostatic parametric amplification on a high quality factor (Q > 100 000) encapsulated disk resonator gyroscope (DRG), fabricated in <100> silicon. The DRG was operated in the n = 2 degenerate wineglass mode at 235 kHz, and electrostatically tuned so that the frequency split between the two degenerate modes was less than 100 mHz. A parametric pump at twice the resonant frequency is applied to the sense axis of the DRG, resulting in a maximum scale factor of 156.6 μV/(°/s), an 8.8× improvement over the non-amplified performance. When operated with a parametric gain of 5.4, a minimum angle random walk of 0.034°/√h and bias instability of 1.15°/h are achieved, representing an improvement by a factor of 4.3× and 1.5×, respectively.

  3. Q spoiling in deformed optical microdisks due to resonance-assisted tunneling

    NASA Astrophysics Data System (ADS)

    Kullig, Julius; Wiersig, Jan

    2016-08-01

    A recent experiment by Kwak et al. [Sci. Rep. 5, 9010 (2015), 10.1038/srep09010] demonstrated the relevance of resonance-assisted tunneling for optical microcavities where resonance chains emerge in phase space due to boundary deformations. In this paper we adapt the perturbative description of resonance-assisted tunneling to calculate optical modes and the imaginary part of their complex wavenumber which determines the lifetime of the mode. We demonstrate our method at three example cavity shapes and compare our results to numerical data and perturbation theory for weakly deformed microdisk cavities.

  4. Radio frequency spectral characterization and model parameters extraction of high Q optical resonators.

    PubMed

    Abdallah, Zeina; Boucher, Yann G; Fernandez, Arnaud; Balac, Stéphane; Llopis, Olivier

    2016-01-01

    A microwave domain characterization approach is proposed to determine the properties of high quality factor optical resonators. This approach features a very high precision in frequency and aims to acquire a full knowledge of the complex transfer function (amplitude and phase) characterizing an optical resonator using a microwave vector network analyzer. It is able to discriminate between the different coupling regimes, from the under-coupling to the selective amplification, and it is used together with a model from which the main resonator parameters are extracted, i.e. coupling factor, intrinsic losses, phase slope, intrinsic and external quality factor. PMID:27251460

  5. Q spoiling in deformed optical microdisks due to resonance-assisted tunneling.

    PubMed

    Kullig, Julius; Wiersig, Jan

    2016-08-01

    A recent experiment by Kwak et al. [Sci. Rep. 5, 9010 (2015)10.1038/srep09010] demonstrated the relevance of resonance-assisted tunneling for optical microcavities where resonance chains emerge in phase space due to boundary deformations. In this paper we adapt the perturbative description of resonance-assisted tunneling to calculate optical modes and the imaginary part of their complex wavenumber which determines the lifetime of the mode. We demonstrate our method at three example cavity shapes and compare our results to numerical data and perturbation theory for weakly deformed microdisk cavities. PMID:27627293

  6. Radio frequency spectral characterization and model parameters extraction of high Q optical resonators

    PubMed Central

    Abdallah, Zeina; Boucher, Yann G.; Fernandez, Arnaud; Balac, Stéphane; Llopis, Olivier

    2016-01-01

    A microwave domain characterization approach is proposed to determine the properties of high quality factor optical resonators. This approach features a very high precision in frequency and aims to acquire a full knowledge of the complex transfer function (amplitude and phase) characterizing an optical resonator using a microwave vector network analyzer. It is able to discriminate between the different coupling regimes, from the under-coupling to the selective amplification, and it is used together with a model from which the main resonator parameters are extracted, i.e. coupling factor, intrinsic losses, phase slope, intrinsic and external quality factor. PMID:27251460

  7. Radio frequency spectral characterization and model parameters extraction of high Q optical resonators

    NASA Astrophysics Data System (ADS)

    Abdallah, Zeina; Boucher, Yann G.; Fernandez, Arnaud; Balac, Stéphane; Llopis, Olivier

    2016-06-01

    A microwave domain characterization approach is proposed to determine the properties of high quality factor optical resonators. This approach features a very high precision in frequency and aims to acquire a full knowledge of the complex transfer function (amplitude and phase) characterizing an optical resonator using a microwave vector network analyzer. It is able to discriminate between the different coupling regimes, from the under-coupling to the selective amplification, and it is used together with a model from which the main resonator parameters are extracted, i.e. coupling factor, intrinsic losses, phase slope, intrinsic and external quality factor.

  8. High-Q micromechanical resonators for mass sensing in dissipative media

    NASA Astrophysics Data System (ADS)

    Tappura, Kirsi; Pekko, Panu; Seppä, Heikki

    2011-06-01

    Single crystal silicon-based micromechanical resonators are developed for mass sensing in dissipative media. The design aspects and preliminary characterization of the resonators are presented. For the suggested designs, quality factors of about 20 000 are typically measured in air at atmospheric pressure and 1000-2000 in contact with liquid. The performance is based on a wine-glass-type lateral bulk acoustic mode excited in a rectangular resonator plate. The mode essentially eliminates the radiation of acoustic energy into the sample media leaving viscous drag as the dominant fluid-based dissipation mechanism in the system. For a mass loading distributed over the central areas of the resonator a sensitivity of 27 ppm ng-1 is measured exhibiting good agreement with the results of the finite element method-based simulations. It is also shown that the mass sensitivity can be somewhat enhanced, not only by the proper distribution of the loaded mass, but also by introducing shallow barrier structures on the resonator.

  9. Magnetic Resonance Q Mapping Reveals a Decrease in Microvessel Density in the arcAβ Mouse Model of Cerebral Amyloidosis

    PubMed Central

    Ielacqua, Giovanna D.; Schlegel, Felix; Füchtemeier, Martina; Xandry, Jael; Rudin, Markus; Klohs, Jan

    2016-01-01

    Alterations in density and morphology of the cerebral microvasculature have been reported to occur in Alzheimer's disease patients and animal models of the disease. In this study we compared magnetic resonance imaging (MRI) techniques for their utility to detect age-dependent changes of the cerebral vasculature in the arcAβ mouse model of cerebral amyloidosis. Dynamic susceptibility contrast (DSC)-MRI was performed by tracking the passage of a superparamagnetic iron oxide nanoparticle in the brain with dynamic gradient echo planar imaging (EPI). From this measurements relative cerebral blood volume [rCBV(DSC)] and relative cerebral blood flow (rCBF) were estimated. For the same animal maps of the relaxation shift index Q were computed from high resolution gradient echo and spin echo data that were acquired before and after superparamagnetic iron oxide (SPIO) nanoparticle injection. Q-values were used to derive estimates of microvessel density. The change in the relaxation rates ΔR2* obtained from pre- and post-contrast gradient echo data was used for the alternative determination of rCBV [rCBV(ΔR2*)]. Linear mixed effects modeling found no significant association between rCBV(DSC), rCBV(ΔR2*), rCBF, and Q with genotype in 13-month old mice [compared to age-matched non-transgenic littermates (NTLs)] for any of the evaluated brain regions. In 24-month old mice there was a significant association for rCBV(DSC) with genotype in the cerebral cortex, and for rCBV(ΔR2*) in the cerebral cortex and cerebellum. For rCBF there was a significant association in the cerebellum but not in other brain regions. Q-values in the olfactory bulb, cerebral cortex, striatum, hippocampus, and cerebellum in 24-month old mice were significantly associated with genotype. In those regions Q-values were reduced between 11 and 26% in arcAβ mice compared to age-matched NTLs. Vessel staining with CD31 immunohistochemistry confirmed a reduction of microvessel density in the old arcAβ mice

  10. Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction

    SciTech Connect

    Haluk Denizli; James Mueller; Steven Dytman; M.L. Leber; R.D. Levine; J. Miles; Kui Kim; Gary Adams; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; Burin Asavapibhop; G. Asryan; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; Steve Barrow; V. Batourine; Marco Battaglieri; Kevin Beard; Ivan Bedlinski; Ivan Bedlinskiy; Mehmet Bektasoglu; Matthew Bellis; Nawal Benmouna; Nicola Bianchi; Angela Biselli; Billy Bonner; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Catalina Cetina; Shifeng Chen; Philip Cole; Alan Coleman; Patrick Collins; Philip Coltharp; Dieter Cords; Pietro Corvisiero; Donald Crabb; Volker Crede; John Cummings; Natalya Dashyan; Raffaella De Vita; Enzo De Sanctis; Pavel Degtiarenko; Lawrence Dennis; Alexandre Deur; Kalvir Dhuga; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; P. Dragovitsch; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Lamiaa Elfassi; Latifa Elouadrhiri; A. Empl; Paul Eugenio; Laurent Farhi; Renee Fatemi; Gleb Fedotov; Gerald Feldman; Robert Feuerbach; Tony Forest; Valera Frolov; Herbert Funsten; Sally Gaff; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Pascal Girard; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Ralf Gothe; Keith Griffioen; Michel Guidal; Matthieu Guillo; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Kawtar Hafidi; Hayk Hakobyan; Rafael Hakobyan; John Hardie; David Heddle; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Jingliang Hu; Charles Hyde; Charles Hyde-Wright; Yordanka Ilieva; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; J.H. Kelley; James Kellie; Mahbubul Khandaker; K. Kim; Wooyoung Kim; Andreas Klein; Franz Klein; Mike Klusman; Mikhail Kossov; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Kenneth Livingston; Haiyun Lu; K. Lukashin; Marion MacCormick; Joseph Manak; Nikolai Markov; Simeon McAleer; Bryan McKinnon; John McNabb; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Ralph Minehart; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; M. Moteabbed; Valeria Muccifora; Gordon Mutchler; Pawel Nadel-Turonski; James Napolitano; Rakhsha Nasseripour; Steve Nelson; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Grant O'Rielly; Mikhail Osipenko; Alexander Ostrovidov; Kijun Park; Evgueni Pasyuk; Craig Paterson; Gerald Peterson; Sasha Philips; Joshua Pierce; Nikolay Pivnyuk; Dinko Pocanic; Oleg Pogorelko; Ermanno Polli; S. Pozdniakov; Barry Preedom; John Price; Yelena Prok; Dan Protopopescu; Liming Qin; Brian Raue; Gregory Riccardi; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; David Rowntree; Philip Rubin; Franck Sabatie; Konstantin Sabourov; Julian Salamanca; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Aziz Shafi; Youri Sharabian; Jeremiah Shaw; Nikolay Shvedunov; Sebastio Simionatto; Alexander Skabelin; Elton Smith; Lee Smith; Daniel Sober; Daria Sokhan; M. Spraker; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; I.I. Strakovsky; Steffen Strauch; Mauro Taiuti; Simon Taylor; David Tedeschi; Ulrike Thoma; R. Thompson; Avtandil Tkabladze; Svyatoslav Tkachenko; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Kebin Wang; Daniel Watts; Lawrence Weinstein; Henry Weller; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Junho Yun; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2007-07-01

    New cross sections for the reaction $ep \\to e'\\eta p$ are reported for total center of mass energy $W$=1.5--2.3 GeV and invariant squared momentum transfer $Q^2$=0.13--3.3 GeV$^2$. This large kinematic range allows extraction of new information about response functions, photocouplings, and $\\eta N$ coupling strengths of baryon resonances. A sharp structure is seen at $W\\sim$ 1.7 GeV. The shape of the differential cross section is indicative of the presence of a $P$-wave resonance that persists to high $Q^2$. Improved values are derived for the photon coupling amplitude for the $S_{11}$(1535) resonance. The new data greatly expands the $Q^2$ range covered and an interpretation of all data with a consistent parameterization is provided.

  11. High-sensitivity and wide-directivity ultrasound detection using high Q polymer microring resonators

    PubMed Central

    Ling, Tao; Chen, Sung-Liang; Guo, L. Jay

    2011-01-01

    Small size ultrahigh Q polymer microrings working at near visible wavelength have been experimentally demonstrated as ultralow noise ultrasound detectors with wide directivity at high frequencies (>20 MHz). By combining a resist reflow and a low bias continuous etching and passivation process in mold fabrication, imprinted polymer microrings with drastically improved sidewall smoothness were obtained. An ultralow noise-equivalent pressure of 21.4 Pa over 1–75 MHz range has been achieved using a fabricated detector of 60 μm diameter. The device’s wide acceptance angle with high sensitivity considerably benefits ultrasound-related imaging. PMID:21673832

  12. Molybdenum-rhenium alloy based high-Q superconducting microwave resonators

    SciTech Connect

    Singh, Vibhor Schneider, Ben H.; Bosman, Sal J.; Merkx, Evert P. J.; Steele, Gary A.

    2014-12-01

    Superconducting microwave resonators (SMRs) with high quality factors have become an important technology in a wide range of applications. Molybdenum-Rhenium (MoRe) is a disordered superconducting alloy with a noble surface chemistry and a relatively high transition temperature. These properties make it attractive for SMR applications, but characterization of MoRe SMR has not yet been reported. Here, we present the fabrication and characterization of SMR fabricated with a MoRe 60–40 alloy. At low drive powers, we observe internal quality-factors as high as 700 000. Temperature and power dependence of the internal quality-factors suggest the presence of the two level systems from the dielectric substrate dominating the internal loss at low temperatures. We further test the compatibility of these resonators with high temperature processes, such as for carbon nanotube chemical vapor deposition growth, and their performance in the magnetic field, an important characterization for hybrid systems.

  13. High speed on-chip current measurement using a low-Q tunable LC resonator

    NASA Astrophysics Data System (ADS)

    Campbell, Brooks; Chen, Z.; Chiaro, B.; Dunsworth, A.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Vainsencher, A.; Wenner, J.; Barends, R.; Chen, Y.; Fowler, A.; Jeffrey, E.; Kelly, J.; Lucero, E.; Megrant, A.; Mutus, J.; Neeley, M.; Roushan, P.; Sank, D.; White, T. C.; Martinis, John M.

    Superconducting quantum computing technology requires precise high frequency analog waveforms to perform single and multi-qubit gates. Due to signal path irregularities, gates are tuned-up by perturbing the drive signal until qubit state populations indicate the desired gate function. A more direct approach is to measure the effect of circuit imperfections by sampling control waveforms directly, as seen by the qubits. We proceed by measuring the resonant frequency shift of a capacitively shunted SQUID and converting the control waveform to DC flux applied to the SQUID. By measuring the reflected phase of a CW tone applied to this resonant circuit while applying the resonance-shifting flux pulse, we are able to reconstruct the current waveform of the input pulse at the SQUID loop. This device's geometry is the same as the z-control lines used in qubit experiments to control the qubit frequency. I will present this method of on-chip waveform sampling for superconducting circuits in addition to proof of concept data. This technique opens the door for improved gate bring up and a deeper understanding of qubit control as well as the circuit parasitics that deform these waveforms.

  14. Single-crystal sapphire resonator at millikelvin temperatures: Observation of thermal bistability in high- Q factor whispering gallery modes

    NASA Astrophysics Data System (ADS)

    Creedon, Daniel L.; Tobar, Michael E.; Le Floch, Jean-Michel; Reshitnyk, Yarema; Duty, Timothy

    2010-09-01

    Resonance modes in single crystal sapphire (α-Al2O3) exhibit extremely high electrical and mechanical Q factors ( ≈109 at 4 K), which are important characteristics for electromechanical experiments at the quantum limit. We report the cool down of a bulk sapphire sample below superfluid liquid-helium temperature (1.6 K) to as low as 25 mK. The electromagnetic properties were characterized at microwave frequencies, and we report the observation of electromagnetically induced thermal bistability in whispering gallery modes due to the material T3 dependence on thermal conductivity and the ultralow dielectric loss tangent. We identify “magic temperatures” between 80 and 2100 mK, the lowest ever measured, at which the onset of bistability is suppressed and the frequency-temperature dependence is annulled. These phenomena at low temperatures make sapphire suitable for quantum metrology and ultrastable clock applications, including the possible realization of the quantum-limited sapphire clock.

  15. Diffusion maps clustering for magnetic resonance q-ball imaging segmentation.

    PubMed

    Wassermann, Demian; Descoteaux, Maxime; Deriche, Rachid

    2008-01-01

    White matter fiber clustering aims to get insight about anatomical structures in order to generate atlases, perform clear visualizations, and compute statistics across subjects, all important and current neuroimaging problems. In this work, we present a diffusion maps clustering method applied to diffusion MRI in order to segment complex white matter fiber bundles. It is well known that diffusion tensor imaging (DTI) is restricted in complex fiber regions with crossings and this is why recent high-angular resolution diffusion imaging (HARDI) such as Q-Ball imaging (QBI) has been introduced to overcome these limitations. QBI reconstructs the diffusion orientation distribution function (ODF), a spherical function that has its maxima agreeing with the underlying fiber populations. In this paper, we use a spherical harmonic ODF representation as input to the diffusion maps clustering method. We first show the advantage of using diffusion maps clustering over classical methods such as N-Cuts and Laplacian eigenmaps. In particular, our ODF diffusion maps requires a smaller number of hypothesis from the input data, reduces the number of artifacts in the segmentation, and automatically exhibits the number of clusters segmenting the Q-Ball image by using an adaptive scale-space parameter. We also show that our ODF diffusion maps clustering can reproduce published results using the diffusion tensor (DT) clustering with N-Cuts on simple synthetic images without crossings. On more complex data with crossings, we show that our ODF-based method succeeds to separate fiber bundles and crossing regions whereas the DT-based methods generate artifacts and exhibit wrong number of clusters. Finally, we show results on a real-brain dataset where we segment well-known fiber bundles. PMID:18317506

  16. Q-band ferromagnetic resonance for CoPt-based stacked perpendicular recording media with interlayer exchange coupling

    NASA Astrophysics Data System (ADS)

    Hinata, Shintaro; Saito, Shin; Hasegawa, Daiji; Takahashi, Migaku

    2011-04-01

    The ferromagnetic interlayer exchange coupling Jinter for stacked perpendicular recording media with a granular layer (GL)/interlayer (IL)/alloy capping layer (CL) structure was quantitatively evaluated by Q-band ferromagnetic resonance (FMR). Two resonances with acoustic and optical precession modes were observed in the FMR signals from the stacked media. Fitting using the Landau-Lifshitz-Gilbert (LLG) equation indicated that Jinter increased from 0.55 to 1.83 erg/cm2 when the Pt IL thickness was reduced from 2.0 to 1.0 nm for media based on Co82Cr10Pt8-CL (4 nm) and Co74Pt16Cr10-8 mol (SiO2)-GL (16 nm). The optimum Pt IL thickness at which the switching field distribution was minimized due to a large reduction in the saturation field of the stacked media was found to correspond to the boundary condition between antiparallel and parallel precession of the magnetic moments of the GL and CL in FMR.

  17. High Q-factor microring resonator wrapped by the curved waveguide

    PubMed Central

    Cai, Dong-Po; Lu, Jyun-Hong; Chen, Chii-Chang; Lee, Chien-Chieh; Lin, Chu-En; Yen, Ta-Jen

    2015-01-01

    In this work, we study the performances of ring resonators of different type by analyzing the bending loss and the condition of the critical coupling. We propose that the bending loss of microring can be reduced by wrapping a concentrically curved waveguide. The difference of propagation constant between two concentrically curved waveguides can be tuned by adjusting the bus waveguide width to optimize the critical coupling. Furthermore, we propose to enlarge the difference of the propagation constant between two concentrically curved waveguides to maintain the circulating light in the ring to obtain higher quality factor. In this study, the highest quality factor that we measured is 7 × 105. PMID:25993265

  18. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation.

    PubMed

    Reijerse, Edward; Lendzian, Friedhelm; Isaacson, Roger; Lubitz, Wolfgang

    2012-01-01

    We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE(011) cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ∼60%). The resonator accepts 3mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor (Q(L)) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ((1)H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the

  19. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation

    NASA Astrophysics Data System (ADS)

    Reijerse, Edward; Lendzian, Friedhelm; Isaacson, Roger; Lubitz, Wolfgang

    2012-01-01

    We describe a frequency tunable Q-band cavity (34 GHz) designed for CW and pulse Electron Paramagnetic Resonance (EPR) as well as Electron Nuclear Double Resonance (ENDOR) and Electron Electron Double Resonance (ELDOR) experiments. The TE 011 cylindrical resonator is machined either from brass or from graphite (which is subsequently gold plated), to improve the penetration of the 100 kHz field modulation signal. The (self-supporting) ENDOR coil consists of four 0.8 mm silver posts at 2.67 mm distance from the cavity center axis, penetrating through the plunger heads. It is very robust and immune to mechanical vibrations. The coil is electrically shielded to enable CW ENDOR experiments with high RF power (500 W). The top plunger of the cavity is movable and allows a frequency tuning of ±2 GHz. In our setup the standard operation frequency is 34.0 GHz. The microwaves are coupled into the resonator through an iris in the cylinder wall and matching is accomplished by a sliding short in the coupling waveguide. Optical excitation of the sample is enabled through slits in the cavity wall (transmission ˜60%). The resonator accepts 3 mm o.d. sample tubes. This leads to a favorable sensitivity especially for pulse EPR experiments of low concentration biological samples. The probehead dimensions are compatible with that of Bruker flexline Q-band resonators and it fits perfectly into an Oxford CF935 Helium flow cryostat (4-300 K). It is demonstrated that, due to the relatively large active sample volume (20-30 μl), the described resonator has superior concentration sensitivity as compared to commercial pulse Q-band resonators. The quality factor ( Q L) of the resonator can be varied between 2600 (critical coupling) and 1300 (over-coupling). The shortest achieved π/2-pulse durations are 20 ns using a 3 W microwave amplifier. ENDOR (RF) π-pulses of 20 μs ( 1H @ 51 MHz) were obtained for a 300 W amplifier and 7 μs using a 2500 W amplifier. Selected applications of the

  20. Single-crystal sapphire resonator at millikelvin temperatures: Observation of thermal bistability in high-Q factor whispering gallery modes

    SciTech Connect

    Creedon, Daniel L.; Tobar, Michael E.; Le Floch, Jean-Michel; Reshitnyk, Yarema; Duty, Timothy

    2010-09-01

    Resonance modes in single crystal sapphire ({alpha}-Al{sub 2}O{sub 3}) exhibit extremely high electrical and mechanical Q factors ({approx_equal}10{sup 9} at 4 K), which are important characteristics for electromechanical experiments at the quantum limit. We report the cool down of a bulk sapphire sample below superfluid liquid-helium temperature (1.6 K) to as low as 25 mK. The electromagnetic properties were characterized at microwave frequencies, and we report the observation of electromagnetically induced thermal bistability in whispering gallery modes due to the material T{sup 3} dependence on thermal conductivity and the ultralow dielectric loss tangent. We identify ''magic temperatures'' between 80 and 2100 mK, the lowest ever measured, at which the onset of bistability is suppressed and the frequency-temperature dependence is annulled. These phenomena at low temperatures make sapphire suitable for quantum metrology and ultrastable clock applications, including the possible realization of the quantum-limited sapphire clock.

  1. Effects of Coenzyme Q10 on Skeletal Muscle Oxidative Metabolism in Statin Users Assessed Using 31P Magnetic Resonance Spectroscopy: a Randomized Controlled Study

    PubMed Central

    Buettner, Catherine; Greenman, Robert L.; Ngo, Long H.; Wu, Jim S.

    2016-01-01

    Objectives Statins partially block the production of coenzyme Q10 (CoQ10), an essential component for mitochondrial function. Reduced skeletal muscle mitochondrial oxidative capacity has been proposed to be a cause of statin myalgia and can be measured using 31phosphorus magnetic resonance spectroscopy (31P-MRS). The purpose of this study is to assess the effect of CoQ10 oral supplementation on mitochondrial function in statin users using 31P-MRS. Design/Setting In this randomized, double-blind, placebo-controlled pilot study, 21 adults aged 47–73 were randomized to statin+placebo (n=9) or statin+CoQ10 (n=12). Phosphocreatine (PCr) recovery kinetics of calf muscles were assessed at baseline (off statin and CoQ10) and 4 weeks after randomization to either statin+CoQ10 or statin+placebo. Results Baseline and post-treatment PCr recovery kinetics were assessed for 19 participants. After 4 weeks of statin+ CoQ10 or statin+placebo, the overall relative percentage change (100*(baseline−follow up)/baseline) in PCr recovery time was −15.1% compared with baseline among all participants, (p-value=0.258). Participants randomized to statin+placebo (n=9) had a relative percentage change in PCr recovery time of −18.9%, compared to −7.7% among participants (n=10) receiving statin+CoQ10 (p-value=0.448). Conclusions In this pilot study, there was no significant change in mitochondrial function in patients receiving 4 weeks of statin+CoQ10 oral therapy when compared to patients on statin+placebo. PMID:27610419

  2. Nuclear Magnetic Resonance Solution Structures of Lacticin Q and Aureocin A53 Reveal a Structural Motif Conserved among Leaderless Bacteriocins with Broad-Spectrum Activity.

    PubMed

    Acedo, Jeella Z; van Belkum, Marco J; Lohans, Christopher T; Towle, Kaitlyn M; Miskolzie, Mark; Vederas, John C

    2016-02-01

    Lacticin Q (LnqQ) and aureocin A53 (AucA) are leaderless bacteriocins from Lactococcus lactis QU5 and Staphylococcus aureus A53, respectively. These bacteriocins are characterized by the absence of an N-terminal leader sequence and are active against a broad range of Gram-positive bacteria. LnqQ and AucA consist of 53 and 51 amino acids, respectively, and have 47% identical sequences. In this study, their three-dimensional structures were elucidated using solution nuclear magnetic resonance and were shown to consist of four α-helices that assume a very similar compact, globular overall fold (root-mean-square deviation of 1.7 Å) with a highly cationic surface and a hydrophobic core. The structures of LnqQ and AucA resemble the shorter two-component leaderless bacteriocins, enterocins 7A and 7B, despite having low levels of sequence identity. Homology modeling revealed that the observed structural motif may be shared among leaderless bacteriocins with broad-spectrum activity against Gram-positive organisms. The elucidated structures of LnqQ and AucA also exhibit some resemblance to circular bacteriocins. Despite their similar overall fold, inhibition studies showed that LnqQ and AucA have different antimicrobial potency against the Gram-positive strains tested, suggesting that sequence disparities play a crucial role in their mechanisms of action. PMID:26771761

  3. Electroexcitation of the Roper resonance for 1.7 < Q**2 < 4.5 -GeV2 in vec-ep ---> en pi+

    SciTech Connect

    Aznauryan, Inna; Burkert, Volker; Kim, Wooyoung; Park, Kil; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Bagdasaryan, H.; Baillie, Nathan; Ball, J.P.; Ball, Jacques; Baltzell, Nathan; Barrow, Steve; Batourine, V.; Battaglieri, Marco; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bonner, Billy; Bookwalter, Craig; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, Wilbert; Brooks, William; Bultmann, S.; Bueltmann, Stephen; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Casey, Liam; Cazes, Antoine; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Cords, Dieter; Corvisiero, Pietro; Crabb, Donald; Crede, Volker; Cummings, John; Dale, Daniel; Dashyan, Natalya; De Masi, Rita; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Deur, Alexandre; Dhamija, Seema; Dharmawardane, Kahanawita; Dhuga, Kalvir; Dickson, Richard; Djalali, Chaden; Dodge, Gail; Donnelly, J.; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fatemi, Renee; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Forest, Tony; Fradi, Ahmed; Funsten, Herbert; Gabrielyan, Marianna; Garcon, Michel; Gavalian, Gagik; Gevorgyan, Nerses; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gohn, Wesley; Golovach, Evgeny; Gonenc, Atilla; Gordon, Christopher; Gothe, Ralf; Graham, L.; Griffioen, Keith; Guidal, Michel; Guillo, Matthieu; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hafnaoui, Khadija; Hakobyan, Hayk; Hakobyan, Rafael; Hanretty, Charles; Hardie, John; Hassall, Neil; Heddle, David; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Keller, Dustin; Kellie, James; Khandaker, Mahbubul; Kim, Kui; Klein, Andreas; Klein, Andreas; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Kuznetsov, Viacheslav; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, Dave; Lee, T.; Lima, Ana; Livingston, Kenneth; Lu, Haiyun; Lukashin, Konstantin; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mehrabyan, Surik; Melone, Joseph; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Morand, Ludyvine; Moreno, Brahim; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Nasseripour, Rakhsha; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; O'Rielly, Grant; Osipenko, Mikhail; Ostrovidov, Alexander; Park, S.; Pasyuk, Evgueni; Paterson, Craig; Anefalos Pereira, S.; Philips, Sasha; Pierce, Jerome; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Polli, Ermanno; Popa, Iulian; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Prok, Yelena; Protopopescu, Dan; Qin, Liming; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Rosner, Guenther; Rossi, Patrizia; Rowntree, David; Rubin, Philip; Sabatie, Franck; Saini, Mukesh; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schott, Diane; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shaw, J.; Shvedunov, Nikolay; Skabelin, Alexander; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinskiy, Aleksey; Stepanyan, Samuel; Stepanyan, Stepan; Stokes, Burnham

    2008-10-01

    DOI: http://dx.doi.org/10.1103/PhysRevC.78.045209
    The helicity amplitudes of the electroexcitation of the Roper resonance are extracted for 1.7 < Q2 < 4.5 GeV2 from recent high precision JLab-CLAS cross section and longitudinally polarized beam asymmetry data for pi+ electroproduction on protons at W=1.15-1.69 GeV. The analysis is made using two approaches, dispersion relations and a unitary isobar model, which give consistent results. It is found that the transverse helicity amplitude A_{1/2} for the gamma* p -> N(1440)P11 transition, which is large and negative at Q2=0, becomes large and positive at Q2 ~ 2 GeV2, and then drops slowly with Q2. The longitudinal helicity amplitude S_{1/2}, which was previously found from CLAS ep -> eppi0,enpi+ data to be large and positive at Q2=0.4,0.65 GeV2, drops with Q2. Available model predictions for gamma* p -> N(1440)P11 allow us to conclude that these results provide strong evidence in favor of N(1440)P11 as a first radial excitation of

  4. Creating traveling waves from standing waves from the gyrotropic paramagnetic properties of Fe{sup 3+} ions in a high-Q whispering gallery mode sapphire resonator

    SciTech Connect

    Benmessai, Karim; Tobar, Michael Edmund; Bazin, Nicholas; Bourgeois, Pierre-Yves; Kersale, Yann; Giordano, Vincent

    2009-05-01

    We report observations of the gyrotropic change in magnetic susceptibility of the Fe{sup 3+} electron paramagnetic resonance at 12.037 GHz (between spin states |1/2> and |3/2>) in sapphire with respect to the applied magnetic field. Measurements were made by observing the response of the high-Q whispering gallery doublet in a Hemex sapphire resonator cooled to 5 K. The doublets initially existed as standing waves at zero field and were transformed to traveling waves due to the gyrotropic response.

  5. Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

    NASA Astrophysics Data System (ADS)

    Brand, Christian; Winkler, Andreas; Hess, Peter; Miklós, András; Bozóki, Zoltán; Sneider, János

    1995-06-01

    The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N 2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the

  6. Improved L-C resonant decay technique for Q measurement of quasilinear power inductors: New results for MPP and ferrite powdered cores

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Gerber, Scott S.

    1995-01-01

    The L-C resonant decay technique for measuring circuit Q or losses is improved by eliminating the switch from the inductor-capacitor loop. A MOSFET switch is used instead to momentarily connect the resonant circuit to an existing voltage source, which itself is gated off during the decay transient. Very reproducible, low duty cycle data could be taken this way over a dynamic voltage range of at least 10:1. Circuit Q is computed from a polynomial fit to the sequence of the decaying voltage maxima. This method was applied to measure the losses at 60 kHz in inductors having loose powder cores of moly permalloy and an Mn-Zn power ferrite. After the copper and capacitor losses are separated out, the resulting specific core loss is shown to be roughly as expected for the MPP powder, but anomalously high for the ferrite powder. Possible causes are mentioned.

  7. Diverse output states from an all-normal dispersion ytterbium-doped fiber laser: Q-switch, dissipative soliton resonance, and noise-like pulse

    NASA Astrophysics Data System (ADS)

    Xu, Z. W.; Zhang, Z. X.

    2013-06-01

    An all-normal-dispersion ytterbium-doped fiber ring laser has been demonstrated, with different operation regimes: Q-switch, CW mode-locking and noise-like pulses, depending on the pump power and suitable orientation of the polarization controllers. As a transition between Q-switch and CW mode-locking, Q-switched mode-locking has also been observed. Moreover, our experiment shows that the CW mode-locking operation is the result of dissipative soliton resonance in the all-normal-dispersion fiber laser without external filter, which is a new way to generate high-energy pulses. This fiber laser with diverse outputs has many potential applications, and is helpful to investigate laser dynamics.

  8. Exclusive single pion electroproduction off the proton in the high-lying resonances at Q2 < 5 GeV2 from CLAS

    SciTech Connect

    Park, Kijun

    2014-09-01

    The differential cross sections and structure functions for the exclusive electroproduction process ep --> e'n pi+ were measured in the range of the invariantmass for the np+ system 1.6 GeV lte W lte 2.0 GeV, and the photon virtuality 1.8 GeV2 lte Q2 lte 4.0 GeV2 using CLAS at Jefferson Lab. For the first time, these kinematics are probed in the exclusive p+ production from the protons with nearly full coverage in the azimuthal and polar angles of the np+ center-of-mass system. In this analysis, approximately 39,000 differential cross-section data points in terms of W, Q2, cosq theta* _ pi, and phi*_p-, were obtained. The preliminary differential cross section and structure function analyses are carried out, which allow us to extract the helicity amplitudes in high-lying resonances.

  9. Induced Proton Polarization for pi0 Electroproduction at Q2 = 0.126 GeV2/c2 Around the Delta(1232) Resonance

    SciTech Connect

    Glen Warren; Ricardo Alarcon; Christopher Armstrong; Burin Asavapibhop; David Barkhuff; William Bertozzi; Volker Burkert; J. Chen; Jian-Ping Chen; Joseph Comfort; Daniel Dale; George Dodson; S. Dolfini; K. Dow; Martin Epstein; Manouchehr Farkhondeh; John Finn; Shalev Gilad; Ralf Gothe; Xiaodong Jiang; Mark Jones; Kyungseon Joo; A. Karabarbounis; James Kelly; Stanley Kowalski; C. Kunz; D. Liu; R.W. Lourie; Richard Madey; Demetrius Margaziotis; Pete Markowitz; Justin McIntyre; C. Mertz; Brian Milbrath; Rory Miskimen; Joseph Mitchell; S. Mukhopadhyay; Costas Papanicolas; Charles Perdrisat; Vina Punjabi; Liming Qin; Paul Rutt; Adam Sarty; Jeffrey Shaw; S.B. Soong; D. Tieger; Christoph Tschalaer; William Turchinetz; Paul Ulmer; Scott Van Verst; C. Vellidis; Lawrence Weinstein; Steven Williamson; Rhett Woo; Alaen Young

    1998-12-01

    We present a measurement of the induced proton polarization P{sub n} in {pi}{sup 0} electroproduction on the proton around the {Delta} resonance. The measurement was made at a central invariant mass and a squared four-momentum transfer of W = 1231 MeV and Q{sup 2} = 0.126 GeV{sup 2}/c{sup 2}, respectively. We measured a large induced polarization, P{sub n} = -0.397 {+-} 0.055 {+-} 0.009. The data suggest that the scalar background is larger than expected from a recent effective Hamiltonian model.

  10. Invited Article: Dielectric material characterization techniques and designs of high-Q resonators for applications from micro to millimeter-waves frequencies applicable at room and cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Le Floch, Jean-Michel; Fan, Y.; Humbert, Georges; Shan, Qingxiao; Férachou, Denis; Bara-Maillet, Romain; Aubourg, Michel; Hartnett, John G.; Madrangeas, Valerie; Cros, Dominique; Blondy, Jean-Marc; Krupka, Jerzy; Tobar, Michael E.

    2014-03-01

    Dielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties. This includes exact simulation with precision numerical software and precise measurements of resonant modes. For example, we have developed the Whispering Gallery mode technique for microwave applications, which has now become the standard for characterizing low-loss structures. This paper will give some of the most common characterization techniques used in the micro to millimeter wave regime at room and cryogenic temperatures for designing high-Q dielectric loaded cavities.

  11. A High-Q Resonant Pressure Microsensor with Through-Glass Electrical Interconnections Based on Wafer-Level MEMS Vacuum Packaging

    PubMed Central

    Luo, Zhenyu; Chen, Deyong; Wang, Junbo; Li, Yinan; Chen, Jian

    2014-01-01

    This paper presents a high-Q resonant pressure microsensor with through-glass electrical interconnections based on wafer-level MEMS vacuum packaging. An approach to maintaining high-vacuum conditions by integrating the MEMS fabrication process with getter material preparation is presented in this paper. In this device, the pressure under measurement causes a deflection of a pressure-sensitive silicon square diaphragm, which is further translated to stress build up in “H” type doubly-clamped micro resonant beams, leading to a resonance frequency shift. The device geometries were optimized using FEM simulation and a 4-inch SOI wafer was used for device fabrication, which required only three photolithographic steps. In the device fabrication, a non-evaporable metal thin film as the getter material was sputtered on a Pyrex 7740 glass wafer, which was then anodically bonded to the patterned SOI wafer for vacuum packaging. Through-glass via holes predefined in the glass wafer functioned as the electrical interconnections between the patterned SOI wafer and the surrounding electrical components. Experimental results recorded that the Q-factor of the resonant beam was beyond 22,000, with a differential sensitivity of 89.86 Hz/kPa, a device resolution of 10 Pa and a nonlinearity of 0.02% F.S with the pressure varying from 50 kPa to 100 kPa. In addition, the temperature drift coefficient was less than −0.01% F.S/°C in the range of −40 °C to 70 °C, the long-term stability error was quantified as 0.01% F.S over a 5-month period and the accuracy of the microsensor was better than 0.01% F.S. PMID:25521385

  12. Ultra-high frequency, high Q/volume micromechanical resonators in a planar AlN phononic crystal

    NASA Astrophysics Data System (ADS)

    Ghasemi Baboly, M.; Alaie, S.; Reinke, C. M.; El-Kady, I.; Leseman, Z. C.

    2016-07-01

    This paper presents the first design and experimental demonstration of an ultrahigh frequency complete phononic crystal (PnC) bandgap aluminum nitride (AlN)/air structure operating in the GHz range. A complete phononic bandgap of this design is used to efficiently and simultaneously confine elastic vibrations in a resonator. The PnC structure is fabricated by etching a square array of air holes in an AlN slab. The fabricated PnC resonator resonates at 1.117 GHz, which corresponds to an out-of-plane mode. The measured bandgap and resonance frequencies are in very good agreement with the eigen-frequency and frequency-domain finite element analyses. As a result, a quality factor/volume of 7.6 × 1017/m3 for the confined resonance mode was obtained that is the largest value reported for this type of PnC resonator to date. These results are an important step forward in achieving possible applications of PnCs for RF communication and signal processing with smaller dimensions.

  13. Electronic structure of Q-A in reaction centers from Rhodobacter sphaeroides. I. Electron paramagnetic resonance in single crystals.

    PubMed Central

    Isaacson, R A; Lendzian, F; Abresch, E C; Lubitz, W; Feher, G

    1995-01-01

    The magnitude and orientation of the electronic g-tensor of the primary electron acceptor quinone radical anion, Q-A, has been determined in single crystals of zinc-substituted reaction centers of Rhodobacter sphaeroides R-26 at 275 K and at 80 K. To obtain high spectral resolution, EPR experiments were performed at 35 GHz and the native ubiquinone-10 (UQ10) in the reaction center was replaced by fully deuterated UQ10. The principal values and the direction cosines of the g-tensor axes with respect to the crystal axes a, b, c were determined. Freezing of the single crystals resulted in only minor changes in magnitude and orientation of the g-tensor. The orientation of Q-A as determined by the g-tensor axes deviates only by a few degrees (< or = 8 degrees) from the orientation of the neutral QA obtained from an average of four different x-ray structures of Rb. sphaeroides reaction centers. This deviation lies within the accuracy of the x-ray structure determinations. The g-tensor values measured in single crystals agree well with those in frozen solutions. Variations in g-values between Q-A, Q-B, and UQ10 radical ion in frozen solutions were observed and attributed to different environments. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 9 PMID:8527644

  14. Simulation of coupled bunch mode growth driven by a high-Q resonator: A transient response approach

    SciTech Connect

    Stahl, S.; Bogacz, S.A.

    1989-03-01

    In this article the use of a longitudinal phase-space tracking code, ESME, to simulate the growth of a coupled-bunch instability in the Fermilab Booster is examined. A description of the calculation of the resonant response is given, and results are presented for the growth of the coupled bunch instability in a ring in which all of the rf buckets are equally populated and in one in which several consecutive buckets are empty. 4 refs., 6 figs.

  15. Compact high-pulse-energy passively Q-switched Nd:YLF laser with an ultra-low-magnification unstable resonator: application for efficient optical parametric oscillator.

    PubMed

    Cho, C Y; Huang, Y P; Huang, Y J; Chen, Y C; Su, K W; Chen, Y F

    2013-01-28

    We exploit an ultra-low-magnification unstable resonator to develop a high-pulse-energy side-pumped passively Q-switched Nd:YLF/Cr⁴⁺:YAG laser with improving beam quality. A wedged laser crystal is employed in the cavity to control the emissions at 1047 nm and 1053 nm independently through the cavity alignment. The pulse energies at 1047 nm and 1053 nm are found to be 19 mJ and 23 mJ, respectively. The peak powers for both wavelengths are higher than 2 MW. Furthermore, the developed Nd:YLF lasers are employed to pump a monolithic optical parametric oscillator for confirming the applicability in nonlinear wavelength conversions. PMID:23389131

  16. On-Chip All-Optical Passive 3.55 Gbit/s NRZ-to-PRZ Format Conversion Using a High-Q Silicon-Based Microring Resonator

    NASA Astrophysics Data System (ADS)

    Zhai, Yao; Chen, Shao-Wu; Ren, Guang-Hui

    2010-10-01

    We report the experimental result of all-optical passive 3.55 Gbit/s non-return-to-zero (NRZ) to pseudo-return-to-zero (PRZ) format conversion using a high-quality-factor (Q-factor) silicon-based microring resonator notch filter on chip. The silicon-based microring resonator has 23800 Q-factor and 22 dB extinction ratio (ER), and the PRZ signals has about 108ps width and 4.98 dB ER.

  17. Recoil Polarization Measurements for Neutral Pion Electroproduction at Q^2=1 (GeV/c)^2 Near the Delta Resonance

    SciTech Connect

    James Kelly; et. Al.

    2005-09-01

    We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization for neutral pion electroproduction at Q{sup 2} = 1.0 (GeV/c){sup 2} in 10 bins of W across the Delta resonance. A total of 16 independent response functions were extracted, of which 12 were observed for the first time. Comparisons with recent model calculations show that response functions governed by real parts of interference products are determined relatively well near 1.232 GeV, but variations among models is large for response functions governed by imaginary parts and for both increases rapidly with W. We performed a nearly model-independent multipole analysis that adjusts complex multipoles with high partial waves constrained by baseline models. Parabolic fits to the W dependence of the multipole analysis around the Delta mass gives values for SMR = (-6.61 +/- 0.18)% and EMR = (-2.87 +/- 0.19)% that are distinctly larger than those from Legendre analysis of the same data. Similarly, the multipole analysis gives Re(S0+/M1+) = (+7.1 +/- 0.8)% at W=1.232 GeV, consistent with recent models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite severe. Finally, using a unitary isobar model (UIM), we find that excitation of the Roper resonance is dominantly longitudinal with S1/2 = (0.05 +/- 0.01) GeV{sup (-1/2)} at Q{sup 2}=1. The ReS0+ and ReE0+ multipoles favor pseudovector coupling over pseudoscalar coupling or a recently proposed mixed-coupling scheme, but the UIM does not reproduce the imaginary parts of 0+ multipoles well.

  18. Parameterisation of [σ1/2-σ3/2] for Q2>=0 and non-resonance contribution to the GDH sum rule

    NASA Astrophysics Data System (ADS)

    Bianchi, N.; Thomas, E.

    1999-03-01

    A description of the virtual photon absorption cross section difference [σ1/2-σ3/2] for the proton and neutron is obtained with a parameterisation based on a Regge type approach. The parametrisation is obtained from global fits to the cross section data derived from the spin asymmetries measured in deep inelastic scattering of longitudinally polarised leptons from polarised 1H, 3He and 2H targets in the range 0.3 GeV2<Q2<70 GeV2 and 4 GeV2Q2-transition. The contribution above the resonance region to the Gerasimov-Drell-Hearn sum rule for real and virtual photons has been evaluated. For the real photons this contribution accounts for a large fraction of the discrepancy between the sum rule expectations and the single pion photo-production analysis estimates.

  19. Research & Developments for Millimeter-Wave Dielectric Forsterite with Low Dielectric Constant, High Q, and Zero Temperature Coefficient of Resonant Frequency

    NASA Astrophysics Data System (ADS)

    Tsunooka, Tsutomu; Ando, Minato; Suzuki, Sadahiko; Yasufuku, Yoshitoyo; Ohsato, Hitoshi

    2013-09-01

    Forsterite Mg2SiO4 is a candidate for millimeter-wave dielectrics because of its high Q and low dielectric constant ɛr. Commercial forsterite has been improved with a high Q of 240,000 GHz using high-purity and fine raw materials, and the temperature coefficient of resonant frequency (TCf) can also be adjusted to near-zero ppm/°C by adding 24 wt % rutile compared with that in a previous study. In this study, the TCf, TCɛ, and ɛr of forsterite ceramics with rutile added are studied for the tuning conditions. Zero ppm/°C TCf of the forsterite with 30 and 25 wt % rutile added was achieved at 1200 °C for 2.5 and 2.25 h, respectively. The ɛr values of the near-zero TCf forsterite with 30 and 25 wt % rutile added are 11.3 and 10.2, respectively.

  20. Evaluation and optimization of quartz resonant-frequency retuned fork force sensors with high Q factors, and the associated electric circuits, for non-contact atomic force microscopy.

    PubMed

    Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko

    2016-02-01

    High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions. PMID:26931855

  1. Evaluation and optimization of quartz resonant-frequency retuned fork force sensors with high Q factors, and the associated electric circuits, for non-contact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ooe, Hiroaki; Fujii, Mikihiro; Tomitori, Masahiko; Arai, Toyoko

    2016-02-01

    High-Q factor retuned fork (RTF) force sensors made from quartz tuning forks, and the electric circuits for the sensors, were evaluated and optimized to improve the performance of non-contact atomic force microscopy (nc-AFM) performed under ultrahigh vacuum (UHV) conditions. To exploit the high Q factor of the RTF sensor, the oscillation of the RTF sensor was excited at its resonant frequency, using a stray capacitance compensation circuit to cancel the excitation signal leaked through the stray capacitor of the sensor. To improve the signal-to-noise (S/N) ratio in the detected signal, a small capacitor was inserted before the input of an operational (OP) amplifier placed in an UHV chamber, which reduced the output noise from the amplifier. A low-noise, wideband OP amplifier produced a superior S/N ratio, compared with a precision OP amplifier. The thermal vibrational density spectra of the RTF sensors were evaluated using the circuit. The RTF sensor with an effective spring constant value as low as 1000 N/m provided a lower minimum detection limit for force differentiation. A nc-AFM image of a Si(111)-7 × 7 surface was produced with atomic resolution using the RTF sensor in a constant frequency shift mode; tunneling current and energy dissipation images with atomic resolution were also simultaneously produced. The high-Q factor RTF sensor showed potential for the high sensitivity of energy dissipation as small as 1 meV/cycle and the high-resolution analysis of non-conservative force interactions.

  2. Numerical study on localized defect modes in two-dimensional lattices: a high Q-resonant cavity

    NASA Astrophysics Data System (ADS)

    Moussa, R.; Salomon, L.; de Fornel, F.; Aourag, H.

    2003-10-01

    The spectral widths and the quality factors of defect modes localized for different defects structures formed in a 2D photonic crystal composed of a square lattice of circular rods of indium antimonide (InSb) are theoretically investigated. It is first shown that some factors such as the lattice nature, the line defect orientation, the nature and the defect width have a significant influence on the optical properties of the studied structures and can improve the Q factor and defect peak transmission intensity. Particularly, the transmission spectra of the defects calculated by means the transfer-matrix-method for a particular structure of eight line defects introduced in its center showed a high-quality factor which exceeded 4×10 5. This is an important issue for the fabrication of photonic crystals with such desired properties.

  3. Standardless multicomponent qNMR analysis of compounds with overlapped resonances based on the combination of ICA and PULCON.

    PubMed

    Monakhova, Yulia B; Lachenmeier, Dirk W; Kuballa, Thomas; Mushtakova, Svetlana P

    2015-10-01

    A fast and reliable nuclear magnetic resonance (NMR) method for quantitative analysis of targeted compounds with overlapped signals in complex mixtures has been established. The method is based on the combination of chemometric treatment for spectra deconvolution and the PULCON principle (pulse length based concentration determination) for quantification. Independent component analysis (ICA) (mutual information least dependent component analysis (MILCA) algorithm) was applied for spectra deconvolution in up to six component mixtures with known composition. The resolved matrices (independent components, ICs and ICA scores) were used for identification of analytes, calculating their relative concentrations and absolute integral intensity of selected resonances. The absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated using the PULCON principle. Instead of conventional application of absolute integral intensity in case of undisturbed signals, the multiplication of resolved IC absolute integral and its relative concentration in the mixture for each component was used. Correction factors that are required for quantification and are unique for each analyte were also estimated. The proposed method was applied for analysis of up to five components in lemon and orange juice samples with recoveries between 90% and 111%. The total duration of analysis is approximately 45 min including measurements, spectra decomposition and quantification. The results demonstrated that the proposed method is a promising tool for rapid simultaneous quantification of up to six components in case of spectral overlap and the absence of reference materials. PMID:26132651

  4. Earthquke-related variation in Schumann Resonance (SR) spectra and Q-bursts as simulated with a global TDTE Network

    NASA Astrophysics Data System (ADS)

    Yu, H.; Williams, E. R.

    2014-12-01

    The monitoring of earthquakes with SR has been reported by Nickolaenko and Hayakawa (Nickolaenko and Hayakawa 2014, 2006, Hayakawa 2005). Despite the presence of many SR observatories globally, the observation of SR anomalies caused by earthquakes is rare. And the physical mechanism for the SR anomaly is not clear. Further attention to methods for observing SR anomalies caused by earthquakes is needed. A simulation approach based on Nelson's 2DTelegraph Equation (TDTE) Network (Nelson, MIT doctoral thesis, 1967) is developed. The Earth-ionosphere cavity is discretized into 24×24 tesserae. This network approach is more flexible than an analytical model, especially for a model with day-night asymmetry. The relation of the magnitude of the anomaly and the geometrical arrangement among source, receiver and disturbed zone is discussed for the uniform model. The perturbed zone size is computed according to the estimated size of the earthquake preparation zone. For example, the radius of the perturbed zone is about 1000km when the earthquake magnitude is about Ms=7.0. The intensity variations for the first four SR modes are compared between perturbed and unperturbed models. In addition, the spectral characteristics at different distances between source and disturbed zone are analysed. Interestingly, the electric field shows different variation than the magnetic field in response to the localized perturbation. For the uniform model with single Q-burst source, when the height of the local ionosphere is decreased, the electric field is increased and reaches nearly 50% in intensity in the perturbed zone in the uniform model. However, in contrast, the magnetic response is far less pronounced. It shows almost no variation. But for multisource excitation, the electric field and magnetic field both show dramatic response which reaches nearly 100% variation for some special modes. And the big variation is not restricted to the perturbed zone. The variations show complicated

  5. Resonance

    NASA Astrophysics Data System (ADS)

    Perozzi, E.; Murdin, P.

    2000-11-01

    A resonance in CELESTIAL MECHANICS occurs when some of the quantities characterizing the motion of two or more celestial bodies can be considered as commensurable, i.e. their ratio is close to an integer fraction. In a simplified form, this can be expressed as ...

  6. Virtual Compton Scattering in the Resonance Region Up to the Deep Inelastic Region at Backward Angles and Momentum Transfer Squared of Q**2=1.0 GeV**2

    SciTech Connect

    Geraud Laveissiere; Natalie Degrande; Stephanie Jaminion; Christophe Jutier; Luminita Todor; Rachele Di Salvo; L. Van Hoorebeke; et. al.

    2004-06-01

    We have made the first measurements of the virtual Compton scattering process via the ep {yields} ep{gamma} exclusive reaction at Q{sup 2} = 1 GeV{sup 2} in the nucleon resonance region. The cross section is obtained at center of mass (CM) backward angle, in a range of total ({gamma}*p) CM energy W from the proton mass up to W = 1.91 GeV. The data show resonant structures in the first and second resonance regions, and are well reproduced at higher W by the Bethe-Heitler+Born cross section, including t-channel {pi}{sup 0}-exchange. At high W, our data, together with existing real photon data, show a striking Q{sup 2} independence. Our measurement of the ratio of H(e,e{prime}p){gamma} to H(e,e{prime}p){pi}{sup 0} cross sections is presented and compared to model predictions.

  7. Electroexcitation of the Roper resonance for 1.7<Q{sup 2}<4.5 GeV{sup 2} in e-vectorp{yields}en{pi}{sup +}

    SciTech Connect

    Aznauryan, I. G.; Burkert, V. D.; Avakian, H.; Carman, D. S.; Cords, D.; Degtyarenko, P. V.; Deur, A.; Elouadrhiri, L.; Guo, L.; Gyurjyan, V.; Heddle, D.; Ito, M. M.; Mecking, B. A.; Mestayer, M. D.; Niczyporuk, B. B.; Sharabian, Y. G.; Smith, E. S.; Stepanyan, S.; Weygand, D. P.; Wolin, E.

    2008-10-15

    The helicity amplitudes of the electroexcitation of the Roper resonance are extracted for 1.7<Q{sup 2}<4.5 GeV{sup 2} from recent high precision JLab-CLAS cross section and longitudinally polarized beam asymmetry data for {pi}{sup +} electroproduction on protons at W=1.15-1.69 GeV. The analysis is made using two approaches, dispersion relations and a unitary isobar model, which give consistent Q{sup 2} behavior of the helicity amplitudes for the {gamma}*p{yields}N(1440)P{sub 11} transition. It is found that the transverse helicity amplitude A{sub 1/2}, which is large and negative at Q{sup 2}=0, becomes large and positive at Q{sup 2}{approx_equal}2 GeV{sup 2}, and then drops slowly with Q{sup 2}. The longitudinal helicity amplitude S{sub 1/2}, which was previously found from CLAS e-vectorp{yields}ep{pi}{sup 0},en{pi}{sup +} data to be large and positive at Q{sup 2}=0.4,0.65 GeV{sup 2}, drops with Q{sup 2}. Available model predictions for {gamma}*p{yields}N(1440)P{sub 11} allow us to conclude that these results provide strong evidence in favor of N(1440)P{sub 11} as a first radial excitation of the 3q ground state. The results of the present paper also confirm the conclusion of our previous analysis for Q{sup 2}<1 GeV{sup 2} that the presentation of N(1440)P{sub 11} as a q{sup 3}G hybrid state is ruled out.

  8. Evaluation of Water Exchange Kinetics on [Ln(AAZTAPh-NO2)(H2O)q](x) Complexes Using Proton Nuclear Magnetic Resonance.

    PubMed

    Karimi, Shima; Tei, Lorenzo; Botta, Mauro; Helm, Lothar

    2016-06-20

    Water exchange kinetics on [Ln(AAZTAPh-NO2)(H2O)q](-) (Ln = Gd(3+), Dy(3+), or Tm(3+)) were determined by (1)H nuclear magnetic resonance (NMR) measurements. The number of inner-sphere water molecules was found to change from two to one when going from Dy(3+) to Tm(3+). The calculated water exchange rate constants obtained by variable-temperature proton transverse relaxation rates are 3.9 × 10(6), 0.46 × 10(6), and 0.014 × 10(6) s(-1) at 298 K for Gd(3+), Dy(3+), and Tm(3+), respectively. Variable-pressure measurements were used to assess the water exchange mechanism. The results indicate an associative and dissociative interchange mechanism for Gd(3+) and Dy(3+) complexes with ΔV(⧧) values of -1.4 and 1.9 cm(3) mol(-1), respectively. An associative activation mode (Ia or A mechanism) was obtained for the Tm(3+) complex (ΔV(⧧) = -5.6 cm(3) mol(-1)). Moreover, [Dy(AAZTAPh-NO2)(H2O)2](-) with a very high transverse relaxivity value was found as a potential candidate for negative contrast agents for high-field imaging applications. PMID:27227690

  9. Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop

    NASA Astrophysics Data System (ADS)

    Kucera, M.; Manzaneque, T.; Sánchez-Rojas, J. L.; Bittner, A.; Schmid, U.

    2013-08-01

    This paper presents a robust Q-control approach based on an all-electrical feedback loop enhancing the quality factor of a resonant microstructure by using the self-sensing capability of a piezoelectric thin film actuator made of aluminium nitride. A lock-in amplifier is used to extract the feedback signal which is proportional to the piezoelectric current. The measured real part is used to replace the originally low-quality and noisy feedback signal to modulate the driving voltage of the piezoelectric thin-film actuator. Since the lock-in amplifier reduces the noise in the feedback signal substantially, the proposed enhancement loop avoids the disadvantage of a constant signal-to-noise ratio, which an analogue feedback circuit usually suffers from. The quality factor was increased from the intrinsic value of 1766 to a maximum of 34 840 in air. These promising results facilitate precise measurements for self-actuated and self-sensing MEMS cantilevers even when operated in static viscous media.

  10. Recoil polarization measurements for neutral pion electroproduction at Q{sup 2}=1(GeV/c){sup 2} near the {delta} resonance

    SciTech Connect

    Kelly, J. J.; Beise, E. J.; Breuer, H.; Chang, C. C.; Chant, N. S.; Roos, P. G.; Gayou, O.; Chai, Z.; Bertozzi, W.; Gilad, S.; Higinbotham, D. W.; Rvachev, M.; Sirca, S.; Suleiman, R.; Zheng, X.; Zhu, L.; Roche, R. E.; McAleer, S.; Meekins, D.; Jones, M. K.

    2007-02-15

    We measured angular distributions of differential cross section, beam analyzing power, and recoil polarization for neutral pion electroproduction at Q{sup 2}=1.0 (GeV/c){sup 2} in 10 bins of 1.17{<=}W{<=}1.35 GeV across the {delta} resonance. A total of 16 independent response functions were extracted, of which 12 were observed for the first time. Comparisons with recent model calculations show that response functions governed by real parts of interference products are determined relatively well near the physical mass, W=M{sub {delta}}{approx_equal}1.232 GeV, but the variation among models is large for response functions governed by imaginary parts, and for both types of response functions, the variation increases rapidly with W>M{sub {delta}}. We performed a multipole analysis that adjusts suitable subsets of l{sub {pi}}{<=}2 amplitudes with higher partial waves constrained by baseline models. This analysis provides both real and imaginary parts. The fitted multipole amplitudes are nearly model independent--there is very little sensitivity to the choice of baseline model or truncation scheme. By contrast, truncation errors in the traditional Legendre analysis of N{yields}{delta} quadrupole ratios are not negligible. Parabolic fits to the W dependence around M{sub {delta}} for the multiple analysis gives values for Re(S{sub 1+}/M{sub 1+})=(-6.61{+-}0.18)% and Re(E{sub 1+}/M{sub 1+})=(-2.87{+-}0.19)% for the p{pi}{sup 0} channel at W=1.232 GeV and Q{sup 2}=1.0 (GeV/c){sup 2} that are distinctly larger than those from the Legendre analysis of the same data. Similarly, the multipole analysis gives Re(S{sub 0+}/M{sub 1+})=(+7.1{+-}0.8)% at W=1.232 GeV, consistent with recent models, while the traditional Legendre analysis gives the opposite sign because its truncation errors are quite severe.

  11. The smallest resonator arrays in atmosphere by chip-size-grown nanowires with tunable Q-factor and frequency for subnanometer thickness detection.

    PubMed

    Jiang, Chengming; Tang, Chaolong; Song, Jinhui

    2015-02-11

    A chip-size vertically aligned nanowire (NW) resonator arrays (VNRs) device has been fabricated with simple one-step lithography process by using grown self-assembled zinc oxide (ZnO) NW arrays. VNR has cantilever diameter of 50 nm, which breakthroughs smallest resonator record (>100 nm) functioning in atmosphere. A new atomic displacement sensing method by using atomic force microscopy is developed to effectively identify the resonance of NW resonator with diameter 50 nm in atmosphere. Size-effect and half-dimensional properties of the NW resonator have been systematically studied. Additionally, VNR has been demonstrated with the ability of detecting nanofilm thickness with subnanometer (<10(-9)m) resolution. PMID:25575294

  12. Measurement of cross section and electron asymmetry of the p (e(pol), e-prime pi+) n reaction in the Delta(1232) and higher resonances for Q**2 <= 4.9-(GeV/c)**2

    SciTech Connect

    Kijun Park; Inna Aznauryan; Volker Burkert; Wooyoung Kim

    2006-06-01

    The cross section and beam asymmetry were measured in channel of (pol)ep --> e'pi^+n using 5.754 GeV electron beam with CEBAF Large Acceptance Spectrometer(CLAS). This measurement covers 4 pi angular coverage and high Q^2 up to 4.9 GeV^2 under various resonance mass regions. The structure functions sigmaT + epsilonLsigmaL, sigmaTT, sigmaLT and sigmaLT/ were extracted from fit angular distribution of cross section and asymmetry.

  13. Q fever.

    PubMed

    Tissot-Dupont, Hervé; Raoult, Didier

    2008-09-01

    Q fever is a worldwide zoonosis caused by the pathogen Coxiella burnetii causing acute and chronic clinical manifestations. The name "Q fever" derives from "Query fever" and was given in 1935 following an outbreak of febrile illness in an abattoir in Queensland, Australia. C burnetii is considered a potential agent of bioterrorism (class B by the Centers for Disease Control). PMID:18755387

  14. Resonance production in. gamma gamma. collisions

    SciTech Connect

    Renard, F.M.

    1983-04-01

    The processes ..gamma gamma.. ..-->.. hadrons can be depicted as follows. One photon creates a q anti q pair which starts to evolve; the other photon can either (A) make its own q anti q pair and the (q anti q q anti q) system continue to evolve or (B) interact with the quarks of the first pair and lead to a modified (q anti q) system in interaction with C = +1 quantum numbers. A review of the recent theoretical activity concerning resonance production and related problems is given under the following headings: hadronic C = +1 spectroscopy (q anti q, qq anti q anti q, q anti q g, gg, ggg bound states and mixing effects); exclusive ..gamma gamma.. processes (generalities, unitarized Born method, VDM and QCD); total cross section (soft and hard contributions); q/sup 2/ dependence of soft processes (soft/hard separation, 1/sup +- +/ resonances); and polarization effects. (WHK)

  15. High-Q Hybrid Plasmon-Photon Modes in a Bottle Resonator Realized with a Silver-Coated Glass Fiber with a Varying Diameter

    NASA Astrophysics Data System (ADS)

    Rottler, Andreas; Harland, Malte; Bröll, Markus; Klingbeil, Matthias; Ehlermann, Jens; Mendach, Stefan

    2013-12-01

    We experimentally demonstrate that hybrid plasmon-photon modes exist in a silver-coated glass bottle resonator. The bottle resonator is realized in a glass fiber with a smoothly varying diameter, which is subsequently coated with a rhodamine 800-dye doped acryl-glass layer and a 30 nm thick silver layer. We show by means of photoluminescence experiments supported by electromagnetic simulations that the rhodamine 800 photoluminescence excites hybrid plasmon-photon modes in such a bottle resonator, which provide a plasmon-type field enhancement at the outer silver surface and exhibit quality factors as high as 1000.

  16. High-Q hybrid plasmon-photon modes in a bottle resonator realized with a silver-coated glass fiber with a varying diameter.

    PubMed

    Rottler, Andreas; Harland, Malte; Bröll, Markus; Klingbeil, Matthias; Ehlermann, Jens; Mendach, Stefan

    2013-12-20

    We experimentally demonstrate that hybrid plasmon-photon modes exist in a silver-coated glass bottle resonator. The bottle resonator is realized in a glass fiber with a smoothly varying diameter, which is subsequently coated with a rhodamine 800-dye doped acryl-glass layer and a 30 nm thick silver layer. We show by means of photoluminescence experiments supported by electromagnetic simulations that the rhodamine 800 photoluminescence excites hybrid plasmon-photon modes in such a bottle resonator, which provide a plasmon-type field enhancement at the outer silver surface and exhibit quality factors as high as 1000. PMID:24483745

  17. Q fever

    MedlinePlus

    ... fever is antibiotics. For early-stage Q fever, doxycycline is the recommended antibiotic. If you have the ... fever. Your health care provider may prescribe both doxycycline and hydroxychloroquine. You may need to take antibiotics ...

  18. Q Fever

    PubMed Central

    Maurin, M.; Raoult, D.

    1999-01-01

    Q fever is a zoonosis with a worldwide distribution with the exception of New Zealand. The disease is caused by Coxiella burnetii, a strictly intracellular, gram-negative bacterium. Many species of mammals, birds, and ticks are reservoirs of C. burnetii in nature. C. burnetii infection is most often latent in animals, with persistent shedding of bacteria into the environment. However, in females intermittent high-level shedding occurs at the time of parturition, with millions of bacteria being released per gram of placenta. Humans are usually infected by contaminated aerosols from domestic animals, particularly after contact with parturient females and their birth products. Although often asymptomatic, Q fever may manifest in humans as an acute disease (mainly as a self-limited febrile illness, pneumonia, or hepatitis) or as a chronic disease (mainly endocarditis), especially in patients with previous valvulopathy and to a lesser extent in immunocompromised hosts and in pregnant women. Specific diagnosis of Q fever remains based upon serology. Immunoglobulin M (IgM) and IgG antiphase II antibodies are detected 2 to 3 weeks after infection with C. burnetii, whereas the presence of IgG antiphase I C. burnetii antibodies at titers of ≥1:800 by microimmunofluorescence is indicative of chronic Q fever. The tetracyclines are still considered the mainstay of antibiotic therapy of acute Q fever, whereas antibiotic combinations administered over prolonged periods are necessary to prevent relapses in Q fever endocarditis patients. Although the protective role of Q fever vaccination with whole-cell extracts has been established, the population which should be primarily vaccinated remains to be clearly identified. Vaccination should probably be considered in the population at high risk for Q fever endocarditis. PMID:10515901

  19. Single-frequency, injection-seeded Q-switched operation of resonantly pumped Er:YAG ceramic laser at 1645 nm

    NASA Astrophysics Data System (ADS)

    Ye, Qing; Gao, Chunqing; Wang, Shuo; Na, Quanxin; Shi, Yang; Wang, Qing; Gao, Mingwei; Zhang, Jian

    2016-07-01

    A single-frequency Q-switched Er:YAG polycrystalline ceramic laser is reported for the first time. The `Ramp-Hold-Fire' injection-seeding technique was employed to obtain single-frequency pulses, with an Er:YAG NPRO as a seed laser. Single-frequency laser operation was obtained with pulse energy of 4.7 mJ, pulse width of 250 ns and pulse repetition rate of 200 Hz.

  20. Josephson junction Q-spoiler

    DOEpatents

    Clarke, J.; Hilbert, C.; Hahn, E.L.; Sleator, T.

    1986-03-25

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  1. Josephson junction Q-spoiler

    DOEpatents

    Clarke, John; Hilbert, Claude; Hahn, Erwin L.; Sleator, Tycho

    1988-01-01

    An automatic Q-spoiler comprising at least one Josephson tunnel junction connected in an LC circuit for flow of resonant current therethrough. When in use in a system for detecting the magnetic resonance of a gyromagnetic particle system, a high energy pulse of high frequency energy irradiating the particle system will cause the critical current through the Josephson tunnel junctions to be exceeded, causing the tunnel junctions to act as resistors and thereby damp the ringing of the high-Q detection circuit after the pulse. When the current has damped to below the critical current, the Josephson tunnel junctions revert to their zero-resistance state, restoring the Q of the detection circuit and enabling the low energy magnetic resonance signals to be detected.

  2. Evanescent straight tapered-fiber coupling of ultra-high Q optomechanical micro-resonators in a low-vibration helium-4 exchange-gas cryostat

    NASA Astrophysics Data System (ADS)

    Rivière, R.; Arcizet, O.; Schliesser, A.; Kippenberg, T. J.

    2013-04-01

    We developed an apparatus to couple a 50-μm diameter whispering-gallery silica microtoroidal resonator in a helium-4 cryostat using a straight optical tapered-fiber at 1550 nm wavelength. On a top-loading probe specifically adapted for increased mechanical stability, we use a specifically-developed "cryotaper" to optically probe the cavity, allowing thus to record the calibrated mechanical spectrum of the optomechanical system at low temperatures. We then demonstrate excellent thermalization of a 63-MHz mechanical mode of a toroidal resonator down to the cryostat's base temperature of 1.65 K, thereby proving the viability of the cryogenic refrigeration via heat conduction through static low-pressure exchange gas. In the context of optomechanics, we therefore provide a versatile and powerful tool with state-of-the-art performances in optical coupling efficiency, mechanical stability, and cryogenic cooling.

  3. Investigations of the radial propagation of blob-like structure in a non-confined electron cyclotron resonance heated plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak

    SciTech Connect

    Ogata, R.; Liu, H. Q.; Ishiguro, M.; Ikeda, T.; Hanada, K.; Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Nishino, N.; Collaboration: QUEST Group

    2011-09-15

    A study of radial propagation and electric fields induced by charge separation in blob-like structures has been performed in a non-confined cylindrical electron cyclotron resonance heating plasma on Q-shu University Experiment with a Steady-State Spherical Tokamak using a fast-speed camera and a Langmuir probe. The radial propagation of the blob-like structures is found to be driven by E x B drift. Moreover, these blob-like structures were found to have been accelerated, and the property of the measured radial velocities agrees with the previously proposed model [C. Theiler et al., Phys. Rev. Lett. 103, 065001 (2009)]. Although the dependence of the radial velocity on the connection length of the magnetic field appeared to be different, a plausible explanation based on enhanced short-circuiting of the current path can be proposed.

  4. Single pi+ Electroproduction on the Proton in the First and Second Resonance Regions at 0.25GeV^2 < Q^2 < 0.65GeV^2 Using CLAS

    SciTech Connect

    H. Egiyan; I.G. Aznauryan; V.D. Burkert; K.A. Griffioen; K. Joo; R. Minehart; L.C. Smith

    2006-01-05

    The ep {yields} e'pi{sup +}n reaction was studied in the first and second nucleon resonance regions in the 0.25 GeV{sup 2} < Q{sup 2} < 0.65 GeV{sup 2} range using the CLAS detector at Thomas Jefferson National Accelerator Facility. For the first time the absolute cross sections were measured covering nearly the full angular range in the hadronic center-of-mass frame. The structure functions {sigma}{sub TL}, {sigma}{sub TT} and the linear combination {sigma}{sub T} + {epsilon}{sigma}{sub L} were extracted by fitting the {phi}-dependence of the measured cross sections, and were compared to the MAID and Sato-Lee models.

  5. Induced proton polarization for {pi}{sup 0} electroproduction at Q{sup 2}=0.126 GeV{sup 2}/c{sup 2} around the {Delta}(1232) resonance

    SciTech Connect

    Alarcon, R.; Comfort, J.R.; Dolfini, S.; Mertz, C.; Young, A.; Gothe, R.W.; Kunz, C.; Epstein, M.; Liu, D.; Margaziotis, D.; Mukhopadhyay, S.; Armstrong, C.; Finn, J.M.; Jones, M.; McIntyre, J.I.; Perdrisat, C.; Woo, R.J.; Sarty, A.; Madey, R.; Van Verst, S.; Warren, G.A.; Bertozzi, W.; Chen, J.; Dodson, G.; Dow, K.; Farkhondeh, M.; Gilad, S.; Joo, K.; Kowalski, S.; Soong, S.; Tieger, D.; Tschalaer, C.; Turchinetz, W.; Punjabi, V.; Qin, L.; Ulmer, P.; Weinstein, L.B.; Rutt, P.; Burkert, V.; Chen, J.; Mitchell, J.; Karabarbounis, A.; Papanicolas, C.N.; Vellidis, C.; Williamson, S.; Dale, D.

    1998-12-01

    We present a measurement of the induced proton polarization P{sub n} in {pi}{sup 0} electroproduction on the proton around the {Delta} resonance. The measurement was made at a central invariant mass and a squared four-momentum transfer of W=1231 MeV and Q{sup 2}=0.126 GeV{sup 2}/c{sup 2}, respectively. We measured a large induced polarization, P{sub n}={minus}0.397{plus_minus}0.055{plus_minus}0.009. The data suggest that the scalar background is larger than expected from a recent effective Hamiltonian model. {copyright} {ital 1998} {ital The American Physical Society}

  6. Q fever.

    PubMed Central

    Reimer, L G

    1993-01-01

    Q fever is an acute febrile illness first described in 1935 and now seen in many parts of the world. Human infection follows exposure to animals, especially domestic livestock. Recent outbreaks in metropolitan areas have implicated cats as the carrier of disease to humans. The etiologic agent, Coxiella burnetti, belongs to the family Rickettsiaceae, although it has distinct genetic characteristics and modes of transmission. Most recent attention has been focused on a number of large outbreaks of Q fever associated with medical research involving pregnant sheep. Although most infections are self-limited, some patients require prolonged treatment. Recent vaccines have had encouraging success in the prevention of disease in individuals at high risk of exposure. PMID:8358703

  7. Cross sections and beam asymmetries for $\\vev{e}p \\to en\\pi^+$ in the nucleon resonance region for $1.7 \\le Q^2 \\le 4.5 (GeV)^2$

    SciTech Connect

    K. Park; V.D. Burkert; W. Kim; CLAS Collaboration

    2008-01-01

    The exclusive electroproduction process $\\vec{e}p \\to e^\\prime n \\pi^+$ was measured in the range of the photon virtuality $Q^2 = 1.7 - 4.5 \\rm{GeV^2}$, and the invariant mass range for the $n\\pi^+$ system of $W = 1.15 - 1.7 \\rm{GeV}$ using the CEBAF Large Acceptance Spectrometer. For the first time, these kinematics are probed in exclusive $\\pi^+$ production from protons with nearly full coverage in the azimuthal and polar angles of the $n\\pi^+$ center-of-mass system. The $n\\pi^+$ channel has particular sensitivity to the isospin 1/2 excited nucleon states, and together with the $p\\pi^0$ final state will serve to determine the transition form factors of a large number of resonances. The largest discrepancy between these results and present modes was seen in the $\\sigma_{LT'}$ structure function. In this experiment, 31,295 cross section and 4,184 asymmetry data points were measured. Because of the large volume of data, only a reduced set of structure functions and Legendre polynomial moments can be presented that are obtained in model-independent fits to the differential cross sections.

  8. Interstitial deletion (6)q13q15

    SciTech Connect

    Gershoni-Baruch, R.; Mandel, H.; Bar El, H.; Bar-Nizan, N.; Borochowitz, Z.; Dar, Hanna

    1996-04-24

    We report on a 2-year-old child with psychomotor retardation, facial and urogenital anomalies. His chromosome constitution was 46,XY,del(6)(q13q15). This case further contributes to the karyotype-phenotype correlation of proximal deletion 6q syndromes. 18 refs., 3 figs., 1 tab.

  9. Analysis of Q burst waveforms

    NASA Astrophysics Data System (ADS)

    Ogawa, Toshio; Komatsu, Masayuki

    2007-04-01

    The electric field changes in ELF to VLF were observed with a ball antenna in fair weather at Kochi (latitude 33.3°N, longitude 133.4°E) during 2003-2004. Some 376 Q bursts were obtained, seven examples of which are analyzed in the present study. The continuous frequency spectra of the Q bursts and the background noises from 1.0 Hz to 11 kHz are compared, and it was found that the Q bursts prevail over the background in the frequency range from 1 to 300 Hz. The surplus is 20 dB (in amplitude) near the fundamental mode frequency. The "W"-type changes found in the initial portion of the Q burst waveforms are interpreted as the combined electromagnetic waveform of direct and antipodal waves from the causative lightning strokes. From the time intervals between the two waves, the source-receiver distances are estimated as far as 19 Mm. The pulses to excite the Schumann resonances in the Q bursts are clearly identified.

  10. Dynamically tuned high-Q AC-dipole implementation

    SciTech Connect

    Oddo, P.; Bai, M.; Dawson, W.C.; Meng, W.; Mernick, K.; Pai, C.; Roser, T.; Russo, T.

    2010-05-02

    AC-dipole magnets are typically implemented as a parallel LC resonant circuit. To maximize efficiency, it's beneficial to operate at a high Q. This, however, limits the magnet to a narrow frequency range. Current designs therefore operate at a low Q to provide a wider bandwidth at the cost of efficiency. Dynamically tuning a high Q resonant circuit tries to maintain a high efficiency while providing a wide frequency range. The results of ongoing efforts at BNL to implement dynamically tuned high-Q AC dipoles will be presented.

  11. Quantum codes from cyclic codes over F_q+uF_q+vF_q+uvF_q

    NASA Astrophysics Data System (ADS)

    Ashraf, Mohammad; Mohammad, Ghulam

    2016-07-01

    In this paper, we study quantum codes over F_q from cyclic codes over F_q+uF_q+vF_q+uvF_q, where u^2=u,~v^2=v,~uv=vu,~q=p^m , and p is an odd prime. We give the structure of cyclic codes over F_q+uF_q+vF_q+uvF_q and obtain self-orthogonal codes over F_q as Gray images of linear and cyclic codes over F_q+uF_q+vF_q+uvF_q . In particular, we decompose a cyclic code over F_q+uF_q+vF_q+uvF_q into four cyclic codes over F_q to determine the parameters of the corresponding quantum code.

  12. High Q factor bonding using natural resin for reduced thermal noise of test masses

    NASA Astrophysics Data System (ADS)

    Schediwy, S. W.; Gras, S.; Ju, L.; Blair, D. G.

    2005-02-01

    We show that a low acoustic loss resin enables composite mechanical structures to be bonded with minimal Q degradation. The resin is excreted from the Australian native grass tree Xanthorrhoea. This resin has traditionally been used as an adhesive by the Australian Aborigines. It is shown that the Q factor of the resin is greater than 300 for the 5180Hz resonance, which allows a high Q factor niobium resonator to be constructed with bonded mirrors while maintaining a Q of ˜106.

  13. SNAKE DEPLORIZING RESONANCE STUDY IN RHIC

    SciTech Connect

    BAI,M.; CAMERON, P.; LUCCIO, A.; HUANG, H.; PITISYN, V.; ET AL.

    2007-06-25

    Snake depolarizing resonances due to the imperfect cancellation of the accumulated perturbations on the spin precession between snakes were observed at the Relativistic Heavy Ion Collider (RHIC). During the RHIC 2005 and 2006 polarized proton runs, we mapped out the spectrum of odd order snake resonance at Q{sub y} = 7/10. Here, Q, is the beam vertical betatron tune. We also studied the beam polarization after crossing the 7/10th resonance as a function of resonance crossing rate. This paper reports the measured resonance spectrum as well as the results of resonance crossing.

  14. Coenzyme Q10 Therapy

    PubMed Central

    Garrido-Maraver, Juan; Cordero, Mario D.; Oropesa-Ávila, Manuel; Fernández Vega, Alejandro; de la Mata, Mario; Delgado Pavón, Ana; de Miguel, Manuel; Pérez Calero, Carmen; Villanueva Paz, Marina; Cotán, David; Sánchez-Alcázar, José A.

    2014-01-01

    For a number of years, coenzyme Q10 (CoQ10) was known for its key role in mitochondrial bioenergetics; later studies demonstrated its presence in other subcellular fractions and in blood plasma, and extensively investigated its antioxidant role. These 2 functions constitute the basis for supporting the clinical use of CoQ10. Also, at the inner mitochondrial membrane level, CoQ10 is recognized as an obligatory cofactor for the function of uncoupling proteins and a modulator of the mitochondrial transition pore. Furthermore, recent data indicate that CoQ10 affects the expression of genes involved in human cell signaling, metabolism and transport, and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, aging-related oxidative stress and carcinogenesis processes, and also statin treatment. Many neurodegenerative disorders, diabetes, cancer, and muscular and cardiovascular diseases have been associated with low CoQ10 levels as well as different ataxias and encephalomyopathies. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral administration of CoQ10 is a frequent antioxidant strategy in many diseases that may provide a significant symptomatic benefit. PMID:25126052

  15. Lateral acoustic wave resonator comprising a suspended membrane of low damping resonator material

    DOEpatents

    Olsson, Roy H.; El-Kady; , Ihab F.; Ziaei-Moayyed, Maryam; Branch; , Darren W.; Su; Mehmet F.,; Reinke; Charles M.,

    2013-09-03

    A very high-Q, low insertion loss resonator can be achieved by storing many overtone cycles of a lateral acoustic wave (i.e., Lamb wave) in a lithographically defined suspended membrane comprising a low damping resonator material, such as silicon carbide. The high-Q resonator can sets up a Fabry-Perot cavity in a low-damping resonator material using high-reflectivity acoustic end mirrors, which can comprise phononic crystals. The lateral overtone acoustic wave resonator can be electrically transduced by piezoelectric couplers. The resonator Q can be increased without increasing the impedance or insertion loss by storing many cycles or wavelengths in the high-Q resonator material, with much lower damping than the piezoelectric transducer material.

  16. High Temperature Superconducting RF Resonators for Resonator Stabilized Oscillators

    NASA Astrophysics Data System (ADS)

    Goettee, Jeffrey David

    Electromagnetic resonators made of superconducting materials show unusually sharp resonances because resistive losses are minimized. The availability of high quality thin films of YB_2CU_3 O_{7-delta} (YBCO) with superconducting transitions at 92K has aroused interest in thin film resonators at microwave frequencies for use in filters and oscillators in communication and radar systems. I have investigated the design and radio frequency (rf) properties of superconducting resonators in microstrip geometries (in which the resonant element and a single ground plane are on opposite faces of the LaAlO_3 substrates). This monolithic approach minimizes vibration sensitivity, but exposes the resonators to interactions with the packaging structure. I used niobium (Nb) superconducting 2 GHz resonators at 4.2K to investigate the geometry dependence of the quality factor Q and the high frequency phase noise S_ {y}(f). Q's in excess of 250,000 and S_{y}(1 Hz) = -227 were achieved. Desirable geometries were then fabricated in YBCO thin films produced by coevaporation or sputtering. They typically showed Q's that are a factor of four lower than the comparable Nb resonator, but retained their usefulness to substantially higher temperatures ( ~60K). One of these YBCO resonators was successfully operated to stabilize an oscillator operating at 2 GHz with overall single-sideband phase noise }(1 Hz) = -30 dBc/Hz comparable to the best available competing technologies.

  17. Investigation of mechanically Q-switched lasers

    NASA Astrophysics Data System (ADS)

    Cole, Brian; Goldberg, Lew; Hough, Nathaniel; Nettleton, John

    2015-02-01

    Using a resonant scanner mirror Q-switch to provide a time varying change in cavity alignment, 1535nm lasers based on Er/Yb-doped glass and 1064nm lasers based on Nd:YAG were evaluated. Using a side pumping architecture, the Er/Yb glass laser used a compact mechanical Q-switch with a mirror rotation rate of 330 Rad/s, enabling generation of <3 mJ pulses with a pulse width of 16ns. The laser output was a diffraction limited TEM00 mode. A mechanical Q-switch based on a MEMS tilting mirror was also used; its performance in a laser cavity was found to be similar to the resonant mirror. The technique of mechanical Q-switching was also extended to a side pumped Nd:YAG laser (mirror sweep rate of 1300 Rad/s), enabling generation of Q-switched pulses of <30mJ and 25ns duration. The far-field divergence showed this laser to be highly multi-moded within the pump plane, with a measured beam-product-parameter greater than 30 mm-mRad.

  18. k and q Dedicated to Paul Callaghan

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard

    2016-06-01

    The symbols k and q denote wave numbers in scattering experiments as well as in NMR imaging. Their exploration in NMR is intimately linked to the legacy of Paul Callaghan with his books Magnetic Resonance Microscopy and Translational Dynamics & Magnetic Resonance (Oxford University Press, Oxford 1991 and 2011) placing their focus with their titles on k and q, respectively. Some aspects of k and q have been revisited in the Paul Callaghan lecture of the author at the ISMAR Conference in Shanghai in 2015, which are reviewed here. In particular, there are two definitions of q, one relating to diffusive displacement (q) and the other to coherent flow (qv). Concerning the latter, it turns out, that in the short gradient pulse limit, the common anti-phase pulsed field-gradient scheme can be replaced with schemes employing three and more gradient pulses, which derive from differentiation rules in numerical analysis. Practical gradient modulation schemes with finite gradient pulse widths follow from these to measure velocity with improved accuracy. This approach can be expanded to acceleration and higher order transport coefficients with applications to measurements of flow and potentially also restricted diffusion.

  19. k and q Dedicated to Paul Callaghan.

    PubMed

    Blümich, Bernhard

    2016-06-01

    The symbols k and q denote wave numbers in scattering experiments as well as in NMR imaging. Their exploration in NMR is intimately linked to the legacy of Paul Callaghan with his books Magnetic Resonance Microscopy and Translational Dynamics & Magnetic Resonance (Oxford University Press, Oxford 1991 and 2011) placing their focus with their titles on k and q, respectively. Some aspects of k and q have been revisited in the Paul Callaghan lecture of the author at the ISMAR Conference in Shanghai in 2015, which are reviewed here. In particular, there are two definitions of q, one relating to diffusive displacement (q) and the other to coherent flow (qv). Concerning the latter, it turns out, that in the short gradient pulse limit, the common anti-phase pulsed field-gradient scheme can be replaced with schemes employing three and more gradient pulses, which derive from differentiation rules in numerical analysis. Practical gradient modulation schemes with finite gradient pulse widths follow from these to measure velocity with improved accuracy. This approach can be expanded to acceleration and higher order transport coefficients with applications to measurements of flow and potentially also restricted diffusion. PMID:27067190

  20. Q fever - a review.

    PubMed

    Marrie, T J

    1990-08-01

    Q or "query" fever is a zoonosis caused by the organism Coxiella burnetii. Cattle, sheep and goats are the most common reservoirs of this organism. The placenta of infected animals contains high numbers (up to 10(9)/g) of C. burnetii. Aerosols occur at the time of parturition and man becomes infected following inhalation of the microorganism. The spectrum of illness in man is wide and consists of acute and chronic forms. Acute Q fever is most often a self-limited flu-like illness but may include pneumonia, hepatitis, or meningoencephalitis. Chronic Q fever almost always means endocarditis and rarely osteomyelitis. Chronic Q fever is not known to occur in animals other than man. An increased abortion and stillbirth rate are seen in infected domestic ungulates.Four provinces (Nova Scotia, New Brunswick, Ontario and Alberta) reported cases of Q fever in 1989.A vaccine for Q fever has recently been licensed in Australia. PMID:17423643

  1. The Q, Compound Q is Finally Deciphered

    PubMed Central

    Bhagi-Damodaran, Ambika; Lu, Yi

    2015-01-01

    Methane monooxygenases (MMOs) activate the high energy C-H bond of methane and convert it to methanol with high selectivity and under physiological conditions. Despite decades of efforts focusing on elucidating the structure, function and mechanism of soluble MMOs, the structure of a key intermediate (called compound Q) remained unknown. This article highlights a recent report by Banerjee et. al. which not only firmly establishes the core-structure of Q, but also provides significant insight into its formation, reaction with methane and eventual decay. PMID:26346336

  2. Large gauged Q balls

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, K. N.; Axenides, M.; Floratos, E. G.; Tetradis, N.

    2001-12-01

    We study Q balls associated with local U(1) symmetries. Such Q balls are expected to become unstable for large values of their charge because of the repulsion mediated by the gauge force. We consider the possibility that the repulsion is eliminated through the presence in the interior of the Q ball of fermions with charge opposite to that of the scalar condensate. Another possibility is that two scalar condensates of opposite charge form in the interior. We demonstrate that both these scenarios can lead to the existence of classically stable, large, gauged Q balls. We present numerical solutions, as well as an analytical treatment of the ``thin-wall'' limit.

  3. Resonances and resonance widths

    SciTech Connect

    Collins, T.

    1986-05-01

    Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.

  4. The symmetric q-oscillator algebra: q-coherent states, q-Bargmann-Fock realization and continuous q-Hermite polynomials with 0 < q < 1

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Hashemi, A.

    2016-01-01

    The symmetric q-analysis is used to construct a type of minimum-uncertainty q-coherent states in the Fock representation space of the symmetric q-oscillator ∗-algebra with 0 < q < 1. Then, its corresponding q-Hermite polynomials are derived by using the q-Bargmann-Fock realization of the symmetric q-oscillator algebra.

  5. Coenzyme Q10 (PDQ)

    MedlinePlus

    ... and use of CoQ10 as a complementary or alternative treatment for cancer? CoQ10 was first identified in 1957. Its chemical ... of CAM therapies originally considered to be purely alternative approaches are finding a place in cancer treatment—not as cures, but as complementary therapies that ...

  6. Extended ultrahigh-Q-cavity diode laser.

    PubMed

    Xie, Zhenda; Liang, Wei; Savchenkov, Anatoliy A; Lim, Jinkang; Burkhart, Jan; McDonald, Mickey; Zelevinsky, Tanya; Ilchenko, Vladimir S; Matsko, Andrey B; Maleki, Lute; Wong, Chee Wei

    2015-06-01

    We report on a study of a 698 nm extended cavity semiconductor laser with intracavity narrowband optical feedback from a whispering gallery mode resonator. This laser comprises an ultrahigh-Q (>10(10)) resonator supporting stimulated Rayleigh scattering, a diffraction grating wavelength preselector, and a reflective semiconductor amplifier. Single longitudinal mode lasing is characterized with sub-kilohertz linewidth and a 9 nm coarse tuning range. The laser has a potential application for integration with the 1S0-3P0 strontium transition to create compact precision atomic clocks. PMID:26030566

  7. Q-branes

    NASA Astrophysics Data System (ADS)

    Abel, Steven; Kehagias, Alex

    2015-11-01

    Non-topological solitons (Q-balls) are discussed in some stringy settings. Our main result is that the dielectric D-brane system of Myers admits non-abelian Q-ball solutions on their world-volume, in which N D p-branes relax to the standard dielectric form outside the Q-ball, but assume a more diffuse configuration at its centre. We also consider how Q-balls behave in the bulk of extra-dimensional theories, or on wrapped branes. We demonstrate that they carry Kaluza-Klein charge and possess a corresponding Kaluza-Klein tower of states just as normal particles, and we discuss surface energy effects by finding exact Q-ball solutions in models with a specific logarithmic potential.

  8. Experimental determination of a betatron difference resonance

    SciTech Connect

    Ellison, M.; Ball, M.; Brabson, B.

    1993-06-01

    The betatron difference resonance, Q{sub z} {minus} 2Q{sub z} = {minus}6, where Q{sub x,z} are the number of betatron oscillations per turn, was studied at the Indiana University Cyclotron Facility (IUCF) cooler ring. The position of the beam was measured in both the horizontal and vertical planes of oscillation after a pulsed kicker magnet was fired to produce coherent motion. The effect of the coupling resonance was clearly observed and it was found that the subsequent particle motion could be described by a simple Hamiltonian. The resonance strength and tune shift as a function of betatron amplitude were measured.

  9. Electroexcitation of nucleon resonances

    SciTech Connect

    Inna Aznauryan, Volker D. Burkert

    2012-01-01

    We review recent progress in the investigation of the electroexcitation of nucleon resonances, both in experiment and in theory. The most accurate results have been obtained for the electroexcitation amplitudes of the four lowest excited states, which have been measured in a range of Q2 up to 8 and 4.5 GeV2 for the Delta(1232)P33, N(1535)S11 and N(1440)P11, N(1520)D13, respectively. These results have been confronted with calculations based on lattice QCD, large-Nc relations, perturbative QCD (pQCD), and QCD-inspired models. The amplitudes for the Delta(1232) indicate large pion-cloud contributions at low Q2 and don't show any sign of approaching the pQCD regime for Q2<7 GeV2. Measured for the first time, the electroexcitation amplitudes of the Roper resonance, N(1440)P11, provide strong evidence for this state as a predominantly radial excitation of a three-quark (3q) ground state, with additional non-3-quark contributions needed to describe the low Q2 behavior of the amplitudes. The longitudinal transition amplitude for the N(1535)S11 was determined and has become a challenge for quark models. Explanations may require large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2, confirming a long-standing prediction of the constituent quark model. The interpretation of the moments of resonance transition form factors in terms of transition transverse charge distributions in infinite momentum frame is presented.

  10. Fabrication of a microtoroidal resonator with picometer precise resonant wavelength.

    PubMed

    Liu, Xiao-Fei; Lei, Fuchuan; Gao, Ming; Yang, Xu; Qin, Guo-Qing; Long, Gui-Lu

    2016-08-01

    Fabricating an optical microresonator with precise resonant wavelength is of significant importance for fundamental research and practical applications. Here, we develop an effective method to fabricate ultra-high Q microtoroid with picometer-precise resonant wavelength. Our method adds a tuning reflow process, using low-power CO2 laser pulses, to the traditional fabrication process. It can tailor resonant wavelength to a red or blue direction by choosing a proper laser power. Also, this shift can be controlled by the exposure time. Meanwhile, quality factor remains nearly unchanged during this tailoring process. Our method can greatly reduce the difficulties of experiments where precise resonances are required. PMID:27472629

  11. Compact Q-balls

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Marques, M. A.; Menezes, R.; da Rocha, R.

    2016-07-01

    In this work we deal with non-topological solutions of the Q-ball type in two space-time dimensions, in models described by a single complex scalar field that engenders global symmetry. The main novelty is the presence of stable Q-balls solutions that live in a compact interval of the real line and appear from a family of models controlled by two distinct parameters. We find analytical solutions and study their charge and energy, and show how to control the parameters to make the Q-balls classically and quantum mechanically stable.

  12. Q fever - early

    MedlinePlus

    ... burnetii , which live in domestic animals such as cattle, sheep, goats, birds, and cats. Some wild animals and ticks also carry the bacteria. You can get Q fever by drinking raw (unpasteurized) milk, or after breathing ...

  13. Popular Chat Day Q & A

    MedlinePlus

    ... Day / Popular Chat Day Q & A Popular Chat Day Q & A Print Read students’ most popular questions ... Cool Order Free Materials National Drugs & Alcohol Chat Day Chat Day Participant FAQs Popular Chat Day Q & ...

  14. Deletion (2)(q37)

    SciTech Connect

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S.

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  15. DIGITAL Q METER

    DOEpatents

    Briscoe, W.L.

    1962-02-13

    A digital Q meter is described for measuring the Q of mechanical or electrical devices. The meter comprises in combination a transducer coupled to an input amplifier, and an upper and lower level discriminator coupled to the amplifier and having their outputs coupled to an anticoincidence gate. The output of the gate is connected to a scaler. The lower level discriminator is adjusted to a threshold level of 36.8 percent of the operating threshold level of the upper level discriminator. (AEC)

  16. A random Q-switched fiber laser.

    PubMed

    Tang, Yulong; Xu, Jianqiu

    2015-01-01

    Extensive studies have been performed on random lasers in which multiple-scattering feedback is used to generate coherent emission. Q-switching and mode-locking are well-known routes for achieving high peak power output in conventional lasers. However, in random lasers, the ubiquitous random cavities that are formed by multiple scattering inhibit energy storage, making Q-switching impossible. In this paper, widespread Rayleigh scattering arising from the intrinsic micro-scale refractive-index irregularities of fiber cores is used to form random cavities along the fiber. The Q-factor of the cavity is rapidly increased by stimulated Brillouin scattering just after the spontaneous emission is enhanced by random cavity resonances, resulting in random Q-switched pulses with high brightness and high peak power. This report is the first observation of high-brightness random Q-switched laser emission and is expected to stimulate new areas of scientific research and applications, including encryption, remote three-dimensional random imaging and the simulation of stellar lasing. PMID:25797520

  17. Measurement Of Differential Cross Sections Of p(e,e'{pi}{sup +})n For High-Lying Resonances At Q{sup 2} < 5 GeV{sup 2}

    SciTech Connect

    Park, Kijun

    2014-01-01

    The exclusive electro-production process ep -> e'n{pi}{sup +} was measured in the range of the invariant mass for n{pi}{sup +} system 1.6 GeV <= W <= 2.0 GeV, and the photon virtuality 1.8 GeV{sup 2} <= Q{sup 2} <= 4.0 GeV{sup 2} using CLAS. For the first time, these kinematics are probed in exclusive {pi}{sup +} production from the protons with nearly full coverage in the azimuthal and polar angles of the n{pi}{sup +} center-of-mass system. In this experiment, approximately 39,000 differential cross-section data points were measured. In this proceeding, preliminary results of our latest analysis work are presented on differential cross sections and structure functions as well as Legendre Moments.

  18. Backward electroproduction of pi{sup 0} mesons on protons in the region of nucleon resonances at four momentum transfer squared Q2 = 1.0 GeV2

    SciTech Connect

    Laveissiere, G; Degrande, N; Jaminion, S; Jutier, C; Todor, L; Salvo, R Di; Hoorebeke, L Van

    2004-04-01

    Exclusive electroproduction of pi{sup 0} mesons on protons in the backward hemisphere has been studied at Q2 = 1.0 GeV2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma*p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma{sub T} + epsilon sigma{sub L}, sigma{sub TL}, and sigma{sub TT} were separated from the azimuthal distribution and are presented together with the MAID and SAID parameterizations.

  19. Three-region specific microdissection libraries for the long arm of human chromosome 2, regions q33-q35, q31-q32, and q23-q24

    SciTech Connect

    Yu, J.; Tong, S.; Whittier, A.

    1995-09-01

    Three region-specific libraries have been constructed from the long arm of human chromosome 2, including regions 2q33-35 (2Q2 library), 2q31-32 (2Q3) and 2q23-24 (2Q4). Chromosome microdissection and the MboI linker-adaptor microcloning techniques were used in constructing these libraries. The libraries comprised hundreds of thousands of microclones in each library. Approximately half of the microclones in the library contained unique or low-copy number sequence inserts. The insert sizes ranged between 50 and 800 bp, with a mean of 130-190 bp. Southern blot analysis of individual unique sequence microclones showed that 70-94% of the microclones were derived from the dissected region. 31 unique sequence microclones from the 2Q2 library, 31 from 2Q3, and 30 from 2Q4, were analyzed for insert sizes, the hybridizing genomic HindIII fragment sizes, and cross-hybridization to rodent species. These libraries and the short insert microclones derived from the libraries should be useful for high resolution physical mapping, sequence-ready reagents for large scale genomic sequencing, and positional cloning of disease-related genes assigned to these regions, e.g. the recessive familial amyotrophic lateral sclerosis assigned to 2q33-q35, and a type I diabetes susceptibility gene to 2q31-q33. 17 refs., 5 figs., 2 tabs.

  20. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R.; Trotter, Douglas C.; Young, Ralph W.; Nielson, Gregory N.

    2009-11-10

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  1. Wavelength-tunable optical ring resonators

    DOEpatents

    Watts, Michael R.; Trotter, Douglas C.; Young, Ralph W.; Nielson, Gregory N.

    2011-07-19

    Optical ring resonator devices are disclosed that can be used for optical filtering, modulation or switching, or for use as photodetectors or sensors. These devices can be formed as microdisk ring resonators, or as open-ring resonators with an optical waveguide having a width that varies adiabatically. Electrical and mechanical connections to the open-ring resonators are made near a maximum width of the optical waveguide to minimize losses and thereby provide a high resonator Q. The ring resonators can be tuned using an integral electrical heater, or an integral semiconductor junction.

  2. Wave Phenomena in an Acoustic Resonant Chamber

    ERIC Educational Resources Information Center

    Smith, Mary E.; And Others

    1974-01-01

    Discusses the design and operation of a high Q acoustical resonant chamber which can be used to demonstrate wave phenomena such as three-dimensional normal modes, Q values, densities of states, changes in the speed of sound, Fourier decomposition, damped harmonic oscillations, sound-absorbing properties, and perturbation and scattering problems.…

  3. Q-instantons

    NASA Astrophysics Data System (ADS)

    Bergshoeff, E. A.; Hartong, J.; Ploegh, A.; Sorokin, D.

    2008-06-01

    We construct the half-supersymmetric instanton solutions that are electric-magnetically dual to the recently discussed half-supersymmetric Q7-branes. We call these instantons ``Q-instantons''. Whereas the D-instanton is most conveniently described using the RR axion χ and the dilaton phi, the Q-instanton is most conveniently described using a different set of fields (χ',T), where χ' is an axionic scalar. The real part of the Q-instanton on-shell action is a function of T and the imaginary part is linear in χ'. Discrete shifts of the axion χ' correspond to PSL(2, Bbb Z) transformations that are of finite order. These are e.g. pure S-duality transformations relating weak and strongly coupled regimes. We argue that near each orbifold point of the quantum axion-dilaton moduli space {τ mid τ in PSL(2, Bbb R)/(SO(2) × PSL(2, Bbb Z))} the higher order Script R4 terms in the string effective action contain contributions from an infinite sum of single multiply-charged instantons with the Q-instantons corresponding to the orbifold points τ = i, ρ.

  4. Tandem duplication of chromosome 14 (q12q13).

    PubMed

    Verma, R S; Kleyman, S M; Conte, R A; Laqui-Pili, C; Bennett, H

    1997-01-01

    A nine-years-old Egyptian boy was referred for speech and language delay. He has an I.Q. of 35 which is in the moderately to severely delayed range. Routine cytogenetic and FISH-techniques revealed a de novo tandem duplication of chromosome 14 bands q12 and q13, i.e., 46, XY, dup (14)(q12q13) and there are no investigations reporting a direct de novo duplication for this region. PMID:9526614

  5. Miniature Sapphire Acoustic Resonator - MSAR

    NASA Technical Reports Server (NTRS)

    Wang, Rabi T.; Tjoelker, Robert L.

    2011-01-01

    A room temperature sapphire acoustics resonator incorporated into an oscillator represents a possible opportunity to improve on quartz ultrastable oscillator (USO) performance, which has been a staple for NASA missions since the inception of spaceflight. Where quartz technology is very mature and shows a performance improvement of perhaps 1 dB/decade, these sapphire acoustic resonators when integrated with matured quartz electronics could achieve a frequency stability improvement of 10 dB or more. As quartz oscillators are an essential element of nearly all types of frequency standards and reference systems, the success of MSAR would advance the development of frequency standards and systems for both groundbased and flight-based projects. Current quartz oscillator technology is limited by quartz mechanical Q. With a possible improvement of more than x 10 Q with sapphire acoustic modes, the stability limit of current quartz oscillators may be improved tenfold, to 10(exp -14) at 1 second. The electromagnetic modes of sapphire that were previously developed at JPL require cryogenic temperatures to achieve the high Q levels needed to achieve this stability level. However sapphire fs acoustic modes, which have not been used before in a high-stability oscillator, indicate the required Q values (as high as Q = 10(exp 8)) may be achieved at room temperature in the kHz range. Even though sapphire is not piezoelectric, such a high Q should allow electrostatic excitation of the acoustic modes with a combination of DC and AC voltages across a small sapphire disk (approximately equal to l mm thick). The first evaluations under this task will test predictions of an estimated input impedance of 10 kilohms at Q = 10(exp 8), and explore the Q values that can be realized in a smaller resonator, which has not been previously tested for acoustic modes. This initial Q measurement and excitation demonstration can be viewed similar to a transducer converting electrical energy to

  6. Coenzyme Q and Mitochondrial Disease

    ERIC Educational Resources Information Center

    Quinzii, Catarina M.; Hirano, Michio

    2010-01-01

    Coenzyme Q[subscript 10] (CoQ[subscript 10]) is an essential electron carrier in the mitochondrial respiratory chain and an important antioxidant. Deficiency of CoQ[subscript 10] is a clinically and molecularly heterogeneous syndrome, which, to date, has been found to be autosomal recessive in inheritance and generally responsive to CoQ[subscript…

  7. Simulation and fabrication of thin film bulk acoustic wave resonator

    NASA Astrophysics Data System (ADS)

    Xixi, Han; Yi, Ou; Zhigang, Li; Wen, Ou; Dapeng, Chen; Tianchun, Ye

    2016-07-01

    In this paper, we present the simulation and fabrication of a thin film bulk acoustic resonator (FBAR). In order to improve the accuracy of simulation, an improved Mason model was introduced to design the resonator by taking the coupling effect between electrode and substrate into consideration. The resonators were fabricated by the eight inch CMOS process, and the measurements show that the improved Mason model is more accurate than a simple Mason model. The Q s (Q at series resonance), Q p (Q at parallel resonance), Q max and k t 2 of the FBAR were measured to be 695, 814, 1049, and 7.01% respectively, showing better performance than previous reports. Project supported by the National Natural Science Foundation of China (Nos. 61274119, 61306141, 61335008) and the Natural Science Foundation of Jiangsu Province (No. BK20131099).

  8. Pushing the Limits: RF Field Control at High Loaded Q

    SciTech Connect

    M. Liepe; S.A. Belomestnykh; J. Dobbins; R.P.K. Kaplan; C.R. Strohman; B.K. Stuhl; C. Hovater; T. Plawski

    2005-05-16

    The superconducting cavities in an Energy-Recovery-Linac will be operated with a high loaded Q of several 10{sup 7}, possible up to 10{sup 8}. Not only has no prior control system ever stabilized the RF field in a linac cavity with such high loaded Q, but also highest field stability in amplitude and phase is required at this high loaded Q. Because of a resulting bandwidth of the cavity of only a few Hz, this presents a significant challenge: the field in the cavity extremely sensitive to any perturbation of the cavity resonance frequency due to microphonics and Lorentz force detuning. To prove that the RF field in a high loaded Q cavity can be stabilized, and that Cornell's newly developed digital control system is able to achieve this, the system was connected to a high loaded Q cavity at the JLab IR-FEL. Excellent cw field stability--about 10{sup -4} rms in relative amplitude and 0.02 deg rms in phase--was achieved at a loaded Q of 2.1 x 10{sup 7} and 1.2 x 10{sup 8}, setting a new record in high loaded Q operation of a linac cavity. Piezo tuner based cavity frequency control proved to be very effective in keeping the cavity on resonance and allowed reliable to ramp up to high gradients in less than 1 second.

  9. The q-harmonic oscillators, q-coherent states and the q-symplecton

    NASA Technical Reports Server (NTRS)

    Biedenharn, L. C.; Lohe, M. A.; Nomura, Masao

    1993-01-01

    The recently introduced notion of a quantum group is discussed conceptually and then related to deformed harmonic oscillators ('q-harmonic oscillators'). Two developments in applying q-harmonic oscillators are reviewed: q-coherent states and the q-symplecton.

  10. Big Brother I. Q.

    ERIC Educational Resources Information Center

    Gilliatt, Michael T.

    1977-01-01

    Lists four harmful consequences that critics suggest educational testing may have, and in discussing the danger that I.Q. testing may place an indelible stamp of inferiority upon students, this research re-examines the purpose of testing. (Author/RK)

  11. Exact Tuning of High-Q Optical Microresonators by Use of UV

    NASA Technical Reports Server (NTRS)

    Savchankov, Anaotliy; Maleki, Lute; Iltchenko, Vladimir; Handley, Timothy

    2006-01-01

    In one of several alternative approaches to the design and fabrication of a "whispering-gallery" optical microresonator of high resonance quality (high Q), the index of refraction of the resonator material and, hence, the resonance frequencies. In this approach, a microresonator structure is prepared by forming it from an ultraviolet-sensitive material. Then the structure is subjected to controlled exposure to UV light while its resonance frequencies are monitored.

  12. q-bosons and the q-analogue quantized field

    NASA Technical Reports Server (NTRS)

    Nelson, Charles A.

    1995-01-01

    The q-analogue coherent states are used to identify physical signatures for the presence of a 1-analogue quantized radiation field in the q-CS classical limits where the absolute value of z is large. In this quantum-optics-like limit, the fractional uncertainties of most physical quantities (momentum, position, amplitude, phase) which characterize the quantum field are O(1). They only vanish as O(1/absolute value of z) when q = 1. However, for the number operator, N, and the N-Hamiltonian for a free q-boson gas, H(sub N) = h(omega)(N + 1/2), the fractional uncertainties do still approach zero. A signature for q-boson counting statistics is that (Delta N)(exp 2)/ (N) approaches 0 as the absolute value of z approaches infinity. Except for its O(1) fractional uncertainty, the q-generalization of the Hermitian phase operator of Pegg and Barnett, phi(sub q), still exhibits normal classical behavior. The standard number-phase uncertainty-relation, Delta(N) Delta phi(sub q) = 1/2, and the approximate commutation relation, (N, phi(sub q)) = i, still hold for the single-mode q-analogue quantized field. So, N and phi(sub q) are almost canonically conjugate operators in the q-CS classical limit. The q-analogue CS's minimize this uncertainty relation for moderate (absolute value of z)(exp 2).

  13. Jupiter's Tidal Q: The Range of Uncertainty

    NASA Astrophysics Data System (ADS)

    Greenberg, Richard; Barnes, R.; Jackson, B.

    2008-09-01

    Jupiter's Q, which quantifies the net effect of poorly understood dissipative processes, is central to the physical and orbital history of the Galilean satellites and to studies of extra-solar planets. A standard procedure for determining orbits from observations of extra-solar planets is to estimate e-damping times, using for Q a "commonly accepted value” 105-106, based on supposed constraints on Jupiter's Q: If the damping time is short, orbits are assumed circular; if the data nevertheless require a finite e, it is attributed to perturbations by unseen planets. But those now-standard procedures are flawed because, in fact, there are no firm constraints on Jupiter's Q. Given the dynamics of the system and its Laplace resonance, knowledge of the tidal dissipation rate in Io (from heat flux) and of Io's orbital acceleration dn1/dt (from mutual occultations and eclipses) should determine the effective value of QJ. If the Laplace resonance were in an equilibrium steady-state, then either one of those measured values yield QJ. Aksnes and Franklin's ("A&F's” 2001) solution for dn1/dt of 3.6x10-10/yr and McEwen et al.'s (1992) Io heat flux 1.3x1014W, gives QJ=2x105, the solution A&F highlighted. However, slight changes from those measured values, well within the uncertainty range, would yield infinite QJ. Another fit to the mutual event data allowed dn1/dt=0, but A&F rejected this result because the implied QJ ( 3x104) was outside the conventionally accepted range. In fact, that range is based on the steady-state condition of the resonance (placing an upper limit on QJ) and on the assumption that dn1/dt<0; (which gives a lower limit), both of which are ruled out by A&F's results. Our study of tidal evolution of "hot Jupiters” (Jackson et al. 2008) suggests typical Q values of 106.5, somewhat above the widely assumed range, but below the real upper limit (infinity) for Jupiter.

  14. Back to 1974: The Q-onium

    NASA Astrophysics Data System (ADS)

    Kamenik, Jernej F.; Redi, Michele

    2016-09-01

    We show that the 750 GeV di-photon excess could be explained by the Q-onium system of a new QCD-like theory with fermions vectorial under the SM. Beside the spin-0 di-photon singlet this scenario predicts almost degenerate colored scalars and spin-1 resonances analogous to the J / Ψ in QCD. All these states are within the reach of the LHC. An apparent large width can be explained as due to production of excited states with splitting Δm ∼ Γ.

  15. Disappearing Q operator

    NASA Astrophysics Data System (ADS)

    Jones, H. F.; Rivers, R. J.

    2007-01-01

    In the Schrödinger formulation of non-Hermitian quantum theories a positive-definite metric operator η≡e-Q must be introduced in order to ensure their probabilistic interpretation. This operator also gives an equivalent Hermitian theory, by means of a similarity transformation. If, however, quantum mechanics is formulated in terms of functional integrals, we show that the Q operator makes only a subliminal appearance and is not needed for the calculation of expectation values. Instead, the relation to the Hermitian theory is encoded via the external source j(t). These points are illustrated and amplified for two non-Hermitian quantum theories: the Swanson model, a non-Hermitian transform of the simple harmonic oscillator, and the wrong-sign quartic oscillator, which has been shown to be equivalent to a conventional asymmetric quartic oscillator.

  16. Disappearing Q operator

    SciTech Connect

    Jones, H. F.; Rivers, R. J.

    2007-01-15

    In the Schroedinger formulation of non-Hermitian quantum theories a positive-definite metric operator {eta}{identical_to}e{sup -Q} must be introduced in order to ensure their probabilistic interpretation. This operator also gives an equivalent Hermitian theory, by means of a similarity transformation. If, however, quantum mechanics is formulated in terms of functional integrals, we show that the Q operator makes only a subliminal appearance and is not needed for the calculation of expectation values. Instead, the relation to the Hermitian theory is encoded via the external source j(t). These points are illustrated and amplified for two non-Hermitian quantum theories: the Swanson model, a non-Hermitian transform of the simple harmonic oscillator, and the wrong-sign quartic oscillator, which has been shown to be equivalent to a conventional asymmetric quartic oscillator.

  17. Nonclassical properties of the q -coherent and q -cat states of the Biedenharn-Macfarlane q oscillator with q >1

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Hashemi, A.

    2016-01-01

    This paper has been motivated by a recent paper by Dey [Phys. Rev. D 91, 044024 (2015), 10.1103/PhysRevD.91.044024] on the known Arik-Coon q oscillator. We construct q coherent, even and odd q -cat states in Fock representation for the Biedenharn-Macfarlane q oscillator with q >1 and study their nonclassical properties. The q -coherent states minimize the Heisenberg uncertainty relation between the generalized position and momentum operators as well as the x and y components of a q -deformed su(1 ,1 ) algebra in the Schwinger boson representation. The latter is also minimized by the even and odd q -cat states. We show that, contrary to the undeformed harmonic oscillator, the squeezing effect in both position and momentum operators can be exhibited by odd q -cat states. It is also violated by even q -cat states. Furthermore, it is shown that the antibunching effect and sub-Poissonian or super-Poissonian statistics can simultaneously appear by each of the even or odd q -cat states. Finally, a unitary Fock representation of the q -deformed su(1 ,1 ) algebra is obtained by the q -deformed Bargmann-Fock realization.

  18. Ultrasonic attenuation - Q measurements on 70215,29. [lunar rock

    NASA Technical Reports Server (NTRS)

    Warren, N.; Trice, R.; Stephens, J.

    1974-01-01

    Ultrasonic attenuation measurements have been made on an aluminum alloy, obsidian, and rock samples including lunar sample 70215,29. The measurement technique is based on a combination of the pulse transmission method and the forced resonance method. The technique is designed to explore the problem of defining experimentally, the Q of a medium or sample in which mode conversion may occur. If modes are coupled, the measured attenuation is strongly dependent on individual modes of vibration, and a range of Q-factors may be measured over various resonances or from various portions of a transient signal. On 70215,29, measurements were made over a period of a month while the sample outgassed in hard varuum. During this period, the highest measured Q of this sample increased from a few hundred into the range of 1000-1300.

  19. Progress toward high-Q perfect absorption: A Fano antilaser

    NASA Astrophysics Data System (ADS)

    Yu, Sunkyu; Piao, Xianji; Hong, Jiho; Park, Namkyoo

    2015-07-01

    Here we propose a route to the high-Q perfect absorption of light by introducing the concept of a Fano antilaser. Based on the drastic spectral variation of the optical phase in a Fano-resonant system, a spectral singularity for scatter-free perfect absorption can be achieved with an order of magnitude smaller material loss. By applying temporal coupled mode theory to a Fano-resonant waveguide platform, we reveal that the required material loss and following absorption Q factor are ultimately determined by the degree of Fano spectral asymmetry. The feasibility of the Fano antilaser is confirmed using a photonic crystal platform, to demonstrate spatiospectrally selective heating. Our results utilizing the phase-dependent control of device bandwidths derive a counterintuitive realization of high-Q perfect conversion of light into internal energy, and thus pave the way for a new regime of absorption-based devices, including switches, sensors, thermal imaging, and optothermal emitters.

  20. Q Fever Update, Maritime Canada

    PubMed Central

    Marrie, Thomas J.; Campbell, Nancy; McNeil, Shelly A.; Webster, Duncan

    2008-01-01

    Since the 1990s, reports of Q fever in Nova Scotia, Canada, have declined. Passive surveillance for Q fever in Nova Scotia and its neighboring provinces in eastern Canada indicates that the clinical manifestation of Q fever in the Maritime provinces is pneumonia and that incidence of the disease may fluctuate. PMID:18258080

  1. What happens to Q balls if Q is so large?

    NASA Astrophysics Data System (ADS)

    Sakai, Nobuyuki; Tamaki, Takashi

    2012-05-01

    In the system of a gravitating Q ball, there is a maximum charge Qmax⁡ inevitably, while in flat spacetime there is no upper bound on Q in typical models such as the Affleck-Dine model. Theoretically, the charge Q is a free parameter, and phenomenologically it could increase by charge accumulation. We address a question of what happens to Q balls if Q is close to Qmax⁡. First, without specifying a model, we show analytically that inflation cannot take place in the core of a Q ball, contrary to the claim of previous work. Next, for the Affleck-Dine model, we analyze perturbation of equilibrium solutions with Q≈Qmax⁡ by numerical analysis of dynamical field equations. We find that the extremal solution with Q=Qmax⁡ and unstable solutions around it are “critical solutions,” which means the threshold of black-hole formation.

  2. Cautionary tale of mismeasured tails from q /g bias

    NASA Astrophysics Data System (ADS)

    Martin, Adam; Roy, Tuhin S.

    2016-07-01

    Jet substructure techniques such as subjet pT-asymmetry, mass-drop, and grooming have become powerful and widely used tools in experimental searches at the LHC. While these tools provide much-desired handles to separate signal from background, they can introduce unexpected mass scales into the analysis. These scales may be misinterpreted as excesses if these are not correctly incorporated into background modeling. As an example, we study the ATLAS hadronic di-W /Z resonance search. There, we find that the substructure analysis—in particular the combination of a subjet asymmetry cut with the requirement on the number of tracks within a jet—induces a mass scale where the dominant partonic subprocess in the background changes from p p →g +q /q ¯ to p p →q q ¯. In light of this scale, modeling the QCD background using a simple smooth function with monotonically decreasing slope appears insufficient.

  3. Measurement of the Proton Spin Function g1(x,Q2) for Q2 from 0.15 to 1.6 GeV with CLAS

    SciTech Connect

    Renee Fatemi; Alexander Skabelin; Volker Burkert; Donald Crabb; Raffaella De Vita; Sebastian Kuhn; Ralph Minehart

    2003-11-01

    Double-polarization asymmetries for inclusive ep scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH{sub 3} target in the CLAS detector. The polarized structure function g{sub 1}(x,Q{sup 2}) was extracted throughout the nucleon resonance region and into the deep inelastic regime, for Q{sup 2} = 0.15-1.64 GeV{sup 2}. The contributions to the first moment {Gamma}{sub 1}(Q{sup 2}) = g{sub 1}(x,Q{sup 2})dx were determined up to Q{sup 2}=1.2 GeV{sup 2}. Using a parameterization for g{sub 1} in the unmeasured low x regions, the complete first moment was estimated over this Q{sup 2} region. A rapid change in {Gamma}{sub 1} is observed for Q{sup 2} < 1 GeV{sup 2}, with a sign change near Q{sup 2} = 0.3 GeV{sup 2}, indicating dominant contributions from the resonance region. At Q{sup 2}=1.2 GeV{sup 2} our data are below the pQCD evolved scaling value.

  4. Tailored Asymmetry for Enhanced Coupling to WGM Resonators

    NASA Technical Reports Server (NTRS)

    Mohageg, Makan; Maleki, Lute

    2008-01-01

    Coupling of light into and out of whispering- gallery-mode (WGM) optical resonators can be enhanced by designing and fabricating the resonators to have certain non-axisymmetric shapes (see figure). Such WGM resonators also exhibit the same ultrahigh values of the resonance quality factor (Q) as do prior WGM resonators. These WGM resonators are potentially useful as tunable narrow-band optical filters having throughput levels near unity, high-speed optical switches, and low-threshold laser resonators. These WGM resonators could also be used in experiments to investigate coupling between high-Q and chaotic modes within the resonators. For a WGM resonator made of an optically nonlinear material (e.g., lithium niobate) or another material having a high index of refraction, a prism made of a material having a higher index of refraction (e.g., diamond) must be used as part of the coupling optics. For coupling of a beam of light into (or out of) the high-Q resonator modes, the beam must be made to approach (or recede from) the resonator at a critical angle determined by the indices of refraction of the resonator and prism materials. In the case of a lithium niobate/diamond interface, this angle is approximately 22 .

  5. High-Q filters with complete transports using quasiperiodic rings with spin-orbit interaction

    SciTech Connect

    Qiu, R. Z.; Chen, C. H.; Tsao, C. W.; Hsueh, W. J.

    2014-09-15

    A high Q filter with complete transports is achieved using a quasiperiodic Thue-Morse array of mesoscopic rings with spin-orbit interaction. As the generation order of the Thue-Morse array increases, not only does the Q factor of the resonance peak increase exponentially, but the number of sharp resonance peaks also increases. The maximum Q factor for the electronic filter of a Thue-Morse array is much greater than that in a periodic array, for the same number of the rings.

  6. Whispering Gallery Mode Optomechanical Resonator

    NASA Technical Reports Server (NTRS)

    Aveline, David C.; Strekalov, Dmitry V.; Yu, Nan; Yee, Karl Y.

    2012-01-01

    Great progress has been made in both micromechanical resonators and micro-optical resonators over the past decade, and a new field has recently emerged combining these mechanical and optical systems. In such optomechanical systems, the two resonators are strongly coupled with one influencing the other, and their interaction can yield detectable optical signals that are highly sensitive to the mechanical motion. A particularly high-Q optical system is the whispering gallery mode (WGM) resonator, which has many applications ranging from stable oscillators to inertial sensor devices. There is, however, limited coupling between the optical mode and the resonator s external environment. In order to overcome this limitation, a novel type of optomechanical sensor has been developed, offering great potential for measurements of displacement, acceleration, and mass sensitivity. The proposed hybrid device combines the advantages of all-solid optical WGM resonators with high-quality micro-machined cantilevers. For direct access to the WGM inside the resonator, the idea is to radially cut precise gaps into the perimeter, fabricating a mechanical resonator within the WGM. Also, a strategy to reduce losses has been developed with optimized design of the cantilever geometry and positions of gap surfaces.

  7. Gauged Q-balls

    NASA Technical Reports Server (NTRS)

    Lee, Kimyeong; Stein-Schabes, Jaime A.; Watkins, Richard; Widrow, Lawrence M.

    1988-01-01

    Classical non-topological soliton configurations are considered within the theory of a complex scalar field with a gauged U symmetry. Their existence and stability against dispersion are demonstrated and some of their properties are investigated analytically and numerically. The soliton configuration is such that inside the soliton the local U symmetry is broken, the gauge field becomes massive and for a range of values of the coupling constants the soliton becomes a superconductor pushing the charge to the surface. Furthermore, because of the repulsive Coulomb force, there is a maximum size for these objects, making impossible the existence of Q-matter in bulk form. Also briefly discussed are solitons with fermions in a U gauge theory.

  8. Optical Microspherical Resonators for Biomedical Sensing

    PubMed Central

    Soria, Silvia; Berneschi, Simone; Brenci, Massimo; Cosi, Franco; Conti, Gualtiero Nunzi; Pelli, Stefano; Righini, Giancarlo C.

    2011-01-01

    Optical resonators play an ubiquitous role in modern optics. A particular class of optical resonators is constituted by spherical dielectric structures, where optical rays are total internal reflected. Due to minimal reflection losses and to potentially very low material absorption, these guided modes, known as whispering gallery modes, can confer the resonator an exceptionally high quality factor Q, leading to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. These attractive characteristics make these miniaturized optical resonators especially suited as laser cavities and resonant filters, but also as very sensitive sensors. First, a brief analysis is presented of the characteristics of microspherical resonators, of their fabrication methods, and of the light coupling techniques. Then, we attempt to overview some of the recent advances in the development of microspherical biosensors, underlining a number of important applications in the biomedical field. PMID:22346603

  9. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B.; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode (WGM) crystalline resonators, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics. In particular, we demonstrate experimentally a tunable third-order optical filter fabricated from the three metalized resonators; and report observation of parametric frequency dobuling in a WGM resonator made of periodically poled lithium niobate (PPLN).

  10. Q fever — a review

    PubMed Central

    Marrie, Thomas J.

    1990-01-01

    Q or “query” fever is a zoonosis caused by the organism Coxiella burnetii. Cattle, sheep and goats are the most common reservoirs of this organism. The placenta of infected animals contains high numbers (up to 109/g) of C. burnetii. Aerosols occur at the time of parturition and man becomes infected following inhalation of the microorganism. The spectrum of illness in man is wide and consists of acute and chronic forms. Acute Q fever is most often a self-limited flu-like illness but may include pneumonia, hepatitis, or meningoencephalitis. Chronic Q fever almost always means endocarditis and rarely osteomyelitis. Chronic Q fever is not known to occur in animals other than man. An increased abortion and stillbirth rate are seen in infected domestic ungulates. Four provinces (Nova Scotia, New Brunswick, Ontario and Alberta) reported cases of Q fever in 1989. A vaccine for Q fever has recently been licensed in Australia. ImagesFigure 1. PMID:17423643

  11. Optical resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.

  12. Resonance scraping

    SciTech Connect

    Collins, T.

    1986-06-01

    Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.

  13. YBCO superconducting ring resonators at millimeter-wave frequencies

    NASA Technical Reports Server (NTRS)

    Chorey, Christopher M.; Kong, Keon-Shik; Bhasin, Kul B.; Warner, J. D.; Itoh, Tatsuo

    1991-01-01

    Microstrip ring resonators operating at 35 GHz were fabricated from laser ablated YBCO films deposited on lanthanum aluminate substrates. They were measured over a range of temperatures and their performances compared to identical resonators made of evaporated gold. Below 60 Kelvin the superconducting strip performed better than the gold, reaching an unloaded Q approximately 1.5 times that of gold at 25 K. A shift in the resonant frequency follows the form predicted by the London equations. The Phenomenological Loss Equivalence Method is applied to the ring resonator and the theoretically calculated Q values are compared to the experimental results.

  14. Tunable filters using wideband elastic resonators.

    PubMed

    Kadota, Michio; Ogami, Takashi; Kimura, Tetsuya; Daimon, Katsuya

    2013-10-01

    Currently, an ultra-wideband resonator is greatly needed to realize a tunable filter with a wide tunable range, because mobile phones with multiple bands and cognitive radio systems require such tunable filters to simplify their circuits. Although tunable filters have been studied using SAW resonators, their tunable range was insufficient for the filters even when wideband SAW resonators with a bandwidth of 17% were used. Therefore, the fabrication of wider-bandwidth resonators has been attempted with the goal of realizing tunable filters with wide tunable ranges. In this study, an SH0- mode plate wave resonator in a 27.5°YX-LiNbO3 plate with an ultra-wide bandwidth of 29.1%, a high impedance ratio of 98 dB, and a high Q (Q(r) = 700 and Q(a) = 720) was realized. Two types of tunable filters were constructed using such SH0-mode resonators and capacitors. As a result, tunable ranges (bands) of 13% to 19% were obtained. The possibility of applying the SH0-mode resonator in the high-frequency gigahertz range is discussed. PMID:24081261

  15. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode crystalline resonaors, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics.

  16. THE Q-BIOTYPE WHITEFLY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2004, the Q-biotype of the sweetpotato whitefly, Bemisia tabaci, was identified in the U.S. for the first time. The level of insecticide resistance to pyriproxyfen (Distance) and imidacloprid (Marathon) of the Q-biotype was higher than any U.S. population of B-biotype whiteflies (silverleaf white...

  17. An Open Resonator for Physical Studies

    NASA Astrophysics Data System (ADS)

    Kuzmichev, I. K.; Melezhik, P. N.; Poyedinchuk, A. Ye.

    2006-06-01

    The excitation efficency of the TEM01 q oscillation of an two-mirror hemispherical open resonator (OR) is studied. The resonator is excited by the TE01 wave of a circular waveguide joined in the middle of the OR plane mirror. Given the waveguide optimum size, the TEM01 q mode excitation efficiency reaches 78%. Analysis of the resonant system spectrum in the 4-mm wave region shows that this waveguide-OR system offers a single mode resonance curve across almost a 10-GHz tuning range. The TEM0110 mode field distribution with and without the circular waveguide in the middle of the OR plane mirror is available due to the small scatterer method. It is shown that the considered open system is suitable for measuring electromagnetic characteristics of high-loss substances and metamaterials in the short-wave end of the millimeter (mm) region as well as in the submillimeter (submm) wave region.

  18. Superconducting Resonators with Parasitic Electromagnetic Environments

    NASA Astrophysics Data System (ADS)

    Hornibrook, John; Mitchell, Emma; Reilly, David

    2012-02-01

    Microwave losses in niobium superconducting resonators are investigated at milli-Kelvin temperatures and with low drive power. In addition to the well-known suppression of Q-factor that arises from coupling between the resonator and two-level defects in the dielectric substrate [1-4], we report strong dependence of the loaded Q-factor and resonance line-shape on the electromagnetic environment. Methods to suppress parasitic coupling between the resonator and its environment are demonstrated.[4pt] [1] Day, P.K. et al., Nature 425, 817-821 (2003).[0pt] [2] Wallraff, A. et. al., Nature 451, 162-167 (2004).[0pt] [3] Macha, P. et. al., Appl. Phys. Lett., 96, 062503 (2010).[0pt] [4] O'Connell, A.D. et. al., Appl. Phys. Lett., 92, 112903 (2008).

  19. Linear and nonlinear behavior of crystalline optical whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy A.; Matsko, Andrey B.; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We demonstrate strong nonlinear behavior of high-Q whispering gallery mode (WGM) resonators made out of various crystals adn devices based on the resonators. The maximum WGM optical Q-fact or achieved at room temperature exceeds 2X10 to the tenth power.

  20. New insights into the chemistry of Coenzyme Q-0: A voltammetric and spectroscopic study.

    PubMed

    Gulaboski, Rubin; Bogeski, Ivan; Kokoskarova, Pavlinka; Haeri, Haleh H; Mitrev, Sasa; Stefova, Marina; Stanoeva, Jasmina Petreska; Markovski, Velo; Mirčeski, Valentin; Hoth, Markus; Kappl, Reinhard

    2016-10-01

    Coenzyme Q-0 (CoQ-0) is the only Coenzyme Q lacking an isoprenoid group on the quinoid ring, a feature important for its physico-chemical properties. Here, the redox behavior of CoQ-0 in buffered and non-buffered aqueous media was examined. In buffered aqueous media CoQ-0 redox chemistry can be described by a 2-electron-2-proton redox scheme, characteristic for all benzoquinones. In non-buffered media the number of electrons involved in the electrode reaction of CoQ-0 is still 2; however, the number of protons involved varies between 0 and 2. This results in two additional voltammetric signals, attributed to 2-electrons-1H(+) and 2-electrons-0H(+) redox processes, in which mono- and di-anionic compounds of CoQ-0 are formed. In addition, CoQ-0 exhibits a complex chemistry in strong alkaline environment. The reaction of CoQ-0 and OH(-) anions generates several hydroxyl derivatives as products. Their structures were identified with HPLC/MS. The prevailing radical reaction mechanism was analyzed by electron paramagnetic resonance spectroscopy. The hydroxyl derivatives of CoQ-0 have a strong antioxidative potential and form stable complexes with Ca(2+) ions. In summary, our results allow mechanistic insights into the redox properties of CoQ-0 and its hydroxylated derivatives and provide hints on possible applications. PMID:27268099

  1. Low-loss coupling to dielectric resonators

    NASA Technical Reports Server (NTRS)

    Hearn, C. P.; Bradshaw, E. S.; Trew, R. J.; Hefner, B. B., Jr.

    1991-01-01

    A compilation is presented of experimental observations and arguments concerning the use of dielectric resonators in applications requiring both tight coupling (beta greater than 10) and high unloaded Q, such as low loss bandpass filters. The microstrip coupled dielectric resonator is the primary focus, but an alternative coupling technique is discussed and comparatively evaluated. It is concluded that coupling factors as large as 65 are achievable.

  2. R248Q mutation--Beyond p53-DNA binding.

    PubMed

    Ng, Jeremy W K; Lama, Dilraj; Lukman, Suryani; Lane, David P; Verma, Chandra S; Sim, Adelene Y L

    2015-12-01

    R248 in the DNA binding domain (DBD) of p53 interacts directly with the minor groove of DNA. Earlier nuclear magnetic resonance (NMR) studies indicated that the R248Q mutation resulted in conformation changes in parts of DBD far from the mutation site. However, how information propagates from the mutation site to the rest of the DBD is still not well understood. We performed a series of all-atom molecular dynamics (MD) simulations to dissect sterics and charge effects of R248 on p53-DBD conformation: (i) wild-type p53 DBD; (ii) p53 DBD with an electrically neutral arginine side-chain; (iii) p53 DBD with R248A; (iv) p53 DBD with R248W; and (v) p53 DBD with R248Q. Our results agree well with experimental observations of global conformational changes induced by the R248Q mutation. Our simulations suggest that both charge- and sterics are important in the dynamics of the loop (L3) where the mutation resides. We show that helix 2 (H2) dynamics is altered as a result of a change in the hydrogen bonding partner of D281. In turn, neighboring L1 dynamics is altered: in mutants, L1 predominantly adopts the recessed conformation and is unable to interact with the major groove of DNA. We focused our attention the R248Q mutant that is commonly found in a wide range of cancer and observed changes at the zinc-binding pocket that might account for the dominant negative effects of R248Q. Furthermore, in our simulations, the S6/S7 turn was more frequently solvent exposed in R248Q, suggesting that there is a greater tendency of R248Q to partially unfold and possibly lead to an increased aggregation propensity. Finally, based on the observations made in our simulations, we propose strategies for the rescue of R248Q mutants. PMID:26442703

  3. Q-switched Nd:YAG optical vortex lasers.

    PubMed

    Kim, D J; Kim, J W; Clarkson, W A

    2013-12-01

    Q-switched operation of a high-quality Nd:YAG optical vortex laser with the first order Laguerre-Gaussian mode and well-determined helical wavefronts using a fiber-based pump beam conditioning scheme is reported. A simple two-mirror resonator incorporating an acousto-optic Q-switch was employed, along with an etalon and a Brewster plate to enforce the particular helicity of the output. The laser yielded Q-switched pulses with ~250 μJ pulse energy and ~33 ns pulse duration (FWHM) at a 0.1 kHz repetition rate for 5.1 W of absorbed pump power. The handedness of the helical wavefronts was preserved regardless of the repetition rates. The prospects of further power scaling and improved laser performance are discussed. PMID:24514499

  4. Unusual variant of holoprosencephaly in monosomy 13q.

    PubMed

    Marcorelles, Pascale; Loget, Philippe; Fallet-Bianco, Catherine; Roume, Joëlle; Encha-Razavi, Ferechte; Delezoide, Anne-Lise

    2002-01-01

    The clinical phenotype related to the terminal deletion of the long arm of the chromosome 13 (the so-called 13q- syndrome) includes a considerable number of malformations, especially of the brain. This report describes five cases of a cerebral midline anomaly that leads to a particular clover-shaped type of holoprosencephaly in 13q- fetuses at different stages of the second and third trimesters of gestation. Our cases are compared to those in literature reviews. This malformation has only been described by computer tomography and magnetic resonance imaging in eight children of various ages and has been called "middle interhemispheric fusion" or syntelencephaly. Recently, the human gene ZIC2, the mutation of which leads to holoprosencephaly, has been mapped to the long arm of chromosome 13. on band q32. These findings suggest that this particular type of holoprosencephaly may be related to ZIC2 gene loss of function. PMID:11910512

  5. 100-megawatt power Q-switched Er-glass laser

    NASA Astrophysics Data System (ADS)

    Taboada, John; Taboada, John M.; Stolarski, David J.; Zohner, Justin J.; Chavey, Lucas J.; Hodnett, Harvey M.; Noojin, Gary D.; Thomas, Robert J.; Kumru, Semih S.; Cain, Clarence P.

    2006-02-01

    A very high energy Q-switched Er-glass laser is reported. We incorporated a rotating, resonant mirror/Porro-cavity reflector optical arrangement to achieve very high shutter speeds on the cavity Q of a laser designed for energetic, flashlamp-pumped, 600-μs, 1540-nm pulses. Reproducible 3.75-J, 35-ns, 1533-nm laser pulses were obtained at a repetition rate less than 1 minute. Our work shows that reliable, very high energy, Q-switched, Er-glass laser pulses at 1533 nm can be generated mechanically with no apparent damage to laser cavity components. We demonstrate the applications of this "eye safe" wavelength to energetic processes such as LIBS and materials processing. The laser could also serve as a new tool for bioeffects studies and targeting applications.

  6. Electroelastic effect of thickness mode langasite resonators.

    PubMed

    Zhang, Haifeng; Turner, Joseph A; Yang, Jiashi; Kosinski, John A

    2007-10-01

    Langasite is a very promising material for resonators due to its good temperature behavior and high piezoelectric coupling, low acoustic loss, and high Q factor. The biasing effect for langasite resonators is crucial for resonator design. In this article, the resonant frequency shift of a thickness-mode langasite resonator is analyzed with respect to a direct current (DC) electric field applied in the thickness direction. The vibration modes of a thin langasite plate fully coated with an electrode are analyzed. The analysis is based on the theory for small fields superposed on a bias in electroelastic bodies and the first-order perturbation integral theory. The electroelastic effect of the resonator is analyzed by both analytical and finite-element methods. The complete set of nonlinear elastic, piezoelectric, dielectric permeability, and electrostrictive constants of langasite is used in the theoretical and numerical analysis. The sensitivity of electroelastic effect to nonlinear material constants is analyzed. PMID:18019250

  7. E{sub 1+}/M{sub 1+} and S{sub 1+}/M{sub 1+} from an analysis of p(e,e{prime}p){pi}{sup 0} in the region of the {Delta}(1232) resonance at Q{sup 2} = 3.2 (GeV/c){sup 2}

    SciTech Connect

    V. Burkert; L. Elouadrhiri

    1995-10-01

    In this paper the authors present an analysis of exclusive p(e,e{prime}p){pi}{sup 0} data to determine the electromagnetic and scalar transition multipoles in the mass region of the {Delta}(1232) at the highest Q{sup 2} value where data exist, Q{sup 2} = 3.2(GeV/c){sup 2}.

  8. q-quaternions and q-deformed su(2) instantons

    SciTech Connect

    Fiore, Gaetano

    2007-10-15

    We construct (anti-)instanton solutions of a would-be q-deformed su(2) Yang-Mills theory on the quantum Euclidean space R{sub q}{sup 4} [the SO{sub q}(4)-covariant noncommutative space] by reinterpreting the function algebra on the latter as a q-quaternion bialgebra. Since the (anti-)self-duality equations are covariant under the quantum group of deformed rotations, translations, and scale change, by applying the latter we can generate new solutions from the one centered at the origin and with unit size. We also construct multi-instanton solutions. As they depend on noncommuting parameters playing the roles of 'sizes' and 'coordinates of the centers' of the instantons, this indicates that the moduli space of a complete theory should be a noncommutative manifold. Similarly, gauge transformations should be allowed to depend on additional noncommutative parameters.

  9. Resonance IR: a coherent multidimensional analogue of resonance Raman.

    PubMed

    Boyle, Erin S; Neff-Mallon, Nathan A; Handali, Jonathan D; Wright, John C

    2014-05-01

    This work demonstrates the use of triply resonant sum frequency (TRSF) spectroscopy as a "resonance IR" analogue to resonance Raman spectroscopy. TRSF is a four-wave-mixing process where three lasers with independent frequencies interact coherently with a sample to generate an output at their triple summation frequency. The first two lasers are in the infrared and result in two vibrational excitations, while the third laser is visible and induces a two-quantum anti-Stokes resonance Raman transition. The signal intensity grows when the laser frequencies are all in resonance with coupled vibrational and electronic states. The method therefore provides electronic enhancement of IR-active vibrational modes. These modes may be buried beneath solvent in the IR spectrum and also be Raman-inactive and therefore inaccessible by other techniques. The method is presented on the centrosymmetric complex copper phthalocyanine tetrasulfonate. In this study, the two vibrational frequencies were scanned across ring-breathing modes, while the visible frequency was left in resonance with the copper phthalocyanine tetrasulfonate Q band, resulting in a two-dimensional infrared plot that also reveals coupling between vibrational states. TRSF has the potential to be a very useful probe of structurally similar biological motifs such as hemes, as well as synthetic transition-metal complexes. PMID:24707979

  10. Deletion (11)(q14.1q21)

    SciTech Connect

    Stratton, R.F.; Lazarus, K.H.; Ritchie, E.J.L.; Bell, A.M.

    1994-02-01

    The authors report on a 4-year-old girl with moderate development delay, horseshoe kidney, bilateral duplication of the ureters with right upper pole obstruction, hydronephrosis and nonfunction, and subsequent Wilms tumor of the right lower pole. She had an interstitial deletion of the long arm of chromosome 11 involving the region 11(q14.1q21). 22 refs., 2 figs., 1 tab.

  11. Composite Resonator Surface Emitting Lasers

    SciTech Connect

    FISCHER,ARTHUR J.; CHOQUETTE,KENT D.; CHOW,WENG W.; ALLERMAN,ANDREW A.; GEIB,KENT M.

    2000-05-01

    The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

  12. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks

    NASA Astrophysics Data System (ADS)

    Lake, David P.; Mitchell, Matthew; Jayakumar, Harishankar; dos Santos, Laís Fujii; Curic, Davor; Barclay, Paul E.

    2016-01-01

    Resonant second harmonic generation between 1550 nm and 775 nm with normalized outside efficiency > 3.8 × 10 - 4 mW - 1 is demonstrated in a gallium phosphide microdisk supporting high-Q modes at visible ( Q ˜ 10 4 ) and infrared ( Q ˜ 10 5 ) wavelengths. The double resonance condition is satisfied for a specific pump power through intracavity photothermal temperature tuning using ˜ 360 μ W of 1550 nm light input to a fiber taper and coupled to a microdisk resonance. Power dependent efficiency consistent with a simple model for thermal tuning of the double resonance condition is observed.

  13. Sigma model Q-balls and Q-stars

    SciTech Connect

    Verbin, Y.

    2007-10-15

    A new kind of Q-balls is found: Q-balls in a nonlinear sigma model. Their main properties are presented together with those of their self-gravitating generalization, sigma model Q-stars. A simple special limit of solutions which are bound by gravity alone ('sigma stars') is also discussed briefly. The analysis is based on calculating the mass, global U(1) charge and binding energy for families of solutions parametrized by the central value of the scalar field. Two kinds (differing by the potential term) of the new sigma model Q-balls and Q-stars are analyzed. They are found to share some characteristics while differing in other respects like their properties for weak central scalar fields which depend strongly on the form of the potential term. They are also compared with their ordinary counterparts and although similar in some respects, significant differences are found like the existence of an upper bound on the central scalar field. A special subset of the sigma model Q-stars contains those which do not possess a flat space limit. Their relation with sigma star solutions is discussed.

  14. Q-switched Ho:Lu2O3 laser at 2.12 μm.

    PubMed

    Lamrini, Samir; Koopmann, Philipp; Scholle, Karsten; Fuhrberg, Peter

    2013-06-01

    We report on a Q-switched Ho:Lu2O3 laser resonantly pumped by a GaSb-based laser diode stack at 1.9 μm. The maximum output energy extracted from the compact plano-plano acousto-optically Q-switched resonator was 8 mJ at a 100 Hz pulse repetition rate, while the peak power was 40 kW. The laser wavelength was 2.124 μm. PMID:23722799

  15. Complex multireference configuration interaction calculations for the K-vacancy Auger states of N(q+) (q = 2-5) ions.

    PubMed

    Peng, Yi-Geng; Wu, Yong; Zhu, Lin-Fan; Zhang, Song Bin; Wang, Jian-Guo; Liebermann, H-P; Buenker, R J

    2016-02-01

    K-vacancy Auger states of N(q+) (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well. The strong correlations between the valence and core electrons play important roles in accurately determining those resonance parameters, Rydberg electrons contribute negligibly in the calculations. Note that it is the first time that the complex scaling method has been successfully applied for the B-like nitrogen. CMRD-CI is readily extended to treat the resonance states of molecules in the near future. PMID:26851920

  16. Q Fever in French Guiana

    PubMed Central

    Eldin, Carole; Mahamat, Aba; Demar, Magalie; Abboud, Philippe; Djossou, Félix; Raoult, Didier

    2014-01-01

    Coxiella burnetii, the causative agent of Q fever, is present worldwide. Recent studies have shown that this bacterium is an emerging pathogen in French Guiana and has a high prevalence (24% of community-acquired pneumonia). In this review, we focus on the peculiar epidemiology of Q fever in French Guiana. We place it in the context of the epidemiology of the disease in the surrounding countries of South America. We also review the clinical features of Q fever in this region, which has severe initial presentation but low mortality rates. These characteristics seem to be linked to a unique genotype (genotype 17). Finally, we discuss the issue of the animal reservoir of C. burnetii in French Guiana, which is still unknown. Further studies are necessary to identify this reservoir. Identification of this reservoir will improve the understanding of the Q fever epidemic in French Guiana and will provide new tools to control this public health problem. PMID:25092817

  17. Q (Alpha) Function and Squeezing Effect

    NASA Technical Reports Server (NTRS)

    Yunjie, Xia; Xianghe, Kong; Kezhu, Yan; Wanping, Chen

    1996-01-01

    The relation of squeezing and Q(alpha) function is discussed in this paper. By means of Q function, the squeezing of field with gaussian Q(alpha) function or negative P(a)function is also discussed in detail.

  18. Decoding Gαq signaling.

    PubMed

    Litosch, Irene

    2016-05-01

    q signals with phospholipase C-β (PLC-β) to modify behavior in response to an agonist-bound GPCR. While the fundamental steps which prime Gαq to interact with PLC-β have been identified, questions remain concerning signal strength with PLC-β and other effectors. Gαq is generally viewed to function as a simple ON and OFF switch for its effector, dependent on the binding of GTP or GDP. However, Gαq does not have a single effector, Gαq has many different effectors. Furthermore, select effectors also regulate Gαq activity. PLC-β is a lipase and a GTPase activating protein (GAP) selective for Gαq. The contribution of G protein regulating activity to signal amplitude remains unclear. The unique PLC-β coiled-coil domain is essential for maximum Gαq response, both lipase and GAP. Nonetheless, coiled-coil domain associations necessary to maximum response have not been revealed by the structural approach. This review discusses progress towards understanding the basis for signal strength with PLC-β and other effectors. Shared and effector-specific interactions have been identified. Finally, the evidence for allosteric regulation of lipase stimulation by protein kinase C, the membrane, phosphatidic acid, phosphatidylinositol-4, 5-bisphosphate and GPCR is explored. Endogenous allosteric regulators can suppress or enhance maximum lipase stimulation dependent on the PLC-β coiled-coil domain. A better understanding of allosteric modulation may therefore identify a wealth of new targets to regulate signal strength and behavior. PMID:27012764

  19. Default mode network connectivity and reciprocal social behavior in 22q11.2 deletion syndrome

    PubMed Central

    Schreiner, Matthew J.; Karlsgodt, Katherine H.; Uddin, Lucina Q.; Chow, Carolyn; Congdon, Eliza; Jalbrzikowski, Maria

    2014-01-01

    22q11.2 deletion syndrome (22q11DS) is a genetic mutation associated with disorders of cortical connectivity and social dysfunction. However, little is known about the functional connectivity (FC) of the resting brain in 22q11DS and its relationship with social behavior. A seed-based analysis of resting-state functional magnetic resonance imaging data was used to investigate FC associated with the posterior cingulate cortex (PCC), in (26) youth with 22qDS and (51) demographically matched controls. Subsequently, the relationship between PCC connectivity and Social Responsiveness Scale (SRS) scores was examined in 22q11DS participants. Relative to 22q11DS participants, controls showed significantly stronger FC between the PCC and other default mode network (DMN) nodes, including the precuneus, precentral gyrus and left frontal pole. 22q11DS patients did not show age-associated FC changes observed in typically developing controls. Increased connectivity between PCC, medial prefrontal regions and the anterior cingulate cortex, was associated with lower SRS scores (i.e. improved social competence) in 22q11DS. DMN integrity may play a key role in social information processing. We observed disrupted DMN connectivity in 22q11DS, paralleling reports from idiopathic autism and schizophrenia. Increased strength of long-range DMN connectivity was associated with improved social functioning in 22q11DS. These findings support a ‘developmental-disconnection’ hypothesis of symptom development in this disorder. PMID:23912681

  20. Interstitial deletions 4q21.1q25 and 4q25q27: Phenotypic variability and relation to Rieger anomaly

    SciTech Connect

    Kulharya, A.S.; Schneider, N.R.; Tonk, V.

    1995-01-16

    We describe clinical and chromosomal findings in two patients with del(4q). Patient 1, with interstitial deletion (4)(q21.1q25), had craniofacial and skeletal anomalies and died at 8 months hydrocephalus. Patient 2, with interstitial deletion (4)(q25q27), had craniofacial and skeletal anomalies with congenital hypotonia and developmental delay. These patients shared certain manifestations with other del(4q) patients but did not have Rieger anomaly. Clinical variability among patients with interstitial deletions of 4q may be related to variable expression, variable deletion, or imprinting of genes within the 4q region. 15 refs., 4 figs., 1 tab.

  1. Experimental study of electro-optical Q-switched pulsed Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    A, Maleki; M Kavosh, Tehrani; H, Saghafifar; M, H. Moghtader Dindarlu

    2016-03-01

    We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We experimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configuration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.

  2. Applications and Methods of Operating a Three-dimensional Nano-electro-mechanical Resonator and Related Devices

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Epp, Larry W. (Inventor); Bagge, Leif (Inventor)

    2013-01-01

    Carbon nanofiber resonator devices, methods for use, and applications of said devices are disclosed. Carbon nanofiber resonator devices can be utilized in or as high Q resonators. Resonant frequency of these devices is a function of configuration of various conducting components within these devices. Such devices can find use, for example, in filtering and chemical detection.

  3. The study of piezoelectric lateral-electric-field-excited resonator.

    PubMed

    Zaitsev, Boris; Kuznetsova, Iren; Shikhabudinov, Alexander; Teplykh, Andrey; Borodina, Irina

    2014-01-01

    The piezoelectric lateral-electric-field-excited resonator based on an X-cut lithium niobate plate has been investigated. Two rectangular electrodes were applied on one side of the plate so that the lateral electric field components were parallel to the crystallographic Y-axis and excited the longitudinal wave in the gap between the electrodes. The region around the electrodes was covered with a special absorbing varnish to suppress the spurious oscillations. The effect of the absorbing coating width on the resonant frequency and Q-factor of the lateral field-excited resonator was studied in detail with the series and parallel resonances for different width of the gap between the electrodes. As a result, we found experimentally the parameter regions of pure resonances and the boundaries of value variation for resonance frequency, Q-factor, and effective electromechanical coupling coefficient. PMID:24402903

  4. Measurement and analysis of cryogenic sapphire dielectric resonators and DROs

    NASA Technical Reports Server (NTRS)

    Dick, G. J.

    1987-01-01

    Presented are the experimental and computational results of a study on a new kind of dielectric resonator oscillator (DRO). It consists of a cooled, cylindrically symmetric sapphire resonator surrounded by a metallic shield and is capable of higher Q's than any other dielectric resonator. Isolation of fields to the sapphire by the special nature of the electromagnetic mode allows the very low loss of the sapphire itself to be expressed. Calculations show that the plethora of modes in such resonators can be effectively reduced through the use of a ring resonator with appropriate dimensions. Experimental results show Q's ranging from 3 x 10 to the 8th at 77 K to 10 to the 9th at 4.2 K. Performance is estimated for several types of DROs incorporating these resonators. Phase noise reductions in X-band sources are indicated at values substantially lower than those previously available.

  5. Apex-angle-dependent resonances in triangular split-ring resonators

    NASA Astrophysics Data System (ADS)

    Burnett, Max A.; Fiddy, Michael A.

    2016-02-01

    Along with other frequency selective structures (Pendry et al. in IEEE Trans Microw Theory Tech 47(11):2075-2084, 1999) (circles and squares), triangular split-ring resonators (TSRRs) only allow frequencies near the center resonant frequency to propagate. Further, TSRRs are attractive due to their small surface area (Vidhyalakshmi et al. in Stopband characteristics of complementary triangular split ring resonator loaded microstrip line, 2011), comparatively, and large quality factors ( Q) as previously investigated by Gay-Balmaz et al. (J Appl Phys 92(5):2929-2936, 2002). In this work, we examine the effects of varying the apex angle on the resonant frequency, the Q factor, and the phase shift imparted by the TSRR element within the GHz frequency regime.

  6. Microspherical photonics: Sorting resonant photonic atoms by using light

    SciTech Connect

    Maslov, Alexey V.; Astratov, Vasily N.

    2014-09-22

    A method of sorting microspheres by resonant light forces in vacuum, air, or liquid is proposed. Based on a two-dimensional model, it is shown that the sorting can be realized by allowing spherical particles to traverse a focused beam. Under resonance with the whispering gallery modes, the particles acquire significant velocity along the beam direction. This opens a unique way of large-volume sorting of nearly identical photonic atoms with 1/Q accuracy, where Q is the resonance quality factor. This is an enabling technology for developing super-low-loss coupled-cavity structures and devices.

  7. Structure functions at low Q^2: higher twists and target mass effects

    SciTech Connect

    Wally Melnitchouk

    2006-05-22

    We review the physics of structure functions at low Q{sup 2}, focusing on the phenomenon of quark-hadron duality and the resonance-scaling transition, both phenomenologically and in the context of quark models. We also present a new implementation of target mass corrections to nucleon structure functions which, unlike existing treatments, has the correct kinematic threshold behavior at finite Q{sup 2} in the x -> 1 limit.

  8. Dielectric microwave resonators in TE011 cavities for electron paramagnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mett, Richard R.; Sidabras, Jason W.; Golovina, Iryna S.; Hyde, James S.

    2008-09-01

    The coupled system of the microwave cylindrical TE011 cavity and the TE01δ dielectric modes has been analyzed in order to determine the maximum achievable resonator efficiency parameter of a dielectric inserted into a cavity, and whether this value can exceed that of a dedicated TE01δ mode dielectric resonator. The frequency, Q value, and resonator efficiency parameter Λ for each mode of the coupled system were calculated as the size of the dielectric was varied. Other output parameters include the relative field magnitudes and phases. Two modes are found: one with fields in the dielectric parallel to the fields in the cavity center and the other with antiparallel fields. Results closely match those from a computer program that solves Maxwell's equations by finite element methods. Depending on the relative natural resonance frequencies of the cavity and dielectric, one mode has a higher Q value and correspondingly lower Λ than the other. The mode with the higher Q value is preferentially excited by a coupling iris or loop in or near the cavity wall. However, depending on the frequency separation between modes, either can be excited in this way. A relatively narrow optimum is found for the size of the insert that produces maximum signal for both modes simultaneously. It occurs when the self-resonance frequencies of the two resonators are nearly equal. The maximum signal is almost the same as that of the dedicated TE01δ mode dielectric resonator alone, Λ ≅40 G/W1/2 at X-band for a KTaO3 crystal. The cavity is analogous to the second stage of a two-stage coupler. In general, there is no electron paramagnetic resonance (EPR) signal benefit by use of a second stage. However, there is a benefit of convenience. A properly designed sample-mounted resonator inserted into a cavity can give EPR signals as large as what one would expect from the dielectric resonator alone.

  9. Dielectric microwave resonators in TE(011) cavities for electron paramagnetic resonance spectroscopy.

    PubMed

    Mett, Richard R; Sidabras, Jason W; Golovina, Iryna S; Hyde, James S

    2008-09-01

    The coupled system of the microwave cylindrical TE(011) cavity and the TE(01delta) dielectric modes has been analyzed in order to determine the maximum achievable resonator efficiency parameter of a dielectric inserted into a cavity, and whether this value can exceed that of a dedicated TE(01delta) mode dielectric resonator. The frequency, Q value, and resonator efficiency parameter Lambda for each mode of the coupled system were calculated as the size of the dielectric was varied. Other output parameters include the relative field magnitudes and phases. Two modes are found: one with fields in the dielectric parallel to the fields in the cavity center and the other with antiparallel fields. Results closely match those from a computer program that solves Maxwell's equations by finite element methods. Depending on the relative natural resonance frequencies of the cavity and dielectric, one mode has a higher Q value and correspondingly lower Lambda than the other. The mode with the higher Q value is preferentially excited by a coupling iris or loop in or near the cavity wall. However, depending on the frequency separation between modes, either can be excited in this way. A relatively narrow optimum is found for the size of the insert that produces maximum signal for both modes simultaneously. It occurs when the self-resonance frequencies of the two resonators are nearly equal. The maximum signal is almost the same as that of the dedicated TE(01delta) mode dielectric resonator alone, Lambda congruent with40 G/W(1/2) at X-band for a KTaO(3) crystal. The cavity is analogous to the second stage of a two-stage coupler. In general, there is no electron paramagnetic resonance (EPR) signal benefit by use of a second stage. However, there is a benefit of convenience. A properly designed sample-mounted resonator inserted into a cavity can give EPR signals as large as what one would expect from the dielectric resonator alone. PMID:19044441

  10. White-Light Whispering-Gallery-Mode Optical Resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey; Savchenkov, Anatoliy; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators can be designed to exhibit continuous spectra over wide wavelength bands (in effect, white-light spectra), with ultrahigh values of the resonance quality factor (Q) that are nearly independent of frequency. White-light WGM resonators have potential as superior alternatives to (1) larger, conventional optical resonators in ring-down spectroscopy, and (2) optical-resonator/electro-optical-modulator structures used in coupling of microwave and optical signals in atomic clocks. In these and other potential applications, the use of white-light WGM resonators makes it possible to relax the requirement of high-frequency stability of lasers, thereby enabling the use of cheaper lasers. In designing a white-light WGM resonator, one exploits the fact that the density of the mode spectrum increases predictably with the thickness of the resonator disk. By making the resonator disk sufficiently thick, one can make the frequency differences between adjacent modes significantly less than the spectral width of a single mode, so that the spectral peaks of adjacent modes overlap, making the resonator spectrum essentially continuous. Moreover, inasmuch as the Q values of the various modes are determined primarily by surface Rayleigh scattering that does not depend on mode numbers, all the modes have nearly equal Q. By use of a proper coupling technique, one can ensure excitation of a majority of the modes. For an experimental demonstration of a white-light WGM resonator, a resonator disk 0.5-mm thick and 5 mm in diameter was made from CaF2. The shape of the resonator and the fiberoptic coupling arrangement were as shown in Figure 1. The resonator was excited with laser light having a wavelength of 1,320 nm and a spectral width of 4 kHz. The coupling efficiency exceeded 80 percent at any frequency to which the laser could be set in its tuning range, which was >100-GHz wide. The resonator response was characterized by means of ring

  11. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    2015-12-01

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  12. Discrete resonances

    NASA Astrophysics Data System (ADS)

    Vivaldi, Franco

    The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.

  13. Laser Resonator

    NASA Technical Reports Server (NTRS)

    Harper, L. L. (Inventor)

    1983-01-01

    An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.

  14. Chip scale mechanical spectrum analyzers based on high quality factor overmoded bulk acouslic wave resonators

    SciTech Connect

    Olsson, R. H., III

    2012-03-01

    The goal of this project was to develop high frequency quality factor (fQ) product acoustic resonators matched to a standard RF impedance of 50 {Omega} using overmoded bulk acoustic wave (BAW) resonators. These resonators are intended to serve as filters in a chip scale mechanical RF spectrum analyzer. Under this program different BAW resonator designs and materials were studied theoretically and experimentally. The effort resulted in a 3 GHz, 50 {Omega}, sapphire overmoded BAW with a fQ product of 8 x 10{sup 13}, among the highest values ever reported for an acoustic resonator.

  15. A new mosaic der(18)t(1;18)(q32.1;q21.3) with developmental delay and facial dysmorphism.

    PubMed

    Choi, Young-Jin; Shin, Eunsim; Jo, Tae Sik; Moon, Jin-Hwa; Lee, Se-Min; Kim, Joo-Hwa; Oh, Jae-Won; Kim, Chang-Ryul; Seol, In Joon

    2016-02-01

    We report the case of a 22-month-old boy with a new mosaic partial unbalanced translocation of 1q and 18q. The patient was referred to our Pediatric Department for developmental delay. He showed mild facial dysmorphism, physical growth retardation, a hearing disability, and had a history of patent ductus arteriosus. White matter abnormality on brain magnetic resonance images was also noted. His initial routine chromosomal analysis revealed a normal 46,XY karyotype. In a microarray-based comparative genomic hybridization (aCGH) analysis, subtle copy number changes in 1q32.1-q44 (copy gain) and 18q21.33-18q23 (copy loss) suggested an unbalanced translocation of t(1;18). Repeated chromosomal analysis revealed a low-level mosaic translocation karyotype of 46,XY,der(18)t(1;18)(q32.1;q21.3)[12]/46,XY[152]. Because his parents had normal karyotypes, his translocation was considered to be de novo. The abnormalities observed in aCGH were confirmed by metaphase fluorescent in situ hybridization. We report this patient as a new karyotype presenting developmental delay, facial dysmorphism, cerebral dysmyelination, and other abnormalities. PMID:26958068

  16. A new mosaic der(18)t(1;18)(q32.1;q21.3) with developmental delay and facial dysmorphism

    PubMed Central

    Choi, Young-Jin; Shin, Eunsim; Jo, Tae Sik; Lee, Se-Min; Kim, Joo-Hwa; Oh, Jae-Won; Kim, Chang-Ryul; Seol, In Joon

    2016-01-01

    We report the case of a 22-month-old boy with a new mosaic partial unbalanced translocation of 1q and 18q. The patient was referred to our Pediatric Department for developmental delay. He showed mild facial dysmorphism, physical growth retardation, a hearing disability, and had a history of patent ductus arteriosus. White matter abnormality on brain magnetic resonance images was also noted. His initial routine chromosomal analysis revealed a normal 46,XY karyotype. In a microarray-based comparative genomic hybridization (aCGH) analysis, subtle copy number changes in 1q32.1–q44 (copy gain) and 18q21.33–18q23 (copy loss) suggested an unbalanced translocation of t(1;18). Repeated chromosomal analysis revealed a low-level mosaic translocation karyotype of 46,XY,der(18)t(1;18)(q32.1;q21.3)[12]/46,XY[152]. Because his parents had normal karyotypes, his translocation was considered to be de novo. The abnormalities observed in aCGH were confirmed by metaphase fluorescent in situ hybridization. We report this patient as a new karyotype presenting developmental delay, facial dysmorphism, cerebral dysmyelination, and other abnormalities. PMID:26958068

  17. Sensing Based on Fano-Type Resonance Response of All-Dielectric Metamaterials

    PubMed Central

    Semouchkina, Elena; Duan, Ran; Semouchkin, George; Pandey, Ravindra

    2015-01-01

    A new sensing approach utilizing Mie resonances in metamaterial arrays composed of dielectric resonators is proposed. These arrays were found to exhibit specific, extremely high-Q factor (up to 15,000) resonances at frequencies corresponding to the lower edge of the array second transmission band. The observed resonances possessed with features typical for Fano resonances (FRs), which were initially revealed in atomic processes and recently detected in macro-structures, where they resulted from interference between local resonances and a continuum of background waves. Our studies demonstrate that frequencies and strength of Fano-type resonances in all-dielectric arrays are defined by interaction between local Mie resonances and Fabry-Perot oscillations of Bloch eigenmodes that makes possible controlling the resonance responses by changing array arrangements. The opportunity for obtaining high-Q responses in compact arrays is investigated and promising designs for sensing the dielectric properties of analytes in the ambient are proposed. PMID:25905701

  18. Sensing based on Fano-type resonance response of all-dielectric metamaterials.

    PubMed

    Semouchkina, Elena; Duan, Ran; Semouchkin, George; Pandey, Ravindra

    2015-01-01

    A new sensing approach utilizing Mie resonances in metamaterial arrays composed of dielectric resonators is proposed. These arrays were found to exhibit specific, extremely high-Q factor (up to 15,000) resonances at frequencies corresponding to the lower edge of the array second transmission band. The observed resonances possessed with features typical for Fano resonances (FRs), which were initially revealed in atomic processes and recently detected in macro-structures, where they resulted from interference between local resonances and a continuum of background waves. Our studies demonstrate that frequencies and strength of Fano-type resonances in all-dielectric arrays are defined by interaction between local Mie resonances and Fabry-Perot oscillations of Bloch eigenmodes that makes possible controlling the resonance responses by changing array arrangements. The opportunity for obtaining high-Q responses in compact arrays is investigated and promising designs for sensing the dielectric properties of analytes in the ambient are proposed. PMID:25905701

  19. Possibility of contactless measurement of free charge carrier mobility in semiconductors by the uhf resonator method

    SciTech Connect

    Meduedev, Y.V.; Skryl'nikov, A.A.

    1986-01-01

    This paper describes a contact-free uhf resonator method for measurement of charge carrier mobility by means of a quasistatic uhf resonator with externally connected semiconductor specimen. The method obtains simple relationships which allow determination of the magnetoresistive mobility from the change in Q of the external portion of the resonator under the action of a weak magnetic field.

  20. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining.

    PubMed

    Lin, Jintian; Xu, Yingxin; Fang, Zhiwei; Wang, Min; Song, Jiangxin; Wang, Nengwen; Qiao, Lingling; Fang, Wei; Cheng, Ya

    2015-01-01

    We report on fabrication of high-Q lithium niobate (LN) whispering-gallery-mode (WGM) microresonators suspended on silica pedestals by femtosecond laser direct writing followed by focused ion beam (FIB) milling. The micrometer-scale (diameter ~82 μm) LN resonator possesses a Q factor of ~2.5 × 10(5) around 1550 nm wavelength. The combination of femtosecond laser direct writing with FIB enables high-efficiency, high-precision nanofabrication of high-Q crystalline microresonators. PMID:25627294

  1. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining

    PubMed Central

    Lin, Jintian; Xu, Yingxin; Fang, Zhiwei; Wang, Min; Song, Jiangxin; Wang, Nengwen; Qiao, Lingling; Fang, Wei; Cheng, Ya

    2015-01-01

    We report on fabrication of high-Q lithium niobate (LN) whispering-gallery-mode (WGM) microresonators suspended on silica pedestals by femtosecond laser direct writing followed by focused ion beam (FIB) milling. The micrometer-scale (diameter ~82 μm) LN resonator possesses a Q factor of ~2.5 × 105 around 1550 nm wavelength. The combination of femtosecond laser direct writing with FIB enables high-efficiency, high-precision nanofabrication of high-Q crystalline microresonators. PMID:25627294

  2. Fiber-laser pumped actively Q-switched Er:LuYAG laser at 1648 nm

    NASA Astrophysics Data System (ADS)

    Yang, X. F.; Wang, Y.; Zhao, T.; Zhu, H. Y.; Shen, D. Y.

    2016-02-01

    We demonstrated an acousto-optic Q-switched 1648 nm Er:LuYAG laser resonantly pumped by a cladding-pumped Er,Yb fiber laser at 1532 nm. Stable Q-switching operation was obtained with the pulse repetition rate (PRR) varying from 200 Hz to 10 kHz. At PRR of 200 Hz, the laser yielded Q-switched pulses with 3.3 mJ pulse energy and 65 ns pulse duration, corresponding to a peak power of 50.7 kW for 10.4 W of incident pump power.

  3. A Technique for Adjusting Eigenfrequencies of WGM Resonators

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Iltchenko, Vladimir; Martin, Jan

    2009-01-01

    A simple technique has been devised for making small, permanent changes in the eigenfrequencies (resonance frequencies) of whispering-gallery-mode (WGM) dielectric optical resonators that have high values of the resonance quality factor (Q). The essence of the technique is to coat the resonator with a thin layer of a transparent polymer having an index of refraction close to that of the resonator material. Successive small frequency adjustments can be made by applying successive coats. The technique was demonstrated on a calcium fluoride resonator to which successive coats of a polymer were applied by use of a hand-made wooden brush. To prevent temperature- related frequency shifts that could interfere with the verification of the effectiveness of this technique, the temperature of the resonator was stabilized by means of a three-stage thermoelectric cooler. Measurements of the resonator spectrum showed the frequency shifts caused by the successive coating layers.

  4. Coenzyme q 10 : a review.

    PubMed

    Singh, Deependra; Jain, Vandana; Saraf, Swarnlata; Saraf, S

    2002-10-01

    Ubiquinone or Co Q(10) is essentially a vitamin like substance and is a cofactor of an enzyme. It is an integral part of the memberanes of mitocondria where it is involved in the energy production. It is a nutrient necessary for the function of every cell of the body especially vital organs of the body like heart, liver, brain etc. Studies have shown that coenzyme Q(10) alters the natural history of cardiovascular illness and has the potential of prevention of cardiovascular diseases through the inhibition of LDL cholesterol oxidation by maintenance of optimal cellular and mitochondrial function throughout the ravages of time internal and external stress. PMID:22557086

  5. Monosomy 6q1: Syndrome delineation

    SciTech Connect

    Romie, S.S.; Hartsfield, J.K. Jr.; Sutcliffe, M.J.

    1996-03-15

    We report on a girl with a de novo 6q1 interstitial deletion. To our knowledge, this is the second reported case with a deletion of 6q11-q15. We review the phenotype of monosomy 6q1. Our patient has manifestations similar to others with monosomy 6q1 including mental deficiency, growth retardation, short neck, and minor facila anomalies. 18 refs., 5 figs., 3 tabs.

  6. Tunability and synthetic lineshapes in high-Q optical whispering gallery modes

    NASA Technical Reports Server (NTRS)

    Ilchenko, Vladimir S.; Savchenkov, Anatoliy A.; Matsko, Andrey B.; Maleki, Lute

    2003-01-01

    We demonstrate novel techniques to manipulate spectral properties of high quality factor (Q>107) whispering-gallery modes (WGM) in optical dielectric microresonators. These include permanent frequency trimming of WGM frequencies by means of UV photosensitivity of germanium doped silica resonators electro-optical tuning of WGM in lithium niobate resonators, and cascading of microresonators for obtaining second-order filtering function. We present theoretical interpretation of experimental results, and application example of techniques for photonic microwave filtering.

  7. Improving the Optical Quality Factor of the WGM Resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Iltchenko, Vladimir

    2008-01-01

    Resonators usually are characterized with two partially dependent values: finesse (F) and quality factor (Q). The finesse of an empty Fabry-Perot (FP) resonator is defined solely by the quality of its mirrors and is calculated as F=piR(exp 1/2)/(1-R). The maximum up-to-date value of reflectivity R approximately equal to 1 - 1.6 x 10(exp -6) is achieved with dielectric mirrors. An FP resonator made with the mirrors has finesse F=1.9 x 10(exp 6). Further practical increase of the finesse of FP resonators is problematic because of the absorption and the scattering of light in the mirror material through fundamental limit on the reflection losses given by the internal material losses and by thermodynamic density fluctuations on the order of parts in 109. The quality factor of a resonator depends on both its finesse and its geometrical size. A one-dimensional FP resonator has Q=2 F L/lambda, where L is the distance between the mirrors and lambda is the wavelength. It is easy to see that the quality factor of the resonator is unlimited because L is unlimited. F and Q are equally important. In some cases, finesse is technically more valuable than the quality factor. For instance, buildup of the optical power inside the resonator, as well as the Purcell factor, is proportional to finesse. Sometimes, however, the quality factor is more valuable. For example, inverse threshold power of intracavity hyperparametric oscillation is proportional to Q(exp 2) and efficiency of parametric frequency mixing is proportional to Q(exp 3). Therefore, it is important to know both the maximally achievable finesse and quality factor values of a resonator. Whispering gallery mode (WGM) resonators are capable of achieving larger finesse compared to FP resonators. For instance, fused silica resonators with finesse 2.3 x 10(exp 6) and 2.8 x 10(exp 6) have been demonstrated. Crystalline WGM resonators reveal even larger finesse values, F=6.3 x 10(exp 6), because of low attenuation of light in the

  8. New multilevel codes over GF(q)

    NASA Technical Reports Server (NTRS)

    Wu, Jiantian; Costello, Daniel J., Jr.

    1992-01-01

    Set partitioning to multi-dimensional signal spaces over GF(q), particularly GF sup q-1(q) and GF sup q (q), and show how to construct both multi-level block codes and multi-level trellis codes over GF(q). Two classes of multi-level (n, k, d) block codes over GF(q) with block length n, number of information symbols k, and minimum distance d sub min greater than or = d, are presented. These two classes of codes use Reed-Solomon codes as component codes. They can be easily decoded as block length q-1 Reed-Solomon codes or block length q or q + 1 extended Reed-Solomon codes using multi-stage decoding. Many of these codes have larger distances than comparable q-ary block codes, as component codes. Low rate q-ary convolutional codes, work error correcting convolutional codes, and binary-to-q-ary convolutional codes can also be used to construct multi-level trellis codes over GF(q) or binary-to-q-ary trellis codes, some of which have better performance than the above block codes. All of the new codes have simple decoding algorithms based on hard decision multi-stage decoding.

  9. Slow Light in Coupled Resonator Optical Waveguides

    NASA Technical Reports Server (NTRS)

    Chang, Hongrok; Gates, Amanda L.; Fuller, Kirk A.; Gregory, Don A.; Witherow, William K.; Paley, Mark S.; Frazier, Donald O.; Smith, David D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Recently, we discovered that a splitting of the whispering gallery modes (WGMs) occurs in coupled resonator optical waveguides (CROWs), and that these split modes are of a higher Q than the single-resonator modes, leading to enormous circulating intensity magnification factors that dramatically reduce thresholds for nonlinear optical (NLO) processes. As a result of the enhancements in Q, pulses propagating at a split resonance can propagate much slower (faster) for over (under)-coupled structures, due to the modified dispersion near the split resonance. Moreover, when loss is considered, the mode-splitting may be thought of as analogous to the Autler-Townes splitting that occurs in atomic three-level lambda systems, i.e., it gives rise to induced transparency as a result of destructive interference. In under- or over-coupled CROWs, this coupled resonator induced transparency (CRIT) allows slow light to be achieved at the single-ring resonance with no absorption, while maintaining intensities such that NLO effects are maximized. The intensity magnification of the circulating fields and phase transfer characteristics are examined in detail.

  10. Q methodology in health economics.

    PubMed

    Baker, Rachel; Thompson, Carl; Mannion, Russell

    2006-01-01

    The recognition that health economists need to understand the meaning of data if they are to adequately understand research findings which challenge conventional economic theory has led to the growth of qualitative modes of enquiry in health economics. The use of qualitative methods of exploration and description alongside quantitative techniques gives rise to a number of epistemological, ontological and methodological challenges: difficulties in accounting for subjectivity in choices, the need for rigour and transparency in method, and problems of disciplinary acceptability to health economists. Q methodology is introduced as a means of overcoming some of these challenges. We argue that Q offers a means of exploring subjectivity, beliefs and values while retaining the transparency, rigour and mathematical underpinnings of quantitative techniques. The various stages of Q methodological enquiry are outlined alongside potential areas of application in health economics, before discussing the strengths and limitations of the approach. We conclude that Q methodology is a useful addition to economists' methodological armoury and one that merits further consideration and evaluation in the study of health services. PMID:16378531

  11. Q fever in maritime Canada.

    PubMed Central

    Marrie, T. J.; Haldane, E. V.; Noble, M. A.; Faulkner, R. S.; Lee, S. H.; Gough, D.; Meyers, S.; Stewart, J.

    1982-01-01

    Only nine cases of Q fever were recorded in Canada in the 20 years prior to 1978. In the 18 months from August 1979 to January 1981 the disease was diagnosed serologically in six patients from the Maritime provinces. All were epidemiologically unrelated and none had been exposed to animals. Five had pneumonia and one had chronic Q fever with probable prosthetic valve endocarditis. Three of the five pneumonia patients presented with signs and symptoms of an acute lower respiratory tract infection and were indistinguishable clinically from other patients with atypical pneumonias. The other two with pneumonia presented with nonresolving pulmonary infiltrates and complained of decreased energy. Four of the five pneumonia patients responded well to treatment with erythromycin; the fifth required two courses of tetracycline. The patient with chronic Q fever had a large amount of cryoglobulins in his serum and evidence of immune complex disease. These cases indicate that Q fever should be considered as a possible cause of atypical pneumonia in Canada. Images FIG. 1 FIG. 2 FIG. 3 PMID:7074457

  12. Q-Burst Origins in Africa

    NASA Astrophysics Data System (ADS)

    Boldi, R.; Hobara, Y.; Yamashita, K.; Hayakawa, M.; Satori, G.; Bor, J.; Lyons, W. A.; Nelson, T.; Russell, B.; Williams, E.

    2006-12-01

    The generation of electromagnetic transient signatures in the SR frequency range (Q-bursts) from the energetic lightning originating in Africa were intensively studied during the AMMA (African Monsoon Multidisciplinary Analysis) field program centered on Niamey, Niger in 2006. During this wet season many active westward- moving MCSs were observed by the MIT C-band Doppler radar. The MCSs exhibited a gust front, a leading squall line and a large spatially-extended (100-200 km) stratiform region that often passed over the observation site. Many transient events were recorded in association with local lightning both with a slow antenna and a DC electric field mill installed near the radar. During the gust front and squall line traverse, the majority of lightning exhibited normal polarity. A remarkable transition of polarity is observed once the radar site is under the stratiform region and a pronounced radar bright band has had time to develop. The majority of the ground flashes then exhibit a positive polarity (positive ground flash). In particular, very intense positive ground flashes (often topped with spider lightning structure) are registered when the radar "hbright band"h is most strongly developed. These positive flashes exhibit a large DC field change in comparison to ones observed during the earlier squall line passage. Video observations of nighttime events support the existence of the lateral extensive spider lightning. Daytime events exhibit thunder durations of a few minutes. ELF Q-bursts were recorded at MIT's Schumann resonance station in Rhode Island U.S.A. (about 8 Mm distance from Niamey) associated with several large well-established positive ground flashes observed locally near Niamey. The event identification is made by accurate GPS timing and arrival direction of the waves. The onset times of the Q-burst are in good agreement with the electric field measurement near Niamey. The arrival directions of the waves are also in good agreement assuming

  13. Resonant behavior of dielectric objects (electrostatic resonances).

    PubMed

    Fredkin, D R; Mayergoyz, I D

    2003-12-19

    Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning. PMID:14754117

  14. Measurement of the proton spin structure function g1(x,Q2) for Q2 from 0.15 to 1.6 GeV2 with CLAS.

    PubMed

    Fatemi, R; Skabelin, A V; Burkert, V D; Crabb, D; De Vita, R; Kuhn, S E; Minehart, R; Adams, G; Anciant, E; Anghinolfi, M; Asavapibhop, B; Audit, G; Auger, T; Avakian, H; Bagdasaryan, H; Ball, J P; Barrow, S; Battaglieri, M; Beard, K; Bektasoglu, M; Bellis, M; Bertozzi, W; Bianchi, N; Biselli, A S; Boiarinov, S; Bonner, B E; Bosted, P E; Bouchigny, S; Bradford, R; Branford, D; Brooks, W K; Butuceanu, C; Calarco, J R; Carman, D S; Carnahan, B; Cetina, C; Ciciani, L; Clark, R; Cole, P L; Coleman, A; Connelly, J; Cords, D; Corvisiero, P; Crannell, H; Cummings, J P; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Dharmawardane, K V; Dhuga, K S; Djalali, C; Dodge, G E; Doughty, D; Dragovitsch, P; Dugger, M; Dytman, S; Eckhause, M; Egiyan, H; Egiyan, K S; Elouadrhiri, L; Empl, A; Eugenio, P; Farhi, L; Feuerbach, R J; Freyberger, A; Ficenec, J; Forest, T A; Frolov, V; Funsten, H; Gaff, S J; Garçon, M; Gavalian, G; Gilad, S; Gilfoyle, G P; Giovanetti, K L; Girard, P; Gordon, C I O; Griffioen, K A; Guidal, M; Guillo, M; Guo, L; Gyurjyan, V; Hadjidakis, C; Hancock, D; Hardie, J; Heddle, D; Heimberg, P; Hersman, F W; Hicks, K; Hicks, R S; Holtrop, M; Hu, J; Hyde-Wright, C E; Ilieva, Y; Ito, M M; Jenkins, D; Joo, K; Keith, C; Kelley, J H; Kellie, J D; Khandaker, M; Kim, K Y; Kim, K; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Klusman, M; Kossov, M; Koubarovski, V; Kramer, L H; Kuang, Y; Kuhn, J; Lachniet, J; Laget, J M; Lawrence, D; Li, Ji; Livingston, K; Longhi, A; Lukashin, K; Major, W; Manak, J J; Marchand, C; McAleer, S; McNabb, J W C; Mecking, B A; Mehrabyan, S; Mestayer, M D; Meyer, C A; Mikhailov, K; Mirazita, M; Miskimen, R; Morand, L; Morrow, S A; Muccifora, V; Mueller, J; Mutchler, G S; Napolitano, J; Nasseripour, R; Nelson, S O; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niyazov, R A; Nozar, M; O'Brien, J T; O'Rielly, G V; Osipenko, M; Park, K; Pasyuk, E; Peterson, G; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Rock, S E; Ronchetti, F; Rossi, P; Rowntree, D; Rubin, P D; Sabatié, F; Sabourov, K; Salgado, C; Santoro, J P; Sapunenko, V; Sargsyan, M; Schumacher, R A; Seely, M; Serov, V S; Sharabian, Y G; Shaw, J; Simionatto, S; Smith, E S; Smith, T; Smith, L C; Sober, D I; Sorrel, L; Spraker, M; Stavinsky, A; Stepanyan, S; Stoler, P; Strauch, S; Taiuti, M; Taylor, S; Tedeschi, D J; Thoma, U; Thompson, R; Todor, L; Tur, C; Ungaro, M; Vineyard, M F; Vlassov, A V; Wang, K; Weinstein, L B; Weller, H; Weygand, D P; Whisnant, C S; Wolin, E; Wood, M H; Yegneswaran, A; Yun, J; Zhang, B; Zhao, J; Zhou, Z

    2003-11-28

    Double-polarization asymmetries for inclusive ep scattering were measured at Jefferson Lab using 2.6 and 4.3 GeV longitudinally polarized electrons incident on a longitudinally polarized NH3 target in the CLAS detector. The polarized structure function g(1)(x,Q2) was extracted throughout the nucleon resonance region and into the deep inelastic regime, for Q(2)=0.15-1.64 GeV2. The contributions to the first moment Gamma(1)(Q2)= integral g(1)(x,Q2) dx were determined up to Q(2)=1.2 GeV2. Using a parametrization for g(1) in the unmeasured low x regions, the complete first moment was estimated over this Q2 region. A rapid change in Gamma(1) is observed for Q2<1 GeV2, with a sign change near Q(2)=0.3 GeV2, indicating dominant contributions from the resonance region. At Q(2)=1.2 GeV2 our data are below the perturbative QCD evolved scaling value. PMID:14683231

  15. Diode-Pumped, Q-Switched, Frequency-Doubling Laser

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Lesh, James R.

    1993-01-01

    Experimental Q-switched, diode-pumped, intracavity-frequency-doubling laser generates pulses of radiation at wavelength of 532 nm from excitation at 810 nm. Principal innovative feature distinguishing laser from others of its type: pulsed operation of laser at pulse-repetition frequencies higher than reported previously. Folded resonator keeps most of second-harmonic radiation away from Q-switcher, laser crystal, and laser diodes. Folding mirror highly reflective at fundamental laser wavelength and highly transmissive at second-harmonic laser wavelength. By virtue of difference of about 0.6 percent between reflectivities in two polarizations at fundamental wavelength, folding mirror favors polarized oscillation at fundamental wavelength. This characteristic desirable for doubling of frequency in some intracavity crystals.

  16. Molecular diagnosis of coenzyme Q10 deficiency.

    PubMed

    Yubero, Delia; Montero, Raquel; Armstrong, Judith; Espinós, Carmen; Palau, Francesc; Santos-Ocaña, Carlos; Salviati, Leonardo; Navas, Placido; Artuch, Rafael

    2015-01-01

    Coenzyme Q10 (CoQ) deficiency syndromes comprise a growing number of neurological and extraneurological disorders. Primary-genetic but also secondary CoQ deficiencies have been reported. The biochemical determination of CoQ is a good tool for the rapid identification of CoQ deficiencies but does not allow the selection of candidate genes for molecular diagnosis. Moreover, the metabolic pathway for CoQ synthesis is an intricate and not well-understood process, where a large number of genes are implicated. Thus, only next-generation sequencing techniques (either genetic panels of whole-exome and -genome sequencing) are at present appropriate for a rapid and realistic molecular diagnosis of these syndromes. The potential treatability of CoQ deficiency strongly supports the necessity of a rapid molecular characterization of patients, since primary CoQ deficiencies may respond well to CoQ treatment. PMID:26144946

  17. Q analysis on reflection seismic data

    NASA Astrophysics Data System (ADS)

    Wang, Yanghua

    2004-09-01

    Q analysis refers to the procedure for estimating Q directly from a reflection seismic trace. Conventional Q analysis method compares two seismic wavelets selected from different depth (or time) levels, but picking ``clean'' wavelets without interferences from other wavelet and noise from a reflection seismic trace is really a problem. Therefore, instead of analysing individual wavelets, I perform Q analysis using the Gabor transform spectrum which reveals the frequency content changing with time in a seismic trace. I propose two Q analysis methods based on the attenuation function and compensation function, respectively, each of which may produce a series of average values of Q-1 (inverse Q), averaging between the recording surface (or the water bottom) and the subsurface time samples. But the latter is much more stable than the former one. I then calculate the interval or layered values of Q-1 by a constrained linear inversion, which produces a stable estimation of the interval-Q series.

  18. Supersymmetric Q-balls: A numerical study

    SciTech Connect

    Campanelli, L.; Ruggieri, M.

    2008-02-15

    We study numerically a class of nontopological solitons, the Q-balls, arising in a supersymmetric extension of the standard model with low-energy, gauge-mediated symmetry breaking. Taking into account the exact form of the supersymmetric potential giving rise to Q-balls, we find that there is a lower limit on the value of the charge Q in order to make them classically stable: Q > or approx. 5x10{sup 2}Q{sub cr}, where Q{sub cr} is constant depending on the parameters defining the potential and can be in the range 1 < or approx. Q{sub cr} < or approx. 10{sup 8} {sup divide} {sup 16}. If Q is the baryon number, stability with respect to the decay into protons requires Q > or approx. 10{sup 17}Q{sub cr}, while if the gravitino mass is greater then m{sub 3/2} > or approx. 61 MeV, no stable gauge-mediation supersymmetric Q-balls exist. Finally, we find that energy and radius of Q-balls can be parametrized as E{approx}{xi}{sub E}Q{sup 3/4} and R{approx}{xi}{sub R}Q{sup 1/4}, where {xi}{sub E} and {xi}{sub R} are slowly varying functions of the charge.

  19. Q fever--selected issues.

    PubMed

    Bielawska-Drózd, Agata; Cieślik, Piotr; Mirski, Tomasz; Bartoszcze, Michał; Knap, Józef Piotr; Gaweł, Jerzy; Żakowska, Dorota

    2013-01-01

    Q fever is an infectious disease of humans and animals caused by Gram-negative coccobacillus Coxiella burnetii, belonging to the Legionellales order, Coxiellaceae family. The presented study compares selected features of the bacteria genome, including chromosome and plasmids QpH1, QpRS, QpDG and QpDV. The pathomechanism of infection--starting from internalization of the bacteria to its release from infected cell are thoroughly described. The drugs of choice for the treatment of acute Q fever are tetracyclines, macrolides and quinolones. Some other antimicrobials are also active against C. burnetii, namely, telitromycines and tigecyclines (glicylcycline). Q-VAX vaccine induces strong and long-term immunity in humans. Coxevac vaccine for goat and sheep can reduce the number of infections and abortions, as well as decrease the environmental transmission of the pathogen. Using the microarrays technique, about 50 proteins has been identified which could be used in the future for the production of vaccine against Q fever. The routine method of C. burnetii culture is proliferation within cell lines; however, an artificial culture medium has recently been developed. The growth of bacteria in a reduced oxygen (2.5%) atmosphere was obtained after just 6 days. In serology, using the IF method as positive titers, the IgM antibody level >1:64 and IgG antibody level >1:256 (against II phase antigens) has been considered. In molecular diagnostics of C. burnetii infection, the most frequently used method is PCR and its modifications; namely, nested PCR and real time PCR which detect target sequences, such as htpAB and IS1111, chromosome genes (com1), genes specific for different types of plasmids and transposase genes. Although Q fever was diagnosed in Poland in 1956, the data about the occurrence of the disease are incomplete. Comprehensive studies on the current status of Q fever in Poland, with special focus on pathogen reservoirs and vectors, the sources of infection and

  20. Biosensing by WGM Microspherical Resonators.

    PubMed

    Righini, Giancarlo C; Soria, Silvia

    2016-01-01

    Whispering gallery mode (WGM) microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 10⁸-10⁸ lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed. PMID:27322282

  1. Biosensing by WGM Microspherical Resonators

    PubMed Central

    Righini, Giancarlo C.; Soria, Silvia

    2016-01-01

    Whispering gallery mode (WGM) microresonators, thanks to their unique properties, have allowed researchers to achieve important results in both fundamental research and engineering applications. Among the various geometries, microspheres are the simplest 3D WGM resonators; the total optical loss in such resonators can be extremely low, and the resulting extraordinarily high Q values of 108–109 lead to high energy density, narrow resonant-wavelength lines and a lengthy cavity ringdown. They can also be coated in order to better control their properties or to increase their functionality. Their very high sensitivity to changes in the surrounding medium has been exploited for several sensing applications: protein adsorption, trace gas detection, impurity detection in liquids, structural health monitoring of composite materials, detection of electric fields, pressure sensing, and so on. In the present paper, after a general introduction to WGM resonators, attention is focused on spherical microresonators, either in bulk or in bubble format, to their fabrication, characterization and functionalization. The state of the art in the area of biosensing is presented, and the perspectives of further developments are discussed. PMID:27322282

  2. If It's Resonance, What is Resonating?

    ERIC Educational Resources Information Center

    Kerber, Robert C.

    2006-01-01

    The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…

  3. Electrochemistry of Q-Graphene

    NASA Astrophysics Data System (ADS)

    Randviir, Edward P.; Brownson, Dale A. C.; Gómez-Mingot, Maria; Kampouris, Dimitrios K.; Iniesta, Jesús; Banks, Craig E.

    2012-09-01

    A newly synthesised type of graphene, Q-Graphene, has been physically and electrochemically characterised with Scanning and Transmission Electron Microscopy (SEM, TEM), X-ray Photoelectron Spectroscopy (XPS) and Cyclic Voltammetry (CV). Interpretation of SEM, TEM and XPS data reveal the material to consist of hollow carbon nanospheres of multi-layer graphene (viz. graphite), which exhibit a total oxygen content of ca. 36.0% (atomic weight via XPS). In addition to the carbon structures present, spherical magnesium oxide particles of <=50 nm in diameter are abundantly present in the sample (ca. 16.2%). Interestingly, although the TEM/SEM images show macroporous carbon structures, Raman spectroscopy shows peaks typically characteristic of graphene, which suggests the material is highly heterogeneous and consists of many types of carbon allotropes. Q-Graphene is electrochemically characterised using both inner-sphere and outer-sphere electrochemical redox probes, namely potassium ferrocyanide(ii), hexaammine-ruthenium(iii) chloride and hexachloroiridate(iii), in addition to the biologically relevant and electroactive analytes, norepinephrine, β-nicotinamide adenine dinucleotide (NADH) and l-ascorbic acid. The electrochemical response of Q-Graphene is benchmarked against edge plane- and basal plane-pyrolytic graphite (EPPG and BPPG respectively), pristine graphene and graphite alternatives. Q-Graphene is found to exhibit fast electron transfer kinetics, likely due to its high proportion of folded edges and surface defects, exhibiting a response similar to that of EPPG - which exhibits fast electron transfer rates due to the high proportion of edge plane sites it possesses. Furthermore, we demonstrate that the specific oxygen content plays a pivotal role in dictating the observed electrochemical response, which is analyte dependant. Consequently there is potential for this new member of the graphene family to be beneficially utilised in various electrochemical

  4. Resonating Behaviour of Nanomachined Holed Microcantilevers

    PubMed Central

    Canavese, Giancarlo; Ricci, Alessandro; Gazzadi, Gian Carlo; Ferrante, Ivan; Mura, Andrea; Marasso, Simone Luigi; Ricciardi, Carlo

    2015-01-01

    The nanofabrication of a nanomachined holed structure localized on the free end of a microcantilever is here presented, as a new tool to design micro-resonators with enhanced mass sensitivity. The proposed method allows both for the reduction of the sensor oscillating mass and the increment of the resonance frequency, without decreasing the active surface of the device. A theoretical analysis based on the Rayleigh method was developed to predict resonance frequency, effective mass, and effective stiffness of nanomachined holed microresonators. Analytical results were checked by Finite Element simulations, confirming an increase of the theoretical mass sensitivity up to 250%, without altering other figures of merit. The nanomachined holed resonators were vibrationally characterized, and their Q-factor resulted comparable with solid microcantilevers with same planar dimensions. PMID:26643936

  5. Temperature compensated silicon resonators for space applications

    NASA Astrophysics Data System (ADS)

    Rais-Zadeh, Mina; Thakar, Vikram A.; Wu, Zhengzheng; Peczalski, Adam

    2013-03-01

    This paper presents piezoelectric transduction and frequency trimming of silicon-based resonators with a center frequency in the low megahertz regime. The temperature coefficient of frequency (TCF) of the resonators is reduced using both passive and active compensation schemes. Specifically, a novel technique utilizing oxide-refilled trenches is implemented to achieve efficient temperature compensation while maintaining compatibility with wet release processes. Using this method, we demonstrate high-Q resonators having a first-order TCF as low as 3 ppm/°C and a turnover temperature of around 90 °C, ideally suited for use in ovenized platforms. Using active tuning, the temperature sensitivity of the resonator is further compensated around the turnover temperature, demonstrating frequency instability of less than 400 ppb. Such devices are ideally suited as timing units in space applications where size, power consumption, and temperature stability are of critical importance.

  6. Resonating Behaviour of Nanomachined Holed Microcantilevers.

    PubMed

    Canavese, Giancarlo; Ricci, Alessandro; Gazzadi, Gian Carlo; Ferrante, Ivan; Mura, Andrea; Marasso, Simone Luigi; Ricciardi, Carlo

    2015-01-01

    The nanofabrication of a nanomachined holed structure localized on the free end of a microcantilever is here presented, as a new tool to design micro-resonators with enhanced mass sensitivity. The proposed method allows both for the reduction of the sensor oscillating mass and the increment of the resonance frequency, without decreasing the active surface of the device. A theoretical analysis based on the Rayleigh method was developed to predict resonance frequency, effective mass, and effective stiffness of nanomachined holed microresonators. Analytical results were checked by Finite Element simulations, confirming an increase of the theoretical mass sensitivity up to 250%, without altering other figures of merit. The nanomachined holed resonators were vibrationally characterized, and their Q-factor resulted comparable with solid microcantilevers with same planar dimensions. PMID:26643936

  7. Electrochemistry of Q-graphene.

    PubMed

    Randviir, Edward P; Brownson, Dale A C; Gómez-Mingot, Maria; Kampouris, Dimitrios K; Iniesta, Jesús; Banks, Craig E

    2012-10-21

    A newly synthesised type of graphene, Q-Graphene, has been physically and electrochemically characterised with Scanning and Transmission Electron Microscopy (SEM, TEM), X-ray Photoelectron Spectroscopy (XPS) and Cyclic Voltammetry (CV). Interpretation of SEM, TEM and XPS data reveal the material to consist of hollow carbon nanospheres of multi-layer graphene (viz. graphite), which exhibit a total oxygen content of ca. 36.0% (atomic weight via XPS). In addition to the carbon structures present, spherical magnesium oxide particles of ≤50 nm in diameter are abundantly present in the sample (ca. 16.2%). Interestingly, although the TEM/SEM images show macroporous carbon structures, Raman spectroscopy shows peaks typically characteristic of graphene, which suggests the material is highly heterogeneous and consists of many types of carbon allotropes. Q-Graphene is electrochemically characterised using both inner-sphere and outer-sphere electrochemical redox probes, namely potassium ferrocyanide(II), hexaammine-ruthenium(III) chloride and hexachloroiridate(III), in addition to the biologically relevant and electroactive analytes, norepinephrine, β-nicotinamide adenine dinucleotide (NADH) and l-ascorbic acid. The electrochemical response of Q-Graphene is benchmarked against edge plane- and basal plane-pyrolytic graphite (EPPG and BPPG respectively), pristine graphene and graphite alternatives. Q-Graphene is found to exhibit fast electron transfer kinetics, likely due to its high proportion of folded edges and surface defects, exhibiting a response similar to that of EPPG - which exhibits fast electron transfer rates due to the high proportion of edge plane sites it possesses. Furthermore, we demonstrate that the specific oxygen content plays a pivotal role in dictating the observed electrochemical response, which is analyte dependant. Consequently there is potential for this new member of the graphene family to be beneficially utilised in various electrochemical

  8. Nonlinear q-voter model.

    PubMed

    Castellano, Claudio; Muñoz, Miguel A; Pastor-Satorras, Romualdo

    2009-10-01

    We introduce a nonlinear variant of the voter model, the q-voter model, in which q neighbors (with possible repetition) are consulted for a voter to change opinion. If the q neighbors agree, the voter takes their opinion; if they do not have a unanimous opinion, still a voter can flip its state with probability epsilon . We solve the model on a fully connected network (i.e., in mean field) and compute the exit probability as well as the average time to reach consensus by employing the backward Fokker-Planck formalism and scaling arguments. We analyze the results in the perspective of a recently proposed Langevin equation aimed at describing generic phase transitions in systems with two ( Z2-symmetric) absorbing states. In particular, by deriving explicitly the coefficients of such a Langevin equation as a function of the microscopic flipping probabilities, we find that in mean field the q-voter model exhibits a disordered phase for high epsilon and an ordered one for low epsilon with three possible ways to go from one to the other: (i) a unique (generalized-voter-like) transition, (ii) a series of two consecutive transitions, one (Ising-like) in which the Z2 symmetry is broken and a separate one (in the directed-percolation class) in which the system falls into an absorbing state, and (iii) a series of two transitions, including an intermediate regime in which the final state depends on initial conditions. This third (so far unexplored) scenario, in which a type of ordering dynamics emerges, is rationalized and found to be specific of mean field, i.e., fluctuations are explicitly shown to wash it out in spatially extended systems. PMID:19905295

  9. Tristability and self-oscillations in a double resonator system

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Golubev, G. P.; Golubchenko, V. P.; Luchinsky, D. G.

    1991-01-01

    A system consisting of two coupled Fabry-Perot resonators, one of them nonlinear, with an additional feedback between them is studied experimentally and theoretically. The dependence between the phase shift δφ of the resonator 2 and the laser-induced thermal load Q applied to the resonator 1 is essentially nonlinear. This nonlinearity of the additional feedback in the double resonator system is shown to make possible its self-oscillations and the existence of the tristable 8-shaped hysteresis curves. The frequencies of the observed self-oscillations are in the range from 100 Hz to 100 kHz, their shapes varying from sinusoidal to square and sawtooth.

  10. Array of piezoelectric lateral electric field excited resonators.

    PubMed

    Borodina, I A; Zaitsev, B D; Teplykh, A A; Shikhabudinov, A M; Kuznetsova, I E

    2015-09-01

    An array containing two resonators placed on X-cut lithium niobate plate has been experimentally investigated. The resonator's lateral electric field was directed along the Y-crystallographic axis. It has been shown that stable resonance exists for a longitudinal acoustic wave propagating along the X-axis in the area between the electrodes. A layer of special damping coating was deposited around the resonators and on the part of electrodes to suppress parasitic oscillations induced mainly by Lamb waves. Frequency dependences of the real and imaginary parts of electric impedance/admittance were measured for every resonator to find resonant frequency and Q-factor with series and parallel resonances. The optimal values of width of electrode coating for every resonator were revealed which provide good resonance quality. The measurements of parameter S12, which characterizes a degree of acoustical coupling between the resonators, have shown its value to be higher than 50dB in the absolute value in all the cases considered. This means that the resonators under study are entirely acoustically decoupled. Thus it has been demonstrated that the damping layer not only provides a sufficiently good quality of every resonator's resonance, but it also assures their entire acoustical decoupling. PMID:26060097

  11. Brillouin lasing with a CaF2 whispering gallery mode resonator.

    PubMed

    Grudinin, Ivan S; Matsko, Andrey B; Maleki, Lute

    2009-01-30

    Stimulated Brillouin scattering with both pump and Stokes beams in resonance with whispering gallery modes of an ultrahigh Q calcium fluoride resonator is demonstrated for the first time. The resonator is pumped with 1064 nm light and has 3 muW Brillouin lasing threshold. The scattering is observed due to the unique morphology of the resonator reducing the phase mismatch between the optical modes and the hypersound wave. PMID:19257418

  12. Effective stiffness of qPlus sensor and quartz tuning fork.

    PubMed

    Kim, Jongwoo; Won, Donghyun; Sung, Baekman; An, Sangmin; Jhe, Wonho

    2014-06-01

    Quartz tuning forks (QTFs) have been extensively employed in scanning probe microscopy. For quantitative measurement of the interaction in nanoscale using QTF as a force sensor, we first measured the effective stiffness of qPlus sensors as well as QTFs and then compared the results with the cantilever beam theory that has been widely used to estimate the stiffness. Comparing with the stiffness and the resonance frequency in our measurement, we found that those calculated based on the beam theory are considerably overestimated. For consistent analysis of experimental and theoretical results, we present the formula to calculate the stiffness of qPlus sensor or QTF, based on the resonance frequency. We also demonstrated that the effective stiffness of QTF is twice that of qPlus sensor, which agrees with the recently suggested model. Our study demonstrates the use of QTF for quantitative measurement of interaction force at the nanoscale in scanning probe microscopy. PMID:24727200

  13. Microwave bulk-acoustic-wave reflection-grating resonators.

    PubMed

    Oates, D E; Pan, J Y

    1988-01-01

    A technique for fabrication of bulk-acoustic-wave (BAW) resonators operating at fundamental frequencies between 1 and 10 GHz is presented. The resonators utilize a reflection grating made by optical holographic methods in iron-doped lithium niobate. Q factors of 30000 at 1 GHz have been demonstrated. Extension to Q of 10000 at 10 GHz appears feasible. Projected limitations to performance are discussed. The high Q at the high fundamental frequency directly results in low-phase noise. Phase-noise measurements of BAW resonator-stabilized oscillators operating at 1.14 GHz are presented. The single-sideband noise floor of <-140 dBc/Hz is shown to be in agreement with an analytical model. Projected improvements in the devices and circuits promise performance of <-160 dBc/Hz. PMID:18290157

  14. CHARACTERIZATION OF THE RESONANT CAUSTIC PERTURBATION

    SciTech Connect

    Chung, Sun-Ju

    2009-11-01

    Four of nine exoplanets found by microlensing were detected by the resonant caustic, which represents the merging of the planetary and central caustics at the position when the projected separation of a host star and a bounded planet is s approx 1. One of the resonant caustic lensing events, OGLE-2005-BLG-169, was a caustic-crossing high-magnification event with A {sub max}approx 800 and the source star was much smaller than the caustic, nevertheless the perturbation was not obviously apparent on the light curve of the event. In this paper, we investigate the perturbation pattern of the resonant caustic to understand why the perturbations induced by the caustic do not leave strong traces on the light curves of high-magnification events despite a small source/caustic size ratio. From this study, we find that the regions with small magnification excess around the center of the resonant caustic are rather widely formed, and the event passing the small-excess region produces a high-magnification event with a weak perturbation that is small relative to the amplification caused by the star and thus does not noticeably appear on the light curve of the event. We also find that the positive excess of the inside edge of the resonant caustic and the negative excess inside the caustic become stronger and wider as q increases, and thus the resonant caustic-crossing high-magnification events with the weak perturbation occur in the range of q <= 10{sup -4}. We determine the probability of the occurrence of events with the small excess |epsilon| <= 3% in high-magnification events induced by a resonant caustic. As a result, we find that for Earth-mass planets with a separation of approx2.5 AU the resonant caustic high-magnification events with the weak perturbation can occur with a significant frequency.

  15. Genetics Home Reference: 18q deletion syndrome

    MedlinePlus

    ... Veltman JA, van Ravenswaaij-Arts CM. Genotype-phenotype mapping of chromosome 18q deletions by high-resolution array ... L, Pihko H. 18q deletions: clinical, molecular, and brain MRI findings of 14 individuals. Am J Med ...

  16. Absorption band Q model for the Earth

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.; Given, J. W.

    1981-01-01

    Attenuation in solids and liquids, as measured by the quality factor Q, is typically frequency dependent. In seismology, however, Q is usually assumed to be independent of frequency. Body wave, surface wave, and normal mode data are used to place constraints on the frequency dependence of Q in the mantle. Specific features of the absorption band model are: low-Q in the seismic band at both the top and the base of the mantle, low-Q for long-period body waves in the outer core, an inner core Q sub s that increases with period, and low Q sub p/Q sub s at short periods in the middle mantle.

  17. Performance and modeling of superconducting ring resonators at millimeter-wave frequencies

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Chorey, C. M.; Warner, J. D.; Romanofsky, R. R.; Heinen, V. O.; Kong, K. S.; Lee, H. Y.; Itoh, T.

    1990-01-01

    Microstrip ring resonators operating at 35 GHz were fabricated from laser ablated YBCO thin films deposited on lanthanum aluminate substrates. They were measured over a range of temperatures and their performance compared to identical resonators made of evaporated gold. Below 60 Kelvin the superconducting strip performed better than the gold, reaching an unloaded Q approximately 1.5 times that of gold at 25 K. A shift in the resonant frequency follows the form predicted by the London equations. The Phenomenological Loss Equivalence Method is applied to the ring resonator and the theoretically calculated Q values are compared to the experimental results.

  18. Evolution of satellite resonances by tidal dissipation.

    NASA Technical Reports Server (NTRS)

    Greenberg, R.

    1973-01-01

    Analysis of a realistic model shows how satellites' gravitational interaction can halt their differential tidal evolution when resonant commensurabilities of their orbital periods are reached. The success of this study lends support to the hypothesis that orbit-orbit resonances among satellites in the solar system, including the Titan-Hyperion case, did evolve as a result of tidal energy dissipation. Consideration of the time scale for this evolution process, possible now that the capture mechanism has been revealed, can offer more sophisticated constraints on the tidal dissipation function, Q, and on past orbital conditions.

  19. Q Methodology, Communication, and the Behavioral Text.

    ERIC Educational Resources Information Center

    McKeown, Bruce

    1990-01-01

    Discusses Q methodology in light of modern philosophy of science and hermeneutics. Outlines and discusses the basic steps of conducting Q-method research. Suggests that Q methodology allows researchers to understand and interpret the subjective text of respondents without confounding them with external categories of theoretical reflection. (RS)

  20. First report of Q fever in Oman.

    PubMed Central

    Scrimgeour, E. M.; Johnston, W. J.; Al Dhahry, S. H.; El-Khatim, H. S.; John, V.; Musa, M.

    2000-01-01

    Although serologic evidence suggests the presence of Q fever in humans and animals in Saudi Arabia and the United Arab Emirates, acute Q fever has not been reported on the Arabian Peninsula. We report the first two cases of acute Q fever in Oman. PMID:10653575

  1. Physical findings in 21q22 deletion suggest critical region for 21q - phenotype in q22

    SciTech Connect

    Thedoropoulos, D.S.; Cowan, J.M.; Elias, E.R.; Cole, C.

    1995-11-06

    Multiple abnormalities were observed in a newborn infant with a deletion in the long arm of chromosome 21, from band 22q22.1{yields}qter. The phenotype of this infant was similar to that previously described in infants with deletions spanning the long arm of chromosome 21, from the centromere to 21q22. However, as a phenotypically normal child with normal intelligence and with deletion of 21q11.1-21q21.3 has also been identified, this case suggests that the critical region of deletion for the 21q - phenotype lies distal to 21q21, within 21q22.1-22.2. 10 refs., 2 figs.

  2. Light manipulation with Bacteriorhodopsin membrane self-assembled on high-Q photonic structures

    NASA Astrophysics Data System (ADS)

    Vollmer, Frank

    2008-03-01

    Resonant photonic structures such as ring resonators and photonic crystal nanocavities interact evanescently with biological material assembled on a reflecting interface. Quality (Q-) factors ˜10^6 and sub-wavelength modal (V-) volumes significantly enhance the interaction so that tuning of microcavity resonances by only few molecules is feasible. Since only few constituents are required, the molecular-photonic interface can be fashioned from self-organizing principles that govern interaction of organic and biological polymers. We demonstrate this bottom-up approach with photochromic Bacteriorhodopsin membrane which we self-assemble on various microcavities. The hybrid molecular-photonic architectures exhibit high Q/V-values and are sensitive to photoinduced molecular transitions and other non-linearities which we utilize for demonstrations of all-optical switching, routing and molecular analysis.

  3. The output beam quality of a Q-switched Nd:glass slab laser

    NASA Technical Reports Server (NTRS)

    Reed, Murray K.; Byer, Robert L.

    1990-01-01

    The authors have constructed and tested a flashlamp pumped, Q-switched, Nd:glass zigzag slab laser. The thermally induced optical distortion through the slab is minimized by uniform pumping and cooling and the use of corrective pump shields at the slab ends. The laser spatial output for Q-switched resonators has been measured and modeled. It is shown that a larger aperture planar oscillator has an output divergence many times above the diffraction limit. Operation as a one-dimensional unstable resonator in the wide direction of the slab allows the efficient extraction of energy in a high-quality beam. Near-diffraction-limited laser output of 5 J at 4 Hz is achieved with a resonator that includes an intracavity telescope to correct for residual defocusing in the thin direction of the slab.

  4. Hemispherical micro-resonators from atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Gray, Jason M.; Houlton, John P.; Gertsch, Jonas C.; Brown, Joseph J.; Rogers, Charles T.; George, Steven M.; Bright, Victor M.

    2014-12-01

    Hemispherical shell micro-resonators may be used as gyroscopes to potentially enable precision inertial navigation and guidance at low cost and size. Such devices require a high degree of symmetry and large quality factors (Q). Fabricating the devices from atomic layer deposition (ALD) facilitates symmetry through ALD’s high conformality and low surface roughness. To maximize Q, the shells’ geometry is optimized using finite element method (FEM) studies to reduce thermoelastic dissipation and anchor loss. The shells are fabricated by etching hemispherical molds in Si (1 1 1) substrates with a 2:7:1 volumetric ratio of hydrofluoric:nitric:acetic acids, and conformally coating and patterning the molds with ALD Al2O3. The Al2O3 shells are then released from the surrounding Si substrate with an SF6 plasma. The resulting shells typically have radii around 50 µm and thicknesses close to 50 nm. The shells are highly symmetric, with radial deviations between 0.22 and 0.49%, and robust enough to be driven on resonance at amplitudes 10 × their thickness, sufficient to visualize the resonance mode shapes in an SEM. Resonance frequencies are around 60 kHz, with Q values between 1000 and 2000. This Q is lower than the 106 predicted by FEM, implying that Q is being limited by unmodeled sources of energy loss, most likely from surface effects or material defects.

  5. New Method for Determining the Quality Factor and Resonance Frequency of Superconducting Micro-Resonators from Sonnet Simulations

    NASA Astrophysics Data System (ADS)

    Wisbey, D. S.; Martin, A.; Reinisch, A.; Gao, J.

    2014-08-01

    Lithographed superconducting microwave resonators (micro-resonators) are useful in a number of important applications, including microwave kinetic inductance detectors (Day et al., Nature 425:817, 2003), as memory elements in quantum information circuits, and as readouts of qubits and nanomechanical resonators. One of the major tasks in designing these devices is to find the resonance frequency (f) and quality factor (Q) for these microwave circuits using EM simulation software such as Sonnet. The traditional method iteratively runs simulations over successively smaller frequency ranges. In this way the simulated transmission S data is zoomed in on to yield a well-sampled resonance curve of a circuit. Designing microwave resonators in this manner is often time consuming since it requires many simulation runs. In this work, we show a new—and much faster—method for determining f and Q by adding an internal (virtual) port in the Sonnet model and examining the input impedance through the added port. Accurate f and Q values can be retrieved from a single simulation with a wide frequency sweep. This method works on many types of resonance circuits and dramatically reduces the simulation time.

  6. Erythrocyte orientational and cell volume effects on NMR q-space analysis: simulations of restricted diffusion.

    PubMed

    Larkin, Timothy J; Kuchel, Philip W

    2009-12-01

    Pulsed field-gradient spin echo nuclear magnetic resonance spectroscopy of water diffusing in erythrocytes leads to diffusion interference and diffraction effects, which are visualised in q-space plots of signal intensity versus the magnitude of the spatial wave-number vector q. Interpretation of the features of these q-space plots has been aided by Monte Carlo random walk simulations of diffusion in lattices of virtual erythrocytes. Here, the effect of varying the orientation of the cells with respect to the direction in which diffusion is measured, on the appearance of q-space plots, was investigated, together with the effect of changing the cell volume. We show that these changes are reflected in the appearance of the plots in a way that is diagnostic of the microscopic geometry of the sample. PMID:19399492

  7. Dwarf spheroidal galaxies and resonant orbital coupling

    NASA Technical Reports Server (NTRS)

    Kuhn, J. R.; Miller, R. H.

    1989-01-01

    The structural properties of the dwarf spheroidal satellite galaxies of the Milky Way may be strongly affected by their time-dependent interactions with the 'tidal' field of the Milky Way. A low Q resonance of the tidal driving force with collective oscillation modes of the dwarf system can produce many of the observed properties of the Local Group dwarf spheroidal galaxies, including large velocity dispersions that would normally be interpreted as indicating large dynamical masses.

  8. Resonant transmission of light in chains of high-index dielectric particles

    NASA Astrophysics Data System (ADS)

    Savelev, Roman S.; Filonov, Dmitry S.; Petrov, Mihail I.; Krasnok, Alexander E.; Belov, Pavel A.; Kivshar, Yuri S.

    2015-10-01

    We study numerically, analytically, and experimentally the resonant transmission of light in a waveguide formed by a periodic array of high-index dielectric nanoparticles with a side-coupled resonator. We demonstrate that a resonator with high enough Q -factor provides the conditions for the Fano-type interference allowing one to control the resonant transmission of light. We suggest a practical realization of this resonant effect based on the quadrupole resonance of a dielectric particle and demonstrate it experimentally for ceramic disks at microwave frequencies.

  9. Intracavity CH4 Raman laser using negative-branch unstable resonator

    NASA Astrophysics Data System (ADS)

    Zhou, Dongjian; Guo, Jingwei; Zhou, Canhua; Liu, Jinbo; Liu, Dong; Jin, Yuqi

    2015-12-01

    An intracavity Q-switched Nd:YAG/CH4 Raman laser is realized based on the configuration of a negative-branch confocal unstable resonator. A numerical model of the bare resonator was introduced to simulate the fundamental transverse mode and calculate the loss of the fundamental resonator. With different magnifications of the fundamental resonator, the first Stokes output energy was presented as a function of the discharge voltage. The influence of the Stokes resonator on Raman conversion was analyzed. With a fundamental resonator magnification of 1.1, a maximum output energy of 58 mJ was obtained, and the corresponding photon conversion efficiency was 48%.

  10. q-entropy for symbolic dynamical systems

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Pesin, Yakov

    2015-12-01

    For symbolic dynamical systems we use the Carathéodory construction as described in (Pesin 1997 Dimension Theory in Dynamical Systems, ConTemporary Views and Applications (Chicago: University of Chicago Press)) to introduce the notions of q-topological and q-metric entropies. We describe some basic properties of these entropies and in particular, discuss relations between q-metric entropy and local metric entropy. Both q-topological and q-metric entropies are new invariants respectively under homeomorphisms and metric isomorphisms of dynamical systems.

  11. Fate of thermal log type Q balls

    SciTech Connect

    Chiba, Takeshi; Kamada, Kohei; Kasuya, Shinta; Yamaguchi, Masahide

    2010-11-15

    We study time evolution of the Q ball in thermal logarithmic potential using lattice simulations. As the temperature decreases due to the cosmic expansion, the thermal logarithmic term in the potential is eventually overcome by a mass term, and we confirm that the Q ball transforms from the thick-wall type to the thin-wall type for a positive coefficient of radiative corrections to the mass term, as recently suggested. Moreover, we find that the Q ball finally ''melts down'' when the Q-ball solution disappears. We also discuss the effects of this phenomenon on the detectability of gravitational waves from the Q-ball formation.

  12. Two-dimensional resonators for local oscillators

    NASA Astrophysics Data System (ADS)

    Huang, K.-c.; Jenkins, A.; Edwards, D.; Dew-Hughes, D.

    1999-11-01

    The expedited globalization of satellite technology has brought about a rapid boost in satellite competition and increased utilization of wireless communications remote data devices. In space communications receivers, there is an expanding demand for higher performance from local oscillators. The determining conditions are high Q values, high circulating power and low amplifier noise figures. In spite of their low insertion loss, conventional one-dimensional high-temperature superconducting (HTS) resonator-feedback oscillators suffer from high peak current densities inside the resonator and thus have a limited power-handling characteristics. To achieve higher-power oscillators, it is possible to introduce a two-dimensional microstrip resonator to balance the internal current distribution. To this end, 3 GHz two-dimensional resonators have been fabricated from TBCCO 2212 thin films deposited by RF sputtering onto 2 cm square LaAlO3 substrates. This paper demonstrates the frequency stabilizer role and the frequency response of the two-dimensional resonator. The considerable improvement for the performance of resonator-feedback oscillators constructed using such HTS resonators will also be presented.

  13. Selective engineering of cavity resonance for frequency matching in optical parametric processes

    SciTech Connect

    Lu, Xiyuan; Rogers, Steven; Jiang, Wei C.; Lin, Qiang

    2014-10-13

    We propose to selectively engineer a single cavity resonance to achieve frequency matching for optical parametric processes in high-Q microresonators. For this purpose, we demonstrate an approach, selective mode splitting (SMS), to precisely shift a targeted cavity resonance, while leaving other cavity modes intact. We apply SMS to achieve efficient parametric generation via four-wave mixing in high-Q silicon microresonators. The proposed approach is of great potential for broad applications in integrated nonlinear photonics.

  14. Low-magnification unstable resonators used with ruby and alexandrite lasers

    SciTech Connect

    Harter, D.J.; Walling, J.C.

    1986-11-01

    Low-magnification unstable resonators that utilize radially birefringent elements and that have been shown to be suitable for use with ruby and alexandrite lasers are described. From these resonators, 400 mJ of energy in a Q-switched pulse with --2.5 x diffraction-limited output has been obtained from alexandrite, and 250-mJ Q-switched output that is near diffraction limited has been obtained from ruby.

  15. Selective engineering of cavity resonance for frequency matching in optical parametric processes

    NASA Astrophysics Data System (ADS)

    Lu, Xiyuan; Rogers, Steven; Jiang, Wei C.; Lin, Qiang

    2014-10-01

    We propose to selectively engineer a single cavity resonance to achieve frequency matching for optical parametric processes in high-Q microresonators. For this purpose, we demonstrate an approach, selective mode splitting (SMS), to precisely shift a targeted cavity resonance, while leaving other cavity modes intact. We apply SMS to achieve efficient parametric generation via four-wave mixing in high-Q silicon microresonators. The proposed approach is of great potential for broad applications in integrated nonlinear photonics.

  16. Coupled Electromagnetic Resonators for Enhanced Communications and Telemetry

    NASA Technical Reports Server (NTRS)

    Dimmock, John O.

    2005-01-01

    Future NASA missions will require the collection of an increasing quantity and quality of data which, in turn, will place increasing demands on advanced sensors and advanced high bandwidth telemetry and communications systems. The capabilities of communication and telemetry systems depend, among other factors, on the stability, controllability and spectral purity of the carrier wave. These, in turn, depend on the quality of the oscillator, or resonator, or the Q of the system. Recent work on high Q optical resonators has indicated that the Q, or quality factor, of optical microsphere resonators can be substantially enhanced by coupling several such resonators together.1-3 In addition to the possibility of enhanced Q and increased energy storage capacity, the coupled optical resonators indicate that a wide variety of interesting and potentially useful phenomena such as induced transparency and interactive mode splitting can be observed depending critically on the morphology and configuration of the microresonators. The purpose of this SFFP has been to examine several different coupled electromagnetic oscillator configurations in order to evaluate their potential for enhanced electromagnetic communications.

  17. Recent Advances in the 5q- Syndrome

    PubMed Central

    Pellagatti, Andrea; Boultwood, Jacqueline

    2015-01-01

    The 5q- syndrome is the most distinct of the myelodysplastic syndromes (MDS) and patients with this disorder have a deletion of chromosome 5q [del(5q)] as the sole karyotypic abnormality. Several genes mapping to the commonly deleted region of the 5q- syndrome have been implicated in disease pathogenesis in recent years. Haploinsufficiency of the ribosomal gene RPS14 has been shown to cause the erythroid defect in the 5q- syndrome. Loss of the microRNA genes miR-145 and miR-146a has been associated with the thrombocytosis observed in 5q- syndrome patients. Haploinsufficiency of CSNK1A1 leads to hematopoietic stem cell expansion in mice and may play a role in the initial clonal expansion in patients with 5q- syndrome. Moreover, a subset of patients harbor mutation of the remaining CSNK1A1 allele. Mouse models of the 5q- syndrome, which recapitulate the key features of the human disease, indicate that a p53-dependent mechanism underlies the pathophysiology of this disorder. Importantly, activation of p53 has been demonstrated in the human 5q- syndrome. Recurrent TP53 mutations have been associated with an increased risk of disease evolution and with decreased response to the drug lenalidomide in del(5q) MDS patients. Potential new therapeutic agents for del(5q) MDS include the translation enhancer L-leucine. PMID:26075044

  18. Imaging by electromagnetic induction with resonant circuits

    NASA Astrophysics Data System (ADS)

    Guilizzoni, Roberta; Watson, Joseph C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-05-01

    A new electromagnetic induction imaging system is presented which is capable of imaging metallic samples of different conductivities. The system is based on a parallel LCR circuit made up of a cylindrical ferrite-cored coil and a capacitor bank. An AC current is applied to the coil, thus generating an AC magnetic field. This field is modified when a conductive sample is placed within the magnetic field, as a consequence of eddy current induction inside the sample. The electrical properties of the LCR circuit, including the coil inductance, are modified due to the presence of this metallic sample. Position-resolved measurements of these modifications should then allow imaging of conductive objects as well as enable their characterization. A proof-of-principle system is presented in this paper. Two imaging techniques based on Q-factor and resonant frequency measurements are presented. Both techniques produced conductivity maps of 14 metallic objects with different geometries and values of conductivity ranging from 0.54х106 to 59.77х106 S/m. Experimental results highlighted a higher sensitivity for the Q-factor technique compared to the resonant frequency one; the respective measurements were found to vary within the following ranges: ΔQ=[-11,-2]%, Δf=[-0.3,0.7]%. The analysis of the images, conducted using a Canny edge detection algorithm, demonstrated the suitability of the Q-factor technique for accurate edge detection of both magnetic and non-magnetic metallic samples.

  19. Q fever in Bulgaria and Slovakia.

    PubMed Central

    Serbezov, V. S.; Kazár, J.; Novkirishki, V.; Gatcheva, N.; Kovácová, E.; Voynova, V.

    1999-01-01

    As a result of dramatic political and economic changes in the beginning of the 1990s, Q-fever epidemiology in Bulgaria has changed. The number of goats almost tripled; contact between goat owners (and their families) and goats, as well as goats and other animals, increased; consumption of raw goat milk and its products increased; and goats replaced cattle and sheep as the main source of human Coxiella burnetii infections. Hundreds of overt, serologically confirmed human cases of acute Q fever have occurred. Chronic forms of Q fever manifesting as endocarditis were also observed. In contrast, in Slovakia, Q fever does not pose a serious public health problem, and the chronic form of infection has not been found either in follow-ups of a Q-fever epidemic connected with goats imported from Bulgaria and other previous Q-fever outbreaks or in a serologic survey. Serologic diagnosis as well as control and prevention of Q fever are discussed. PMID:10341175

  20. High Q BPS Monopole Bags are Urchins

    NASA Astrophysics Data System (ADS)

    Evslin, Jarah; Gudnason, Sven Bjarke

    2014-01-01

    It has been known for 30 years that 't Hooft-Polyakov monopoles of charge Q greater than one cannot be spherically symmetric. Five years ago, Bolognesi conjectured that, at some point in their moduli space, BPS monopoles can become approximately spherically symmetric in the high Q limit. In this paper, we determine the sense in which this conjecture is correct. We consider an SU(2) gauge theory with an adjoint scalar field, and numerically find configurations with Q units of magnetic charge and a mass which is roughly linear in Q, for example, in the case Q = 81 we present a configuration whose energy exceeds the BPS bound by about 54%. These approximate solutions are constructed by gluing together Q cones, each of which contains a single unit of magnetic charge. In each cone, the energy is largest in the core, and so a constant energy density surface contains Q peaks and thus resembles a sea urchin.

  1. High-Q contacted ring microcavities with scatterer-avoiding “wiggler” Bloch wave supermode fields

    SciTech Connect

    Liu, Yangyang Popović, Miloš A.

    2014-05-19

    High-Q ring resonators with contacts to the waveguide core provide a versatile platform for various applications in chip-scale optomechanics, thermo-, and electro-optics. We propose and demonstrate azimuthally periodic contacted ring resonators based on multi-mode Bloch matching that support contacts on both the inner and outer radius edges with small degradation to the optical quality factor (Q). Radiative coupling between degenerate modes of adjacent radial spatial order leads to imaginary frequency (Q) splitting and a scatterer avoiding high-Q “wiggler” supermode field. We experimentally measure Qs up to 258 000 in devices fabricated in a silicon device layer on buried oxide undercladding and up to 139 000 in devices fully suspended in air using an undercut step. Wiggler supermodes are true modes of the microphotonic system that offer additional degrees of freedom in electrical, thermal, and mechanical design.

  2. Electromagnetic Transition Form Factors of Nucleon Resonances

    SciTech Connect

    Burkert, Volker D.

    2008-10-13

    Recent measurements of nucleon resonance transition form factors with CLAS at Jefferson Lab are discussed. The new data resolve a long-standing puzzle of the nature of the Roper resonance, and confirm the assertion of the symmetric constituent quark model of the Roper as the first radial excitation of the nucleon. The data on high Q{sup 2} n{pi}{sup +} production confirm the slow fall off of the S{sub 11}(1535) transition form factor with Q{sup 2}, and better constrain the branching ratios {beta}{sub N{pi}} = 0.50 and {beta}{sub N{eta}} = 0.45. For the first time, the longitudinal transition amplitude to the S{sub 11}(1535) was extracted from the n{pi}{sup +} data. Also, new results on the transition amplitudes for the D{sub 13}(1520) resonance are presented showing a rapid transition from helicity 3/2 dominance seen at the real photon point to helicty 1/2 dominance at higher Q{sup 2}.

  3. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication.

    PubMed

    Chandrahalim, Hengky; Chen, Qiushu; Said, Ali A; Dugan, Mark; Fan, Xudong

    2015-05-21

    We designed, fabricated, and characterized a monolithically integrated optofluidic ring resonator laser that is mechanically, thermally, and chemically robust. The entire device, including the ring resonator channel and sample delivery microfluidics, was created in a block of fused-silica glass using a 3-dimensional femtosecond laser writing process. The gain medium, composed of Rhodamine 6G (R6G) dissolved in quinoline, was flowed through the ring resonator. Lasing was achieved at a pump threshold of approximately 15 μJ mm(-2). Detailed analysis shows that the Q-factor of the optofluidic ring resonator is 3.3 × 10(4), which is limited by both solvent absorption and scattering loss. In particular, a Q-factor resulting from the scattering loss can be as high as 4.2 × 10(4), suggesting the feasibility of using a femtosecond laser to create high quality optical cavities. PMID:25904381

  4. Neuroblastoma in a boy with MCA/MR syndrome, deletion 11q, and duplication 12q

    SciTech Connect

    Koiffmann, C.P.; Vianna-Morgante, A.M.; Wajntal, A.

    1995-07-31

    Deletion 11q23{r_arrow}qter and duplication 12q23{r_arrow}qter are described in a boy with neuroblastoma, multiple congenital anomalies, and mental retardation. The patient has clinical manifestations of 11q deletion and 12q duplication syndromes. The possible involvement of the segment 11q23{r_arrow}24 in the cause of the neuroblastoma is discussed. 18 refs., 2 figs., 1 tab.

  5. Autoantibodies against complement C1q specifically target C1q bound on early apoptotic cells.

    PubMed

    Bigler, Cornelia; Schaller, Monica; Perahud, Iryna; Osthoff, Michael; Trendelenburg, Marten

    2009-09-01

    Autoantibodies against complement C1q (anti-C1q) are frequently found in patients with systemic lupus erythematosus (SLE). They strongly correlate with the occurrence of severe lupus nephritis, suggesting a pathogenic role in SLE. Because anti-C1q are known to recognize a neoepitope on bound C1q, but not on fluid-phase C1q, the aim of this study was to clarify the origin of anti-C1q by determining the mechanism that renders C1q antigenic. We investigated anti-C1q from serum and purified total IgG of patients with SLE and hypocomplementemic urticarial vasculitis as well as two monoclonal human anti-C1q Fab from a SLE patient generated by phage display. Binding characteristics, such as their ability to recognize C1q bound on different classes of Igs, on immune complexes, and on cells undergoing apoptosis, were analyzed. Interestingly, anti-C1q did not bind to C1q bound on Igs or immune complexes. Neither did we observe specific binding of anti-C1q to C1q bound on late apoptotic/necrotic cells when compared with binding in the absence of C1q. However, as shown by FACS analysis and confocal microscopy, anti-C1q specifically targeted C1q bound on early apoptotic cells. Anti-C1q were found to specifically target C1q bound on cells undergoing apoptosis. Our observations suggest that early apoptotic cells are a major target of the autoimmune response in SLE and provide a direct link between human SLE, apoptosis, and C1q. PMID:19648280

  6. Prader-Willi, Angelman, and 15q11-q13 duplication syndromes

    PubMed Central

    2015-01-01

    Three distinct neurodevelopmental disorders arise primarily from deletions or duplications that occur at the 15q11-q13 locus: Prader-Willi syndrome (PWS), Angelman syndrome (AS), and 15q11-q13 duplication syndrome (Dup15q syndrome). Each of these disorders results from the loss of function or over-expression of at least one imprinted gene. Here we discuss the clinical background, genetic etiology, diagnostic strategy, and management for each of these three disorders. PMID:26022164

  7. Maternal uniparental disomy of chromosome 14 in a boy with t(14q14q) associated with a paternal t(13q14q)

    SciTech Connect

    Tomkins, D.J.; Waye, J.S.; Whelan, D.T.

    1994-09-01

    An 11-year-old boy was referred for chromosomal analysis because of precocious development and behavioral problems suggestive of the fragile X syndrome. The cytogenetic fragile X studies were normal, but a routine GTG-banded karyotype revealed an abnormal male karyotype with a Robertsonian translocation between the two chromosome 14`s: 46,XY,t(14q14q). Paternal karyotyping revealed another abnormal karyotype: 46,XY,t(13q14q). A brother had the same karyotype as the father; the mother was deceased. In order to determine if the apparently balanced t(14q14q) in the proband might be the cause of the clinical findings, molecular analysis of the origin of the chromosome 14`s was initiated. Southern blotting and hybridization with D4S13 showed that the proband had two copies of one maternal allele which was shared by his brother. The brother`s second allele corresponded to one of the paternal alleles; the proband had no alleles from the father. Analysis of four other VNTRs demonstrated the probability of paternity to be greater than 99%. Thus, the t(14q14q) was most likely composed of two maternal chromosome 14`s. Further characterization of the t(14q14q) by dinucleotide repeat polymorphic markers is in progress to determine whether it has arisen from maternal isodisomy or heterodisomy. Several cases of uniparental disomy for chromosome 14 have been reported recently. Paternal disomy appears to be associated with more severe congenital anomalies and mental retardation, whereas maternal disomy may be associated with premature puberty and minimal intellectual impairment. The origin of the t(14q14q) in the present case may be related to the paternal translocation, as the segregation of the t(13q14q) in meiosis could lead to sperm that are nullisomic for chromosome 14.

  8. High-Q superconducting niobium cavities for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    de Paula, L. A. N.; Furtado, S. R.; Aguiar, O. D.; Oliveira, N. F., Jr.; Castro, P. J.; Barroso, J. J.

    2014-10-01

    The main purpose of this work is to optimize the electric Q-factor of superconducting niobium klystron cavities to be used in parametric transducers of the Mario Schenberg gravitational wave detector. Many cavities were manufactured from niobium with relatively high tantalum impurities (1420 ppm) and they were cryogenically tested to determine their resonance frequencies, unloaded electrical quality factors (Q0) and electromagnetic couplings. These cavities were closed with a flat niobium plate with tantalum impurities below 1000 ppm and an unloaded electrical quality factors of the order of 105 have been obtained. AC conductivity of the order of 1012 S/m has been found for niobium cavities when matching experimental results with computational simulations. These values for the Q-factor would allow the detector to reach the quantum limit of sensitivity of ~ 10-22 Hz-1/2 in the near future, making it possible to search for gravitational waves around 3.2 kHz. The experimental tests were performed at the laboratories of the National Institute for Space Research (INPE) and at the Institute for Advanced Studies (IEAv - CTA).

  9. Electroexcitation of the Roper resonance from CLAS data

    SciTech Connect

    Inna Aznauryan; Volker Burkert

    2007-10-29

    The helicity amplitudes of the electroexcitation of the Roper resonance on proton are extracted at $1.7<4.2~GeV^2$ from recent high precision JLab-CLAS cross sections data and longitudinally polarized beam asymmetry for $\\pi^+$ electroproduction on protons. The analysis is made using two approaches, dispersion relations and unitary isobar model, which give consistent results. It is found that the transverse helicity amplitude for the $\\gamma^* p\\rightarrow P_{11}(1440)$ transition, which is large and negative at $Q^2=0$, becomes large and positive at $Q^2\\simeq 2~GeV^2$, and then drops slowly with $Q^2$. Longitudinal helicity amplitude, that was previously found from CLAS data as large and positive at $Q^2=0.4,~0.65~GeV^2$, drops with $Q^2$. These results rule out the presentation of $P_{11}(1440)$ as a $q^3G$ hybrid state, and provide strong evidence in favor of this resonance as a first radial excitation of the $3q$ ground state.

  10. Regenerative feedback resonant circuit

    DOEpatents

    Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.

    2014-09-02

    A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.

  11. Quantum phase transition of light in the resonator array

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Wang; Gao, Ming; Deng, Zhi-Jiao; Dai, Hong-Yi; Chen, Ping-Xing; Li, Cheng-Zu; Quantum Computation Group of NUDT Team

    2015-03-01

    We give a concrete experimental scheme for engineering the insulator-superfluid transition of light in a one-dimensional (1-D) array of coupled superconducting stripline resonators. In our proposed architecture, the on-site interaction and the photon hopping rate can be tuned independently by adjusting the transition frequencies of the charge qubits inside the resonators and at the resonator junctions, respectively, which permits us to systematically study the quantum phase transition of light in a complete parameter space. By combining the techniques of photon-number-dependent qubit transition and fast read-out of the qubit state using a separate low-Q resonator mode, the statistical property of the excitations in each resonator can be obtained with a high efficiency. An analysis of the various decoherence sources and disorders shows that our scheme can serve as a guide to coming experiments involving a small number of coupled resonators.

  12. Analysis and modeling of Fano resonances using equivalent circuit elements.

    PubMed

    Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu

    2016-01-01

    Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements. PMID:27545610

  13. Analysis and modeling of Fano resonances using equivalent circuit elements

    PubMed Central

    Lv, Bo; Li, Rujiang; Fu, Jiahui; Wu, Qun; Zhang, Kuang; Chen, Wan; Wang, Zhefei; Ma, Ruyu

    2016-01-01

    Fano resonance presents an asymmetric line shape formed by an interference of a continuum coupled with a discrete autoionized state. In this paper, we show several simple circuits for Fano resonances from the stable-input impedance mechanism, where the elements consisting of inductors and capacitors are formulated for various resonant modes, and the resistor represents the damping of the oscillators. By tuning the pole-zero of the input impedance, a simple circuit with only three passive components e.g. two inductors and one capacitor, can exhibit asymmetric resonance with arbitrary Q-factors flexiblely. Meanwhile, four passive components can exhibit various resonances including the Lorentz-like and reversely electromagnetically induced transparency (EIT) formations. Our work not only provides an intuitive understanding of Fano resonances, but also pave the way to realize Fano resonaces using simple circuit elements. PMID:27545610

  14. Clinical applications of coenzyme Q10.

    PubMed

    Garrido-Maraver, Juan; Cordero, Mario D; Oropesa-Avila, Manuel; Vega, Alejandro Fernandez; de la Mata, Mario; Pavon, Ana Delgado; Alcocer-Gomez, Elisabet; Calero, Carmen Perez; Paz, Marina Villanueva; Alanis, Macarena; de Lavera, Isabel; Cotan, David; Sanchez-Alcazar, Jose A

    2014-01-01

    Coenzyme Q10 (CoQ10) or ubiquinone was known for its key role in mitochondrial bioenergetics as electron and proton carrier; later studies demonstrated its presence in other cellular membranes and in blood plasma, and extensively investigated its antioxidant role. These two functions constitute the basis for supporting the clinical indication of CoQ10. Furthermore, recent data indicate that CoQ10 affects expression of genes involved in human cell signalling, metabolism and transport and some of the effects of CoQ10 supplementation may be due to this property. CoQ10 deficiencies are due to autosomal recessive mutations, mitochondrial diseases, ageing-related oxidative stress and carcinogenesis processes, and also a secondary effect of statin treatment. Many neurodegenerative disorders, diabetes, cancer, fibromyalgia, muscular and cardiovascular diseases have been associated with low CoQ10 levels. CoQ10 treatment does not cause serious adverse effects in humans and new formulations have been developed that increase CoQ10 absorption and tissue distribution. Oral CoQ10 treatment is a frequent mitochondrial energizer and antioxidant strategy in many diseases that may provide a significant symptomatic benefit. PMID:24389208

  15. 22q11 deletion syndrome: current perspective

    PubMed Central

    Hacıhamdioğlu, Bülent; Hacıhamdioğlu, Duygu; Delil, Kenan

    2015-01-01

    Chromosome 22q11 is characterized by the presence of chromosome-specific low-copy repeats or segmental duplications. This region of the chromosome is very unstable and susceptible to mutations. The misalignment of low-copy repeats during nonallelic homologous recombination leads to the deletion of the 22q11.2 region, which results in 22q11 deletion syndrome (22q11DS). The 22q11.2 deletion is associated with a wide variety of phenotypes. The term 22q11DS is an umbrella term that is used to encompass all 22q11.2 deletion-associated phenotypes. The haploinsufficiency of genes located at 22q11.2 affects the early morphogenesis of the pharyngeal arches, heart, skeleton, and brain. TBX1 is the most important gene for 22q11DS. This syndrome can ultimately affect many organs or systems; therefore, it has a very wide phenotypic spectrum. An increasing amount of information is available related to the pathogenesis, clinical phenotypes, and management of this syndrome in recent years. This review summarizes the current clinical and genetic status related to 22q11DS. PMID:26056486

  16. Coenzyme Q supplementation in pulmonary arterial hypertension

    PubMed Central

    Sharp, Jacqueline; Farha, Samar; Park, Margaret M.; Comhair, Suzy A.; Lundgrin, Erika L.; Tang, W.H. Wilson; Bongard, Robert D.; Merker, Marilyn P.; Erzurum, Serpil C.

    2014-01-01

    Mitochondrial dysfunction is a fundamental abnormality in the vascular endothelium and smooth muscle of patients with pulmonary arterial hypertension (PAH). Because coenzyme Q (CoQ) is essential for mitochondrial function and efficient oxygen utilization as the electron carrier in the inner mitochondrial membrane, we hypothesized that CoQ would improve mitochondrial function and benefit PAH patients. To test this, oxidized and reduced levels of CoQ, cardiac function by echocardiogram, mitochondrial functions of heme synthesis and cellular metabolism were evaluated in PAH patients (N=8) in comparison to healthy controls (N=7), at baseline and after 12 weeks oral CoQ supplementation. CoQ levels were similar among PAH and control individuals, and increased in all subjects with CoQ supplementation. PAH patients had higher CoQ levels than controls with supplementation, and a tendency to a higher reduced-to-oxidized CoQ ratio. Cardiac parameters improved with CoQ supplementation, although 6-minute walk distances and BNP levels did not significantly change. Consistent with improved mitochondrial synthetic function, hemoglobin increased and red cell distribution width (RDW) decreased in PAH patients with CoQ, while hemoglobin declined slightly and RDW did not change in healthy controls. In contrast, metabolic and redox parameters, including lactate, pyruvate and reduced or oxidized gluthathione, did not change in PAH patients with CoQ. In summary, CoQ improved hemoglobin and red cell maturation in PAH, but longer studies and/or higher doses with a randomized placebo-controlled controlled design are necessary to evaluate the clinical benefit of this simple nutritional supplement. PMID:25180165

  17. Microwave-to-Optical Conversion in WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Maleki, Lute

    2008-01-01

    Microwave-to-optical frequency converters based on whispering-gallery-mode (WGM) resonators have been proposed as mixers for the input ends of microwave receivers in which, downstream of the input ends, signals would be processed photonically. A frequency converter as proposed (see figure) would exploit the nonlinearity of the electromagnetic response of a WGM resonator made of LiNbO3 or another suitable ferroelectric material. Up-conversion would take place by three-wave mixing in the resonator. The WGM resonator would be de - signed and fabricated to obtain (1) resonance at both the microwave and the optical operating frequencies and (2) phase matching among the input and output microwave and optical signals as described in the immediately preceding article. Because the resonator would be all dielectric there would be no metal electrodes signal losses would be very low and, consequently, the resonance quality factors (Q values) of the microwave and optical fields would be very large. The long lifetimes associated with the large Q values would enable attainment of high efficiency of nonlinear interaction with low saturation power. It is anticipated that efficiency would be especially well enhanced by the combination of optical and microwave resonances in operation at input signal frequencies between 90 and 300 GHz.

  18. Narrow-band resonant optical reflectors and resonant optical transformers for laser stabilization and wavelength division multiplexing

    SciTech Connect

    Kazarinov, R.F.; Henry, C.H.; Olsson, N.A.

    1987-09-01

    The authors propose a new way of making highly resonant integrated optical circuits based on weak side-by-side coupling between waveguides and high Q distributed Bragg resonators. This method can be used to design a resonant optical reflector which, when used as a feedback element to a laser, will result in a compact structure that has both extremely narrow line width and very low chirp. By coupling the resonator to two waveguides, one on either side, an optical analog of the resonant transformer can be made. This device can be used for wavelength division multiplexing. Such multiplexer elements will both resonantly transform optical power from the laser to a common output channel and also provide feedback which locks the laser to the channel wavelength.

  19. Regional mapping of loci from human chromosome 2q to sheep chromosome 2q

    SciTech Connect

    Ansari, H.A.; Pearce, P.D.; Maher, D.W.; Malcolm, A.A.; Wood, N.J.; Phua, S.H.; Broad, T.E. )

    1994-03-01

    The human chromosome 2q loci, fibronectin 1 (FN1), the [alpha]1 chain of type III collagen (COL3A1), and the [delta] subunit of the muscle acetylcholine receptor (CHRND) have been regionally assigned to sheep chromosome 2q by in situ hybridization. COL3A1 is pericentromeric (2q12-q21), while FN1 and CHRND are in the subterminal region at 2q41-q44 and 2q42-qter, respectively. The mapping of FN1 assigns the sheep synthenic group U11, which contains FN1, villin 1 (VIL1), isocitrate dehydrogenase 1 (IDH1), and [gamma] subunit of the muscle acetylcholine receptor (CHRNG), to sheep chromosome 2q. Inhibin-[alpha] (INHA) is also assigned to sheep chromosome 2q as FN1 and INHA compose sheep linkage group 3. These seven loci are members of a conserved chromosomal segment in human, mouse, and sheep. 23 refs., 2 figs., 1 tab.

  20. A novel subgroup Q5 of human Y-chromosomal haplogroup Q in India

    PubMed Central

    Sharma, Swarkar; Rai, Ekta; Bhat, Audesh K; Bhanwer, Amarjit S; Bamezai, Rameshwar NK

    2007-01-01

    Background Y-chromosomal haplogroup (Y-HG) Q is suggested to originate in Asia and represent recent founder paternal Native American radiation into the Americas. This group is delineated into Q1, Q2 and Q3 subgroups defined by biallelic markers M120, M25/M143 and M3, respectively. Recently, a novel subgroup Q4 has been identified which is defined by bi-allelic marker M346, representing HG Q (0.41%, 3/728) in Indian population. With scanty details of HG Q in Asia, especially India, it was pertinent to explore the status of the Y-HG Q in Indian population to gather an insight to determine the extent of diversity within this region. Results We observed 15/630 (2.38%) Y-HG Q individuals in India with an ancestral state at M120, M25, M3 and M346 markers, indicating an absence of already known Q1, Q2, Q3 and Q4 sub-haplogroups. Interestingly, we further observed a novel 4 bp deletion/insertion polymorphism (ss4 bp, rs41352448) at 72,314 position of human arylsulfatase D pseudogene, defining a novel sub-lineage Q5 (in 5/15 individuals, i.e., 33.3 % of the observed Y-HG Q) with distributions independent of the social, cultural, linguistic and geographical affiliations in India. Conclusion The study adds another sublineage Q5 in the already existing arrangement of Y-HG Q in literature. It was quite interesting to observe an ancestral state Q* and a novel sub-branch Q5, not reported elsewhere, in Indian subcontinent, though in low frequency. A novel subgroup Q4 was identified recently which is also restricted to Indian subcontinent. The most plausible explanation for these observations could be an ancestral migration of individuals bearing ancestral lineage Q* to Indian subcontinent followed by an autochthonous differentiation to Q4 and Q5 sublineages later on. However, other explanations of, either the presence of both the sub haplogroups (Q4 and Q5) in ancestral migrants or recent migrations from central Asia, cannot be ruled out till the distribution and diversity of

  1. Velopharyngeal Anatomy in 22q11.2 Deletion Syndrome: A Three-Dimensional Cephalometric Analysis

    PubMed Central

    Ruotolo, Rachel A.; Veitia, Nestor A.; Corbin, Aaron; McDonough, Joseph; Solot, Cynthia B.; McDonald-McGinn, Donna; Zackai, Elaine H.; Emanuel, Beverly S.; Cnaan, Avital; LaRossa, Don; Arens, Raanan; Kirschner, Richard E.

    2010-01-01

    Objective 22q11.2 deletion syndrome is the most common genetic cause of velopharyngeal dysfunction (VPD). Magnetic resonance imaging (MRI) is a promising method for noninvasive, three-dimensional (3D) assessment of velopharyngeal (VP) anatomy. The purpose of this study was to assess VP structure in patients with 22q11.2 deletion syndrome by using 3D MRI analysis. Design This was a retrospective analysis of magnetic resonance images obtained in patients with VPD associated with a 22q11.2 deletion compared with a normal control group. Setting This study was conducted at The Children’s Hospital of Philadelphia, a pediatric tertiary care center. Patients, Participants The study group consisted of 5 children between the ages of 2.9 and 7.9 years, with 22q11.2 deletion syndrome confirmed by fluorescence in situ hybridization analysis. All had VPD confirmed by nasendoscopy or videofluoroscopy. The control population consisted of 123 unaffected patients who underwent MRI for reasons other than VP assessment. Interventions Axial and sagittal T1- and T2-weighted magnetic resonance images with 3-mm slice thickness were obtained from the orbit to the larynx in all patients by using a 1.5T Siemens Visions system. Outcome Measures Linear, angular, and volumetric measurements of VP structures were obtained from the magnetic resonance images with VIDA image- processing software. Results The study group demonstrated greater anterior and posterior cranial base and atlanto-dental angles. They also demonstrated greater pharyngeal cavity volume and width and lesser tonsillar and adenoid volumes. Conclusion Patients with a 22q11.2 deletion demonstrate significant alterations in VP anatomy that may contribute to VPD. PMID:16854203

  2. Lead-silicate glass optical microbubble resonator

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald; Chormaic, Síle Nic

    2015-02-01

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 105 (single-stem) and 7 × 106 (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  3. Lead-silicate glass optical microbubble resonator

    SciTech Connect

    Wang, Pengfei; Ward, Jonathan; Yang, Yong; Chormaic, Síle Nic; Feng, Xian; Brambilla, Gilberto; Farrell, Gerald

    2015-02-09

    Microbubble whispering gallery resonators have the potential to become key components in a variety of active and passive photonic circuit devices by offering a range of significant functionalities. Here, we report on the fabrication, optical characterization, and theoretical analysis of lead-silicate glass and optical microbubble resonators. Evanescent field coupling to the microbubbles was achieved using a 1 μm diameter, silica microfiber at a wavelength of circa 775 nm. High Q-factor modes were efficiently excited in both single-stem and two-stem, lead-silicate glass, and microbubble resonators, with bubble diameters of 38 μm (single-stem) and 48 μm (two-stem). Whispering gallery mode resonances with Q-factors as high as 2.3 × 10{sup 5} (single-stem) and 7 × 10{sup 6} (two-stem) were observed. By exploiting the high-nonlinearity of the lead-silicate glass, this work will act as a catalyst for studying a range of nonlinear optical effects in microbubbles, such as Raman scattering and four-wave mixing, at low optical powers.

  4. High mechanical Q-factor measurements on silicon bulk samples

    NASA Astrophysics Data System (ADS)

    Nawrodt, R.; Zimmer, A.; Koettig, T.; Schwarz, C.; Heinert, D.; Hudl, M.; Neubert, R.; Thürk, M.; Nietzsche, S.; Vodel, W.; Seidel, P.; Tünnermann, A.

    2008-07-01

    Future gravitational wave detectors will be limited by different kinds of noise. Thermal noise from the coatings and the substrate material will be a serious noise contribution within the detection band of these detectors. Cooling and the use of a high mechanical Q-factor material as a substrate material will reduce the thermal noise contribution from the substrates. Silicon is one of the most interesting materials for a third generation cryogenic detector. Due to the fact that the coefficient of thermal expansion vanishes at 18 and 125 K the thermoelastic contribution to the thermal noise will disappear. We present a systematic analysis of the mechanical Q-factor at low temperatures between 5 and 300 K on bulk silicon (100) samples which are boron doped. The thickness of the cylindrical samples is varied between 6, 12, 24, and 75mm with a constant diameter of 3 inches. For the 75mm substrate a comparison between the (100) and the (111) orientation is presented. In order to obtain the mechanical Q-factor a ring-down measurement is performed. Thus, the substrate is excited to resonant vibrations by means of an electrostatic driving plate and the subsequent ring-down is recorded using a Michelson-like interferometer. The substrate itself is suspended as a pendulum by means of a tungsten wire loop. All measurements are carried out in a special cryostat which provides a temperature stability of better than 0.1K between 5 and 300K during the experiment. The influence of the suspension on the measurements is experimentally investigated and discussed. At 5.8K a highest Q-factor of 4.5 × 108 was achieved for the 14.9 kHz mode of a silicon (100) substrate with a diameter of 3 inches and a thickness of 12 mm.

  5. Antimicrobial therapies for Q fever

    PubMed Central

    Kersh, Gilbert J.

    2015-01-01

    Summary Q fever is caused by the bacterium Coxiella burnetii and has both acute and chronic forms. The acute disease is a febrile illness often with headache and myalgia that can be self-limiting whereas the chronic disease typically presents as endocarditis and can be life threatening. The normal therapy for the acute disease is a two week course of doxycycline, whereas chronic disease requires 18-24 months of doxycycline in combination with hydroxychloroquine. Alternative treatments are used for pregnant women, young children, and those who cannot tolerate doxycycline. Doxycycline resistance is rare but has been reported. Co-trimoxazole is a currently recommended alternative treatment, but quinolones, rifampin, and newer macrolides may also provide some benefit. PMID:24073941

  6. Resonant features of energy and particle transport during application of resonant magnetic perturbation fields at TEXTOR and DIII-D

    SciTech Connect

    Schmitz, O.; Evans, T. E.; Fenstermacher, M. E.; Lehnen, M.; Stoschus, H.

    2012-01-01

    In this paper, results of a direct comparison of TEXTOR and DIII-D experiments with resonant magnetic perturbation (RMP) fields are presented. This comparison of resistive L-mode plasmas at TEXTOR with highly conductive H-mode plasmas at DIII-D is useful to identify generic physics mechanisms during application of RMP fields with a strong field line pitch angle alignment in the plasma edge. A reduction in the pedestal electron pressure p(e) with increasing extension of the vacuum modelled stochastic layer and p(e) recovery with decreasing layer width is found caused by a q(95) resonant reduction in the edge (0.8 < Psi(N) < 0.95) electron temperature T-e(q(95)) on both devices. For RMP edge-localized mode (ELM) suppressed H-mode plasmas at DIII-D, the gradients del T-e and nominal values of T-e are reduced in this edge region while increasing in the pedestal (0.95 < Psi(N) < 1.0) with RMP field applied and both are highly dependent on q(95). In contrast, an increase in the central ion temperature with strong steepening of the ion temperature profile at mid-radius is found-again being highly dependent on q(95). However, these resonant thermal transport effects are only seen in high triangularity plasmas revealing a strong shape dependence of the thermal transport. In contrast to the highly q(95) dependent thermal transport features, the reduction of n(e)-known as density pump out-shows a much weaker dependence on q(95). We show the potential to reduce the RMP induced particle pump out by fine tuning of the RMP spectral properties. At low resonant field amplitudes enhanced particle confinement is seen in high-field side limited L-mode discharges on both devices while higher resonant field amplitudes yield particle pumps out.

  7. Toroidal modelling of RMP response in ASDEX Upgrade: coil phase scan, q 95 dependence, and toroidal torques

    NASA Astrophysics Data System (ADS)

    Liu, Yueqiang; Ryan, D.; Kirk, A.; Li, Li; Suttrop, W.; Dunne, M.; Fischer, R.; Fuchs, J. C.; Kurzan, B.; Piovesan, P.; Willensdorfer, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2016-05-01

    The plasma response to the vacuum resonant magnetic perturbation (RMP) fields, produced by the ELM control coils in ASDEX Upgrade experiments, is computationally modelled using the MARS-F/K codes (Liu et al 2000 Phys. Plasmas 7 3681, Liu et al 2008 Phys. Plasmas 15 112503). A systematic investigation is carried out, considering various plasma and coil configurations as in the ELM control experiments. The low q plasmas, with {{q}95}∼ 3.8 (q 95 is the safety factor q value at 95% of the equilibrium poloidal flux), responding to low n (n is the toroidal mode number) field perturbations from each single row of the ELM coils, generates a core kink amplification effect. Combining two rows, with different toroidal phasing, thus leads to either cancellation or reinforcement of the core kink response, which in turn determines the poloidal location of the peak plasma surface displacement. The core kink response is typically weak for the n  =  4 coil configuration at low q, and for the n  =  2 configuration but only at high q ({{q}95}∼ 5.5 ). A phase shift of around 60 degrees for low q plasmas, and around 90 degrees for high q plasmas, is found in the coil phasing, between the plasma response field and the vacuum RMP field, that maximizes the edge resonant field component. This leads to an optimal coil phasing of about 100 (‑100) degrees for low (high) q plasmas, that maximizes both the edge resonant field component and the plasma surface displacement near the X-point of the separatrix. This optimal phasing closely corresponds to the best ELM mitigation observed in experiments. A strong parallel sound wave damping moderately reduces the core kink response but has minor effect on the edge peeling response. For low q plasmas, modelling shows that both the resonant electromagnetic torque and the neoclassical toroidal viscous (NTV) torque (due to the presence of 3D magnetic field perturbations) contribute to the toroidal flow damping, in particular near the

  8. Resonances while surmounting a fluctuating barrier

    PubMed

    Iwaniszewski; Kaufman; McClintock; McKane

    2000-02-01

    Electronic analog experiments on escape over a fluctuating potential barrier are performed for the case when the fluctuations are caused by Ornstein-Uhlenbeck noise (OUN). In its dependence on the relation between the two OUN parameters (the correlation time tau and noise strength Q) the nonmonotonic variation of the mean escape time T as a function of tau can exhibit either a minimum (resonant activation), or a maximum (inhibition of activation), or both these effects. The possible resonant nature of these features is discussed. We claim that T is not a good quantity to describe the resonancelike character of the problem. Independently of the specific relation between the OUN parameters, the resonance manifests itself as a maximal lowering of the potential barrier during the escape event, and it appears for tau of the order of the relaxation time toward the metastable state. PMID:11046390

  9. A bulk niobium superconducting quarter wave resonator

    SciTech Connect

    Ben-Zvi, I. ); Chiaveri, E. ); Elkonin, B.V. ); Facco, A.; Sokolowski, J.S. . Lab. Nazionale di Legnaro)

    1990-01-01

    A bath-cooled all-niobium 160 MHz quarter wave resonator prototype was constructed and tested. The objective of this research has been the development of a high performance accelerating element with {beta}{sub opt} {approx equal} 0.11 for the ALPI linac at the Laboratori Nazionali di Legnaro. The design of this resonator was based upon a previous 150 MHz model, with minor changes due to the different frequency and to modified welding procedure. An accelerating field of 5 MV/m was achieved at a power dissipation of 10 W and the low power Q was 2.4 {times} 10{sup 8}. The resonator could dissipate 70 W of power without thermal breakdown. 16 refs., 2 figs., 1 tab.

  10. Electro-optic Q-switch

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin (Inventor); Chen, Qiushui (Inventor); Zhang, Run (Inventor); Jiang, Hua (Inventor)

    2006-01-01

    An electro-optic Q-switch for generating sequence of laser pulses was disclosed. The Q-switch comprises a quadratic electro-optic material and is connected with an electronic unit generating a radio frequency wave with positive and negative pulses alternatively. The Q-switch is controlled by the radio frequency wave in such a way that laser pulse is generated when the radio frequency wave changes its polarity.

  11. Renormalons and 1/Q2 corrections

    NASA Astrophysics Data System (ADS)

    Akhoury, R.; Zakharov, V. I.

    1997-06-01

    We argue that the appearance of the Landau pole in the running coupling of QCD introduces 1/Q2 power corrections in current correlator functions. These terms are not accounted for by the standard operator product expansion and is the price to be paid for the lack of a unique definition of the running coupling at the 1/Q2 level. We review also possible phenomenological implications of the 1/Q2 terms in an alternative language of ultraviolet renormalon.

  12. Dispersion engineering of high-Q silicon microresonators via thermal oxidation

    SciTech Connect

    Jiang, Wei C.; Zhang, Jidong; Usechak, Nicholas G.; Lin, Qiang

    2014-07-21

    We propose and demonstrate a convenient and sensitive technique for precise engineering of group-velocity dispersion in high-Q silicon microresonators. By accurately controlling the surface-oxidation thickness of silicon microdisk resonators, we are able to precisely manage the zero-dispersion wavelength, while simultaneously further improving the high optical quality of our devices, with the optical Q close to a million. The demonstrated dispersion management allows us to achieve parametric generation with precisely engineerable emission wavelengths, which shows great potential for application in integrated silicon nonlinear and quantum photonics.

  13. Compact frequency-modulation Q-switched single-frequency fiber laser at 1083 nm

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanfei; Feng, Zhouming; Xu, Shanhui; Mo, Shupei; Yang, Changsheng; Li, Can; Gan, Jiulin; Chen, Dongdan; Yang, Zhongmin

    2015-12-01

    A compact frequency-modulation Q-switched single-frequency fiber laser is demonstrated at 1083 nm. The short linear resonant cavity consists of a 12 mm long homemade Yb3+-doped phosphate fiber and a pair of fiber Bragg gratings (FBGs) in which the Q-switching and the frequency excursion is achieved by a tensile-induced period modulation. Over 375 MHz frequency-tuning range is achieved with a modulation frequency varying from tens to hundreds of kilohertz. The highest peak power of the output pulse reaching 6.93 W at the repetition rate of 10 kHz is obtained.

  14. Experimental determination of the evolution of the Bjorken integral at low Q{sup 2}

    SciTech Connect

    Alexandre Deur; Peter Bosted; Volker Burkert; Gordon Cates; Jian-Ping Chen; Seonho Choi; Donald Crabb; Cornelis de Jager; Raffaella De Vita; Gail Dodge; Renee Fatemi; Tony Forest; Franco Garibaldi; Ronald Gilman; Emlyn Hughes; Xiaodong Jiang; Wolfgang Korsch; Sebastian Kuhn; Wolodymyr Melnitchouk; Zein-Eddine Meziani; Ralph Minehart; Alexander Skabelin; Karl Slifer; Mauro Taiuti; Junho Yun

    2004-07-01

    We extract the Bjorken integral {Gamma}{sub 1}{sup p-n} in the range 0.17 < Q{sup 2} < 1.10 GeV{sup 2} from inclusive scattering of polarized electrons by polarized protons, deuterons and {sup 3}He, for the region in which the integral is dominated by nucleon resonances. These data bridge the domains of the hadronic and partonic descriptions of the nucleon. In combination with earlier measurements at higher Q{sup 2}, we extract the non-singlet twist-4 matrix element f{sub 2}.

  15. Potential sputtering of target ions by Ar q+ , Pb q+ projectiles from a silicon surface

    NASA Astrophysics Data System (ADS)

    Wang, T. S.; Zhao, Y. T.; Peng, H. B.; Wang, S. W.; Fang, Y.; Ding, D. J.; Xiao, G. Q.

    2007-03-01

    Highly charged ions have been expected to be a powerful tool for the surface modification in nano-scale. The potential sputtering of highly charged ions on semi-conductors has the potential to be applied in the micro electronics and nano-technology. In this work, the Arq+ and Pbq+ ions produced by an electron cyclotron resonance ion source have been used as projectiles to study their potential sputtering on silicon surface. The relative sputtering ion yield is measured with a micro-channel plate, correlated to the incidence angle, charge state and velocity of ions. The experimental results show evidently charge dependence and velocity dependence. The yield induced by the ions changes steeply with the incidence angle, which is much larger than the impact of single charged ion with the same velocity. In the case of Pb36+ impact, a significant enhancement of the yield has been observed, while the q > 20. At the same time, the yield increases proportionally with the ion velocity. However, in the case of Ar16+, the yield decreases versus the increase of the velocity.

  16. Myelodysplastic Syndrome with concomitant t(5;21)(q15;q22) and del(5)(q13q33): case report and review of literature.

    PubMed

    Kasi Loknath Kumar, Anup; Weckbaugh, Brandon; Sirridge, Christopher; Woodroof, Janet; Persons, Diane; Kambhampati, Suman

    2016-01-01

    Chromosomal abnormalities lead to the development of hematologic malignancies such as Myelodysplastic Syndrome (MDS). Known chromosomal changes causing MDS include deletion of the long arm of chromosome 5, runt-related transcription factor 1 (RUNX1) also known as acute myeloid leukemia 1 protein (AML1), and very rarely fusion genes involving RUNX1 at t(5;21)(q15;q22). We present a case of a 71-year-old female with MDS, refractory anemia with excess blasts, type 1, with a combination of two cytogenetic abnormalities, specifically a concomitant translocation between chromosomes 5q15 and 21q22 and deletion of chromosome 5q13q33. Fluorescence in-situ hybridization (FISH) using a probe for RUNX1 (AML1), localized to 21q22, showed three FISH signals for RUNX1, consistent with rearrangement of RUNX1. Therapy was started with Lenalidomide leading to normal blood counts. Most significantly, repeat cytogenetics revealed normal karyotype and resolution of deletion on the long arm of chromosome 5 and a t(5;21). FISH negative for deletion 5q. The results altogether meet criteria for a complete cytogenetic remission (CR). We report a new case of t(5;21)(q15;q22) involving the RUNX1 gene and del(5)(q13q33) in a MDS patient, a combination of chromosomal abnormalities heretofore not reported in the literature. RUNX1 rearrangement is usually associated with an adverse prognosis in AML and MDS. Deletions of 5q are typically associated with poor prognosis in AML, however it is usually associated with a favorable prognosis in MDS. Our patient responded very well to Lenalidomide therapy with achievement of CR. Lenalidomide is approved for treatment of anemia in low and intermediate risk MDS with del (5q), however based on a search of literature it seems that RUNX1 mutations are also more prominent in patients who have responded to Lenalidomide therapy. MDS is a genomically unstable disease. Hence, it is conceivable that our patient started with a 5q minus syndrome and then acquired the

  17. A rare case of trisomy 11q23.3-11q25 and trisomy 22q11.1-22q11.21.

    PubMed

    Zou, P-S; Li, H-F; Chen, L-S; Ma, M; Chen, X-H; Xue, D; Cao, D-H

    2016-01-01

    Partial duplication of the long arm of chromosome 11 and the partial trisomy of 22q are uncommon karyotypic abnormalities. Here, we report the case of a 6-year-old girl who showed partial trisomy of 11q and 22q, as a result of a maternal balanced reciprocal translocation (11;22), and exhibited dysmorphic features, severe intellectual disability, brain malformations, and speech delay related to this unique chromosomal abnormality. Array comparative genomic hybridization (array CGH) revealed a gain in copy number on the long arm of chromosome 11, spanning at least 18.22 Mb. Additionally, there was a gain in copy number on the long arm of chromosome 22, spanning at least 3.46 Mb. FISH analysis using a chromosome 11 short arm telomere probe (11p14.2), a chromosome 11 long arm telomere probe (11q24.3), and a chromosome 22 long arm telomere probe (22q13.33) confirmed the origin of the marker chromosome. It has been confirmed by the State Key Laboratory of Medical Genetics of China that this is the first reported instance of the karyotype 47,XX, +der(22)t(11;22)(q23.3;q11.1)mat in the world. Our study reports an additional case that can be used to further characterize and delineate the clinical ramifications of partial trisomy of 11q and 22q. PMID:27173335

  18. Biosynthesis of coenzyme Q in eukaryotes.

    PubMed

    Kawamukai, Makoto

    2015-01-01

    Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes. PMID:26183239

  19. Q-balls in flat potentials

    SciTech Connect

    Copeland, Edmund J.; Tsumagari, Mitsuo I.

    2009-07-15

    We study the classical and absolute stability of Q-balls in scalar field theories with flat potentials arising in both gravity-mediated and gauge-mediated models. We show that the associated Q-matter formed in gravity-mediated potentials can be stable against decay into their own free particles as long as the coupling constant of the nonrenormalizable term is small, and that all of the possible three-dimensional Q-ball configurations are classically stable against linear fluctuations. Three-dimensional gauge-mediated Q-balls can be absolutely stable in the thin-wall limit, but are completely unstable in the thick-wall limit.

  20. C1q and systemic lupus erythematosus.

    PubMed

    Walport, M J; Davies, K A; Botto, M

    1998-08-01

    In this chapter we review the association between SLE and C1q. In the first part of the chapter we discuss the clinical associations of C1q deficiency, and tabulate the available information in the literature relating to C1q deficiency and autoimmune disease. Other clinical associations of C1q deficiency are then considered, and we mention briefly the association between other genetically determined complement deficiencies and lupus. In the review we explore the relationship between C1q consumption and lupus and we discuss the occurrence of low molecular weight (7S) C1q in lupus, which raises the possibility that increased C1q turnover in the disease may result in unbalanced chain synthesis of the molecule. Anti-C1q antibodies are also strongly associated with severe SLE affecting the kidney, and with hypocomplementaemic urticarial vasculitis, and these associations are also examined. We address the question of how C1q deficiency may cause SLE, discussing the possibility that this may be due to abnormalities of immune complex processing, which have been well characterised in a umber of different human models. There is clear evidence that immune complex processing is abnormal in patients with hypocomplementaemia, and this is compatible with the hypothesis that ineffective immune complex clearance could cause tissue injury, and this may in turn stimulate an autoantibody response. We have also considered the possibility that C1q-C1q receptor interactions are critical in the regulation of apoptosis, and we explore the hypothesis that dysregulation of apoptosis could explain important features in the development of autoimmune disease associated with C1q deficiency. An abnormally high rate of apoptosis, or defective clearance of apoptotic cells, could promote the accumulation of abnormal cellular products that might drive an autoimmune response. Anti-C1q antibodies have been described in a number of murine models of lupus, and these are also briefly discussed. We focus

  1. Adiabatic formation of high-Q modes by suppression of chaotic diffusion in deformed microdiscs

    NASA Astrophysics Data System (ADS)

    Shim, Jeong-Bo; Eberspächer, Alexander; Wiersig, Jan

    2013-11-01

    Resonant modes with high-Q factors in a two-dimensional deformed microdisc cavity are analyzed by using a dynamical and semiclassical approach. The analysis focuses particularly on the ultra-small cavity regime, where the scale of a resonant free-space wavelength is comparable with that of the microdisc size. Although the deformed microcavity has strongly chaotic internal ray dynamics, modes with high-Q factors in this regime show unexpectedly regular distributions in configuration space and adiabatic features in phase space. By tracing the evolution process of such high-Q modes through the deformation from a circular cavity, it is uncovered that the high-Q modes are formed adiabatically on cantori. Due to the openness of microcavities, such adiabatic formation of high-Q modes around cantori is enabled, in spite of strong chaos in ray dynamics. Since the cantori are in close contact with short periodic orbits, their influence on the modes, such as localization patterns in phase space, can be also clarified. In order to quantitatively analyze the spectral range where high-Q modes appear, the phase space section of the deformed microcavity is partitioned by partial barriers of short periodic orbits, and the semiclassical quantization scheme is applied to the partitioned areas and their action fluxes. The derived spectral ranges for the high-Q modes show a good agreement with a numerically observed spectrum. In the course of semiclassical quantization, it is shown that the chaotic diffusion in the system that we investigate can be resolved by the scale of a quarter effective Planck's constant, and the topological structure of the manifolds in phase space allows for this resolution higher than a Planck constant scale. By analyzing flux Farey trees, the role of short periodic orbits in chaotic diffusion and their connection to cantori are verified.

  2. Measurement of the $x$- and $Q^2$-Dependence of the Asymmetry $A_1$ on the Nucleon

    SciTech Connect

    Kahanawita Dharmawardane; Sebastian Kuhn; Peter Bosted; Yelena Prok

    2006-05-23

    We report results for the virtual photon asymmetry A{sub 1} on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton ({sup 15}NH{sub 3}) and deuteron ({sup 15}ND{sub 3}) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for A{sub 1}(x,Q{sup 2}) and the related ratio g{sub 1}/F{sub 1}(x,Q{sup 2}) in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer Q{sup 2} from 0.05 to 5.0 GeV{sup 2} and in final-state invariant mass W up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong Q{sup 2}--dependence of A{sub 1}(x,Q{sup 2}) for W below 2 GeV. At higher W, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but A{sub 1}(x,Q{sup 2}) is not strictly Q{sup 2}--independent. We add significantly to the world data set at high x, up to x = 0.6. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative d-quark polarization up to our highest x. This data set should improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.

  3. Backscattering analysis in optical micro-resonators with mode splitting based on COMSOL

    NASA Astrophysics Data System (ADS)

    Yang, Zhaohua; Huo, Jiayan; Yang, Xu

    2015-10-01

    Rayleigh backscattering noise, which is one of the reasons that limit the sensitivity, has been deemed as noise in traditional resonant optic gyroscopes. However Rayleigh backscattering noise is one of the incentives of mode splitting phenomenon in high-Q resonators. Regarding the change of the resonance frequency of the resonator caused by the scattering signal as a measurement, we can use mode splitting to measure temperature, size of nanoparticle, etc. Light is confined by total internal reflection in whispering gallery mode (WGM) optical resonators, which is characterized by high-Q factors and small mode volumes. With regards to this, we propose a sensing mechanism based on mode splitting in high-Q WGM optical resonators. It is possible for us to measure the angular velocity of carrier according to the changes in the resonant frequencies of the two splitting modes. We propose the Miniature resonant optic gyroscope based on mode splitting (MROG-MS) with WGM resonators in the paper. Considering the Sagnac effect, mode splitting in high quality optical micro-resonators, and the rotation-induced impact on backscattering process, we modify the equations of motion that describe mode splitting, derive the explicit expression of angular rate versus the splitting amount, and verify the sensing mechanism by the simulation based on COMSOL. Furthermore, after monitoring the transmission spectra at different number of scattering particles, the simulation shows that mode splitting phenomenon resulted by single particle is more suitable for angular velocity measurement.

  4. Magnetic resonance force detection using a membrane resonator

    NASA Astrophysics Data System (ADS)

    Scozzaro, Nicolas; Ruchotzke, William; Belding, Amanda; Cardellino, Jeremy; Blomberg, Erick; McCullian, Brendan; Bhallamudi, Vidya; Pelekhov, Denis; Hammel, P. Chris

    Silicon nitride (Si3N4) membranes are commercially-available, versatile structures that have a variety of applications. Although most commonly used as the support structure for transmission electron microscopy (TEM) studies, membranes are also ultrasensitive high-frequency mechanical oscillators. The sensitivity stems from the high quality factor Q 106 , which has led to applications in sensitive quantum optomechanical experiments. The high sensitivity also opens the door to ultrasensitive force detection applications. We report force detection of electron spin magnetic resonance at 300 K using a Si3N4 membrane with a force sensitivity of 4 fN/√{ Hz}, and a potential low temperature sensitivity of 25 aN/√{ Hz}. Given membranes' sensitivity, robust construction, large surface area and low cost, SiN membranes can potentially serve as the central component of a compact room-temperature ESR and NMR instrument that has superior spatial resolution to conventional NMR.

  5. Sawtooth-Control Mechanism using Toroidally Propagating Ion-Cyclotron-Resonance Waves in Tokamaks

    SciTech Connect

    Graves, J. P.; Coda, S.; Chapman, I.

    2009-02-13

    The sawtooth control mechanism in plasmas employing off-axis toroidally propagating ion cyclotron resonance waves in tokamaks is reinvestigated. The radial drift excursion of energetic passing ions distributed asymmetrically in the velocity parallel to the magnetic field determines stability when the rational q=1 surface resides within a narrow region centered about the shifted fundamental cyclotron resonance.

  6. Higher-order vibrational mode frequency tuning utilizing fishbone-shaped microelectromechanical systems resonator

    NASA Astrophysics Data System (ADS)

    Suzuki, Naoya; Tanigawa, Hiroshi; Suzuki, Kenichiro

    2013-04-01

    Resonators based on microelectromechanical systems (MEMS) have received considerable attention for their applications for wireless equipment. The requirements for this application include small size, high frequency, wide bandwidth and high portability. However, few MEMS resonators with wide-frequency tuning have been reported. A fishbone-shaped resonator has a resonant frequency with a maximum response that can be changed according to the location and number of several exciting electrodes. Therefore, it can be expected to provide wide-frequency tuning. The resonator has three types of electrostatic forces that can be generated to deform a main beam. We evaluate the vibrational modes caused by each exciting electrodes by comparing simulated results with measured ones. We then successfully demonstrate the frequency tuning of the first to fifth resonant modes by using the algorithm we propose here. The resulting frequency tuning covers 178 to 1746 kHz. In addition, we investigate the suppression of the anchor loss to enhance the Q-factor. An experiment shows that tapered-shaped anchors provide a higher Q-factor than rectangular-shaped anchors. The Q-factor of the resonators supported by suspension beams is also discussed. Because the suspension beams cause complicated vibrational modes for higher frequencies, the enhancement of the Q-factor for high vibrational modes cannot be obtained here. At present, the tapered-anchor resonators are thought to be most suitable for frequency tuning applications.

  7. Multiphoton excitation of organic chromophores in microbubble resonators

    NASA Astrophysics Data System (ADS)

    Cohoon, Gregory A.; Kieu, Khanh; Norwood, Robert A.

    2014-03-01

    We report the observation of multiphoton excitation of organic chromophores in microbubble whispering gallery mode resonators. High-Q microbubble resonators are a formed by heating a pressurized fused silica capillary to form a hollow bubble which can be filled with liquid. In this case, the microbubble is filled with a solution of Rhodamine 6G dye. The resonator and dye are excited by evanescently coupling CW light from a 980nm laser diode using a tapered optical fiber. The two-photon fluorescence of the dye can be seen with pump powers as low as 1 mW.

  8. Spin-label oximetry at Q- and W-band

    NASA Astrophysics Data System (ADS)

    Subczynski, W. K.; Mainali, L.; Camenisch, T. G.; Froncisz, W.; Hyde, J. S.

    2011-04-01

    Spin-lattice relaxation times ( T1s) of small water-soluble spin-labels in the aqueous phase as well as lipid-type spin-labels in membranes increase when the microwave frequency increases from 2 to 35 GHz (Hyde, et al., J. Phys. Chem. B 108 (2004) 9524-9529). The T1s measured at W-band (94 GHz) for the water-soluble spin-labels CTPO and TEMPONE (Froncisz, et al., J. Magn. Reson. 193 (2008) 297-304) are, however, shorter than when measured at Q-band (35 GHz). In this paper, the decreasing trends at W-band have been confirmed for commonly used lipid-type spin-labels in model membranes. It is concluded that the longest values of T1 will generally be found at Q-band, noting that long values are advantageous for measurement of bimolecular collisions with oxygen. The contribution of dissolved molecular oxygen to the relaxation rate was found to be independent of microwave frequency up to 94 GHz for lipid-type spin-labels in membranes. This contribution is expressed in terms of the oxygen transport parameter W=T1-1 (Air)-T1-1 (N), which is a function of both concentration and translational diffusion of oxygen in the local environment of a spin-label. The new capabilities in measurement of the oxygen transport parameter using saturation-recovery (SR) EPR at Q- and W-band have been demonstrated in saturated (DMPC) and unsaturated (POPC) lipid bilayer membranes with the use of stearic acid ( n-SASL) and phosphatidylcholine ( n-PC) spin-labels, and compared with results obtained earlier at X-band. SR EPR spin-label oximetry at Q- and W-band has the potential to be a powerful tool for studying samples of small volume, ˜30 nL. These benefits, together with other factors such as a higher resonator efficiency parameter and a new technique for canceling free induction decay signals, are discussed.

  9. Compact Q-balls and Q-shells in a scalar electrodynamics

    SciTech Connect

    Arodz, H.; Lis, J.

    2009-02-15

    We investigate spherically symmetric nontopological solitons in electrodynamics with a scalar field self-interaction U{approx}|{psi}| taken from the complex signum-Gordon model. We find Q-balls for small absolute values of the total electric charge Q, and Q-shells when |Q| is large enough. In both cases the charge density exactly vanishes outside certain compact regions in the three-dimensional space. The dependence of the total energy E of small Q-balls on the total electric charge has the form E{approx}|Q|{sup 5/6}, while in the case of very large Q-shells, E{approx}|Q|{sup 7/6}.

  10. /q-exponential, Weibull, and /q-Weibull distributions: an empirical analysis

    NASA Astrophysics Data System (ADS)

    Picoli, S.; Mendes, R. S.; Malacarne, L. C.

    2003-06-01

    In a comparative study, the q-exponential and Weibull distributions are employed to investigate frequency distributions of basketball baskets, cyclone victims, brand-name drugs by retail sales, and highway length. In order to analyze the intermediate cases, a distribution, the q-Weibull one, which interpolates the q-exponential and Weibull ones, is introduced. It is verified that the basketball baskets distribution is well described by a q-exponential, whereas the cyclone victims and brand-name drugs by retail sales ones are better adjusted by a Weibull distribution. On the other hand, for highway length the q-exponential and Weibull distributions do not give satisfactory adjustment, being necessary to employ the q-Weibull distribution. Furthermore, the introduction of this interpolating distribution gives an illumination from the point of view of the stretched exponential against inverse power law ( q-exponential with q>1) controversy.

  11. P/Q-type calcium channel modulators

    PubMed Central

    Nimmrich, V; Gross, G

    2012-01-01

    P/Q-type calcium channels are high-voltage-gated calcium channels contributing to vesicle release at synaptic terminals. A number of neurological diseases have been attributed to malfunctioning of P/Q channels, including ataxia, migraine and Alzheimer's disease. To date, only two specific P/Q-type blockers are known: both are peptides deriving from the spider venom of Agelenopsis aperta, ω-agatoxins. Other peptidic calcium channel blockers with activity at P/Q channels are available, albeit with less selectivity. A number of low molecular weight compounds modulate P/Q-type currents with different characteristics, and some exhibit a peculiar bidirectional pattern of modulation. Interestingly, there are a number of therapeutics in clinical use, which also show P/Q channel activity. Because selectivity as well as the exact mode of action is different between all P/Q-type channel modulators, the interpretation of clinical and experimental data is complicated and needs a comprehensive understanding of their target profile. The situation is further complicated by the fact that information on potency varies vastly in the literature, which may be the result of different experimental systems, conditions or the splice variants of the P/Q channel. This review attempts to provide a comprehensive overview of the compounds available that affect the P/Q-type channel and should help with the interpretation of results of in vitro experiments and animal models. It also aims to explain some clinical observations by implementing current knowledge about P/Q channel modulation of therapeutically used non-selective drugs. Chances and challenges of the development of P/Q channel-selective molecules are discussed. PMID:22670568

  12. Cavity- and waveguide-resonators in electron paramagnetic resonance, nuclear magnetic resonance, and magnetic resonance imaging.

    PubMed

    Webb, Andrew

    2014-11-01

    Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed. PMID:25456314

  13. Cryogenic resonant acoustic spectroscopy of bulk materials (CRA spectroscopy).

    PubMed

    Zimmer, Anja; Nawrodt, Ronny; Koettig, Torsten; Neubert, Ralf; Thürk, Matthias; Vodel, Wolfgang; Seidel, Paul; Tünnermann, Andreas

    2007-06-01

    The capability to measure Q factors at cryogenic temperatures enhances the ability to study relaxation processes in solids. Here we present a high-precision cryogenic setup with the ability to measure Q factors of at least 10(9). This level of sensitivity offers new potential for analyzing relaxation processes in solids and for correlating mode shape and relaxation strength. Our improved method of mechanical spectroscopy, cryogenic resonant acoustic spectroscopy of bulk materials, is verified by identifying relaxation processes in low-loss quartz crystals. For the first time, we observe additional damping peaks. The mechanical Q factors of different modes of cylindrical crystalline quartz substrates were measured from 300 down to 6 K. Resonant modes with frequencies between 10 and 325 kHz were excited without contact to the substrates and the ring down of the amplitudes was recorded using an interferometric vibration readout. PMID:17614624

  14. Vibration Analysis of Original Shape Quartz Resonator for High Quality Factor Realization

    NASA Astrophysics Data System (ADS)

    Oigawa, Hiroshi; Sakano, Yuuya; Ji, Jing; Yamazaki, Daisuke; Ueda, Toshitsugu

    2012-06-01

    AT-cut quartz resonators are widely used as timing devices in computers, mobile information, and communication tools, etc. Recently, quartz resonators have been applied to highly sensitive devices. To improve frequency stability, AT-cut quartz resonators must have an excellent temperature characteristic and high quality (Q) factor. Energy trapping and spurious mode coupling strongly affect the performance of resonators, and both parameters are determined by the shape of the resonator. As for achieving a higher Q, the most effective technique is to process the quartz cross-sectional shape into a plano-convex or bi-convex shape. However, it is difficult to manufacture a convex shape on the surface of a quartz wafer. For this reason, we propose an equivalent plano-convex shape, which was realized by arranging fine protrusions on the surface of quartz. In addition, the optimization of the original resonator shape has been discussed.

  15. Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators

    PubMed Central

    Ghaffari, Shirin; Chandorkar, Saurabh A.; Wang, Shasha; Ng, Eldwin J.; Ahn, Chae H.; Hong, Vu; Yang, Yushi; Kenny, Thomas W.

    2013-01-01

    Micromechanical resonators are promising replacements for quartz crystals for timing and frequency references owing to potential for compactness, integrability with CMOS fabrication processes, low cost, and low power consumption. To be used in high performance reference application, resonators should obtain a high quality factor. The limit of the quality factor achieved by a resonator is set by the material properties, geometry and operating condition. Some recent resonators properly designed for exploiting bulk-acoustic resonance have been demonstrated to operate close to the quantum mechanical limit for the quality factor and frequency product (Q-f). Here, we describe the physics that gives rise to the quantum limit to the Q-f product, explain design strategies for minimizing other dissipation sources, and present new results from several different resonators that approach the limit. PMID:24247809

  16. Microfabricated optofluidic ring resonator structures

    PubMed Central

    Scholten, Kee; Fan, Xudong; Zellers, Edward. T.

    2011-01-01

    We describe the fabrication and preliminary optical characterization of rugged, Si-micromachined optofluidic ring resonator (μOFRR) structures consisting of thin-walled SiOx cylinders with expanded midsections designed to enhance the three-dimensional confinement of whispering gallery modes (WGMs). These μOFRR structures were grown thermally at wafer scale on the interior of Si molds defined by deep-reactive-ion etching and pre-treated to reduce surface roughness. Devices 85-μm tall with 2-μm thick walls and inner diameters ranging from 50 to 200 μm supported pure-mode WGMs with Q-factors >104 near 985 nm. Advantages for eventual vapor detection in gas chromatographic microsystems are highlighted. PMID:22053110

  17. A study of the high frequency limitations of series resonant converters

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; King, R. J.

    1982-01-01

    A transformer induced oscillation in series resonant (SR) converters is studied. It may occur in the discontinuous current mode. The source of the oscillation is an unexpected resonant circuit formed by normal resonance components in series with the magnetizing inductance of the output transformers. The methods for achieving cyclic stability are: to use a half bridge SR converter where q0.5. Q should be as close to 1.0 as possible. If 0.5q1.0, the instability will be avoided if psi2/3q-1/3. The second objective was to investigate a power field effect transistor (FET) version of the SR converter capable of operating at frequencies above 100 KHz, to study component stress and losses at various frequencies.

  18. Interstitial deletion of 6q21-q23 associated with split hand

    SciTech Connect

    Tsukahara, Masato; Yoneda, Junko; Azuma, Reiko

    1997-03-31

    We report on a 7-month-old boy with interstitial deletion of 6q21-q23 and split-hand defect. He died at 7 months. This is the fifth patient with distal limb anomaly associated with a rearrangement of 6q21 region, and supports previous suggestions that there may be candidate gene(s) for distal limb development in the 6q21 region. 10 refs., 3 figs., 1 tab.

  19. Prader-Willi, Angelman, and 15q11-q13 Duplication Syndromes.

    PubMed

    Kalsner, Louisa; Chamberlain, Stormy J

    2015-06-01

    Three distinct neurodevelopmental disorders arise primarily from deletions or duplications that occur at the 15q11-q13 locus: Prader-Willi syndrome, Angelman syndrome, and 15q11-q13 duplication syndrome. Each of these disorders results from the loss of function or overexpression of at least 1 imprinted gene. This article discusses the clinical background, genetic cause, diagnostic strategy, and management of each of these 3 disorders. PMID:26022164

  20. De novo interstitial tandem duplication of chromosome 4(q21-q28)

    SciTech Connect

    Navarro, E.G.; Ramon, F.J.H.; Jimenez, R.D.

    1996-03-29

    We describe a girl with a previously unreported de novo duplication of chromosome 4q involving segment q21-q28. Clinical manifestations included growth and psychomotor retardation, facial asymmetry, hypotelorism, epicanthic folds, mongoloid slant of palpebral fissures, apparently low-set auricles, high nasal bridge, long philtrum, small mouth, short neck, low-set thumbs, and bilateral club foot. This phenotype is compared with that of previously reported cases of duplication 4q. 12 refs., 3 figs., 1 tab.

  1. 40 CFR Table 1 to Subpart Q of... - General Provisions Applicability to Subpart Q

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reference Applies to Subpart Q Comment 63.1 Yes 63.2 Yes 63.3 No 63.4 Yes 63.5 No 63.6 (a), (b), (c), and (j... § 63.405(a) and § 63.405(b), respectively, of subpart Q; other provisions of subpart A are not relevant... Subpart Q 1 Table 1 to Subpart Q of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION...

  2. Low Q2 Measurement of g2p and the LT Spin Polarizability

    SciTech Connect

    Karl Slifer

    2009-07-01

    JLab has been at the forefront of a program to measure the nucleon spin-dependent structure functions over a wide kinematic range, and data of unprecedented quality has been extracted in all three experimental halls. Moments of these quantities have proven to be powerful tools to test QCD sum rules and provide benchmark tests of Lattice QCD and Chiral Perturbation Theory. Precision measurements of $g_{1,2}^n$ and $g_1^p$ have been performed as part of the highly successful `extended GDH program', but data on the $g_2^p$ structure function remain scarce. We discuss here JLab experiment E08-027, which will measure quantity $g_2^p$ in the resonance region at low $Q^2$. These data will be used to test the Burkhardt-Cottingham sum rule and to extract the higher moments $\\delta_{LT}^p(Q^2)$ and $\\overline{d}_2^p(Q^2)$. Data in the $Q^2$ range $0.02<Q^2<0.4$ GeV$^2$ will provide unambiguous benchmark tests of $\\chi$PT calculations on the lower end, while probing the transition region at the high $Q^2$ end where parton-like behaviour begins to emerge. This data will also have a significant impact on our theoretical understanding of the hyperfine structure of the proton, and reduce the systematic uncertainty of previous experiments which extracted the $g_1^p$ structure from purely longitudinal measurements.

  3. Evaluating the Potential of Q-Band ESR Spectroscopy for Dose Reconstruction of Fossil Tooth Enamel.

    PubMed

    Guilarte, Verónica; Trompier, François; Duval, Mathieu

    2016-01-01

    The potential of Q-band Electron Spin Resonance (ESR) for quantitative measurements has been scarcely evaluated in the literature and its application for dose reconstruction of fossil tooth enamel with dating purposes remains still quite unknown. Hence, we have performed a comparative study based on several Early to Middle Pleistocene fossil tooth samples using both X- and Q-band spectroscopies. Our results show that Q-band offers a significant improvement in terms of sensitivity and signal resolution: it allows not only to work with reduced amounts of valuable samples (< 4 mg), but also to identify different components of the main composite ESR signal. However, inherent precision of the ESR intensity measurements at Q-band is clearly lower than that achieved at X-band, highlighting the necessity to carry out repeated measurements. All dose values derived from X- and Q-band are nevertheless systematically consistent at either 1 or 2 sigma. In summary, our results indicate that Q-band could now be considered as a reliable tool for ESR dosimetry/dating of fossil teeth although further work is required to improve the repeatability of the measurements. PMID:26930398

  4. Evaluating the Potential of Q-Band ESR Spectroscopy for Dose Reconstruction of Fossil Tooth Enamel

    PubMed Central

    Guilarte, Verónica; Trompier, François; Duval, Mathieu

    2016-01-01

    The potential of Q-band Electron Spin Resonance (ESR) for quantitative measurements has been scarcely evaluated in the literature and its application for dose reconstruction of fossil tooth enamel with dating purposes remains still quite unknown. Hence, we have performed a comparative study based on several Early to Middle Pleistocene fossil tooth samples using both X- and Q-band spectroscopies. Our results show that Q-band offers a significant improvement in terms of sensitivity and signal resolution: it allows not only to work with reduced amounts of valuable samples (< 4 mg), but also to identify different components of the main composite ESR signal. However, inherent precision of the ESR intensity measurements at Q-band is clearly lower than that achieved at X-band, highlighting the necessity to carry out repeated measurements. All dose values derived from X- and Q-band are nevertheless systematically consistent at either 1 or 2 sigma. In summary, our results indicate that Q-band could now be considered as a reliable tool for ESR dosimetry/dating of fossil teeth although further work is required to improve the repeatability of the measurements. PMID:26930398

  5. Magnetic resonance of slotted circular cylinder resonators

    NASA Astrophysics Data System (ADS)

    Du, Junjie; Liu, Shiyang; Lin, Zhifang; Chui, S. T.

    2008-07-01

    By a rigorous full-wave approach, a systemic study is made on the magnetic resonance of slotted circular cylinder resonators (SCCRs) made of a perfect conductor for the lossless case. This is a two-dimensional analog of the split-ring resonator and may serve as an alternative type of essential constituent of electromagnetic metamaterials. It is found that the resonance frequency can be modulated by changing the geometrical parameters and the dielectrics filling in the cavity and the slot. An approximate empirical expression is presented for magnetic resonance frequency of SCCRs from the viewpoint of an L-C circuit system. Finally, it is demonstrated that the SCCR structure can be miniaturized to less than 1/150 resonant wavelength in size with the dielectrics available currently.

  6. Dynamics of morphology-dependent resonances by openness in dielectric disks for TE polarization

    SciTech Connect

    Cho, Jinhang; Rim, Sunghwan; Kim, Chil-Min

    2011-04-15

    We have studied the parametric evolution of morphology-dependent resonances according to the change of openness in a two-dimensional dielectric microdisk for transverse-electric polarization. We found that the dynamics exhibit avoided resonance crossings between the inner and outer resonances even though the corresponding billiard is integrable. Due to these recondite avoidances, inner and outer resonances can be exchanged and the quality (Q) factor of inner resonances is strongly affected. We analyze the diverse phenomena arising from these dynamics including the avoided crossings.

  7. What's Your Stroke I.Q.?

    MedlinePlus

    What's Your Stroke I.Q.? Often, it is believed that stroke is a disease of old age. You may be surprised to learn that stroke ... to help prevent it. Test your stroke I.Q. by answering these six questions. By knowing the ...

  8. Understanding Insight in the Context of Q

    ERIC Educational Resources Information Center

    Coghlan, David

    2012-01-01

    In Revans' learning formula, L = P + Q, Q represents "questioning insight", by which Revans means that insight comes out of the process of questioning programmed knowledge (P) in the light of experience. We typically focus on the content of an insight rather than on the act of insight. Drawing primarily on the work of Bernard Lonergan this paper…

  9. Q Fever Chronic Osteomyelitis in Two Children.

    PubMed

    Costa, Beatriz; Morais, Andreia; Santos, Ana Sofia; Tavares, Delfin; Seves, Graça; Gouveia, Catarina

    2015-11-01

    We report 2 cases of chronic Q fever osteomyelitis in 10- and 5-year-old girls who presented with distal right femoral and left parasternal granulomatous osteomyelitis, respectively. Both were treated with ciprofloxacin and rifampin with good response. Q fever osteomyelitis is a challenging diagnosis in children, and the choice of antimicrobial treatment is difficult because of limited available data. PMID:26226441

  10. Information entrophy via Glauber's Q-representation

    NASA Technical Reports Server (NTRS)

    Keitel, C. H.; Wodkiewicz, K.

    1993-01-01

    We present a convenient way to evaluate the information entropy of a quantum mechanical state via the Glauber Q-representation. As an example we discuss the information entropy of a thermally relaxing squeezed state in terms of its Q-representation and show the validity of the corresponding entropic uncertainty- and Araki-Lieb inequalities.

  11. Coenzyme Q10 Deficiencies in Neuromuscular Diseases

    PubMed Central

    Salviati, Leonardo; Jackson, Sandra; Hirano, Michio; Navas, Plácido

    2011-01-01

    Coenzyme Q (CoQ) is an essential component of the respiratory chain but also participates in other mitochondrial functions such as regulation of the transition pore and uncoupling proteins. Furthermore, this compound is a specific substrate for enzymes of the fatty acids β–oxidation pathway and pyrimidine nucleotide biosynthesis. Furthermore, CoQ is an antioxidant that acts in all cellular membranes and lipoproteins. A complex of at least ten nuclear (COQ) genes encoded proteins synthesizes CoQ but its regulation is unknown. Since 1989, a growing number of patients with multisystemic mitochondrial disorders and neuromuscular disorders showing deficiencies of CoQ have been identified. CoQ deficiency caused by muta-tion(s) in any of the COQ genes is designated primary deficiency. Other patients have displayed other genetic defects independent on the CoQ biosynthesis pathway, and are considered to have secondary deficiencies. This review updates the clinical and molecular aspects of both types of CoQ deficiencies and proposes new approaches to understanding their molecular bases. PMID:20225022

  12. Azimuthally polarized, passively Q-switched Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Zou, Lin; Yao, Yao; Han, Xiahui; Liu, Jinyu; Xu, Yun; Li, Jianlang

    2015-11-01

    An azimuthally polarized and passively Q-switched ytterbium-doped fiber laser was demonstrated. With the involvement of a single lens inside the laser resonator, a birefringent crystal was used as the polarization discriminator, and a Cr4+:YAG crystal acted as the saturable absorber and also the output coupler. For the simplicity and low optical loss of the resonator cavity, this fiber laser emitted azimuthally polarized pulse with a high slope efficiency of 72.6% and high average power of 4.11 W. The laser pulse had 132-ns duration and 112-kHz repetition rate at the absorbed pump power of 6.40 W.

  13. Biosensing using microring resonator interferograms.

    PubMed

    Hsu, Shih-Hsiang; Yang, Yung-Chia; Su, Yu-Hou; Wang, Sheng-Min; Huang, Shih-An; Lin, Ching-Yu

    2013-01-01

    Optical low-coherence interferometry (OLCI) takes advantage of the variation in refractive index in silicon-wire microring resonator (MRR) effective lengths to perform glucose biosensing using MRR interferograms. The MRR quality factor (Q), proportional to the effective length, could be improved using the silicon-wire propagation loss and coupling ratio from the MRR coupler. Our study showed that multimode interference (MMI) performed well in broad band response, but the splitting ratio drifted to 75/25 due to the stress issue. The glucose sensing sensitivity demonstrated 0.00279 meter per refractive-index-unit (RIU) with a Q factor of ~30,000 under transverse electric polarization. The 1,310 nm DFB laser was built in the OLCI system as the optical ruler achieving 655 nm characterization accuracy. The lowest sensing limitation was therefore 2 × 10-4 RIU. Moreover, the MRR effective length from the glucose sensitivity could be utilized to experimentally demonstrate the silicon wire effective refractive index with a width of 0.45 mm and height of 0.26 mm. PMID:24434876

  14. Another patient with 12q13 microduplication.

    PubMed

    Bertoli, M; Alesi, V; Gullotta, F; Zampatti, S; Abate, M R; Palmieri, C; Novelli, A; Frontali, M; Nardone, A M

    2013-08-01

    Interstitial duplication of the long arm of chromosome 12 is a rare cytogenetic condition. While several reports describe distal 12q duplication, only one case report of homogeneous, non-mosaic interstitial 12q13 duplication has been documented to date. The authors of that observation proposed that the associated phenotype represented a phenocopy of Wolf-Hirschhorn syndrome [Dallapiccola et al., 2009]. Only a few other recorded patients with deletion 12q13 → 12q21 involved mosaicism. We describe a new patient with homogeneous 12q13 duplication in a 6-year-old girl who, in early infancy, presented with dysmorphic features suggesting Wolf-Hirschhorn syndrome. What is potentially significant about this patient is that her facial phenotype evolved with age, suggesting a different gestalt in older patients. PMID:23824684

  15. Q Model for the Pacific Northwest

    SciTech Connect

    Hearn, Thomas; Phillips, William S.

    2012-07-24

    USArray seismic data can be used to generate high resolution attenuation (1/Q) models using regional wave amplitudes. Our Q models have been produced for purposes of explosion monitoring (discrimination and yield estimation), for which we focus on small signals at local to regional distances (to 2000 km). We present Q models for regional Lg, which is sensitive to crustal properties averaged over depth. The frequency range of the study is 0.5-16 Hz. Details of Q models may have limited effect over the short distances of interest to hazard work; however, maps may be useful for regionalizing high versus low Q areas. This study has been submitted to a PAGEOPH special issue on monitoring seismology.

  16. F-term inflation Q-balls

    SciTech Connect

    McDonald, John

    2006-02-15

    A general analysis of Q-ball solutions of the supersymmetric F-term hybrid inflation field equations is given. The solutions consist of a complex inflaton field and a real symmetry-breaking field, with a conserved global charge associated with the inflaton. It is shown that the Q-ball solutions for any value of the superpotential coupling, {kappa}, may be obtained from those with {kappa}=1 by rescaling the space coordinates. The complete range of Q-ball solutions for the case {kappa}=1 is given, from which all possible F-term inflation Q-balls can be obtained. The possible role of F-term inflation Q-balls in cosmology is discussed.

  17. Seismic Q of the lunar upper mantle

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Koyama, J.

    1982-06-01

    Shallow moonquake data are used to determine the frequency dependence of Q values for both compressional and shear waves in the upper mantle of the moon at frequencies between 3 and 8 Hz. The seismic P wave Q is estimated to be at least 4000 and is nearly independent of frequency or decreases slightly with increasing frequency, while the S wave Q increases from at least 4000 at 3 Hz to at least 7000 at 8 Hz. The rate of increase of Q(S) is approximately proportional to the 0.7 + or - 0.1 power of the frequency above 5 Hz. With the absence of other dissipation mechanisms, compressional heat loss may be a dominant factor in the lunar interior. Uncertainty remains, however, in the absolute values of Q's owing to the largely unknown detailed structure of the lunar upper mantle.

  18. Chronic Q Fever in the United States

    PubMed Central

    Karakousis, Petros C.; Trucksis, Michele; Dumler, J. Stephen

    2006-01-01

    Infections due to Coxiella burnetii, the causative agent of Q fever, are uncommon in the United States. Cases of chronic Q fever are extremely rare and most often manifest as culture-negative endocarditis in patients with underlying valvular heart disease. We describe a 31-year-old farmer from West Virginia with a history of congenital heart disease and recurrent fevers for 14 months who was diagnosed with Q fever endocarditis based on an extremely high antibody titer against Coxiella burnetii phase I antigen. Despite treatment with doxycycline, he continued to have markedly elevated Coxiella burnetii phase I antibody titers for 10 years after the initial diagnosis. To our knowledge, this case represents the longest follow-up period for a patient with chronic Q fever in the United States. We review all cases of chronic Q fever reported in the United States and discuss important issues pertaining to epidemiology, diagnosis, and management of this disease. PMID:16757641

  19. Seismic Q of the lunar upper mantle

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Koyama, J.

    1982-01-01

    Shallow moonquake data are used to determine the frequency dependence of Q values for both compressional and shear waves in the upper mantle of the moon at frequencies between 3 and 8 Hz. The seismic P wave Q is estimated to be at least 4000 and is nearly independent of frequency or decreases slightly with increasing frequency, while the S wave Q increases from at least 4000 at 3 Hz to at least 7000 at 8 Hz. The rate of increase of Q(S) is approximately proportional to the 0.7 + or - 0.1 power of the frequency above 5 Hz. With the absence of other dissipation mechanisms, compressional heat loss may be a dominant factor in the lunar interior. Uncertainty remains, however, in the absolute values of Q's owing to the largely unknown detailed structure of the lunar upper mantle.

  20. Analysis of vibrational resonance in a quintic oscillator

    NASA Astrophysics Data System (ADS)

    Jeyakumari, S.; Chinnathambi, V.; Rajasekar, S.; Sanjuan, M. A. F.

    2009-12-01

    We consider a damped quintic oscillator with double-well and triple-well potentials driven by both low-frequency force f cos ωt and high-frequency force g cos Ωt with Ω ≫ω and analyze the occurrence of vibrational resonance. The response consists of a slow motion with frequency ω and a fast motion with frequency Ω. We obtain an approximate analytical expression for the response amplitude Q at the low-frequency ω. From the analytical expression of Q, we determine the values of ω and g (denoted as ωVR and gVR) at which vibrational resonance occurs. The theoretical predictions are found to be in good agreement with numerical results. We show that for fixed values of the parameters of the system, as ω varies, resonance occurs at most one value of ω. When the amplitude g is varied we found two and four resonances in the system with double-well and triple-well cases, respectively. We present examples of resonance (i) without cross-well motion and (ii) with cross-well orbit far before and far after it. ωVR depends on the damping strength d while gVR is independent of d. Moreover, the effect of d is found to decrease the response amplitude Q.

  1. Resonant Acoustic Determination of Complex Elastic Moduli

    NASA Technical Reports Server (NTRS)

    Brown, David A.; Garrett, Steven L.

    1991-01-01

    A simple, inexpensive, yet accurate method for measuring the dynamic complex modulus of elasticity is described. Using a 'free-free' bar selectively excited in three independent vibrational modes, the shear modulus is obtained by measuring the frequency of the torsional resonant mode and the Young's modulus is determined from measurement of either the longitudinal or flexural mode. The damping properties are obtained by measuring the quality factor (Q) for each mode. The Q is inversely proportional to the loss tangent. The viscoelastic behavior of the sample can be obtained by tracking a particular resonant mode (and thus a particular modulus) using a phase locked loop (PLL) and by changing the temperature of the sample. The change in the damping properties is obtained by measuring the in-phase amplitude of the PLL which is proportional to the Q of the material. The real and imaginary parts or the complex modulus can be obtained continuously as a function of parameters such as temperature, pressure, or humidity. For homogeneous and isotropic samples only two independent moduli are needed in order to characterize the complete set of elastic constants, thus, values can be obtained for the dynamic Poisson's ratio, bulk modulus, Lame constants, etc.

  2. Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement

    SciTech Connect

    Shuai, Yichen; Zhao, Deyin; Singh Chadha, Arvinder; Zhou, Weidong; Seo, Jung-Hun; Ma, Zhenqiang; Yang, Hongjun; Fan, Shanhui

    2013-12-09

    We present here ultra-compact high-Q Fano resonance filters with displaced lattices between two coupled photonic crystal slabs, fabricated with crystalline silicon nanomembrane transfer printing and aligned e-beam lithography techniques. Theoretically, with the control of lattice displacement between two coupled photonic crystal slabs layers, optical filter Q factors can approach 211 000 000 for the design considered here. Experimentally, Q factors up to 80 000 have been demonstrated for a filter design with target Q factor of 130 000.

  3. Olanzapine induced Q-Tc shortening

    PubMed Central

    Fallah Jahromi, Parisa

    2014-01-01

    Introduction Prolongation of Q-Tc interval is commonly accepted as a surrogate marker for the ability of a drug to cause torsade de pointes. In the present study, safety of olanzapine versus risperidone was compared among a group of patients with schizophrenia to see the frequency of the electrocardiographic alterations induced by those atypical antipsychotics. Method Two hundred and sixty-eight female inpatients with schizophrenia entered in one of the two parallel groups to participate in an open study for random assignment to olanzapine (n = 148) or risperidone (n = 120). Standard 12-lead surface electrocardiogram (ECG) was taken from each patient at baseline, before initiation of treatment, and then at the end of management, just before discharge. The parameters that were assessed included heart rate (HR), P-R interval, QRS interval, Q-T interval (corrected = Q-Tc), ventricular activation time (VAT), ST segment, T wave, axis of QRS, and finally, interventricular conduction process. Results A total of 37.83% of cases in the olanzapine group and 30% in the risperidone group showed some Q-Tc changes; 13.51% and 24.32% of the patients in the olanzapine group showed prolongation and shortening of the Q-Tc, respectively, while changes in the risperidone group were restricted to only prolongation of Q-Tc. Comparison of means showed a significant increment in Q-Tc by risperidone (p = 0.02). Also, comparison of proportions in the olanzapine group showed significantly more cases with shortening of Q-Tc versus its prolongation (p = 0.01). No significant alterations with respect to other variables were evident. Conclusion Olanzapine and risperidone had comparable potentiality for induction of Q-Tc changes, while production of further miscellaneous alterations in ECG was more observable in the olanzapine group compared with the risperidone group. Also shortening of Q-Tc was specific to olanzapine. PMID:25489475

  4. Coenzyme Q biosynthesis in health and disease.

    PubMed

    Acosta, Manuel Jesús; Vazquez Fonseca, Luis; Desbats, Maria Andrea; Cerqua, Cristina; Zordan, Roberta; Trevisson, Eva; Salviati, Leonardo

    2016-08-01

    Coenzyme Q (CoQ, or ubiquinone) is a remarkable lipid that plays an essential role in mitochondria as an electron shuttle between complexes I and II of the respiratory chain, and complex III. It is also a cofactor of other dehydrogenases, a modulator of the permeability transition pore and an essential antioxidant. CoQ is synthesized in mitochondria by a set of at least 12 proteins that form a multiprotein complex. The exact composition of this complex is still unclear. Most of the genes involved in CoQ biosynthesis (COQ genes) have been studied in yeast and have mammalian orthologues. Some of them encode enzymes involved in the modification of the quinone ring of CoQ, but for others the precise function is unknown. Two genes appear to have a regulatory role: COQ8 (and its human counterparts ADCK3 and ADCK4) encodes a putative kinase, while PTC7 encodes a phosphatase required for the activation of Coq7. Mutations in human COQ genes cause primary CoQ(10) deficiency, a clinically heterogeneous mitochondrial disorder with onset from birth to the seventh decade, and with clinical manifestation ranging from fatal multisystem disorders, to isolated encephalopathy or nephropathy. The pathogenesis of CoQ(10) deficiency involves deficient ATP production and excessive ROS formation, but possibly other aspects of CoQ(10) function are implicated. CoQ(10) deficiency is unique among mitochondrial disorders since an effective treatment is available. Many patients respond to oral CoQ(10) supplementation. Nevertheless, treatment is still problematic because of the low bioavailability of the compound, and novel pharmacological approaches are currently being investigated. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:27060254

  5. Use of a helical resonator as a capacitive transducer in vibrating reed measurements

    NASA Astrophysics Data System (ADS)

    Xiang, X.-D.; Brill, J. W.; Fuqua, W. L.

    1989-09-01

    A new design of vibrating reed apparatus for studying high-resonant overtones of very small samples is described. Using the high Q (about 1000) helical RF resonator as a capacitive transducer, great sensitivity has been obtained. The theoretical sensitivity of the detector is investigated with transmission-line theory, and the result shows that the Johnson-noise-limited sensitivity is proportional to the Q of the resonator instead of Q exp 1/2, as is the case of lumped LC-tuned circuit analyses. For a nonsuperconducting resonator, the Johnson-noise-limited minimum detectable displacement at room temperature, with bandwidth B, is about 10 to the -7th A sq rt B/Hz, if the RF electrical field level is only limited by vacuum breakdown. An application of the apparatus in studying the temperature-dependent changes in the Young's modulus of single crystals of TaS3 is shown.

  6. Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature.

    PubMed

    Norte, R A; Moura, J P; Gröblacher, S

    2016-04-01

    All quantum optomechanics experiments to date operate at cryogenic temperatures, imposing severe technical challenges and fundamental constraints. Here, we present a novel design of on-chip mechanical resonators which exhibit fundamental modes with frequencies f and mechanical quality factors Q_{m} sufficient to enter the optomechanical quantum regime at room temperature. We overcome previous limitations by designing ultrathin, high-stress silicon nitride (Si_{3}N_{4}) membranes, with tensile stress in the resonators' clamps close to the ultimate yield strength of the material. By patterning a photonic crystal on the SiN membranes, we observe reflectivities greater than 99%. These on-chip resonators have remarkably low mechanical dissipation, with Q_{m}∼10^{8}, while at the same time exhibiting large reflectivities. This makes them a unique platform for experiments towards the observation of massive quantum behavior at room temperature. PMID:27104723

  7. q-Painlevé VI Equation Arising from q-UC Hierarchy

    NASA Astrophysics Data System (ADS)

    Tsuda, Teruhisa; Masuda, Tetsu

    2006-03-01

    We study the q-difference analogue of the sixth Painlevé equation ( q- P VI) by means of tau functions associated with the affine Weyl group of type D 5. We prove that a solution of q- P VI coincides with a self-similar solution of the q-UC hierarchy. As a consequence, we obtain in particular algebraic solutions of q- P VI in terms of the universal character which is a generalization of the Schur polynomial attached to a pair of partitions.

  8. De novo interstitial deletion q16.2q21 on chromosome 6

    SciTech Connect

    Villa, A.; Urioste, M.; Luisa, M.

    1995-01-30

    A de novo interstitial deletion of 6q16.2q21 was observed in a 23-month-old boy with mental and psychomotor delay, obese appearance, minor craniofacial anomalies, and brain anomalies. We compare clinical manifestations of this patient with those observed in previously reported cases with similar 6q interstitial deletions. It is interesting to note the clinical similarities between some patients with interstitial deletions of 6q16 or q21 bands and patients with Prader-Willi syndrome (PWS) and it may help to keep in mind cytogenetic studies of patients with some PWS findings. 24 refs., 3 figs., 2 tabs.

  9. Q-branch Raman scattering and modern kinetic thoery

    SciTech Connect

    Monchick, L.

    1993-12-01

    The program is an extension of previous APL work whose general aim was to calculate line shapes of nearly resonant isolated line transitions with solutions of a popular quantum kinetic equation-the Waldmann-Snider equation-using well known advanced solution techniques developed for the classical Boltzmann equation. The advanced techniques explored have been a BGK type approximation, which is termed the Generalized Hess Method (GHM), and conversion of the collision operator to a block diagonal matrix of symmetric collision kernels which then can be approximated by discrete ordinate methods. The latter method, which is termed the Collision Kernel method (CC), is capable of the highest accuracy and has been used quite successfully for Q-branch Raman scattering. The GHM method, not quite as accurate, is applicable over a wider range of pressures and has proven quite useful.

  10. Ultrahigh Q Bulk Acoustic Wave Cavities at the Quantum Limit

    NASA Astrophysics Data System (ADS)

    Tobar, Michael; Goryachev, Maxim; Ivanov, Eugene; van Kann, Frank; Galliou, Serge

    2015-03-01

    A Fabry-Perot cavity is an optical resonator, which can store photons for milliseconds and enhance interaction between light and matter. The acoustics analogue (phonon trapping), is the Bulk Acoustic Wave device (in thin film or crystal lattice). Measurements provide the ultimate material loss regimes, minimizing clamping losses and achieving record high Q.f products, allowing observation of various loss mechanisms such as Landau-Rumer, phonon-phonon dissipation and Rayleigh phonon scattering, as well as previously non-observed non-linear effects. This presentation will summarize our recent work towards cooling such modes to the ground state and operating the device at the Quantum Limit. This includes the first measurements of the Nyquist noise near at 4K, as well as details on using such devices to test fundamental physics. Funded by ARC Grant No. CE110001013.

  11. Validation of a Generic qHNMR Method for Natural Products Analysis†

    PubMed Central

    Gödecke, Tanja; Napolitano, José G.; Rodríguez-Brasco, María F.; Chen, Shao-Nong; Jaki, Birgit U.; Lankin, David C.; Pauli, Guido F.

    2014-01-01

    Introduction Nuclear magnetic resonance (NMR) spectroscopy is increasingly employed in the quantitative analysis and quality control (QC) of natural products (NPs) including botanical dietary supplements (BDSs). The establishment of qHNMR based QC protocols requires method validation. Objective Develop and validate a generic qHNMR method. Optimize acquisition and processing parameters, with specific attention to the requirements for the analysis of complex NP samples, including botanicals and purity assessment of NP isolates. Methodology In order to establish the validated qHNMR method, samples containing two highly pure reference materials were used. The influence of acquisition and processing parameters on the method validation were examined, and general aspects of method validation of qHNMR methods discussed. Subsequently, the established method was applied to the analysis of two natural products samples: a purified reference compound and a crude mixture. Results The accuracy and precision of qHNMR using internal or external calibration were compared, using a validated method suitable for complex samples. The impact of post-acquisition processing on method validation was examined using three software packages: TopSpin, MNova, and NUTS. The dynamic range of the developed qHNMR method was 5,000:1 with a limit of detection (LOD) of better than 10 μM. The limit of quantification (LOQ) depends on the desired level of accuracy and experiment time spent. Conclusions This study revealed that acquisition parameters, processing parameters, and processing software all contribute to qHNMR method validation. A validated method with high dynamic range and general workflow for qHNMR analysis of NPs is proposed. PMID:23740625

  12. Optical performance of Ho:YLF Q-switched Tm:YAG laser system

    NASA Astrophysics Data System (ADS)

    Chang, Yi-An; Kuo, Yen-Kuang

    2002-09-01

    The absorption cross-section of the Ho:YLF crystal is close to the emission cross-section of the Tm:YAG laser. According to the passive Q-switching theory, a giant laser pulse cannot be generated from the Ho:YLF Q-switched Tm:YAG laser system unless an internal focusing lens is utilized. In a previous work we experimentally demonstrated that passive Q-switching of the 2017-nm, flashlamp pumped Tm,Cr:YAG laser with a Ho:YLF saturable absorber could be obtained with an internal focusing lens. In this paper, we theoretically investigate the optical performance of the Ho:YLF Q-switched Tm:YAG laser system by solving the coupled rate equations. The simulation results indicate that the results obtained numerically are in good agreement with that obtained experimentally. Moreover, we study the passive Q-switching performance of the Ho:YLF Q-switched Tm:YAG laser system as functions of the reflectivity of the output coupler, the initial population of the saturable absorber ground state, the laser pumping rate, and the loss inside the laser resonator. On the other hand, assuming that a polarizer is utilized inside the laser cavity, we explore the passive Q-switching performance of the Ho:YLF Q-switched Tm:YAG laser system when the polarization of the laser light is along different direction between the two saturable absorber principal axes. Effect of the relative position between the saturable absorber and the output coupler is also investigated.

  13. Gold nanoparticles as a saturable absorber for visible 635 nm Q-switched pulse generation.

    PubMed

    Wu, Duanduan; Peng, Jian; Cai, Zhiping; Weng, Jian; Luo, Zhengqian; Chen, Nan; Xu, Huiying

    2015-09-01

    Gold nanoparticle (GNP) possesses saturable absorption bands in the visible region induced by surface plasmon resonance (SPR). We firstly applied the GNP as a visible saturable absorber (SA) for the red Q-switched pulse generation. The GNPs were embedded in polyvinyl alcohol (PVA) for film-forming and inserted into a praseodymium (Pr(3+))-doped fiber laser cavity to achieve 635 nm passive Q-switching. The visible 635 nm Q-switched fiber laser has a wide range of pulse-repetition-rate from 285.7 to 546.4 kHz, and a narrow pulse width of 235 ns as well as the maximum output power of 11.1 mW. The results indicate that the GNPs-based SA is available for pulsed operation in the visible spectral range. PMID:26368498

  14. Low-threshold and multi-wavelength Q-switched random erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Simin; Lin, Wei; Chen, Weicheng; Li, Can; Yang, Changsheng; Qiao, Tian; Yang, Zhongmin

    2016-03-01

    We demonstrate a low-threshold and multi-wavelength Q-switched random fiber laser with erbium-doped fiber as the gain medium and Rayleigh scattering as the randomly distributed feedback. Q-switched pulses are generated with threshold as low as 27 mW by combining random cavity resonances and the Q-value modulation effect induced by stimulated Brillouin scattering. The repetition rate is typically on the kilohertz scale with rms timing jitter of <5.5% and rms amplitude fluctuation of <30%. Raman Stokes emissions up to the third order are observed with an overall energy of nearly 42% of the pulse output, which may open an avenue for applications requiring multiple wavelengths.

  15. Microresonators with Q-factors over a million from highly stressed epitaxial silicon carbide on silicon

    NASA Astrophysics Data System (ADS)

    Kermany, Atieh R.; Brawley, George; Mishra, Neeraj; Sheridan, Eoin; Bowen, Warwick P.; Iacopi, Francesca

    2014-02-01

    We utilize the excellent mechanical properties of epitaxial silicon carbide (SiC) on silicon plus the capability of tuning its residual stress within a large tensile range to fabricate microstrings with fundamental resonant frequencies (f0) of several hundred kHz and mechanical quality factors (Q) of over a million. The fabrication of the perfect-clamped string structures proceeds through simple silicon surface micromachining processes. The resulting f × Q product in vacuum is equal or higher as compared to state-of-the-art amorphous silicon nitride microresonators. We demonstrate that as the residual epitaxial SiC stress is doubled, the f × Q product for the fundamental mode of the strings shows a four-fold increase.

  16. Er/Yb glass laser with compact mechanical Q-switch

    NASA Astrophysics Data System (ADS)

    Cole, Brian; Hough, Nathaniel; Hays, Alan; Nettleton, John; Goldberg, Lew

    2016-03-01

    We describe a compact, side-pumped, Er/Yb glass laser with a low cost mechanical Q-switch. The Q-switch uses a mirror or reflecting prism mounted on a cantilever resonant spring that is driven by a small electromagnetic coil. The demonstrated laser used a 5 mm long Er/Yb glass gain element, and was side-pumped by a 940 nm, 5 mm wide diode bar generating up to 100 W peak power. Target energies of 3mJ have been realized in a near-diffraction limited mode, with pulse widths of 15-25ns, and an optical-to-optical efficiency of greater than 2%. The mechanical Q-switch assembly was fully athermalized via mounting a displacing porro reflector to the cantilever spring, where a 2.5mJ laser was observed to operate with less than 5% variance over -35°C to+60°C.

  17. The Q^2 Evolution of the GDH sum Rule (on 3He and the Neutron)

    SciTech Connect

    Gordon Cates

    2002-06-01

    We discuss the extention of the Gerasimov-Drell-Hearn (GDH) sum rule, which pertains to real photons, to include scattering due to virtual photons. We present data from Jefferson Laboratory experiment E94-010 which measured the inclusive scattering of polarized electrons from a polarized 3He target over the quasielastic and resonance regions. From these data we exctract the transverse-transverse interference cross section {sigma}{prime}_TT', and compute the Q^2 depenent extended GDH integral.

  18. Generation of single longitudinal mode in a pulsed passively Q -switched Nd:YAG laser

    SciTech Connect

    Hariri, A.; Soltanmoradi, F.; Nayeri, M. )

    1990-08-01

    It is shown that a single longitudinal mode in a passively {ital Q}-switch Nd:YAG laser can be obtained by adjusting an intracavity saturable absorber gelatin film (BDN) to work as a mirror in a three-mirror Fabry--Perot resonator. With a 0.13-mm-thick gelatin film of 40% unsaturated transmission, a temporally smooth single-laser pulse of {similar to}10 ns duration has been obtained.

  19. Q-Band (37-41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, Rainee N.; Wintucky, Edwin G.

    2012-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37-41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cut-paraboloidal reflector.

  20. Q-Band (37 to 41 GHz) Satellite Beacon Architecture for RF Propagation Experiments

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    In this paper, the design of a beacon transmitter that will be flown as a hosted payload on a geostationary satellite to enable propagation experiments at Q-band (37 to 41 GHz) frequencies is presented. The beacon uses a phased locked loop stabilized dielectric resonator oscillator and a solid-state power amplifier to achieve the desired output power. The satellite beacon antenna is configured as an offset-fed cutparaboloidal reflector.

  1. Human and pneumococcal cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins are both ligands of human C1q protein.

    PubMed

    Terrasse, Rémi; Tacnet-Delorme, Pascale; Moriscot, Christine; Pérard, Julien; Schoehn, Guy; Vernet, Thierry; Thielens, Nicole M; Di Guilmi, Anne Marie; Frachet, Philippe

    2012-12-14

    C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (K(D) = 0.34-2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response. PMID:23086952

  2. Integral resonator gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)

    2008-01-01

    The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.

  3. /ital Q/-modulation and four-wave mixing effects caused by RSA materials in a laser cavity

    SciTech Connect

    Zhang Tao; Yao Jianquan

    1989-04-01

    By making use of the density-matrix method, we give a unified explanation of /ital Q/-modulation and four-wave mixing effects caused by resonant saturable absorption (RSA) materials in a laser cavity. The underlying physical mechanism of the effects is expressed clearly. The theoretical calculation results agree very well with the experimental data.

  4. High-sensitivity and high-Q-factor glass photonic crystal cavity and its applications as sensors.

    PubMed

    Siraji, Ashfaqul Anwar; Zhao, Yang

    2015-04-01

    We investigate the properties of a planar photonic crystal cavity on glass and its applications as sensors. An airbridged twofold defect cavity on Schott glass background and Gorilla glass substrate has been designed for high Q-factor up to 4459. The average sensitivity of the cavity resonance to background refractive index is 388 nm/Refractive Index Unit. The resonant wavelength is sensitive to background temperature by 18.5 pm/°C. The designed sensors show much higher sensitivity than those based on waveguide interferometers or photonic bandgap structures without cavity resonance. The results are also useful for experimental studies of glass photonic devices. PMID:25831371

  5. A novel resonant pressure sensor with boron diffused silicon resonator

    NASA Astrophysics Data System (ADS)

    Wang, Junbo; Shi, Xiaojing; Liu, Lei; Wu, Zhengwei; Chen, Deyong; Zhao, Jinmin; Li, Shourong

    2008-12-01

    To improve the performance of the micro-machined resonant pressure sensor and simplify its fabrication process, a novel structure is proposed in which the boron diffused silicon (up to 15um thickness) and the bulk silicon are used as the resonant beam and pressure membrane respectively. The structural parameters were optimized through FEM to achieve the better sensitivity, and the relationships between the structural parameters and the sensitivity were established. Moreover, the fabrication processes were discussed to increase the product rate and the pressure sensor with the optimal structural parameters was fabricated by the bulk silicon MEMS processes. In order to enhance the signal of the sensor and make the closed-looped control of the sensor easily, electromagnetic excitation and detection was applied. However there is so high noise coming from the distributing capacitances between the diffused silicon layer and electrodes that reduce the signal to noise ratio of the sensor. Through the analysis of the micro-structure of the sensor, the asymmetrical excitation circuit was used to reduce the noise and then the detection circuit was designed for this sensor. The resonator of the sensor was packaged in the low vacuum condition so that the high quality factor (Q) with about 10000 can be achieved. Experimental tests were carried out for the sensor over the range of -80kPa to 100kPa, the results show that the sensitivity of the sensor is about 20kHz/100kPa, the sensitivity is 0.01%F.S. and the nonlinearity is about 1.8%.

  6. Droplet resonator based optofluidic microlasers

    NASA Astrophysics Data System (ADS)

    Kiraz, Alper; Jonáš, Alexandr; Aas, Mehdi; Karadag, Yasin; Brzobohatý, Oto; Ježek, Jan; Pilát, Zdeněk.; Zemánek, Pavel; Anand, Suman; McGloin, David

    2014-03-01

    We introduce tunable optofluidic microlasers based on active optical resonant cavities formed by optically stretched, dye-doped emulsion droplets confined in a dual-beam optical trap. To achieve tunable dye lasing, optically pumped droplets of oil dispersed in water are stretched by light in the dual-beam trap. Subsequently, resonant path lengths of whispering gallery modes (WGMs) propagating in the droplet are modified, leading to shifts in the microlaser emission wavelengths. We also report lasing in airborne, Rhodamine B-doped glycerolwater droplets which were localized using optical tweezers. While being trapped near the focal point of an infrared laser, the droplets were pumped with a Q-switched green laser. Furthermore, biological lasing in droplets supported by a superhydrophobic surface is demonstrated using a solution of Venus variant of the yellow fluorescent protein or E. Coli bacterial cells expressing stably the Venus protein. Our results may lead to new ways of probing airborne particles, exploiting the high sensitivity of stimulated emission to small perturbations in the droplet laser cavity and the gain medium.

  7. Discovery and Characterization of HemQ

    PubMed Central

    Dailey, Tamara A.; Boynton, Tye O.; Albetel, Angela-Nadia; Gerdes, Svetlana; Johnson, Michael K.; Dailey, Harry A.

    2010-01-01

    Here we identify a previously undescribed protein, HemQ, that is required for heme synthesis in Gram-positive bacteria. We have characterized HemQ from Bacillus subtilis and a number of Actinobacteria. HemQ is a multimeric heme-binding protein. Spectroscopic studies indicate that this heme is high spin ferric iron and is ligated by a conserved histidine with the sixth coordination site available for binding a small molecule. The presence of HemQ along with the terminal two pathway enzymes, protoporphyrinogen oxidase (HemY) and ferrochelatase, is required to synthesize heme in vivo and in vitro. Although the exact role played by HemQ remains to be characterized, to be fully functional in vitro it requires the presence of a bound heme. HemQ possesses minimal peroxidase activity, but as a catalase it has a turnover of over 104 min−1. We propose that this activity may be required to eliminate hydrogen peroxide that is generated by each turnover of HemY. Given the essential nature of heme synthesis and the restricted distribution of HemQ, this protein is a potential antimicrobial target for pathogens such as Mycobacterium tuberculosis. PMID:20543190

  8. Radiation Q of dipole-generated fields

    NASA Astrophysics Data System (ADS)

    Grimes, Dale M.; Grimes, Craig A.

    1999-03-01

    The radiation Q of several dipole fields in free space are determined using the time-dependent Poynting theorem. Earlier works on this subject, recently summarized by McLean [1996], are based upon the complex Poynting theorem. It was previously shown [Grimes and Grimes, 1997] that the full complex Poynting theorem is correct only for single-mode radiation fields. The time-dependent theorem shows that three numbers are necessary to completely specify time-varying power, and complex numbers supply but two; the third piece of information, a phase, is discarded when complex notation is formed. Omissions inherent in the complex Poynting theorem affect the calculated value of standing energy about an antenna and hence the calculated value of Q. To avoid such omissions, we develop a method of determining Q based upon the time-dependent Poynting theorem that builds upon and extends our earlier work [Grimes and Grimes, 1997]. The purposes of this paper are to (1) provide a time domain basis for calculating Q in mixed modal radiation fields, (2) determine the Q of electric and magnetic dipoles, alone and in combination, and (3) demonstrate how source structure and relative phasing affect the physics of several combinations of electric and magnetic dipole radiation fields. The primary conclusion of this work is that the minimum possible Q of a radiation source established by Chu [1948] does not extend to properly mixed and phased multimodal radiation fields. A radiation source is presented for which, by our analysis, the radiation Q is zero.

  9. Chromosome alterations in breast carcinomas: frequent involvement of DNA losses including chromosomes 4q and 21q.

    PubMed Central

    Schwendel, A.; Richard, F.; Langreck, H.; Kaufmann, O.; Lage, H.; Winzer, K. J.; Petersen, I.; Dietel, M.

    1998-01-01

    Comparative genomic hybridization was applied to map DNA gains and losses in 39 invasive ductal breast carcinomas. Frequent abnormalities included gains on chromosomal regions 1q, 8q, 11q12-13, 16p, 19, 20q and X as well as frequent losses on 1p, 5q, 6q, 9p, 11q, 13q and 16q. Furthermore, frequent losses on 4q (20 cases) and 21q (14 cases) were found for the first time in this tumour type. High copy number amplifications were observed at 8q12-24, 11q11-13 and 20q13-ter. Highly differentiated tumours were associated with gains on 1q and 11q12-13 along with losses on 1p21-22, 4q, 13q, 11q21-ter. Undifferentiated breast carcinomas were characterized by additional DNA imbalances, i.e. deletions of 5q13-23, all of chromosome 9, the centromeric part of chromosome 13 including band 13q14 and the overrepresentation of chromosome X. We speculate that these changes are associated with tumour progression of invasive ductal breast cancer. Images Figure 2 Figure 3 PMID:9743305

  10. Localization and mass spectrum of q-form fields on branes

    NASA Astrophysics Data System (ADS)

    Fu, Chun-E.; Zhong, Yuan; Xie, Qun-Ying; Liu, Yu-Xiao

    2016-06-01

    In this paper, we investigate localization of a bulk massless q-form field on codimension-one branes by using a new Kaluza-Klein (KK) decomposition, for which there are two types of KK modes for the bulk q-form field, the q-form and (q - 1)-form modes. The first modes may be massive or massless while the second ones are all massless. These two types of KK modes satisfy two Schrödinger-like equations. For a five-dimensional brane model with a finite extra dimension, the spectrum of a bulk 3-form field on the brane consists of some massive bound 3-form KK modes as well as some massless bound 2-form ones with different configuration along the extra dimension. These 2-form modes are different from those obtained from a bulk 2-form field. For a five-dimensional degenerated Bloch brane model with an infinite extra dimension, some massive 3-form resonant KK modes and corresponding massless 2-form resonant ones are obtained for a bulk 3-form field.

  11. Repetitively Q-switched Nd:BeL lasers

    NASA Technical Reports Server (NTRS)

    Degnan, J.; Birnbaum, M.; Deshazer, L. G.

    1979-01-01

    The thermal and mechanical characteristics which will ultimately limit the performance of Nd:BeL at high average power levels were investigated. The output beam characteristics (pulse width, peak power, beam dimensions and collimation) were determined at high repetition rates for both Nd:BeL and Nd:YAG. The output of Nd:BeL was shown to exceed that of Nd:YAG by a factor of 2.7 at low Q-switched repetition rates (1 Hz). This result follows from the smaller stimulated emission cross section of x-axis Nb:BeL compared to that of NdYAG by the same factor. At high repetition rates (10 Hz) the output of Nd:Bel falls to a level of three-fifths of its low repetition rate value while under similar tests the output of Nd:YAG remains essentially constant. A comparison of the measured values of the elasto-optic coefficients, the dn/dT values and the linear expansion coefficients for BeL and YAG failed to provide an explanation for the performance of BeL; however, thermal lensing was observed in Nd:BeL. Results imply that the output of a high repetition rate Q-switched Nd:BeL laser (high thermal loading) could be dramatically increased by utilization of a resonator design to compensate for the thermal lensing effects.

  12. Multi-dimensionally encoded magnetic resonance imaging

    PubMed Central

    Lin, Fa-Hsuan

    2013-01-01

    Magnetic resonance imaging typically achieves spatial encoding by measuring the projection of a q-dimensional object over q-dimensional spatial bases created by linear spatial encoding magnetic fields (SEMs). Recently, imaging strategies using nonlinear SEMs have demonstrated potential advantages for reconstructing images with higher spatiotemporal resolution and reducing peripheral nerve stimulation. In practice, nonlinear SEMs and linear SEMs can be used jointly to further improve the image reconstruction performance. Here we propose the multi-dimensionally encoded (MDE) MRI to map a q-dimensional object onto a p-dimensional encoding space where p > q. MDE MRI is a theoretical framework linking imaging strategies using linear and nonlinear SEMs. Using a system of eight surface SEM coils with an eight-channel RF coil array, we demonstrate the five-dimensional MDE MRI for a two-dimensional object as a further generalization of PatLoc imaging and O-space imaging. We also present a method of optimizing spatial bases in MDE MRI. Results show that MDE MRI with a higher dimensional encoding space can reconstruct images more efficiently and with a smaller reconstruction error when the k-space sampling distribution and the number of samples are controlled. PMID:22926830

  13. Gravitational waves from Q-ball formation

    SciTech Connect

    Chiba, Takeshi; Kamada, Kohei; Yamaguchi, Masahide

    2010-04-15

    We study the detectability of the gravitational waves (GWs) from the Q-ball formation associated with the Affleck-Dine (AD) mechanism, taking into account both the dilution effects due to Q-ball domination and to finite temperature. The AD mechanism predicts the formation of nontopological solitons, Q-balls, from which GWs are generated. Q-balls with large conserved charge Q can produce a large amount of GWs. On the other hand, the decay rate of such Q-balls is so small that they may dominate the energy density of the Universe, which implies that GWs are significantly diluted and that their frequencies are redshifted during the Q-ball dominated era. Thus, the detectability of the GWs associated with the formation of Q-balls is determined by these two competing effects. We find that there is a finite but small parameter region where such GWs may be detected by future detectors such as DECIGO or BBO, only in the case when the thermal logarithmic potential dominates the potential of the AD field. Otherwise GWs from Q-balls would not be detectable even by these futuristic detectors: {Omega}{sub GW}{sup 0}<10{sup -21}. Unfortunately, for such parameter region the present baryon asymmetry of the Universe can hardly be explained unless one fine-tunes A-terms in the potential. However the detection of such a GW background may give us an information about the early Universe, for example, it may suggest that the flat directions with B-L=0 are favored.

  14. Adult case of partial trisomy 9q

    PubMed Central

    2010-01-01

    Background Complete and partial trisomy 9 is the fourth most common chromosomal disorder. It is also associated with various congenital characteristics affecting the cranio-facial, skeletal, central nervous, gastrointestinal, cardiac and renal systems. Very few cases have been reported in adults. Partial trisomy 9q is also associated with short stature, poor growth and growth hormone deficiency. This is the first reported case of an extensive endocrinology investigation of short stature in trisomy 9q and the outcome of growth hormone treatment. Case Presentation The case involves a 23-year-old female of pure partial trisomy 9q. The case involves a 23-year old female with pure partial trisomy 9q involving a duplication of 9q22.1 to q32, de novo, confirmed by genetic studies using fluorescene in situ hybridization (FISH) method. The diagnosis was at 6 years of age. She did not demonstrate all the congenital morphologies identified with trisomy 9q disorders especially in relation to multi-organ morphologies. There is also a degree of associated intellectual impairment. At prepuberty, she was referred for poor growth and was diagnosed with partial growth hormone deficiency. She responded very well to treatment with growth hormone and is currently living an independent life with some support. Conclusions Trisomy 9q is associated with short stature and failure to thrive. Growth hormone deficiency should be identified in cases of trisomy 9q and treatment offered. This is the first reported case of response to growth hormone replacement in partial trisomy 9. PMID:20158889

  15. Optical-Fiber-Illuminated Response of a Superconducting Microwave Resonator Below 1 K

    NASA Astrophysics Data System (ADS)

    Voigt, Kristen; Hertzberg, J. B.; Dutta, S. K.; Hoffman, J. E.; Grover, J. A.; Lee, J.; Solano, P.; Budoyo, R. P.; Ballard, C.; Anderson, J. R.; Lobb, C. J.; Rolston, S. L.; Wellstood, F. C.

    As a step towards building a hybrid quantum system that couples superconducting elements to neutral atoms trapped on a tapered optical nanofiber, we have studied how the presence of the fiber dielectric and light scattered from a fiber affect the response of a translatable thin-film lumped-element superconducting Al microwave resonator that is cooled to 15 mK. The resonator has a resonance frequency of about 6 GHz, a quality factor Q 2 x 105, and is mounted inside a 3D Al superconducting cavity. An optical fiber is tapered to a 60 um diameter and passes through two small holes in the 3D cavity such that it sits near the resonator. The 3D cavity is mounted on an x-z piezo-translation stage that allows us to change the relative position of the thin-film resonator and fiber. When the resonator is brought closer to the fiber, the resonance frequency decreases slightly due to the presence of the fiber dielectric. When 200 uW of 780 nm light is sent through the fiber, about 100 pW/mm is Rayleigh-scattered from the fiber. This causes a position-dependent illumination of the resonator, affecting its resonance frequency and Q. We compare our results to a model of the resonator response that includes the generation, diffusion, and recombination of quasiparticles in the resonator and find that the frequency response allows us to track the position of the fiber to within 10 um.

  16. Position-Dependent Optical Response of a Superconducting Resonator at 15 mK

    NASA Astrophysics Data System (ADS)

    Voigt, K. D.; Hertzberg, J. B.; Hoffman, J. E.; Grover, J. A.; Lee, J.; Solano, P.; Budoyo, R. P.; Ballard, C.; Anderson, J. R.; Lobb, C. J.; Orozco, L. A.; Rolston, S. L.; Wellstood, F. C.

    2015-03-01

    We have studied the optical and dielectric response of a translatable thin-film lumped-element superconducting Al microwave resonator cooled to 15 mK. The resonator has a resonance frequency of 6.14 GHz, a quality factor Q of 2.59 x 105and is mounted inside a superconducting aluminum 3D cavity. A tapered optical fiber enters and exits the 3D cavity through two small holes in opposite sides of the cavity, placed so that the fiber can pass close to the resonator. The 3D cavity is mounted on an x-z piezo-translation stage that allows us to change the relative position of the lumped-element resonator and fiber. When the resonator is brought near to the fiber, we observe a shift in resonance frequency due to the presence of the fiber dielectric. When light is sent through the fiber, Rayleigh scattering causes a position-dependent illumination of the resonator, generating quasiparticles and thereby affecting its resonance frequency and Q. Our model of the resonator response includes the generation, diffusion, and recombination of quasiparticles in the resonator and shows that the frequency response allows us to track the position of the fiber in situ. Work supported by NSF through the Physics Frontier Center at the Joint Quantum Institute, Dept. of Physics, Univ. of Maryland.

  17. Inflation Driven by q-de Sitter

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Momeni, D.; Kamali, V.; Myrzakulov, R.

    2016-02-01

    We propose a generalised de Sitter scale factor for the cosmology of early and late time universe, including single scalar field is called as inflaton. This form of scale factor has a free parameter q is called as nonextensivity parameter. When q = 1, the scale factor is de Sitter. This scale factor is an intermediate form between power-law and de Sitter. We study cosmology of such families. We show that both kinds of dark components, dark energy and dark matter simultaneously are described by this family of solutions. As a motivated idea, we investigate inflation in the framework of q-de Sitter. We consider three types of scenarios for inflation. In a single inflation scenario, we observe that, inflation ended without any specific ending inflation ϕ e n d , the spectral index and the associated running of the spectral index are n s - 1 ˜ -2 𝜖, α s ≡ 0. To end the inflation: we should have q={3}/{4}. We deduce that the inflation ends when the evolution of the scale factor is a( t) = e 3/4( t). With this scale factor there is no need to specify ϕ e n d . As an alternative to have inflation with ending point, We will study q-inflation model in the context of warm inflation. We propose two forms of damping term Γ. In the first case when Γ = Γ0, we show the scale invariant spectrum, (Harrison-Zeldovich spectrum, i.e. n s = 1) may be approximately presented by (q={9}/{10}, ~N=70). Also there is a range of values of R and n s which is compatible with the BICEP2 data where q={9}/{10}. In case Γ = Γ1 V( ϕ), it is observed that small values of a number of e-folds are assured for small values of q parameter. Also in this case, the scale-invariant spectrum may be represented by (q,N) = ({9}/{10},70). For q={9}/{10} a range of values of R and n s is compatible with the BICEP2 data. Consequently, the proposal of q-de Sitter is consistent with observational data. We observe that the non-extensivity parameter q plays a significant role in inflationary scenario.

  18. Quantum Dilogarithms and Partition q-Series

    NASA Astrophysics Data System (ADS)

    Kato, Akishi; Terashima, Yuji

    2015-08-01

    In our previous work (Kato and Terashima, Commun Math Phys. arXiv:1403.6569, 2014), we introduced the partition q-series for mutation loop γ—a loop in exchange quiver. In this paper, we show that for a certain class of mutation sequences, called reddening sequences, the graded version of partition q-series essentially coincides with the ordered product of quantum dilogarithm associated with each mutation; the partition q-series provides a state-sum description of combinatorial Donaldson-Thomas invariants introduced by Keller.

  19. The Q field, a variable quaternion basis

    SciTech Connect

    Efremov, A.P.

    1986-06-01

    The author introduces the concept of the Q field as a 2 x 2 matrix representation of the variable basis of vectors satisfying the rule of multiplication of quaternion imaginary numbers and as an element of the group of transformations of the basis preserving the invariance of this multiplication rule. The rule for projecting such matrices on a given direction is determined with the help of the characteristic functions of the matrices-vectors of the Q field. The differential structure of Q fields is studied and the theory developed is illustrated by an example of a model-topological classification of particles according to the magnitude of their spin.

  20. Rotating boson stars and Q-balls

    SciTech Connect

    Kleihaus, Burkhard; Kunz, Jutta; List, Meike

    2005-09-15

    We consider axially symmetric, rotating boson stars. Their flat-space limits represent spinning Q-balls. We discuss their properties and determine their domain of existence. Q-balls and boson stars are stationary solutions and exist only in a limited frequency range. The coupling to gravity gives rise to a spiral-like frequency dependence of the boson stars. We address the flat-space limit and the limit of strong gravitational coupling. For comparison we also determine the properties of spherically symmetric Q-balls and boson stars.

  1. The q-Laguerre matrix polynomials.

    PubMed

    Salem, Ahmed

    2016-01-01

    The Laguerre polynomials have been extended to Laguerre matrix polynomials by means of studying certain second-order matrix differential equation. In this paper, certain second-order matrix q-difference equation is investigated and solved. Its solution gives a generalized of the q-Laguerre polynomials in matrix variable. Four generating functions of this matrix polynomials are investigated. Two slightly different explicit forms are introduced. Three-term recurrence relation, Rodrigues-type formula and the q-orthogonality property are given. PMID:27190749

  2. New ceramic EPR resonators with high dielectric permittivity.

    PubMed

    Golovina, Iryna; Geifman, Ilia; Belous, Anatolii

    2008-11-01

    New EPR resonators were developed by using a ceramic material with a high dielectric constant, epsilon=160. The resonators have a high quality factor, Q=10(3), and enhance the sensitivity of an EPR spectrometer up to 170 times. Some advantages of the new ceramic resonators are: (1) cheaper synthesis and simplified fabricating technology; (2) wider temperature range; and (3) ease of use. The ceramic material is produced with a titanate of complex oxides of rare-earth and alkaline metals, and has a perovskite type structure. The resonators were tested with X-band EPR spectrometers with cylindrical (TE(011)) and rectangular (TE(102)) cavities at 300 and 77K. We discovered that EPR signal strength enhancement depends on the dielectric constant of the material, resonator geometry and the size of the sample. Also, an unusual resonant mode was found in the dielectric resonator-metallic cavity structure. In this mode, the directions of microwave magnetic fields of the coupled resonators are opposite and the resonant frequency of the structure is higher than the frequency of empty metallic cavity. PMID:18815061

  3. Mathematical modeling of subthreshold resonant properties in pyloric dilator neurons.

    PubMed

    Vazifehkhah Ghaffari, Babak; Kouhnavard, Mojgan; Aihara, Takeshi; Kitajima, Tatsuo

    2015-01-01

    Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response) to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD) neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neurons without removing the calcium-dependent potassium current. Thus, the effects of calcium (I(Ca)) and calcium-dependent potassium (I(KCa)) currents on resonant properties remain unclear. By taking advantage of Hodgkin-Huxley-type model of neuron and its equivalent RLC circuit, we examine the effects of changing resting membrane potential and those ionic currents on the resonance. Results show that changing the resting membrane potential influences the amplitude and frequency of resonance so that the strength of resonance (Q-value) increases by both depolarization and hyperpolarization of the resting membrane potential. Moreover, hyperpolarization-activated inward current (I(h)) and I(Ca) (in association with I(KCa)) are dominant factors on resonant properties at hyperpolarized and depolarized potentials, respectively. Through mathematical analysis, results indicate that I h and I(KCa) affect the resonant properties of PD neurons. However, I(Ca) only has an amplifying effect on the resonance amplitude of these neurons. PMID:25960999

  4. Mathematical Modeling of Subthreshold Resonant Properties in Pyloric Dilator Neurons

    PubMed Central

    Vazifehkhah Ghaffari, Babak; Kouhnavard, Mojgan; Aihara, Takeshi; Kitajima, Tatsuo

    2015-01-01

    Various types of neurons exhibit subthreshold resonance oscillation (preferred frequency response) to fluctuating sinusoidal input currents. This phenomenon is well known to influence the synaptic plasticity and frequency of neural network oscillation. This study evaluates the resonant properties of pacemaker pyloric dilator (PD) neurons in the central pattern generator network through mathematical modeling. From the pharmacological point of view, calcium currents cannot be blocked in PD neurons without removing the calcium-dependent potassium current. Thus, the effects of calcium (ICa) and calcium-dependent potassium (IKCa) currents on resonant properties remain unclear. By taking advantage of Hodgkin-Huxley-type model of neuron and its equivalent RLC circuit, we examine the effects of changing resting membrane potential and those ionic currents on the resonance. Results show that changing the resting membrane potential influences the amplitude and frequency of resonance so that the strength of resonance (Q-value) increases by both depolarization and hyperpolarization of the resting membrane potential. Moreover, hyperpolarization-activated inward current (Ih) and ICa (in association with IKCa) are dominant factors on resonant properties at hyperpolarized and depolarized potentials, respectively. Through mathematical analysis, results indicate that Ih and IKCa affect the resonant properties of PD neurons. However, ICa only has an amplifying effect on the resonance amplitude of these neurons. PMID:25960999

  5. New ceramic EPR resonators with high dielectric permittivity

    NASA Astrophysics Data System (ADS)

    Golovina, Iryna; Geifman, Ilia; Belous, Anatolii

    2008-11-01

    New EPR resonators were developed by using a ceramic material with a high dielectric constant, ɛ = 160. The resonators have a high quality factor, Q = 10 3, and enhance the sensitivity of an EPR spectrometer up to 170 times. Some advantages of the new ceramic resonators are: (1) cheaper synthesis and simplified fabricating technology; (2) wider temperature range; and (3) ease of use. The ceramic material is produced with a titanate of complex oxides of rare-earth and alkaline metals, and has a perovskite type structure. The resonators were tested with X-band EPR spectrometers with cylindrical (TE 011) and rectangular (TE 102) cavities at 300 and 77 K. We discovered that EPR signal strength enhancement depends on the dielectric constant of the material, resonator geometry and the size of the sample. Also, an unusual resonant mode was found in the dielectric resonator-metallic cavity structure. In this mode, the directions of microwave magnetic fields of the coupled resonators are opposite and the resonant frequency of the structure is higher than the frequency of empty metallic cavity.

  6. Neutron resonance averaging

    SciTech Connect

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  7. Nanomechanical resonance detector

    DOEpatents

    Grossman, Jeffrey C; Zettl, Alexander K

    2013-10-29

    An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.

  8. Resonance response of scanning force microscopy cantilevers

    SciTech Connect

    Chen, G.Y.; Warmack, R.J.; Thundat, T.; Allison, D.P. ); Huang, A. )

    1994-08-01

    A variational method is used to calculate the deflection and the fundamental and harmonic resonance frequencies of commercial V-shaped and rectangular atomic force microscopy cantilevers. The effective mass of V-shaped cantilevers is roughly half that calculated for the equivalent rectangular cantilevers. Damping by environmental gases, including air, nitrogen, argon, and helium, affects the frequency of maximum response and to a much greater degree the quality factor [ital Q]. Helium has the lowest viscosity, resulting in the highest [ital Q], and thus provides the best sensitivity in noncontact force microscopy. Damping in liquids is dominated by an increase in effective mass of the cantilever due to an added mass of the liquid being dragged with that cantilever.

  9. Effect of pairing fluctuations on the spin resonance in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Hinojosa, Alberto; Chubukov, Andrey V.; Wölfle, Peter

    2014-09-01

    The spin resonance observed in the inelastic neutron scattering data on Fe-based superconductors has played a prominent role in the quest for determining the symmetry of the order parameter in these compounds. Most theoretical studies of the resonance employ an RPA-type approach in the particle-hole channel and associate the resonance in the spin susceptibility χS(q,ω) at momentum Q =(π,π) with the spin-exciton of an s+- superconductor, pulled below 2Δ by residual attraction associated with the sign change of the gap between Fermi points connected by Q. Here we explore the effect of fluctuations in the particle-particle channel on the spin resonance. Particle-particle and particle-hole channels are coupled in a superconductor and to what extent the spin resonance can be viewed as a particle-hole exciton needs to be addressed. In the case of purely repulsive interactions, we find that the particle-particle channel at total momentum Q (the π channel) contributes little to the resonance. However, if the interband density-density interaction is attractive and the π resonance is possible on its own, along with spin-exciton, we find a much stronger shift of the resonance frequency from the position of the would-be spin-exciton resonance. We also show that the expected double-peak structure in this situation does not appear because of the strong coupling between particle-hole and particle-particle channels, and ImχS(Q ,ω) displays only a single peak.

  10. De novo 11q13.4q14.3 tetrasomy with uniparental isodisomy for 11q14.3qter.

    PubMed

    Xiao, Bing; Xu, Huihui; Ye, Hui; Hu, Qin; Chen, Yingwei; Qiu, Wenjuan

    2015-10-01

    Interstitial triplications in conjunction with uniparental disomy (UPD) have been rarely reported. Here we report on a patient with de novo triplication at 11q13.4-q14.3 and UPD for 11q14.3-qter. Chromosomal analysis showed a karyotype of 46, XYqh+, der (11), and normal parental karyotypes. A single nucleotide polymorphism (SNP) array detected an 18.7 Mb copy number gain consistent with tetrasomy for 11q13.4-q14.3 (chr11:71,002,347 bp-89,725,167 bp, hg19) and absence of heterozygosity for a 45 Mb stretch on 11q and consistent with uniparental isodisomy at 11q14.3-qter (chr11:89,843,477 bp-134,930,689 bp, hg19) in our patient. FISH analysis using two probes on both sides of the tetrasomic region showed an inverted 11q13.4-q14.3 region between two direct oriented 11q13.4-q14.3 segments (11q13.4-q14.3::11q14.3-q13.4::11q13.4-qter). Previously reported features of duplication overlapping 11q13-q14 showed clinical variability. Our patient presented with some of those frequently described features, such as development delay, facial dysmorphism, and microcephaly but without congenital heart disease. Moreover, our patient had in addition a brain anomaly (absence of cerebellar vermis and partial absence of corpus callosum) which has not been reported. To our knowledge, this is the sixth patient reported an intrachromosomal triplication together with UPD. Interstitial 11q duplication overlapping 11q13-q14 is associated with intellectual disability/development delay, microcephaly, and facial dysmorphism but also other malformations. PMID:26061664

  11. An Inexpensive Resonance Demonstration

    ERIC Educational Resources Information Center

    Dukes, Phillip

    2005-01-01

    The phenomenon of resonance is applicable to almost every branch of physics. Without resonance, there wouldn't be televisions or stereos, or even swings on the playground. However, resonance also has undesirable side effects such as irritating noises in the car and the catastrophic events such as helicopters flying apart. In this article, the…

  12. Magnetic Resonance Imaging (MRI)

    MedlinePlus

    ... How Can I Help a Friend Who Cuts? Magnetic Resonance Imaging (MRI) KidsHealth > For Teens > Magnetic Resonance Imaging (MRI) Print A A A Text Size What's ... Exam Safety Getting Your Results What Is MRI? Magnetic resonance imaging (MRI) is a type of safe, painless testing ...

  13. Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Andrew, E. R.

    2009-06-01

    Author's preface; 1. Introduction; 2. Basic theory; 3. Experimental methods; 4. Measurement of nuclear properties and general physical applications; 5. Nuclear magnetic resonance in liquids and gases; 6. Nuclear magnetic resonance in non-metallic solids; 7. Nuclear magnetic resonance in metals; 8. Quadrupole effects; Appendices 1-6; Glossary of symbols; Bibliography and author index; Subject index.

  14. Fabrication of nanoplate resonating structures via micro-masonry

    NASA Astrophysics Data System (ADS)

    Bhaswara, A.; Keum, H.; Rhee, S.; Legrand, B.; Mathieu, F.; Kim, S.; Nicu, L.; Leichle, T.

    2014-11-01

    Advantages of using nanoscale membrane and plate resonators over more common cantilever shapes include higher quality factor (Q factor) for an equivalent mass and better suitability to mass sensing applications in fluid. Unfortunately, the current fabrication methods used to obtain such membranes and plates are limited in terms of materials and thickness range, and can potentially cause stiction. This study presents a new method to fabricate nanoplate resonating structures based on micro-masonry, which is the advanced form of the transfer printing technique. Nanoplate resonators were fabricated by transfer printing 0.34 µm thick square-shaped silicon plates by means of polydimethylsiloxane microtip stamps on top of silicon oxide base structures displaying 20 µm diameter cavities, followed by a thermal annealing step to create a rigid bond. Typical resulting suspended structures display vibration characteristics, i.e. a resonance frequency of a few MHz and Q factors above 10 in air at atmospheric pressure, which are in accordance with theory. Moreover, the presented fabrication method enables the realization of multiple suspended structures in a single step and on the same single base, without mechanical crosstalk between the resonators. This work thus demonstrates the suitability and the advantages of the micro-masonry technique for the fabrication of plate resonators for mass sensing purpose.

  15. Incommensurate spin resonance in URu2Si2

    SciTech Connect

    Balatsky, A V; Chantis, A; Dahal, Hari; Zhu, J X; Parker, David

    2008-01-01

    We propose to search for the spin resonance in URu{sub 2}Si{sub 2} at {omega}{sub res} = 4-6meV at the incommensurate wavector Q* = (1 {+-} 0.4, 0, 0). We expect that this spin resonance will set in at temperatures below HO transition and the intensity of this peak will scale as {approx} {Delta}{sub HO} {approx} (T{sub HO} - T). The resonance peak is know to occur in the states with superconducting gap and results in the gapping of the electronic spectrum add ref on SrruO and cel 15. In the case of HO the gap {Delta}{sub HO} results in the partially gapped electron spectrum. That appears to be a sufficient condition, as shown by Wiebe et al to produce a gap in spin excitation spectrum. In addition, we predict a peak in the spin excitation spectrum, as spectral weight redistribution produces the resonance feature. To the best of our knowledge, if the predicted resonance peak indeed occurs, it would be the first case where the spin resonance occurs at an incommensurate vector Q*.

  16. Genetics Home Reference: 5q minus syndrome

    MedlinePlus

    ... and management of various health conditions: Diagnostic Tests Drug Therapy Surgery and Rehabilitation Genetic Counseling Palliative Care Related ... in patients with del(5q) myelodysplastic syndromes: linking mechanism of action to clinical outcomes. Ann Hematol. 2014 Jan;93( ...

  17. Characteristic classes associated to Q-bundles

    NASA Astrophysics Data System (ADS)

    Kotov, Alexei; Strobl, Thomas

    2015-10-01

    A Q-manifold is a graded manifold endowed with a vector field of degree 1 squaring to zero. We consider the notion of a Q-bundle, that is, a fiber bundle in the category of Q-manifolds. To each homotopy class of "gauge fields" (sections in the category of graded manifolds) and each cohomology class of a certain subcomplex of forms on the fiber we associate a cohomology class on the base. As any principal bundle yields canonically a Q-bundle, this construction generalizes Chern-Weil classes. Novel examples include cohomology classes that are locally de Rham differential of the integrands of topological sigma models obtained by the AKSZ-formalism in arbitrary dimensions. For Hamiltonian Poisson fibrations one obtains a characteristic 3-class in this manner. We also relate the framework to equivariant cohomology and Lecomte's characteristic classes of exact sequences of Lie algebras.

  18. Exploration Enterprise Workshop - Q&A

    NASA Video Gallery

    Q&A session from May 25, 2010, at the end of Day 1 of NASA's Exploration Enterprise Workshop held in Galveston, TX. The purpose of this workshop was to present NASA's initial plans for the potentia...

  19. Anti-C1q autoantibodies.

    PubMed

    Kallenberg, Cees G M

    2008-09-01

    Autoantibodies to complement components are associated with various diseases. Anti-C1q antibodies are present in all patients with hypocomplementemic urticarial vasculitis, but also, with varying prevalence, in other conditions. In SLE, these antibodies are neither sensitive nor specific for this condition. They occur, however, more frequently in (proliferative) lupus nephritis, particularly during active disease. Furthermore, levels of anti-C1q rise, in many cases, prior to a relapse of lupus nephritis, suggesting a pathogenic role for the autoantibodies. Indeed, experimental studies strongly support a pathogenic role for anti-C1q in immune complex-mediated renal disease. In addition, anti-C1q may interfere with the clearance of apoptotic cells, so influencing induction and expression of autoimmunity. PMID:18606253

  20. Resonance Raman spectra of. cap alpha. -copper phthalocyanine

    SciTech Connect

    Bovill, A.J.; McConnell, A.A.; Nimmo, J.A.; Smith, W.E.

    1986-02-13

    Raman spectra of ..cap alpha..-copper phthalocyanine (..cap alpha..-CuPc) were recorded at room temperature and at 10 K with excitation wavelengths between 457 and 714 nm. Resonance enhancement was greatest for modes for which the largest displacements were on either the inner five-membered ring of the isoindole groups or the inner macrocycle and consequently assignment of the bands to modes of the entire molecule was possible by comparison with nickel octaethylporphyrin. Four out of five bands resonant in the Q band region and preresonant near the B band absorption region are totally symmetric modes. B band preresonance occurs more strongly with high-frequency modes. At low temperatures, multimode interactions are reduced and profiles were obtained which can be compared with solution profiles of porphyrins. Both Q/sub x/ and Q/sub y/ 0-0 scattering can be identified and a helper mode is evident. A term enhancement predominates, with B/sub 1g/ and B/sub 2g/ modes enhanced because of a Jahn-Teller distortion of the excited state. The resonance studies, together with electronic absorption spectra and published theoretical studies, confirm that the Q band in ..cap alpha..-CuPc is largely due to an allowed ..pi..-..pi..* transition associated mainly with the macrocycle and inner five-membered rings of the isoindole groups. 25 references, 5 figures, 2 tables.

  1. Coupling, Q-Factor, and Integration Aspects of Microsphere Applications

    NASA Technical Reports Server (NTRS)

    Ilchenko, V. S.; Yao, X. S.; Maleki, L.

    2000-01-01

    With suggested applications varying from microlaser and cavity QED through optical locking of diode lasers to modulators and sensors, high-Q silica microspheres with whispering-gallery (WG) modes so far remain the subject of tabletop feasibility demonstrations. Despite the uniquely high quality-factor and submillimeter dimensions suitable for tight packaging, this novel type of high-finesse cavity still has to be adapted to fiber- and integrated-optic hardware. In the visible and near infrared-band experiments (633-850nm) measuring the ringdown time tau of free oscillations, Q = (0.6 to 0.8 ) x 10(exp 10) has been obtained in silica spheres of diameter -800 microns (corresponding tau = 3 to 4 microseconds). It was proved that under normal laboratory conditions, quality-factor is subject to deterioration within several-minute scale down to (2 ... 3 ) x 10(exp 9). The responsible mechanism was identified as adsorption of a monolayer of atmospheric water, so that preservation of the ultimate Q requires manipulation in dry environment, or fast packaging into sealed devices. Larger Q can be expected closer to minimum of attenuation in fused silica alpha = 0.2 dB/km; Q greater than or equal to 1 x 10(exp 11) at lambda=1.55 microns, with corresponding energy storage time tau approx. 0.1ms. Experiments are currently underway to determine whether this high Q can be realized experimentally. The evident difficulty is that OH-related optical absorption has its peaks located near the reported minimum of attenuation in silica. We can also mention here that some of proposed fiber materials, yet not ready for fiber drawing, have been predicted to have smaller attenuation than fused silica and may be suitable for microsphere fabrication (sodium-magnesium silicate glass, alpha = 0.06dB/km). WG modes possess very small radiative loss (it does not prevent Q-10(exp 20) and more) and therefore are electromagnetically isolated and cannot be excited by free-space beams. If no modification

  2. Chromosome 10q tetrasomy: First reported case

    SciTech Connect

    Blackston, R.D.; May, K.M.; Jones, F.D.

    1994-09-01

    While there are several reports of trisomy 10q (at least 35), we are not aware of previous cases of 10q tetrasomy. We present what we believe to be the initial report of such a case. R.J. is a 6 1/2 year old white male who presented with multiple dysmorphic features, marked articulation problems, hyperactivity, and developmental delays. He is the product of a term uncomplicated pregnancy. There was a normal spontaneous vaginal delivery with a birth weight of 6 lbs. 4oz. and length was 19 1/2 inch. Dysmorphic features include small size, an asymmetrically small head, low set ears with overfolded helixes, bilateral ptosis, downslanting eyes, right eye esotropia, prominent nose, asymmetric facies, high palate, mild pectus excavatum deformity of chest, and hyperextensible elbow joints. The patient is in special needs classes for mildly mentally handicapped students. Chromosome analysis at a resolution of 800 bands revealed a complex rearrangement of chromosomes 10 and 11. The segment 10q25.3 to q16.3 appears to be inverted and duplicated within the long arm of chromosome 10 at band q25.3 and the same segment of chromosome 10 is present on the terminal end of the short arm of chromosome 11. There is no visible loss of material from chromosome 11. Fluorescence in situ hybridization was performed with a chromosome 10 specific {open_quotes}paint{close_quotes} to confirm that all of the material on the abnormal 10 and the material on the terminal short arm of 11 was from chromosome 10. Thus, it appears that the segment 10q25.3 to q26.3 is present in four copies. Parental chromosome studies are normal. We compared findings which differ in that the case of 10q tetrasomy did not have prenatal growth deficiency, microphthalmia, cleft palate, digital anomalies, heart, or renal defects. Whereas most cases of 10q trisomy are said to have severe mental deficiency, our case of 10q tetrasomy was only mildly delayed. We report this first apparent cited case of 10q tetrasomy.

  3. Decrease of the surface resistance in superconducting niobium resonator cavities by the microwave field

    SciTech Connect

    Ciovati, G. Dhakal, P.; Gurevich, A.

    2014-03-03

    Measurements of the quality factor, Q, of Nb superconducting microwave resonators often show that Q increases by ≃10%–30% with increasing radio-frequency (rf) field, H, up to ∼15–20 mT. Recent high temperature heat treatments can amplify this rf field-induced increase of Q up to ≃50%–100% and extend it to much higher fields ≃100 mT, but the mechanisms of the enhancement of Q(H) remain unclear. Here, we suggest a method to reveal these mechanisms by measuring temperature dependencies of Q at different rf field amplitudes. We show that the increase of Q(H) does not come from a field dependent quasi-particles activation energy or residual resistance, but rather results from the smearing of the density of state by the rf field.

  4. Decrease of the surface resistance in superconducting niobium resonator cavities by the microwave field

    SciTech Connect

    Ciovati, Gianluigi; Dhakal, Pashupati; Gurevich, Alexander V.

    2014-03-03

    Measurements of the quality factor, Q, of Nb superconducting microwave resonators often show that Q increases by {approx_equal} 10%–30% with increasing radio-frequency (rf) field, H, up to {approx} 15-20 mT. Recent high temperature heat treatments can amplify this rf field-induced increase of Q up to {approx_equal} 50%–100% and extend it to much higher fields, but the mechanisms of the enhancement of Q(H) remain unclear. Here, we suggest a method to reveal these mechanisms by measuring temperature dependencies of Q at different rf field amplitudes. We show that the increase of Q(H) does not come from a field dependent quasi-particles activation energy or residual resistance, but rather results from the smearing of the density of state by the rf field.

  5. Microwave Oscillators Based on Nonlinear WGM Resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Matsko, Andrey; Savchenkov, Anatoliy; Strekalov, Dmitry

    2006-01-01

    Optical oscillators that exploit resonantly enhanced four-wave mixing in nonlinear whispering-gallery-mode (WGM) resonators are under investigation for potential utility as low-power, ultra-miniature sources of stable, spectrally pure microwave signals. There are numerous potential uses for such oscillators in radar systems, communication systems, and scientific instrumentation. The resonator in an oscillator of this type is made of a crystalline material that exhibits cubic Kerr nonlinearity, which supports the four-photon parametric process also known as four-wave mixing. The oscillator can be characterized as all-optical in the sense that the entire process of generation of the microwave signal takes place within the WGM resonator. The resonantly enhanced four-wave mixing yields coherent, phase-modulated optical signals at frequencies governed by the resonator structure. The frequency of the phase-modulation signal, which is in the microwave range, equals the difference between the frequencies of the optical signals; hence, this frequency is also governed by the resonator structure. Hence, further, the microwave signal is stable and can be used as a reference signal. The figure schematically depicts the apparatus used in a proof-of-principle experiment. Linearly polarized pump light was generated by an yttrium aluminum garnet laser at a wavelength of 1.32 microns. By use of a 90:10 fiber-optic splitter and optical fibers, some of the laser light was sent into a delay line and some was transmitted to one face of glass coupling prism, that, in turn, coupled the laser light into a crystalline CaF2 WGM disk resonator that had a resonance quality factor (Q) of 6x10(exp 9). The output light of the resonator was collected via another face of the coupling prism and a single-mode optical fiber, which transmitted the light to a 50:50 fiber-optic splitter. One output of this splitter was sent to a slow photodiode to obtain a DC signal for locking the laser to a particular

  6. Bodily tides near spin-orbit resonances

    NASA Astrophysics Data System (ADS)

    Efroimsky, Michael

    2012-03-01

    Spin-orbit coupling can be described in two approaches. The first method, known as the "MacDonald torque", is often combined with a convenient assumption that the quality factor Q is frequency-independent. This makes the method inconsistent, because derivation of the expression for the MacDonald torque tacitly fixes the rheology of the mantle by making Q scale as the inverse tidal frequency. Spin-orbit coupling can be treated also in an approach called "the Darwin torque". While this theory is general enough to accommodate an arbitrary frequency-dependence of Q, this advantage has not yet been fully exploited in the literature, where Q is often assumed constant or is set to scale as inverse tidal frequency, the latter assertion making the Darwin torque equivalent to a corrected version of the MacDonald torque. However neither a constant nor an inverse-frequency Q reflect the properties of realistic mantles and crusts, because the actual frequency-dependence is more complex. Hence it is necessary to enrich the theory of spin-orbit interaction with the right frequency-dependence. We accomplish this programme for the Darwin-torque-based model near resonances. We derive the frequency-dependence of the tidal torque from the first principles of solid-state mechanics, i.e., from the expression for the mantle's compliance in the time domain. We also explain that the tidal torque includes not only the customary, secular part, but also an oscillating part. We demonstrate that the lmpq term of the Darwin-Kaula expansion for the tidal torque smoothly passes zero, when the secondary traverses the lmpq resonance (e.g., the principal tidal torque smoothly goes through nil as the secondary crosses the synchronous orbit). Thus, we prepare a foundation for modeling entrapment of a despinning primary into a resonance with its secondary. The roles of the primary and secondary may be played, e.g., by Mercury and the Sun, correspondingly, or by an icy moon and a Jovian planet. We also

  7. An Unusual Manifestation of Q Fever: Peritonitis.

    PubMed

    Yılmaz, Gülden; Öztürk, Bengi; Memikoğlu, Osman; Coşkun, Belgin; Yalçı, Aysun; Metin, Özge; Ünal, Hatice; Kurt, Halil

    2015-01-01

    Q fever has rarely been reported and can be difficult to diagnose, especially in immunocompromised patients. In the present report, we describe an unusual case of Q fever that presented as peritonitis and was treated with long-term combination therapy with doxycycline, ciprofloxacin and rifampicin for five weeks in a patient who had been on peritoneal dialysis for six years due to hypertensive nephropathy. PMID:25899561

  8. 520 mJ langasite electro-optically Q-switched Cr, Tm, Ho:YAG laser.

    PubMed

    Wang, Li; Cai, Xuwu; Yang, Jingwei; Wu, Xianyou; Jiang, Haihe; Wang, Jiyang

    2012-06-01

    A flash lamp pumped 2.09 μm Cr, Tm, Ho:YAG laser utilizing a self-grown La(3)Ga(5)SiO(14) crystal as the electro-optic Q-switch generator is proposed and demonstrated for the first time. Operating at 3 Hz repetition rate, 520 mJ pulse energy with 35 ns pulse width is achieved by optimizing the Q-switch delay time and compensating for the thermal depolarization with a quarter-wave plate. The corresponding peak power is 14.86 MW, and the Q-switched-to-normal-mode energy extraction efficiency is 66.3%. To our knowledge, this Q-switched giant pulse is the best result reported to date in 2.09 μm laser resonator. PMID:22660096

  9. Isochromosome 17q in Chronic Lymphocytic Leukemia.

    PubMed

    Alhourani, Eyad; Rincic, Martina; Melo, Joana B; Carreira, Isabel M; Glaser, Anita; Pohle, Beate; Schlie, Cordula; Liehr, Thomas

    2015-01-01

    In chronic lymphocytic leukemia (CLL), presence of acquired cytogenetic abnormalities may help to estimate prognosis. However, deletion of TP53 gene, which is associated with an aggressive course of the disease and poor prognosis along with a lack of response to treatment, is one of the alterations which may escape cytogenetic diagnoses in CLL. Thus, other techniques have emerged such as interphase fluorescence in situ hybridization (iFISH). Deletion of TP53 may but must not go together with the formation of an isochromosome i(17q); surprisingly this subgroup of patients was not in the focus of CLL studies yet. This study was about if presence of i(17q) could be indicative for a new subgroup in CLL with more adverse prognosis. As a result, TP53 deletion was detected in 18 out of 150 (12%) here studied CLL cases. Six of those cases (~33%) had the TP53 deletion accompanied by an i(17q). Interestingly, the cases with i(17q) showed a tendency towards more associated chromosomal aberrations. These findings may be the bases for follow-up studies in CLL patients with TP53 deletion with and without i(17q); it may be suggested that the i(17q) presents an even more adverse prognostic marker than TP53 deletion alone. PMID:26697230

  10. Isochromosome 17q in Chronic Lymphocytic Leukemia

    PubMed Central

    Alhourani, Eyad; Rincic, Martina; Melo, Joana B.; Carreira, Isabel M.; Glaser, Anita; Pohle, Beate; Schlie, Cordula; Liehr, Thomas

    2015-01-01

    In chronic lymphocytic leukemia (CLL), presence of acquired cytogenetic abnormalities may help to estimate prognosis. However, deletion of TP53 gene, which is associated with an aggressive course of the disease and poor prognosis along with a lack of response to treatment, is one of the alterations which may escape cytogenetic diagnoses in CLL. Thus, other techniques have emerged such as interphase fluorescence in situ hybridization (iFISH). Deletion of TP53 may but must not go together with the formation of an isochromosome i(17q); surprisingly this subgroup of patients was not in the focus of CLL studies yet. This study was about if presence of i(17q) could be indicative for a new subgroup in CLL with more adverse prognosis. As a result, TP53 deletion was detected in 18 out of 150 (12%) here studied CLL cases. Six of those cases (~33%) had the TP53 deletion accompanied by an i(17q). Interestingly, the cases with i(17q) showed a tendency towards more associated chromosomal aberrations. These findings may be the bases for follow-up studies in CLL patients with TP53 deletion with and without i(17q); it may be suggested that the i(17q) presents an even more adverse prognostic marker than TP53 deletion alone. PMID:26697230

  11. Genetics of Coenzyme Q10 Deficiency

    PubMed Central

    Doimo, Mara; Desbats, Maria A.; Cerqua, Cristina; Cassina, Matteo; Trevisson, Eva; Salviati, Leonardo

    2014-01-01

    Coenzyme Q10 (CoQ10) is an essential component of eukaryotic cells and is involved in crucial biochemical reactions such as the production of ATP in the mitochondrial respiratory chain, the biosynthesis of pyrimidines, and the modulation of apoptosis. CoQ10 requires at least 13 genes for its biosynthesis. Mutations in these genes cause primary CoQ10 deficiency, a clinically and genetically heterogeneous disorder. To date mutations in 8 genes (PDSS1, PDSS2, COQ2, COQ4, COQ6, ADCK3, ADCK4, and COQ9) have been associated with CoQ10 deficiency presenting with a wide variety of clinical manifestations. Onset can be at virtually any age, although pediatric forms are more common. Symptoms include those typical of respiratory chain disorders (encephalomyopathy, ataxia, lactic acidosis, deafness, retinitis pigmentosa, hypertrophic cardiomyopathy), but some (such as steroid-resistant nephrotic syndrome) are peculiar to this condition. The molecular bases of the clinical diversity of this condition are still unknown. It is of critical importance that physicians promptly recognize these disorders because most patients respond to oral administration of CoQ10. PMID:25126048

  12. Ovenized microelectromechanical system (MEMS) resonator

    SciTech Connect

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  13. An embedded microchannel in a MEMS plate resonator for ultrasensitive mass sensing in liquid.

    PubMed

    Agache, V; Blanco-Gomez, G; Baleras, F; Caillat, P

    2011-08-01

    A mass sensor innovative concept is presented here, based on a hollow plate Micro Electro Mechanical System (MEMS) resonator. This approach consists in running a solution through an embedded microchannel, while the plate resonator is actuated according to a Lamé-mode by electrostatic coupling in dry environment. The experimental results have shown a clear relationship between the measured shift of the resonance frequency and the sample solution density. Additionally, depending on the channel design and the solution properties, the quality factor (Q-factor) was noticed maintaining its level and even substantial improvement in particular cases. Resonators demonstrate resonance frequencies close to 78 MHz and Q-factor of a few thousands for liquid phase detection operating at ambient temperature and atmospheric pressure. Frequency fluctuations study revealed a 13 Hz instability level, equivalent to 1.5 fg in mass. Using a fully electronic readout configuration, a mass responsivity of ca. 850 fg kHz(-1) was monitored. PMID:21660349

  14. Rarefying Spectra of Whispering-Gallery-Mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Matsko, Andrey; Strekalov, Dmitri; Iltchenko, Vladimir; Maleki, Lute

    2007-01-01

    A method of cleaning the mode spectra of whispering-gallery-mode (WGM) optical resonators has been devised to make such resonators more suitable for use as narrow-band optical filters. The method applies, more specifically, to millimeter- sized whispering-gallery-mode optical resonators that are made of crystalline electro-optical materials and have ultrahigh values of the resonance quality factor (Q). The mode spectrum of such a resonator is typically dense, consisting of closely spaced families of modes; as such, the spectrum is not well suited for narrow-band filtering, in which there is a need for strong rejection of side modes. Cleaning as used here signifies rarefying the spectrum so that what remains consists mostly of a single desired family of modes or, at worst, a few mode families that are more widely spaced in frequency than are the mode families in the original, non-rarefied spectrum. The spectrum-cleaning method exploits the fact that various WGM mode families occupy various positions near the equator at the rim of a resonator disk. In this method, a damper in the form of a prism or other polished piece of material having an index of refraction greater than that of the resonator material is placed in contact with the rim of the resonator at such a position that the Qs of most or all of the undesired mode families are greatly reduced while the Q of the desired mode family is reduced by only a tolerably small amount. In an alternative method that has been considered, the mode spectrum would be cleaned through special design of the shape of the rim, but fabrication of the rim in a special shape is a complicated task. The advantage of the present method, relative to the alternative method, is that special shaping of the rim is not necessary and the damping prism can be emplaced after the resonator has been fabricated.

  15. High brightness sub-nanosecond Q-switched laser using volume Bragg gratings

    NASA Astrophysics Data System (ADS)

    Anderson, Brian M.; Hale, Evan; Venus, George; Ott, Daniel; Divliansky, Ivan; Glebov, Leonid

    2016-03-01

    The design of Q-switched lasers capable of producing pulse widths of 100's of picoseconds necessitates the cavity length be shorter than a few centimeters. Increasing the amount of energy extracted per pulse requires increasing the mode area of the resonator that for the same cavity length causes exciting higher order transverse modes and decreasing the brightness of the output radiation. To suppress the higher order modes of these multimode resonators while maintaining the compact cavity requires the use of intra-cavity angular filters. A novel Q-switched laser design is presented using transmitting Bragg gratings (TBGs) as angular filters to suppress the higher order transverse modes. The laser consists of a 5 mm thick slab of Nd:YAG, a 3 mm thick slab of Cr:YAG with a 20% transmission, one TBG aligned to suppress the higher order modes along the x-axis, and a 40% output coupler. The gratings are recorded in photo-thermo-refractive (PTR) glass, which has a high damage threshold that can withstand both the high peak powers and high average powers present within the resonator. Using a 4.1 mrad TBG in a 10.8 mm long resonator with an 800μm x 400 μm pump beam, a nearly diffraction limited beam quality of M2 = 1.3 is obtained in a 0.76 mJ pulse with a pulse width of 614 ps.

  16. Acampomelic campomelic dysplasia with de novo 5q;17q reciprocal translocation and severe phenotype.

    PubMed Central

    Savarirayan, R; Bankier, A

    1998-01-01

    Campomelic dysplasia (CD) is a rare skeletal malformation syndrome caused by mutations in the SRY related gene SOX9, mapped to 17q24.3-q25.1. A small proportion of cases are associated with structural rearrangements involving 17q and it has been proposed that this subgroup have a milder phenotype and better prognosis compared to those with mutations in the SOX9 gene. We report a severely affected infant with the acampomelic form of campomelic dysplasia, who died at 11 days and was found to have a de novo reciprocal translocation, 46,XX,t(5;17)(q15;q25.1). This is the second reported case of severe campomelic dysplasia associated with a structural rearrangement involving 17q and suggests that this subgroup of patients may not significantly differ from those without chromosomal rearrangements with regards to phenotype or prognosis. Images PMID:9678706

  17. The first patient with tandem duplication of 6q14q16: Molecular and phenotypic characterization.

    PubMed

    Sanmann, Jennifer N; Casas, Kari A; Bevilacqua, Jen; Bishay, Danielle L; Clark, Tanner; Van Dyke, A Zephyr; Leiferman, Patricia Crotwell; Reddi, Honey V; Starr, Lois J

    2016-09-01

    Duplications of the long arm of chromosome 6 have been previously reported in a limited number of patients; however, most reported duplications encompass regions of chromosome 6 distal to band q21. Duplications restricted to the proximal portion of 6q are rare. We report an 8-year-old male with a 16.4 megabase (Mb) tandem duplication of chromosome 6q14.1q16.1 (chr6:78950191-95395865; hg19) who exhibited dysmorphic facial features, seizures, global developmental delay, intellectual disability, autism spectrum disorder, sensorineural hearing loss, and immune deficiency. This patient refines and potentially expands the current, poorly-characterized phenotype associated with duplication of this proximal 6q region. We recommend a low threshold for a hearing evaluation beyond newborn screening and for pursuing an immune work-up in patients with similar 6q duplications. © 2016 Wiley Periodicals, Inc. PMID:27338032

  18. High-Q CMOS-integrated photonic crystal microcavity devices

    PubMed Central

    Mehta, Karan K.; Orcutt, Jason S.; Tehar-Zahav, Ofer; Sternberg, Zvi; Bafrali, Reha; Meade, Roy; Ram, Rajeev J.

    2014-01-01

    Integrated optical resonators are necessary or beneficial in realizations of various functions in scaled photonic platforms, including filtering, modulation, and detection in classical communication systems, optical sensing, as well as addressing and control of solid state emitters for quantum technologies. Although photonic crystal (PhC) microresonators can be advantageous to the more commonly used microring devices due to the former's low mode volumes, fabrication of PhC cavities has typically relied on electron-beam lithography, which precludes integration with large-scale and reproducible CMOS fabrication. Here, we demonstrate wavelength-scale polycrystalline silicon (pSi) PhC microresonators with Qs up to 60,000 fabricated within a bulk CMOS process. Quasi-1D resonators in lateral p-i-n structures allow for resonant defect-state photodetection in all-silicon devices, exhibiting voltage-dependent quantum efficiencies in the range of a few 10 s of %, few-GHz bandwidths, and low dark currents, in devices with loaded Qs in the range of 4,300–9,300; one device, for example, exhibited a loaded Q of 4,300, 25% quantum efficiency (corresponding to a responsivity of 0.31 A/W), 3 GHz bandwidth, and 30 nA dark current at a reverse bias of 30 V. This work demonstrates the possibility for practical integration of PhC microresonators with active electro-optic capability into large-scale silicon photonic systems. PMID:24518161

  19. 18q- and 18q+ mosaicism in a mentally retarded boy

    SciTech Connect

    Ausems, M.G.E.M.; Bhola, S.L.; France, H.F. de; Post-Blok, C.A.; Hennekam, R.C.M.

    1994-11-15

    A mentally retarded boy was found to have an unusual chromosomal mosaicism [46,XY,del(18) (q22)/46,XY,iso psu dic(18)(q23)]. The clinical manifestations are compatible with the 18q- syndrome. The chromosome alteration was defined by high resolution banding and fluorescence in situ hybridization (FISH). A mechanism to explain the origin of the two cell lines is presented and discussed. 6 refs., 4 figs., 1 tab.

  20. [Hplc estimation of coenzyme Q(10) redox status in plasma after intravenous coenzyme Q(10) administration].

    PubMed

    Kalenikova, E I; Kharitonova, E V; Gorodetskaya, E A; Tokareva, O G; Medvedev, O S

    2015-01-01

    The pharmacokinetics of the total pool of coenzyme Q(10) (Co(10)), its oxidized (ubiquinone) and reduced (ubiquinol, CoQ(10)H₂) forms have been investigated in rats plasma during 48 h after a single intravenous injection of a solution of solubilized CoQ(10) (10 mg/kg) to rats. Plasma levels of CoQ(10) were determined by HPLC with spectrophotometric and coulometric detection. In plasma samples taken during the first minutes after the CoQ(10) intravenous injection, the total pool of coenzyme Q(10) and proportion of CoQ(10)H₂ remained unchanged during two weeks of storage at -20°C. The kinetic curve of the total pool of coenzyme Q(10) corresponds to a one-part model (R² = 0.9932), while the corresponding curve of its oxidized form fits to the two-part model. During the first minutes after the injection a significant portion of plasma ubiquinone undergoes reduction, and after 7 h the concentration of ubiquinol predominates. The decrease in the total plasma coenzyme Q(10) content was accompanied by the gradual increase in plasma ubiquinol, which represented about 90% of total plasma CoQ(10) by the end of the first day. The results of this study demonstrate the ability of the organism to transform high concentrations of the oxidized form of CoQ(10) into the effective antioxidant (reduced) form and justify prospects of the development of parenteral dosage forms of CoQ(10) for the use in the treatment of acute pathological conditions. PMID:25762606

  1. A Monte Carlo study of the light q sup 2 q sup 2 system

    SciTech Connect

    Grondin, G. . Dept. of Physics Oak Ridge National Lab., TN )

    1991-01-01

    We present results from a Guided Random Walk Monte Carlo simulation of the light (q = u, d) q{sup 2}{bar q}{sup 2} system in a Coulomb-plus-linear quark potential model using an Intel iPSC/860 hypercube. We find evidence for no bound states below the vector-vector threshold in the (J,I) = (2,2) and (2,0) sector. 14 refs., 2 figs.

  2. Vector resonances and electromagnetic nucleon structure

    SciTech Connect

    Robert Williams; Siegfried Krewald; Kevin Linen

    1995-02-01

    Motivated by new, precise magnetic proton form factor data in the timelike region, a hybrid vector meson dominance (hVMD) formalism is employed to investigate the significance of excited vector meson resonances on electromagnetic nucleon structure. We find that the rho (1700), omega (1600), and two previously unobserved states are required to reproduce the local structure seen in the new LEAR data just above the pp-bar threshold. We also investigate sensitivity to the phi meson. The model dependence of our result is tested by introducing an alternative model which couples the isoscalar vector meson states to a hypothetical vector glueball resonance. We obtain nearly identical results from both models, except for GnE(q2) in the spacelike region which is very sensitive to the glueball mass and the effective phi NN coupling.

  3. Mars Subsurface Exploration Using Schumann Resonance

    NASA Astrophysics Data System (ADS)

    Kozakiewicz, Joanna; Kulak, Andrzej; Mlynarczyk, Janusz

    2014-05-01

    In a planetary environment, an electrically conductive ionosphere and ground create a spherical electromagnetic cavity. In this cavity, extremely low frequency (ELF, 3-3000 Hz) electromagnetic waves are weakly attenuated and can propagate around the globe producing global resonance. The extremely low frequency waves are generated by electrical discharges in planetary atmospheres. We have developed an analytical method that enables taking into account not only the electrical properties of the Martian ionosphere but also the Martian ground. This method allowed us to obtain the Schumann resonance frequencies and Q factors and analyze how they depend on the Martian environmental properties. We compared the results from our analytical model with previously published results from numerical modeling. In this work, we show that the Martian ground has a significant influence on the Schumann resonance parameters. Therefore, Schumann resonance can be used us a tool to study, not only the properties of the Martian atmosphere, but also the properties of the subsurface layers. It can be particularly useful in groundwater exploration. In order to study the influence of water on the Schumann resonance parameters on Mars, we assumed two cases of the Martian ground containing aquifers. In both cases, we considered the upper part of the Martian crust composed of porous basaltic rocks containing ice. Beneath this layer, we implemented water-bearing basalts. We assumed that ice and water contains some NaCl impurities or solutions. In the first case, we considered the low concentration of salts in ice and low-salinity water. In the second case, we assumed some high-impurity ice and brines. In order to compare the results of the above-mentioned cases with a situation in which the subsurface of Mars does not contain any water, we introduced the model of the Martian crust composed only of dry basaltic rocks. There are clear differences in the Schumann resonance parameters for the different

  4. Optical Helmholtz resonators

    NASA Astrophysics Data System (ADS)

    Chevalier, Paul; Bouchon, Patrick; Haïdar, Riad; Pardo, Fabrice

    2014-08-01

    Helmholtz resonators are widely used acoustic components able to select a single frequency. Here, based on an analogy between acoustics and electromagnetism wave equations, we present an electromagnetic 2D Helmholtz resonator made of a metallic slit-box structure. At the resonance, the light is funneled in the λ/800 apertures, and is subsequently absorbed in the cavity. As in acoustics, there is no higher order of resonance, which is an appealing feature for applications such as photodetection or thermal emission. Eventually, we demonstrate that the slit is of capacitive nature while the box behaves inductively. We derive an analytical formula for the resonance wavelength, which does not rely on wave propagation and therefore does not depend on the permittivity of the material filling the box. Besides, in contrast with half-wavelength resonators, the resonance wavelength can be engineered by both the slit aspect ratio and the box area.

  5. Magnetic resonance energy and topological resonance energy.

    PubMed

    Aihara, Jun-Ichi

    2016-04-28

    Ring-current diamagnetism of a polycyclic π-system is closely associated with thermodynamic stability due to the individual circuits. Magnetic resonance energy (MRE), derived from the ring-current diamagnetic susceptibility, was explored in conjunction with graph-theoretically defined topological resonance energy (TRE). For many aromatic molecules, MRE is highly correlative with TRE with a correlation coefficient of 0.996. For all π-systems studied, MRE has the same sign as TRE. The only trouble with MRE may be that some antiaromatic and non-alternant species exhibit unusually large MRE-to-TRE ratios. This kind of difficulty can in principle be overcome by prior geometry-optimisation or by changing spin multiplicity. Apart from the semi-empirical resonance-theory resonance energy, MRE is considered as the first aromatic stabilisation energy (ASE) defined without referring to any hypothetical polyene reference. PMID:26878709

  6. Resonance splitting in gyrotropic ring resonators.

    PubMed

    Jalas, Dirk; Petrov, Alexander; Krause, Michael; Hampe, Jan; Eich, Manfred

    2010-10-15

    We present the theoretical concept of an optical isolator based on resonance splitting in a silicon ring resonator covered with a magneto-optical polymer cladding. For this task, a perturbation method is derived for the modes in the cylindrical coordinate system. A polymer magneto-optical cladding causing a 0.01 amplitude of the off-diagonal element of the dielectric tensor is assumed. It is shown that the derived resonance splitting of the clockwise and counterclockwise modes increases for smaller ring radii. For the ring with a radius of approximately 1.5μm, a 29GHz splitting is demonstrated. An integrated optical isolator with a 10μm geometrical footprint is proposed based on a critically coupled ring resonator. PMID:20967092

  7. The q-Laplace operator and q-harmonic polynomials on the quantum vector space

    NASA Astrophysics Data System (ADS)

    Iorgov, N. Z.; Klimyk, A. U.

    2001-03-01

    The aim of this paper is to study q-harmonic polynomials on the quantum vector space generated by q-commuting elements x1,x2,…,xn. They are defined as solutions of the equation Δqp=0, where p is a polynomial in x1,x2,…,xn and the q-Laplace operator Δq is determined in terms of q-derivatives. The projector Hm:Am→Hm is constructed, where Am and Hm are the spaces of homogeneous (of degree m) polynomials and q-harmonic polynomials, respectively. By using these projectors, a q-analog of classical associated spherical harmonics is constructed. They constitute an orthonormal basis of Hm. A q-analog of separation of variables is given. Representations of the nonstandard q-deformed algebra Uq'(son) [which plays the role of the rotation group SO(n) in the case of classical harmonic polynomials] on the spaces Hm are explicitly constructed.

  8. Robertsonian (15q;15q) translocation in a child with Angelman syndrome: Evidence of uniparental disomy

    SciTech Connect

    Tonk, V.; Schultz, R.A.; Wilson, G.N.; Schultz, R.A.

    1996-12-30

    A balanced Robertsonian translocation 45,XY,t(15q15q) was detected in a patient with mental retardation, microcephaly, and hypertonia. Deletion of the 15q11q13 region was unlikely based on fluorescence in situ hybridization studies that revealed hybridization of appropriate DNA probes to both arms of the Robertsonian chromosome. Inheritance of alleles from 13 highly polymorphic DNA markers on chromosome 15 showed paternal uniparental isodisomy. The clinical, cytogenetic, and molecular results are consistent with a diagnosis of Angelman syndrome. 8 refs., 3 figs.

  9. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome.

    PubMed

    Váša, František; Griffa, Alessandra; Scariati, Elisa; Schaer, Marie; Urben, Sébastien; Eliez, Stephan; Hagmann, Patric

    2016-01-01

    Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core (A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs - chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, "de-centralizing" the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30-40% of 22q11DS patients develop. PMID:26870660

  10. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome

    PubMed Central

    Váša, František; Griffa, Alessandra; Scariati, Elisa; Schaer, Marie; Urben, Sébastien; Eliez, Stephan; Hagmann, Patric

    2015-01-01

    Chromosome 22q11.2 deletion syndrome (22q11DS) is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes), we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure) as the affected core (A-core) of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop. PMID:26870660

  11. Nanotube mechanical resonators with quality factors of up to 5 million.

    PubMed

    Moser, J; Eichler, A; Güttinger, J; Dykman, M I; Bachtold, A

    2014-12-01

    Carbon nanotube mechanical resonators have attracted considerable interest because of their small mass, the high quality of their surfaces, and the pristine electronic states they host. However, their small dimensions result in fragile vibrational states that are difficult to measure. Here, we observe quality factors Q as high as 5 × 10(6) in ultra-clean nanotube resonators at a cryostat temperature of 30 mK, where we define Q as the ratio of the resonant frequency over the linewidth. Measuring such high quality factors requires the use of an ultra-low-noise method to rapidly detect minuscule vibrations, as well as careful reduction of the noise of the electrostatic environment. We observe that the measured quality factors fluctuate because of fluctuations of the resonant frequency. We measure record-high quality factors, which are comparable to the highest Q values reported in mechanical resonators of much larger size, a remarkable result considering that reducing the size of resonators is usually concomitant with decreasing quality factors. The combination of ultra-low mass and very large Q offers new opportunities for ultra-sensitive detection schemes and quantum optomechanical experiments. PMID:25344688

  12. A Wire Crossed-Loop-Resonator for Rapid Scan EPR

    PubMed Central

    Rinard, George A.; Quine, Richard W.; Biller, Joshua R.; Eaton, Gareth R.

    2011-01-01

    A crossed-loop (orthogonal mode) resonator (CLR) was constructed of fine wire to achieve design goals for rapid scan in vivo EPR imaging at VHF frequencies (in practice, near 250 MHz). This application requires the resonator to have a very open design to facilitate access to the animal for physiological support during the image acquisition. The rapid scan experiment uses large amplitude magnetic field scans, and sufficiently large resonator and detection bandwidths to record the rapidly-changing signal response. Rapid-scan EPR is sensitive to RF/microwave source noise and to baseline changes that are coherent with the field scan. The sensitivity to source noise is a primary incentive for using a CLR to isolate the detected signal from the RF source noise. Isolation from source noise of 44 and 47 dB was achieved in two resonator designs. Prior results showed that eddy currents contribute to background problems in rapid scan EPR, so the CLR design had to minimize conducting metal components. Using fine (AWG 38) wire for the resonators decreased eddy currents and lowered the resonator Q, thus providing larger resonator bandwidth. Mechanical resonances at specific scan frequencies are a major contributor to rapid scan backgrounds. PMID:21603086

  13. Phase Matching of Diverse Modes in a WGM Resonator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan; Matsko, Andrey; Mohageg, Makan; Maleki, Lute

    2008-01-01

    Phase matching of diverse electromagnetic modes (specifically, coexisting optical and microwave modes) in a whispering-gallery-mode (WGM) resonator has been predicted theoretically and verified experimentally. Such phase matching is necessary for storage of microwave/terahertz and optical electromagnetic energy in the same resonator, as needed for exploitation of nonlinear optical phenomena. WGM resonators are used in research on nonlinear optical phenomena at low optical intensities and as a basis for design and fabrication of novel optical devices. Examples of nonlinear optical phenomena recently demonstrated in WGM resonators include low-threshold Raman lasing, optomechanical oscillations, frequency doubling, and hyperparametric oscillations. The present findings regarding phase matching were made in research on low-threshold, strongly nondegenerate parametric oscillations in lithium niobate WGM resonators. The principle of operation of such an oscillator is rooted in two previously observed phenomena: (1) stimulated Raman scattering by polaritons in lithium niobate and (2) phase matching of nonlinear optical processes via geometrical confinement of light. The oscillator is partly similar to terahertz oscillators based on lithium niobate crystals, the key difference being that a novel geometrical configuration of this oscillator supports oscillation in the regime. The high resonance quality factors (Q values) typical of WGM resonators make it possible to achieve oscillation at a threshold signal level much lower than that in a non-WGM-resonator lithium niobate crystal.

  14. Ultra-Narrow Bandwidth Optical Resonators for Integrated Low Frequency Noise Lasers

    NASA Astrophysics Data System (ADS)

    Spencer, Daryl T.

    The development of narrowband resonators has far reaching applications in integrated optics. As a precise reference of wavelength, filters can be used in sensors, metrology, nonlinear optics, microwave photonics, and laser stabilization. In this work, we develop record high quality factor (Q) Si 3N4 waveguide resonators, and utilize them to stabilize a heterogeneously integrated Si/III V laser. To increase the Q factor of waveguide resonators, particular attention is given to loss mechanisms. Propagation loss of <0.1 dB/m is demonstrated on the ultra low loss waveguide platform, a low index contrast, high aspect ratio Si3N4 waveguide geometry fabricated with high quality materials and high temperature anneals. Ideality in the directional couplers used for coupling to the resonators is studied and losses are reduced such that 81 million intrinsic Q factor is achieved. Additional results include 1x16 resonant splitters, low ? narrowband gratings, and a dual layer waveguide technology for low loss and low bend radius in separate regions of the same device layer. We then combine an ultra high Q resonator and a heterogeneous Si/III V laser in a Pound Drever Hall (PDH) frequency stabilization system to yield narrow linewidth characteristics for a stable on chip laser reference. The high frequency noise filtering is performed with Si resonant mirrors in the laser cavity. A 30 million Q factor Si3N4 resonator is used with electrical feedback to reduce close in noise and frequency walk off. The laser shows high frequency noise levels of 60x103 Hz2/Hz corresponding to 160 kHz linewidth, and the low frequency noise is suppressed 33 dB to 103 Hz2/Hz with the PDH system.

  15. Q c and Q S wave attenuation of South African earthquakes

    NASA Astrophysics Data System (ADS)

    Brandt, Martin B. C.

    2016-04-01

    Quality factor Q, which describes the attenuation of seismic waves with distance, was determined for South Africa using data recorded by the South African National Seismograph Network. Because of an objective paucity of seismicity in South Africa and modernisation of the seismograph network only in 2007, I carried out a coda wave decay analysis on only 13 tectonic earthquakes and 7 mine-related events for the magnitude range 3.6 ≤ M L ≤ 4.4. Up to five seismograph stations were utilised to determine Q c for frequencies at 2, 4, 8 and 16 Hz resulting in 84 individual measurements. The constants Q 0 and α were determined for the attenuation relation Q c( f) = Q 0 f α . The result was Q 0 = 396 ± 29 and α = 0.72 ± 0.04 for a lapse time of 1.9*( t s - t 0) (time from origin time t 0 to the start of coda analysis window is 1.9 times the S-travel time, t s) and a coda window length of 80 s. This lapse time and coda window length were found to fit the most individual frequencies for a signal-to-noise ratio of at least 3 and a minimum absolute correlation coefficient for the envelope of 0.5. For a positive correlation coefficient, the envelope amplitude increases with time and Q c was not calculated. The derived Q c was verified using the spectral ratio method on a smaller data set consisting of nine earthquakes and one mine-related event recorded by up to four seismograph stations. Since the spectral ratio method requires absolute amplitudes in its calculations, site response tests were performed to select four appropriate stations without soil amplification and/or signal distortion. The result obtained for Q S was Q 0 = 391 ± 130 and α = 0.60 ± 0.16, which agrees well with the coda Q c result.

  16. Stretched cavity soliton in dispersion-managed Kerr resonators

    NASA Astrophysics Data System (ADS)

    Bao, Chengying; Yang, Changxi

    2015-08-01

    Stretched cavity soliton (SCS) in dispersion-managed nonlinear resonators is numerically investigated. SCS is found to stretch and compress twice during a round-trip propagation inside the dispersion-managed resonator, exhibiting a pulse dynamics similar to dispersion-managed mode-locked femtosecond lasers. Even though the breathing ratio is relatively small, the characteristics of SCS are significantly modified by the pulse stretching dynamics in the resonator. The output pulse will have a flatter spectrum around the center frequency. However, the power for the comb lines at the wing of the spectrum decays faster than the conventional sech-shaped CS, making dispersion wave emission harder to be excited in dispersion-managed resonators. Furthermore, stretching of the pulse lowers the nonlinear phase shift and makes it more resistant towards breather soliton instability. When shortening the cavity length to the microresonator scale, we find that ultrashort pulses can be generated through dispersion management, even in a low Q -factor cavity.

  17. High sensitivity optical waveguide accelerometer based on Fano resonance.

    PubMed

    Wan, Fenghua; Qian, Guang; Li, Ruozhou; Tang, Jie; Zhang, Tong

    2016-08-20

    An optical waveguide accelerometer based on tunable asymmetrical Fano resonance in a ring-resonator-coupled Mach-Zehnder interferometer (MZI) is proposed and analyzed. A Fano resonance accelerometer has a relatively large workspace of coupling coefficients with high sensitivity, which has potential application in inertial navigation, missile guidance, and attitude control of satellites. Due to the interference between a high-Q resonance pathway and a coherent background pathway, a steep asymmetric line shape is generated, which greatly improves the sensitivity of this accelerometer. The sensitivity of the accelerometer is about 111.75 mW/g. A 393-fold increase in sensitivity is achieved compared with a conventional MZI accelerometer and is approximately equal to the single ring structure. PMID:27556984

  18. Viscosity sensor utilizing a piezoelectric thickness shear sandwich resonator.

    PubMed

    Thalhammer, R; Braun, S; Devcic-Kuhar, B; Groschl, M; Trampler, F; Benes, E; Nowotny, H; Kostal, P

    1998-01-01

    This paper describes a novel quartz crystal sensor for measurement of the density-viscosity product of Newtonian liquids. The sensor element consists of two piano-convex AT-cut quartz crystals vibrating in a thickness-shear mode with the liquid sample in between. This special set-up allows suppression of disturbing resonances in the liquid layer. Such resonances are generated in the common single-plate arrangements due to compressional waves caused by spurious out-of-plane displacements of the shear vibrating finite plate. The primary measurands of the sensor are the fundamental resonance frequency and the associated resonance Q-value, which are influenced by the viscously entrained liquid contacting the quartz surface. The sensor allows the measurement of samples with viscosities from almost zero (air!) up to 200 cP with a sample volume of 130 microl. PMID:18244295

  19. Optical whispering-gallery mode resonators for applications in optical communication and frequency control

    NASA Astrophysics Data System (ADS)

    Grutter, Karen Esther

    High quality factor (Q) optical whispering gallery mode resonators are a key component in many on-chip optical systems, such as delay lines, modulators, and add-drop filters. They are also a convenient, compact structure for studying optomechanical interactions on-chip. In all these applications, optical Q is an important factor for high performance. For optomechanical reference oscillators in particular, high mechanical Q is also necessary. Previously, optical microresonators have been made in a wide variety of materials, but it has proven challenging to demonstrate high optical Q and high mechanical Q in a single, integrated device. This work demonstrates a new technique for achieving high optical Q on chip, a fully-integrated tunable filter with ultra-narrow minimum bandwidth, and the effect of material choice and device design on optical Q, mechanical Q and phase noise in microring optomechanical oscillators. To achieve a high optical Q, phosphosilicate glass (PSG) is studied as a resonator material. The low melting point of PSG enables wafer-scale reflow, which reduces sidewall roughness without significantly changing lithographically-defined dimensions. With this process, optical Qs up to 1.5 x 10. 7 are achieved, overten times higher than typical silicon optical resonators. These high-Q PSG resonators are then integrated with MEMS-actuated waveguides in a tunable-bandwidth filter. Due to the high Q of the PSG resonator, this device has a best-to-date minimum bandwidth of 0.8 GHz, with a tuning range of 0.8 to 8.5GHz. Finally, microring optomechanical oscillators (OMOs) in PSG, stoichiometric silicon nitride, and silicon are fabricated, and their performance is compared after characterization via a tapered optical fiber in vacuum. The silicon nitride device has the best performance, with a mechanical Q of more than 1 x 10. 4and record-breaking OMO phase noise of -102 dBc/Hz at a 1 kHz offset from a 72 MHz carrier.

  20. Threshold-crossing counting technique for damping factor determination of resonator sensors

    NASA Astrophysics Data System (ADS)

    Zeng, Kefeng; Grimes, Craig A.

    2004-12-01

    The behavior of resonator-type sensors at resonance is characterized by two fundamental parameters: resonance frequency and damping factor (or Q-factor). Practical applications require accurate and efficient measurements of these two parameters. Using magnetoelastic resonant sensors as a test case earlier work [K. Zeng, K. G. Ong, C. Mungle, and C. A. Grimes, Rev. Sci. Instrum. 73, 4375 (2002)] demonstrated the ability to determine resonance frequency by counting the number of cycles in the transient response of a pulsewise excited sensor. Presented in this paper is a novel technique for measuring the damping factor of a resonant magnetoelastic sensor, or any resonator type sensor, using threshold-crossing counting of the transient response. The damping factor determination technique eliminates the need for a lock-in amplifier or FFT analysis as in the conventional method of quality factor estimation from spectrum analysis, significantly simplifying the electronic implementation as well as improving measurement speed and accuracy.