Science.gov

Sample records for qso absorption spectra

  1. Constraining The Reionization History With QSO Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Gallerani, S.; Choudhury, T. R.; Ferrara, A.

    2006-08-01

    We use a semi-analytical approach to simulate absorption spectra of QSOs at high redshifts with the aim of constraining the cosmic reionization history. We consider two physically motivated and detailed reionization histories: (i) an Early Reionization Model (ERM) in which the intergalactic medium is reionized by PopIII stars at z~14, and (ii) a more standard Late Reionization Model (LRM) in which overlapping, induced by QSOs and normal galaxies, occurs at z~6. An example of simulated spectra is provided by FIG.1. From the analysis of current Lyα forest data at z<6, we conclude that it is impossible to disentangle the two scenarios, which fit equally well the observed Gunn-Peterson optical depth, flux probability distribution function and dark gap width distribution. At z>6, however, clear differences start to emerge which are best quantified by the dark gap width distribution. We find that 35 (zero) per cent of the lines of sight within 5.750Å in the rest frame of the QSO if re-ionization is not (is) complete at z>~6 (FIG.2). Similarly, the ERM predicts peaks of width ~1Å in 40 per cent of the lines of sight in the redshift range 6.0-6.6; in the same range, LRM predicts no peaks of width >0.8Å (FIG.3). We conclude that the dark gap and peak width statistics represent superb probes of cosmic reionization if about ten QSOs can be found at z>6.

  2. Constraining the reionization history with QSO absorption spectra

    NASA Astrophysics Data System (ADS)

    Gallerani, S.; Choudhury, T. Roy; Ferrara, A.

    2006-08-01

    We use a semi-analytical approach to simulate absorption spectra of QSOs at high redshifts with the aim of constraining the cosmic reionization history. We consider two physically motivated and detailed reionization histories: (i) an early reionization model (ERM) in which the intergalactic medium is reionized by Pop III stars at z ~ 14, and (ii) a more standard late reionization model (LRM) in which overlapping, induced by QSOs and normal galaxies, occurs at z ~ 6. From the analysis of current Lyα forest data at z < 6, we conclude that it is impossible to disentangle the two scenarios, which fit equally well the observed Gunn-Peterson optical depth, flux probability distribution function and dark gap width distribution. At z > 6, however, clear differences start to emerge which are best quantified by the dark gap and peak width distributions. We find that 35 (0) per cent of the lines of sight (LOS) within 5.7 < z < 6.3 show dark gaps of widths >50Å in the rest frame of the QSO if reionization is not (is) complete at z >~ 6. Similarly, the ERM predicts peaks of width ~1Å in 40 per cent of the LOS in the redshift range 6.0-6.6 in the same range, LRM predicts no peaks of width >0.8Å. We conclude that the dark gap and peak width statistics represent superb probes of cosmic reionization if about ten QSOs can be found at z > 6. We finally discuss strengths and limitations of our method.

  3. Continuum Fitting HST QSO Spectra

    NASA Technical Reports Server (NTRS)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  4. Bounds on the fine structure constant variability from Fe ii absorption lines in QSO spectra

    NASA Astrophysics Data System (ADS)

    Molaro, P.; Reimers, D.; Agafonova, I. I.; Levshakov, S. A.

    2008-10-01

    The Single Ion Differential α Measurement (SIDAM)method for measuring Δα/α and its figures of merit are illustrated together withthe results produced by means of Fe ii absorption linesof QSO intervening systems. The method providesΔα/α = -0.12 ±1.79 ppm (parts-per-million) at zabs = 1.15towards HE 0515-4414 and Δα/α = 5.66±2.67 ppm at zabs = 1.84towards Q 1101-264, which are so far the most accurate measurementsfor single systems. SIDAM analysis for 3 systems from the Chand et al. [1]sample provides inconsistent results which we interpret as due tocalibration errors of the Chand et al. data at the level ≈10 ppm.In one system evidence for photo-ionization Dopplershift between Mg ii and Fe ii lines is found.This evidence has important bearings on the Many Multipletmethod where the signal for Δα/αvariabilityis carried mainly by systems involving Mg ii absorbers.Some correlations are also found in the Murphy et al. [10] sample which suggestlarger errors than previously reported.Thus, we consider unlikely that both the Chand et al.and Murphy et al. datasets could providean estimate of Δα/α with an accuracy at the level of 1 ppm.A new spectrograph like the ESPRESSO projectwill be crucial to make progress in the astronomical determination of Δα/α.

  5. The bispectrum of the Lyman α forest at z~ 2-2.4 from a large sample of UVES QSO absorption spectra (LUQAS)

    NASA Astrophysics Data System (ADS)

    Viel, M.; Matarrese, S.; Heavens, A.; Haehnelt, M. G.; Kim, T.-S.; Springel, V.; Hernquist, L.

    2004-01-01

    We present a determination of the bispectrum of the flux in the Lyman α forest of quasi-stellar object (QSO) absorption spectra obtained from a large sample of Ultraviolet Echelle Spectrograph (UVES) QSO absorption spectra (LUQAS), which consists of spectra observed with the high-resolution UVES. Typical errors on the observed bispectrum as obtained from a jack-knife estimator are ~ 50 per cent. For wavenumbers in the range 0.03 < k < 0.1 s km-1 the observed bispectrum agrees within the errors with that of the synthetic absorption spectra obtained from numerical hydro-simulations of a ΛCDM model with and without feedback from star formation. Including galactic feedback changes the bispectrum by less than 10 per cent. At smaller wavenumbers, the associated metal absorption lines contribute about 50 per cent to the bispectrum and the observed bispectrum exceeds that of the simulations. At wavenumbers k < 0.03 s km-1, second-order perturbation theory applied to the flux spectrum gives a reasonable (errors smaller than 30 per cent) approximation to the bispectra of observed and simulated absorption spectra. The bispectrum of the observed absorption spectra also agrees, within the errors, with that of a randomized set of absorption spectra where a random shift in wavelength has been added to absorption lines identified with VPFIT. This suggests that for a sample of the size presented here, the errors on the bispectrum are too large to discriminate between models with very different 3D distribution of Lyman α absorption. If it were possible to substantially reduce these errors for larger samples of absorption spectra, the bispectrum might become an important statistical tool for probing the growth of gravitational structure in the Universe at redshift z>~ 2.

  6. Investigation of Lyman-limit absorption in QSO spectra - indirect evidence for evolution of the multicomponent nature of the absorbers

    SciTech Connect

    Lanzetta, K.M.

    1988-09-01

    This paper reexamines the redshift distribution of the class of QSO absorption-line systems that are optically-thick to Lyman continuum radiation (i.e., the Lyman-limit systems LLS), using a sample of 129 QSOs for which suitable data are available. It was found that the LLSs are uniformly distributed in velocity, relative to the background QSOs, and that the rate of incidence of the systems does not strongly evolve with redshift; the observed redshift distribution is consistent with nonevolving absorbers in a standard Friedmann cosmology with the deceleration parameter equal to 0.5. The reason for the discrepancy of this finding with data published on systems selected on the basis of Mg II absorption is discussed. It is suggested that the number of separate velocity components comprising the Mg II absorption lines decreases with time. 63 references.

  7. Properties of low-redshift QSO absorption systems - QSO-galaxy pairs

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.

    1993-01-01

    The chance proximity of QSOs and galaxies provides unique opportunities to probe the extent and content of gas in the foreground galaxies through evaluation of the incidence and strength of absorption lines in the spectra of the background QSOs. Recent results on the observed properties of these low-redshift, heavy-element absorption systems are summarized. These results are discussed in the context of the galaxy morphologies and environments and are briefly compared with Galactic absorption and with the inferred properties of higher-redshift QSO absorption systems.

  8. Probing the extent and content of low ionization gas in galaxies: QSO absorption and HI emission

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.

    1993-01-01

    The small projected separations of some QSO's and low-redshift galaxies provide unique opportunities to study the extent and content of gas in galaxies through observation of absorption in the QSO spectra. Observations of these systems provide valuable information on the connection between the absorbing gas and the galaxy, as well as detailed information on the morphology and environment of the galaxy itself. While there is direct evidence that galaxies can produce the intervening-type QSO absorption lines, over the past decade, the study of such 'QSO-galaxy pairs' (at low redshift) has been considered unsuccessful because new detections of absorption were seldom made. A fundamental problem concerning the relation between these low-redshift systems and those seen at moderate to high redshift remains unresolved. Direct and indirect measures of galaxy absorption cross sections at moderate to high redshifts (z is approximately greater than 20.5) are much larger than the optical and HI sizes of local galaxies. However, direct comparison of the low and moderate to high redshift systems is difficult since different ions are observed in different redshift regimes. Observations are presented for a new sample of QSO-galaxy pairs. Nine new QSO's which shine through nearby galaxies (on the sky-plane) were observed to search for CaII absorption in the QSO spectra at the foreground galaxy redshifts.

  9. Abundances in 8 QSO Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Lauroesch, James Thomas

    1995-01-01

    An analysis is given of high resolution observations of metal-absorption line systems in the spectra of 4 QSOs made with the echelle spectrograph on the Mayall 4-meter telescope at Kitt Peak National Observatory. High spectral -resolution (9 to 18 km cdot s^{ -1}) observations were obtained for the QSOs S5 0014 + 813, H 0913 + 072, B2 1225 + 317, and HS 1946 + 7658; column densities were derived for the heavy element line systems. Abundances and/or abundance ratios have been determined for 8 systems and a variety of H I column densities in the redshift range 1-3.4 are probed. The systems studies are generally relatively poor in heavy elements, and appear to be similar in heavy element abundances to the gas out of which the Galactic halo stars of similar metallicity formed. Indications of the halo star-abundance sample include the observed ratios of (N/Si), (Al/Si), and (Mn/Fe). The existence of associated H II regions is inferred for a number of damped systems, and it is suggested that the possibly significant amount of gas in H II regions in damped Lyman-alpha systems can be constrained by the comparison of the column densities of O I, N I, N II, Si II, and S II in these systems. The ratio of N(Al II)/N(Al III) is shown to be a poor indicator of the amount of ionized gas in some cases. The abundances of Si as determined from N(Si II)/N(H I) suggest that there is a relatively rapid decrease in abundances in these systems at z _sp{ ~}> 2. Such a decrease in abundances is what would be expected if the galactic (thin) disks did not form before redshifts of z {~} 2. The use of Si II is important, since the weakness of the Zn II lines at low abundances (due to the low relative abundance of Zn compared to elements such as Si) will result in few detections, and in upper limits that are difficult to interpret. The observed drop in abundances is consistent with the decrease in number of heavy-element absorption systems at high redshifts, a result that is found in

  10. Intermediate-redshift galaxy halos - Results from QSO absorption lines

    SciTech Connect

    Lanzetta, K.M.; Bowen, D. Royal Greenwich Observatory, Cambridge )

    1990-07-01

    For a sample of Mg II-selected QSO absorption-line systems for which the absorbing galaxies have been successfully identified, the rest-frame equivalent widths of the Mg II 2796-A absorption lines are examined as a function of the known impact parameters between the background QSOs and the absorbing galaxies. There appears to exist a relationship between the equivalent widths and the impact parameters, in the sense that larger equivalent widths occur at smaller impact parameters. No trend of the doublet ratio is found with impact parameter, and neither the equivalent widths nor the doublet ratios are correlated with the absolute luminosities or redshifts of the absorbing galaxies. These results apparently indicate that the main factor that determines the equivalent width of a particular absorption system is the impact parameter between the background QSO and the absorbing galaxy. 32 refs.

  11. The low-ion QSO absorption-line systems

    SciTech Connect

    Lanzetta, K.M.

    1988-01-01

    Various techniques are used to investigate the class of QSO absorption-line systems that exhibit low-ion absorption lines. Four separate investigations are conducted as follows: Spectroscopy of 32 QSOs at red wavelengths is presented and used to investigate intermediate-redshift MgII absorption. A total of 22 Mg II doublets are detected, from which properties of the Mg II absorbers are derived. Marginal evidence for intrinsic evolution of the number density of the Mg II absorbers with redshift is found. The data are combined with previous observations of C IV and C II seen in the same QSOs at blue wavelengths, and the properties of Mg II- and C IV-selected systems are compared. A sample is constructed of 129 QSOs for which are available published data suitable for detecting absorption-line systems that are optically thick to Lyman continuum radiation. A total of 53 such Lyman-limit systems are found, from which properties of the Lyman-limit systems are derived. It is found that the rate of incidence of the systems does not strongly evolved with redshift. This result is contrasted with the evolution found previously for systems selected on the basis of Mg II absorption. Spectroscopy at red wavelengths of eight QSOs with known damped Ly{alpha} absorption systems is presented. Spectroscopic and spectrophotometric observations aimed at detecting molecular hydrogen and dust in the z = 2.796 damped Ly{alpha} absorber toward Q1337 + 113 are presented.

  12. Detection of a z=0.0515, 0.0522 absorption system in the QSO S4 0248+430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    In some of the few cases where the line of sight to a Quasi-Stellar Object (QSO) passes near a galaxy, the galaxy redshift is almost identical to an absorption redshift in the spectrum of the QSO. Although these relatively low redshift QSO-galaxy pairs may not be typical of the majority of the narrow heavy-element QSO absorption systems, they provide a direct measure of column densities in the outer parts of galaxies and some limits on the relative abundances of the gas. Observations are presented here of the QSO S4 0248+430 and a nearby anonymous galaxy (Kuhr 1977). The 14 second separation of the line of sight to the QSO (z sub e = 1.316) and the z=0.052 spiral galaxy, (a projected separation of 20 kpc ((h sub o = 50, q sub o = 0)), makes this a particularly suitable pair for probing the extent and content of gas in the galaxy. Low resolution (6A full width half maximum), long slit charge coupled device (CCD) spectra show strong CA II H and K lines in absorption at the redshift of the galaxy (Junkkarinen 1987). Higher resolution spectra showing both Ca II H and K and Na I D1 and D2 in absorption and direct images are reported here.

  13. PG 1700 + 518 - a low-redshift, broad absorption line QSO

    SciTech Connect

    Pettini, M.; Boksenberg, A.

    1985-07-01

    The first high-resolution optical spectra and lower resolution UV spectra of PG 1700 + 518, the only known broad-absorption-line (BAL) QSO at low emission redshift (0.288) are presented. The optical data were obtained with the Isaac Newton Telescope on the island of La Palma and the UV data with the International Ultraviolet Explorer satellite. The outstanding feature of the optical spectrum is a strong, broad Mg II absorption trough, detached from the Mg II emission line and indicative of ejection velocities of between 7000 and 18,000 km/s. Also detected were narrow (FWHM = 350 km/s) Mg II absorption lines at absolute z = 0.2698, which are probably related to the mass ejection phenomenon. It is concluded that the emission-line spectrum is similar to that of other low-redshift QSOs although there are some obvious differences from typical BAL QSOs, most notably in the unusually low level of ionization of both emission-line and broad absorption line gas. 21 references.

  14. Active Galactic Nuclei Probed by QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Misawa, Toru

    2007-07-01

    Quasars are the extremely bright nuclei found in about 10% of galaxies. A variety of absorption features (known collectively as quasar absorption lines) are detected in the rest-frame UV spectra of these objects. While absorption lines that have very broad widths originate in gas that is probably physocally related to the quasars, narrow absorption lines (NALs) were thought to arise in galaxies and/or in the intter-alacttic medium between the quasars and us. Using high-resolution spectra of quasars, it is found that a substantial fraction of NALs arise in gas in the immediate vicinity of the quasars. A dramatically variable, moderately-broad absorption line in the spectrum of the quasar HS 1603+3820l is also found. The variability of this line is monitored in a campaign with Subaru telescope. These observational results are compared to models for outflows from the quasars, specifically, models for accretion disk winds and evaporating obscuring tori. It is quite important to determine the mechanism of outflow because of its cosmological implications. The outflow could expel angular momentum from the accretion disk and enable quasars to accrete and shine. In addition, the outflow may also regulate star formation in the early stages of the assembly of the host galaxy and enrich the interstellar and intergalactic medium with metals.

  15. Variability of broad absorption lines in QSO SDSS J022844.09+000217.0 on multiyear time-scales

    NASA Astrophysics Data System (ADS)

    He, Zhi-Cheng; Bian, Wei-Hao; Jiang, Xiao-Lei; Wang, Yue-Feng

    2014-09-01

    The variability of broad absorption lines is investigated for a broad-absorption-line (BAL) quasar (QSO), SDSS J022844.09+000217.0 (z = 2.719), with 18 Sloan Digital Sky Survey (SDSS)/Baryon Oscillation Spectroscopic Survey (BOSS) spectra covering 4128 d in the observed frame. Using the ratio of the root-mean-square (rms) spectrum to the mean spectrum, the relative flux change of the BAL trough is larger than that of the emission lines and the continuum. Fitting a power-law continuum and the emission-line profiles of C IV λ1549 and Si IVλ1399, we calculate the equivalent width (EW) for different epochs, as well as the continuum luminosity and the spectral index. It is found that there is a strong correlation between the BAL-trough EW and the spectral index and a weak negative correlation between the BAL-trough EW and the continuum luminosity. The strong correlation between the BAL-trough EW and the spectral index for this particular QSO suggests that dust is intrinsic to outflows. The weak correlation between the BAL variability and the continuum luminosity for this particular QSO implies that the BAL-trough variation is not dominated by photoionization.

  16. Broad Balmer Absorption Line Variability: Evidence of Gas Transverse Motion in the QSO SDSS J125942.80+121312.6

    NASA Astrophysics Data System (ADS)

    Shi, Xiheng; Zhou, Hongyan; Shu, Xinwen; Zhang, Shaohua; Ji, Tuo; Pan, Xiang; Sun, Luming; Zhao, Wen; Hao, Lei

    2016-03-01

    We report on the discovery of broad Balmer absorption lines variability in the QSO SDSS J125942.80+121312.6, based on the optical and near-infrared spectra taken from the SDSS-I, SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), and TripleSpec observations over a timescale of 5.8 years in the QSO's rest-frame. The blueshifted absorption profile of Hβ shows a variation of more than 5σ at a high velocity portion (\\gt 3000 {km} {{{s}}}-1) of the trough. We perform a detailed analysis for the physical conditions of the absorber using Balmer lines as well as metastable He i and optical Fe ii absorptions (λ4233 from b4P5/2 level and λ5169 from a6S5/2) at the same velocity. These Fe ii lines are identified in the QSO spectra for the first time. According to the photoionization simulations, we estimate a gas density of n({{H}})≈ {10}9.1 {{cm}}-3 and a column density of {N}{col}({{H}})≈ {10}23 {{cm}}-2 for the BOSS data, but the model fails to predict the variations of ionic column densities between the SDSS and BOSS observations if changes in ionizing flux are assumed. We thus propose transverse motion of the absorbing gas being the cause of the observed broad Balmer absorption line variability. In fact, we find that the changes in covering factors of the absorber can well-reproduce all of the observed variations. The absorber is estimated ∼0.94 pc away from the central engine, which is where the outflow likely experiences deceleration due to the collision with the surrounding medium. This scheme is consistent with the argument that LoBAL QSOs may represent the transition from obscured star-forming galaxies to classic QSOs.

  17. A correlation test of the intrinsic interpretation of QSO absorption redshifts

    NASA Technical Reports Server (NTRS)

    Opher, R.

    1975-01-01

    It is noted that the general intrinsic interpretation of QSO absorption redshifts predicts a high probability of clustering for the expulsion velocities of clouds ejected from a QSO core and that a correlation function has been defined which depends on the probability of clustering of three or more expulsion velocities. A test of this correlation is formulated which utilizes data on pairs of QSOs with similar emission redshifts and at least three well established absorption redshifts with corresponding expulsion velocities greater than 0.02c. It is shown that the correlation should be positive (maximum value +100%) if the absorption systems are intrinsic and correlated, zero if there is no physical connection among these systems, and negative if a strong anticorrelation exists or QSOs tend to eject one or two clouds at well separated characteristic velocities. Data on five QSOs are analyzed, and large positive values are obtained for the correlations.

  18. QSO Lyalpha Absorption Lines in Galaxy Superclusters and Voids

    NASA Astrophysics Data System (ADS)

    Stocke, J. T.; Shull, J. M.; Penton, S.; Burks, G.; Donahue, M.

    1993-12-01

    We have used the Hubble Space Telescope (HST) Goddard High Resolution Spectrograph (GHRS) to search for Lyalpha absorption clouds in nearby galaxy voids (cz <= 10,000 km s(-1) ). Thus far, we have obtained GHRS spectra (G160M, 1225 -- 1255 Angstroms, 0.25 Angstroms resolution) of three very bright Active Galactic Nuclei, Mrk 501, I Zw I, and Mrk 335, at V <= 14.5. We find 4 probable (4.0 sigma - 4.5 sigma ) and 4 definite (5 sigma - 16 sigma ) Lyalpha absorption lines, with equivalent widths W_λ = 50 - 200 m Angstroms, corresponding to column densities N(H I) = 10(13) -- 10(14) cm(-2) , assuming a typical Doppler parameter of b = 25 km s(-1) . Based on an updated version of the CfA redshift survey (Huchra and Clemens, private communication), most of these Lyalpha systems appear to be associated with supercluster - sized ``strings'' of galaxies similar to the ``Great Wall''. Toward Mrk 501, the nearest bright galaxy at the redshift of the strongest (200 m Angstroms) Lyalpha cloud lies 500 h75(-1) kpc off the line of sight. Models of H I disks exposed to the intergalactic ionizing radiation field (Dove & Shull 1994, ApJ, 423, in press) show that the N(H I) = 10(13) cm(-2) contour in a typical spiral galaxy is reached at 100 kpc radial extent. Thus, the Lyalpha absorbers associated with galaxy-string systems may be the result of H I in an extended halo, in dwarf satellite galaxies (M_B > -15), or in tidally-stripped gas. Most importantly for cosmological origins of baryons, one (4.3 sigma ) Lyalpha absorption line in the spectrum of Mrk 501 lies within the galaxy void in the foreground of the ``Great Wall''. The nearest bright galaxy, to a level M_B <= -18.5 for H_0 = 75 km s(-1) Mpc(-1) , is more than 5 Mpc away. A pencil-beam survey of faint galaxies to M_B = -16.0 finds no galaxy within 100 h75(-1) kpc of the line of sight, at or near the absorber redshift.

  19. NE VIII lambda 774 and time variable associated absorption in the QSO UM 675

    NASA Technical Reports Server (NTRS)

    Hamann, Fred; Barlow, Thomas A.; Beaver, E. A.; Burbidge, E. M.; Cohen, Ross D.; Junkkarinen, Vesa; Lyons, R.

    1995-01-01

    We discuss measurements of Ne VIII lambda 774 absorption and the time variability of other lines in the z(sub a) approximately equal z(sub e) absorption system of the z(sub e) = 2.15 QSO UM 675 (0150-203). The C IV lambda 1549 and N V 1240 doublets at z(sub a) = 2.1340 (shifted approximately 1500 km/s from z(sub e) strengthened by a factor of approximately 3 between observations by Sargent, Boksenberg and Steidel (1981 November) and our earliest measurements (1990 November and December). We have no information on changes in other z(sub a) approximately equal z(sub e) absorption lines. Continued monitoring since 1990 November shows no clear changes in any of the absorptions between approximately 1100 and 1640 A rest. The short timescale of the variability (less than or approximately equal to 2.9 yr rest) strongly suggests that the clouds are dense, compact, close to the QSO, and photoionized by the QSO continuum. If the line variability is caused by changes in the ionization, the timescale requires densities greater than approximately 4000/cu cm. Photoionization calculations place the absorbing clouds within approximately 200 pc of the continuum source. The full range of line ionizations (from Ne VIII lambda 774 to C III lambda 977) in optically thin gas (no Lyman limit) implies that the absorbing regions span a factor of more than approximately 10 in distance or approximately 100 in density. Across these regions, the total hydrogen (H I + H II) column ranges from a few times 10(exp 18)/sq cm in the low-ionization gas to approximately 10(exp 20)/sq cm where the Ne VIII doublet forms. The metallicity is roughly solar or higher, with nitrogen possibly more enhanced by factors of a few. The clouds might contribute significant line emission if they nearly envelop the QSO. The presence of highly ionized Ne VIII lambda 774 absorption near the QSO supports recent studies that link z(sub a) approximately equal to z(sub e) systems with X-ray 'wamr absorbers. We show that the

  20. Clear evidence for the presence of O VI absorption in QSO metal systems

    NASA Technical Reports Server (NTRS)

    Lu, Limin; Savage, Blair D.

    1993-01-01

    We have detected O VI 1031.93 A, 1037.62 A doublet absorption in a composite QSO spectrum formed from a large number of intervening C IV absorption systems. The detections constitute the first firm evidence for the presence of O VI in intervening QSO metal absorption systems. The equivalent width of the detected O VI absorption implies an O VI column density N(O VI) not less than 2.8 x 10 exp 14/sq cm. This value, together with the nondetection of the N V 1238.82 A, 1242.80 A doublet absorption, suggests that N(O VI)/N(N V) not less than 4.4. For collisionally ionized gas with a solar O to N abundance ratio in thermal equilibrium the above ratio requires a temperature T not less than 2.5 x 10 exp 5 K. It is found that C IV systems which show low-ionization species and those which do not both have associated O VI absorption, suggesting that O VI is probably present in all C IV systems. We also find that C IV systems which show low-ionization species on average have stronger high-ionization absorption lines than those which do not. A simple interpretation was given to explain this trend.

  1. Fine-structure Constancy Measurements in QSO Absorption Lines

    NASA Astrophysics Data System (ADS)

    Whitmore, Jonathan B.

    2013-01-01

    The ESO Large Programme 185.A-0745 has awarded 10 nights on the VLT-UVES spectrograph for the study of the possible variation in the fine structure constant. We will present the fine-structure measurements from two lines of sight and several absorption systems. We will also present updated systematic error analyses.

  2. 1E 0104.2 + 3153 - A broad absorption-line QSO viewed through a giant elliptical galaxy

    NASA Technical Reports Server (NTRS)

    Stocke, J. T.; Liebert, J.; Schild, R.; Gioia, I. M.; Maccacaro, T.

    1984-01-01

    The optical identification of the X-ray source 1E 0104.2 + 3153 is complicated by the close projection of a broad absorption-line (BAL) QSO (z = 2.027) 10 arcsec from a giant elliptical galaxy (z = 0.111) at the center of a compact group of galaxies. At only 1.2 de Vaucouleur radii (16 kpc for H sub 0 = 100 km/s Mpc) this QSO-galaxy projection is the closest yet discovered. Based upon current observations, the source of the X-ray emission cannot be conclusively determined. Present in the BAL QSO spectrum are extremely strong Ca II H and K absorption lines due to the intervening galaxy, the first optical detection of the cold interstellar medium in an elliptical galaxy. The strength of these lines (EW = 2 and 1 A) requires observation through several interstellar clouds in the line of sight to the QSO. By its proximity to the central regions of the elliptical galaxy and the relative distances of the galaxy and QSO, this QSO is a particularly good candidate for observing dramatic transient gravitational lensing phenomena due to halo stars in the foreground galaxy.

  3. Clustering properties of high matter density peaks from UVES observations of QSO pairs

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.

    2003-06-01

    The association of high H 0 column density absorption systems in QSO spectra with galactic objects has been widely verified at redshifts up to z ~ 1, by direct imaging of QSO fields and follow-up spectroscopy (Guillemin & Bergeron 1997; Le Brun et al. 1997). We study the transverse clustering properties of these tracers of high matter density peaks, by looking for coincident absorption systems in adjacent lines of sight toward QSO pairs and groups (D'Odorico et al. 2002).

  4. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+641. 2.5

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present a moderate-resolution (approximately 20 km/s) spectrum of the broad-absorption line QSO PG 1351+64 between 915-1180 angstroms, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III lambda977, Ly-beta, O VI lambda-lambda-1032,1038, Ly-alpha, N V lambda-lambda-1238,1242, Si IV lambda-lambda-1393,1402, and C IV lambda-lambda-1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km/s with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly-alpha flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The ultraviolet continuum shows a significant change in slope near 1050 angstroms in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21)/s, unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  5. Ultraviolet Broad Absorption Features and the Spectral Energy Distribution of the QSO PG 1351+64. 3.1

    NASA Technical Reports Server (NTRS)

    Zheng, W.; Kriss, G. A.; Wang, J. X.; Brotherton, M.; Oegerle, W. R.; Blair, W. P.; Davidsen, A. F.; Green, R. F.; Hutchings, J. B.; Kaiser, M. E.; Fisher, R. (Technical Monitor)

    2001-01-01

    We present a moderate-resolution (approximately 20 km s(exp -1) spectrum of the mini broad absorption line QSO PG 1351+64 between 915-1180 A, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE). Additional low-resolution spectra at longer wavelengths were also obtained with the Hubble Space Telescope (HST) and ground-based telescopes. Broad absorption is present on the blue wings of C III (lambda)977, Ly(beta), O VI (lambda)(lambda)1032,1038, Ly(alpha), N V (lambda)(lambda)1238,1242, Si IV (lambda)(lambda)1393,1402, and C IV (lambda)(lambda)1548,1450. The absorption profile can be fitted with five components at velocities of approximately -780, -1049, -1629, -1833, and -3054 km s(exp -1) with respect to the emission-line redshift of z = 0.088. All the absorption components cover a large fraction of the continuum source as well as the broad-line region. The O VI emission feature is very weak, and the O VI/Ly(alpha) flux ratio is 0.08, one of the lowest among low-redshift active galaxies and QSOs. The UV (ultraviolet) continuum shows a significant change in slope near 1050 A in the restframe. The steeper continuum shortward of the Lyman limit extrapolates well to the observed weak X-ray flux level. The absorbers' properties are similar to those of high-redshift broad absorption-line QSOs. The derived total column density of the UV absorbers is on the order of 10(exp 21) cm(exp -2), unlikely to produce significant opacity above 1 keV in the X-ray. Unless there is a separate, high-ionization X-ray absorber, the QSO's weak X-ray flux may be intrinsic. The ionization level of the absorbing components is comparable to that anticipated in the broad-line region, therefore the absorbers may be related to broad-line clouds along the line of sight.

  6. QSO absorption lines: The UV rest frame from 0

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher W.

    1997-05-01

    By charting the kinematic, chemical, and ionization conditions of galactic and intergalactic gas over the redshift range 0-4 with QSO absorption lines, the evolution of chemical abundances, the UV meta-galactic background, and the clustering dynamics of galactic gas can be studied. Keck/HIRES Mg II λ2796 profiles arising in z~1 galaxies are presented and the Mg II kinematic clustering function is given. The intriguing z=0.93 systems toward Q1206+459 are shown and compared to z~2 Keck/HIRES C IV profiles to illustrate how HST/STIS can be exploited for studies of the high ionization conditions in z<=1 Mg II selected systems. The scientific motives and plans for a large IR 2<=z<=4 Mg II survey with the Hobby-Eberly Telescope are presented.

  7. Correlation of QSO absorption lines in universes dominated by cold dark matter

    NASA Technical Reports Server (NTRS)

    Salmon, J.; Hogan, C.

    1986-01-01

    Theoretical predictions for the redshift correlations between QSO absorption-line systems are investigated in the context of 'cold dark matter' cosmological models. Particles in 'particle-mesh' N-body simulations are interpreted as absorbing clouds at epochs corresponding to mean redshifts, z, of 0.0, 1.25, and 3.0. The velocity correlation function for absorbing clouds is found by passing lines-of-sight through the systems and computing velocity differences for those particles which lie close to the lines. It depends strongly on z and Omega but only weakly, if at all, on the number density, diameter or mass of the clouds. Two interpretations are possible: (1) the heavy element absorption systems are associated with galaxies which are an unbiased sample of the mass distribution in an Omega(0) = 0.2 universe or (2) the Lyman-alpha absorbers are an unbiased sample of the mass in an Omega(0) = 1 universe and the heavy-element absorption systems, like galaxies, are more strongly clustered than the mass.

  8. The Dust, Nebular Emission, and Dependence on QSO Radio Properties of the Associated Mg II Absorption Line Systems

    NASA Astrophysics Data System (ADS)

    Khare, Pushpa; Berk Daniel, Vanden; Rahmani, Hadi; York, Donald G.

    2014-10-01

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, <=3000 km s-1 in units of velocity of light, β, <=0.01) with 0.4 <=z abs <= 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 109 M ⊙ than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z abs > z em, which could be infalling galaxies.

  9. Ca II and Na I absorption in the QSO S4 0248 + 430 due to an intervening galaxy

    NASA Technical Reports Server (NTRS)

    Womble, Donna S.; Junkkarinen, Vesa T.; Cohen, Ross D.; Burbidge, E. Margaret

    1990-01-01

    Observations of the QSO S4 0248 + 430 and a nearby anonymous galaxy are presented. Two absorption components are found in both Ca II H and K and Na I D1 and D2 at z(a) = 0.0515, 0.0523. Column densities of log N(Ca II) = 13.29, 13.50, and log N(Na I) = 13.79, 14.18 are found for z(a) = 0.0515, 0.0523 absorption systems, respectively. The column density ratios imply considerable calcium depletion and disk-type absorbing gas. At least one and possibly both absorption components are produced by high-velocity gas. A broadband image of the field shows an asymmetrical armlike feature or possible tidal tail covering and extending past the position of the QSO. The presence of this extended feature and the apparent difference between the absorption velocities and galaxy rotation velocity suggest that the absorbing gas is not ordinary disk gas, but rather is a result of tidal disruption.

  10. The spatial and kinematic structure of QSO metal-line absorption systems

    NASA Technical Reports Server (NTRS)

    Lanzetta, Kenneth M.

    1992-01-01

    Recent attempts to infer the spatial and kinematic distributions of the material responsible for absorption lines observed in the spectra of background QSOs are presented. Current models of the absorbing regions are compared, and initial observational results are described. This research is expected to lead eventually to a detailed picture of the extended gaseous halo regions of galaxies at early evolutionary stages and to an understanding of the physical processes at work in these halos.

  11. The dust, nebular emission, and dependence on QSO radio properties of the associated Mg II absorption line systems

    SciTech Connect

    Khare, Pushpa; Daniel, Vanden Berk; Rahmani, Hadi; York, Donald G.

    2014-10-10

    We studied dust reddening and [O II] emission in 1730 Mg II associated absorption systems (AAS; relative velocity with respect to QSOs, ≤3000 km s{sup –1}; in units of velocity of light, β, ≤0.01) with 0.4 ≤z {sub abs} ≤ 2 in the Sloan Digital Sky Survey DR7, focusing on their dependence on the radio and other QSO properties. We used control samples, several with matching radio properties, to show that (1) AAS in radio-detected (RD) QSOs cause 2.6 ± 0.2 times higher dust extinction than those in radio-undetected (RUD) ones, which in turn cause 2.9 ± 0.7 times the dust extinction in the intervening systems; (2) AAS in core-dominated QSOs cause 2.0 ± 0.1 times higher dust extinction than those in lobe-dominated QSOs; (3) the occurrence of AAS is 2.1 ± 0.2 times more likely in RD QSOs than in RUD QSOs and 1.8 ± 0.1 time more likely in QSOs having black holes with masses larger than 1.23 × 10{sup 9} M {sub ☉} than in those with lower-mass black holes; and (4) there is excess flux in [O II]λ3727 emission in the composite spectra of the AAS samples compared with those of the control samples, which is at the emission redshift. The presence of AAS enhances the O II emission from the active galactic nucleus and/or the host galaxy. This excess is similar for both RD and RUD samples and is 2.5 ± 0.4 times higher in lobe-dominated samples than in core-dominated samples. The excess depends on the black hole mass and Eddington ratio. All these point to the intrinsic nature of the AAS except for the systems with z {sub abs} > z {sub em}, which could be infalling galaxies.

  12. Dust depletion of Ca and Ti in QSO absorption-line systems

    NASA Astrophysics Data System (ADS)

    Guber, C. R.; Richter, P.

    2016-06-01

    Aims: To explore the role of titanium- and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods: We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z ≤ 0.5 to measure column densities (or limits) for Ca ii and Ti ii. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z ~ 3.8. Our absorber sample contains 110 absorbers including damped Lyman α systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the Milky Way and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results: Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] ≈ 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions: We conclude that Ca ii and Ti ii bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems.

  13. X-Raying the Ultraluminous Infrared Starburst Galaxy and Broad Absorption Line QSO Markarian 231 with Chandra

    NASA Technical Reports Server (NTRS)

    Gallagher, S. C.; Brandt, W. N.; Chartas, G.; Garmire, G. P.; Sambruna, R. M.

    2002-01-01

    With 40 ks of Clzandra ACIS-S3 exposure, new information on both the starburst and QSO components of the X-ray emission of Markarian 231, an ultraluminous infrared galaxy and broad absorption line QSO, has been obtained. The bulk of the X-ray luminosity is emitted from an unresolved nuclear point source, and the spectrum is remarkably hard, with the majority of the flux emitted above 2 keV. Most notably, significant nuclear variability (a decrease of -45% in approximately 6 hr) at energies above 2 keV indicates that Chuizdra has probed within light-hours of the central black hole. Although we concur with Maloney & Reynolds that the direct continuum is not observed, this variability coupled with the 188 eV upper limit on the equivalent width of the Fe K o emission line argues against the reflection-dominated model put forth by these authors based on their ASCA data. Instead, we favor a model in which a small, Compton-thick absorber blocks the direct X-rays, and only indirect, scattered X-rays from multiple lines of sight can reach the observer. Extended soft, thermal emission encompasses the optical extent of the galaxy and exhibits resolved structure. An off-nuclear X-ray source with a 0.35-8.0 keV luminosity of Lx = 7 x 10 sup39 ergs s sup -1 , consistent with the ultraluminous X-ray sources in other nearby starbursts, is detected. We also present an unpublished Faint Object Spectrograph spectrum from the Hirhhle Spuce Telescope archive showing the broad C IV absorption.

  14. Variable X-Ray Absorption in the Mini-BAL QSO PG 1126-041

    NASA Technical Reports Server (NTRS)

    Giustini, M.; Cappi, M.; Chartas, G.; Dadina, M.; Eracleous, M.; Ponti, G.; Proga, D.; Tombesi, F.; Vignali, C.; Palumbo, G. G. C.

    2011-01-01

    Context. X-ray studies of AGN with powerful nuclear winds are important to constrain the physics of the inner accretion/ejection flow around SMBH, and to understand the impact of such winds on the AGN environment. Aims. Our main scientific goal is to constrain the properties of a variable outflowing absorber that is thought to be launched near the SMBH of the mini-BAL QSO PG 1126-041 using a multi-epoch observational campaign performed with XMM-Newton. Methods. We performed temporally resolved X-ray spectroscopy and simultaneous UV and X-ray photometry on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Results. We found complex X-ray spectral variability on time scales of both months and hours, best reproduced by means of variable massive ionized absorbers along the line of sight. As a consequence, the observed optical-to-X-ray spectral index is found to be variable with time. In the highest signal-to-noise observation we detected highly ionized X-ray absorbing material outflowing much faster (u(sub X) approx. 16 500 km/s) than the UV absorbing one (u(sub uv) approx. 5,000 km/s). This highly ionized absorber is found to be variable on very short (a few kiloseconds) time scales. Conclusions. Our findings are qualitatively consistent with line driven accretion disk winds scenarios. Our observations have opened the time-resolved X-ray spectral analysis field for mini-BAL QSOs; only with future deep studies will we be able to map the dynamics of the inner flow and understand the physics of AGN winds and their impact on the environment.

  15. Creating semiconductor metafilms with designer absorption spectra

    PubMed Central

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  16. Creating semiconductor metafilms with designer absorption spectra

    NASA Astrophysics Data System (ADS)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  17. Creating semiconductor metafilms with designer absorption spectra.

    PubMed

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L

    2015-01-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells. PMID:26184335

  18. Far-ultraviolet absorption spectra of quasars: How to find missing hot gas and metals

    NASA Technical Reports Server (NTRS)

    Verner, D. A.; Tytler, David; Barthel, P. D.

    1994-01-01

    We show that some high-redshift QSO absorption systems that reveal only the H I Lyman series lines at wavelengths visible from the ground maybe a new class of ultra-high-ionization metal line systems, with metal lines in the far-UV region which is now being explored with satellites. At high temperatures or in intense radiation fields metal systems will not show the usual C IV absorption, and O VI will become the most prominent metal absorber. At still higher ionization, O IV also becomes weak and the strongest metal lines are from Ne VIII, Mg X and Si XII, which have doublets in the rangs 500-800 A. Hence very high ionization metal systems will not show metal lines in existing spectra. Recent X-ray observations show that galaxy halos contain hot gas, so we predict that far-UV spectra of QSOs will also show this gas.

  19. Absorption spectra of cold dilute solid solutions

    SciTech Connect

    Holland, R.F.; Maier, W.B. II; Freund, S.; Beattie, W.H.

    1983-06-01

    Infrared absorption spectra have been obtained for some compounds trapped in crystalline solids by freezing liquid Xe, Kr, Ar, or CH/sub 4/ solutions. The optical quality of the solid solutions is good, and they have been cooled to approx.80 K in 1.35 cm sample thicknesses to study the absorption in fundamental vibrational bands of the solutes. In the cases discussed, the bands are narrow, with observed full widths at half-maximum absorbance 0.05--0.30 cm/sup -1/ greater than the instrumental resolution (0.18--0.29 cm/sup -1/). The spectra appear to be free of ''multiple site'' and solute aggregate absorptions. Spectra displaying isotropic splitting in bands of natural BCl/sub 3/, SeF/sub 6/, OsO/sub 4/, TiCl/sub 4/, and MoF/sub 6/ are presented, and band frequencies are compared with some results obtained in evaporative matrices, in the gas phase, and in liquid solutions. For this comparison we have obtained some spectra of SeF/sub 6/ and BCl/sub 3/ gas.

  20. Searching for space-time variation of the fine structure constant using QSO spectra: overview and future prospects

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    2010-11-01

    Current theories that seek to unify gravity with the other fundamental interactions suggest that spatial and temporal variation of fundamental constants is a possibility, or even a necessity, in an expanding Universe. Several studies have tried to probe the values of constants at earlier stages in the evolution of the Universe, using tools such as big-bang nucleosynthesis, the Oklo natural nuclear reactor, quasar absorption spectra, and atomic clocks (see, e.g. Flambaum & Berengut (2009)).

  1. Absorption Features in Soil Spectra Assessment.

    PubMed

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices. PMID:26555184

  2. Millimeter wave absorption spectra of biological samples

    SciTech Connect

    Gandhi, O.P.; Hagmann, M.J.; Hill, D.W.; Partlow, L.M.; Bush, L.

    1980-01-01

    A solid-state computer-controlled system has been used to make swept-frequency measurements of absorption of biological specimens from 26.5 to 90.0 GHz. A wide range of samples was used, including solutions of DNA and RNA, and suspensions of BHK-21/C13 cells, Candida albicans, C krusei, and Escherichia coli. Sharp spectra reported by other workers were not observed. The strong absorbance of water (10--30 dB/mm) caused the absorbance of all aqueous preparations that we examined to have a water-like dependence on frequency. Reduction of incident power (to below 1.0 microW), elimination of modulation, and control of temperature to assure cell viability were not found to significantly alter the water-dominated absorbance. Frozen samples of BHK-21/C13 cells tested at dry ice and liquid nitrogen temperatures were found to have average insertion loss reduced to 0.2 dB/cm but still showed no reproducible peaks that could be attributed to absorption spectra. It is concluded that the special resonances reported by others are likely to be in error.

  3. A HIRES Detection of NA I D Absorption in the Spectrum of the QSO PKS 2020-370 Due to the Galaxy Klemola 31A

    NASA Astrophysics Data System (ADS)

    Junkkarinen, V. T.; Barlow, T. A.

    1994-12-01

    By using the Keck telescope and HIRES spectrograph we have detected Na I D absorption lines in the spectrum of the QSO PKS 2020-370 (V = 17.5, z = 1.048) due to the galaxy Klemola 31A (z = 0.0288). The PKS 2020-370 line of sight is near an apparent spiral arm only 20" from the nucleus of Klemola 31A which corresponds to 17 kpc (H_o = 50 km s(-1) Mpc(-1) ). The spectrum of PKS 2020-370 has strong Ca II absorption lines (W_λ ~ 350 m Angstroms \\ for the K line) at the galaxy redshift (Boksenberg et al, 1980, ApJ, 242, L145), but previous attempts to detect Na I have resulted in upper limits (Boisse et al. 1988, A&A, 191, 193, Womble, 1992, thesis UCSD). We observed PKS 2020-370 with HIRES in May 1994 at a resolution of 8 km s(-1) FWHM for a total of 90 minutes. The Na I D doublet is detected with a total W_λ for the Na I 5891.6 Angstroms \\ (vac) absorption line of about 160 m Angstroms . The absorption appears as two main velocity components separated by 23 km s(-1) . The optically thin estimate for N(Na I) = 1.0 times 10(12) cm(-2) gives an estimated N(Ca II)/N(Na I) = 5. This value suggests that the gas in Klemola 31A along the QSO line of sight is ``halo like''. Along ``disk like'' lines of sight where Ca is thought to be depleted onto grains in our Galaxy, the N(Ca II)/N(Na I) ratio is usually small (<= 1). Other QSO--galaxy pairs often show disk like N(Ca II)/N(Na I) ratios when the line of sight intersects starlight at 25 mag per sq. arcsec (Womble, 1992 thesis UCSD). The PKS 2020-370 sightline is near the optical extent of Klemola 31A but the N(Ca II)/N(Na I) is consistent with the sightline passing through two clouds in the halo. This research has been supported in part by NASA NAS5--29293 and NAG5--1630.

  4. Studies of galaxies giving rise to QSO absorption systems and observations of the high-redshift universe

    NASA Astrophysics Data System (ADS)

    Chen, Hsiao-Wen

    I present a study of the galaxies that give rise to Lyman-α (Lyα) and triply ionized carbon (CIV) absorption lines observed in the spectra of background quasi-stellar objects (QSOs), as well as on studies of the high-redshift universe. By comparing the redshifts of galaxies and Lyα absorption systems along common lines of sight, I confirmed the existence of an anti- correlation between Lyα absorption equivalent width and galaxy impact parameter. Further analysis showed that tenuous gas is likely to be distributed around galaxies in spherical halos rather than in flattened disks with the gaseous extent scaling with galaxy B-band and K-band luminosities. I found that extended gaseous halos are a common and generic feature of galaxies over a wide range of luminosity and morphological type and Lyα absorption systems traced a significant and representative portion of the galaxy population. Applying the scaling relation between galaxy gaseous radius and galaxy B-band luminosity to predict the incidence of Lyα absorption systems originating in extended gaseous envelopes of galaxies, I found that luminous galaxies can explain about 50% of Lyα absorption systems with absorption equivalent width W > 0.3 Å. By comparing the redshifts of galaxies and CIV absorption systems along common lines of sight, I found that extended gaseous halos of galaxies have been metal contaminated out to large galactocentric radii, ~100 h-1 kpc. The covering factor of ionized gas in galactic halos was estimated to be 0.93 with a 1 σ lower bound of 0.83, which may strongly constrain the possibilities that CIV absorption systems arised in accreting satellite galaxies or in filaments of gravitationally collapsed structures. To study the high-redshift universe, I analyzed very deep slitless spectroscopy observations acquired by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. These observations are especially suited for identifying very distant galaxies due to

  5. Searching for space-time variation of the fine structure constant using QSO spectra: overview and future prospects

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest the possibility of spatial and temporal variation of fundamental ``constants'' in the Universe. Using quasar absorption systems we can probe the value of the fine-structure constant, alpha = e2/hbar c, over the history of the universe. Previous studies of three independent samples of data, containing 143 absorption systems spread from 2 to 10 billion years after big bang, hint that alpha was smaller 7 - 11 billion years ago. However competing studies show no such alpha -variation. The studies can be improved by utilising more atomic transitions that are seen in quasar spectra, however in many cases this is hampered by a lack of accurate laboratory frequency measurements. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions from the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 Å, and require an accuracy of better than 10-4 Å. We also discuss isotope shift measurements that are needed in order to resolve systematic effects in the study. Researchers who are interested in performing these measurements should contact the authors directly.

  6. VizieR Online Data Catalog: Absorption spectrum of the QSO PKS2126-158 (D'Odorico+ 1998)

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.

    1997-10-01

    Spectra of the zem=3.268 quasar PKS 2126-158 have been obtai the wavelength range 430-662nm with a resolution R=27000 and an average signal to noise ratio s/n=25 per resolution element. 12 metal absorption systems have been identified, two of which were previously unknown. All the lines shortward of the Lymanα emission not identified as due to metals have been fitted as Lymanα and Lymanβ. We reported statistical analysis of this sample of lines. In particular, the two-point correlation function for metal systems has been computed. (1 data file).

  7. Optical absorption spectra of dications of carotenoids

    SciTech Connect

    Jeevarajan, J.A.; Wei, C.C.; Jeevarajan, A.S.; Kispert, L.D.

    1996-04-04

    Quantitative optical absorption spectra of the cation radicals and the dications of canthaxanthin (I), {beta}carotene (II), 7`-cyano-7`-ethoxycarbonyl-7`-apo-{beta}-carotene (III), and 7`,7`-dimethyl-7`-apo-{beta}-carotene (IV) in dichloromethane solution are reported. Exclusive formation of dications occurs when the carotenoids are oxidized with ferric chloride. Addition of neutral carotenoid to the dications results in equilibrium formation of cation radicals. Oxidation with iodine in dichloromethane affords only cation radicals; electrochemical oxidation under suitable conditions yields both dications and cation radicals. Values of the optical parameters depend on the nature of the oxidative medium. The oscillator strengths calculated for gas phase cation radicals and dications of I-IV using the INDO/S method show the same trend as the experimental values. 31 refs., 4 figs., 2 tabs.

  8. Absorption spectra of irradiated XRCT radiochromic film

    NASA Astrophysics Data System (ADS)

    Butson, Martin J.; Cheung, Tsang; Yu, Peter K. N.

    2006-06-01

    Gafchromic XRCT radiochromic film is a self-developing high sensitivity radiochromic film product which can be used for assessment of delivered radiation doses which could match applications such as computed tomography (CT) dosimetry. The film automatically changes colour upon irradiation changing from a yellow to green/brown colour. The absorption spectra of Gafchromic XRCT radiochromic film as measured with reflectance spectrophotometry have been investigated to analyse the dosimetry characteristics of the film. Results show two main absorption peaks produced from irradiation located at 636 nm and 585 nm. This is similar to EBT Gafchromic film. A high level of sensitivity is found for this film with a 1 cGy applied dose producing an approximate net optical density change of 0.3 at 636 nm. This high sensitivity combined with its relatively energy independent nature around the 100 kVp to 150 kVp x-ray energy range provides a unique enhancement in dosimetric measurement capabilities over currently available dosimetry films for CT applications.

  9. Determination of phytoplankton composition using absorption spectra.

    PubMed

    Martínez-Guijarro, R; Romero, I; Pachés, M; Del Río, J G; Martí, C M; Gil, G; Ferrer-Riquelme, A; Ferrer, J

    2009-05-15

    Characterisation of phytoplankton communities in aquatic ecosystems is a costly task in terms of time, material and human resources. The general objective of this paper is not to replace microscopic counts but to complement them, by fine-tuning a technique using absorption spectra measurements that reduces the above-mentioned costs. Therefore, the objective proposed in this paper is to assess the possibility of achieving a qualitative determination of phytoplankton communities by classes, and also a quantitative estimation of the number of phytoplankton cells within each of these classes, using spectrophotometric determination. Samples were taken in three areas of the Spanish Mediterranean coast. These areas correspond to estuary systems that are influenced by both continental waters and Mediterranean Sea waters. 139 Samples were taken in 7-8 stations per area, at different depths in each station. In each sample, the absorption spectrum and the phytoplankton classes (Bacyllariophyceae (diatoms), Cryptophyceae, Clorophyceae, Chrysophyceae, Prasynophyceae, Prymnesophyceae, Euglenophyceae, Cyanophyceae, Dynophyceae and the Synechococcus sp.) were determined. Data were analysed by means of the Partial Least Squares (PLS) multivariate statistical technique. The absorbances obtained between 400 and 750 nm were used as the independent variable and the cell/l of each phytoplankton class was used as the dependent variable, thereby obtaining models which relate the absorbance of the sample extract to the phytoplankton present in it. Good results were obtained for diatoms (Bacillarophyceae), Chlorophyceae and Cryptophyceae. PMID:19269434

  10. QSO ABSORPTION SYSTEMS DETECTED IN Ne VIII: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION

    SciTech Connect

    Meiring, J. D.; Tripp, T. M.; Werk, J. K.; Prochaska, J. X.; Howk, J. C.; Jenkins, E. B.; Lehner, N.; Sembach, K. R.

    2013-04-10

    Using high-resolution, high signal-to-noise ultraviolet spectra of the z{sub em} = 0.9754 quasar PG1148+549 obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, we study the physical conditions and abundances of Ne VIII+O VI absorption line systems at z{sub abs} = 0.68381, 0.70152, 0.72478. In addition to Ne VIII and O VI, absorption lines from multiple ionization stages of oxygen (O II, O III, O IV) are detected and are well aligned with the more highly ionized species. We show that these absorbers are multiphase systems including hot gas (T Almost-Equal-To 10{sup 5.7} K) that produces Ne VIII and O VI, and the gas metallicity of the cool phase ranges from Z = 0.3 Z{sub Sun} to supersolar. The cool ( Almost-Equal-To 10{sup 4} K) phases have densities n{sub H} Almost-Equal-To 10{sup -4} cm{sup -3} and small sizes (<4 kpc); these cool clouds are likely to expand and dissipate, and the Ne VIII may be within a transition layer between the cool gas and a surrounding, much hotter medium. The Ne VIII redshift density, dN/dz{approx}7{sup +7}{sub -3}, requires a large number of these clouds for every L > 0.1 L* galaxy and a large effective absorption cross section ({approx}> 100 kpc), and indeed, we find a star-forming {approx}L {sup *} galaxy at the redshift of the z{sub abs} = 0.72478 system, at an impact parameter of 217 kpc. Multiphase absorbers like these Ne VIII systems are likely to be an important reservoir of baryons and metals in the circumgalactic media of galaxies.

  11. X-Ray Absorption Spectra of Uranium by Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Adachi, Hirohiko; Fujima, Kazumi; Taniguchi, Kazuo; Miyake, Chie; Imoto, Shosuke

    1981-08-01

    The X-ray absorption spectra of U, UO2 and UCl4 near the U OIV and OV thresholds have been measured by use of synchrotron radiation. The absorption peaks at about 100 eV and 110 eV are observed for all of these materials. However, the detailed structure of the spectra depend on the chemical state.

  12. The absorption spectrum of the QSO PKS 2126-158 (z_em =3.27) at high resolution

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Cristiani, S.; D'Odorico, S.; Fontana, A.; Giallongo, E.

    1998-01-01

    Spectra of the z_em = 3.268 quasar PKS 2126-158 have been obtained in the range lambda lambda 4300-6620 Angstroms with a resolution Rsmallimeq27000 and an average signal-to-noise ratio s/nsmallimeq 25 per resolution element. The list of the identified absorption lines is given together with their fitted column densities and Doppler widths. The modal value of the Doppler parameter distribution for the Lyalpha lines is smallimeq 25 km s(-1) . The column density distribution can be described by a power-law dn / dN ~ N(-beta ) with beta smallimeq 1.5. 12 metal systems have been identified, two of which were previously unknown. In order to make the column densities of the intervening systems compatible with realistic assumptions about the cloud sizes and the silicon to carbon overabundance, it is necessary to assume a jump beyond the He II edge in the spectrum of the UV ionizing background at z smallim 3 a factor 10 larger than the standard predictions for the integrated quasar contribution. An enlarged sample of C IV absorptions (71 doublets) has been used to analyze the statistical properties of this class of absorbers strictly related to galaxies. The column density distribution is well described by a single power-law, with beta =1.64 and the Doppler parameter distribution shows a modal value b_CIV smallimeq 14 km s(-1) . The two point correlation function has been computed in the velocity space for the individual components of C IV features. A significant signal is obtained for scales smaller than 200- 300 km s(-1) , xi (30< Delta v < 90 km\\ s(-1) ) = 33 +/- 3. A trend of decreasing clustering amplitude with decreasing column density is apparent, analogously to what has been observed for Lyalpha lines. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No. 2-013-49K). Table 2 is only available in electronic from via anonymous ftp 130.79.128.5 or http://cdsweb.u-strasbg.fr/Abstract.html

  13. Analysis of molecular hydrogen absorption toward QSO B0642–5038 for a varying proton-to-electron mass ratio

    SciTech Connect

    Bagdonaite, J.; Ubachs, W.; Murphy, M. T.; Whitmore, J. B.

    2014-02-10

    Rovibronic molecular hydrogen (H{sub 2}) transitions at redshift z {sub abs} ≅ 2.659 toward the background quasar B0642–5038 are examined for a possible cosmological variation in the proton-to-electron mass ratio μ. We utilize an archival spectrum from the Very Large Telescope/Ultraviolet and Visual Echelle Spectrograph (UVES) with a signal-to-noise ratio of ∼35 per 2.5 km s{sup –1} pixel at the observed H{sub 2} wavelengths (335-410 nm). Some 111 H{sub 2} transitions in the Lyman and Werner bands have been identified in the damped Lyα system for which a kinetic gas temperature of ∼84 K and a molecular fraction log f = –2.18 ± 0.08 are determined. The H{sub 2} absorption lines are included in a comprehensive fitting method, which allows us to extract a constraint on a variation of the proton-electron mass ratio Δμ/μ from all transitions at once. We obtain Δμ/μ = (17.1 ± 4.5{sub stat} ± 3.7{sub sys}) × 10{sup –6}. However, we find evidence that this measurement has been affected by wavelength miscalibration errors recently identified in UVES. A correction based on observations of objects with solar-like spectra gives a smaller Δμ/μ value and contributes to a larger systematic uncertainty: Δμ/μ = (12.7 ± 4.5{sub stat} ± 4.2{sub sys}) × 10{sup –6}.

  14. Cosmic Metallicity from ZnII-Selected QSO Absorption Line Systems Near Redshift z=1.2

    NASA Astrophysics Data System (ADS)

    Monier, Eric

    2010-09-01

    We have searched nearly 15,000 strong intervening MgII systems in SDSS quasar spectra to measure spectral regions where weak, unsaturated metal lines are predicted to exist, with the aim of finding a representative sample of the strongest metal-line column density systems in the universe. These systems are clearly damped Lyman-alpha {DLA} systems, which track cosmologically intervening neutral gas regions that fall along the sightlines to background quasars. We propose STIS G230L spectroscopy of seven strong-ZnII-selected systems from this sample in order to measure their Lyman-alpha absorption profiles and derive their HI column densities. Since Zn is not depleted onto grains, measurement of N{HI} allows a direct measurement of the metal abundance in such systems. We expect the results to be representative of the upper envelope of the distribution of neutral-gas-phase metallicities near redshift z=1.2. If these systems are high-N{HI} DLAs {e.g., 6E21 atoms/cm^2} they will have metallicities typical of those normally found in DLAs {e.g., one-tenth solar}. However, if they are low-N{HI} DLAs {e.g., 2E20 atoms/cm(2) }, they will have supersolar metallicities. Since these DLAs are selected on the basis of their extreme metal-line properties, analysis of their metallicities and dust-to-gas ratios will lead to strong constraints on the range of properties exhibited by DLA systems.

  15. Absorption Spectra of Magnesium Sulphite Hexahydrate Doped with Nickel

    NASA Astrophysics Data System (ADS)

    Petkova, Petya N.; Bunzarov, Zhelyu I.; Iliev, Ilia A.; Dimov, Todor N.

    2007-04-01

    In the work are presented absorption spectra of MgSO3.6H2O monocrystals doped with Ni. The spectra are measured in a wide spectral range (200 - 1200nm) at room temperature with polarized light. The impurity of Ni changes essentially the absorption of MgSO3.6H2O because it causes the appearance of additional spectral structures.

  16. An investigation of a mathematical model for atmospheric absorption spectra

    NASA Technical Reports Server (NTRS)

    Niple, E. R.

    1979-01-01

    A computer program that calculates absorption spectra for slant paths through the atmosphere is described. The program uses an efficient convolution technique (Romberg integration) to simulate instrument resolution effects. A brief information analysis is performed on a set of calculated spectra to illustrate how such techniques may be used to explore the quality of the information in a spectrum.

  17. Optical Absorption Spectra of Sodium Borate Cobalt Doped Glasses

    SciTech Connect

    Elokr, M. M.; Hassan, M. A.; Yaseen, A. M.; Elokr, R.

    2007-02-14

    Glassy system: xNa2O-(100-x-y)B2O3-yCo3O4 has been prepared by conventional melt quenching technique. Optical absorption spectra have been obtained in the range 300 - 2500 nm at room temperature. An absorption edge was observed in the near UV range, the analysis of which reveals that indirect transition is the dominant absorption mechanism. All prepared samples exhibit blue color, indicating that the Co ions are acted upon by tetrahedral ligand field. Obtained spectra were used to estimate some ligand field parameters.

  18. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  19. Ultraviolet absorption spectra of mercuric halides.

    NASA Technical Reports Server (NTRS)

    Templet, P.; Mcdonald, J. R.; Mcglynn, S. P.; Kendrow, C. H.; Roebber, J. L.; Weiss, K.

    1972-01-01

    The gas phase transitions of the mercuric halides were observed in the UV region by operating at temperatures above 400 K and at vapor pressures on the order of 0.5 mm. Spectral features exhibited by the chloride, bromide, and iodide of mercury correlate energetically with bands previously designated as intermolecular charge transfer transitions. The solution spectra of mercuric iodide and deep color of the crystals (if not due to some solid state interactions) indicate that this molecule may also have longer wavelength transitions.

  20. Probing molecular chirality by coherent optical absorption spectra

    SciTech Connect

    Jia, W. Z.; Wei, L. F.

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  1. Demonstrating Absorption Spectra Using Commercially Available Incandescent Light Bulbs

    NASA Astrophysics Data System (ADS)

    Birriel, Jennifer J.

    In introductory astronomy courses, I typically introduce the three types of spectra: continuous, absorption line, and emission line. It is standard practice to use an ordinary incandescent light bulb to demonstrate the production of a continuous spectrum, and gas discharge tubes to demonstrate the production of an emission line spectrum. The concept of an absorption spectrum is more difficult for students to grasp. A variety of commercially available light bulbs can be used to demonstrate absorption spectra. Here I discuss the use of specialty incandescent light bulbs to demonstrate the phenomenon of absorption of the continuous spectrum produced by a hot tungsten filament. The bulbs examined include the GE Reveal bulb, yellow anti-insect lights, colored party bulbs, and an incandescent "black light" bulb. The bulbs can be used in a lecture or laboratory setting.

  2. IR absorption spectra of cellulose obtained from ozonated wood

    NASA Astrophysics Data System (ADS)

    Mamleeva, N. A.; Autlov, S. A.; Kharlanov, A. N.; Bazarnova, N. G.; Lunin, V. V.

    2015-08-01

    The kinetic curves of ozone absorption by aspen wood were obtained. Processing of wood with peracetic acid gave cellulose samples. The yields of ozonated wood, water-soluble compounds, and cellulose were determined for the samples corresponding to different consumptions of ozone. The IR absorption spectra of wood and cellulose isolated from ozonated wood were analyzed. The supramolecular structure of cellulose can be changed by varying the conditions of wood ozonation.

  3. A Simple Demonstration of Absorption Spectra Using Tungsten Holiday Lights

    ERIC Educational Resources Information Center

    Birriel, Jennifer J.

    2009-01-01

    In a previous paper submitted to the Demonstrations section (Birriel 2008, "Astronomy Education Review," 7, 147), I discussed using commercially available incandescent light bulbs for the purpose of demonstrating absorption spectra in the classroom or laboratory. This demonstration solved a long-standing problem that many of astronomy instructors…

  4. The OH - absorption spectra of low doped lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Kong, Yongfa; Zhang, Wanlin; Xu, Jingjun; Yan, Wenbo; Liu, Hongde; Xie, Xiang; Li, Xiaochun; Shi, Lihong; Zhang, Guangyin

    2004-07-01

    The OH - absorption spectra of low doped lithium niobate (LiNbO 3) crystals have been investigated. Though no apparent band shift is observed in these absorption spectra, their shapes are quite different. In order to analyze the information on the defect structure underlying these OH - absorption bands, the normalization and difference methods were employed. It was found that although the doping concentrations are under the thresholds the doping ions have apparent affect to the site occupation of OH - ions. The OH - vibrations related to Mg Li+ (Mg 2+ occupying Li-site) and In Li2+ are 3483 and 3484 cm -1 in LiNbO 3:Mg and LiNbO 3:In crystals, respectively. The absorption peak of LiNbO 3:Ti (2.5 mol%) crystal at 3487 cm -1 is mainly related to Ti Li3+-OH - and the 3489 cm -1 peak of LiNbO 3:Mg (5.0 mol%), Ti (10.0 mol%) related to Mg Li+-OH -, Ti Nb--OH - and Ti Li3+-OH -. Doping with Na improves the peak intensity near 3466 cm -1 and induces a new absorption peak at 3470 cm -1. The absorption bands of LiNbO 3 crystals codoped with trivalent ions are associated with the co-effect of the doped ions and have some different characteristics from mono-doped crystals.

  5. Infrared absorption spectra of metal carbides, nitrides and sulfides

    NASA Technical Reports Server (NTRS)

    Kammori, O.; Sato, K.; Kurosawa, F.

    1981-01-01

    The infrared absorption spectra of 12 kinds of metal carbides, 11 kinds of nitrides, and 7 kinds of sulfides, a total of 30 materials, were measured and the application of the infrared spectra of these materials to analytical chemistry was discussed. The measurements were done in the frequency (wave length) range of (1400 to 400/cm (7 to 25 mu). The carbides Al4C3, B4C, the nitrides AlN, BN, Si3N4, WB, and the sulfides Al2S3, FeS2, MnS, NiS and PbS were noted to have specific absorptions in the measured region. The sensitivity of Boron nitride was especially good and could be detected at 2 to 3 micrograms in 300 mg of potassium bromide.

  6. EPR and electronic absorption spectra of copper bearing turquoise mineral

    NASA Astrophysics Data System (ADS)

    Sharma, K. B. N.; Moorthy, L. R.; Reddy, B. J.; Vedanand, S.

    1988-10-01

    Electron paramagnetic resonance and optical absorption spectra of turquoise have been studied both at room and low temperatures. It is concluded from the EPR spectra that the ground state of Cu 2+ ion in turquoise is 2A g(d x2- y2) and it is sited in an elongated rhombic octahedron (D 2π). The observed absorption bands at 14970 and 18354 cm -1 are assigned at 2A g→ 2B 1 g( dx2- y2→ xy) and 2A g→[ su2B 3g(d x 2-y 2→d yz) respectively assuming D 2π symmetry which are inconsistent with EPR studies. The three bands in the NIR region are attributed to combinations of fundamental modes of the H 2O molecule present in the sample.

  7. Theoretical investigations of absorption and fluorescence spectra of protonated pyrene.

    PubMed

    Chin, Chih-Hao; Lin, Sheng Hsien

    2016-05-25

    The equilibrium geometry and 75 vibrational normal-mode frequencies of the ground and first excited states of protonated pyrene isomers were calculated and characterized in the adiabatic representation by using the complete active space self-consistent field (CASSCF) method. Electronic absorption spectra of solid neon matrixes in the wavelength range 495-415 nm were determined by Maier et al. and they were analyzed using time-dependent density functional theory calculations (TDDFT). CASSCF calculations and absorption and emission spectra simulations by one-photon excitation equations were used to optimize the excited and ground state structures of protonated pyrene isomers. The absorption band was attributed to the S0 → S1 electronic transition in 1H-Py(+), and a band origin was used at 20580.96 cm(-1). The displaced harmonic oscillator approximation and Franck-Condon approximation were used to simulate the absorption spectrum of the (1) (1)A' ← X[combining tilde](1)A' transition of 1H-Py(+), and the main vibronic transitions were assigned for the first ππ* state. It shows that the vibronic structures were dominated by one of the eight active totally symmetric modes, with ν15 being the most crucial. This indicates that the electronic transition of the S1((1)A') state calculated in the adiabatic representation effectively includes a contribution from the adiabatic vibronic coupling through Franck-Condon factors perturbed by harmonic oscillators. The present method can adequately reproduce experimental absorption and fluorescence spectra of a gas phase. PMID:27181017

  8. Optical absorption spectra of palladium doped gold cluster cations

    SciTech Connect

    Kaydashev, Vladimir E.; Janssens, Ewald Lievens, Peter

    2015-01-21

    Photoabsorption spectra of gas phase Au{sub n}{sup +} and Au{sub n−1}Pd{sup +} (13 ≤ n ≤ 20) clusters were measured using mass spectrometric recording of wavelength dependent Xe messenger atom photodetachment in the 1.9–3.4 eV photon energy range. Pure cationic gold clusters consisting of 15, 17, and 20 atoms have a higher integrated optical absorption cross section than the neighboring sizes. It is shown that the total optical absorption cross section increases with size and that palladium doping strongly reduces this cross section for all investigated sizes and in particular for n = 14–17 and 20. The largest reduction of optical absorption upon Pd doping is observed for n = 15.

  9. Oscillator strength measurements of atomic absorption lines from stellar spectra

    NASA Astrophysics Data System (ADS)

    Lobel, Alex

    2011-05-01

    Herein we develop a new method to determine oscillator strength values of atomic absorption lines with state-of-the-art detailed spectral synthesis calculations of the optical spectrum of the Sun and of standard spectral reference stars. We update the log(gf) values of 911 neutral lines observed in the KPNO-FTS flux spectrum of the Sun and high-resolution echelle spectra (R = 80 000) of Procyon (F5 IV-V) and Eps Eri (K2 V) observed with large signal-to-noise (S/N) ratios of 2000 using the new Mercator-Hermes spectrograph at La Palma Observatory (Spain). We find for 483 Fe I, 85 Ni I, and 51 Si I absorption lines in the sample a systematic overestimation of the literature log(gf) values with central line depths below 15%. We employ a curve-of-growth analysis technique to test the accuracy of the new oscillator strength values and compare calculated equivalent line widths to the Moore, Minnaert, and Houtgast atlas of the Sun. The online SpectroWeb database at http://spectra.freeshell.org interactively displays the observed and synthetic spectra and provides the new log(gf) values together with important atomic line data. The graphical database is under development for stellar reference spectra of every spectral sub-class observed with large spectral resolution and S/N ratios.

  10. Absorption Features in Spectra of Magnetized Neutron Stars

    SciTech Connect

    Suleimanov, V.; Hambaryan, V.; Neuhaeuser, R.; Potekhin, A. Y.; Pavlov, G. G.; Adelsberg, M. van; Werner, K.

    2011-09-21

    The X-ray spectra of some magnetized isolated neutron stars (NSs) show absorption features with equivalent widths (EWs) of 50-200 eV, whose nature is not yet well known.To explain the prominent absorption features in the soft X-ray spectra of the highly magnetized (B{approx}10{sup 14} G) X-ray dim isolated NSs (XDINSs), we theoretically investigate different NS local surface models, including naked condensed iron surfaces and partially ionized hydrogen model atmospheres, with semi-infinite and thin atmospheres above the condensed surface. We also developed a code for computing light curves and integral emergent spectra of magnetized neutron stars with various temperature and magnetic field distributions over the NS surface. We compare the general properties of the computed and observed light curves and integral spectra for XDINS RBS 1223 and conclude that the observations can be explained by a thin hydrogen atmosphere above the condensed iron surface, while the presence of a strong toroidal magnetic field component on the XDINS surface is unlikely.We suggest that the harmonically spaced absorption features in the soft X-ray spectrum of the central compact object (CCO) 1E 1207.4-5209 (hereafter 1E 1207) correspond to peaks in the energy dependence of the free-free opacity in a quantizing magnetic field, known as quantum oscillations. To explore observable properties of these quantum oscillations, we calculate models of hydrogen NS atmospheres with B{approx}10{sup 10}-10{sup 11} G(i.e., electron cyclotron energy E{sub c,e}{approx}0.1-1 keV) and T{sub eff} = 1-3 MK. Such conditions are thought to be typical for 1E 1207. We show that observable features at the electron cyclotron harmonics with EWs {approx_equal}100-200 eV can arise due to these quantum oscillations.

  11. Transient absorption spectra of the laser-dressed hydrogen atom

    NASA Astrophysics Data System (ADS)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  12. X-Ray Spectrum of a Narrow-Line QSO

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1998-01-01

    During the reporting period, seven papers using ASCA data, supported in whole or in part by this grant, were published or submitted to refereed journals. Their abstracts are given in this report, and the complete bibliographic references are listed in the Appendix. Titles include (1) A Broad-Band X-ray Study of the Geminga Pulsar; (2) ASCA Observations of PSR 1920+10 and PSR 0950+08; (3) X-ray and Optical Spectroscopy of IRAS 20181-2244: Not a Type 2 QSO, but a I Zw I Object; (4) Models for X-ray Emission from Isolated Pulsars; (5) Optical and X-ray Spectroscopy of 1E 0449.4-1823: Demise of the Original Type 2 QSO; (6) The ASCA Spectrum of the Broad-Line Radio Galaxy Pictor A: A Simple Power Law with No Fe Ka Line; and (7) ASCA Spectra of NGC 4388 and ESO 103-G35: Absorption, Reflection, and Variability in Intermediate Type Seyfert Galaxies.

  13. A REFINED QSO SELECTION METHOD USING DIAGNOSTICS TESTS: 663 QSO CANDIDATES IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Kim, Dae-Won; Protopapas, Pavlos; Trichas, Markos; Alcock, Charles; Rowan-Robinson, Michael; Khardon, Roni; Byun, Yong-Ik

    2012-03-10

    We present 663 QSO candidates in the Large Magellanic Cloud (LMC) selected using multiple diagnostics. We started with a set of 2566 QSO candidates selected using the methodology presented in our previous work based on time variability of the MACHO LMC light curves. We then obtained additional information for the candidates by crossmatching them with the Spitzer SAGE, the Two Micron All Sky Survey, the Chandra, the XMM, and an LMC UBVI catalog. Using this information, we specified six diagnostic features based on mid-IR colors, photometric redshifts using spectral energy distribution template fitting, and X-ray luminosities in order to further discriminate high-confidence QSO candidates in the absence of spectra information. We then trained a one-class Support Vector Machine model using the diagnostics features of the confirmed 58 MACHO QSOs. We applied the trained model to the original candidates and finally selected 663 high-confidence QSO candidates. Furthermore, we crossmatched these 663 QSO candidates with the newly confirmed 151 QSOs and 275 non-QSOs in the LMC fields. On the basis of the counterpart analysis, we found that the false positive rate is less than 1%.

  14. Optical Absorption Spectra of Hydrous Wadsleyite to 32 GPa

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Goncharov, A. F.; Jacobsen, S. D.; Bina, C. R.; Frost, D. J.

    2009-05-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivity of the Earth's interior [e.g., 1]. Recent high-pressure studies show that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually could contribute to the heat flow in the Earth's interior [2]. In this study we use gem-quality single-crystals of hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, that were synthesized at 18 GPa and 1400 °C in a multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For absorption measurements a double-polished 50 μm sized single-crystal of wadsleyite was loaded in a diamond-anvil cell with neon as pressure medium. Optical absorption spectra were recorded at ambient conditions as well as up to 32 GPa from 400 to 50000 cm-1. At ambient pressure the absorption spectrum reveals two broad bands at - 10000 cm-1 and -15000 cm-1, and an absorption edge in the visible-ultraviolet range. With increasing pressure the absorption spectrum changes, both bands continuously shift to higher frequencies as has been observed for ringwoodite [2], but is contrary to earlier presumptions for wadsleyite [3]. Here, we will discuss band assignment along with the influence of iron, compare our results to previous absorption studies of mantle materials [2], and analyze possible implications for radiative conductivity of the transition zone. References: [1] Goncharov et al. (2008), McGraw Yearbook Sci. Tech., 242-245. [2] Keppler & Smyth (2005), Am. Mineral., 90 1209-1212. [3] Ross (1997), Phys. Chem. Earth, 22 113-118.

  15. The x-ray absorption spectra of water and ice

    NASA Astrophysics Data System (ADS)

    Kong, Lingzhu; Wu, Xifan; Car, Roberto

    2012-02-01

    We calculate the x-ray absorption spectra of liquid water at STP, hexagonal ice and amorphous low- and high-density ice at T=269K, using the static Coulomb-hole and screened exchange self energy approach ootnotetextW. Chen, X. Wu and R. Car, PRL 105, 017802 (2008) . We take the nuclear quantum effects into account by averaging over the Feynman path-integral replicas. We find that quantum disorder is particularly important in liquid water where it substantially improves the structure ootnotetextJ. Morrone and R. Car, PRL 101, 017801 (2008) Compared to Ref. 2, we use an improved screening model that includes the approximate local field correction ootnotetextM. Hybertsen and S. G. Louie, PRB 37, 2733 (1988). The resulting spectra are in significantly better agreement with experiments than in previous calculations.

  16. Optical absorption and scattering spectra of pathological stomach tissues

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Lakhina, M. A.

    2011-03-01

    Diffuse reflection spectra of biotissues in vivo and transmission and reflection coefficients for biotissues in vitro are measured over 300-800 nm. These data are used to determine the spectral absorption and scattering indices and the scattering anisotropy factor for stomach mucous membranes under normal and various pathological conditions (chronic atrophic and ulcerous defects, malignant neoplasms). The most importan tphysiological (hemodynamic and oxygenation levels) and structural-morphological (scatterer size and density) parameters are also determined. The results of a morphofunctional study correlate well with the optical properties and are consistent with data from a histomorphological analysis of the corresponding tissues.

  17. NOTE: Visible absorption spectra of radiation exposed SIRAD dosimeters

    NASA Astrophysics Data System (ADS)

    Butson, Martin J.; Cheung, Tsang; Yu, Peter K. N.

    2006-12-01

    SIRAD badge dosimeters are a new type of personal dosimeter designed to measure radiation exposure up to 200 R and give a visual qualitative measurement of exposure. This is performed using the active dosimeter window, which contains a radiochromic material amalgamated in the badge assembly. When irradiated, the badges active window turns blue, which can be matched against the given colour chart for a qualitative assessment of the exposure received. Measurements have been performed to analyse the absorption spectra of the active window, and results show that the window automatically turns a blue colour upon irradiation and produces two peaks in the absorption spectra located at 617 nm and 567 nm. When analysed with a common computer desktop scanner, the optical density response of the film to radiation exposure is non-linear but reproducible. The net OD of the film was 0.21 at 50 R exposure and 0.31 at 200 R exposure when irradiated with a 6 MV x-ray energy beam. When compared to the calibration colour strips at 6 MV x-ray energy the film's OD response matches relatively well within 3.5%. An approximate 8% reduction in measured OD to exposure was seen for 250 kVp x-rays compared to 6 MV x-rays. The film provides an adequate measurement and visually qualitative assessment of radiation exposure for levels in the range of 0 to 200 R.

  18. Hubble Space Telescope faint object spectrograph Quasar Absorption System Snapshot Survey (AbSnap). 1: Astrometric optical positions and finding charts of 269 bright QSO

    NASA Technical Reports Server (NTRS)

    Bowen, David V.; Osmer, Samantha J.; Blades, J. Chris; Tytler, David; Cottrell, Lance; Fan, Xiao-Ming; Lanzetta, Kenneth M.

    1994-01-01

    We present finding charts and optical positions accurate to less than 1 arcsec for 269 bright (V less than or = 18.5) Quasi-Stellar Objects (QSOs). These objects were selected as candidates for the Hubble Space Telescope (HST) Quasar Absorption System Snapshot Survey (AbSnap), a program designed to use the Faint Object Spectrograph (FOS) to obtain short exposure ultraviolet (UV) spectra of bright QSOs. Many quasars were included because of their proximity to bright, low redshift galaxies and positions of these QSOs are measured accurately for the first time. Data were obtained using the digitized sky survey produced by the Space Telescope Science Institute's Guide Stars Selection System Astrometric Support Program.

  19. Absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissues

    NASA Astrophysics Data System (ADS)

    Ivashko, Pavlo; Peresunko, Olexander; Zelinska, Natalia; Alonova, Marina

    2014-08-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  20. Absorption and electroabsorption spectra of carotenoid cation radical and dication

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław

    1998-05-01

    Radical cations and dications of two carotenoids astaxanthin and canthaxanthin were prepared by oxidation with FeCl 3 in fluorinated alcohols at room temperature. Absorption and electroabsorption (Stark effect) spectra were recorded for astaxanthin cations in mixed frozen matrices at temperatures about 160 K. The D 0→D 2 transition in cation radical is at 835 nm. The electroabsorption spectrum for the D 0→D 2 transition exhibits a negative change of molecular polarizability, Δ α=-1.2·10 -38 C·m 2/V (-105 A 3), which seems to originate from the change in bond order alternation in the ground state rather than from the electric field-induced interaction of D 1 and D 2 excited states. Absorption spectrum of astaxanthin dication is located at 715-717 nm, between those of D 0→D 2 in cation radical and S 0→S 2 in neutral carotenoid. Its shape reflects a short vibronic progression and strong inhomogeneous broadening. The polarizability change on electronic excitation, Δ α=2.89·10 -38 C·m 2/V (260 A 3), is five times smaller than in neutral astaxanthin. This value reflects the larger energetic distance from the lowest excited state to the higher excited states than in the neutral molecule.

  1. A Parallel Iterative Method for Computing Molecular Absorption Spectra.

    PubMed

    Koval, Peter; Foerster, Dietrich; Coulaud, Olivier

    2010-09-14

    We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamic polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a matrix-free GMRES method to determine the (interacting) density response. The resulting code is about 1 order of magnitude faster than our previous full-matrix method. This acceleration makes the speed of our TDDFT code comparable with codes based on Casida's equation. The implementation of our method uses hybrid MPI and OpenMP parallelization in which load balancing and memory access are optimized. To validate our approach and to establish benchmarks, we compute spectra of large molecules on various types of parallel machines. The methods developed here are fairly general, and we believe they will find useful applications in molecular physics/chemistry, even for problems that are beyond TDDFT, such as organic semiconductors, particularly in photovoltaics. PMID:26616067

  2. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  3. Molecular structures and absorption spectra assignment of corrole NH tautomers.

    PubMed

    Beenken, Wichard; Presselt, Martin; Ngo, Thien H; Dehaen, Wim; Maes, Wouter; Kruk, Mikalai

    2014-02-01

    The individual absorption spectra of the two NH tautomers of 10-(4,6-dichloropyrimidin-5-yl)-5,15-dimesitylcorrole are assigned on the basis of the Gouterman four-orbital model and a quantum chemical TD-DFT study. The assignment indicates that the red-shifted T1 tautomer is the one with protonated pyrrole nitrogen atoms N(21), N(22) and N(23), whereas the blue-shifted T2 tautomer has pyrrole nitrogen atoms N(21), N(22) and N(24) protonated. A wave-like nonplanar distortion of the macrocycle in the ground state is found for both NH tautomers, with the wave axis going through the pyrroles containing N(22) and N(24). The 7C plane determined by the least-squares distances to the carbon atoms C1, C4, C5, C6, C9, C16, and C19 is suggested as a mean corrole macrocycle plane for the analysis of out-of-plane distortions. The magnitude of these distortions is distinctly different for the two NH tautomers, leading to substantial perturbations of their acid-base properties, which are rationalized by the interplay of the degree of out-of-plane distortion of the macrocycle as a whole and the tendency of the pyrrole nitrogen atoms toward pyramidalization, with the former leading to a basicity increase whereas the latter enhances the acidity. PMID:24432802

  4. Quasar Ton 34 with steepest far-UV break known has entered new bal QSO phase

    NASA Astrophysics Data System (ADS)

    Binette, Luc

    2011-10-01

    Using HST-COS/G140L and HST-STIS with G230L and G430L, we request 4 orbits to observe the QSO Ton34 {z=1.928}. Among archive HST/FOS spectra, Ton34 shows an unusually steep FUV drop, equivalent to a powerlaw of index -5. At shorter wavelengths, only an extremely noisy IUE spectra exists. The FUV observations would provide us with a unique window to test whether Ton34 remains EUV deficient at shorter wavelengths or shows instead the onset of a second peak in the extreme {E}UV, explaining how photoionization can still account for its high excitation emission lines of CIV, OVIA? With the STIS MAMA-NUV spectrum, we will also study and confirm whether low excitation EUV BLR lines such as the permitted lines of OII + OIII {835A?} or NIII {686A?} are present and as strong as reported from an earlier but noisy IUE spectrum {this would possibly favor shock excitation}. Using archive optical spectra near the CIV region {from years 1988 and 2006}, we recently showed that Ton34 is currently undergoing a strong BalQSO phase, the first case reported among bright quasars. A priority of the proposed STIS NUV observations will be to look for the presence of blueshifted absorption troughs near Ly-alpha or OIV {as well as any change in the continuum's sharp break} using the STIS/G430L spectrum.

  5. The Chemical Evolution of QSO Absorbers

    NASA Astrophysics Data System (ADS)

    Ellison, Sara L.

    2000-06-01

    The chemical evolution of the high redshift intergalactic and interstellar media of galaxies is studied using QSO absorption lines. The redshift evolution of damped Lyman alpha (DLA) system metallicity is studied down to z=0.5, and no significant increase in metals is found. The CIV/HI ratio in the Lyman alpha forest is investigated at z approximately 3 and traces of are metals found in the low density HI gas with optical depth of around 1. Finally, a new survey for DLAs in a radio-selected sample of QSOs is presented, with the aim of determining whether a significant dust bias may have affected previous surveys.

  6. The structure of the BAL QSO 1700 + 518

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Neff, S. G.; Gower, A. C.

    1992-01-01

    The paper presents 0.5-arcsec-resolution optical images of the low-redshift, bright, broad-absorption-line QSO 1700 + 518. A bright arc 2 arcsec is found to the NE of the nucleus which is redder than the surrounding host galaxy. There is also a faint radial structure to the SE, which is aligned with the core radio structure. The principal radio structure is a slightly resolved component coincident with the optical nucleus and an unresolved lobe 1 arcsec to the W which has no corresponding optical structure. The morphological and other properties of the QSO are discussed.

  7. Photon interference effect in x-ray absorption spectra over a wide energy range

    NASA Astrophysics Data System (ADS)

    Nishino, Y.; Ishikawa, T.; Suzuki, M.; Kawamura, N.; Kappen, P.; Korecki, P.; Haack, N.; Materlik, G.

    2002-09-01

    We consider fundamental structures in x-ray absorption spectra over a wide energy range. We formulate the elastic scattering in addition to the photoelectric absorption in recently reported photon interference x-ray absorption fine structure (πXAFS). The simulations show excellent agreement with experimental x-ray absorption spectra for platinum and tungsten powders far above and below the L absorption edges. πXAFS can be as big as in the order of 10% of XAFS, and cannot be easily neglected in detailed analysis of XAFS and related phenomena.

  8. Interpretation of NO2 absorption in twilight sky spectra

    NASA Astrophysics Data System (ADS)

    McMahon, B. B.

    1984-07-01

    A multiple scattering model has been developed to calculate nitrogen dioxide (NO2) absorption in the light from the zenith sky during twilight. Model studies show that this absorption is not very sensitive to the atmospheric temperature profile or to tropospheric NO2. The model was used to interpret some ground-based measurements of NO2 sky absorption. Values for the total stratospheric column amount vary from 2 to 12 x 10 to the 15th molec/sq cm, and the mean altitude of the stratospheric concentration profile is around 35 km. These observations are in broad agreement with those of other workers.

  9. Absorption spectra of graphene nanoribbons in a composite magnetic field

    NASA Astrophysics Data System (ADS)

    Li, T. S.; Wu, M. F.; Hsieh, C. T.

    2015-10-01

    The low-frequency optical absorption properties of graphene nanoribbons in a composite magnetic field are investigated by using the gradient approximation. The spectral function exhibits symmetric delta-function like prominent peaks structure in a uniform magnetic field, and changes to asymmetric square-root divergent peaks structure when subjecting to a composite field. These asymmetric divergent peaks can be further classified into principal and secondary peaks. The spectral intensity and frequency of the absorption peaks depend sensitively on the strength and modulation period of the composite field. The transition channels of the absorption peaks are also analyzed. There exists an optical selection rule which is caused by the orthogonal properties of the sublattice wave functions. The evolution of the spectral frequency of the absorption peaks with the field strength is explored.

  10. Assignment of benzodiazepine UV absorption spectra by the use of photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Khvostenko, O. G.; Tzeplin, E. E.; Lomakin, G. S.

    2002-04-01

    Correlations between singlet transition energies and energy gaps of corresponding pairs of occupied and unoccupied molecular orbitals were revealed in a series of benzodiazepines. The occupied orbital energies were taken from the photoelectron spectra of the compound investigated, the unoccupied ones were obtained from MNDO/d calculations, and the singlet energies were taken from the UV absorption spectra. The correspondence of the singlet transitions to certain molecular orbitals was established using MNDO/d calculations and comparing between UV and photoelectron spectra. It has been concluded that photoelectron spectroscopy can be applied for interpretation of UV absorption spectra of various compounds on the basis of similar correlations.

  11. New insights on the QSO radio-loud/radio-quiet dichotomy: SDSS spectra in the context of the 4D eigenvector1 parameter space

    NASA Astrophysics Data System (ADS)

    Zamfir, S.; Sulentic, J. W.; Marziani, P.

    2008-06-01

    We search for a dichotomy/bimodality between radio-loud (RL) and radio-quiet (RQ) type 1 active galactic nuclei (AGN). We examine several samples of Slogan Digital Sky Survey (SDSS) quasi-stellar objects (QSOs) with high signal-to-noise ratio optical spectra and matching Faint Images of the Radio Sky at Twenty-cm/NRAO VLA Sky Survey (FIRST/NVSS) radio observations. We use the radio data to identify the weakest RL sources with a Fanaroff-Riley type II (FRII) structure to define a RL/RQ boundary which corresponds to log L1.4GHz = 31.6 ergs-1 Hz-1. We measure the properties of broad-line Hβ and FeII emission to define the optical plane of a 4DE1 spectroscopic diagnostic space. The RL quasars occupy a much more restricted domain in this optical plane compared to the RQ sources, which a 2D Kolmogorov-Smirnov test finds to be highly significant. This tells us that the range of broad-line region kinematics and structure for RL sources is more restricted than for the RQ QSOs, which supports the notion of dichotomy. FRII and CD RL sources also show significant 4DE1 domain differences that likely reflect differences in line-of-sight orientation (inclined versus face-on, respectively) for these two classes. The possibility of a distinct radio-intermediate (RI) population between RQ and RL source is disfavoured because a 4DE1 diagnostic space comparison shows no difference between RI and RQ sources. We show that searches for dichotomy in radio versus bolometric luminosity diagrams will yield ambiguous results mainly because in a reasonably complete sample, the radio brightest RQ sources will be numerous enough to blur the gap between RQ and RL sources. Within resolution constraints of NVSS and FIRST, we find no FRI sources among the broad-line quasar population.

  12. Effects of lowly ionized ions on silicon K-shell absorption spectra

    NASA Astrophysics Data System (ADS)

    Wei, H. G.; Shi, J. R.; Liang, G. Y.; Wang, F. L.; Zhong, J. Y.; Zhao, G.

    2016-05-01

    Context. In both astrophysical and laboratory plasmas, K-shell absorption spectra have become powerful diagnostic tools to investigate electron density and temperature. These spectra are also widely used to verify the opacity codes in laboratory settings. Aims: We report the effects of the low ionization silicon ions, namely from Si I to Si V, which have rarely been considered in previous models, on the K-shell silicon absorption spectra. Methods: The Si K-shell atomic data were calculated with the flexible atomic code, which is a fully relativistic atomic program with configuration interaction taken into consideration. Detailed level accounting models were employed to calculate the absorption spectra. Results: We calculate the Si absorption spectra in local thermodynamic equilibrium conditions with temperature and density ranges of 20-70 eV and ~1020 cm-3 to ~1022 cm-3, respectively, and show the contributions of the lowly ionized ions to the K-shell absorption spectra of silicon. We also investigate the effects of the different atomic data on the absorption spectra. We find good agreement between our results and these from OPLIB. Conclusions: We find that the contributions from these lowly ionized ions cannot be neglected at relative low temperatures. Accurate experimental measurements are needed to benchmark the theoretical calculations.

  13. Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-01

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  14. A method for normalization of X-ray absorption spectra

    SciTech Connect

    Weng, T.-C.; Waldo, G.S.; Penner-Hahn, J.E.

    2010-07-20

    Accurate normalization of X-ray absorption data is essential for quantitative analysis of near-edge features. A method, implemented as the program MBACK, to normalize X-ray absorption data to tabulated mass absorption coefficients is described. Comparison of conventional normalization methods with MBACK demonstrates that the new normalization method is not sensitive to the shape of the background function, thus allowing accurate comparison of data collected in transmission mode with data collected using fluorescence ion chambers or solid-state fluorescence detectors. The new method is shown to have better reliability and consistency and smaller errors than conventional normalization methods. The sensitivity of the new normalization method is illustrated by analysis of data collected during an equilibrium titration.

  15. Systematic view of optical absorption spectra in the actinide series

    SciTech Connect

    Carnall, W.T.

    1985-01-01

    In recent years sufficient new spectra of actinides in their numerous valence states have been measured to encourage a broader scale analysis effort than was attempted in the past. Theoretical modelling in terms of effective operators has also undergone development. Well established electronic structure parameters for the trivalent actinides are being used as a basis for estimating parameters in other valence states and relationships to atomic spectra are being extended. Recent contributions to our understanding of the spectra of 4+ actinides have been particularly revealing and supportive of a developing general effort to progress beyond a preoccupation with modelling structure to consideration of the much broader area of structure-bonding relationships. We summarize here both the developments in modelling electronic structure and the interpretation of apparent trends in bonding. 60 refs., 9 figs., 1 tab.

  16. Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter

    NASA Technical Reports Server (NTRS)

    Hoepffner, Nicolas; Sathyendranath, Shubha

    1993-01-01

    The contributions of detrital particles and phytoplankton to total light absorption are retrieved by nonlinear regression on the absorption spectra of total particles from various oceanic regions. The model used explains more than 96% of the variance in the observed particle absorption spectra. The resulting absorption spectra of phytoplankton are then decomposed into several Gaussian bands reflecting absorption by phytoplankton pigments. Such a decomposition, combined with high-performance liquid chromatography data on phytoplankton pigment concentrations, allows the computation of specific absorption coefficients for chlorophylls a, b, and c and carotenoids. The spectral values of these in vivo absorption coefficients are then discussed, considering the effects of secondary pigments which were not measured quantitatively. We show that these coefficients can be used to reconstruct the absorption spectra of phytoplankton at various locations and depths. Discrepancies that do occur at some stations are explained in terms of particle size effect. These coefficients can be used to determine the concentrations of phytoplankton pigments in the water, given the absorption spectrum of total particles.

  17. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  18. Vibronic Structures in Absorption and Fluorescence Spectra of Firefly Oxyluciferin in Aqueous Solutions.

    PubMed

    Hiyama, Miyabi; Noguchi, Yoshifumi; Akiyama, Hidefumi; Yamada, Kenta; Koga, Nobuaki

    2015-01-01

    To elucidate the factors determining the spectral shapes and widths of the absorption and fluorescence spectra for keto and enol oxyluciferin and their conjugate bases in aqueous solutions, the intensities of vibronic transitions between their ground and first electronic excited states were calculated for the first time via estimation of the vibrational Franck-Condon factors. The major normal modes, overtones and combination tones in absorption and fluorescence spectra are similar for all species. The theoretical full widths at half maximum of absorption spectra are 0.4-0.7 eV and those for the fluorescence spectra are 0.4-0.5 eV, except for phenolate-keto that exhibits exceptionally sharp peak widths due to the dominance of the 0-0' or 0'-0 band. These spectral shapes and widths explain many relevant features of the experimentally observed spectra. PMID:25946599

  19. Infrared absorption spectra of methylidene radicals in solid neon.

    PubMed

    Lu, Hsiao-Chi; Lo, Jen-Iu; Lin, Meng-Yeh; Peng, Yu-Chain; Chou, Sheng-Lung; Cheng, Bing-Ming; Ogilvie, J F

    2014-07-28

    Infrared absorption lines of methylidene--(12)C(1)H, (13)C(1)H, and (12)C(2)H--dispersed in solid neon at 3 K, recorded after photolysis of methane precursors with vacuum-ultraviolet light at 121.6 nm, serve as signatures of these trapped radicals. PMID:24912563

  20. MISALIGNMENT OF THE JET AND THE NORMAL TO THE DUSTY TORUS IN THE BROAD ABSORPTION LINE QSO FIRST J155633.8+351758

    SciTech Connect

    Reynolds, Cormac; Punsly, Brian; O'Dea, Christopher P. E-mail: brian.punsly@comdev-usa.com

    2013-08-10

    We performed Very Long Baseline Array observations of the broad absorption line quasar FIRST J155633.8+351758, ''the first radio loud BALQSO''. Our observations at 15.3 GHz partially resolved a secondary component at position angle (P.A.) Almost-Equal-To 35 Degree-Sign . We combine this determination of the radio jet projection on the sky plane, with the constraint that the jet is viewed within 14. Degree-Sign 3 of the line of sight (as implied by the high variability brightness temperature) and with the P.A. of the optical/UV continuum polarization in order to study the quasar geometry. Within the context of the standard model, the data indicates a ''dusty torus'' (scattering surface) with a symmetry axis tilted relative to the accretion disk normal and a polar broad absorption line outflow aligned with the accretion disk normal. We compare this geometry to that indicated by the higher resolution radio data, brightness temperature, and optical/UV continuum polarization P.A. of a similar high optical polarization BALQSO, Mrk 231. A qualitatively similar geometry is found in these two polar BALQSOs; the continuum polarization is determined primarily by the tilt of the dusty torus.

  1. Analysis of absorption and scattering spectra for assessing apple fruit internal quality after harvest and storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical absorption and scattering properties are useful for quantifying light interaction with plant tissue, as well as for quality assessment of horticultural products. The aim of this research was to measure the absorption and reduced scattering coefficient spectra of two cultivars of apple (Malus...

  2. The absorption spectra of the complexes of uranium (VI) with some β-diketones

    USGS Publications Warehouse

    Feinstein, H.I.

    1956-01-01

    The absorption spectra of the complexes of uranium (VI) with four β-dike tones were determined under various conditions of pH, concentration of uranium, and alcohol concentration. Under optimum conditions, the maximum molar absorptivity (31,200) is obtained using 2-furoyltrifluoroacetone. This compares with about 4,000 and 19,000 for the thiocyanate and dibenzoylmethane complexes, respectively.

  3. Data processing of absorption spectra from photoionized plasma experiments at Za)

    NASA Astrophysics Data System (ADS)

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.

    2010-10-01

    We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

  4. Determining neutrino absorption spectra at ultra-high energies

    SciTech Connect

    Scholten, O; Van Vliet, A R E-mail: A.R.van.Vliet@student.rug.nl

    2008-06-15

    A very efficient method for measuring the flux of ultra-high energy (UHE) neutrinos is through the detection of radio waves which are emitted by the particle shower in the lunar regolith. The highest acceptance is reached for radio waves in the frequency band of 100-200 MHz which can be measured with modern radio telescopes. In this work we investigate the sensitivity of this detection method to structures in the UHE neutrino spectrum caused by their absorption on the low energy relic anti-neutrino background through the Z boson resonance. The position of the absorption peak is sensitive to the neutrino mass and the redshift of the source. A new generation of low frequency digital radio telescopes will provide excellent detection capabilities for measuring these radio pulses, thus making our consideration here very timely.

  5. An iron absorption model of gamma-ray burst spectra

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.; Kargatis, Vincent E.

    1994-01-01

    Most gamma-ray bursts (GRBs) exhibit deficits of X-rays below approximately 200 keV. Here we consider a spectral model in which the burst source is shielded by an optically thick layer of circumburster material (CBM) rich in iron-group elements whose photoelectric absorption opacity exceeds the Thomson opacity below approximately 120 keV. For power-law distributions of absorption depths along the lines of sight the absorbed spectrum can indeed mimic the typial GRB spectrum. This model predicts that (a) the spectrum should evolve monotonically from hard to soft during each energy release, which is observed in most bursts, especially in fast rise exponential decay bursts; (b) Fe spectral features near 7 keV may be present in some bursts; and (c) the ratio of burst distances to the CBM and to Earth should be approximately 10(exp -11) if the spectral evolution is purely due to Fe stripping by the photons.

  6. Electronic absorption spectra of some arylidene pyrazolone derivatives

    NASA Astrophysics Data System (ADS)

    Mahmoud, M. R.; El-Kashef, H. S.; El-Hamide, R. Abd

    The u.v. and visible spectra of some 1 - phenyl - 3 - methyl - 4 - arylidene - 2 - pyrazolin - 5 - one derivatives are investigated in pure and mixed organic solvents as well as in aqueous buffer solutions. Electronic transitions have been identified as either locally excited or predominantly charge transfer states. Moreover, the spectra of the hydroxy derivatives in proton acceptor solvents (DMF, DMSO, ethanol) are characterized by an extra band located at longer wavelengths, which is ascribed to an intermolecular CT transition. This involves an electron transfer from the lone pair of electrons of the oxygen atom of the solvent molecules (ψ ol) to the antibonding orbital of the substituent OH group. The spectral shifts are discussed in terms of medium effects and in relation to molecular structure. The variation of absorbance with pH is utilized for the determination of p K a for the dimethylamino and hydroxy derivatives.

  7. Infrared absorption spectra of human malignant tumor tissues

    NASA Astrophysics Data System (ADS)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  8. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    NASA Astrophysics Data System (ADS)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2012-01-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  9. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    NASA Astrophysics Data System (ADS)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2011-09-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  10. Polarized absorption spectra of (2,2) carbon nanotubes aligned in channels of an AEL crystal

    NASA Astrophysics Data System (ADS)

    Chen, Yanping; Zhai, Jianpang; Li, Irene Ling; Ruan, Shuangchen; Tang, Zikang

    2015-11-01

    We report polarized absorption spectra for the (2,2) tubes arrayed in the one-dimensional channels of an AlPO4-11 (AEL) single crystal. Strong polarization dependence is observed indicating a preferential optical dipole along the axis of carbon nanotubes. By correlating with the absorption spectra and First-principles local density function (LDA) calculation, the absorption peak at 2.95 eV is uniquely assigned to semiconducting type (2,2) tubes, and peaks at 2.67 and 2.40 eV are corresponding to metallic type (2,2) tubes.

  11. Infrared absorption spectra of pure and doped YAl3(BO3)4 single crystals

    NASA Astrophysics Data System (ADS)

    Kovács, L.; Mazzera, M.; Beregi, E.; Capelletti, R.

    2009-02-01

    Several weak absorption bands have been observed in the optical absorption spectra of pure and rare-earth-doped YAl3(BO3)4 single crystals in the 3350- 3650 cm-1 wave number region. Two of them, peaking at about 3377 cm-1 and 3580 cm-1 in the 8 K spectra, appear in most of the samples. They are tentatively attributed to the stretching mode of OH- ions incorporated in the crystal during the growth. An additional absorption band at about 5250 cm-1 at 8 K has also been detected in almost all samples. The temperature and polarization dependences of these bands, and their possible origin, are discussed.

  12. Influence of electric fields on absorption spectra of AAB-stacked trilayer graphene

    NASA Astrophysics Data System (ADS)

    Chiu, Chih-Wei; Chen, Rong-Bin

    2016-06-01

    The tight-binding model and gradient approximation are, respectively, used to calculate the band structures and the absorption spectra of AAB-stacked trilayer graphene (AAB-TLG). AAB stacking, the lowest symmetric geometric structure in trilayer systems, induces the most atomic interactions, and thus, complicates the energy dispersions and the joint density of states. AAB stacking enriches the optical absorption spectra [A(ω)], which dictate the characteristics of the electronic structure. A(ω) are changed by the static electric field, such as the intensity, frequency, and number of absorption structures. These results contrast sharply with those for TLG in other stacking configurations.

  13. Artifacts in Absorption Measurements of Organometal Halide Perovskite Materials: What Are the Real Spectra?

    PubMed

    Tian, Yuxi; Scheblykin, Ivan G

    2015-09-01

    Organometal halide (OMH) perovskites have attracted lots of attention over the last several years due to their very promising performance as the materials for solar cells and light-emitting devices. Photophysical processes in these hybrid organic-inorganic semiconductors are still heavily debated. To know precise absorption spectra is absolutely necessary for quantitative understanding of the fundamental properties of OMH perovskites. We show that to measure the absorption of perovskite materials correctly is a difficult task which could be easily overlooked by the community. Many of the published absorption spectra exhibit a characteristic step-like featureless shape due to light scattering, high optical density of individual perovskite crystals and poor coverage of the substrate. We show how to recognize these artifacts, to avoid them, and to use absorption spectra of films for estimation of the surface coverage ratio. PMID:27120683

  14. Absorption spectra and speciation of plutonium(VI) with phosphate

    SciTech Connect

    Weger, H.T.; Reed, D.

    1996-02-01

    Plutonium(VI)-phosphate species in aqueous solution, at pH < 2.4, formed two species: PuO{sub 2}H{sub 2}PO{sub 4}{sup +} (characterized by an 835 nm absorption band) and the solid phase PuO{sub 2}(H{sub 2}PO{sub 4}){sub 2}. The stability constant {beta} for the PuO{sub 2}H{sub 2}PO{sub 4}{sup +} species was determined to be log {beta} = 2.1 {+-} 0.1 (ionic strength = 0.6--0.9 M) and log {beta}{sup T} = 2.6 {+-} 0.15 (zero ionic strength). Four Pu(VI)-phosphate species (absorption bands at 842, 846, 857, and 866 nm) formed at pH = 2.4 to 12.2 and are characterized by polynuclear behavior, the formation of precipitates, and colloidal properties. The 842 and 846 nm species are believed to be [PuO{sub 2}(HPO{sub 4}){sub m}]{sub n} and [PuO{sub 2}(NaPO{sub 4}){sub m}]{sub n}. The 857 and 866 nm species area as yet unidentified. The speciation of plutonium with phosphate is of interest to radionuclide migration studies because phosphate is present in many groundwaters and may be used as an actinide getter in nuclear waste disposal. An actinide getter is a complexing agent that forms insoluble phases with actinides, thereby reducing their migration.

  15. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    SciTech Connect

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  16. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ∼ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  17. Properties of QSO Metal-line Absorption Systems at High Redshifts: Nature and Evolution of the Absorbers and New Evidence on Escape of Ionizing Radiation from Galaxies

    NASA Astrophysics Data System (ADS)

    Boksenberg, Alec; Sargent, Wallace L. W.

    2015-05-01

    Using Voigt-profile-fitting procedures on Keck High Resolution Spectrograph spectra of nine QSOs, we identify 1099 C IV absorber components clumped in 201 systems outside the Lyman forest over 1.6 <~ z <~ 4.4. With associated Si IV, C II, Si II and N V where available, we investigate the bulk statistical and ionization properties of the components and systems and find no significant change in redshift for C IV and Si IV while C II, Si II and N V change substantially. The C IV components exhibit strong clustering, but no clustering is detected for systems on scales from 150 km s-1 out to 50,000 km s-1. We conclude that the clustering is due entirely to the peculiar velocities of gas present in the circumgalactic media of galaxies. Using specific combinations of ionic ratios, we compare our observations with model ionization predictions for absorbers exposed to the metagalactic ionizing radiation background augmented by proximity radiation from their associated galaxies and find that the generally accepted means of radiative escape by transparent channels from the internal star-forming sites is spectrally not viable for our stronger absorbers. We develop an active scenario based on runaway stars with resulting changes in the efflux of radiation that naturally enable the needed spectral convergence, and in turn provide empirical indicators of morphological evolution in the associated galaxies. Together with a coexisting population of relatively compact galaxies indicated by the weaker absorbers in our sample, the collective escape of radiation is sufficient to maintain the intergalactic medium ionized over the full range 1.9 < z <~ 4.4. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck

  18. Influence of laser radiation on induced absorption spectra of pure quartz glass optical fibers

    NASA Astrophysics Data System (ADS)

    Dianov, Y. M.; Karpechev, V. N.; Korniyenko, L. S.; Rybaltovskiy, A. O.; Chernov, P. V.

    1986-01-01

    The influence of laser radiation on radiation color centers and their associated induced absorption in the spectra of irradiated glass optical fibers is investigated. The glass fiber specimens employed had 40 to 50 micron diameter cores made of day pure quartz glass. The optical fibers were 6 to 20 meters long, produced by chemical precipitation from the gaseous phase and clad with reflecting borosilicate glass. Spectral measurements of the induced absorption in the ultraviolet region were made using an FEU-71 photodetector and a sounding radiation source. The stimulated laser emission power in the cross section of the optical fiber was measured by a photodiode; the absorption spectra were recorded by the fragment method. Eight different types of color centers were isolated whose bands cover practically the entire observed absorption spectra. The connection found between color centers and a 340 nm absorption band, and color center with absorption in the infrared band, indicate that absorption in the ultraviolet band can have a significant influence on the amount of induced absorption in the infrared band.

  19. Linewidths in excitonic absorption spectra of cuprous oxide

    NASA Astrophysics Data System (ADS)

    Schweiner, Frank; Main, Jörg; Wunner, Günter

    2016-02-01

    We present a theoretical calculation of the absorption spectrum of cuprous oxide (Cu2O ) based on the general theory developed by Y. Toyozawa. An inclusion not only of acoustic phonons but also of optical phonons and of specific properties of the excitons in Cu2O like the central-cell corrections for the 1 S exciton allows us to calculate the experimentally observed linewidths in experiments by T. Kazimierczuk et al. [T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London) 514, 343 (2014), 10.1038/nature13832] within the same order of magnitude, which demonstrates a clear improvement in comparison to earlier work on this topic. We also discuss a variety of further effects, which explain the still observable discrepancy between theory and experiment but can hardly be included in theoretical calculations.

  20. Monitoring the Variability of Intrinsic Absorption Lines in Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Misawa, Toru; Charlton, Jane C.; Eracleous, Michael

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ~103-105 cm-3 and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage. Based on data collected at Subaru telescope, which is operated by the National Astronomical Observatory of Japan. Based on observations obtained at the European Southern Observatory at La Silla, Chile in programs 65.O-0063(B), 65.O-0474(A), 67.A-0078(A), 68.A-0461(A), 69.A-0204(A), 70.B-0522(A), 072.A-0346(A), 076.A-0860(A), 079.B-0469(A), and 166.A-0106(A).

  1. Measurement and feature analysis of absorption spectra of four algal species

    NASA Astrophysics Data System (ADS)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  2. Simultaneous Fitting of Absorption Spectra and Their Second Derivatives for an Improved Analysis of Protein Infrared Spectra.

    PubMed

    Baldassarre, Maurizio; Li, Chenge; Eremina, Nadejda; Goormaghtigh, Erik; Barth, Andreas

    2015-01-01

    Infrared spectroscopy is a powerful tool in protein science due to its sensitivity to changes in secondary structure or conformation. In order to take advantage of the full power of infrared spectroscopy in structural studies of proteins, complex band contours, such as the amide I band, have to be decomposed into their main component bands, a process referred to as curve fitting. In this paper, we report on an improved curve fitting approach in which absorption spectra and second derivative spectra are fitted simultaneously. Our approach, which we name co-fitting, leads to a more reliable modelling of the experimental data because it uses more spectral information than the standard approach of fitting only the absorption spectrum. It also avoids that the fitting routine becomes trapped in local minima. We have tested the proposed approach using infrared absorption spectra of three mixed α/β proteins with different degrees of spectral overlap in the amide I region: ribonuclease A, pyruvate kinase, and aconitase. PMID:26184143

  3. Absorption spectra of typical space materials in the vacuum ultraviolet

    NASA Astrophysics Data System (ADS)

    Muscari, J. A.

    1981-01-01

    In order to develop a data base for potential optical degradation of space vacuum ultraviolet instruments, the collected volatile condensed material (CVCM) transmittance was measured in the wavelength region from 115 nm to 300 nm. The parent outgassing materials included: the adhesives, Ablebond 36-2, Trabond BB-2116, EA-9309, and Scotchweld 2216; the paints, Chemglaze Z-306, Z-306 over 9922 primer, Z-306 over AP-131 primer, Cat-A-Lac 463-3-8, 463-3-8 over primer, 3M Nextel 401-C10, and 401-C10 over 901-P1 primer; the resins, Fiberite 934, Solithane 113/C113-300 Formulation no. 1, and 113/C113-300 Formulation no. 8; the lubricants, Lube-Lok 4306 and RT/Duroid 5813; and the double-sided adhesive tape 3M-415. The effect of thermal vacuum conditioning of selected materials was also studied. The transmittance measurements were used to calculate the absorption coefficient for each of 28 different source materials versus wavelength.

  4. Theoretical analysis of electronic absorption spectra of vitamin B12 models

    NASA Astrophysics Data System (ADS)

    Andruniow, Tadeusz; Kozlowski, Pawel M.; Zgierski, Marek Z.

    2001-10-01

    Time-dependent density-functional theory (TD-DFT) is applied to analyze the electronic absorption spectra of vitamin B12. To accomplish this two model systems were considered: CN-[CoIII-corrin]-CN (dicyanocobinamide, DCC) and imidazole-[CoIII-corrin]-CN (cyanocobalamin, ImCC). For both models 30 lowest excited states were calculated together with transition dipole moments. When the results of TD-DFT calculations were directly compared with experiment it was found that the theoretical values systematically overestimate experimental data by approximately 0.5 eV. The uniform adjustment of the calculated transition energies allowed detailed analysis of electronic absorption spectra of vitamin B12 models. All absorption bands in spectral range 2.0-5.0 eV were readily assigned. In particular, TD-DFT calculations were able to explain the origin of the shift of the lowest absorption band caused by replacement of the-CN axial ligand by imidazole.

  5. A novel acoustic sensor approach to classify seeds based on sound absorption spectra.

    PubMed

    Gasso-Tortajada, Vicent; Ward, Alastair J; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  6. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  7. Rich magneto-absorption spectra of AAB-stacked trilayer graphene.

    PubMed

    Do, Thi-Nga; Shih, Po-Hsin; Chang, Cheng-Peng; Lin, Chiun-Yan; Lin, Ming-Fa

    2016-06-29

    A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra. PMID:27305856

  8. Infrared absorption spectra of molecular crystals: Possible evidence for small-polaron formation?

    NASA Astrophysics Data System (ADS)

    Pržulj, Željko; Čevizović, Dalibor; Zeković, Slobodan; Ivić, Zoran

    2008-09-01

    The temperature dependence of the position of the so-called anomalous band peaked at 1650cm in the IR-absorption spectrum of crystalline acetanilide (ACN) is theoretically investigated within the small-polaron theory. Its pronounced shift towards the position of the normal band is predicted with the rise of temperature. Interpretation of the IR-absorption spectra in terms of small-polaron model has been critically assessed on the basis of these results.

  9. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Nowicky, J. W.; Maskevich, S. A.

    2010-07-01

    The absorption spectra and stationary and time resolved fluorescence spectra of the isoquinoline alkaloid sanguinarine are studied in aqueous media and during interactions with synthetic polyelectrolytes (polystyrene sulfonate and polyallylamine) and a natural polyelectrolyte (DNA).

  10. Oxygen K-edge absorption spectra of small molecules in the gas phase

    SciTech Connect

    Yang, B.X.; Kirz, J.; Sham, T.K.

    1986-01-01

    The absorption spectra of O/sub 2/, CO, CO/sub 2/ and OCS have been recorded in a transmission mode in the energy region from 500 to 950 eV. Recent observation of EXAFS in these molecules is confirmed in this study. 7 refs., 3 figs.

  11. Fluorescence, Absorption, and Excitation Spectra of Polycyclic Aromatic Hydrocarbons as a Tool for Quantitative Analysis

    ERIC Educational Resources Information Center

    Rivera-Figueroa, A. M.; Ramazan, K. A.; Finlayson-Pitts, B. J.

    2004-01-01

    A quantitative and qualitative study of the interplay between absorption, fluorescence, and excitation spectra of pollutants called polycyclic aromatic hydrocarbons (PAHs) is conducted. The study of five PAH displays the correlation of the above-mentioned properties along with the associated molecular changes.

  12. In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance

    NASA Technical Reports Server (NTRS)

    Roesler, Collin S.; Pery, Mary Jane

    1995-01-01

    An inverse model was developed to extract the absortion and scattering (elastic and inelastic) properties of oceanic constituents from surface spectral reflectance measurements. In particular, phytoplankton spectral absorption coefficients, solar-stimulated chlorophyll a fluorescence spectra, and particle backscattering spectra were modeled. The model was tested on 35 reflectance spectra obtained from irradiance measurements in optically diverse ocean waters (0.07 to 25.35 mg/cu m range in surface chlorophyll a concentrations). The universality of the model was demonstrated by the accurate estimation of the spectral phytoplankton absorption coefficents over a range of 3 orders of magnitude (rho = 0.94 at 500 nm). Under most oceanic conditions (chlorophyll a less than 3 mg/cu m) the percent difference between measured and modeled phytoplankton absorption coefficents was less than 35%. Spectral variations in measured phytoplankton absorption spectra were well predicted by the inverse model. Modeled volume fluorescence was weakly correlated with measured chl a; fluorescence quantum yield varied from 0.008 to 0.09 as a function of environment and incident irradiance. Modeled particle backscattering coefficients were linearly related to total particle cross section over a twentyfold range in backscattering coefficents (rho = 0.996, n = 12).

  13. Lyman-alpha emission from the Lyman-alpha forest. [in high red shift quasar spectra due to molecular clouds

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.; Weymann, Ray J.

    1987-01-01

    It is suggested that high-dispersion long-slit spectra or very narrow-band etalon images of 'blank' sky could reveal patches of Ly-alpha line emission from the population of clouds whose absorption produces the 'Ly-alpha forest' in QSO spectra. A nonobservation can put limits on the ionizing background at high redshift which are better than those obtainable by direct measurements of background light.

  14. Optical absorption of nanoporous silicon: quasiparticle band gaps and absorption spectra

    NASA Astrophysics Data System (ADS)

    Shi, Guangsha; Kioupakis, Emmanouil

    2013-03-01

    Silicon is an earth-abundant material of great importance in semiconductors electronics, but its photovoltaic applications are limited by the low absorption coefficient in the visible due to its indirect band gap. One strategy to improve the absorbance is to perforate silicon with nanoscale pores, which introduce carrier scattering that enables optical transitions across the indirect gap. We used density functional and many-body perturbation theory in the GW approximation to investigate the electronic and optical properties of porous silicon for various pore sizes, spacings, and orientations. Our calculations include up to 400 atoms in the unit cell. We will discuss the connection of the band-gap value and absorption coefficient to the underlying nanopore geometry. The absorption coefficient in the visible range is found to be optimal for appropriately chosen nanopore size, spacing, and orientation. Our work allows us to predict porous-silicon structures that may have optimal performance in photovoltaic applications. This research was supported as part of CSTEC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Computational resources were provided by the DOE NERSC facility.

  15. Absorption Spectra and Absorption Coefficients for Methane in the 750-940 nm region obtained by Intracavity Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Brien, J. J.; Cao, H.

    2000-10-01

    Methane spectral features are prominent in the reflected sunlight spectra from the outer planets and some of their major satellites and can provide useful information on the atmospheres of those bodies. Methane bands occurring in the visible to near-IR region are particularly important because for many of these planetary bodies, methane bands occurring in the IR are saturated. Spectral observations of these bodies also are being made at increasingly higher resolution. In order to interpret the planetary spectra, laboratory data for methane obtained at appropriate sample conditions and spectral resolution are required. Since the visible to near-IR spectrum of methane is intrinsically weak, sensitive techniques are required to perform the laboratory measurements. We have employed the intracavity laser spectroscopy (ILS) technique to record methane spectrum in the visible to near-IR region. New results for room temperature methane in the 10,635 - 13,300 cm-1 region and for liquid nitrogen temperature (77 K) methane in the 10,860 - 11,605 cm-1 region will be presented. Spectra throughout the more strongly absorbing sections will be shown. These spectra are acquired at a resolution of 400,000 - 500,000 and are calibrated using iodine reference spectra acquired from an extra-cavity cell at nearly the same time as when the methane data are recorded. From the spectra, absorption coefficients are determined and these are presented as averages over 1 Å and 1 cm-1 intervals. In order to obtain the results, spectra are deconvolved for the instrument function using a Fourier transform technique. The validity of the approach is verified from studies of isolated oxygen lines in the A band occurring around 760 nm. Good agreement is observed between the intensity values determined from the FT deconvolution and integration method and those derived by fitting the observed line profiles to Voigt line-shapes convoluted with the instrument function. The methane results are compared

  16. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  17. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  18. Theoretical collision-induced rototranslational absorption spectra for the outer planets - H2-CH4 pairs

    NASA Astrophysics Data System (ADS)

    Borysow, A.; Frommhold, L.

    1986-05-01

    Computations of the rototranslational absorption spectra of H2-CH4 molecular complexes are presented which are based on the classical multipole expansion; spectral profiles are obtained from an exact quantum formalism. The interaction potential is based on laboratory measurements of H2-CH4 pairs at 195 and 297K. The computed spectra provide the most reliable temperature dependence of the absorption coefficient as a function of frequency that can be made under the present circumstances. A theoretical description of the H2CH4 dimer features is given in the isotropic potential approximation. This work is significant for the modeling of the far-infrared absorption of the outer planets' atmospheres, where H2 and CH4 are present.

  19. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra.

    PubMed

    Rossi, G; d'Acapito, F; Amidani, L; Boscherini, F; Pedio, M

    2016-09-14

    We report a detailed study of the K-edge X-ray absorption spectra of four transition metal phthalocyanines (MPc, M = Fe, Co, Cu and Zn). We identify the important single and multiple scattering contributions to the spectra in the extended energy range and provide a robust treatment of thermal damping; thus, a generally applicable model for the interpretation of X-ray absorption fine structure spectra is proposed. Consistent variations of bond lengths and Debye Waller factors are found as a function of atomic number of the metal ion, indicating a variation of the metal-ligand bond strength which correlates with the spatial arrangement and occupation of molecular orbitals. We also provide an interpretation of the near edge spectral features in the framework of a full potential real space multiple scattering approach and provide a connection to the local electronic structure. PMID:27510989

  20. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma

    SciTech Connect

    Knapp, P. F.; Hansen, S. B.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2012-07-15

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of {+-}14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 {mu}m spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within {+-}25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma.

  1. Calibration and analysis of spatially resolved x-ray absorption spectra from a nonuniform plasma.

    PubMed

    Knapp, P F; Hansen, S B; Pikuz, S A; Shelkovenko, T A; Hammer, D A

    2012-07-01

    We report here the calibration and analysis techniques used to obtain spatially resolved density and temperature measurements of a pair of imploding aluminum wires from x-ray absorption spectra. A step wedge is used to measure backlighter fluence at the film, allowing transmission through the sample to be measured with an accuracy of ±14% or better. A genetic algorithm is used to search the allowed plasma parameter space and fit synthetic spectra with 20 μm spatial resolution to the measured spectra, taking into account that the object plasma nonuniformity must be physically reasonable. The inferred plasma conditions must be allowed to vary along the absorption path in order to obtain a fit to the spectral data. The temperature is estimated to be accurate to within ±25% and the density to within a factor of two. This information is used to construct two-dimensional maps of the density and temperature of the object plasma. PMID:22852690

  2. Communication: On the difficulty of reproducibly measuring PbCl2 X-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Schwartz, Craig P.; Prendergast, David

    2015-09-01

    Previous measurements of the X-ray absorption spectra of PbCl2 at the chlorine K-edge have shown significant variation between different studies. Herein, using first principles simulations of X-ray absorption spectroscopy, we show that the observed spectral variations are due to the generation of Cl2 gas and depletion of chlorine from PbCl2, consistent with what is observed during ultraviolet absorption for the same compound. We note that Cl2 gas generation can also be initiated using higher resonant X-ray energies, including Pb X-ray absorption edges. While this casts doubt on previous interpretations of certain measurements, it does indicate a means of generating chlorine gas during in situ experiments by passing high energy x-rays through a hard x-ray transparent medium and onto PbCl2.

  3. Communication: On the difficulty of reproducibly measuring PbCl2 X-ray absorption spectra.

    PubMed

    Schwartz, Craig P; Prendergast, David

    2015-09-21

    Previous measurements of the X-ray absorption spectra of PbCl2 at the chlorine K-edge have shown significant variation between different studies. Herein, using first principles simulations of X-ray absorption spectroscopy, we show that the observed spectral variations are due to the generation of Cl2 gas and depletion of chlorine from PbCl2, consistent with what is observed during ultraviolet absorption for the same compound. We note that Cl2 gas generation can also be initiated using higher resonant X-ray energies, including Pb X-ray absorption edges. While this casts doubt on previous interpretations of certain measurements, it does indicate a means of generating chlorine gas during in situ experiments by passing high energy x-rays through a hard x-ray transparent medium and onto PbCl2. PMID:26395677

  4. IR absorption and Raman spectra of single crystals of stable germanium isotopes

    NASA Astrophysics Data System (ADS)

    Gavva, V. A.; Kotereva, T. V.; Lipskiy, V. A.; Nezhdanov, A. V.

    2016-02-01

    The Raman and IR absorption spectra of single crystals of germanium isotopes 72Ge, 73Ge, 74Ge, and 76Ge in the region of phonon absorption and interband electronic transitions are studied at room temperature. The dependence of the Raman peak position on the atomic mass has the form ν ~ M -1/2. The shifts of the phonon absorption peaks of individual isotopes with respect to germanium of natural isotopic composition natGe are determined. With increasing average atomic mass of germanium, these peaks shift to longer wavelengths. In the region of interband electronic transitions, the intrinsic absorption edge of 76Ge is observed to shift by 1 meV to higher energies with respect to Ge of natural isotopic composition. For isotopes with atomic masses close to that of natural germanium (72Ge,73Ge, 74Ge), we found no significant difference in the band gap width at room temperature.

  5. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    SciTech Connect

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  6. Modeling absorption spectra for detection of the combustion products of jet engines by laser remote sensing.

    PubMed

    Voitsekhovskaya, Olga K; Kashirskii, Danila E; Egorov, Oleg V; Shefer, Olga V

    2016-05-10

    The absorption spectra of exhaust gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3) particles were modeled at different temperatures for the first time and suitable spectral ranges were determined for conducting laser remote sensing of the combustion products of jet engines. The calculations were conducted on the basis of experimental concentrations of the substances and the sizes of the aerosol particles. The temperature and geometric parameters of jet engine exhausts were also taken from the literature. The absorption spectra were obtained via the line-by-line method, making use of the spectral line parameters from the authors' own high-temperature databases (for NO2 and SO2 gases) and the HITEMP 2010 database, and taking into account atmospheric transmission. Finally, the theoretical absorption spectra of the exhaust gases were plotted at temperatures of 400, 700, and 1000 K, and the impact of aerosol particles on the total exhaust spectra was estimated in spectral ranges suitable for remote sensing applications. PMID:27168298

  7. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    NASA Astrophysics Data System (ADS)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  8. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    NASA Astrophysics Data System (ADS)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  9. Studies on external electric field effects on absorption and fluorescence spectra of NADH

    NASA Astrophysics Data System (ADS)

    Nakabayashi, Takakazu; Islam, Md. Serajul; Li, Liming; Yasuda, Masahide; Ohta, Nobuhiro

    2014-03-01

    Electric field effects on absorption and fluorescence spectra have been investigated for NADH that is a representative autofluorescent chromophore in cells. The change in electric dipole moment following absorption is significant in the electroabsorption spectrum, indicating charge transfer character in the excited state. The fluorescence intensity decreases in the presence of an electric field, which arises from the field-induced increase in the rate of the non-radiative process. The blue shift of the fluorescence spectrum and the increase in the fluorescence lifetime of NADH are measured in yeast cells, which is discussed in terms of a local electric field around NADH.

  10. Absorption spectra of monolayer MoS2 in high magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Hung-Duen; Her, Jim-Long; Takeyama, Shojiro; Matsuda, Yasuhiro; Wang, Kai-Hsuan

    2015-03-01

    We have measured the absorption spectra of monolayer MoS2 film at several temperatures in pulsed high magnetic fields up to 52 T. At room temperature, the observed spectrum dominated by two main peaks, which are located at 660 nm and 606 nm. These peaks are ascribed to excition and trion absorption peaks respectively [1]. At low temperature (4.2 K), two peaks show the blue shift to 633 nm and 588 nm, respectively. Irrespective of the temperature, applying magnetic field does not show pronounced influence on the peaks even in 52 T.

  11. Measurements of trace constituents from atmospheric infrared emission and absorption spectra, a feasibility study

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Williams, W. J.; Murcray, D. G.

    1974-01-01

    The feasibility of detecting eight trace constituents (CH4, HCl, HF, HNO3, NH3, NO, NO2 and SO2) against the rest of the atmospheric background at various altitudes from infrared emission and absorption atmospheric spectra was studied. Line-by-line calculations and observational data were used to establish features that can be observed in the atmospheric spectrum due to each trace constituent. Model calculations were made for experimental conditions which approximately represent state of the art emission and absorption spectrometers.

  12. Theoretical calculations on the electron absorption spectra of selected Polycyclic Aromatic Hydrocarbons (PAH) and derivatives

    NASA Technical Reports Server (NTRS)

    Du, Ping

    1993-01-01

    As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.

  13. Observationally determined Fe II oscillator strengths. [interstellar and quasar absorption spectra

    NASA Technical Reports Server (NTRS)

    Van Steenberg, M.; Shull, J. M.; Seab, C. G.

    1983-01-01

    Absorption oscillator strengths for 21 Fe II resonance lines, have been determined using a curve-of-growth analysis of interstellar data from the Copernicus and International Ultraviolet Explorer (IUE) satellites. In addition to slight changes in strengths of the far-UV lines, new f-values are reported for wavelength 1608.45, a prominent line in interstellar and quasar absorption spectra, and for wavelength 2260.08, a weak, newly identified linen in IUE interstellar spectra. An upper limit on the strength of the undetected line at 2366.867 A (UV multiplet 2) is set. Using revised oscillator strengths, Fe II column densities toward 13 OB stars are derived. The interstellar depletions, (Fe/H), relative to solar values range between factors of 10 and 120.

  14. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage.

    PubMed

    Böhner, Nadine; Rieblinger, Klaus

    2016-11-01

    The objective of this study was to evaluate the influence of several visible light spectra in various intensities on the oxygen absorption and surface color of sliced bologna. Sausage samples were stored in a gastight model packaging system and illuminated at 5°C with six single-colored LEDs covering the main part of the visible light spectrum. The initial oxygen level was set at 0.5% in order to simulate common residual oxygen amounts in conventional packaging. The oxygen absorption and the discoloration measured as changes in CIE a*-value were dependent from the applied light intensity. The color stability of bologna was differently affected by light of various wavelengths. The results show that the use of suitable LEDs with specific spectra for display illumination can help to reduce the light induced deterioration of cured sausages in retail markets. PMID:27343458

  15. Emission and absorption spectra of some bridged 1,5-benzodiazepines

    NASA Astrophysics Data System (ADS)

    Mellor, J. M.; Pathirana, R. N.; Stibbard, J. H. A.

    Absorption spectra in neutral and acidic media are reported for a series of bridged 1,5-benzodiazepines, which are unable to tautomerize. Comparison is made with non-bridged 1,5-benzodiazepines capable of tautomeric rearrangement. Both bridged and non-bridged 1,5-benzodiazepines are essentially non-fluorescent due to the "proximity effect" of interaction between singlet ηπ* and ππ* states of similar energy, a phenomenon previously recognised in six-membered nitrogen heterocycles.

  16. Absorption features in the 3 micron spectra of highly obscured objects

    NASA Technical Reports Server (NTRS)

    Smith, Robert G.; Sellgren, Kris; Tokunaga, Alan T.

    1989-01-01

    Using the IRTF cooled-grating spectrometer moderate resolution 2.4 to 3.8 micron spectra of a selection of IR protostars and one object located behind the Taurus dark cloud were obtained. Two examples of the spectra are presented. It is clear that the absorption near 3.07 micron is dominated by H2O ice and a comparison between the spectra and a simple H2O ice model allows a temperature estimate for the hottest ice-coated grains in these sources. Higher resolution observations showed no indication of the absorption due to the N-H stretching vibration of NH3 near 2.963 micron. The most plausible explanation for the 3.3 and 3.45 micron features appears to be absorption by the mixture of hydrocarbons, although they cannot be identified with features already attributed to hydrocarbons in the ISM, reflection nebulae and Comets. However these features appear the same for all sources in the sample, including Elias 16, thus implying a very similar mixture of molecules in each source.

  17. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane.

    PubMed

    Chandran, Satheesh; Varma, Ravi

    2016-01-15

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm(-1) with a resolution of 0.08 cm(-1) using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm(-1) and 8100-8230 cm(-1). No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database. PMID:26474242

  18. Algae (Microcystis and Scenedesmus) absorption spectra and its application on Chlorophyll a retrieval

    NASA Astrophysics Data System (ADS)

    Wu, Di; Chen, Maosi; Wang, Qiao; Gao, Wei

    2013-12-01

    Blue algae and green algae are the dominant phytoplankton groups that contribute to the eutrophication and the water bloom in inland water of China. The absorption coefficients (spectra) of the algae, which do not change with its intrinsic optical characteristics and the observation geometry, are strictly additive quantities. The characteristics of the absorption spectra of the two algae are presented. The pure blue algae and the pure green algae cultured in the laboratory environment are diluted and mixed at ten volume ratios. The Quantitative Filter Technique was applied to measure their absorption spectra. The "hot-ethanol extraction" method was chosen to calculate their concentration of Chlorophyll a. The retrieval algorithm developed in this study extracts the mapping information between each individual alga and their Chlorophyll a concentration via Continuous Wavelet Transform, and retrieves the Chlorophyll a concentration of each alga in their mixture using a trust region optimizer. The results show that the retrieved and the measured Chlorophyll a concentrations of the blue algae and the green algae components in the ten mixture match well with the average relative error of 5.55%.

  19. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane

    NASA Astrophysics Data System (ADS)

    Chandran, Satheesh; Varma, Ravi

    2016-01-01

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm- 1 with a resolution of 0.08 cm- 1 using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm- 1 and 8100-8230 cm- 1. No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database.

  20. UV Absorption and Luminescence Spectra of [2.2]Paracyclophane Phenyl Derivatives

    NASA Astrophysics Data System (ADS)

    Nurmukhametov, R. N.; Shapovalov, A. V.; Antonov, D. Yu.

    2016-03-01

    UV absorption, fluorescence emission and excitation, and fluorescence excitation synchronous scanning spectra at 298 K and fluorescence and phosphorescence spectra at 77 K were measured for solutions of 4-phenyl- ( I) and 4,12-( II), 4,15- ( III), and 4,16-diphenyl derivatives ( IV) of [2.2]paracyclophane. Analysis of absorption spectra shows that they are determined by two types of chromophores (biphenyl and paracyclophane). It was shown that their weak long wavelength band (310-340 nm) and fluorescence band are governed by the same electron transition from the ground to an excimer-like excited state, as in the case of the unsubstituted macrocycle. Phenyl substitution shows only a weak influence on the energy of this transition. Strong absorption bands of I- IV at 230-310 nm originate from electronic transitions of biphenyl groups in these molecules. The strong bands of isomeric II- IV (with two biphenyl chromophores) differ significantly. It was supposed that this phenomenon was caused by different resonance interaction between electron oscillators (transitions) of the two biphenyl chromophores leading to different splitting of their excited states.

  1. Modeling of multi-exciton transient absorption spectra of protochlorophyllide aggregates in aqueous solution.

    PubMed

    Sytina, Olga A; Novoderezhkin, Vladimir I; van Grondelle, Rienk; Groot, Marie Louise

    2011-11-01

    Protochlorophyllide (Pchlide) is a natural porphyrin, a precursor of chlorophyll, synthesized by plants for its photosynthetic apparatus. The pigment spontaneously forms aggregates when dissolved in neat water solution. We present here calculations of the transient absorption spectra and its comprising components (ground-state bleach, stimulated emission, and excited-state absorption) for a strongly excitonically coupled linear chain of four Pchlide chromophores, using exciton theory with phenomenological Gaussian line shapes and without energetic disorder. A refined multiexciton model that includes static disorder is applied to fit the experimental power-dependent transient absorption spectra of aqueous protochlorophyllide and the kinetics for delay times up to 20 ps after photoexcitation. We show that population up to the 4-exciton manifold is sufficient to explain the pronounced saturation of the bleaching and the shape changes in the instantaneous, t = 0.2 ps transient spectra when the pulse energy is increased from 10 to 430 nJ per pulse. The decay of the multiexciton manifold is relatively slow and is preceded by a spectroscopically distinct process. We suggest that the exciton states in the Pchlide aggregates are mixed with charge-transfer states (CTS) and that the population and repopulation of the CTS coupled to the exciton states explains the relatively slow decay of the multiexciton manifold. The relevance of our results to the optical properties and dynamics of natural photosynthetic complexes and the possible physical origin of CTS formation are discussed. PMID:21936513

  2. Twin-peaks absorption spectra of excess electron in ionic liquids

    NASA Astrophysics Data System (ADS)

    Musat, Raluca M.; Kondoh, Takafumi; Yoshida, Yoichi; Takahashi, Kenji

    2014-07-01

    The solvated electron in room temperature ionic liquids (RTILs) has been the subject of several investigations and several reports exist on its nature and absorption spectrum. These studies concluded that the solvated electron exhibits an absorption spectrum peaking in the 1000-1400 nm region; a second absorption band peaking in the UV region has been assigned to the hole or dication radicals simultaneously formed in the system. Here we report on the fate of the excess electron in the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide, P14+/NTf2- using nanosecond pulse radiolysis. Scavenging experiments allowed us to record and disentangle the complex spectrum measured in P14+/NTf2-. We identified a bi-component absorption spectrum, due to the solvated electron, the absorption maxima located at 1080 nm and around 300 nm, as predicted by previous ab-initio molecular dynamics simulations for the dry excess electron. We also measured the spectra using different ionic liquids and confirmed the same feature of two absorption peaks. The present results have important implications for the characterization of solvated electrons in ionic liquids and better understanding of their structure and reactivity.

  3. In vivo determination of the absorption and scattering spectra of the human prostate during photodynamic therapy

    PubMed Central

    Finlay, Jarod C.; Zhu, Timothy C; Dimofte, Andreea; Stripp, Diana; Malkowicz, S. Bruce; Whittington, Richard; Miles, Jeremy; Glatstein, Eli; Hahn, Stephen M.

    2015-01-01

    A continuing challenge in photodynamic therapy is the accurate in vivo determination of the optical properties of the tissue being treated. We have developed a method for characterizing the absorption and scattering spectra of prostate tissue undergoing PDT treatment. Our current prostate treatment protocol involves interstitial illumination of the organ via cylindrical diffusing optical fibers (CDFs) inserted into the prostate through clear catheters. We employ one of these catheters to insert an isotropic white light point source into the prostate. An isotropic detection fiber connected to a spectrograph is inserted into a second catheter a known distance away. The detector is moved along the catheter by a computer-controlled step motor, acquiring diffuse light spectra at 2 mm intervals along its path. We model the fluence rate as a function of wavelength and distance along the detector’s path using an infinite medium diffusion theory model whose free parameters are the absorption coefficient µa at each wavelength and two variables A and b which characterize the reduced scattering spectrum of the form µ’s = Aλ−b. We analyze our spectroscopic data using a nonlinear fitting algorithm to determine A, b, and µa at each wavelength independently; no prior knowledge of the absorption spectrum or of the sample’s constituent absorbers is required. We have tested this method in tissue simulating phantoms composed of intralipid and the photosensitizer motexafin lutetium (MLu). The MLu absorption spectrum recovered from the phantoms agrees with that measured in clear solution, and µa at the MLu absorption peak varies linearly with concentration. The µ’s spectrum reported by the fit is in agreement with the known scattering coefficient of intralipid. We have applied this algorithm to spectroscopic data from human patients sensitized with MLu (2 mg kg−1) acquired before and after PDT. Before PDT, the absorption spectra we measure include the characteristic

  4. Absorption spectra and photoresponse observation of Cu2O thin film photoanodes

    NASA Astrophysics Data System (ADS)

    Mani, Endri; Garuthara, Rohana

    2014-03-01

    Electrodeposition was used to deposit Cu2O thin films on ITO substrates. The deposited Cu2O films were characterized by photocurrent, absorption and reflectance spectroscopy. Photoresponse of the film clearly indicated n-type behavior of Cu2O in photoelectrochemical cells. The effects of chlorine doped photoanodes deposited in different solution pH on the magnitude of their photocurrent are studied. The low temperature absorption spectra of chlorine doped Cu2O films are found to depend on the solution pH in the range 10.0-7.5. Optical absorption spectra of Cu2O films were measured in the temperature range 79K - 295K. The Urbach's tail was observed for n-type conductive Cu2O films in the temperature range 79K to 295K. The Urbach's energy as a function of temperature for Cu2O films were studied. The results will be discussed with emphasis on the reflectance, absorption and photoresponse observation.

  5. TDDFT prediction of UV-vis absorption and emission spectra of tocopherols in different media.

    PubMed

    Bakhouche, Kahina; Dhaouadi, Zoubeida; Lahmar, Souad; Hammoutène, Dalila

    2015-06-01

    We use the TDDFT/PBE0/6-31+G* method to determine the electronic absorption and emission energies, in different media, of the four forms of tocopherol, which differ by the number and the position of methyl groups on the chromanol. Geometries of the ground state S0 and the first singlet excited state S1 were optimized in the gas phase, and various solvents. The solvent effect is evaluated using an implicit solvation model (IEF-PCM). Our results are compared to the experimental ones obtained for the vitamin E content in several vegetable oils. For all forms of tocopherols, the HOMO-LUMO first vertical excitation is a π-π* transition. Gas phase and non-polar solvents (benzene and toluene) give higher absorption wavelengths than polar solvents (acetone, ethanol, methanol, DMSO, and water); this can be interpreted by a coplanarity between the O-H group and the chroman, allowing a better electronic resonance of the oxygen lone pairs and the aromatic ring, and therefore giving an important absorption wavelength, whereas the polar solvents give high emission wavelengths comparatively to gas phase and non-polar solvents. Fluorescence spectra permit the determination, the separation, and the identification of the four forms of tocopherols by a large difference in emission wavelength values. Graphical Abstract Scheme from process methodological to obtain the absorption and emission spectra for tocopherols. PMID:26026299

  6. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  7. Photon-photon absorption and the uniqueness of the spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Kazanas, D.

    1984-01-01

    The effects of the feedback of e(+)-e(-) pair reinjection in a plasma due to photon-photon absorption of its own radiation was examined. Under the assumption of continuous electron injection with a power law spectrum E to the minus gamma power and Compton losses only, it is shown that for gamma 2 the steady state electron distribution function has a unique form independent of the primary injection spectrum. This electron distribution function can, by synchrotron emission, reproduce the general characteristics of the observed radio to optical active galactic nuclei spectra. Inverse Compton scattering of the synchrotron photons by the same electron distribution can account for their X-ray spectra, and also implies gamma ray emission from these objects. This result is invoked to account for the similarity of these spectra, and it is consistent with observations of the diffuse gamma ray background.

  8. pH-dependent x-ray absorption spectra of aqueous boron oxides

    NASA Astrophysics Data System (ADS)

    Duffin, Andrew M.; Schwartz, Craig P.; England, Alice H.; Uejio, Janel S.; Prendergast, David; Saykally, Richard J.

    2011-04-01

    Near edge x-ray absorption fine structure (NEXAFS) spectra at the boron K-edge were measured for aqueous boric acid, borate, and polyborate ions, using liquid microjet technology, and compared with simulated spectra calculated from first principles density functional theory in the excited electron and core hole (XCH) approximation. Thermal motion in both hydrated and isolated molecules was incorporated into the calculations by sampling trajectories from quantum mechanics/molecular mechanics simulations at the experimental temperature. The boron oxide molecules exhibit little spectral change upon hydration, relative to mineral samples. Simulations reveal that water is arranged nearly isotropically around boric acid and sodium borate, but the calculations also indicate that the boron K-edge NEXAFS spectra are insensitive to hydrogen bonding, molecular environment, or salt interactions.

  9. Suzaku observations of the type 2 QSO in the central galaxy of the Phoenix cluster

    SciTech Connect

    Ueda, Shutaro; Hayashida, Kiyoshi; Anabuki, Naohisa; Nakajima, Hiroshi; Koyama, Katsuji; Tsunemi, Hiroshi

    2013-11-20

    We report the Suzaku/XIS and HXD and Chandra/ACIS-I results on the X-ray spectra of the Phoenix cluster at the redshift z = 0.596. The spectrum of the intracluster medium (ICM) is well reproduced with the emissions from low-temperature (∼3.0 keV and ∼0.76 solar) and high-temperature (∼11 keV and ∼0.33 solar) plasmas; the former is localized at the cluster core, while the latter distributes over the cluster. In addition to these ICM emissions, a strongly absorbed power-law component is found, which is due to an active galactic nucleus (AGN) in the cluster center. The absorption column density and unobscured luminosity of the AGN are ∼3.2 × 10{sup 23} cm{sup –2} and ∼4.7 × 10{sup 45} erg s{sup –1} (2-10 keV), respectively. Furthermore, a neutral iron (Fe I) K-shell line is discovered for the first time with the equivalent width (EW) of ∼150 eV at the rest frame. The column density and the EW of the Fe I line are exceptionally large for such a high-luminosity AGN, and hence the AGN is classified as a type 2 quasi-stellar object (QSO). We speculate that a significant fraction of the ICM cooled gas would be consumed to maintain the torus and to activate the type 2 QSO. The Phoenix cluster has a massive starburst in the central galaxy, indicating that suppression in the cooling flow is less effective. This may be because the onset of the latest AGN feedback has occurred recently and has not yet been effective. Alternatively, the AGN feedback is predominantly in radiative mode, not in kinetic mode, and the torus may work as a shield to reduce its effect.

  10. NOTE: Absorption spectra variations of EBT radiochromic film from radiation exposure

    NASA Astrophysics Data System (ADS)

    Butson, M. J.; Cheung, T.; Yu, P. K. N.

    2005-07-01

    Gafchromic EBT radiochromic film is one of the newest radiation-induced auto-developing x-ray analysis films available for therapeutic radiation dosimetry in radiotherapy applications. The spectral absorption properties in the visible wavelengths have been investigated and results show two main peaks in absorption located at 636 nm and 585 nm. These absorption peaks are different to many other radiochromic film products such as Gafchromic MD-55 and HS film where two peaks were located at 676 nm and 617 nm respectively. The general shape of the absorption spectra is similar to older designs. A much higher sensitivity is found at high-energy x-rays with an average 0.6 OD per Gy variation in OD seen within the first Gy measured at 636 nm using 6 MV x-rays. This is compared to approximately 0.09 OD units for the first Gy at the 676 nm absorption peak for HS film at 6 MV x-ray energy. The film's blue colour is visually different from older varieties of Gafchromic film with a higher intensity of mid-range blue within the film. The film provides adequate relative absorbed dose measurement for clinical radiotherapy x-ray assessment in the 1 2 Gy dose range which with further investigation may be useful for fractionated radiotherapy dose assessment.

  11. Real-time atmospheric absorption spectra for in-flight tuning of an airborne dial system

    NASA Technical Reports Server (NTRS)

    Dombrowski, M.; Walden, H.; Schwemmer, G. K.; Milrod, J.; Korb, C. L.

    1986-01-01

    Real-time measurements of atmospheric absorption spectra are displayed and used to precisely calibrate and fix the frequency of an Alexandrite laser to specific oxygen absorption features for airborne Differential Absorption Lidar (DIAL) measurements of atmospheric pressure and temperature. The DIAL system used contains two narrowband tunable Alexandrite lasers: one is electronically scanned to tune to oxygen absorption features for on-line signals while the second is used to obtain off-line (nonabsorbed) atmospheric return signals. The lidar operator may select the number of shots to be averaged, the altitude, and altitude interval over which the signals are averaged using single key stroke commands. The operator also determines exactly which oxygen absorption lines are scanned by comparing the line spacings and relative strengths with known line parameters, thus calibrating the laser wavelength readout. The system was used successfully to measure the atmospheric pressure profile on the first flights of this lidar, November 20, and December 9, 1985, aboard the NASA Wallops Electra aircraft.

  12. Ly alpha and IR galaxy companions of high redshift damped Ly alpha QSO absorbers

    NASA Technical Reports Server (NTRS)

    Caulet, Adeline; Mccaughrean, Mark

    1993-01-01

    We have used a Near-Infrared Camera and Multi-Object Spectrometer (NICMOS3) HgCdTe 256x256 array detector with the Infrared (IR) camera on the 2.3m telescope at Steward Observatory to image several Quasi-Stellar Object (QSO) fields. The limiting magnitude is K'(2.1 microns) = 21.0 - 21.5 mag per square arcsec for a 3 sigma detection in 3 hours of in-field chopping observations. Each QSO line-of-sight samples several known absorbers with Mg2(lambda)2796-2803 A and/or C4(lambda)1548-1551 A absorption doublets. The equivalent width distributions of the low and high ionization absorption lines of the absorber sample are identical to those of the parent population of all absorbers. This selection process, used already for a spectroscopic survey of Mg2 absorption lines in C4-selected absorption systems at high z, gives a methodical approach to observing, reduces the observer biases, and makes a more efficient use of telescope time. This selection guarantees that imaging of the sample of QSO fields will provide complete sampling of the whole population of high z QSO absorbers. Follow-up optical and IR spectroscopy of these objects is scheduled for redshift measurement and confirmation of the absorbing galaxies and the cluster members.

  13. Largescale QSO - Galaxy Correlations Revisited

    NASA Astrophysics Data System (ADS)

    Bartelmann, M.; Schneider, P.

    1993-04-01

    Fugmann (1990) claimed indications for correlations between Lick galaxies and high-redshift, radio-loud background sources. We re- analyze these correlations using an improved statistical method based on Spearman's rank-order test, which we have introduced recently (Bartelmann & Schneider 1993). To our surprise, we are not able to reproduce Fugmann's results, but we detect a significant correlation between moderate-redshift sources from the 1-Jansky catalog and Lick galaxies, which increases when we apply an optical flux limit to the source sample. We interpret these empirical results in terms of an amplification bias caused by gravitational light deflection by dark matter; in particular, we argue that the observed large-scale QSO-galaxy correlations can provide a proof for the association of luminous matter (galaxies) with dark matter.

  14. Infrared band absorptance correlations and applications to nongray radiation. [mathematical models of absorption spectra for nongray atmospheres in order to study air pollution

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Manian, S. V. S.

    1976-01-01

    Various mathematical models for infrared radiation absorption spectra for atmospheric gases are reviewed, and continuous correlations for the total absorptance of a wide band are presented. Different band absorptance correlations were employed in two physically realistic problems (radiative transfer in gases with internal heat source, and heat transfer in laminar flow of absorbing-emitting gases between parallel plates) to study their influence on final radiative transfer results. This information will be applied to the study of atmospheric pollutants by infrared radiation measurement.

  15. The Mid-Infrared Absorption Spectra of Neutral PAHs in Dense Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.

    2005-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are common throughout the universe and are expected to be present in dense interstellar clouds. In these environments, some P.4Hs may be present in the gas phase, but most should be frozen into ice mantles or adsorbed onto dust grains and their spectral features are expected to be seen in absorption. Here we extend our previous work on the infrared spectral properties of the small PAH naphthalene (C10H8) in several media to include the full mid-infrared laboratory spectra of 11 other PAHs and related aromatic species frozen in H2O ices. These include the molecules 1,2-dihydronaphthalene, anthracene, 9,1O-dihydroanthracene, phenanthrene, pyrene, benzo[e]pyrene, perylene, benzo(k)fluoranthene, pentacene, benzo[ghi]perylene, and coronene. These results demonstrate that PAHs and related molecules, as a class, show the same spectral behaviors as naphthalene when incorporated into H2O-rich matrices. When compared to the spectra of these same molecules isolated in inert matrices (e.g., Ar or N2), the absorption bands produced when they are frozen in H2O matrices are broader (factors of 3-10), show small position shifts in either direction (usually < 4/cm, always < 10/cm), and show variable changes in relative band strengths (typically factors of 1-3). There is no evidence of systematic increases or decreases in the absolute strengths of the bands of these molecules when they are incorporated in H2O matrices. In H2O-rich ices, their absorption bands are relatively insensitive to concentration over the range of 10 < H2O/PAH < 200): The absorption bands of these molecules are also insensitive to temperature over the 10 K < T < 125 K range, although the spectra can show dramatic changes as the ices are warmed through the temperature range in which amorphous H2O ice converts to its cubic and hexagonal crystalline forms (T > 125 Kj. Given the small observed band shifts cause by H2O, the current database of spectra from Ar matrix

  16. Time variations of narrow absorption lines in high resolution quasar spectra

    NASA Astrophysics Data System (ADS)

    Boissé, P.; Bergeron, J.; Prochaska, J. X.; Péroux, C.; York, D. G.

    2015-09-01

    Aims: We have searched for temporal variations of narrow absorption lines in high resolution quasar spectra. A sample of five distant sources were assembled, for which two spectra are available, either VLT/UVES or Keck/HIRES, which were taken several years apart. Methods: We first investigate under which conditions variations in absorption line profiles can be detected reliably from high resolution spectra and discuss the implications of changes in terms of small-scale structure within the intervening gas or intrinsic origin. The targets selected allow us to investigate the time behaviour of a broad variety of absorption line systems by sampling diverse environments: the vicinity of active nuclei, galaxy halos, molecular-rich galaxy disks associated with damped Lyα systems, as well as neutral gas within our own Galaxy. Results: Intervening absorption lines from Mg ii, Fe ii, or proxy species with lines of lower opacity tracing the same kind of (moderately ionised) gas appear in general to be remarkably stable (1σ upper limits as low as 10% for some components on scales in the range 10-100 au), even for systems at zabs ≈ ze. Marginal variations are observed for Mg ii lines towards PKS 1229-021 at zabs = 0.83032; however, we detect no systems that display any change as large as those reported in low resolution SDSS spectra. The lack of clear variations for low β Mg ii systems does not support the existence of a specific population of absorbers made of swept-up gas towards blazars. In neutral or diffuse molecular media, clear changes are seen for Galactic Na i lines towards PKS 1229-02 (decrease in N by a factor of four for one of the five components over 9.7 yr), corresponding to structure on a scale of about 35 au, in good agreement with known properties of the Galactic interstellar medium. Tentative variations are detected for H2J = 3 lines towards FBQS J2340-0053 at zabs = 2.05454 (≃35% change in column density, N, over 0.7 yr in the rest frame), suggesting

  17. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    USGS Publications Warehouse

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  18. Interplay between structural and electronic properties of various fullerene derivatives, and their absorption spectra

    NASA Astrophysics Data System (ADS)

    Park, Sora; Ahn, Jeung Sun; Kwon, Young-Kyun

    2011-03-01

    Using density functional theory (DFT), we investigate the geometrical structures and electronic properties of various fullerene derivatives formed by attaching several kinds of addends on C60 through [2+2] cycloaddition. Various forms of such derivatives are modeled by considering different kinds, different positions and different numbers of addends to study how structural configurations will affect their electronic structures. Our results reveal that some derivatives with certain symmetries determined by the configuration of addends may have wider energy gap than that of pristine C60 . This suggests that absorption properties could be adjusted by controlling the addends configurations. To describe the excited state properties, such as absorption spectra, of various C60 derivatives more accurately, we performed time-dependent (TD) DFT calculations. We find the position and the intensity of the peak of absorption spectra of derivatives are affected by the specific symmetry of the derivatives defined by the configurations of the addends. To explore such peculiar effects, we analyze the charge distribution and orbital mixing characters.

  19. Effects of Spectralon absorption on reflectance spectra of typical planetary surface analog materials.

    PubMed

    Zhang, Hao; Yang, Yazhou; Jin, Weidong; Liu, Chujian; Hsu, Weibiao

    2014-09-01

    Acquiring accurate visible and near-infrared (VisNIR) reflectance values of atmosphereless celestial bodies is very important in inferring the physical and geological properties of their surficial materials. When a calibration target with inherent non-trivial absorption features is used, the calibrated reflectance would essentially always contain spurious spectral features and the spectroscopic data may easily be misinterpreted if the artifact is not properly taken care of. We demonstrate with laboratory reflectance measurements that the VisNIR spectra of three typical planetary surface analog materials, lunar simulant JSC-1A, olivine and pyroxene grains, have an artificial peak at 2.1 µm when Spectralon-type plaque made of polytetrafluoroethylene is used as the calibration target in the NIR region. The degree of severity of this artifact is dependent on the strength of the 2.0 µm absorption feature of the mineral. Empirical methods are proposed to remove this artifact to bring the spectra close to that calibrated by a gold mirror which does not have any conspicuous absorption features in the NIR region. The correction methods may be applied to reflectance data acquired by the VisNIR imaging spectrometer onboard the Yutu Rover of the Chinese Chang'E 3 lunar mission which employed an onboard Spectralon-type calibration target. PMID:25321507

  20. Measurability of Kinetic Temperature from Metal Absorption-Line Spectra Formed in Chaotic Media

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Takahara, Fumio; Agafonova, Irina I.

    1999-06-01

    We present a new method for recovering the kinetic temperature of the intervening diffuse gas to an accuracy of 10%. The method is based on the comparison of unsaturated absorption-line profiles of two species with different atomic weights. The species are assumed to have the same temperature and bulk motion within the absorbing region. The computational technique involves the Fourier transform of the absorption profiles and the consequent entropy-regularized χ2-minimization (ERM) to estimate the model parameters. The procedure is tested using synthetic spectra of C+, Si+, and Fe+ ions. The comparison with the standard Voigt fitting analysis is performed, and it is shown that the Voigt deconvolution of the complex absorption-line profiles may result in estimated temperatures that are not physical. We also successfully analyze Keck telescope spectra of C II λ1334 and Si II λ1260 lines observed at the redshift z=3.572 toward the quasar Q1937-1009 by Tytler et al. Based in part on data obtained at the W. M. Keck Observatory, which is jointly operated by the University of California and the California Institute of Technology.

  1. Spectra extraction for wavelength-modulation spectroscopy of intra-cavity absorption gas sensor

    NASA Astrophysics Data System (ADS)

    Han, Wennian; Wang, Yan; Liu, Kun; Jia, Dagong; Liu, Tiegen

    2010-11-01

    Low-frequency wavelength modulation is introduced to increase sensitivity of intra-cavity absorption gas sensor (ICAGS) system. ICAGS system including erbium-doped fiber amplifier (EDFA), pump laser, tunable fiber Fabry-Perot (F-P) optical filter and gas cell is set up. Using virtual instrument technique, modulation function is generated by LabVIEW software and outputted through the AO ports of data acquisition card to tune the driving voltage of optical filter. The AI ports collect the laser power signals in a synchronous mode. Harmonic spectra can be computed by adopting the method of the Discrete Fourier Transform (DFT). According to the characteristics of different order harmonic, even harmonics and odd harmonics are analyzed respectively. Here, second harmonic is used to determine the spectral intensity, and third harmonic is mainly used to locate the position of spectral lines. With optimum 10 Hz frequency modulation, acetylene absorption experiments were carried out. The pump current of EDFA is 60 mA and the acetylene concentration in the gas cell is 1%. After spectra extraction, in the 1526 nm to 1537 nm wavelength range, 17 absorption lines of acetylene were achieved. The results indicated that the error of wavelength position is less than 0.1 nm and the minimum detection limit of acetylene is about 120x10-6. It is possible to realize the recognition of measured gas type and multi-component gas detection for ICAGS system.

  2. Vibronic bandshape of the absorption spectra of dibenzoylmethanatoboron difluoride derivatives: analysis based on ab initio calculations.

    PubMed

    Rukin, Pavel S; Freidzon, Alexandra Ya; Scherbinin, Andrei V; Sazhnikov, Vyacheslav A; Bagaturyants, Alexander A; Alfimov, Michael V

    2015-07-14

    The nature of absorption bandshapes of dibenzoylmethanatoboron difluoride (DBMBF2) dye substituted in ortho-, meta-, and para-positions of the phenyl ring is investigated using DFT and TDDFT with the range-separated hybrid CAM-B3LYP functional and the 6-311G(d,p) basis set. The solvent effects are taken into account within the polarized continuum model. The vibronic bandshape is simulated using a time-dependent linear coupling model with a vertical gradient approach through an original code. For flexible chromophores, the spectra of individual conformers are summed up with Boltzmann factors. It is shown that the long-wavelength absorption bandshape of DBMBF2 derivatives is determined by three factors: the relative statistical weights of conformers with different electronic absorption patterns, the relative position and intensity of the second low-energy electronic transition, and the vibronic structure of individual electronic peaks. The latter is governed by the relationship between the hard vibrational modes, which contribute to vibronic progression, and soft modes, which provide broadening of the peaks. The simulated spectra of the dyes in the study are generally consistent with the available experimental data and explain the observed spectral features. PMID:26062782

  3. The effect of ionization on the infrared absorption spectra of PAHs: A preliminary report

    NASA Technical Reports Server (NTRS)

    Defrees, Doug J.; Miller, M. D.

    1989-01-01

    The emission lines observed in many interstellar IR sources at 3.28, 6.2, 7.7, 8.7, and 11.3 microns are theorized to originate from polycyclic aromatic hydrocarbons (PAHs). These assignments are based on analyses of lab IR spectra of neutral PAHs. However, it is likely that in the interstellar medium that PAHs are ionized, i.e., are positively charged. Besides, as pointed out by Allamandola et al., although the IR emission band spectrum resembles what one might expect from a mixture of PAHs, it does not match in details such as frequency, band profile, or relative intensities predicted from the absorption spectra of any known PAH molecule. One source of more information to test the PAH theory is ab initio molecular orbital theory. It can be used to compute, from first principles, the geometries, vibrational frequencies, and vibrational intensities for model PAH compounds which are difficult to study in the lab. The Gaussian 86 computer program was used to determine the effect of ionization on the infrared absorption spectra of several small PAHs: naphthalene and anthracene. A preliminary report is presented of the results of these calculations.

  4. Effect of solvent on absorption spectra of all-trans-{beta}-carotene under high pressure

    SciTech Connect

    Liu, W. L.; Zheng, Z. R.; Liu, Z. G.; Zhu, R. B.; Wu, W. Z.; Li, A. H.; Yang, Y. Q.; Dai, Z. F.; Su, W. H.

    2008-03-28

    The absorption spectra of all-trans-{beta}-carotene in n-hexane and carbon disulfide (CS{sub 2}) solutions are measured under high pressure at ambient temperature. The common redshift and broadening in the spectra are observed. Simulation of the absorption spectra was performed by using the time-domain formula of the stochastic model. The pressure dependence of the 0-0 band wavenumber is in agreement with the Bayliss theory at pressure higher than 0.2 GPa. The deviation of the linearity at lower pressure is ascribed to the reorientation of the solvent molecules. Both the redshift and broadening are stronger in CS{sub 2} than that in n-hexane because of the more sensitive pressure dependence of dispersive interactions in CS{sub 2} solution. The effect of pressure on the transition moment is explained with the aid of a simple model involving the relative dimension, location, and orientation of the solute and solvent molecules. The implication of these results for light-harvesting functions of carotenoids in photosynthesis is also discussed.

  5. High resolution deep imaging of a bright radio quiet QSO at z ~ 3

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ping; He, Wei; Yamada, Toru; Tanaka, Ichi; Iye, Masanori; Ji, Tuo

    2015-05-01

    We have obtained deep J and Ks-band images centered on a bright radio quiet QSO UM 402 (zem = 2.856) using the IRCS camera and adaptive optics systems that are part of the Subaru Telescope, as well as retrieved WFC3/F140W archive images of this object. A faint galaxy (mk = 23.32±0.05 in the Vega magnitude system) that lies ~ 2.4″ north of the QSO sightline has been clearly resolved in all three deep high resolution datasets, and appears as an irregular galaxy with two close components in the Ks-band images (separation ~ 0.3″). Given the small impact parameter (b = 19.6 kpc, at zlls = 2.531), as well as the red color of (J - Ks)Vega ~ 1.6, it might be a candidate galaxy giving rise to the Lyman Limit system absorption at zabs = 2.531 seen in the QSO spectrum. After carefully subtracting the point spread function from the QSO images, the host galaxy of this bright radio quiet QSO at z ~ 3 was marginally revealed. We placed a lower limit on the host component of mk ~ 23.3 according to our analyses. Supported by the National Natural Science Foundation of China.

  6. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    PubMed

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH). PMID:26098142

  7. Infrared absorption and vibrational circular dichroism spectra of poly(vinyl ether) containing diastereomeric menthols as pendants

    NASA Astrophysics Data System (ADS)

    McCann, Jennifer L.; Rauk, Arvi; Wieser, Hal

    1997-06-01

    The absorption and vibrational circular dichroism (VCD) spectra in the 1700 to 830 cm -1 region are reported and qualitatively interpreted for poly(vinyl ether) with (+)-menthol (I), (+)-isomenthol (II) and (+)-neomenthol (III) as pendants.

  8. First-principles calculation of ground and excited-state absorption spectra of ruby and alexandrite considering lattice relaxation

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sasaki, Tomomi; Taniguchi, Rie; Ishii, Takugo; Ogasawara, Kazuyoshi

    2009-02-01

    We performed first-principles calculations of multiplet structures and the corresponding ground-state absorption and excited-state absorption spectra for ruby (Cr3+:α-Al2O3) and alexandrite (Cr3+:BeAl2O4) which included lattice relaxation. The lattice relaxation was estimated using the first-principles total energy and molecular-dynamics method of the CASTEP code. The multiplet structure and absorption spectra were calculated using the configuration-interaction method based on density-functional calculations. For both ruby and alexandrite, the theoretical absorption spectra, which were already in reasonable agreement with experimental spectra, were further improved by consideration of lattice relaxation. In the case of ruby, the peak positions and peak intensities were improved through the use of models with relaxations of 11 or more atoms. For alexandrite, the polarization dependence of the U band was significantly improved, even by a model with a relaxation of only seven atoms.

  9. Dielectric tensor of tetracene single crystals: the effect of anisotropy on polarized absorption and emission spectra.

    PubMed

    Tavazzi, S; Raimondo, L; Silvestri, L; Spearman, P; Camposeo, A; Polo, M; Pisignano, D

    2008-04-21

    The full UV-visible dielectric tensor and the corresponding directions of the principal axes of triclinic tetracene crystals are reported as deduced either by polarized absorption and ellipsometry measurements or by calculations based on the molecular and crystallographic data. The results allow the attribution of the polarized bands observed in both absorption and photoluminescence emission spectra. In particular, the spectral line shape and polarization of the emission are found to depend on the sample thickness, and the effect is attributed to the modification of the state of polarization of the emitted light during its propagation inside the crystal. Indeed, the directions of polarization of the lowest optical transitions and the directions of the principal axes of the dielectric tensor are demonstrated not to coincide, in contrast to the assumptions typically made in the literature, thus causing the mixed transverse/longitudinal character of light propagation. PMID:18433260

  10. Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region

    NASA Astrophysics Data System (ADS)

    Unferdorben, Márta; Buzády, Andrea; Hebling, János; Kiss, Krisztián; Hajdara, Ivett; Kovács, László; Péter, Ágnes; Pálfalvi, László

    2016-07-01

    Index of refraction and absorption coefficient spectra of pure paratellurite (α-TeO2) crystal as a potential material for terahertz (THz) applications were determined in the 0.25-2 THz frequency range at room temperature by THz time domain spectroscopy (THz-TDS). The investigation was performed with beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal. Similarly to the visible spectral range, positive birefringence was observed in the THz range as well. It was shown that the values of the refractive index for extraordinary polarization are higher and show significantly larger dispersion than for the ordinary one. The absorption coefficient values are also larger for extraordinary polarization. The measured values were fitted by theoretical curves derived from the complex dielectric function containing independent terms of Lorentz oscillators due to phonon-polariton resonances. The results are compared with earlier publications, and the observed significant discrepancies are discussed.

  11. Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane.

    SciTech Connect

    Dimitrijevic, N. M.; Bartels, D. M.; Jonah, C. D.; Takahashi, K.; Rajh, T.; Chemistry

    2001-02-08

    Colloidal silver nanoparticles were synthesized in supercritical ethane at 80 {sup o}C and 80-120 bar, with methanol as cosolvent. Solvated electrons, produced by a pulse of 20 MeV electrons, reduced the silver ions. The time-resolved technique of pulse radiolysis was employed to characterize the reduction products and colloidal metallic particles. The absorption spectra of small silver clusters (Ag{sub 2}{sup +}, Ag{sub 3}{sup +}, Ag{sub 4}{sup 2+}, etc.) were detected at short times after the pulse. Colloidal metallic silver particles were identified by their characteristic plasmon absorption at 1-10 s after the pulse. Colloidal particles are stable for hours in supercritical ethane. The particles are less than 10 nm in diameter. Their size was determined using transmission electron microscope after precipitation from the solution.

  12. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption spectra to validate DFT EOS

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Alam, Kathleen; Martin, Laura; Fan, Hongyou; Kay, Jeffrey; Wixom, Ryan

    2015-06-01

    Due to its thermal stability and low vapor pressure, Hexanitrostilbene (HNS) is often used in high-temperature or vacuum applications as a detonator explosive or in mild detonating fuse. Toward improving the accuracy of the equation of state used in hydrodynamic simulations of the performance of HNS, we have measured the Raman and electronic absorption spectra of this material under static pressure in a diamond anvil cell. Density functional theory calculations were used to simulate the pressure dependence of the Raman/Electronic spectra along the Hugoniot and 300K isotherm for comparison and to aid in interpreting the data. We will discuss changes in the electronic structure of HNS under pressure, validation of a DFT predicted equation of state (EOS), and using this data as a basis for understanding future pulsed Raman measurements on dynamically compressed HNS samples.

  13. The Intervening Galaxies Hypothesis of the Absorption Spectra of Quasi-Stellar Objects: Some Statistical Studies

    NASA Astrophysics Data System (ADS)

    Duari, Debiprosad; Narlikar, Jayant V.

    This paper examines, in the light of the available data, the hypothesis that the heavy element absorption line systems in the spectra of QSOs originate through en-route absorption by intervening galaxies, halos etc. Several statistical tests are applied in two different ways to compare the predictions of the intervening galaxies hypothesis (IGH) with actual observations. The database is taken from a recent 1991 compilation of absorption line systems by Junkkarinen, Hewitt and Burbidge. Although, prima facie, a considerable gap is found between the predictions of the intervening galaxies hypothesis and the actual observations despite inclusion of any effects of clustering and some likely selection effects, the gap narrows after invoking evolution in the number density of absorbers and allowing for the incompleteness and inhomogeneity of samples examined. On the latter count the gap might be bridgeable by stretching the parameters of the theory. It is concluded that although the intervening galaxies hypothesis is a possible natural explanation to account for the absorption line systems and may in fact do so in several cases, it seems too simplistic to be able to account for all the available data. It is further stressed that the statistical techniques described here will be useful for future studies of complete and homogenous samples with a view to deciding the extent of applicability of the IGH.

  14. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    NASA Astrophysics Data System (ADS)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  15. Atomic calculations and search for variation of the fine-structure constant in quasar absorption spectra

    NASA Astrophysics Data System (ADS)

    Dzuba, V. A.; Flambaum, V. V.

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  16. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  17. Water vapor absorption spectra of the upper atmosphere /45-185 per cm/

    NASA Technical Reports Server (NTRS)

    Augason, G. C.; Mord, A. J.; Witteborn, F. C.; Erickson, E. F.; Swift, C. D.; Caroff, L. J.; Kunz, L. W.

    1975-01-01

    The far IR nighttime absorption spectrum of the earth's atmosphere above 14 km is determined from observations of the bright moon. The spectra were obtained using a Michelson interferometer attached to a 30-cm telescope aboard a high-altitude jet aircraft. Comparison with a single-layer model atmosphere implies a vertical column of 3.4 plus or minus 0.4 microns of precipitable water on 30 August 1971 and 2.4 plus or minus 0.3 microns of precipitable water on 6 January 1972.-

  18. Water vapor absorption spectra of the upper atmosphere (45-185 cm(-1)).

    PubMed

    Augason, G C; Mord, A J; Witteborn, F C; Erickson, E F; Swift, C D; Caroff, L J; Kunz, L W

    1975-09-01

    The far ir nighttime absorption spectrum of the earth's atmosphere above 14 km is determined from observations of the bright moon. The spectra were obtained using a Michelson interferometer attached to a 30-cm telescope aboard a high-altitude jet aircraft. Comparison with a single-layer model atmosphere implies a vertical column of 3.4 +/- 0.4 mum of percipitable water on 30 August 1971 and 2.4 +/- 0.3 mum of precipitable water on 6 January 1972. PMID:20154976

  19. Absorption spectra of riboflavin--a difficult case for computational chemistry.

    PubMed

    Wu, Min; Eriksson, Leif A

    2010-09-23

    Computing accurate absorption spectra of riboflavin (RBF) has proven a difficult task for computational chemistry. Time-dependent density functional theory have herein been employed using a wide range of recent range-separated and hybrid meta functionals to investigate ultraviolet and visible spectra of RBF to determine if any progress has been made through recent developments. It is concluded that B3LYP and PBE0 perform the best throughout the entire test set. However, since all methods deviate from experimental results by at least 40 nm when computing the spectra in vacuum, two approaches to describe aqueous solution are implemented together with the MPWB1K, B3LYP, and PBE0 functionals: implicitly using integral equation formulation of the polarized continuum model (minor improvement) and explicitly through molecular dynamics (MD) simulations of the molecule embedded in a water cluster whereafter snapshots of RBF-water clusters are extracted and time-dependent density functional theory calculations performed. The resulting averaged spectra from the MD-simulated clusters show a constant blue-shift for all peaks by ∼20 nm compared to experimental data at the TD-B3LYP/6-31+G(d,p) level. PMID:20718485

  20. The X-shooter sample of GRB afterglow spectra: Properties of the absorption features

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, Antonio

    2015-08-01

    Since its commissioning at ESO's Very Large Telescope in 2009, the X-shooter spectrograph has become the reference instrument in gamma-ray burst (GRB) afterglow spectroscopy. During this time our collaboration has collected more than 70 spectra of GRB afterglows, with redshifts ranging from 0.06 to 6.3. Thanks to their extreme luminosity and simple intrinsic shape, GRB spectra are optimal tools for the study of galactic environments at basically any redshift. Being produced by the death of short-lived massive stars, they are also tracers of star formation.I will present the sample of absorption spectral features identified in X-shooter's GRB spectra describing observation and analysis techniques. The different features are compared with the characteristics of the explosion (duration, spectral shape, energetics, etc.) and with the properties of the host galaxy (mass, age, etc.) to improve our understanding of the nature of the explosions and how they interact with their environments. Using the large redshift range of the spectra collection we perform studies of the evolution of GRB environments across the history of the Universe and their relation with the evolution of star formation.

  1. Appraisal of Surface Hopping as a Tool for Modeling Condensed Phase Linear Absorption Spectra.

    PubMed

    Petit, Andrew S; Subotnik, Joseph E

    2015-09-01

    Whereas surface hopping is usually used to study populations and mean-field dynamics to study coherences, in two recent papers, we described a procedure for calculating dipole-dipole correlation functions (and therefore absorption spectra) directly from ensembles of surface hopping trajectories. We previously applied this method to a handful of one-dimensional model problems intended to mimic the gas phase. In this article, we now benchmark this new procedure on a set of multidimensional model problems intended to mimic the condensed phase and compare our results against other standard semiclassical methods. By comparison, we demonstrate that methods that include only dynamical information from one PES (the standard Kubo approaches) exhibit large discrepancies with the results of exact quantum dynamics. Furthermore, for model problems with nonadiabatic excited state dynamics but no quantized vibrational structure in the spectra, our surface hopping approach performs comparably to using Ehrenfest dynamics to calculate the electronic coherences. That being said, however, when quantized vibrational structures are present in the spectra but the electronic states are uncoupled, performing the dynamics on the mean PES still outperforms our present method. These benchmark results should influence future studies that use ensembles of independent semiclassical trajectories to model linear as well as multidimensional spectra in the condensed phase. PMID:26575927

  2. Determination of phosphorus using high-resolution diphosphorus molecular absorption spectra produced in the graphite furnace

    NASA Astrophysics Data System (ADS)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan

    2016-01-01

    Molecular absorption of diphosphorus was produced in a graphite furnace and evaluated in view of its suitability for phosphorus determination. Measurements were performed with two different high-resolution continuum source absorption spectrometers. The first system is a newly in-house developed simultaneous broad-range spectrograph, which was mainly used for recording overview absorption spectra of P2 between 193 nm and 245 nm. The region covers the main part of the C 1Σu+ ← X 1Σg+ electronic transition and shows a complex structure with many vibrational bands, each consisting of a multitude of sharp rotational lines. With the help of molecular data available for P2, an assignment of the vibrational bands was possible and the rotational structure could be compared with simulated spectra. The second system is a commercial sequential continuum source spectrometer, which was used for the basic analytical measurements. The P2 rotational line at 204.205 nm was selected and systematically evaluated with regard to phosphorus determination. The conditions for P2 generation were optimized and it was found that the combination of a ZrC modified graphite tube and borate as a chemical modifier were essential for a good production of P2. Serious interferences were found in the case of nitrate and sulfuric acid, although the nitrate interference can be eliminated by a higher pyrolysis temperature. The reliability of the method was proved by analysis of certified samples. Using standard tubes, a characteristic mass of 10 ng and a limit of detection of 7 ng were found. The values could further be improved by a factor of ten using a miniaturized tube with an internal diameter of 2 mm. Compared to the conventional method based on the phosphorus absorption line at 213.618 nm, the advantages of using P2 are the gentle temperature conditions and the potential of performing a simultaneous multi-line evaluation to further improve the limit of detection.

  3. Physical Conditions in Quasar Outflows: Very Large Telescope Observations of QSO 2359-1241

    NASA Astrophysics Data System (ADS)

    Korista, Kirk T.; Bautista, Manuel A.; Arav, Nahum; Moe, Maxwell; Costantini, Elisa; Benn, Chris

    2008-11-01

    We analyze the physical conditions of the outflow seen in QSO 2359-1241 (NVSS J235953-124148), based on high-resolution spectroscopic VLT observations. This object was previously studied using Keck HIRES data. The main improvement over the HIRES results is our ability to accurately determine the number density of the outflow. For the major absorption component, the populations from five different Fe II excited levels yield a gas density nH = 104.4 cm-3 with less than 20% scatter. We find that the Fe II absorption arises from a region with roughly constant conditions and temperature greater than 9000 K, before the ionization front where temperature and electron density drop. Further, we model the observed spectra and investigate the effects of varying gas metallicities and the spectral energy distribution of the incident ionizing radiation field. The accurately measured column densities allow us to determine the ionization parameter (log UH ≈ - 2.4) and total column density of the outflow [log NH(cm -2) ≈ 20.6]. Combined with the number density finding, these are stepping stones toward determining the mass flux and kinetic luminosity of the outflow, and therefore its importance to AGN feedback processes. Based on observations made with ESO Telescopes at the Paranal Observatories under program 078.B-0433(A).

  4. Picosecond kinetics and Sn <-- S1 absorption spectra of retinoids and carotenoids

    NASA Astrophysics Data System (ADS)

    Bondarev, Stanislav L.; Tikhomirov, S. A.; Bachilo, Sergei M.

    1991-05-01

    Light energy absorption, as well as the subsequent photochemical and photophysical processes of cis -+trans isomerisation (vision and bacteriorhodopsin photosynthesis) and energy transfer (photosynthesis in green plants and micro organisms) take place in a pigment-protein complex including polyene chromophors, retinoids and carotenoids. Picosecond and subpicosecond studies of the spectral and kinetic characteristics of these processes are carried out in both complex photoreceptor and photosynthetic ms'2 and model systems with the use of solutions of retinoids and carotenoids.36 The lifetimes of the lower singlet-exited states S (21A; ) ofsome carotenoids in toluene at room temperature have been measured by the method of picosecond photolysis and amount to 8.6+/- 0.5 for all-trans-fl -carotene1 and 5.2 0.6 PS for canthaxanthin.5 /3 -carotene fluorescence at room temperature is practically absent, its yield being less than iO (Ref. 7). /1 -carotene fluorescence at 77 and 4.2 K in isopentane discovered by us8 is characterized by yields of (4+/-2) .iO and (8+/-3) . i0- and lifetimes of(4+/-2) .iO' and (8+/-3) .iO' and is due to the transitions from the higher S(1' B) state. The picosecond transient S -S absorption of/I - carotene in different solvents at 293 K is characterized by spectra in the 550-600 nm range.8 For retinoids, there is one work (Ref. 4) which gives the S, +-Si absorption spectrum of the Schiff base (aldimine) of retinal with amaz 465 mn in n-hexane at 290 K. The duration of transient absorption was 21 5 ps, although the fluorescence kinetics measured in this work (Ref. 4) at 298 K were characterized by two-component decay with r1 = 22 and r2 = 265 ps. The transient picosecond absorption spectra for retinal are absent in the literature and the lifetimes of its singlet-excited state at room temperature, measured by absorption and fluorescence, amount to 20+/-10 Ps in n-hexane3 and 17 Ps in ethanol,'9 respectively.

  5. Absorption in X-ray spectra of high-redshift quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Fiore, Fabrizio; Wilkes, Belinda; Mcdowell, Jonathan; Bechtold, Jill

    1994-01-01

    We present evidence that X-ray absorption is common in high-redshift quasars. We have studied six high-redshift (z approximately 3) quasars with the ROSAT Position Sensitive Proportional Counter (PSPC) of which four are in directions of low Galactic N(sub H). Three out of these four show excess absorption, while only three in approximately 50 z approximately less than 0.4 quasars do, indicating that such absorption must be common, but not ubiquitous, at high redshifts, and that the absorbers must lie at z greater than 0.4. The six quasars were: S5 0014+81, Q0420-388, PKS 0438-436, S4 0636+680. PKS 2000-330, PKS 2126-158, which have redshifts between 2.85 and 3.78. PKS 0438-436 and PKS 2126-158 show evidence for absorption above the local Galactic value at better than 99.999% confidence level. If the absorber is at the redshift of the quasar, then values of N(sub H) = (0.86(+0.49, -0.28)) x 10(exp 22) atoms/sq cm for PKS 0438-436, and N(sub H) = (1.45(+1.20, -0.64)) x 10(exp 22) atoms/ sq cm for PKS 2126-158, are implied, assuming solar abundances. The spectrum of S4 0636+680 also suggests the presence of a similarly large absorption column density at the 98% confidence level. This absorption reverses the trend for the most luminous active galactic nuclei (AGN) to have the least X-ray absorption, so a new mechanism is likely to be responsible. Intervening absorption due to damped Lyman(alpha) systems is a plausible cause. We also suggest, as an intrinsic model, that intracluster material, e.g., a cooling flow, around the quasar could account for both the X-ray spectrum and other properties of these quasars. All the quasars are radio-loud and three are gigahertz peaked (two of the three showing absorption). No excess absorption above the Galactic value is seen toward Q0420-388. This quasar has two damped Lyman(alpha) systems at z = 3.08. The limit on the X-ray column density implies a low ionization fraction, N(H I)/N(H) approximately greater than 4 x 10(exp -3) (3

  6. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    ERIC Educational Resources Information Center

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  7. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    PubMed

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration. PMID:24840486

  8. A wavelet analysis for the X-ray absorption spectra of molecules

    SciTech Connect

    Penfold, T. J.; Tavernelli, I.; Rothlisberger, U.; Milne, C. J.; Abela, R.; Reinhard, M.; Nahhas, A. El; Chergui, M.

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  9. Understanding the absorption and emission spectra of borondipyrromethene dye and its substituted analogues

    NASA Astrophysics Data System (ADS)

    Nithya, R.; Kolandaivel, P.; Senthilkumar, K.

    2012-04-01

    Borondipyrromethene (BODIPY) dye possesses a bright and long wavelength emitting fluorescent character with a wide spectral range from visible to near infrared region. In the present work, the spectral properties of BODIPY dyes were analyzed using ab intio and density functional theory methods. The ground and excited state geometries of BODIPY and its substituted analogues in chloroform medium, were optimized using the density functional theory (DFT) and singly excited configuration interaction (CIS) methods. Based on the ground and excited state geometries, the absorption and emission spectra have been calculated using time-dependent density functional theory (TDDFT) method. The TDDFT calculations have been performed using hybrid exchange correlation functionals B3LYP and M06-HF and long-range separated functionals LC-BLYP, LC-BOP, LC-PBE, LC-PBE0 and CAM-B3LYP. The solvent phase calculations were carried out using polarizable continuum model (PCM). The TDDFT investigation reveals that the substitution of acceptor, donor-donor, donor-acceptor-donor and phenyl group in BODIPY dye influence the absorption and emission spectra significantly.

  10. Aprotic solvents effect on the UV-visible absorption spectra of bixin

    NASA Astrophysics Data System (ADS)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-01

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0 → S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  11. Multi-state extrapolation of UV/Vis absorption spectra with QM/QM hybrid methods

    NASA Astrophysics Data System (ADS)

    Ren, Sijin; Caricato, Marco

    2016-05-01

    In this work, we present a simple approach to simulate absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated efficiently at a high level of theory. The present approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g., band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory.

  12. Multi-state extrapolation of UV/Vis absorption spectra with QM/QM hybrid methods.

    PubMed

    Ren, Sijin; Caricato, Marco

    2016-05-14

    In this work, we present a simple approach to simulate absorption spectra from hybrid QM/QM calculations. The goal is to obtain reliable spectra for compounds that are too large to be treated efficiently at a high level of theory. The present approach is based on the extrapolation of the entire absorption spectrum obtained by individual subcalculations. Our program locates the main spectral features in each subcalculation, e.g., band peaks and shoulders, and fits them to Gaussian functions. Each Gaussian is then extrapolated with a formula similar to that of ONIOM (Our own N-layered Integrated molecular Orbital molecular Mechanics). However, information about individual excitations is not necessary so that difficult state-matching across subcalculations is avoided. This multi-state extrapolation thus requires relatively low implementation effort while affording maximum flexibility in the choice of methods to be combined in the hybrid approach. The test calculations show the efficacy and robustness of this methodology in reproducing the spectrum computed for the entire molecule at a high level of theory. PMID:27179466

  13. Absorption and spectra of optical parameters in amorphous solid solutions of the Se-S system

    SciTech Connect

    Djalilov, N. Z.; Damirov, G. M.

    2011-04-15

    A study of the optical properties of the Se-S system has revealed a correlation between the dependences of optical absorption coefficient {alpha}, effective concentration of charged defects N{sub t}, and characteristic energy E{sub 0} corresponding to the Urbach optical absorption in the spectral region where the Urbach rule works for the Se-S system on the S concentration. These optical properties are controlled by charged defects. It is shown that concentrations of intrinsic charged defects can be changed by variation in composition of the Se-S system. Reflectance spectra of amorphous solid solutions of the Se-S system are studied within the energy range 1-6 eV. Using the Kramers-Kronig method, spectral dependences of optical constants and derivative optical and dielectric functions are calculated. Variation in the spectra of optical parameters with composition of the Se-S system are explained within a cluster model in which the density of electron states is a function of atomic configurations in clusters, i.e., of the character of a short-range order.

  14. Plasmonic resonance absorption spectra in mid-infrared in an array of graphene nanoresonators

    NASA Astrophysics Data System (ADS)

    Abeysinghe, Don C.; Myers, Joshua; Nader Esfahani, Nima; Hendrickson, Joshua R.; Cleary, Justin W.; Walker, Dennis E.; Chen, Kuei-Hsien; Chen, Li-Chyong; Mou, Shin

    2013-12-01

    We experimentally demonstrated graphene plasmon resonant absorption in mid-IR by utilizing an array of graphene nanoribbon resonators on SiO2 substrate. By tuning resonator width we probed the graphene plasmons with λp <= λ0/100 and plasmon resonances as high as 0.240 eV (2100 cm-1) for 40 nm wide nanoresonators. Resonant absorption spectra revealed plasmon dispersion as well as plasmon damping due to the interaction of graphene plasmons with the surface polar phonons in SiO2 substrate and intrinsic graphene optical phonons. Graphene nanoribbons with varying widths enabled us to identify the damping mechanisms of graphene plasmons and much reduced damping was observed when the plasmon resonance frequencies were close to the substrate polar phonon frequencies. Then, by direct ebeam exposure of graphene nanoresonators, we effectively changed the carrier density and caused red-shift of the plasmon spectra. This work will provide insight into light-sensitive, frequency-tunable photodetectors based on graphene's plasmonic excitations.

  15. Optimal extraction of quasar Lyman limit absorption systems from the IUE archive

    NASA Technical Reports Server (NTRS)

    Tytler, David

    1992-01-01

    The IUE archive contains a wealth of information on Lyman limit absorption systems (LLS) in quasar spectra. QSO spectra from the IUE data base were optimally extracted, coadded, and analyzed to yield a homogeneous samples of LLS at low red shifts. This sample comprise 36 LLS, twice the number previously analyzed low z samples. These systems are ideal for the determination of the origin, redshift evolution, ionization, velocity dispersions and the metal abundances of absorption systems. Two of them are also excellent targets for the primordial Deuterium to Hydrogen ratio.

  16. Exciton-Like Behavior in Low-Energy Absorption Spectra of Simple Alloys

    NASA Astrophysics Data System (ADS)

    Bakshi, Mira Hemendraray

    The valence excitation (ns('2) (--->) nsnp) spectra of Mg, Zn, and Ca impurities at various concentrations in Li have been measured. Polarization modulation ellipsometry was used to determine the impurity-induced changes in real and imaginary parts of the dielectric function simultaneously, together with the differential reflectivity, in the energy range 1.5 - 4.5 eV. The most important result at sufficiently dilute alloy compositions, is that the system investigated display a distinct absorption peak above the Drude background. The height of this peak varies linearly with impurity content. The impurity-specific character of these spectral features points to exciton-like behavior at low-energy, arising from atomic-like excitations in which the electron and the hole linger together at the impurity site. Existing theories of alloy spectra do not explain these effects, because they do not include the Coulomb correlations between the interacting quasiparticles created in the optical event, or the way in which the interacting pair is confined to the impurity site by the mutual field. A remarkable added result of this research is that the exciton-like behavior can be followed with increasing impurity content, all the way to the pure Mg response, when it becomes the interband transition. This has led Kunz and Flynn to reformulate the theory of optical absorption including excited state interactions; and to apply the theory to the spectrum of pure Mg. The Coulomb interaction causes striking effects which are in generally good agreement with experiment. Zn-Li alloys behave differently. At an alloy composition for which Zn-Zn interactions become prevalent, the local, impurity-specific character of the spectrum disappears, leaving only a featureless Drude-like absorption. These results have provoked cluster calculations by Boisvert and Kunz, which predict the spectral shifts, and exhibit qualitatively similar persistence for Mg-Li, and broadening for Zn-Li.

  17. Excitation dynamics in Phycoerythrin 545: modeling of steady-state spectra and transient absorption with modified Redfield theory.

    PubMed

    Novoderezhkin, Vladimir I; Doust, Alexander B; Curutchet, Carles; Scholes, Gregory D; van Grondelle, Rienk

    2010-07-21

    We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex. PMID:20643051

  18. Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Gerasimova, Yu. V.; Sofronova, S. N.; Gudim, I. A.; Oreshonkov, A. S.; Vtyurin, A. N.; Ivanenko, A. A.

    2016-01-01

    Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal in the spectral range of 30-1700 cm-1 have been measured at temperatures from 6 to 300 K. The experimental spectra have been analyzed based on the semiempirical calculation of the lattice dynamics and the analysis of correlation diagrams of borate complexes. No changes associated with structural phase transitions have been detected in the temperature range of measurements; the effect of magnetic ordering on the infrared absorption spectra has not been observed.

  19. Orthogonal spectra and cross sections: Application to optimization of multi-spectral absorption and fluorescence lidar

    SciTech Connect

    Shokair, I.R.

    1997-09-01

    This report addresses the problem of selection of lidar parameters, namely wavelengths for absorption lidar and excitation fluorescence pairs for fluorescence lidar, for optimal detection of species. Orthogonal spectra and cross sections are used as mathematical representations which provide a quantitative measure of species distinguishability in mixtures. Using these quantities, a simple expression for the absolute error in calculated species concentration is derived and optimization is accomplished by variation of lidar parameters to minimize this error. It is shown that the optimum number of wavelengths for detection of a species using absorption lidar (excitation fluorescence pairs for fluorescence lidar) is the same as the number of species in the mixture. Each species present in the mixture has its own set of optimum wavelengths. There is usually some overlap in these sets. The optimization method is applied to two examples, one using absorption and the other using fluorescence lidar, for analyzing mixtures of four organic compounds. The effect of atmospheric attenuation is included in the optimization process. Although the number of optimum wavelengths might be small, it is essential to do large numbers of measurements at these wavelengths in order to maximize canceling of statistical errors.

  20. [Laser induced breakdown spectra of coal sample and self-absorption of the spectral line].

    PubMed

    Zhang, Gui-yin; Ji, Hui; Jin, Yi-dong

    2014-12-01

    The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd·YAG laser as radiation source. With the assignment of the spectral lines, it was found that besides the elements C, Si, Mg, Fe, Al, Ca, Ti, Na and K, which are reported to be contained in coal, the presented sample also contains trace elements, such as Cd, Co, Hf, Ir, Li, Mn, Ni, Rb, Sr, V, W, Zn, Zr etc, but the spectral lines corresponding to O and H elements did not appear in the spectra. This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher. The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent. Increasing laser energy further will make self-absorption more obvious. The presence of self-absorption can be attributed to two factors. One is the higher transition rate of K atoms, and the other is that the increase in laser intensity induces the enhancement of the particle number density in the plasma. PMID:25881446

  1. Phase speed spectra of transient eddy fluxes and critical layer absorption

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Held, Isaac M.

    1991-01-01

    Tropospheric zonal mean eddy fluxes of heat and momentum, and the divergence of the Eliassen-Palm flux, are decomposed into contributions from different zonal phase speeds. Data analyzed are the European Center for Medium Range Weather Forecasts operational global analyses covering 1980-1987. Eastward moving medium-scale waves (zonal waves 4-7) dominate the spectra of lower tropospheric heat fluxes in both hemispheres and all seasons. Upper tropospheric wave flux spectra are similar to the low level spectra in midlatitudes, but shift to slower zonal phase speeds as low latitudes are approached. The cause of this shift is the selective absorption of faster moving components in midlatitudes as the waves propagate meridionally. Latitude-phase speed distributions of eddy fluxes are constructed and compared to the zonal mean wind structure. These results demonstrate that upper tropospheric eddies break and decelerate the zonal mean flow approximately 10-20 deg in latitude away from their critical line (where phase speed equals zonal wind speed). Comparisons are also made with results from the middle stratosphere.

  2. Shape of the absorption and fluorescence spectra of condensed phases and transition energies.

    PubMed

    Lagos, Miguel; Paredes, Rodrigo

    2014-11-13

    General integral expressions for the temperature-dependent profile of the spectral lines of photon absorption and emission by atomic or molecular species in a condensed environment are derived with no other hypothesis than: (a) The acoustic vibrational modes of the condensed host medium constitute the thermodynamic energy reservoir at a given constant temperature, and local electronic transitions modifying the equilibrium configuration of the surroundings are multiphonon events, regardless of the magnitude of the transition energy. (b) Electron-phonon coupling is linear in the variations of the bond length. The purpose is to develop a theoretical tool for the analysis of the spectra, allowing us to grasp highly accurate information from fitting the theoretical line shape function to experiment, including those spectra displaying wide features. The method is illustrated by applying it to two dyes, Lucifer Yellow CH and Coumarin 1, which display fluorescence maxima of 0.41 and 0.51 eV fwhm. Fitting the theoretical curves to the spectra indicates that the neat excitation energies are 2.58 eV ± 2.5% and 3.00 eV ± 2.0%, respectively. PMID:25321927

  3. Plastocyanin conformation: an analysis of its near ultraviolet absorption and circular dichroic spectra

    SciTech Connect

    Draheim, J.E.; Anderson, G.P.; Duane, J.W.; Gross, E.L.

    1986-04-01

    The near-ultraviolet absorption and circular dichroic spectra of plastocyanin are dependent upon the redox state, solution pH, and ammonium sulfate concentration. This dependency was observed in plastocyanin isolated from spinach, poplar, and lettuce. Removal of the copper atom also perturbed the near-ultraviolet spectra. Upon reduction there are increases in both extinction and ellipticity at 252 nm. Further increases at 252 nm were observed upon formation of apo plastocyanin eliminating charge transfer transitions as the cause. The spectral changes in the near-ultraviolet imply a flexible tertiary conformation for plastocyanin. There are at least two charge transfer transitions at approx.295-340 nm. One of these transitions is sensitive to low pH's and is attributed to the His 87 copper ligand. The redox state dependent changes observed in the near-ultraviolet spectra of plastocyanin are attenuated either by decreasing the pH to 5 or by increasing the ammonium sulfate concentration to 2.7 M. This attenuation cannot be easily explained by simple charge screening. Hydrophobic interactions probably play an important role in this phenomenon. The pH and redox state dependent conformational changes may play an important role in regulating electron transport.

  4. Stratospheric N2O mixing ratio profile from high-resolution balloon-borne solar absorption spectra and laboratory spectra near 1880/cm

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Smith, M. A. H.; Seals, R. K., Jr.; Larsen, J. C.; Rinsland, P. L.

    1982-01-01

    A nonlinear least-squares fitting procedure is used to derive the stratospheric N2O mixing ratio profile from balloon-borne solar absorption spectra and laboratory spectra near 1880/cm. The atmospheric spectra analyzed here were recorded during sunset from a float altitude of 33 km with the University of Denver's 0.02/cm resolution interferometer near Alamogordo, N.M. (33 deg N) on Oct. 10, 1979. The laboratory data are used to determine the N2O line intensities. The measurements suggest an N2O mixing ratio of 264 ppbv near 15 km, decreasing to 155 ppbv near 28 km.

  5. Absorption-Mode Fourier Transform Mass Spectrometry: The Effects of Apodization and Phasing on Modified Protein Spectra

    NASA Astrophysics Data System (ADS)

    Qi, Yulin; Li, Huilin; Wills, Rebecca H.; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David P. A.; Barrow, Mark P.; Lin, Cheng; O'Connor, Peter B.

    2013-06-01

    The method of phasing broadband Fourier transform ion cyclotron resonance (FT-ICR) spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by 100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode.

  6. Absorption-Mode Fourier Transform Mass Spectrometry: the Effects of Apodization and Phasing on Modified Protein Spectra

    PubMed Central

    Qi, Yulin; Li, Huilin; Wills, Rebecca H.; Perez-Hurtado, Pilar; Yu, Xiang; Kilgour, David. P. A.; Barrow, Mark P.; Lin, Cheng; O’Connor, Peter B.

    2014-01-01

    The method of phasing broadband FT-ICR spectra allows plotting the spectra in the absorption-mode; this new approach significantly improves the quality of the data at no extra cost. Herein, an internal calibration method for calculating the phase function has been developed, and successfully applied to the top-down spectra of modified proteins, where the peak intensities vary by >100×. The result shows that the use of absorption-mode spectra allows more peaks to be discerned within the recorded data, and this can reveal much greater information about the protein and modifications under investigation. In addition, noise and harmonic peaks can be assigned immediately in the absorption-mode. PMID:23568027

  7. Polarized electronic absorption spectra of Cr2SiO4 single crystals

    NASA Astrophysics Data System (ADS)

    Furche, A.; Langer, K.

    Polarized electronic absorption spectra, E∥a(∥X), E∥b(∥Y) and E∥c(∥Z), in the energy range 3000-5000 cm-1 were obtained for the orthorhombic thenardite-type phase Cr2SiO4, unique in its Cr2+-allocation suggesting some metal-metal bonding in Cr2+Cr2+ pairs with Cr-Cr distance 2.75 Å along [001]. The spectra were scanned at 273 and 120 K on single crystal platelets ∥(100), containing optical Y and Z, and ∥(010), containing optical X and Z, with thicknesses 12.3 and 15.6 μm, respectively. Microscope-spectrometric techniques with a spatial resolution of 20 μm and 1 nm spectral resolution were used. The orientations were obtained by means of X-ray precession photographs. The xenomorphic, strongly pleochroic crystal fragments (X deeply greenish-blue, Y faint blue almost colourless, Z deeply purple almost opaque) were extracted from polycrystalline Cr2SiO4, synthesized at 35 kbar, above 1440 °C from high purity Cr2O3, Cr (10% excess) and SiO2 in chromium capsules. The Cr2SiO4-phase was identified by X-ray diffraction (XRD). Four strongly polarized bands, at about 13500 (I), 15700 (II), 18700 (III) and 19700 (IV) cm-1, in the absorption spectra of Cr2SiO4 single crystals show properties (temperature behaviour of linear and integral absorption coefficients, polarization behaviour, molar absorptivities) which are compatible with an assignment to localized spin-allowed transitions of Cr2+ in a distorted square planar coordination of point symmetry C2. The crystal field parameter of Cr2+ is estimated to be 10 Dq =10700 cm-1. A relatively intense, sharp band at 18400 cm-1 and three other minor features can, from their small half widths, be assigned to spin-forbidden dd-transitions of Cr2+. The intensity of such bands strongly decreases on decreasing temperature. The large half widths, near 5000 cm-1 of band III are indicative of some Cr-Cr interactions, i.e. δ-δ* transitions of Cr24+, whereas the latter alone would be in conflict with the strong

  8. Theory and interpretation of L-shell X-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Nesvizhskii, Alexey I.

    X-ray absorption near edge structure (XANES) directly reflects the electronic structure in a material. However, despite significant progress in XANES theory, the quantitative analysis of XANES is not fully developed and remains a challenge. In this work, a detailed analysis of the L2,3 edge XANES in transition metals was performed using relativistic, self-consistent real space Green's function code FEFFS. Several prescriptions for taking into account core hole in calculations of x-ray absorption spectra (XAS) were discussed. It was found that in most cases of L2,3 edge XANES in transition metals, the initial state (ground state) calculations were in the best agreement with experimental data. A procedure was developed for quantitative applications of the sum rules for XAS, e.g., for x-ray magnetic circular dichroism and for obtaining hole counts. The approach is based on theoretical atomic calculations of transformations relating various experimental spectra to corresponding operator-spectral densities. This approach overcomes the difficulties of background subtraction and hole-count normalization of other sum rule analysis methods and yields quantitative values for spin- and orbital-moments from experimental absorption spectra. The developed approach was theoretically tested and applied to experimental XAS data in Cu, Ni, Co, Fe, and other materials. Hole counts obtained from XAS are often interpreted in terms of free-atom occupation numbers or Mulliken counts. We demonstrated that renormalized-atom (RA) counts are a better choice to characterize the configuration of occupied electron states in molecules and condensed matter. A projection-operator approach was introduced to subtract delocalized states and to determine such hole counts from XAS quantitatively. Theoretical tests for the s- and d-electrons in transition metals showed that the approach works well. A formalism was developed based on time dependent local density approximation (TDLDA) theory that takes

  9. Optical absorption spectra and energy levels of Er3+ ions in glassy lithium tetraborate matrix

    NASA Astrophysics Data System (ADS)

    Danilyuk, P. S.; Popovich, K. P.; Puga, P. P.; Gomonai, A. I.; Primak, N. V.; Krasilinets, V. N.; Turok, I. I.; Puga, G. D.; Rizak, V. M.

    2014-11-01

    The optical absorption spectra of Er:Li2B4O7 glasses are studied in the range 200-800 nm. The lines corresponding to the direct f-f parity-forbidden intraconfigurational transitions from the ground 4 I 15/2 state to the levels of the excited 4 F 9/2, 4 S 3/2, 2 H 9/2, 2 H 11/2, 4 F 7/2, 4 F 5/2, 4 F 3/2, 2 H 9/2, 4 G 11/2, 4 D 3/2, 4 D 1/2, and 2 D 3/2 states are found.

  10. Electrochromism in the near-infrared absorption spectra of bridged ruthenium mixed-valence complexes

    SciTech Connect

    Oh, D.H.; Boxer, S.G. )

    1990-10-24

    Many experimental and theoretical approaches have been developed to characterize the chemical and physical properties of mixed-valence complexes. These molecules may possess metals in differing oxidation states which participate in intervalence charge-transfer transitions. In principle, these transitions should be strongly affected by an external electric field. Such electrochromism can provide a direct and sensitive approach to investigating the electronic properties of molecules. The authors report the first measurements of the effects of an externally applied electric field on the near-infrared absorption spectra of ((NH{sub 3}){sub 5}Ru){sub 2}L{sup 5+} (L = pyrazine or 4,4{prime}-bipyridine). Significant differences are observed between the two complexes, illustrating the range of electronic interactions between the metal centers.

  11. kspectrum: an open-source code for high-resolution molecular absorption spectra production

    NASA Astrophysics Data System (ADS)

    Eymet, V.; Coustet, C.; Piaud, B.

    2016-01-01

    We present the kspectrum, scientific code that produces high-resolution synthetic absorption spectra from public molecular transition parameters databases. This code was originally required by the atmospheric and astrophysics communities, and its evolution is now driven by new scientific projects among the user community. Since it was designed without any optimization that would be specific to any particular application field, its use could also be extended to other domains. kspectrum produces spectral data that can subsequently be used either for high-resolution radiative transfer simulations, or for producing statistic spectral model parameters using additional tools. This is a open project that aims at providing an up-to-date tool that takes advantage of modern computational hardware and recent parallelization libraries. It is currently provided by Méso-Star (http://www.meso-star.com) under the CeCILL license, and benefits from regular updates and improvements.

  12. Absorption and luminescence excitation spectra of ClF in the Vac UV region

    NASA Astrophysics Data System (ADS)

    Alekseev, Vadim A.; Schwentner, Nikolaus

    2010-07-01

    Absorption and luminescence excitation spectra of ClF are recorded in the vacuum ultraviolet employing synchrotron radiation. A broad band (120-130 nm) due to transition to the ion-pair state E(0 +) and sparse transitions to Rydberg states are observed. All Rydberg states are predissociated and their excitation yields no luminescence. Perturbations by the 4 sσ1Π 1 and 4p π1Σ + Rydberg states result in characteristic dips in the E(0 +) state luminescence excitation spectrum. Excitation above the Cl∗ + F dissociation threshold results in luminescence from ion-pair states of ClF or Cl 2 populated in reaction of Cl∗ with ClF or Cl 2.

  13. Effect of Pressure on Absorption Spectra of Lycopene in n-Hexane and CS2 Solvents

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Wei-Long; Zheng, Zhi-Ren; Huo, Ming-Ming; Li, Ai-Hua; Yang, Bin

    2010-01-01

    The absorption spectra of lycopene in n-hexane and CS2 are measured under high pressure and the results are compared with β-carotene. In the lower pressure range, the deviation from the linear dependence on the Bayliss parameter (BP) for β-carotene is more visible than that for lycopene. With the further increase of the solvent BP, the 0-0 bands of lycopene and β-carotene red shift at almost the same rate in n-hexane; however, the 0-0 band of lycopene red shifts slower than that of β-carotene in CS2. The origins of these diversities are discussed taking into account the dispersion interactions and structures of solute and solvent molecules.

  14. Comparison of absorption spectra of adenocarcinoma and squamous cell carcinoma cervical tissue

    NASA Astrophysics Data System (ADS)

    Peresunko, O. P.; Zelinska, N. V.; Prydij, O. G.; Zymnyakov, D. A.; Ushakova, O. V.

    2013-12-01

    We studied a methods of assessment of a connective tissue of cervix in terms of specific volume of fibrous component and an optical density of staining of connective tissue fibers in the stroma of squamous cancer and cervix adenocarcinoma. An absorption spectra of blood plasma of the patients suffering from squamous cancer and cervix adenocarcinoma both before the surgery and in postsurgical periods were obtained. Linear dichroism measurements transmittance in polarized light at different orientations of the polarization plane relative to the direction of the dominant orientation in the structure of the sample of biotissues of stroma of squamous cancer and cervix adenocarcinoma were carried. Results of the investigation of the tumor tissues showed that the magnitude of the linear dichroism Δ is insignificant in the researched spectral range λ=280-840 nm and specific regularities in its change observed short-wave ranges.

  15. Optical absorption and energy-loss spectra of aligned carbon nanotubes

    NASA Astrophysics Data System (ADS)

    García-Vidal, F. J.; Pitarke, J. M.

    2001-07-01

    Optical-absorption cross-sections and energy-loss spectra of aligned multishell carbon nanotubes are investigated, on the basis of photonic band-structure calculations. A local graphite-like dielectric tensor is assigned to every point of the tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations in media with tensor-like dielectric functions. A Maxwell-Garnett-like approach appropriate to the case of infinitely long anisotropic tubules is also developed. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes. An analysis of the electric-field pattern associated with this coupling is presented, showing that in the close-packed regime the incident radiation excites a very localized tangential surface plasmon.

  16. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory†

    PubMed Central

    Derricotte, Wallace D.; Evangelista, Francesco A.

    2015-01-01

    Orthogonality constrained density functional theory (OCDFT) is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree–Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine. PMID:25690350

  17. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    SciTech Connect

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-03-10

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H{sub 2}O and O{sub 2} bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H{sub 2}O and O{sub 2} bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H{sub 2}O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  18. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  19. The Dust-to-Gas Ratio in the Damped Ly alpha Clouds Towards the Gravitationally Lensed QSO 0957+561

    NASA Technical Reports Server (NTRS)

    Zuo, Lin; Beaver, E. A.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Lyons, R. W.

    1997-01-01

    We present HST/FOS spectra of the two bright images (A and B) of the gravitationally lensed QSO 0957+561 in the wavelength range 2200-3300 A. We find that the absorption system (Z(sub abs)) = 1.3911) near z(sub em) is a weak, damped Ly alpha system with strong Ly alpha absorption lines seen in both images. However, the H(I) column densities are different, with the line of sight to image A intersecting a larger column density. The continuum shapes of the two spectra differ in the sense that the flux level of image A increases more slowly toward shorter wavelengths than that of image B. We explain this as the result of differential reddening by dust grains in the damped Ly alpha absorber. A direct outcome of this explanation is a determination of the dust-to-gas ratio, k, in the damped Ly alpha system. We derive k = 0.55 + 0.18 for a simple 1/lambda extinction law and k = 0.31 + 0.10 for the Galactic extinction curve. For gravitationally lensed systems with damped Ly alpha absorbers, our method is a powerful tool for determining the values and dispersion of k, and the shapes of extinction curves, especially in the FUV and EUV regions. We compare our results with previous work.

  20. Linewidth Extraction From the THz Absorption Spectra Using a Modified Lorentz Model

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhang, Zhaohui; Zhao, Xiaoyan; Su, Haixia; Zhang, Han; Lan, Jinhui

    2013-10-01

    Identification of specific materials is one of the most promising THz applications. It is commonly achieved by comparing the experimental peak central frequencies of the transmission or absorption spectra with a database for known materials while neglecting the linewidths. However, due to the restriction of the signal-to-noise ratio, only a narrow band, extending from several hundred GHz to several THz, can be used. It is difficult to distinguish two materials from each other if their peaks' central frequencies are similar. In this paper, we present a modified Lorentz model by taking the scattering effect into account. The modified Lorentz model can be used for the extraction of reliable absorption peak parameters, i.e. the central frequency and linewidth. On comparison with our experiments, we observed that the parameters extracted using the modified Lorentz model in glutamine samples of different concentrations exhibited a better agreement than those obtained using the traditional model. Therefore, the utilization of the narrow THz band to identify materials can be improved by comparing both the central frequency and linewidth obtained from this method.

  1. Ab initio optical absorption spectra of size-expanded xDNA base assemblies.

    PubMed

    Varsano, Daniele; Garbesi, Anna; Di Felice, Rosa

    2007-12-20

    We present the results of time-dependent density functional theory calculations of the optical absorption spectra of synthetic nucleobases and of their hydrogen-bonded and stacked base pairs. We focus on size-expanded analogues of the natural nucleobases obtained through the insertion of a benzene ring bonded to the planar heterocycles (x-bases), according to the protocol designed and realized by the group of Eric Kool (e.g., see: Gao, J.; Liu, H.; Kool, E.T. Angew. Chem., Int. Ed. 2005, 44, 3118, and references therein). We find that the modifications of the frontier electron orbitals with respect to natural bases, which are induced by the presence of the aromatic ring, also affect the optical response. In particular, the absorption onset is pinned by the benzene component of the HOMO of each x-base (xA, xG, xT, xC). In addition, the main trait of the H-bonding interbase coupling is a conspicuous red shift of spectral peaks in the low-energy range. Finally, the hypochromicity, a well-known fingerprint of stacking, is more pronounced in stacked xG-C and xA-T pairs than that in stacked G-C and A-T pairs, an index of enhanced stacking. PMID:18034470

  2. The influence of thermolysis time on the absorption spectra of polyvinyl chloride in acetophenone

    NASA Astrophysics Data System (ADS)

    Rasmagin, S. I.; Krasovskii, V. I.; Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtoba, V. I.; Feofanov, I. N.; Kazaryan, M. A.

    2015-12-01

    The influence of thermolysis time on the absorption spectra of partially thermally dehydrochlorinated polyvinyl chloride in acetophenone solution is studied. Strong increase in the optical density Dλ of the dehydrochlorinated PVC samples is caused by the increasing amount N-C=C- and the length of chains of conjugated double bonds of carbon -C = C-. It is noted that the optical density Dλ first increases linearly with dehydrochlorination time and then reaches saturation. The estimation of amount of double conjugated carbon bonds in 1ml versus thermolysis time t is given, which varies between N-C=C- = 4.1017 - 7.4.1018 for t from 40 to 420 minutes. The effective capture cross section of a photon on conjugated double bonds of carbon for dehydrochlorinated PVC solution in acetophenone is estimated, which was about 10-17 cm2 . The analysis is done of the absorption curves «red» shift to longer wavelengths with growth of N-C=C- upon increase of thermolysis time. It is noted that the dependence of the optical density on the wavelength in this range is well described by a simple exponential function.

  3. Ultraviolet spectra of quenched carbonaceous composite derivatives: Comparison to the '217 nanometer' interstellar absorption feature

    NASA Technical Reports Server (NTRS)

    Sakata, Akira; Wada, Setsuko; Tokunaga, Alan T.; Narisawa, Takatoshi; Nakagawa, Hidehiro; Ono, Hiroshi

    1994-01-01

    QCCs (quenched carbonaceous composite) are amorphus carbonaceous material formed from a hydrocarbon plasma. We present the UV-visible spectra of 'filmy QCC; (obtained outside of the beam ejected from the hydrocarbon plasma) and 'dark QCC' (obtained very near to the beam) for comparison to the stellar extinction curve. When filmy QCC is heated to 500-700 C (thermally altered), the wavelength of the absorption maximum increases form 204 nm to 220-222 nm. The dark QCC has an absorption maximum at 217-222 nm. In addition, the thermally altered filmy QCC has a slope change at about 500 nm which resmbles that in the interstellar extinction curve. The resemblance of the extinction curve of the QCCs to that of the interstellar medium suggests that QCC derivatives may be representative of the type of interstellar material that produces the 217 nm interstellar medium feature. The peak extinction of the dark QCC is higher than the average interstellar extinction curve while that of the thermally altered filmy QCC is lower, so that a mixture of dark and thermally altered filmy QCC can match the peak extinction observed in the interstellar medium. It is shown from electron micrographs that most of the thermally altered flimy QCC is in the form of small grainy structure less than 4 nm in diameter. This shows that the structure unit causing the 217-222 nm feature in QCC is very small.

  4. Solvent effects on the resonance Raman and electronic absorption spectra of bacteriochlorophyll a cation radical

    SciTech Connect

    Misono, Yasuhito; Itoh, Koichi; Limanatara, Leenawaty; Koyama, Yasushi

    1996-02-08

    Resonance Raman and electronic absorption spectra of bacteriocholrophyll a cation radical (BChl a{sup .+}) were recorded in 14 different kinds of solvents. The frequency of the ring-breathing Raman band of BChl a{sup .+} was in the region of 1596-1599 cm{sup -1} in solvents forming the pentacoordinated state in neutral bacteriochlorophyll a (BChl a), while it was in the region of 1584-1588 cm{sup -1} in solvents forming the hexacoordinated state. BChl a{sup .+} exhibited a key absorption band in the regions 546-554 and 557-563 nm in the above penta- and hexa-coordinating solvents. Therefore, it has been concluded that the penta- and hexa-coordinated states are retained even after conversion of BChl a into BChl a{sup .+} (one-electron oxidization). Application of this rule to the case of 2-propanol solution showed transformation from the penta- to the hexa-coordinated state upon one-electron oxidation in this particular solution. The coordination states of BChl a{sup .+} could be correlated with the donor number(DN) and the Taft parameters, {Beta} and {pi}{sup *}, of the solvent: The hexacoordinated state was formed in solvents with DN >= 18 or {Beta} > 0.5 showing higher electron donating power, while the pentacoordinated state was formed in solvents with {pi}{sup *} > 0.65 showing higher dielectric stabilization. 27 refs., 8 figs., 3 tabs.

  5. Investigation of absorption spectra of Gafchromic EBT2 film's components and their impact on UVR dosimetry

    NASA Astrophysics Data System (ADS)

    Aydarous, Abdulkadir

    2016-05-01

    The absorption spectra of the EBT2 film's components were investigated in conjunction with its use for UVA dosimetry. The polyester (topside) and adhesive layers of the EBT2 film have been gently removed. Gafchromic™ EBT2 films with and without the protected layers (polyester and adhesive) were exposed to UVR of 365 nm for different durations. Thereafter, the UV-visible spectra were measured using a UV-visible spectrophotometer (Model Spectro Dual Split Beam, UVS-2700). Films were digitized using a Nikon CanoScan 9000F Mark II flatbed scanner. The dosimetric characteristics including film's uniformity, reproducibility and post-irradiation development were investigated. The color development of EBT2 and new modified EBT2 (EBT2-M) films irradiated with UVA was relatively stable (less than 1%) immediately after exposure. Based on this study, the sensitivity of EBT2 to UVR with wavelength between ~350 nm and ~390 nm can significantly be enhanced if the adhesive layer (~25 μm) is removed. The polyester layer plays almost no part on absorbing UVR with wavelength between ~320 nm and ~390 nm. Furthermore, various sensitivities for the EBT2-M film has been established depending on the wavelength of analysis.

  6. Time-Dependent Density Functional Calculations of Ligand K-Edge X-Ray Absorption Spectra

    SciTech Connect

    DeBeer George, S.; Petrenko, T.; Neese, F.

    2007-07-10

    X-ray absorption spectra (XAS) at the Cl and S K edge and Mo L edge have been calculated at the TDDFT level for a series of dioxomolybdenum complexes LMoO{sub 2}X (L = hydrotris(3,5-dimethyl-1-pyrazolyl)borate, X = Cl, SCH{sub 2}Ph, OPh), which play an important role in modeling the catalytic cycle of the sulfite oxidase enzyme. Also, the XAS spectra of model molecules of the Mo complexes have been simulated and interpreted in terms of the Mo 4d orbital splitting, in order to find possible correlations with the spectral pattern of the complexes. Comparison with the available experimental data allows us to assess the performances of the present computational scheme to describe the core excitations in large bioinorganic systems. The theoretical interpretation of the spectral features of both the metal and ligand core excitations in terms of the oscillator strength distribution provides important insight into the covalency of the metal-ligand bond.

  7. Polarized absorption spectra of single crystals of lunar pyroxenes and olivines.

    NASA Technical Reports Server (NTRS)

    Burns, R. G.; Huggins, F. E.; Abu-Eid, R. M.

    1972-01-01

    Measurements have been made of the polarized absorption spectra (360-2200 nm) of compositionally zoned pyroxene minerals in rocks 10045, 10047 and 10058 and olivines in rocks 10020 and 10022. The Apollo 11 pyroxenes with relatively high Ti/Fe ratios were chosen initially to investigate the presence of crystal field spectra of Fe(2+) and Ti(3+) ions in the minerals. Broad intense bands at about 1000 and 2100 nm arise from spin-allowed, polarization-dependent transitions in Fe(2+) ions in pyroxenes. Several weak sharp peaks occur in the visible region. Peaks at 402, 425, 505, 550, and 585 nm represent spin-forbidden transitions in Fe(2+) ions, while broader bands at 460-470 nm and 650-660 nm are attributed to Ti(3+) ions. Charge transfer bands, which in terrestrial pyroxenes often extend into the visible region, are displaced to shorter wavelengths in lunar pyroxenes. This feature correlates with the absence of Ti(3+) ions in these minerals.

  8. Synthetic Spectra of H Balmer and HE I Absorption Lines. I. Stellar Library

    NASA Astrophysics Data System (ADS)

    González Delgado, Rosa M.; Leitherer, Claus

    1999-12-01

    We present a grid of synthetic profiles of stellar H Balmer and He I lines at optical wavelengths with a sampling of 0.3 Å. The grid spans a range of effective temperature 50,000 K>=Teff>=4000 K, and gravity 0.0<=logg<=5.0 at solar metallicity. For Teff>=25,000 K, non-LTE stellar atmosphere models are computed using the code TLUSTY (Hubeny). For cooler stars, Kurucz LTE models are used to compute the synthetic spectra. The grid includes the profiles of the high-order hydrogen Balmer series and He I lines for effective temperatures and gravities that have not been previously synthesized. The behavior of H8 to H13 and He I λ3819 with effective temperature and gravity is very similar to that of the lower terms of the series (e.g., Hβ) and the other He I lines at longer wavelengths; therefore, they are suited for the determination of the atmospheric parameters of stars. These lines are potentially important to make predictions for these stellar absorption features in galaxies with active star formation. Evolutionary synthesis models of these lines for starburst and poststarburst galaxies are presented in a companion paper. The full set of the synthetic stellar spectra is available for retrieval at our website or on request from the authors.

  9. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    NASA Astrophysics Data System (ADS)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  10. Deconvolution of C-phycocyanin beta-84 and beta-155 chromophore absorption and fluorescence spectra of cyanobacterium Mastigocladus laminosus.

    PubMed Central

    Demidov, A A; Mimuro, M

    1995-01-01

    Absorption and fluorescence spectra of the C-phycocyanin beta-subunit were quantitatively deconvoluted into component spectra of the beta-84 and beta-155 chromophores. The deconvolution procedure was based on a theoretical treatment of polarization properties. Four kinds of spectra (absorption, emission, emission polarization, and excitation polarization) measured on C-phycocyanin isolated from the cyanobacterium Mastigocladus laminosus were used as the experimental data set. Without any assumption of spectral shape, the absorption and fluorescence spectra of both chromophores were unambiguously resolved and their fluorescence quantum yields were evaluated. By combining the spectra of the alpha-subunit, independently measured, with the resolved spectra of the beta-subunit, the fluorescence and fluorescence polarization spectra and the fluorescence quantum yield of the monomer were estimated; they agree with experimental values to within an acceptable error. Further, the matrix of energy transfer rates in the monomer was estimated; it gave a significantly different result (by up to 40%) from previously estimated ones. PMID:7787035

  11. Absorption spectra and photolysis of methyl peroxide in liquid and frozen water.

    PubMed

    Epstein, Scott A; Shemesh, Dorit; Tran, Van T; Nizkorodov, Sergey A; Gerber, R Benny

    2012-06-21

    Methyl peroxide (CH(3)OOH) is commonly found in atmospheric waters and ices in significant concentrations. It is the simplest organic peroxide and an important precursor to hydroxyl radical. Many studies have examined the photochemical behavior of gaseous CH(3)OOH; however, the photochemistry of liquid and frozen water solutions is poorly understood. We present a series of experiments and theoretical calculations designed to elucidate the photochemical behavior of CH(3)OOH dissolved in liquid water and ice over a range of temperatures. The molar extinction coefficients of aqueous CH(3)OOH are different from the gas phase, and they do not change upon freezing. Between -12 and 43 °C, the quantum yield of CH(3)OOH photolysis is described by the following equation: Φ(T) = exp((-2175 ± 448)1/T) + 7.66 ± 1.56). We use on-the-fly ab initio molecular dynamics simulations to model structures and absorption spectra of a bare CH(3)OOH molecule and a CH(3)OOH molecule immersed inside 20 water molecules at 50, 200, and 220 K. The simulations predict large sensitivity in the absorption spectrum of CH(3)OOH to temperature, with the spectrum narrowing and shifting to the blue under cryogenic conditions because of constrained dihedral motion around the O-O bond. The shift in the absorption spectrum is not observed in the experiment when the CH(3)OOH solution is frozen suggesting that CH(3)OOH remains in a liquid layer between the ice grains. Using the extinction coefficients and photolysis quantum yields obtained in this work, we show that under conditions with low temperatures, in the presence of clouds with a high liquid-water content and large solar zenith angles, the loss of CH(3)OOH by aqueous photolysis is responsible for up to 20% of the total loss of CH(3)OOH due to photolysis. Gas phase photolysis of CH(3)OOH dominates under all other conditions. PMID:22217262

  12. Absorption spectra of isomeric OH adducts of 1,3,7-trimethylxanthine

    SciTech Connect

    Vinchurkar, M.S.; Rao, B.S.M.; Mohan, H.; Mittal, J.P.; Schmidt, K.H.; Jonah, C.D.

    1997-04-17

    The reactions of OH{sup .}, O{sup .-}, and SO{sub 4}{sup .-} with 1,3,7-trimethylxanthine (caffeine) were studied by pulse radiolysis with optical and conductance detection techniques. The absorption spectra of transients formed in OH{sup .} reaction in neutral solutions exhibited peaks at 310 and 335 nm, as well as a broad absorption maximum at 500 nm, which decayed by first-order kinetics. The rate (k = (4.0 {+-} 0.5) x 10{sup 4} s{sup -1}) of this decay is independent of pH in the range 4-9 and is in agreement with that determined from the conductance detection (k = 4 x 10{sup 4} s{sup -1}). The spectrum in acidic solutions has only a broad peak around 330 nm with no absorption in the higher wavelength region. The intermediates formed in reaction of O{sup .-} absorb around 310 and at 350 nm, and the first-order decay at the latter wavelength was not seen. The OH radical adds to C-4 (X-40H{sup .}) and C-8 (X-80H{sup .}) positions of caffeine in the ratio 1:2 as determined from the redox titration and conductivity measurements. H abstraction from the methyl group is an additional reaction channel in O{sup .-} reaction. Dehydroxylation of the X-40H{sup .} adduct occurs, whereas the X-80H{sup .} adduct does not undergo ring opening. The spectrum obtained for OH{sup .} reaction in oxygenated solutions is similar to that observed in SO{sub 4}{sup .-} reaction in basic solutions. 25 refs., 5 figs., 1 tab.

  13. Lick optical spectra of quasar HS 1946+7658 at 10 kilometers per second resolution Lyman-alpha forest and metal absorption systems

    NASA Technical Reports Server (NTRS)

    Fan, Xiao-Ming; Tytler, David

    1994-01-01

    We present optical spectra of the most luminous known quasi stellar object (QSO) HS 1946+7658 (z(sub em) = 3.051). Our spectra have both full wavelength coverage, 3240-10570 A, and in selected regions, either high signal-to-noise ratio, SNR approximately equals 40-100, or unusually high approximately 10 km/sec resolution, and in parts of the Ly alpha forest and to the red of Ly alpha emission they are among the best published. We find 113 Ly alpha systems and six metal-line systems, three of which are new. The metal systems at z(sub abs) = 2.844 and 3.050 have complex velocity structure with four and three prominent components, respectively. We find that the system at z(sub abs) = 2.844 is a damped Ly alpha absorption (DLA) system, with a neutral hydrogen column density of log N(H I) = 20.2 +/- 0.4, and it is the cause of the Lyman limit break at lambda approximately equals 3520 A. We believe that most of the H I column density in this system is in z(sub abs) = 2.8443 component which shows the strongest low-ionization absorption lines. The metal abundance in the gas phase of the system is (M/H) approximately equals -2.6 +/- 0.3, with a best estimate of (M/H) = -2.8, with ionizaion parameter log gamma = -2.75, from a photoionization model. The ratios of the logarithmic abundances of C, O, Al, and Si are all within a factor of 2 of solar, which is important for two reasons. First, we believe that the gas abundances which we measure are close to the total abundances, because the ratio of aluminum to other elements is near cosmic, and Al is a refractory element which depletes very readily like chromium, in the interstellar medium. Second, we do not see the enhancement of O with respect to C of (O/C) approximately equals 0.5-0.9 reported in three partial Lyman limit systems by Reimers et al. (1992) and Vogel & Reimers (1993); we measure (O/C) = -0.06 for observed ions and (O/C) approximately equals 0.2 after ionization corrections, which is consistent with solar

  14. Magellan LDSS3 emission confirmation of galaxies hosting metal-rich Lyman α absorption systems

    NASA Astrophysics Data System (ADS)

    Straka, Lorrie A.; Johnson, Sean; York, Donald G.; Bowen, David V.; Florian, Michael; Kulkarni, Varsha P.; Lundgren, Britt; Péroux, Celine

    2016-06-01

    Using the Low Dispersion Survey Spectrograph 3 at the Magellan II Clay Telescope, we target candidate absorption host galaxies detected in deep optical imaging (reaching limiting apparent magnitudes of 23.0-26.5 in g, r, i, and z filters) in the fields of three QSOs, each of which shows the presence of high metallicity, high N_{H I} absorption systems in their spectra (Q0826-2230: zabs = 0.9110, Q1323-0021: zabs = 0.7160, Q1436-0051: zabs = 0.7377, 0.9281). We confirm three host galaxies at redshifts 0.7387, 0.7401, and 0.9286 for two of the Lyman α absorption systems (one with two galaxies interacting). For these systems, we are able to determine the star formation rates (SFRs); impact parameters (from previous imaging detections); the velocity shift between the absorption and emission redshifts; and, for one system, also the emission metallicity. Based on previous photometry, we find these galaxies have L > L*. The [O II] SFRs for these galaxies are in the range 11-25 M⊙ yr-1 (uncorrected for dust), while the impact parameters lie in the range 35-54 kpc. Despite the fact that we have confirmed galaxies at 50 kpc from the QSO, no gradient in metallicity is indicated between the absorption metallicity along the QSO line of sight and the emission line metallicity in the galaxies. We confirm the anticorrelation between impact parameter and N_{H I} from the literature. We also report the emission redshift of five other galaxies: three at zem > zQSO, and two (L < L*) at zem < zQSO not corresponding to any known absorption systems.

  15. Substituent and Solvent Effects on the Absorption Spectra of Cation-π Complexes of Benzene and Borazine: A Theoretical Study.

    PubMed

    Sarmah, Nabajit; Bhattacharyya, Pradip Kr; Bania, Kusum K

    2014-05-14

    Time-dependent density functional theory (TDDFT) has been used to predict the absorption spectra of cation-π complexes of benzene and borazine. Both polarized continuum model (PCM) and discrete solvation model (DSM) and a combined effect of PCM and DSM on the absorption spectra have been elucidated. With decrease in size of the cation, the π → π* transitions of benzene and borazine are found to undergo blue and red shift, respectively. A number of different substituents (both electron-withdrawing and electron-donating) and a range of solvents (nonpolar to polar) have been considered to understand the effect of substituent and solvents on the absorption spectra of the cation-π complexes of benzene and borazine. Red shift in the absorption spectra of benzene cation-π complexes are observed with both electron-donating groups (EDGs) and electron-withdrawing groups (EWGs). The same trend has not been observed in the case of substituted borazine cation-π complexes. The wavelength of the electronic transitions corresponding to cation-π complexes correlates well with the Hammet constants (σp and σm). This correlation indicates that the shifting of spectral lines of the cation-π complexes on substitution is due to both resonance and inductive effect. On incorporation of solvent phases, significant red or blue shifting in the absorption spectra of the complexes has been observed. Kamlet-Taft multiparametric equation has been used to explain the effect of solvent on the absorption spectra of complexes. Polarity and polarizability are observed to play an important role in the solvatochromism of the cation-π complexes. PMID:24801959

  16. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    PubMed

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models. PMID:27529792

  17. First principle studies on the electronic structures and absorption spectra in KMgF 3 crystal with fluorine vacancy

    NASA Astrophysics Data System (ADS)

    Cheng, Fang; Liu, Tingyu; Zhang, Qiren; Qiao, Hailin; Zhou, Xiuwen

    2010-08-01

    The experiments indicate that the perfect KMgF 3 crystal has no absorption in the visible range, however the electron irradiation induces a complex absorption spectrum. The absorption spectra can be decomposed by five Gaussian bands peaking at 2.5 eV (488 nm), 3.4 eV (359 nm), 4.2 eV (295 nm), 4.6 eV (270 nm) and 5.2 eV (239 nm), respectively. The purpose of this paper is to seek the origins of the absorption bands. The electronic structures and absorption spectra either for the perfect KMgF 3 or for KMgF 3: VF+ with electrical neutrality have been studied by using density functional theory code CASTEP with the lattice structure optimized. The calculation results predicate that KMgF 3: VF+ also exhibits five absorption bands caused by the existence of the fluorine ion vacancy VF+ and the five absorption bands well coincide with the experimental results. It is believable that the five absorption bands are related to VF+ in KMgF 3 crystal produced by the electron irradiation.

  18. Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110).

    PubMed

    Mowbray, Duncan John; Migani, Annapaola

    2016-06-14

    Optimizing the photovoltaic efficiency of dye-sensitized solar cells (DSSC) based on staggered gap heterojunctions requires a detailed understanding of sub-band gap transitions in the visible from the dye directly to the substrate's conduction band (CB) (type-II DSSCs). Here, we calculate the optical absorption spectra and spatial distribution of bright excitons in the visible region for a prototypical DSSC, catechol on rutile TiO2(110), as a function of coverage and deprotonation of the OH anchoring groups. This is accomplished by solving the Bethe-Salpeter equation (BSE) based on hybrid range-separated exchange and correlation functional (HSE06) density functional theory (DFT) calculations. Such a treatment is necessary to accurately describe the interfacial level alignment and the weakly bound charge transfer transitions that are the dominant absorption mechanism in type-II DSSCs. Our HSE06 BSE spectra agree semiquantitatively with spectra measured for catechol on anatase TiO2 nanoparticles. Our results suggest deprotonation of catechol's OH anchoring groups, while being nearly isoenergetic at high coverages, shifts the onset of the absorption spectra to lower energies, with a concomitant increase in photovoltaic efficiency. Further, the most relevant bright excitons in the visible region are rather intense charge transfer transitions with the electron and hole spatially separated in both the [110] and [001] directions. Such detailed information on the absorption spectra and excitons is only accessible via periodic models of the combined dye-substrate interface. PMID:27183273

  19. The D2O absorption spectra in SiO2 airgel pores: technical features of treatment

    NASA Astrophysics Data System (ADS)

    Lugovskoi, A.; Duchko, A.

    2015-11-01

    The dynamic of the D2O in silica airgel absorption spectra in 4000…6000 cm-1 were recorded using Fourier Transform spectrometer FS-125M at room temperature and pressure of 23.4 mbar with spectral resolution of 0.03 cm-1. It is shown that the D2O dimers to make a significant contribution into absorption when nanopores filled with gas molecules is small. Is present a detailed description of techniques for processing the primary experimental data.

  20. The determination of absorption cross sections and line profiles in vibrational overtone spectra with the use of intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Bettermann, H.; Kleist, E.; Kok, R.

    1993-03-01

    This contribution presents quantitative absorption data concerning the 7 th CH overtone stretching vibrations of n-hexane and of methylcyclopentane. The transitions are adapted to Lorentzian and Gaussian line shapes. The bank shape analyses yield the spectral positions, absorption cross sections and linewidths of the investigated transitions.

  1. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    NASA Astrophysics Data System (ADS)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10‑3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10‑27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  2. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    SciTech Connect

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  3. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  4. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  5. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  6. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  7. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by both molar absorption coefficient (molar extinction coefficient) and band width. However, the..., expressed in cm; and the molar absorption (extinction) coefficient,εi, of each species. The...

  8. High-Velocity Absorption Features in FUSE Spectra of Eta Carinae

    NASA Astrophysics Data System (ADS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Vieira, G.

    2002-12-01

    Numerous broad (200 to 1000 km/sec) features in the FUSE spectrum (905-1187 A) of eta Carinae are identified as absorption by a forest of high-velocity narrow lines formed in the expanding circumstellar envelope. These features were previously thought to be P-Cygni lines arising in the wind of the central star. The features span a heliocentric velocity range of -140 to -580 km/sec and are seen prominently in low-ionization ground-state transitions (e.g. N I 1134-35, Fe II 1145-42, 1133, 1127-22, P II 1153, C I 1158) in addition to C III] 1176 A. The high-velocity components of the FUSE transitions have depths about 50% below the continuum. The identifications are consistent with the complex velocity structures seen in ground- and excited-state transitions of Mg I, Mg II, Fe II, V II, etc observed in STIS/E230H spectra (see accompanying posters by Gull, Vieira, and Danks). The origin of other broad features of similar width and depth in the FUSE spectrum, but without low-velocity ISM absorption, are unidentified. However, they are suspected of being absorption of singly-ionized iron-peak elements (e.g. Fe II, V II, Cr II) out of excited levels 1,000 to 20,000 cmE-1 above the ground state. The high-velocity features seen in Fe II 1145 are also present in Fe II 1608 (STIS/E140M), but are highly saturated in the latter. Since these transitions have nearly identical log (flambda) (1.998 vs. 2.080), the differences in the profiles are attributable to the different aperture sizes used (30x30 arcsec for FUSE, 0.2x0.2 arcsec for STIS/E140M). The high-velocity gas appears to be very patchy or has a small covering factor near the central star. Eta Carinae has been observed several times by FUSE over the past three years. The FUSE flux levels and spectral features in eta Car are essentially unchanged over the 2000 March to June 2002 period, establishing a baseline far-UV spectrum in advance of the predicted spectroscopic miniumum in 2003.

  9. High-Velocity Absorption Features in FUSE Spectra of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Iping, R. C.; Gull, T. R.; Vieira, G.

    2003-01-01

    Numerous broad (200 to 1000 km/sec) features in the FUSE spectrum (905-1187 A) of eta Carinae are identified as absorption by a forest of high-velocity narrow lines formed in the expanding circumstellar envelope. These features were previously thought to be P-Cygni lines arising in the wind of the central star. The features span a heliocentric velocity range of -140 to -580 km/sec and are seen prominently in low-ionization ground-state transitions (e.g. N I 1134-35, Fe II 1145-42, 1133, 1127- 22, P II 1153, C I 1158) in addition to C III] 1176 A. The high-velocity components of the FUSE transitions have depths about 50% below the continuum. The identifications are consistent with the complex velocity structures seen in ground- and excited-state transitions of Mg I, Mg 11, Fe II, V II, etc observed in STIS/E230H spectra. The origin of other broad features of similar width and depth in the FUSE spectrum, but without low-velocity ISM absorption, are unidentified. However, they are suspected of being absorption of singly-ionized iron-peak elements (e.g. Fe II, V II, Cr II) out of excited levels 1,000 to 20,000 cmE-l above the ground state. The high-velocity features seen in Fe II 1145 are also present in Fe II 1608 (STIS/E140M), but are highly saturated in the latter. Since these transitions have nearly identical log (flambda) (1.998 vs. 2.080), the differences in the profiles are attributable to the different aperture sizes used (30 x 30 arcsec for FUSE, 0.2 x 0.2 arcsec for STIS/E140M). The high-velocity gas appears to be very patchy or has a small covering factor near the central star. Eta Carinae has been observed several times by FUSE over the past three years. The FUSE flux levels and spectral features in eta Car are essentially unchanged over the 2000 March to June 2002 period, establishing a baseline far-UV spectrum in advance of the predicted spectroscopic minimum in 2003.

  10. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  11. Prediction of Iron K-Edge Absorption Spectra Using Time-Dependent Density Functional Theory

    SciTech Connect

    George, S.DeBeer; Petrenko, T.; Neese, F.

    2009-05-14

    Iron K-edge X-ray absorption pre-edge features have been calculated using a time-dependent density functional approach. The influence of functional, solvation, and relativistic effects on the calculated energies and intensities has been examined by correlation of the calculated parameters to experimental data on a series of 10 iron model complexes, which span a range of high-spin and low-spin ferrous and ferric complexes in O{sub h} to T{sub d} geometries. Both quadrupole and dipole contributions to the spectra have been calculated. We find that good agreement between theory and experiment is obtained by using the BP86 functional with the CP(PPP) basis set on the Fe and TZVP one of the remaining atoms. Inclusion of solvation yields a small improvement in the calculated energies. However, the inclusion of scalar relativistic effects did not yield any improved correlation with experiment. The use of these methods to uniquely assign individual spectral transitions and to examine experimental contributions to backbonding is discussed.

  12. Gravitationally redshifted absorption lines in the X-ray burst spectra of a neutron star.

    PubMed

    Cottam, J; Paerels, F; Mendez, M

    2002-11-01

    The fundamental properties of neutron stars provide a direct test of the equation of state of cold nuclear matter, a relationship between pressure and density that is determined by the physics of the strong interactions between the particles that constitute the star. The most straightforward method of determining these properties is by measuring the gravitational redshift of spectral lines produced in the neutron star photosphere. The equation of state implies a mass-radius relation, while a measurement of the gravitational redshift at the surface of a neutron star provides a direct constraint on the mass-to-radius ratio. Here we report the discovery of significant absorption lines in the spectra of 28 bursts of the low-mass X-ray binary EXO0748-676. We identify the most significant features with the Fe XXVI and XXV n = 2-3 and O VIII n = 1-2 transitions, all with a redshift of z = 0.35, identical within small uncertainties for the respective transitions. For an astrophysically plausible range of masses (M approximately 1.3-2.0 solar masses; refs 2-5), this value is completely consistent with models of neutron stars composed of normal nuclear matter, while it excludes some models in which the neutron stars are made of more exotic matter. PMID:12422210

  13. Novel Techniques and Approaches to Unravel the Nature of X-Ray Absorption Spectra

    SciTech Connect

    Groot, F. M. F. de

    2007-02-02

    This paper discusses the role of resonant inelastic X-ray scattering (RIXS) to unravel the nature of the states that are visible in the pre-edge region of the 3d metal K edges. The traditional pre-edge analysis into quadrupole transitions to the 3d-states plus dipole transitions to the 4p states is outlined, with special attention to the situation of TiO2. The general possibilities of RIXS are described, including the various possible cross-sections through the 2D RIXS plane. Recent developments in High-Energy Resolution Fluorescence Detection (HERFD) are discussed, that yield XANES-like spectra with unprecedented resolution. Using the 1s2p RIXS of LiCoO2 as example, the presence of an extra peak due to non-local dipole transitions is explained. The non-local nature of this dipole pre-edge peak is proven from its behavior in the 2D RIXS plane. The paper also discusses a range of selective X-ray absorption experiments, where the selectivity is towards (a) the spin-state, (b) the valence, (c) the neighbor atom and (d) the edge. In the outlook, a number of additional experimental routes is suggested, which shows that the use of RIXS, HERFD and selective XAS techniques is only just starting.

  14. Strong anisotropy in the THz absorption spectra of stretch-aligned single walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Iwasa, Y.; Akima, N.; Matsui, H.; Toyota, N.; Brown, S.; Barbour, A. M.; Cao, J.; Musfeldt, J. L.; Shiraishi, M.; Shimoda, H.; Zhou, O.

    2006-03-01

    Polarized THz spectroscopy is crucial for understanding the low-energy electronic structure and carrier dynamics in single walled carbon nanotubes (SWNTs), as well as for exploring polarization-sensitive THz applications. We prepared stretch-aligned SWNT/polymer composites, and measured the polarized absorption spectra from the THz through the visible region. The low-frequency electronic excitations are predominantly polarized parallel to the tube direction. The peak centered near 100 cm-1 is discussed in terms of a curvature-induced gap and a plasmon resonance due to a finite size/wavelength effects in the SWNTs. The broad middle infrared structure that is observed in unoriented films with spaghetti-like morphology disappears in stretch-aligned samples, suggesting that this middle infrared feature may be due to in-gap states in the semiconducting tubes caused by the highly disordered morphology of the unoriented films. Hole doping effects were also investigated, and conversion of semiconducting tubes to more conducting ones is demonstrated.

  15. Absorption spectra and sunlight conversion efficiency in fullerene bonded supramolecules on nanostructured ZnO

    NASA Astrophysics Data System (ADS)

    Zakhidov, Erkin; Kokhkharov, Abdumutallib; Kuvondikov, Vakhobjon; Nematov, Sherzod; Nusretov, Rafael

    2015-10-01

    The efficiency of solar radiation conversion in a model system of artificial photosynthesis, the porphyrin-fullerene assembly, is analyzed. A study of the optical absorption spectra of the porphyrin and the fullerene molecules, as well as their assembly in organic solutions, made it possible to estimate the energy efficiency of the conversion. Numerical values of the energy efficiency, defined as the fraction of the light quantum energy converted to the chemical potential of separated charges, are calculated for low- and high-concentration solutions of such a supramolecular system. The possibility of the efficient utilization of long-wavelength solar radiation in the high-concentration porphyrin-fullerene assembly solution in toluene and benzene is shown. In the photovoltaic system consisting of such a supramolecular active element, a thin ZnO film with a nanostructured surface may be introduced as a secondary acceptor of electrons from fullerene molecules. An enhancement of the transformation of separated charges of the porphyrin-fullerene assembly into electrical current by means of the ZnO film deposited on the surface of the anode electrode in such a heterogenic photovoltaic unit is proposed.

  16. Bethe-Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3

    NASA Astrophysics Data System (ADS)

    Varley, Joel B.; Schleife, André

    2015-02-01

    Transparent conducting oxides keep attracting strong scientific interest not only due to their promising potential for ‘transparent electronics’ applications but also due to their intriguing optical absorption characteristics. Materials such as In2O3 and Ga2O3 have complicated unit cells and, consequently, are interesting systems for studying the physics of excitons and anisotropy of optical absorption. Since currently no experimental data is available, for instance, for their dielectric functions across a large photon-energy range, we employ modern first-principles computational approaches based on many-body perturbation theory to provide theoretical-spectroscopy results. Using the Bethe-Salpeter framework, we compute dielectric functions and we compare to spectra computed without excitonic effects. We find that the electron-hole interaction strongly modifies the spectra and we discuss the anisotropy of optical absorption that we find for Ga2O3 in relation to existing theoretical and experimental data.

  17. Vibrationally Resolved Absorption and Fluorescence Spectra of Firefly Luciferin: A Theoretical Simulation in the Gas Phase and in Solution.

    PubMed

    Cheng, Yuan-Yuan; Liu, Ya-Jun

    2016-07-01

    Firefly bioluminescence has been applied in several fields. However, the absorption and fluorescence spectra of the substrate, luciferin, have not been observed at the vibrational level. In this study, the vibrationally resolved absorption and fluorescence spectra of firefly luciferin (neutral form LH2 , phenolate ion form LH(-) and dianion form L(2-) ) are simulated using the density functional method and convoluted by a Gaussian function, with displacement, distortion and Duschinsky effects in the framework of the Franck-Condon approximation. Both neutral and anionic forms of the luciferin are considered in the gas phase and in solution. The simulated spectra have desired band maxima with the experimental ones. The vibronic structure analysis reveals that the features of the most contributive vibrational modes coincide with the key geometry-changing region during transition between the ground state and the first singlet excited state. PMID:27165852

  18. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    NASA Astrophysics Data System (ADS)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  19. Detection of the lensing galaxy for the double QSO HE 1104-1805

    NASA Astrophysics Data System (ADS)

    Remy, M.; Claeskens, J.-F.; Surdej, J.; Hjorth, J.; Refsdal, S.; Wucknitz, O.; Sørensen, A. N.; Grundahl, F.

    1998-09-01

    High angular resolution ground-based direct imaging ( V, R, Ic) of the double QSO HE 1104-1805 has been obtained with the NOT and NTT telescopes. Analysis of these data led to the first detection of the lensing galaxy. Direct imaging of HE 1104-1805 has subsequently been carried out with the Planetary Camera (WFPC2) through the F555W (nearly Johnson V) and F814W (nearly Kron-Cousins Ic) filters onboard HST. These images confirm the presence of the deflector between the two lensed quasar components (A & B). Direct imaging of this system in the near infrared (IR) at 2.2 μm ( K'), with IRAC-2b at the Cassegrain focus of the ESO/MPI 2.2 m telescope, indicates that the additional component is indeed a very red extended object with magnitude K ≈ 16.5. We present deconvolutions of the HST and IR images using the 2-channel PLUCY method. From the HST observations, we also report very accurate relative positions and brightnesses of the QSO components. By comparison between the ground-based and the HST observations, from February-March 1994 to November 1995, we possibly detect the fading of component A by ˜0.3 magnitudes in the optical and a corresponding fading of B by about half this value. The observed monotonic decrease of the magnitude difference between B and A as a function of wavelength is consistent with a partial amplification of the A component by microlensing. Evolutionary models for galaxies show that, in order to produce the observed colour indices V - Ic > 2 and 4 < Ic - K < 4.5, the galaxy is likely to be of elliptical type with a redshift 0.95 < z < 1.4. This range is consistent with the redshift z = 1.32 measured from the absorption lines of metallic species in the spectra of the quasar components. However, other values for the redshift of the lens inside this range cannot be excluded. This galaxy would presently be among the most distant known gravitational lenses. Several theoretical models are found to fit the observations. The simplest one is a

  20. The Luminosity Function of QSO Host Galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, Timothy S.; Casertano, Stefano; Turnshek, David A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present some results from our HST archival image study of 71 QSO host galaxies. The objects are selected to have z less than or equal to 0.46 and total absolute magnitude M(sub v) less than or equal to -23 in our adopted cosmology (H(sub 0) = 50 kilometers per second Mpc(sup-1), q(sub 0) = 0.5, lambda = 0)). The aim of this initial study is to investigate the composition of the sample with respect to host morphology and radio loudness, as well as derive the QSO host galaxy luminosity function. We have analyzed available WFPC2 images in R or I band (U in one case), using a uniform set of procedures. The host galaxies span a narrow range of luminosities and are exceptionally bright, much more so than normal galaxies, usually L greater than L*(sub v). The QSOs are almost equally divided among three subclasses: radio-loud QSOs with elliptical hosts, radio-quiet QSOs with elliptical hosts, and radio-quiet QSOs with spiral hosts. Radio-loud QSOs with spiral hosts are extremely rare. Using a weighting procedure, we derive the combined luminosity function of QSO host galaxies. We find that the luminosity function of QSO hosts differs in shape from that of normal galaxies but that they coincide at the highest luminosities. The ratio of the number of quasar hosts to the number of normal galaxies at a luminosity L*(sub v) is R = (Lv/11.48L*(sub v))(sup 2.46), where L*(sub v) corresponds to M*(sub v)= -22.35, and a QSO is defined to be an object with total nuclear plus host light M(sub v) less than or equal to -23. This ratio can be interpreted as the probability that a galaxy with luminosity L(sub V) will host a QSO at redshift z approximately equal to 0.26.

  1. Electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic

    NASA Astrophysics Data System (ADS)

    Nagai, T.; Uehara, A.; Fujii, T.; Sato, N.; Yamana, H.

    2010-03-01

    In the non-aqueous reprocessing process of spent nuclear fuels by the pyro-electrochemical method, a spent fuel is dissolved into molten LiCl-KCl and NaCl-CsCl eutectics and dissolved uranium and plutonium are collected as either metal or oxide. However, the binary alkali chloride mixture with the lowest melting point is the LiCl-RbCl eutectic. In this study, electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic at various temperatures between 673 and 973 K were measured by the UV/Vis/NIR spectrophotometry. We confirmed that these spectra were similar to those in molten LiCl-KCl and NaCl-CsCl eutectics. The sensitive absorption bands of U4+ in LiCl-RbCl eutectic were found at 22000, 16500, 14900, 8600, and 4950 cm-1. The large absorption bands of U4+ over 25000 cm-1 increased with increasing melt temperature, while absorption peaks at 15500-4000 cm-1 decreased. The large absorption bands of U3+ in LiCl-RbCl eutectic were observed over 14000 cm-1. The sensitive absorption bands of U3+ at Vis/NIR region were found at 13300, 11500-11200, 9800-9400, and 8250 cm-1, and these peaks decreased with increasing temperature.

  2. Quantitative analysis of deconvolved X-ray absorption near-edge structure spectra: a tool to push the limits of the X-ray absorption spectroscopy technique.

    PubMed

    D'Angelo, Paola; Migliorati, Valentina; Persson, Ingmar; Mancini, Giordano; Della Longa, Stefano

    2014-09-15

    A deconvolution procedure has been applied to K-edge X-ray absorption near-edge structure (XANES) spectra of lanthanoid-containing solid systems, namely, hexakis(dmpu)praseodymium(III) and -gadolinium(III) iodide. The K-edges of lanthanoids cover the energy range 38 (La)-65 (Lu) keV, and the large widths of the core-hole states lead to broadening of spectral features, reducing the content of structural information that can be extracted from the raw X-ray absorption spectra. Here, we demonstrate that deconvolution procedures allow one to remove most of the instrumental and core-hole lifetime broadening in the K-edge XANES spectra of lanthanoid compounds, highlighting structural features that are lost in the raw data. We show that quantitative analysis of the deconvolved K-edge XANES spectra can be profitably used to gain a complete local structural characterization of lanthanoid-containing systems not only for the nearest neighbor atoms but also for higher-distance coordination shells. PMID:25171598

  3. Analysis of Gain and Absorption Spectra of Gallium Nitride-based Laser Diodes

    NASA Astrophysics Data System (ADS)

    Melo, Thiago

    Laser diodes (LDs) based on the III-Nitride material system, (Al,In,Ga)N, stand to satisfy a number of application needs, and their huge market segment has been further growing with the use of LDs for full color laser projection. All commercially available GaN-based devices are based on the conventional c-plane (polar) orientation of this material. However, strong polarization fields caused by strained quantum-well (QW) layers on c-plane induce the quantum-confined Stark effect (QCSE), which leads to reduced radiative recombination rate and are aggravated when more indium is added into the QW(s) in order to achieve longer wavelengths. A promising solution for this is the use of nonpolar and semipolar crystal growth orientations. Elimination or mitigation of polarization-related fields within the QWs grown along these novel orientations is observed and one expects increased radiative recombination rate and stabilization of the wavelength emission with respect to the injection current. In order to have more insights on the advantages of using the novel crystal orientations of the III-Nitride material system, we compare the gain of LD structures fabricated from c-plane, nonpolar and semipolar GaN substrates. Using thesegmented contact method, single-pass gain spectra of LD epitaxial structures at wafer level are compared for the different crystal orientations as well as the single-pass absorption coefficient spectrum of the active region material and its dependence on reversed bias. Experimental gain spectra under continuous-wave (CW) operation of actual industry LDs fabricated from c-plane and nonpolar/semipolar GaN-based materials emitting wavelengths in the visible are then presented, using the Hakki-Paoli technique at high resolution. Measurements of the transparency current density, total losses and differential modal gain curves up to threshold are analyzed and compared between nonpolar/semipolar and c-plane LDs in violet and blue spectral regions regions. In a

  4. Computational study of collision-induced dipole moments and absorption spectra of H

    NASA Astrophysics Data System (ADS)

    Zheng, Chunguang

    1997-08-01

    H2-H2 collision-induced absorption (CIA) spectra are computed for the first over-tone band at temperatures from 20 to 500 K, and for the rototranslational band at temperatures from 600 to 7,000 K. The theoretical results are based on simple model line shapes. The parameters of the model functions are obtained from the three lowest translational spectral moments, which are computed from the H2-H2 collision-induced dipole moments of Meyer et al. (1) using the sum formulae (2, 3). Ab initio computations of H2-H2 collision- induced dipole moments are performed using the Gaussian 92 program (4). The computations extend the previous work of Meyer et al. (1). Four internuclear distances of H2 molecule 1.111, 1.449, 1.787 and 2.150 a.u., and eleven intermolecular distances of H2-H2 from 2.5 to 9.0 a.u. are included in the computations. The radial transition matrix elements of the collision- induced dipole components are obtained for vibrational transitions /Delta v = (v1' - v1) + (v2' - v2) = 0, 1, 2, 3 and v1,/ v2 = 0, 1, 2. where v1 and v2 are the vibrational quantum numbers of the two interacting H2 molecules, and primes denote final states. The dependences of these matrix elements on the rotational quantum numbers of the two H2 molecules j1j1'j2j2' are obtained for j1j1'j2j2' up to 10. These matrix elements are suitable for high temperature H2-H2 CIA computations. The second overtone band H2-H2 CIA spectra are computed for the first time at temperatures from 20 to 500 K employing the newly developed H2-H2 collision-induced dipole moments. The computations are based on the three lowest translational spectral moments and simple model line shapes.

  5. Analysis of Atmospheric Trace Constituents from High Resolution Infrared Balloon-Borne and Ground-Based Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Goldman, A.; Murcray, F. J.; Rinsland, C. P.; Blatherwick, R. D.; Murcray, F. H.; Murcray, D. G.

    1991-01-01

    Recent results and ongoing studies of high resolution solar absorption spectra will be presented. The analysis of these spectra is aimed at the identification and quantification of trace constituents important in atmospheric chemistry of the stratosphere and upper troposphere. Analysis of balloon-borne and ground-based spectra obtained at 0.0025/ cm covering the 700-2200/ cm interval will be presented. Results from ground-based 0.02/ cm solar spectra, from several locations such as Denver, South Pole, M. Loa, and New Zealand will also be shown. The 0.0025/ cm spectra show many new spectroscopic features. The analysis of these spectra, along with corresponding laboratory spectra, improves the spectral line parameters, and thus the accuracy of trace constituents quantification. The combination of the recent balloon flights, with earlier flights data since 1978 at 0.02/ cm resolution, provides trends analysis of several stratospheric trace species. Results for COF2, F22, SF6, and other species will be presented. Analysis of several ground-based solar spectra provides trends for HCl, HF and other species. The retrieval methods used for total column density and altitude distribution for both ground-based and balloon-borne spectra will be presented. These are extended for the analysis of the ground-based spectra to be obtained by the high resolution interferometers of the Network for Detection of Stratospheric Change (NDSC). Progress or the University of Denver studies for the NDSC will be presented. This will include intercomparison of solar spectra and trace gases retrievals obtained from simultaneous scans by the high resolution (0.0025/ cm) interferometers of BRUKER and BOMEM.

  6. Photodynamic cancer therapy: fluorescence localization and light absorption spectra of chlorophyll-derived photosensitizers inside cancer cells

    NASA Astrophysics Data System (ADS)

    Moser, Joerg G.; Rueck, Angelika C.; Schwarzmaier, Hans-Joachim; Westphal-Frosch, Christel

    1992-07-01

    The first prerequisite for an optimum effect of photodynamic therapy with chlorophyll- derived photosensitizers is irradiation at the S1 absorption maximum in the red spectral region. This absorption maximum changes its position due to molecular association by 20 to 100 nm depending on the subcellular environment, and must be determined by direct absorption spectrometry in the region of subcellular sensitizer localization. Fluorescence- intensifying video microscopy allows for localization of the sensitizer storage site at or near the Galgi apparatus of OAT 75 small-cell lung carcinoma cells. The absorption maximum at 760 nm taken from spectra of single cells and cell layers determines the postulated optimum condition for dye laser irradiation with bacteriopheophorbide-a-methyl-ester as the sensitizer.

  7. Solvent dependence of two-photon absorption spectra of the enhanced green fluorescent protein (eGFP) chromophore

    NASA Astrophysics Data System (ADS)

    Hosoi, Haruko; Tayama, Ryo; Takeuchi, Satoshi; Tahara, Tahei

    2015-06-01

    Two-photon absorption spectra of 4‧-hydroxybenzylidene-2,3-dimethylimidazolinone, a model chromophore of enhanced green fluorescent protein (eGFP), were measured in various solvents. The two-photon absorption band of its anionic form is markedly blue-shifted from the corresponding one-photon absorption band in all solvents. Moreover, the magnitude of the blue shift varies largely depending on the solvent, which does not accord with the assignment of the two-photon absorption band to the transitions to the vibrationally excited S1 state. Our finding is readily rationalized by considering overlapping contributions of the S1 ← S0 and S2 ← S0 transitions, suggesting the involvement of the S2 state also in two-photon fluorescence of eGFP.

  8. Absorption spectra of CdSe-ZnS core-shell quantum dots at high photon energies: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Amlan; Ghosh, Sandip

    2014-11-01

    Absorption spectra of CdSe-ZnS core-shell quantum dot (QD) ensembles, with average core diameters ranging from 2.6 nm to 7.2 nm have been obtained using both transmission and photoluminescence excitation measurements. In agreement with previous reports, the absorption coefficient at energies ≃1 eV above the effective bandgap increases monotonically as in bulk solids. A simple effective-mass spherical core-shell potential model cannot explain the relatively high absorption at higher energies. The calculated electron and hole radial envelope wavefunctions show asymmetry due to the core-shell structure. It leads to normally symmetry-disallowed transitions acquiring a weak oscillator strength, with their number and strength increasing with energy. A phenomenological model that invokes normally disallowed transitions in general is shown to reproduce the absorption spectrum at higher energies quite well. The oscillator strength scaling factor for such transitions increases with decrease in QD size, consistent with expectations.

  9. Collison-induced rototranslational absorption spectra of H/sub 2/-He pairs at temperatures from 40 to 3000 K

    SciTech Connect

    Borysow, J.; Frommhold, L.; Birnbaum, G.

    1988-03-01

    The zeroth, first, and second spectral moments of the rototranslational collision-induced absorption (RT CIA) spectra of hydrogen-helium mixtures are calculated from the fundamental theory, for temperatures from 40 to 3000 K. With the help of simple analytical functions of three parameters and the information given, the RT CIA spectra of H/sub 2/-He pairs can be generated on computers of small capacity, with rms deviations from exact quantum profiles of not more than a few percent. Such representations of the CIA spectra are of interest for work related to the atmospheres of the outer planets and cool stars. The theoretical spectra are in close agreement with existing laboratory measurements at various temperatures from about 77 to 3000 K. 28 references.

  10. On-the-Fly ab Initio Semiclassical Dynamics of Floppy Molecules: Absorption and Photoelectron Spectra of Ammonia.

    PubMed

    Wehrle, Marius; Oberli, Solène; Vaníček, Jiří

    2015-06-01

    We investigate the performance of on-the-fly ab initio (OTF-AI) semiclassical dynamics combined with the thawed Gaussian approximation (TGA) for computing vibrationally resolved absorption and photoelectron spectra. Ammonia is used as a prototype of floppy molecules, whose potential energy surfaces display strong anharmonicity. We show that despite complications due to the presence of large amplitude motion, the main features of the spectra are captured by the OTF-AI-TGA, which—by definition—does not require any a priori knowledge of the potential energy surface. Moreover, the computed spectra are significantly better than those based on the popular global harmonic approximation. Finally, we probe the limit of the TGA to describe higher-resolution spectra, where long time dynamics is required. PMID:25928833

  11. Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K

    NASA Technical Reports Server (NTRS)

    Borysow, Jacek; Frommhold, Lothar; Birnbaum, George

    1988-01-01

    The zeroth, first, and second spectral moments of the rototranslational collision-induced absorption (RT CIA) spectra of hydrogen-helium mixtures are calculated from the fundamental theory, for temperatures from 40 to 3000 K. With the help of simple analytical functions of three parameters and the information given, the RT CIA spectra of H2-He pairs can be generated on computers of small capacity, with rms deviations from exact quantum profiles of not more than a few percent. Such representations of the CIA spectra are of interest for work related to the atmospheres of the outer planets and cool stars. The theoretical spectra are in close agreement with existing laboratory measurements at various temperatures from about 77 to 3000 K.

  12. Study of electron transition energies between anions and cations in spinel ferrites using differential UV-vis absorption spectra

    NASA Astrophysics Data System (ADS)

    Xue, L. C.; Wu, L. Q.; Li, S. Q.; Li, Z. Z.; Tang, G. D.; Qi, W. H.; Ge, X. S.; Ding, L. L.

    2016-07-01

    It is very important to determine electron transition energies (Etr) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV-vis absorption spectra using the curve (αhν)2 vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV-vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (Etr) between the anions and cations, Fe2+ and Fe3+ at the (A) and [B] sites and Ni2+ at the [B] sites for the (A)[B]2O4 spinel ferrite samples CoxNi0.7-xFe2.3O4 (0.0≤x≤0.3), CrxNi0.7Fe2.3-xO4 (0.0≤x≤0.3) and Fe3O4. We suggest that the differential UV-vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  13. Interpretation of unexpected behavior of infrared absorption spectra of ScF3 beyond the quasiharmonic approximation

    NASA Astrophysics Data System (ADS)

    Piskunov, Sergei; Žguns, Pjotrs A.; Bocharov, Dmitry; Kuzmin, Alexei; Purans, Juris; Kalinko, Aleksandr; Evarestov, Robert A.; Ali, Shehab E.; Rocca, Francesco

    2016-06-01

    Scandium fluoride (ScF3), having cubic ReO3-type structure, has attracted much scientific attention due to its rather strong negative thermal expansion (NTE) in the broad temperature range from 10 to 1100 K. Here we use the results of diffraction and extended x-ray absorption fine-structure (EXAFS) spectroscopy to interpret the influence of NTE on the temperature dependence of infrared absorption spectra of ScF3. Original infrared absorption and EXAFS experiments in a large temperature range are presented and interpreted using ab initio lattice dynamics simulations within and beyond quasiharmonic approximations. We demonstrate that ab initio electronic structure calculations, based on the linear combination of atomic orbitals method with hybrid functionals, are able to reproduce well the experimental values of lattice parameter a0, band gap Eg, and lattice dynamics in ScF3. However, the simulations performed within quasiharmonic approximation fail to reproduce the temperature dependence of two infrared active bands due to the F-Sc-F bending (at 220 cm-1) and Sc-F stretching (at 520 cm-1) modes present in the infrared absorption spectra. To overcome this problem, an approach beyond the quasiharmonic approximation is proposed: It accounts for the negative thermal expansion of the lattice and for fluorine atom displacements due to strong F vibrational motion perpendicular to the cubic axes and allows us to explain qualitatively the temperature behavior of infrared spectra of ScF3.

  14. Electronic Absorption Spectra of Tetrapyrrole-Based Pigments via TD-DFT: A Reduced Orbital Space Study.

    PubMed

    Shrestha, Kushal; Virgil, Kyle A; Jakubikova, Elena

    2016-07-28

    Tetrapyrrole-based pigments play a crucial role in photosynthesis as principal light absorbers in light-harvesting chemical systems. As such, accurate theoretical descriptions of the electronic absorption spectra of these pigments will aid in the proper description and understanding of the overall photophysics of photosynthesis. In this work, time-dependent density functional theory (TD-DFT) at the CAM-B3LYP/6-31G* level of theory is employed to produce the theoretical absorption spectra of several tetrapyrrole-based pigments. However, the application of TD-DFT to large systems with several hundreds of atoms can become computationally prohibitive. Therefore, in this study, TD-DFT calculations with reduced orbital spaces (ROSs) that exclude portions of occupied and virtual orbitals are pursued as a viable, computationally cost-effective alternative to conventional TD-DFT calculations. The effects of reducing orbital space size on theoretical spectra are qualitatively and quantitatively described, and both conventional and ROS results are benchmarked against experimental absorption spectra of various tetrapyrrole-based pigments. The orbital reduction approach is also applied to a large natural pigment assembly that comprises the principal light-absorbing component of the reaction center in purple bacteria. Overall, we find that TD-DFT calculations with proper and judicious orbital space reductions can adequately reproduce conventional, full orbital space, TD-DFT results of all pigments studied in this work. PMID:27392135

  15. Interconfigurational absorption and two-photon excitation spectra of PtCl sub 6 sub 2 minus -containing crystals

    SciTech Connect

    Yoo, Ryong, K.; Keiderling, T.A. )

    1990-10-18

    Low-temperature absorption and two-photon excitation spectra of complexes containing PtCl{sub 6}{sup 2{minus}} are presented and discussed. One-photon absorption spectra with moderately well resolved vibronic structure were obtained for PtCl{sub 6}{sup 2{minus}} in dilute mixed crystals. The data show that a transition to a low-lying interconfigurational state is located at {approximately} 18,000 cm{sup {minus}1} in the spectral frequency region below the first absorption transition previously assigned by others. This transition cannot be unambiguously assigned. If it corresponds to the same excited state responsible for the PtCl{sub 6}{sup 2{minus}} emission spectrum, this would lead to a partial reassignment of the excited states from that of earlier work. Ligand field calculations consistent with such a reassignment are presented. The two-photon excitation (TPE) spectra of the mixed Cs{sub 2}ZrCl{sub 6}:PtCl{sub 6}{sup 2{minus}} and pure K{sub 2}PtCl{sub 6} (at 77 K), measured with an improved spectrometer, show a noticeable improvement in signal-to-noise ratio compared to the previously reported TPE spectra of K{sub 2}PtCl{sub 6} and are assigned to higher energy d-d transitions.

  16. Calculation of emission and absorption spectra of LTE plasma by the STA (Super Transition Array) method

    SciTech Connect

    Bar-Shalon, A.; Oreg, J. . Nuclear Research Center-Negev); Goldstein, W.H. )

    1991-01-11

    Recent improvements in the Super Transition Array (STA) method for calculating Bound-Bound (BB) and Bound-Free (BF) emission and absorption spectra for LTE plasma are described and illustrated. The method accounts for all possible BB and BF radiative transitions in the plasma. Full detailed first order quantum relativistic treatment is used for calculating transition energies and probabilities. The enormous number of configurations are divided into sets of superconfigurations comprised of a collection of energetically grouped configurations. The contribution of the transition array between two superconfigurations to a specific one-electron transition is then represented by a Gaussian whose moments are calculated accurately using a technique that bypasses the necessity of direct summation over all the levels involved. The calculation of these moments involves the populations of the configurations given by their statistical weights and the Boltzmann factor. For each configuration within the super configuration we use zeroeth order energies in the Boltzmann factor corrected by a super configuration averaged first order term. The structure of the spectrum is increasingly revealed by splitting each STA into a number of smaller STAs. When the spectrum converges it describes the detailed UTA' structure, where each configuration-to-configuration array is represented by a separate Gaussian with first order energy in the Boltzmann factor. Convergence is reached with only a few thousand STAs, at most, which makes the calculations practical. It should be pointed out that in this treatment the STA moments are obtained by summing over all level-to-level transitions, rather than configuration-to-configuration average transitions. 4 refs., 9 figs.

  17. Variability, absorption features, and parent body searches in "spectrally featureless" meteorite reflectance spectra: Case study - Tagish Lake

    NASA Astrophysics Data System (ADS)

    Izawa, M. R. M.; Craig, M. A.; Applin, D. M.; Sanchez, J. A.; Reddy, V.; Le Corre, L.; Mann, P.; Cloutis, E. A.

    2015-07-01

    Reflectance spectra of many asteroids and other Solar System bodies are commonly reported as "featureless". Here, we show that weak but consistently detectable absorption bands are observable in 200-2500 nm spectra of the Tagish Lake meteorite, a likely compositional and spectral analogue for low-albedo, "spectrally-featureless" asteroids. Tagish Lake presents a rare opportunity to study multiple lithologies within a single meteorite. Reflectance spectra of Tagish Lake display significant variation between different lithologies. The spectral variations are due in part to mineralogical variations between different Tagish Lake lithologies. Ultraviolet reflectance spectra (200-400 nm), few of which have been reported in the literature to date, reveal albedo and spectral ratio variations as a function of mineralogy. Similarly visible-near infrared reflectance spectra reveal variations in albedo, spectral slope, and the presence of weak absorption features that persist across different lithologies and can be attributed to various phases present in Tagish Lake. These observations demonstrate that significant spectral variability may exist between different lithologies of Tagish Lake, which may affect the interpretation of potential source body spectra. It is also important to consider the spectral variability within the meteorite before excluding compositional links between possible parent bodies in the main belt and Tagish Lake. Tagish Lake materials may also be spectral-compositional analogues for materials on the surfaces of other dark asteroids, including some that are targets of upcoming spacecraft missions. Tagish Lake has been proposed as a spectral match for 'ultra-primitive' D or P-type asteroids, and the variability reported here may be reflected in spatially or rotationally-resolved spectra of possible Tagish Lake parent bodies and source objects in the Near-Earth Asteroid population. A search for objects with spectra similar to Tagish Lake has been carried

  18. Intermolecular interaction as the origin of red shifts in absorption spectra of zinc-phthalocyanine from first-principles.

    PubMed

    Yanagisawa, Susumu; Yasuda, Taiga; Inagaki, Kouji; Morikawa, Yoshitada; Manseki, Kazuhiro; Yanagida, Shozo

    2013-11-01

    We investigate electronic origins of a redshift in absorption spectra of a dimerized zinc phthalocyanine molecule (ZnPc) by means of hybrid density functional theoretical calculations. In terms of the molecular orbital (MO) picture, the dimerization splits energy levels of frontier MOs such as the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the constituent molecules. Consequently, the absorption wavelength seems to become longer than the monomer as the overlap between the monomers becomes larger. However, for a ZnPc dimer configuration with its cofacially stacked monomer arrangement, the calculated absorption spectra within the time-dependent density functional theory indicates no redshift but blueshift in the Q-band absorption spectrum, i.e., a typical H-aggregate. The origin of the apparently contradictory result is elucidated by the conventional description of the interaction between monomer transition dipoles in molecular dimers [Kasha, M. Radiat. Res. 1963, 20, 55]. The redshift is caused by an interaction between the two head-to-tail transition dipoles of the monomers, while the side-by-side arranged transition dipoles result in a blueshift. By tuning the dipole-dipole interaction based on the electronic natures of the HOMO and the LUMO, we describe a slipped-stacked ZnPc dimer configuration in which the Q-band absorption wavelength increases by as large as 144 nm relative to the monomer Q-band. PMID:24106753

  19. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    NASA Astrophysics Data System (ADS)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  20. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    PubMed Central

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  1. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    PubMed

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  2. Terbium chloride--aluminum chloride vapor system. I. Absorption and excitation spectra

    SciTech Connect

    Caird, J.A.; Carnall, W.T.; Hessler, J.P.; Williams, C.W.

    1981-01-15

    The absorption spectrum of the vapor complex formed at elevated temperatures between TbCl/sub 3/ and AlCl/sub 3/ has been measured in the region 20 000--50 000 cm/sup -1/. Oscillator strengths of f--f absorption bands below 37 000 cm/sup -1/ were determined. Strong absorption due to opposite parity 4f/sup 7/5d states was observed in the 37 000 to 50 000 cm/sup -1/ region with a peak molar absorptivity of approximately 500 l/mol cm. Significant additional absorption attributed to a molecular complex was also observed in this region. By measuring the excitation spectrum it was found that the molecular absorption does not appear to lead to fluorescence of the /sup 5/D/sub 4/ state. In contrast, absorption by the 4f/sup 7/5d states does result in strong /sup 5/D/sub 4/ fluorescence.

  3. How Van der Waals Interactions Influence the Absorption Spectra of Pheophorbide a Complexes: A Mixed Quantum-Classical Study.

    PubMed

    Megow, Jörg

    2015-10-01

    The computation of dispersive site energy shifts due to van der Waals interaction (London dispersion forces) was combined with mixed quantum-classical methodology to calculate the linear optical absorption spectra of large pheophorbide a (Pheo) dendrimers. The computed spectra agreed very well with the measurements considering three characteristic optical features occurring with increasing aggregate size: a strong line broadening, a redshift, and a low-energy shoulder. The improved mixed quantum-classical methodology is considered a powerful tool in investigating molecular aggregates. PMID:26275373

  4. Electronic structure and optical absorption spectra of CdSe covered with ZnSe and ZnS epilayers

    NASA Astrophysics Data System (ADS)

    Yun, So Jeong; Lee, Geunsik; Kim, Jai Sam; Shin, Seung Koo; Yoon, Young-Gui

    2006-02-01

    Using the first-principles methods we compute the electronic structure and the absorption spectra for a wurtzite CdSe (0001) slab covered with zincblende ZnSe and ZnS epilayers. For each structure we compute the DOS and the imaginary part of the dielectric function. We find that the semiconductor passivation shifts the 'near Fermi-level' states of the bare CdSe slab down to lower energy levels. The migration suggests the decrease of surface effects and energy loss. We observe the substantial reduction of the abnormal peaks in the absorption spectra of the bare CdSe slab, which seems to be a consequence of the DOS migration. This is consistent with the experimental results that a proper passivation enhance the luminescence efficiency. We also study the case that the epilayer surface is terminated with PH 3 and find the PH 3 passivation also reduces the surface state to some extent.

  5. Ab initio x-ray absorption study of copper K-edge XANES spectra in Cu(II) compounds

    SciTech Connect

    Chaboy, Jesus; Munoz-Paez, Adela; Carrera, Flora; Merkling, Patrick; Marcos, Enrique Sanchez

    2005-04-01

    This work reports a theoretical study of the x-ray absorption near-edge structure spectra at the Cu K edge in several Cu(II) complexes with N-coordinating ligands showing a square-planar arrangement around metal cation. It is shown that single-channel multiple-scattering calculations are not able to reproduce the experimental spectra. The comparison between experimental data and ab initio computations indicates the need of including the contribution of two electronic configurations (3d{sup 9} and 3d{sup 10}L) to account for a proper description of the final state during the photoabsorption process. The best agreement between theory and experiment is obtained by considering a relative weight of 68% and 32% for the two absorption channels 3d{sup 10}L and 3d{sup 9}, respectively.

  6. First-principles calculation of principal Hugoniot and K-shell X-ray absorption spectra for warm dense KCl

    NASA Astrophysics Data System (ADS)

    Zhao, Shijun; Zhang, Shen; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu

    2015-06-01

    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics (FPMD) method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. It is shown that approximate description of ionization in FPMD has small influence on Hugoniot pressure due to mutual compensation of electronic kinetic pressure and virial pressure. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the 3p electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.

  7. First-principles calculation of principal Hugoniot and K-shell X-ray absorption spectra for warm dense KCl

    SciTech Connect

    Zhao, Shijun; Zhang, Shen; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu

    2015-06-15

    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics (FPMD) method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. It is shown that approximate description of ionization in FPMD has small influence on Hugoniot pressure due to mutual compensation of electronic kinetic pressure and virial pressure. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the 3p electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.

  8. Interacting He and Ar atoms: Revised theoretical interaction potential, dipole moment, and collision-induced absorption spectra

    SciTech Connect

    Meyer, Wilfried; Frommhold, Lothar

    2015-09-21

    Coupled cluster quantum chemical calculations of the potential energy surface and the induced dipole surface are reported for the He–Ar van der Waals collisional complex. Spectroscopic parameters are derived from global analytical fits while an accurate value for the long-range dipole coefficient D{sub 7} is obtained by perturbation methods. Collision-induced absorption spectra are computed quantum mechanically and compared with existing measurements.

  9. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  10. pH-Induced changes in electronic absorption and fluorescence spectra of phenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Voloshin, I. M.; Makitruk, V. L.; Zozulya, V. N.; Karachevtsev, V. A.

    2007-04-01

    The visible electronic absorption and fluorescence spectra as well as fluorescence polarization degrees of imidazo-[4,5-d]-phenazine (F1), 2-methylimidazo-[4,5-d]-phenazine (F2), 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F3), 1,2,3-triazole-[4,5-d]-phenazine (F4) and their glycosides, imidazo-[4,5-d]-phenazine-N1-β- D-ribofuranoside (F1rib), 1,2,3-triazole-[4,5-d]-phenazine-N1-β- D-glucopyranoside (F4gl), were investigated in aqueous buffered solutions over the pH range of 0-12, where the spectral transformations were found to be reversible. The effects of protonation and deprotonation on spectral properties of these dyes were studied. We have determined the ranges of pH, where individual ionic species are predominant. In aqueous buffered solutions the fluorescence was found only for neutral species of F1, F1rib, F2, and F4gl dyes, whereas for the ionic forms of these dyes, as well as for F3 and F4 ones, the fluorescence has not been detected. The concentrational deprotonation p Ka values were evaluated from experimental data. It was shown that donor-acceptor properties of the substituent group in the second position of the pentagonal ring substantially affect the values of the deprotonation constants and the character of protonation for chromophore. The substitution of a hydrogen atom in the NH-group by the sugar residue blocks the formation of the anionic species, and results in enhancement of the dye emission intensity. The steep emission dependence for F1 and F1rib over pH range of 0-7 with intensities ratio of IpH 7/ IpH 1 = 60 allows us to propose them as possible indicator dyes in luminescence based pH sensors for investigation of processes accompanied by acidification, e.g. as gastric pH-sensors. A comparative analysis of the studied dyes has shown that F4gl is the most promising compound to be used as a fluorescent probe for investigation of molecular hybridization of nucleic acids.

  11. Ligand and Charge Dependence for Absorption Edge in XANES Spectra of TPP[Fe(Pc)L2]2 Systems

    NASA Astrophysics Data System (ADS)

    Takahashi, Kei; Watanabe, Akie; Niki, Kaori; Hanasaki, Noriaki; Kanda, Akinori; Fujikawa, Takashi

    We apply real space full multiple scattering theory to interpret the Fe K-edge XANES spectra of TPP[Fe(Pc)L2]2 (L = CN, Cl and Br) systems, which show the giant magnetoresistance (GMR) at the low temperatures. In the previous paper, we have reported the absorption edge shift of the XANES spectra, whose origin remains unclear, for TPP[Fe(Pc)L2]2 systems. In order to clarify the relation between the charge of the Fe atom, the local structure of the axial ligand and the XANES spectra, we improve the calculation of the XANES spectra by taking into account the wider region including the neighboring Fe(Pc)L2 and TPP molecules. Our multiple scattering analyses suggest that the spectral shape is strongly influenced by the distance between a central Fe and axial ligands L. The number of Fe 3d electrons obtained by density functional theory calculations show weak dependence on the axial ligands L. The EXAFS spectra, the polarization dependence and the temperature dependence of the XANES spectra are also discussed.

  12. Characterization of NH overtone and combination bands in the near-infrared absorption spectra of simple cyclic imides

    NASA Astrophysics Data System (ADS)

    McNeilly, Patrick J.; Andrea, Tariq A.; Krikorian, S. Edward

    1992-10-01

    Bands due to overtone and combination vibrational modes attributable to the imide grouping have been elucidated in the near-IR absorption spectra of small-ring cyclic imides, in which the grouping is in a cis, cis conformation. The spectra closely parallel the spectra of cis lactams except that two combination modes involving the carbonyl stretching fundamental, [ν(NH) + ν(CO)] and [2ν(C=O) + imide III], occur at higher wavenumbers in the imide spectra, reflecting the higher frequency at which this fundamental absorbs. This same factor results in a reversal in the wavenumber positions of the [2ν(CO) + imide III] and [ν(NH) + imide III] combination bands in the imide spectra relative to those in the lactam spectra. In addition, in-phase and out-of-phase vibrational coupling between the two carbonyl groups in the imides may compound the band due to the [ν(NH) + ν(CO)] combination mode. These three spectral characteristics serve to distinguish the imides from the lactams in the near-IR.

  13. Effects of annealing treatment and gamma irradiation on the absorption and fluorescence spectra of Cr:GSGG laser crystal

    NASA Astrophysics Data System (ADS)

    Sun, D. L.; Luo, J. Q.; Xiao, J. Z.; Zhang, Q. L.; Jiang, H. H.; Yin, S. T.; Wang, Y. F.; Ge, X. W.

    2008-09-01

    The influence of annealing treatments and gamma-ray irradiation on the absorption and fluorescence spectra of Cr:GSGG crystals grown by the Czochralski method has been investigated. Two absorption bands located near 686 nm and 1050 nm were weakened markedly after the crystal was re-annealed in H2 atmosphere, which is due to the Cr4+ ions being de-oxidized into Cr3+ ions. The other two weak additional absorption bands induced by gamma-ray irradiation appearing near 310 nm and 480 nm are ascribed to the Fe2+ ions and F-type color centers, respectively. In particular, the gamma-ray irradiation with a dose of 100 Mrad has an effect of improving slightly the luminescence properties of Cr:GSGG crystals. The improvement mechanism is analyzed and discussed.

  14. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Campana, S.; Braito, V.; D'Avanzo, P.; Ghirlanda, G.; Melandri, A.; Pescalli, A.; Salafia, O. S.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2016-08-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence > 10-7 erg cm-2) and relatively nearby (z = 0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of ≲ 3.0σ. Most of the lines are detected around the observed energy of the oxygen edge at ~ 0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (NH) testing different models for the Galactic absorption confirms this origin because we found an indication of an excess of Galactic NH in these four GRBs with respect to the tabulated values.

  15. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation

    SciTech Connect

    Moix, Jeremy M.; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  16. Quantum mechanical calculation of the collision-induced absorption spectra of N2-N2 with anisotropic interactions.

    PubMed

    Karman, Tijs; Miliordos, Evangelos; Hunt, Katharine L C; Groenenboom, Gerrit C; van der Avoird, Ad

    2015-02-28

    We present quantum mechanical calculations of the collision-induced absorption spectra of nitrogen molecules, using ab initio dipole moment and potential energy surfaces. Collision-induced spectra are first calculated using the isotropic interaction approximation. Then, we improve upon these results by considering the full anisotropic interaction potential. We also develop the computationally less expensive coupled-states approximation for calculating collision-induced spectra and validate this approximation by comparing the results to numerically exact close-coupling calculations for low energies. Angular localization of the scattering wave functions due to anisotropic interactions affects the line strength at low energies by two orders of magnitude. The effect of anisotropy decreases at higher energy, which validates the isotropic interaction approximation as a high-temperature approximation for calculating collision-induced spectra. Agreement with experimental data is reasonable in the isotropic interaction approximation, and improves when the full anisotropic potential is considered. Calculated absorption coefficients are tabulated for application in atmospheric modeling. PMID:25725730

  17. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    PubMed

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-01

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters. PMID:25747062

  18. Electronic structure of some adenosine receptor antagonists. III. Quantitative investigation of the electronic absorption spectra of alkyl xanthines

    NASA Astrophysics Data System (ADS)

    Moustafa, H.; Shalaby, Samia H.; El-sawy, K. M.; Hilal, Rifaat

    2002-07-01

    Quantitative and comparative investigation of the electronic absorption spectra of theophylline, caffeine and their derivatives is reported. The spectra of theophylline, caffeine and theobromine were compared to establish the predominant tautomeric species in solution. This comparison, analysis of solvent effects and assignments of the observed transitions via MO computations indicate the exits of only one tautomeric species in solution that is the N7 form. A low-lying triplet state was identified which corresponds to a HOMO-LUMO transition. This relatively long-lived T 1 state is always less polar than the ground state and may very well underlie the photochemical reactivity of alkyl xanthines. Substituents of different electron donating or withdrawing strengths and solvent effects are investigated and analyzed. The present analysis is facilitated via computer deconvolution of the observed spectra and MO computation.

  19. Integral field spectroscopy of QSO host galaxies

    NASA Astrophysics Data System (ADS)

    Jahnke, K.; Wisotzki, L.; Sánchez, S. F.; Christensen, L.; Becker, T.; Kelz, A.; Roth, M. M.

    2004-02-01

    We describe a project to study the state of the ISM in ˜20 low redshift (z<0.3) QSO host galaxies observed with the PMAS integral field spectrograph. We describe the development of the method to access the stellar and gas components of the spectrum without the strong nuclear emission, in order to access the host galaxy properties in the central region. It shows that integral field spectroscopy promises to be very efficient in studying the gas distribution and its velocity field, and also the spatially resolved stellar population in the host galaxies of luminous AGN.

  20. Electronic absorption spectra of imidazolium-based ionic liquids studied by far-ultraviolet spectroscopy and quantum chemical calculations.

    PubMed

    Tanabe, Ichiro; Kurawaki, Yuji; Morisawa, Yusuke; Ozaki, Yukihiro

    2016-08-10

    Electronic absorption spectra of imidazolium-based ionic liquids were studied by far- and deep-ultraviolet spectroscopy and quantum chemical calculations. The absorption spectra in the 145-300 nm region of imidazolium-based ionic liquids, [Cnmim](+)[BF4](-) (n = 2, 4, 8) and [C4mim](+)[PF6](-), were recorded using our original attenuated total reflectance (ATR) system spectrometer. The obtained spectra had two definitive peaks at ∼160 and ∼210 nm. Depending on the number of carbon atoms in the alkyl side chain, the peak wavelength around 160 nm changed, while that around 210 nm remained at almost the same wavelength. Quantum chemical calculation results based on the time-dependent density functional theory (TD-DFT) also showed the corresponding peak shifts. In contrast, there was almost no significant difference between [C4mim](+)[BF4](-) and [C4mim](+)[PF6](-), which corresponded with our calculations. Therefore, it can be concluded that the absorption spectra in the 145-300 nm region are mainly determined by the cations when fluorine-containing anions are adopted. In addition, upon addition of organic solvent (acetonitrile) to [C4mim](+)[BF4](-), small peak shifts to the longer wavelength were revealed for both peaks at ∼160 and ∼210 nm. The peak shift in the deep-ultraviolet region (≤200 nm) in the presence of the solvent, which indicates the change of electronic states of the ionic liquid, was experimentally observed for the first time by using the ATR spectrometer. PMID:27471106

  1. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    PubMed

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-01

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms. PMID:27388151

  2. Sticking to (first) principles: quantum molecular dynamics and Bayesian probabilistic methods to simulate aquatic pollutant absorption spectra.

    PubMed

    Trerayapiwat, Kasidet; Ricke, Nathan; Cohen, Peter; Poblete, Alex; Rudel, Holly; Eustis, Soren N

    2016-08-10

    This work explores the relationship between theoretically predicted excitation energies and experimental molar absorption spectra as they pertain to environmental aquatic photochemistry. An overview of pertinent Quantum Chemical descriptions of sunlight-driven electronic transitions in organic pollutants is presented. Second, a combined molecular dynamics (MD), time-dependent density functional theory (TD-DFT) analysis of the ultraviolet to visible (UV-Vis) absorption spectra of six model organic compounds is presented alongside accurate experimental data. The functional relationship between the experimentally observed molar absorption spectrum and the discrete quantum transitions is examined. A rigorous comparison of the accuracy of the theoretical transition energies (ΔES0→Sn) and oscillator strength (fS0→Sn) is afforded by the probabilistic convolution and deconvolution procedure described. This method of deconvolution of experimental spectra using a Gaussian Mixture Model combined with Bayesian Information Criteria (BIC) to determine the mean (μ) and standard deviation (σ) as well as the number of observed singlet to singlet transition energy state distributions. This procedure allows a direct comparison of the one-electron (quantum) transitions that are the result of quantum chemical calculations and the ensemble of non-adiabatic quantum states that produce the macroscopic effect of a molar absorption spectrum. Poor agreement between the vertical excitation energies produced from TD-DFT calculations with five different functionals (CAM-B3LYP, PBE0, M06-2X, BP86, and LC-BLYP) suggest a failure of the theory to capture the low energy, environmentally important, electronic transitions in our model organic pollutants. However, the method of explicit-solvation of the organic solute using the quantum Effective Fragment Potential (EFP) in a density functional molecular dynamics trajectory simulation shows promise as a robust model of the hydrated organic

  3. SYNCHROTRON POLARIZATION AND SYNCHROTRON SELF-ABSORPTION SPECTRA FOR A POWER-LAW PARTICLE DISTRIBUTION WITH FINITE ENERGY RANGE

    SciTech Connect

    Fouka, M.; Ouichaoui, S. E-mail: souichaoui@usthb.dz

    2011-12-10

    We have derived asymptotic forms for the degree of polarization of the optically thin synchrotron and for synchrotron self-absorption (SSA) spectra assuming a power-law particle distribution of the form N({gamma}) {approx} {gamma}{sup -p} with {gamma}{sub 1} < {gamma} < {gamma}{sub 2}, especially for a finite high-energy limit, {gamma}{sub 2}, in the case of an arbitrary pitch angle. The new results inferred concern more especially the high-frequency range x >> {eta}{sup 2} with parameter {eta} = {gamma}{sub 2}/{gamma}{sub 1}. The calculated SSA spectra concern instantaneous photon emission where cooling effects are not considered. They have been obtained by also ignoring likely effects such as Comptonization, pair creation and annihilation, as well as magnetic photon splitting. To that aim, in addition to the two usual absorption frequencies, a third possible one has been derived and expressed in terms of the Lambert W function based on the analytical asymptotic form of the absorption coefficient, {alpha}{sub {nu}}, for the high-frequency range {nu} >> {nu}{sub 2} (with {nu}{sub 2} the synchrotron frequency corresponding to {gamma}{sub 2}). We have shown that the latter frequency may not have realistic applications in astrophysics, except in the case of an adequate set of parameters allowing one to neglect Comptonization effects. More detailed calculations and discussions are presented.

  4. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Liu, Zhongfang; Liu, Jiangtao; Liu, Shaopu; Shen, Wei

    2008-03-01

    In pH 4.4-4.5 Britton-Robinson (BR) buffer solution, fluoroquinolone antibiotics (FLQs) including ciprofloxacin (CIP), norfloxacin (NOR), levofloxacin (LEV) and lomefloxacin (LOM) could react with erythrosine (Ery) to form 1:1 ion-association complexes, which not only resulted in the changes of the absorption spectra and the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS). These offered some indications of the determination of fluoroquinolone antibiotics by spectrophotometric, fluorescence and resonance Rayleigh scattering methods. The detection limits for fluoroquinolone antibiotics were in the range of 0.097-0.265 μg/mL for absorption methods, 0.022-0.100 μg/mL for fluorophotometry and 0.014-0.027 μg/mL for RRS method, respectively. Among them, the RRS method had the highest sensitivity. In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions and the properties of the analytical chemistry were investigated. The methods have been successfully applied to determination of some fluoroquinolone antibiotics in human urine samples and tablets. Taking CIP-Ery system as an example, the charge distribution, the enthalpy of formation and the mean polarizability were calculated by density function theory (DFT) method. In addition, the reasons for the enhancement of scattering spectra were discussed.

  5. High resolution infrared absorption spectra of various trace gases present in the upper atmosphere of the Earth

    NASA Technical Reports Server (NTRS)

    Hunt, Robert H.

    1988-01-01

    The objective of NASA Grant NsG 7473 was to obtain and analyze high resolution infrared absorption spectra of various trace gases present in the Earth's upper atmosphere. The goal of the spectral analysis was to obtain values of absorption line strengths, widths and frequencies of sufficient accuracy for use in upper atmosphere trace gas monitoring. During the early phase of the grant, high resolution spectra were obtained from two instruments. One was the 0.02/cm resolution vacuum grating spectrometer at the Florida State University and the other was the 0.01/cm resolution Fourier transform spectrometer at the McMath solar telescope at the Kitt Peak Observatory. Using these instruments, a considerable amount of spectra of methane and hydrogen peroxide were obtained and analyzed. During the latter years of the project, data taking was halted while efforts were devoted to building a new 0.0025/cm resolution vacuum Fourier transform spectrometer. Progress during this phase of the grant then became greatly slowed due to a lack of suitable graduate students in the program. However, the instrument was completed and brought to the point of producing interferograms.

  6. Theoretical UV absorption spectra of hydrodynamically escaping O{sub 2}/CO{sub 2}-rich exoplanetary atmospheres

    SciTech Connect

    Gronoff, G.; Mertens, C. J.; Norman, R. B.; Maggiolo, R.; Wedlund, C. Simon; Bell, J.; Bernard, D.; Parkinson, C. J.; Vidal-Madjar, A.

    2014-06-20

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O{sub 2}- and/or CO{sub 2}-rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O{sub 2} and CO{sub 2} molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  7. MOLECULAR GAS IN INFRARED ULTRALUMINOUS QSO HOSTS

    SciTech Connect

    Xia, X. Y.; Hao, C.-N.; Gao, Y.; Tan, Q. H.; Mao, S.; Omont, A.; Flaquer, B. O.; Leon, S.; Cox, P.

    2012-05-10

    We report CO detections in 17 out of 19 infrared ultraluminous QSO (IR QSO) hosts observed with the IRAM 30 m telescope. The cold molecular gas reservoir in these objects is in a range of (0.2-2.1) Multiplication-Sign 10{sup 10} M{sub Sun} (adopting a CO-to-H{sub 2} conversion factor {alpha}{sub CO} = 0.8 M{sub Sun} (K km s{sup -1} pc{sup 2}){sup -1}). We find that the molecular gas properties of IR QSOs, such as the molecular gas mass, star formation efficiency (L{sub FIR}/L'{sub CO}), and CO (1-0) line widths, are indistinguishable from those of local ultraluminous infrared galaxies (ULIRGs). A comparison of low- and high-redshift CO-detected QSOs reveals a tight correlation between L{sub FIR} and L'{sub CO(1-0)} for all QSOs. This suggests that, similar to ULIRGs, the far-infrared emissions of all QSOs are mainly from dust heated by star formation rather than by active galactic nuclei (AGNs), confirming similar findings from mid-infrared spectroscopic observations by Spitzer. A correlation between the AGN-associated bolometric luminosities and the CO line luminosities suggests that star formation and AGNs draw from the same reservoir of gas and there is a link between star formation on {approx}kpc scale and the central black hole accretion process on much smaller scales.

  8. TYPE Ia SUPERNOVA REMNANT SHELL AT z = 3.5 SEEN IN THE THREE SIGHTLINES TOWARD THE GRAVITATIONALLY LENSED QSO B1422+231

    SciTech Connect

    Hamano, Satoshi; Kobayashi, Naoto; Kondo, Sohei; Tsujimoto, Takuji; Okoshi, Katsuya; Shigeyama, Toshikazu

    2012-08-01

    Using the Subaru 8.2 m Telescope with the IRCS Echelle spectrograph, we obtained high-resolution (R = 10,000) near-infrared (1.01-1.38 {mu}m) spectra of images A and B of the gravitationally lensed QSO B1422+231 (z = 3.628) consisting of four known lensed images. We detected Mg II absorption lines at z = 3.54, which show a large variance of column densities ({approx}0.3 dex) and velocities ({approx}10 km s{sup -1}) between sightlines A and B with a projected separation of only 8.4h{sup -1}{sub 70} pc at that redshift. This is the smallest spatial structure of the high-z gas clouds ever detected after Rauch et al. found a 20 pc scale structure for the same z = 3.54 absorption system using optical spectra of images A and C. The observed systematic variances imply that the system is an expanding shell as originally suggested by Rauch et al. By combining the data for three sightlines, we managed to constrain the radius and expansion velocity of the shell ({approx}50-100 pc, 130 km s{sup -1}), concluding that the shell is truly a supernova remnant (SNR) rather than other types of shell objects, such as a giant H II region. We also detected strong Fe II absorption lines for this system, but with much broader Doppler width than that of {alpha}-element lines. We suggest that this Fe II absorption line originates in a localized Fe II-rich gas cloud that is not completely mixed with plowed ambient interstellar gas clouds showing other {alpha}-element low-ion absorption lines. Along with the Fe richness, we conclude that the SNR is produced by an SN Ia explosion.

  9. Extraction of pigment information from near-UV vis absorption spectra of extra virgin olive oils.

    PubMed

    Domenici, Valentina; Ancora, Donatella; Cifelli, Mario; Serani, Andrea; Veracini, Carlo Alberto; Zandomeneghi, Maurizio

    2014-09-24

    This work reports a new approach to extract the maximum chemical information from the absorption spectrum of extra virgin olive oils (EVOOs) in the 390-720 nm spectral range, where "oil pigments" dominate the light absorption. Four most important pigments, i.e., two carotenoids (lutein and β-carotene) and two chlorophylls (pheophytin-a and pheophytin-b), are chosen as reference oil pigments, being present in all the reported analytical data regarding pigments of EVOOs. The method allows the quantification of the concentration values of these four pigments directly from the deconvolution of the measured absorption spectrum of EVOOs. Advantages and limits of the method and the reliability of the pigment family quantification are discussed. The main point of this work is the description of a fast and simple method to extract of such information in less than a minute, through the mathematical analysis of the UV-vis spectrum of untreated samples of oil. PMID:25178056

  10. Disentangling vibronic and solvent broadening effects in the absorption spectra of coumarin derivatives for dye sensitized solar cells.

    PubMed

    Cerezo, Javier; Avila Ferrer, Francisco J; Santoro, Fabrizio

    2015-05-01

    We simulate from first-principles the absorption spectra of five structure-related coumarin derivatives utilized in dye sensitized solar cells (DSSCs), investigating the vibronic and solvent contributions to the position and width of the spectra in ethanol. Ground and excited state potential energy surfaces (PESs) are modeled by Density Functional Theory (DFT) and its time-dependent (TD) expression for the excited state (TD-DFT). The solute vibronic structure associated with the spectrum is calculated by a TD formalism, accounting for both Duschinsky and temperature effects, while solvent inhomogeneous broadening is evaluated according to Marcus' theory, computing the solvent reorganization energy by the state-specific implementation of the polarizable continuum model (PCM) within TD-DFT. We adopted both the standard hybrid PBE0 and the range separated CAM-B3LYP functionals showing that the latter performs better both concerning the vibronic and solvent-induced contributions to the absorption lineshape. The different predictions of the two functionals are then rationalized in terms of the charge transfer (CT) character of the transitions showing that, in this class of compounds, it is strongly dependent on the nuclear structure. Such a dependence introduces a bias in the PBE0 PES that has a drastic impact on the vibronic spectra. We show that both the intrinsic vibronic structure and the solvent broadening play a relevant role in differentiating the absorption width of the five dyes. In this sense, our results provide a guide to understand the sources of spectral broadening of this family of dyes, a valuable help for a rational design of new molecules to improve DSSC devices. PMID:25848730

  11. A panchromatic modification of the light absorption spectra of metal-organic frameworks.

    PubMed

    Otal, E H; Kim, M L; Calvo, M E; Karvonen, L; Fabregas, I O; Sierra, C A; Hinestroza, J P

    2016-05-10

    The optical absorption of UiO-66-NH2 MOF was red-shifted using a diazo-coupling reaction. The modifications performed with naphthols and aniline yielded reddish samples, and the modifications with diphenylaniline yielded dark violet ones. The photocatalytic activity of these modified MOFs was assessed for methylene blue degradation, showing a good performance relative to traditional TiO2. The degradation performance was found to correlate with the red shift of the absorption edge. These findings suggest potential applications of these materials in photocatalysis and in dye sensitized solar cells. PMID:27071816

  12. Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework

    NASA Astrophysics Data System (ADS)

    Coriani, Sonia; Koch, Henrik

    2015-11-01

    We present a simple scheme to compute X-ray absorption spectra (e.g., near-edge absorption fine structure) and core ionisation energies within coupled cluster linear response theory. The approach exploits the so-called core-valence separation to effectively reduce the excitation space to processes involving at least one core orbital, and it can be easily implemented within any pre-existing coupled cluster code for low energy states. We further develop a perturbation correction that incorporates the effect of the excluded part of the excitation space. The correction is shown to be highly accurate. Test results are presented for a set of molecular systems for which well converged results in full space could be generated at the coupled cluster singles and doubles level of theory only, but the scheme is straightforwardly generalizable to all members of the coupled cluster hierarchy of approximations, including CC3.

  13. Final-State Projection Method in Charge-Transfer Multiplet Calculations: An Analysis of Ti L-Edge Absorption Spectra.

    PubMed

    Kroll, Thomas; Solomon, Edward I; de Groot, Frank M F

    2015-10-29

    A projection method to determine the final-state configuration character of all peaks in a charge transfer multiplet calculation of a 2p X-ray absorption spectrum is presented using a d(0) system as an example. The projection method is used to identify the most important influences on spectral shape and to map out the configuration weights. The spectral shape of a 2p X-ray absorption or L2,3-edge spectrum is largely determined by the ratio of the 2p core-hole interactions relative to the 2p3d atomic multiplet interaction. This leads to a nontrivial spectral assignment, which makes a detailed theoretical description of experimental spectra valuable for the analysis of bonding. PMID:26226507

  14. Theoretical analysis of x-ray absorption spectra of Ti compounds used as catalysts in lithium amide/imide reactions

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Takao; Shishidou, Tatsuya; Oguchi, Tamio

    2008-06-01

    We present a theoretical analysis and interpretation of the x-ray absorption near-edge structure of x-ray absorption spectroscopy (XAS) at the titanium K -edge of several Ti compounds for understanding catalysis mechanism in lithium amide LiNH2 and imide Li2NH systems for hydrogen storage. Our theoretical approach is based on first-principles calculations using all-electron full-potential linear augmented plane-wave method. Chemical bonding and local geometry of catalytically-active Ti states in the hydrogen desorption reaction LiNH2+LiH→Li2NH+H2 are investigated. It is found that XAS spectra of some compounds consisting of elements Li, N, H, and Ti are quite similar to measured ones of catalytically-active Ti compounds. We conclude that Ti ions may occupy the Li sites in LiNH2 during the reaction.

  15. Asymmetric and symmetric absorption peaks observed in infrared spectra of CO2 adsorbed on TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Yamakawa, Koichiro; Sato, Yoshinori; Fukutani, Katsuyuki

    2016-04-01

    Infrared spectra of CO2 physisorbed on titania nanotubes (TiNTs), predominantly in the anatase polymorph, were measured at 81 K. Asymmetric and symmetric absorption peaks due to the antisymmetric stretch vibration (ν3) of CO2 were observed at 2340 cm-1 and 2350 cm-1, respectively. On the basis of the exposure- and time-dependence of the spectrum, the 2340 cm-1 peak was attributed to CO2 at the defective sites related to subsurface O vacancies (Vos) while the 2350 cm-1 peak was assigned to that at the fivefold coordinated Ti4+ sites. It was found that the generalized Fano line shape was well fitted to the 2340 cm-1 peak. We also observed an absorption peak at 2372 cm-1, which was attributed to the combination band of ν3 and the external mode of CO2 at Ti4+.

  16. First detection of ionized helium absorption lines in infrared K band spectra of O-type stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Block, David L.; Geballe, T. R.; Hanson, Margaret M.

    1993-01-01

    We have obtained high SNR, moderate-resolution K band spectra of two early O-type main sequence stars, HD 46150 O5 V, and HD 46223 O4 V, in the Rosette Nebula. We report the detection, for the first time, of the 2.189 micron He II line in O-type stars. Also detected is the 2.1661 micron Br-gamma line in absorption. The 2.058 micron He I line appears to be present in absorption in both stars, although its appearance at our resolution is complicated by atmospheric features. These three lines can form the basis for a spectral classification system for hot stars in the K band that may be used at infrared wavelengths to elucidate the nature of those luminous stars in otherwise obscured H II and giant H II regions.

  17. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  18. Calculating Optical Absorption Spectra of Thin Polycrystalline Organic Films: Structural Disorder and Site-Dependent van der Waals Interaction

    PubMed Central

    2015-01-01

    We propose a new approach for calculating the change of the absorption spectrum of a molecule when moved from the gas phase to a crystalline morphology. The so-called gas-to-crystal shift Δm is mainly caused by dispersion effects and depends sensitively on the molecule’s specific position in the nanoscopic setting. Using an extended dipole approximation, we are able to divide Δm= −QWm in two factors, where Q depends only on the molecular species and accounts for all nonresonant electronic transitions contributing to the dispersion while Wm is a geometry factor expressing the site dependence of the shift in a given molecular structure. The ability of our approach to predict absorption spectra is demonstrated using the example of polycrystalline films of 3,4,9,10-perylenetetracarboxylic diimide (PTCDI). PMID:25834658

  19. The effect of pathological processes on absorption and scattering spectra of samples of bile and pancreatic juice

    NASA Astrophysics Data System (ADS)

    Giraev, K. M.; Ashurbekov, N. A.; Magomedov, M. A.; Murtazaeva, A. A.; Medzhidov, R. T.

    2015-07-01

    Spectra of optical transmission coefficients and optical reflectance for bile and pancreatic juice samples were measured experimentally for different forms of pathologies of the pancreas within the range of 250-2500 nm. The absorption and scattering spectra, as well as the spectrum of the anisotropy factor of scattering, were determined based on the results obtained using the reverse Monte Carlo method. The surface morphology for the corresponding samples of the biological media was studied employing electron microscopy. The dynamics of the optical properties of the biological media was determined depending on the stage of the pathology. It has been demonstrated that the results of the study presented are in a good agreement with pathophysiological data and could supplement and broaden the results of conventional methods for diagnostics of the pancreas.

  20. Absorption spectra of two-level atoms interacting with a strong polychromatic pump field and an arbitrarily intense probe field

    NASA Astrophysics Data System (ADS)

    Yoon, Tai Hyun; Chung, Myung Sai; Lee, Hai-Woong

    1999-09-01

    A numerical method is introduced that solves the optical Bloch equations describing a two-level atom interacting with a strong polychromatic pump field with an equidistant spectrum and an arbitrarily intense monochromatic probe field. The method involves a transformation of the optical Bloch equations into a system of equations with time-independent coefficients at steady state via double harmonic expansion of the density-matrix elements, which is then solved by the method of matrix inversion. The solutions so obtained lead immediately to the determination of the polarization of the atomic medium and of the absorption and dispersion spectra. The method is applied to the case when the pump field is bichromatic and trichromatic, and the physical interpretation of the numerically computed spectra is given.

  1. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  2. Signatures of a conical intersection in photofragment distributions and absorption spectra: Photodissociation in the Hartley band of ozone

    SciTech Connect

    Picconi, David; Grebenshchikov, Sergy Yu.

    2014-08-21

    Photodissociation of ozone in the near UV is studied quantum mechanically in two excited electronic states coupled at a conical intersection located outside the Franck-Condon zone. The calculations, performed using recent ab initio PESs, provide an accurate description of the photodissociation dynamics across the Hartley/Huggins absorption bands. The observed photofragment distributions are reproduced in the two electronic dissociation channels. The room temperature absorption spectrum, constructed as a Boltzmann average of many absorption spectra of rotationally excited parent ozone, agrees with experiment in terms of widths and intensities of diffuse structures. The exit channel conical intersection contributes to the coherent broadening of the absorption spectrum and directly affects the product vibrational and translational distributions. The photon energy dependences of these distributions are strikingly different for fragments created along the adiabatic and the diabatic paths through the intersection. They can be used to reverse engineer the most probable geometry of the non-adiabatic transition. The angular distributions, quantified in terms of the anisotropy parameter β, are substantially different in the two channels due to a strong anticorrelation between β and the rotational angular momentum of the fragment O{sub 2}.

  3. Effects of crossed electric and magnetic fields on the interband optical absorption spectra of variably spaced semiconductor superlattices

    NASA Astrophysics Data System (ADS)

    Zuleta, J. N.; Reyes-Gómez, E.

    2016-05-01

    The interband optical absorption spectra of a GaAs-Ga1-xAlxAs variably spaced semiconductor superlattice under crossed in-plane magnetic and growth-direction applied electric fields are theoretically investigated. The electronic structure, transition strengths and interband absorption coefficients are analyzed within the weak and strong magnetic-field regimes. A dramatic quenching of the absorption coefficient is observed, in the weak magnetic-field regime, as the applied electric field is increased, in good agreement with previous experimental measurements performed in a similar system under growth-direction applied electric fields. A decrease of the resonant tunneling in the superlattice is also theoretically obtained in the strong magnetic-field regime. Moreover, in this case, we found an interband absorption coefficient weakly dependent on the applied electric field. Present theoretical results suggest that an in-plane magnetic field may be used to tune the optical properties of variably spaced semiconductor superlattices, with possible future applications in solar cells and magneto-optical devices.

  4. Absolute absorption spectra of batho- and photorhodopsins at room temperature. Picosecond laser photolysis of rhodopsin in polyacrylamide.

    PubMed Central

    Kandori, H; Shichida, Y; Yoshizawa, T

    1989-01-01

    Picosecond laser photolysis of rhodopsin in 15% polyacrylamide gel was performed for estimating absolute absorption spectra of the primary intermediates of cattle rhodopsin (bathorhodopsin and photorhodopsin). Using a rhodopsin digitonin extract embedded in 15% polyacrylamide gel, a precise percentage of bleaching of rhodopsin after excitation of a picosecond laser pulse was measured. Using this value, the absolute absorption spectrum of bathorhodopsin was calculated from the spectral change before and 1 ns after the picosecond laser excitation (corresponding to the difference spectrum between rhodopsin and bathorhodopsin). The absorption spectrum of bathorhodopsin thus obtained displayed a lambda max at 535 nm, which was shorter than that at low temperature (543 nm) and a half band-width broader than that measured at low temperature. The oscillator strength of bathorhodopsin at room temperature was smaller than that at low temperature. The absolute absorption spectrum of photorhodopsin was also estimated from the difference spectrum measured at 15 ps after the excitation of rhodopsin (Shichida, Y., S. Matuoka, and T. Yoshizawa. 1984. Photobiochem. Photobiophys. 7:221-228), assuming a sequential conversion of photorhodopsin to bathorhodopsin. Its lambda max was located at approximately 570 nm, and the oscillator strength was smaller than those of rhodopsin and bathorhodopsin. PMID:2790133

  5. Electronic properties and absorption spectra of ZnSnP{sub 2} using mBJ potential

    SciTech Connect

    Joshi, Ritu Ahuja, B. L.

    2015-06-24

    We present the energy bands and density of states of ZnSnP{sub 2} using full potential linearized augmented plane wave method with modified Becke Johnson potential. It is found that this compound has a direct band gap of about 2.01 eV at Γ point, which originates from the energy difference between P-3p and Sn-5s states. In addition, we have also calculated absorption spectra in the solar energy range and compared it with that of bulk Si to explore the applicability of ZnSnP{sub 2} in photovoltaic and optoelectronic devices.

  6. Cost and sensitivity of restricted active-space calculations of metal L-edge X-ray absorption spectra.

    PubMed

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2016-02-15

    The restricted active-space (RAS) approach can accurately simulate metal L-edge X-ray absorption spectra of first-row transition metal complexes without the use of any fitting parameters. These characteristics provide a unique capability to identify unknown chemical species and to analyze their electronic structure. To find the best balance between cost and accuracy, the sensitivity of the simulated spectra with respect to the method variables has been tested for two models, [FeCl6 ](3-) and [Fe(CN)6 ](3-) . For these systems, the reference calculations give deviations, when compared with experiment, of ≤1 eV in peak positions, ≤30% for the relative intensity of major peaks, and ≤50% for minor peaks. When compared with these deviations, the simulated spectra are sensitive to the number of final states, the inclusion of dynamical correlation, and the ionization potential electron affinity shift, in addition to the selection of the active space. The spectra are less sensitive to the quality of the basis set and even a double-ζ basis gives reasonable results. The inclusion of dynamical correlation through second-order perturbation theory can be done efficiently using the state-specific formalism without correlating the core orbitals. Although these observations are not directly transferable to other systems, they can, together with a cost analysis, aid in the design of RAS models and help to extend the use of this powerful approach to a wider range of transition metal systems. PMID:26502979

  7. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  8. Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states

    SciTech Connect

    Pinjari, Rahul V.; Delcey, Mickaël G.; Guo, Meiyuan; Lundberg, Marcus; Odelius, Michael

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d{sup 5}) model systems with well-known electronic structure, viz., atomic Fe{sup 3+}, high-spin [FeCl{sub 6}]{sup 3−} with ligand donor bonding, and low-spin [Fe(CN){sub 6}]{sup 3−} that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  9. Using of laser spectroscopy and chemometrics methods for identification of patients with lung cancer, patients with COPD and healthy people from absorption spectra of exhaled air

    NASA Astrophysics Data System (ADS)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.

  10. A Simple Experiment Demonstrating the Relationship between Response Curves and Absorption Spectra.

    ERIC Educational Resources Information Center

    Li, Chia-yu

    1984-01-01

    Describes an experiment for recording two individual spectrophotometer response curves. The two curves are directly related to the power of transmitted beams that pass through a solvent and solution. An absorption spectrum of the solution can be constructed from the calculated rations of the curves as a function of wavelength. (JN)

  11. Determination of vibration-rotation lines intensities from absorption Fourier spectra

    NASA Technical Reports Server (NTRS)

    Mandin, J. Y.

    1979-01-01

    The method presented allows the line intensities to be calculated from either their equivalent widths, heights, or quantities deduced from spectra obtained by Fourier spectrometry. This method has proven its effectiveness in measuring intensities of 60 lines of the molecule H2O with a precision of 10%. However, this method cannot be applied to isolated lines.

  12. XMM-Newton reveals a Seyfert-like X-ray spectrum in the z = 3.6 QSO B1422+231

    NASA Astrophysics Data System (ADS)

    Dadina, M.; Vignali, C.; Cappi, M.; Lanzuisi, G.; Ponti, G.; De Marco, B.; Chartas, G.; Giustini, M.

    2016-08-01

    Context. Matter flows from the central regions of quasi-stellar objects (QSOs) during their active phases are probably responsible for the properties of the super-massive black holes and those of the bulges of host galaxies. To understand how this mechanism works, we need to characterize the geometry and the physical state of the accreting matter at cosmological redshifts, when QSO activity is at its peak. Aims: We aim to use X-ray data to probe the matter inflow at the very center of a QSO at z = 3.62. While complex absorption, the iron K emission line, reflection hump, and high-energy cutoff are known to be almost ubiquitous in nearby active galactic nuclei (AGN), only a few distant objects are known to exhibit some of them. Methods: The few high-quality spectra of distant QSO were collected by adding sparse pointings of single objects obtained during X-ray monitoring campaigns. This could have introduced spurious spectral features due to source variability and/or microlensing. To avoid such problems, we decided to collect a single-epoch and high-quality X-ray spectrum of a distant AGN. We thus picked up the z = 3.62 QSO B1422+231, whose flux, enhanced by gravitationally lensing, is proven to be among the brightest lensed QSOs in X-rays (F2-10 keV ~ 10-12 erg s-1 cm-2). Results: The X-ray spectrum of B1422+231 is found to be very similar to the one of a typical nearby Seyfert galaxy. Neutral absorption is clearly detected (NH ~ 5 × 1021 cm-2 at the redshift of the source), while a strong absorption edge is measured at E ~ 7.5 keV with an optical depth of τ ~ 0.14. We also find hints of the FeKα line in emission at E ~ 6.4 keV line (EW ≲ 70 eV), and a hump is detected in the E ~ 15 - 20 keV energy band (rest frame) in excess of what is predicted by a simple absorbed power-law. Conclusions: The spectrum can best be modeled with two rather complex models; one assumes ionized and partially covering matter along the line of sight, the other is characterized by a

  13. Cosmological test with the QSO Hubble diagram

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Melia, F.; Lusso, E.; Risaliti, G.

    2016-03-01

    A Hubble diagram (HD) has recently been constructed in the redshift range 0 ≲ z ≲ 6.5 using a nonlinear relation between the ultraviolet (UV) and X-ray luminosities of quasi stellar objects (QSOs). The Type Ia Supernovae (SN) HD has already provided a high-precision test of cosmological models, but the fact that the QSO distribution extends well beyond the supernova range (z ≲ 1.8), in principle provides us with an important complementary diagnostic whose significantly greater leverage in z can impose tighter constraints on the distance versus redshift relationship. In this paper, we therefore perform an independent test of nine different cosmological models, among which six are expanding, while three are static. Many of these are disfavored by other kinds of observations (including the aforementioned Type Ia SNe). We wish to examine whether the QSO HD confirms or rejects these earlier conclusions. We find that four of these models (Einstein-de Sitter, the Milne universe, the static universe with simple tired light and the static universe with plasma tired light) are excluded at the > 99% C.L. The quasi-steady state model is excluded at > 95% C.L. The remaining four models (ΛCDM/wCDM, the Rh = ct universe, the Friedmann open universe and a static universe with a linear Hubble law) all pass the test. However, only ΛCDM/wCDM and Rh = ct also pass the Alcock-Paczyński (AP) test. The optimized parameters in ΛCDM/wCDM are Ωm = 0.20-0.20+0.24 and wde = -1.2-∞+1.6 (the dark energy equation-of-state). Combined with the AP test, these values become Ωm = 0.38-0.19+0.20 and wde = -0.28-0.40+0.52. But whereas this optimization of parameters in ΛCDM/wCDM creates some tension with their concordance values, the Rh = ct universe has the advantage of fitting the QSO and AP data without any free parameters.

  14. High-Resolution Ultraviolet Spectra of the Dwarf Seyfert 1 Galaxy NGC 4395: Evidence for Intrinsic Absorption

    NASA Astrophysics Data System (ADS)

    Crenshaw, D. M.; Kraemer, S. B.; Gabel, J. R.; Schmitt, H. R.; Filippenko, A. V.; Ho, L. C.; Shields, J. C.; Turner, T. J.

    2004-09-01

    We present ultraviolet spectra of the dwarf Seyfert 1 nucleus of NGC 4395, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope Space Telescope Imaging Spectrograph at velocity resolutions of 7-15 km s-1. We confirm our earlier claim of C IV absorption in low-resolution UV spectra and detect a number of other absorption lines with lower ionization potentials. In addition to the Galactic lines, we identify two kinematic components of absorption that are likely to be intrinsic to NGC 4395. We consider possible origins of the absorption, including the interstellar medium (ISM) of NGC 4395, the narrow-line region, the outflowing UV absorbers, and the X-ray ``warm absorbers.'' Component 1, at a radial velocity of -770 km s-1 with respect to the nucleus, is only identified in the C IV λ1548.2 line. It most likely represents an outflowing UV absorber, similar to those seen in a majority of Seyfert 1 galaxies, although additional observations are needed to confirm the reality of this feature. Component 2, at -114 km s-1, most likely arises in the ISM of NGC 4395; its ionic column densities cannot be matched by photoionization models with a power-law continuum. Our models of the highly ionized X-ray absorbers claimed for this active galactic nucleus indicate that they would have undetectable C IV absorption, but large O VI and H I columns should be present. We attribute our lack of detection of the O VI and Lyβ absorption from the X-ray absorbers to a combination of noise and dilution of the nuclear spectrum by hot stars in the large FUSE aperture. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555 these observations are associated with proposal GO-9362. Also based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer

  15. Electronic Absorption Spectra from MM and ab initio QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of Photoactive Yellow Protein

    PubMed Central

    Isborn, Christine M.; Götz, Andreas W.; Clark, Matthew A.; Walker, Ross C.; Martínez, Todd J.

    2012-01-01

    We describe a new interface of the GPU parallelized TeraChem electronic structure package and the Amber molecular dynamics package for quantum mechanical (QM) and mixed QM and molecular mechanical (MM) molecular dynamics simulations. This QM/MM interface is used for computation of the absorption spectra of the photoactive yellow protein (PYP) chromophore in vacuum, aqueous solution, and protein environments. The computed excitation energies of PYP require a very large QM region (hundreds of atoms) covalently bonded to the chromophore in order to achieve agreement with calculations that treat the entire protein quantum mechanically. We also show that 40 or more surrounding water molecules must be included in the QM region in order to obtain converged excitation energies of the solvated PYP chromophore. These results indicate that large QM regions (with hundreds of atoms) are a necessity in QM/MM calculations. PMID:23476156

  16. Predicting the Shifts of Absorption Maxima of Azulene Derivatives Using Molecular Modeling and ZINDO CI Calculations of UV-Vis Spectra

    ERIC Educational Resources Information Center

    Patalinghug, Wyona C.; Chang, Maharlika; Solis, Joanne

    2007-01-01

    The deep blue color of azulene is drastically changed by the addition of substituents such as CH[subscript 3], F, or CHO. Computational semiempirical methods using ZINDO CI are used to model azulene and azulene derivatives and to calculate their UV-vis spectra. The calculated spectra are used to show the trends in absorption band shifts upon…

  17. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    NASA Technical Reports Server (NTRS)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  18. Electronic absorption spectra of H₂C₆O⁺ isomers: produced by ion-molecule reactions.

    PubMed

    Chakraborty, Arghya; Fulara, Jan; Maier, John P

    2015-01-01

    Three absorption systems with origins at 354, 497, and 528 nm were detected after mass-selected deposition of H2C6O(+) in a 6 K neon matrix. The ions were formed by the reaction of C2O with HC4H(+) in a mixture of C3O2 and diacetylene in a hot cathode source, or by dissociative ionization of tetrabromocyclohexadienone. The 497 and 354 nm systems are assigned to the 1(2)A″ ← X(2)A″ and 2(2)A″ ← X(2)A″ electronic transitions of B(+), (2-ethynylcycloallyl)methanone cation, and the 528 nm absorption to the 1(2)A2 ← X(2)B1 transition of F(+), 2-ethynylbut-3-yn-1-enone-1-ylide, on the basis of calculated excitation energies with CASPT2. PMID:25495044

  19. Common lines in the rest-frame absorption-line spectra of QSOs?

    NASA Astrophysics Data System (ADS)

    Varshni, Y. P.; Singh, D.

    1985-02-01

    Libby et al. (1984) have studied the absorption-line data for 13 QSOs in the rest-frames of the QSOs. It is shown that the number of groups in which 5 lines or more lie within a wavelength interval of 1.0 Å found by these authors is insignificantly different from that that would be expected from chance coincidences. Consequently, there is no evidence that the rest-frame wavelengths at which these groups occur have any special significance.

  20. Phase-dependent absorption features in X-ray spectra of XDINSs

    NASA Astrophysics Data System (ADS)

    Borghese, A.; Rea, N.

    2016-06-01

    A detailed pulse phase spectroscopy using all the available XMM-Newton observations of X-ray dim isolated neutron stars (XDINSs) have revealed the presence of narrow and strongly phase-dependent absorption X-ray features. The first discovered was in the X-ray spectrum of the nearby XDINS RX J0720.4-3125. The line seems to be stable in time over a timespan of 12 years and is present in 20% of the pulsar rotation. Because of its narrow width and its strong dependency on the rotational phase, the spectral line is probably due to proton cyclotron absorption in a ˜10^{14} G confined magnetic structure (with a field strength about 7 times the dipolar field of this pulsar). Performing the same analysis to all archival XDINS data, a new possible candidate was found in the X-ray spectrum of RX J1308.6+2127. This absorption feature shows the same phase dependency and energy as the first one, revealing the presence of a high-B structure close to the stellar surface. This result supports the proposed scenario of XDINSs being aged magnetars, having still a strong non-dipolar crustal B-field component.

  1. Interaction of chlorophyll with light: Calculations of absorption spectra and dichroism with a new technique

    NASA Astrophysics Data System (ADS)

    Hamilton, Robert Bryan

    1999-12-01

    The response of a single chlorophyll molecule to light was studied using a semiempirical tight-binding model together with the Peierls substitution. Over a range of wavelengths, the absorption was calculated for unpolarized, linearly polarized, and circularly polarized light. The results are consistent with previous experiments, although detailed comparisons are not possible because the experiments involve chlorophyll molecules in more complicated environments. For unpolarized light, the absorption peaks in the red part of the visible spectrum. There is a secondary shoulder in the blue. For linearly polarized light, the absorption depends on wavelength and the direction of polarization. This can be understood as arising from the joint density of states for transitions at each photon energy, together with matrix-element effects (both of which are included in the present formulation). For circular polarization, the dichroism as a function of wavelength is slightly more subtle, but again can be understood in terms of matrix elements for the states involved in a transition at a given photon energy. We also found that an ``effective helicity'' is useful in understanding the circular dichroism. One advantage of the method used here is that it can be employed for other molecules that are important in photobiology-for example, retinal and melanin.

  2. Long-Range Chemical Sensitivity in the Sulfur K-Edge X-ray Absorption Spectra of Substituted Thiophenes

    PubMed Central

    2015-01-01

    Thiophenes are the simplest aromatic sulfur-containing compounds and are stable and widespread in fossil fuels. Regulation of sulfur levels in fuels and emissions has become and continues to be ever more stringent as part of governments’ efforts to address negative environmental impacts of sulfur dioxide. In turn, more effective removal methods are continually being sought. In a chemical sense, thiophenes are somewhat obdurate and hence their removal from fossil fuels poses problems for the industrial chemist. Sulfur K-edge X-ray absorption spectroscopy provides key information on thiophenic components in fuels. Here we present a systematic study of the spectroscopic sensitivity to chemical modifications of the thiophene system. We conclude that while the utility of sulfur K-edge X-ray absorption spectra in understanding the chemical composition of sulfur-containing fossil fuels has already been demonstrated, care must be exercised in interpreting these spectra because the assumption of an invariant spectrum for thiophenic forms may not always be valid. PMID:25116792

  3. Simulation of Vacuum UV Absorption and Electronic Circular Dichroism Spectra of Methyl Oxirane: The Role of Vibrational Effects.

    PubMed

    Hodecker, Manuel; Biczysko, Malgorzata; Dreuw, Andreas; Barone, Vincenzo

    2016-06-14

    Vibrationally resolved one-photon absorption and electronic circular dichroism spectra of (R)-methyl oxirane were calculated with different electronic and vibronic models selecting, through an analysis of the convergence of the results, the best compromise between reliability and computational cost. Linear-response TD-DFT/CAM-B3LYP/SNST electronic computations in conjunction with the simple vertical gradient vibronic model were chosen and employed for systematic comparison with the available experimental data. Remarkable agreement between simulated and experimental spectra was achieved for both one-photon absorption and circular dichroism concerning peak positions, relative intensities, and general spectral shapes considering the computational efficiency of the chosen theoretical approach. The significant improvement of the results with respect to smearing of vertical electronic transitions by phenomenological Gaussian functions and the possible inclusion of solvent effects by polarizable continuum models at a negligible additional cost paves the route toward the simulation and analysis of spectral shapes of complex molecular systems in their natural environment. PMID:27159495

  4. Statistical and physical evolution of QSO's

    NASA Technical Reports Server (NTRS)

    Caditz, David; Petrosian, Vahe

    1989-01-01

    The relationship between the physical evolution of discrete extragalactic sources, the statistical evolution of the observed population of sources, and the cosmological model is discussed. Three simple forms of statistical evolution: pure luminosity evolution (PLE), pure density evolution (PDE), and generalized luminosity evolution (GLE), are considered in detail together with what these forms imply about the physical evolution of individual sources. Two methods are used to analyze the statistical evolution of the observed distribution of QSO's (quasars) from combined flux limited samples. It is shown that both PLE and PDE are inconsistent with the data over the redshift range 0 less than z less than 2.2, and that a more complicated form of evolution such as GLE is required, independent of the cosmological model. This result is important for physical models of AGN, and in particular, for the accretion disk model which recent results show may be inconsistent with PLE.

  5. Study of absorption spectra of gasolines and other hydrocarbon mixtures in the second overtone region of the CH3, CH2, CH groups

    NASA Astrophysics Data System (ADS)

    Muradov, V. G.; Sannikov, D. G.

    2007-03-01

    We have obtained experimental and model absorption spectra for individual hydrocarbons (toluene, benzene, n-heptane, and iso-octane) and their mixtures in the near IR range (λ = 1080 1220 nm). We model the spectra of nonsynthetic gasolines obtained under the same conditions by combining the spectra of three pure hydrocarbons. We show that the octane number of the studied gasoline is linearly related to the toluene (or benzene) concentrations in the model mixture.

  6. Spectral investigations of 2,5-difluoroaniline by using mass, electronic absorption, NMR, and vibrational spectra

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Karabacak, Mehmet; Bardak, Fehmi; Atac, Ahmet

    2016-11-01

    One of the most significant aromatic amines is aniline, a primary aromatic amine replacing one hydrogen atom of a benzene molecule with an amino group (NH2). This study reports experimental and theoretical investigation of 2,5-difluoroaniline molecule (2,5-DFA) by using mass, ultraviolet-visible (UV-vis), 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared and Raman (FT-IR and FT-Raman) spectra, and supported with theoretical calculations. Mass spectrum (MS) of 2,5-DFA is presented with their stabilities. The UV-vis spectra of the molecule are recorded in the range of 190-400 nm in water and ethanol solvents. The 1H and 13C NMR chemical shifts are recorded in CDCl3 solution. The vibrational spectra are recorded in the region 4000-400 cm-1 (FT-IR) and 4000-10 cm-1 (FT-Raman), respectively. Theoretical studies are underpinned the experimental results as described below; 2,5-DFA molecule is optimized by using B3LYP/6-311++G(d,p) basis set. The mass spectrum is evaluated and possible fragmentations are proposed based on the stable structure. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, frontier molecular orbitals (FMO), HOMO and LUMO energies, are determined by time-dependent density functional theory (TD-DFT). The electrostatic potential surface (ESPs), density of state (DOS) diagrams are also prepared and evaluated. In addition to these, reduced density gradient (RDG) analysis is performed, and thermodynamic features are carried out theoretically. The NMR spectra (1H and 13C) are calculated by using the gauge-invariant atomic orbital (GIAO) method. The vibrational spectra of 2,5-DFA molecule are obtained by using DFT/B3LYP method with 6-311++G(d,p) basis set. Fundamental vibrations are assigned based on the potential energy distribution (PED) of the vibrational modes. The nonlinear optical properties (NLO) are also investigated. The theoretical and experimental results give a detailed description of

  7. A study of ultraviolet absorption lines through the complete Galactic halo by the analysis of HST faint object spectrograph spectra of active Galactic nuclei, 1

    NASA Technical Reports Server (NTRS)

    Burks, Geoffrey S.; Bartko, Frank; Shull, J. Michael; Stocke, John T.; Sachs, Elise R.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Harms, Richard J.; Massa, Derck

    1994-01-01

    The ultraviolet (1150 - 2850 A) spectra of a number of active galactic nuclei (AGNs) observed with the Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) have been used to study the properties of the Galactic halo. The objects that served as probes are 3C 273, PKS 0454-220, Pg 1211+143, CSO 251, Ton 951, and PG 1351+640. The equivalent widths of certain interstellar ions have been measured, with special attention paid to the C IV/C II and Si IV/Si II ratios. These ratios have been intercompared, and the highest values are found in the direction of 3C 273, where C IV/C II = 1.2 and Si IV/Si II greater than 1. These high ratios may be due to a nearby supernova remnant, rather than to ionized gas higher up in the Galactic halo. Our data give some support to the notion that QSO metal-line systems may arise from intervening galaxies which contain high supernova rates, galactic fountains, and turbulent mixing layers.

  8. Ground-based Photon Path Measurements from Solar Absorption Spectra of the O2 A-band

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Wennberg, P. O.; Cageao, R. P.; Pongetti, T. J.; Toon, G. C.; Sander, S. P.

    2005-01-01

    High-resolution solar absorption spectra obtained from Table Mountain Facility (TMF, 34.38degN, 117.68degW, 2286 m elevation) have been analyzed in the region of the O2 A-band. The photon paths of direct sunlight in clear sky cases are retrieved from the O2 absorption lines and compared with ray-tracing calculations based on the solar zenith angle and surface pressure. At a given zenith angle, the ratios of retrieved to geometrically derived photon paths are highly precise (approx.0.2%), but they vary as the zenith angle changes. This is because current models of the spectral lineshape in this band do not properly account for the significant absorption that exists far from the centers of saturated lines. For example, use of a Voigt function with Lorentzian far wings results in an error in the retrieved photon path of as much as 5%, highly correlated with solar zenith angle. Adopting a super-Lorentz function reduces, but does not completely eliminate this problem. New lab measurements of the lineshape are required to make further progress.

  9. Resonance Raman and vibronic absorption spectra with Duschinsky rotation from a time-dependent perspective: Application to β-carotene

    NASA Astrophysics Data System (ADS)

    Banerjee, Shiladitya; Kröner, Dominik; Saalfrank, Peter

    2012-12-01

    The time-dependent approach to electronic spectroscopy, as popularized by Heller and co-workers in the 1980s, is applied here in conjunction with linear-response, time-dependent density functional theory to study vibronic absorption and resonance Raman spectra of β-carotene, with and without a solvent. Two-state models, the harmonic and the Condon approximations are used in order to do so. A new code has been developed which includes excited state displacements, vibrational frequency shifts, and Duschinsky rotation, i.e., mode mixing, for both non-adiabatic spectroscopies. It is shown that Duschinsky rotation has a pronounced effect on the resonance Raman spectra of β-carotene. In particular, it can explain a recently found anomalous behaviour of the so-called ν1 peak in resonance Raman spectra [N. Tschirner, M. Schenderlein, K. Brose, E. Schlodder, M. A. Mroginski, C. Thomsen, and P. Hildebrandt, Phys. Chem. Chem. Phys. 11, 11471 (2009)], 10.1039/b917341b, which shifts with the change in excitation wavelength.

  10. Using X-ray absorption spectra to monitor specific radiation damage to anomalously scattering atoms in macromolecular crystallography.

    PubMed

    Oliéric, V; Ennifar, E; Meents, A; Fleurant, M; Besnard, C; Pattison, P; Schiltz, M; Schulze-Briese, C; Dumas, P

    2007-07-01

    Radiation damage in macromolecular crystals is not suppressed even at 90 K. This is particularly true for covalent bonds involving an anomalous scatterer (such as bromine) at the 'peak wavelength'. It is shown that a series of absorption spectra recorded on a brominated RNA faithfully monitor the extent of cleavage. The continuous spectral changes during irradiation preserve an 'isosbestic point', each spectrum being a linear combination of 'zero' and 'infinite' dose spectra. This easily yields a good estimate of the partial occupancy of bromine at any intermediate dose. The considerable effect on the near-edge features in the spectra of the crystal orientation versus the beam polarization has also been examined and found to be in good agreement with a previous study. Any significant influence of the (C-Br bond/beam polarization) angle on the cleavage kinetics of bromine was also searched for, but was not detected. These results will be useful for standard SAD/MAD experiments and for the emerging 'radiation-damage-induced phasing' method exploiting both the anomalous signal of an anomalous scatterer and the 'isomorphous' signal resulting from its cleavage. PMID:17582167

  11. New Ground Based facilities in QSO research; The GTC

    NASA Astrophysics Data System (ADS)

    Rodriguez Espinosa, J. M.

    New ground based observing opportunities are becoming, or about to become, available to astronomers for QSO research. These, combined with state of the art focal plane instruments, provide unprecedented sensitivity for detecting faint surface brightness features. During the talk I will take the liberty of talking about one of these new large telescope facilities currently being built in Spain, and will discuss some of the advantages for QSO research offered by these new facilities.

  12. Far-infrared absorption spectra and properties of SnO2 nanorods

    NASA Astrophysics Data System (ADS)

    Liu, Yingkai; Dong, Yi; Wang, Guanghou

    2003-01-01

    Gray-colored materials synthesized by calcining the precursor powders, which were produced in a microemulsion, are identified to be rutile structured SnO2 nanorods 20-45 nm in diameter and several micrometers in length by x-ray diffraction, transmission with electron microscopy, and high-resolution transmission microscopy. Conspicuous far-infrared (FIR) absorption spectrum platform peaks with widths of up to 61.6 and 119 cm-1 are observed, and are explained as the overlap of the surface modes of cylindrical and spheroid particles. Good agreement is achieved between FIR platform peaks and calculated results.

  13. Reflectance Spectra of Ureilites: Nature of the Mafic Silicate Absorption Features

    NASA Technical Reports Server (NTRS)

    Cloutis, E. A.; Hudon, P.

    2004-01-01

    Ureilites are unique carbon-bearing achondrites. They are composed primarily of olivine and pyroxene with minor amounts of finely dispersed matrix material consisting mostly of carbon, metal, sulfides and fine-grained silicates. As is the case with many classes of meteorites, no clear chain of evidence exists which can relate them to specific asteroidal parent bodies. In order to provide insights into parent body connections, visible and near-IR (VNIR) reflectance spectra of a number of ureilites have been measured and analyzed in light of their mineralogy.

  14. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    SciTech Connect

    Sargent, B. A.; Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C.; D'Alessio, P.; Calvet, N.; Furlan, E.; Green, J.; Pontoppidan, K.

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  15. Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Citro, Ilaria; Crupi, Cristina; Di Marco, Gaetano

    2014-11-11

    Dye-sensitized solar cells (DSSCs) based on Chlorine-e6 (Chl-e6), a Chlorophyll a derivative, and Chl-e6 containing Cu, have been investigated by carrying out incident photon to current efficiency (IPCE) and current-voltage (I-V) measurements. The effect of the metallic ion and the influence of the solvent polarity on the dye aggregation and their absorption bands have been analysed by performing electronic absorption measurements. The dependence of the photoelectrochemical parameters of these DSSCs on the electrolyte by the addition of pyrimidine and/or pyrrole has been discussed in details. For the first time I-V curves for a DSSC based on copper Chl-e6 dye have been shown and compared with Zn based chlorophyllin. Furthermore, the performance of a Cu-Chl-e6 based DSSC has been deeply improved by a progressive optimization of the TiO2 multilayer photoanode overcoming the best data reported in literature so far for this dye. It's worth to emphasize that, the analysis reported in this paper supplies very useful information which paves the way to further detailed studies turned to the employment of natural pigments as sensitizers for solar cells. PMID:24892526

  16. Ly(alpha) emission and absorption features in the spectra of galaxies

    NASA Technical Reports Server (NTRS)

    Chen, W. L.; Neufeld, David A.

    1994-01-01

    The combined effects of interstellar dust absorption and of scattering by hydrogen atoms may give rise to a Ly(alpha) spectral feature of negative equivalent width, as has been observed in several star-forming galaxies. By considering the transfer of Ly(alpha) line radiation and of neighboring stellar continuum radiation within a dusty galaxy, we find that dust absorption has three effects: (1) it reduces the apparent ultraviolet continuum luminosity at all wavelengths; (2) it preferentially decreases the apparent Ly(alpha) line luminosity from H II regions; and (3) it creates an 'attenuation feature' in the continuum spectrum -- centered at the Ly(alpha) rest frequency -- which occurs because the attenuation of the stellar continuum radiation increases as the Ly(alpha) rest frequency is approached, due to the effects of scattering by hydrogen atoms. For plausible values of the galactic dust content and of the disk thickness, these effects can lead to a negative net Ly(alpha) equivalent width, even for galaxies in which the unattenuated spectrum would show a strong Ly(alpha) emission line.

  17. The Infrared Spectra and Absorption Intensities of Amorphous Ices: Methane and Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark J.

    2015-11-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and the interstellar medium, with an emphasis on amorphous and crystalline ices below ~70 K. Our goal is to add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on two of the simplest and most abundant components of icy bodies in the solar system - methane (CH4) and carbon dioxide (CO2). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 70 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  18. Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Esteve, William

    The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190-1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300-500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96-75 wt% H 2SO 4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of -(70±15) kJ mol -1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H 2SO 4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10 -4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.

  19. Electronic absorption spectra of protonated pyrene and coronene in neon matrixes.

    PubMed

    Garkusha, Iryna; Fulara, Jan; Sarre, Peter J; Maier, John P

    2011-10-13

    Protonated pyrene and coronene have been isolated in 6 K neon matrixes. The cations were produced in the reaction of the parent aromatics with protonated ethanol in a hot-cathode discharge source, mass selected, and co-deposited with neon. Three electronic transitions of the most stable isomer of protonated pyrene and four of protonated coronene were recorded. The strongest, S(1) ← S(0) transitions, are in the visible region, with onset at 487.5 nm for protonated pyrene and 695.6 nm for protonated coronene. The corresponding neutrals were also observed. The absorptions were assigned on the basis of ab initio coupled-cluster and time-dependent density functional theory calculations. The astrophysical relevance of protonated polycyclic aromatic hydrocarbons is discussed. PMID:21861507

  20. Electron bubbles in liquid helium: Density functional calculations of infrared absorption spectra

    SciTech Connect

    Grau, Victor; Barranco, Manuel; Mayol, Ricardo; Pi, Marti

    2006-02-01

    Within density functional theory, we have calculated the energy of the transitions from the ground state to the first two excited states in the electron bubbles in liquid helium at pressures from zero to about the solidification pressure. For {sup 4}He at low temperatures, our results are in very good agreement with infrared absorption experiments. Above a temperature of {approx}2 K, we overestimate the energy of the 1s-1p transition. We attribute this to the break down of the Franck-Condon principle due to the presence of helium vapor inside the bubble. Our results indicate that the 1s-2p transition energies are sensitive not only to the size of the electron bubble, but also to its surface thickness. We also present results for the infrared transitions in the case of liquid {sup 3}He, for which we lack experimental data.

  1. Absorption spectra of Q 0000-263 and Q 1442+101

    NASA Technical Reports Server (NTRS)

    Frye, B. L.; Bechtold, J.; Moustakas, L. A.; Dobrzycki, A.

    1993-01-01

    Studying the Lyman-alpha forest allows us to trace the cosmological distribution of matter through time, and may reveal insights into important questions such as the onset of galaxy formation. An equation for determining the number of Lyman-alpha absorption lines per redshift per rest equivalent in the Lyman-alpha forest is given. For a nonevolving population of clouds gamma = 1 for q(sub 0) = 0, and gamma = 0.5 for q(sub 0) = 0.5. A detailed study of the Lyman-alpha forests of Q 1442+101 at z(sub em) = 3.54 and Q 0000-263 at z(sub em) = 4.11.

  2. Assignment and rotational analysis of new absorption bands of carbon dioxide isotopologues in Venus spectra

    NASA Astrophysics Data System (ADS)

    Robert, S.; Borkov, Yu. G.; Vander Auwera, J.; Drummond, R.; Mahieux, A.; Wilquet, V.; Vandaele, A. C.; Perevalov, V. I.; Tashkun, S. A.; Bertaux, J. L.

    2013-01-01

    We present absorption bands of carbon dioxide isotopologues, detected by the Solar Occultation for the Infrared Range (SOIR) instrument on board the Venus Express Satellite. The SOIR instrument combines an echelle spectrometer and an Acousto-Optical Tunable Filter (AOTF) for order selection. It performs solar occultation measurements in the Venus atmosphere in the IR region (2.2-4.3 μm), at a resolution of 0.12-0.18 cm-1. The wavelength range probed by SOIR allows a detailed chemical inventory of the Venus atmosphere above the cloud layer (65-150 km) to be made with emphasis on the vertical distributions of gases. Thanks to the SOIR spectral resolution, a new CO2 absorption band was identified: the 21101-01101 band of 16O12C18O with R branch up to J=31. Two other previously reported bands were observed dispelling any doubts about their identifications: the 20001-00001 band of 16O13C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894] and the 01111-00001 band of 16O12C18O [Villanueva G, et al. J Quant Spectrosc Radiat Transfer 2008;109:883-894 and Wilquet V, et al. J Quant Spectrosc Radiat Transfer 2008;109:895-905]. These bands were analyzed, and spectroscopic constants characterizing them were obtained. The rotational assignment of the 20001-00001 band was corrected. The present measurements are compared with data available in the HITRAN database.

  3. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  4. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    NASA Technical Reports Server (NTRS)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  5. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; Garcia, J.; Lohfink, A.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Palmeri, P.; Quinet, P. E-mail: claudio@ivic.gob.ve E-mail: alohfink@astro.umd.edu E-mail: michael.c.witthoeft@nasa.gov E-mail: palmeri@umons.ac.be

    2013-05-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N{sub H} = 1.38 {+-} 0.01 Multiplication-Sign 10{sup 21} cm{sup -2}; an ionization parameter of log {xi} = -2.70 {+-} 0.023; an oxygen abundance of A{sub O}= 0.689{sup +0.015}{sub -0.010}; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A{sub O}=0.952{sup +0.020}{sub -0.013}, a value close to solar that reinforces the new standard. We identify several atomic absorption lines-K{alpha}, K{beta}, and K{gamma} in O I and O II and K{alpha} in O III, O VI, and O VII-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  6. Absorption spectra of rhodamine B dimers in dip-coated thin films prepared by the sol-gel method

    NASA Astrophysics Data System (ADS)

    Fujii, Tsuneo; Nishikiori, Hiromasa; Tamura, Takuma

    1995-02-01

    Thin films including rhodamine B (RB) which were dip-coated using the sol-gel reaction of tetraethyl orthosilicate (TEOS) have been prepared as a function of time and their absorption spectra observed 72 h after preparation of the thin films. One monomer and two dimers (H- and J-types) are clearly and simultaneously resolved both for RB in the thin films and the water-ethanol mixed solvent. Just after mixing the reaction system, the proportion of the dimers for RB was significant, and the H and J dimer amounts were nearly equal. As the sol-gel reaction proceeded, the relative contribution from the monomer species increased. The relative contribution of the monomer to that of the dimers reached a constant value long before the gelation time. This behavior indicates that the dye molecules are encapsulated in a certain structural region (pores) long before the gelation point of the sol-gel reaction of TEOS.

  7. Modeling of collision induced absorption spectra of CO2-CO2 pairs for planetary atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra

    1995-01-01

    The objective of the proposal was to model the rototranslational and rotovibrational collision induced absorption spectral bands of importance for the radiative transfer analysis of the atmosphere of Venus. Our main task has involved CO2 pairs. The approach is not straightforward: whereas computational techniques to compute CIA spectra of small linear molecules exist, and were successfully applied to molecules like H2 or N2, they fail when applied to large molecules like CO2. For small molecules one can safely assume that the interaction potential is isotropic. The same approximation does not work for CO2, and when employed, it gives an incorrect band shape and only 50 percent of the CIA intensity.

  8. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra

    NASA Astrophysics Data System (ADS)

    Ponomarev, Yu. N.; Solodov, A. A.; Solodov, A. M.; Petrova, T. M.; Naumenko, O. V.

    2016-07-01

    A description of the spectroscopic complex at V.E. Zuev Institute of Atmospheric Optics, SB RAS, operating in a wide spectral range with high threshold sensitivity to the absorption coefficient is presented. Measurements of weak lines and nonselective spectra of CO2 and H2O were performed based on the built setup. As new application of this setup, positions and intensities of 152 weak lines of H2O were measured between 2400 and 2560 cm-1 with threshold sensitivity of 8.6×10-10 cm-1, and compared with available calculated and experimental data. Essential deviations between the new intensity measurements and calculated data accepted in HITRAN 2012 and GEISA 2015 forthcoming release are found.

  9. Sensitivity of absorption spectra to surface segregation in InGaN/GaN quantum well structures

    SciTech Connect

    Klymenko, M. V.; Shulika, O. V.; Sukhoivanov, I. A.

    2014-05-15

    We investigate the influence of the indium surface segregation on absorption spectra in InGaN/GaN quantum well structures having different indium amount. Results of the mathematical modeling show that such influence is more pronounced in quantum well structures with high indium amounts. The origin of this effect is related to the interplay between the indium surface segregation and internal electrostatic fields. Our theoretical analysis is performed using semiconductor Bloch equations within the Hartree-Fock approximation including into consideration excitonic effects. Results of the global sensitivity analysis evidence that the influence of the indium surface segregation is less than one order of magnitude in comparison with the impact of the quantum-well width and indium molar fraction. Also, the influence of the indium surface segregation is not the same for each interface of the quantum well.

  10. Vibronic fine structure in high-resolution x-ray absorption spectra from ion-bombarded boron nitride nanotubes

    SciTech Connect

    Petravic, Mladen; Peter, Robert; Varasanec, Marijana; Li Luhua; Chen Ying; Cowie, Bruce C. C.

    2013-05-15

    The authors have applied high-resolution near-edge x-ray absorption fine structure measurements around the nitrogen K-edge to study the effects of ion-bombardment on near-surface properties of boron nitride nanotubes. A notable difference has been observed between surface sensitive partial electron yield (PEY) and bulk sensitive total electron yield (TEY) fine-structure measurements. The authors assign the PEY fine structure to the coupling of excited molecular vibrational modes to electronic transitions in NO molecules trapped just below the surface. Oxidation resistance of the boron nitride nanotubes is significantly reduced by low energy ion bombardment, as broken B-N bonds are replaced by N-O bonds involving oxygen present in the surface region. In contrast to the PEY spectra, the bulk sensitive TEY measurements on as-grown samples do not exhibit any fine structure while the ion-bombarded samples show a clear vibronic signature of molecular nitrogen.

  11. Detection of narrow C 4 and Si 4 absorption features in spectra of stars within 200 pc f the Sun

    NASA Technical Reports Server (NTRS)

    Molaro, P.; Beckman, J. E.; Franco, M.; Morossi, C.; Ramella, M.

    1984-01-01

    Detection of narrow (Beta lambda 0.5 A) absorption features in C 4 at lambda lambda 1548 and 1550 have been made in the spectra of 4 late B dwarfs within 200 pc of the Sun; the Si4 doublet at lambda lambda 1393 and 1403 shows up in two of them. It is argued that it is difficult to account for the strengths, widths, shapes, and C IV/Si IV ratios in terms consistent with a circumstellar origin except possibly for an asymmetric C IV component in one star (HD 185037). The most probable source is semi-torrid gas in the 50,000 K range forming the interfaces between cooler H 1 clouds and the ambient medium at coronal temperatures. Late B rapid rotators are used for local interstellar medium probing of this kind.

  12. Optical and infrared absorption spectra of 3d transition metal ions-doped sodium borophosphate glasses and effect of gamma irradiation

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; ElBatal, F. H.; Azooz, M. A.; Ouis, M. A.; ElBatal, H. A.

    2012-12-01

    Undoped and transition metals (3d TM) doped sodium borophosphate glasses were prepared. UV-visible absorption spectra were measured in the region 200-900 nm before and after gamma irradiation. Experimental optical data indicate that the undoped sodium borophosphate glass reveals before irradiation strong and broad UV absorption and no visible bands could be identified. Such UV absorption is related to the presence of unavoidable trace iron impurities within the raw materials used for preparation of this base borophosphate glass. The TMs-doped glasses show absorption bands within the UV and/or visible regions which are characteristic to each respective TM ion in addition to the UV absorption observed from the host base glass. Infrared absorption spectra of the undoped and TMs-doped glasses reveal complex FTIR consisting of extended characteristic vibrational bands which are specific for phosphate groups as a main constituent but with the sharing of some vibrations due to the borate groups. This criterion was investigated and approved using DAT (deconvolution analysis technique). The effects of different TMs ions on the FTIR spectra are very limited due to the low doping level (0.2%) introduced in the glass composition. Gamma irradiation causes minor effect on the FTIR spectra specifically the decrease of intensities of some bands. Such behavior is related to the change of bond angles and/or bond lengths of some structural building units upon gamma irradiation.

  13. [Fatty acid composition of phospholipids of erythrocytes of lamprey, frog, rat, and absorption spectra of their lipid extracts].

    PubMed

    Zabelinskii, S A; Chebotareva, M A; Shukolyukova, E P; Krivchenko, A I

    2014-01-01

    The work deals with study of content and fatty acid composition of phospholipids as well as of absorption spectra of lipid extracts of blood erythrocytes poikilothermal and homoiothermal animals of different evolutionary levels. Objects of study were poikilothermal lamprey (Lampetra fluviatilis) consuming oxygen from water and the common frog (Rana temporatia) consuming it both from water and from air. Homoiothermal animals were white rats (Rattus rattus) inhabiting in the air medium. The animals were studied at the winter-spring periods. There was established the twofold predominance of the phospholipid content in the lamprey plasma as compared with erythrocytes. In frog and rat the reverse ratio was observed. Based on study of the fatty acid composition of erythrocyte phospholipids it is suggested the higher density of membranes of lamprey as compared with frog membranes. As to fatty acides of the rat blood erythrocytic fraction, they turned out to be less diverse, with almost twofold predominance of saturated over unsaturated acids and not containing the long-chained (C22) Ω3 acids. All this leads to the low unsaturation index and, accordingly, to a dense packing of fatty acids in membrane structures of rat erythrocytes. Mechanism of reversible binding of O2 molecules by hemoglobin in erythrocytes is discussed. The mechanism of interaction of O2 molecules with water molecules is likely to interfere with exchange interaction electrons of hemoglobin iron atoms and oxygen molecule. This confirms our obtained absorption spectra showing that in the lipid extract practically not containing water the heme isolated from erythrocytes is converted to hemin. PMID:25775862

  14. Electronic absorption spectra and solvatochromic shifts by the vertical excitation model: solvated clusters and molecular dynamics sampling.

    PubMed

    Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G

    2015-01-22

    A physically realistic treatment of solvatochromic shifts in liquid-phase electronic absorption spectra requires a proper account for various short- and long-range equilibrium and nonequilibrium solute-solvent interactions. The present article demonstrates that such a treatment can be accomplished using a mixed discrete-continuum approach based on the two-time-scale self-consistent state-specific vertical excitation model (called VEM) for electronic excitation in solution. We apply this mixed approach in combination with time-dependent density functional theory to compute UV/vis absorption spectra in solution for the n → π* ((1)A2) transition for acetone in methanol and in water, the π → π* ((1)A1) transition for para-nitroaniline (PNA) in methanol and in water, the n → π* ((1)B1) transition for pyridine in water, and the n → π* ((1)B1) transition for pyrimidine in water. Hydrogen bonding and first-solvation-shell-specific complexation are included by means of explicit solvent molecules, and solute-solvent dispersion is included by using the solvation model with state-specific polarizability (SMSSP). Geometries of microsolvated clusters were treated in two different ways, (i) using single liquid-phase global-minimum solute-solvent clusters containing up to two explicit solvent molecules and (ii) using solute-solvent cluster snapshots derived from molecular dynamics (MD) trajectories. The calculations in water involve using VEM/TDDFT excitation energies and oscillator strengths computed over 200 MD-derived solute-solvent clusters and convoluted with Gaussian functions. We also calculate ground- and excited-state dipole moments for interpretation. We find that inclusion of explicit solvent molecules generally improves the agreement with experiment and can be recommended as a way to include the effect of hydrogen bonding in solvatochromic shifts. PMID:25159827

  15. Predicting X-ray absorption spectra of semiconducting polymers for electronic structure and morphology characterization

    NASA Astrophysics Data System (ADS)

    Su, Gregory; Patel, Shrayesh; Pemmaraju, C. Das; Kramer, Edward; Prendergast, David; Chabinyc, Michael

    2015-03-01

    Core-level X-ray absorption spectroscopy (XAS) reveals important information on the electronic structure of materials and plays a key role in morphology characterization. Semiconducting polymers are the active component in many organic electronics. Their electronic properties are critically linked to device performance, and a proper understanding of semiconducting polymer XAS is crucial. Techniques such as resonant X-ray scattering rely on core-level transitions to gain materials contrast and probe orientational order. However, it is difficult to identify these transitions based on experiments alone, and complementary simulations are required. We show that first-principles calculations can capture the essential features of experimental XAS of semiconducting polymers, and provide insight into which molecular model, such as oligomers or periodic boundary conditions, are best suited for XAS calculations. Simulated XAS can reveal contributions from individual atoms and be used to visualize molecular orbitals. This allows for improved characterization of molecular orientation and scattering analysis. These predictions lay the groundwork for understanding how chemical makeup is linked to electronic structure, and to properly utilize experiments to characterize semiconducting polymers.

  16. Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-01-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.

  17. Revisiting the total ion yield x-ray absorption spectra of liquid water microjets

    SciTech Connect

    Saykally, Richard J; Cappa, Chris D.; Smith, Jared D.; Wilson, Kevin R.; Saykally, Richard J.

    2008-02-16

    Measurements of the total ion yield (TIY) x-ray absorption spectrum (XAS) of liquid water by Wilson et al. (2002 J. Phys.: Condens. Matter 14 L221 and 2001 J. Phys. Chem. B 105 3346) have been revisited in light of new experimental and theoretical efforts by our group. Previously, the TIY spectrum was interpreted as a distinct measure of the electronic structure of the liquid water surface. However, our new results indicate that the previously obtained spectrum may have suffered from as yet unidentified experimental artifacts. Although computational results indicate that the liquid water surface should exhibit a TIY-XAS that is fundamentally distinguishable from the bulk liquid XAS, the new experimental results suggest that the observable TIY-XAS is actually nearly identical in appearance to the total electron yield (TEY-)XAS, which is a bulk probe. This surprising similarity between the observed TIY-XAS and TEY-XAS likely results from large contributions from x-ray induced electron stimulated desorption of ions, and does not necessarily indicate that the electronic structure of the bulk liquid and liquid surface are identical.

  18. Dressing effects in the attosecond transient absorption spectra of doubly excited states in helium

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Jiménez-Galán, Á.; Marante, C.; Ott, C.; Pfeifer, T.; Martín, F.

    2015-06-01

    Strong-field manipulation of autoionizing states is a crucial aspect of electronic quantum control. Recent measurements of the attosecond transient absorption spectrum (ATAS) of helium dressed by a few-cycle visible pulse [C. Ott et al., Nature (London) 516, 374 (2014), 10.1038/nature14026] provide evidence of the inversion of Fano profiles. With the support of accurate ab initio calculations that reproduce the results of the latter experiment, here we investigate the new physics that arise from ATAS when the laser intensity is increased. In particular, we show that (i) previously unnoticed signatures of the dark 2 p21S doubly excited state are observed in the experimental spectrum, (ii) inversion of Fano profiles is predicted to be periodic in the laser intensity, and (iii) the ac Stark shift of the higher terms in the s p2,n + autoionizing series exceeds the ponderomotive energy, which is the result of a genuine two-electron contribution to the polarization of the excited atom.

  19. New aspects concerning the energy transfer in carotenoids by measuring intracavity absorption spectra and delayed fluorescence

    NASA Astrophysics Data System (ADS)

    Bettermann, Hans; Bouschen, Werner; Ulrich, Lars; Domnick, Gabriele; Martin, H. D.

    1999-05-01

    The first excited singlet state and the lower energetic triplet states of carotenoids are considered to be involved in the light-harvesting as well as in the photochemical protection of cells, respectively. For this reason, the symmetry-forbidden S 0-S 1 (1 1A g-2 1A g) transitions and the multiplicity-forbidden S 0-T 2 (1 1A g-2 3A g) transition of the model carotenoid 8,13-dimethyl-2,2,19,19-tetramethoxy-icosa-4,6,8,10,12,14,16-heptaene-3,18-dione were investigated by intracavity absorption spectroscopy from low-concentrated ethanolic solutions. Both transitions are shaped by promoting modes caused by Herzberg-Teller coupling and the sequence of these modes allows the precise determination of the non-visible S 0-S 1 (0-0)- and S 0-T 2 (0-0)-transitions. The assignments of the singlet-triplet transitions were additionally supported by measuring delayed fluorescence from crystalline samples by directly exciting vibronic triplet states. The vibronic coupling is promoted by C-H bending vibrations of the chain and mainly by deformation modes of the terminating groups of the carotenoid.

  20. Superresolution and other mathematical techniques for quantitative analysis of infrared absorption and emission spectra of gases

    NASA Astrophysics Data System (ADS)

    Davies, Nicholas M.; Lettington, Alan H.; Hilton, Moira

    1997-05-01

    Fourier transform IR (FTIR) spectroscopy has become a powerful analytical tool for the detection and measurement of atmospheric pollutant gases. This work describes the application of concentration analysis techniques to data recorded with a versatile FTIR spectroscopy system, developed at the University of Reading PHysics Department. Spectra were recorded at three separate sites, each possessing a distinct source of atmospheric pollution gases. The two sites monitored in the active mode were a traffic congested town center at rush hour and a dairy farm cow shed. The site monitored passively contained three 5 m high methane burners. The analysis techniques have been designed to provide rapid and accurate analysis of the spectrometer data, without the need for high computing power, thus making analysis possible in the field using a laptop PC. In an attempt to enhance the resolution of the spectral data, and therefore resolve overlapping spectral lines, a super- resolution algorithm has been tested on part of the recorded data. The results of applying the algorithm has been tested on part of the recorded data. The results of applying the algorithm, predominantly an image processing technique, are shown and improvements to the algorithm are discussed. Results from the urban and agricultural sites show that CO, CH4, and NH3 can be measured to a ppm level with a maximum uncertainly of 8 percent.

  1. Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra.

    PubMed

    Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N

    2016-03-24

    The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing. PMID:26950828

  2. THE DARK SIDE OF QSO FORMATION AT HIGH REDSHIFTS

    SciTech Connect

    Romano-Diaz, Emilio; Shlosman, Isaac; Trenti, Michele; Hoffman, Yehuda

    2011-07-20

    Observed high-redshift QSOs, at z {approx} 6, may reside in massive dark matter (DM) halos of more than 10{sup 12} M{sub sun} and are thus expected to be surrounded by overdense regions. In a series of 10 constrained simulations, we have tested the environment of such QSOs. The usage of constrained realizations has enabled us to address the issue of cosmic variance and to study the statistical properties of the QSO host halos. Comparing the computed overdensities with respect to the unconstrained simulations of regions empty of QSOs, assuming there is no bias between the DM and baryon distributions, and invoking an observationally constrained duty cycle for Lyman break galaxies, we have obtained the galaxy count number for the QSO environment. We find that a clear discrepancy exists between the computed and observed galaxy counts in the Kim et al. samples. Our simulations predict that on average eight z {approx} 6 galaxies per QSO field should have been observed, while Kim et al. detect on average four galaxies per QSO field compared to an average of three galaxies in a control sample (GOODS fields). While we cannot rule out a small number of statistics for the observed fields to high confidence, the discrepancy suggests that galaxy formation in the QSO neighborhood proceeds differently than in the field. We also find that QSO halos are the most massive of the simulated volume at z {approx} 6 but this is no longer true at z {approx} 3. This implies that QSO halos, even in a case where they are the most massive ones at high redshifts, do not evolve into the most massive galaxy clusters at z = 0.

  3. Excited S 1 state dipole moments of nitrobenzene and p-nitroaniline from thermochromic effect on electronic absorption spectra

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-11-01

    The effect of temperature on the absorption spectra of nitrobenzene (NB) and p-nitroaniline (NA) in 1,2-dichloroethane was studied for temperature ranging from 295 K to 378 K and from 296 K to 408 K, respectively. With temperature increase the absorption bands of both compounds are blue shifted, which is caused by the decrease of permittivity ɛ and refractive index n. From the band shifts and by using the Bilot and Kawski theory [ L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621] the dipole moments in the excited singlet state μe = 6.59 D of NB and μe = 13.35 D of NA were determined. The influence of polarizability α, the Onsager cavity radius a and dipole moment in the ground state μg on the determined values of μe are discussed. A comparison of the obtained μe values with those of other authors is given. In the case of p-NA a strong intramolecular charge transfer (ICT) was confirmed.

  4. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    NASA Astrophysics Data System (ADS)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  5. Solvatochromic Shifts in UV-Vis Absorption Spectra: The Challenging Case of 4-Nitropyridine N-Oxide.

    PubMed

    Budzák, Šimon; Laurent, Adéle D; Laurence, Christian; Medved', Miroslav; Jacquemin, Denis

    2016-04-12

    4-Nitropyridine N-oxide is a well-known molecular probe for which the experimental UV/vis absorption spectrum has been measured in a large number of solvents. Previous measurements and their analyses suggest a dominant role of the solvent hydrogen-bond donation (HBD) capability in the solvatochromic shifts measured for the absorption spectra. Herein, we analyze these solvatochromic effects using a series of complementary approaches, including empirical solvent parameters, high-level calculation of the excited-state dipole and polarizability, several flavors of the polarizable continuum model, as well as dynamics using an effective fragment potential (EFP) description of the solvent molecules. First, applying a recently proposed set of solvent parameters, we show the importance of dispersion interactions for non-HBD solvents. This statement confronts advanced coupled-cluster and multireference calculations of dipole moments and polarizabilities of both the ground and excited states in gas phase. We further address the pros and cons of implicit solvent models combined to time-dependent density functional theory (TD-DFT) in describing the solvents effects for all (HBD and non-HBD) media, the simplest linear-response approach turning out to be the most adequate. Finally, we show that the explicit TD-DFT/EFP2 models work correctly for HBD molecules and allow for restoration of the main experimental trends. PMID:26967198

  6. Physical properties of the interstellar medium using high-resolution Chandra spectra: O K-edge absorption

    SciTech Connect

    Gatuzz, E.; Mendoza, C.; García, J.; Kallman, T. R.; Bautista, M. A.; Gorczyca, T. W. E-mail: claudio@ivic.gob.ve E-mail: manuel.bautista@wmich.edu E-mail: timothy.r.kallman@nasa.gov

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = –2.90 and oxygen abundance of A{sub O} = 0.70. The latter is given relative to the standard by Grevesse and Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N{sub O} = 9.2 × 10{sup 17} cm{sup –2}) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  7. Rototranslational absorption spectra of H/sub 2/-H/sub 2/ pairs in the far infrared

    SciTech Connect

    Meyer, W.; Frommhold, L.; Birnbaum, G.

    1989-03-01

    For the computation of the induced dipole moments, the collisional H/sub 2/-H/sub 2/ complex is treated as a molecule in the self-consistent field and size-consistent, coupled electron pair approximations. The basis set accounts for 95% of the correlation energies and separates correctly at distant range. The average of the induced dipole components is obtained for the case of both H/sub 2/ molecules in the vibrational groundstate (v = v' = 0) and recast in a simple but accurate analytical form. The analytical dipole expression is used for computations of the spectral moments (sum rules) and line shapes of the collision-induced rototranslational absorption spectra of molecular hydrogen in the far infrared, over a range of frequencies from 0 to 2200 cm/sup -1/, and for temperatures from 77 to 300 K, using a quantum formalism. Proven isotropic potential models are input. Numerical consistency of the line-shape calculations with the sum rules is observed at the 1% level. The comparison of the computational results with the available measurements shows agreement within the estimated uncertainties of the measurements of typically better than 10%. This fact suggests that the theory is capable of predicting these spectra reliably at temperatures for which no measurements exist.

  8. Indication of single-crystal PuO2 oxidation from O 1s x-ray absorption spectra

    NASA Astrophysics Data System (ADS)

    Modin, A.; Yun, Y.; Suzuki, M.-T.; Vegelius, J.; Werme, L.; Nordgren, J.; Oppeneer, P. M.; Butorin, S. M.

    2011-02-01

    The electronic structure of single-crystal PuO2 is studied using O 1s x-ray absorption (XA) and x-ray emission. Interpretation of the experimental data is supported by extensive first-principles calculations on the basis of the densityfunctionaltheory+U approach. The measured XA spectra show a significant difference in intensity for the first two peaks between different spots or areas on the single crystal. Our theoretical simulations show that the first peak, at ~531 eV, can be attributed to O 2p-Pu 5f hybridization, while the second peak, at ~533.4 eV, is due to hybridization of O 2p with Pu d states. The reasons for the observed differences in the O 1s XA spectra are explored by calculating a number of defect structures PuO2±x as well as by simulating the existence of Pu(V) sites. Our results indicate the presence of oxidation states higher than Pu(IV) in some areas of the single crystal. The findings also suggest that plutonium oxide with a Pu fraction in an oxidation state higher than Pu(IV) consists of inequivalent Pu sites with Pu(IV)O2 and Pu(V)O2 rather than representing a system where the Pu oxidation state is constantly fluctuating between Pu(IV) and Pu(V).

  9. Theoretical Analysis on X-ray Absorption Spectra of Ti compounds as Catalysts in Lithium Amide-Imide reactions

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Takao; Shishidou, Tatsuya; Oguchi, Tamio

    2008-03-01

    Solid-state storage is conceptually efficient approach for on-board vehicular hydrogen storage. In this context, light-element materials such as lithium amide LiNH2 and lithium imide Li2NH have been attracted much attention due to their high gravimetric densities of hydrogen. Recently, various transition-metal compounds have been examined with ball-milling technique for exploring catalysts to improve the hydrogen storage and desorption kinetics, and it is found that a small amount (1mol%) of titanium compounds revealed a superior effect in hydrogen desorption reaction LiNH2 + LiH -> Li2NH + H2 [1]. However, these catalysis mechanism and role of Ti in the reaction remain unanswered. Isobe et al. have carried out measurements of X-ray absorption spectroscopy(XAS) at Ti K-edge to see the electronic states of Ti recently [2]. In this paper, we calculate the electronic structure of Ti metal and its compounds, and obtained theoretical spectra to compare with the measured spectra by using first-principles calculations based on the all-electron FLAPW method. We discuss chemical bonding and local geometry of catalytically active states in the reaction. [1] T. Ichikawa, S. Isobe, N. Hanada and H. Fujii, J. of Alloys and Comp. 365, 271 (2004) . [2] S. Isobe, T. Ichikawa, Y. Kojima and H. Fujii, J. of Alloys and Comp. 446-447, 360 (2007).

  10. Theoretical interpretation of the vacuum ultraviolet reflectance of liquid helium and of the absorption spectra of helium microbubbles in aluminum

    NASA Astrophysics Data System (ADS)

    Lucas, A. A.; Vigneron, J. P.; Donnelly, S. E.; Rife, J. C.

    1983-09-01

    The position and width of the helium resonance line 11S0-->21P1 are calculated for a high-density helium fluid. The theory aims at understanding the reflectivity data of Surko et al. for the low-temperature liquid-vapor interface and the absorption data of Rife et al. for room-temperature, high-pressure helium bubbles in aluminum. The theoretical ingredients of the model are (i) the long-range dipole interaction of an excited 2P atom with the rest of the fluid and with the metal substrate; (ii) the short-range Pauli pseudorepulsion arising from orthogonalization of the 2p-electron wave function with the 1s ground-state orbital of neighboring atoms; (iii) a statistical treatment of the high-density fluid based either on the experimentally measured radial pair distribution function of low-T liquid He, or on the Percus-Yevick distribution function of hard spheres and the theoretical equation of state of Young et al. for the He fluid in the bubbles; (iv) the standard static line-broadening theory to calculate the effect of Pauli repulsion on the line shapes. The theory provides a reasonably accurate understanding of the observed spectra in both the liquid and high-density gas, and can serve as a sound basis for interpretation of vacuum ultraviolet spectra in other gas-metal combinations.

  11. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement

    SciTech Connect

    Ma, Jian; Cao, Jianshu

    2015-03-07

    We study the Förster resonant energy transfer rate, absorption and emission spectra in multichromophoric systems. The multichromophoric Förster theory (MCFT) is determined from an overlap integral of generalized matrices related to the donor’s emission and acceptor’s absorption spectra, which are obtained via a full 2nd-order cumulant expansion technique developed in this work. We calculate the spectra and MCFT rate for both localized and delocalized systems, and calibrate the analytical 2nd-order cumulant expansion with the exact stochastic path integral method. We present three essential findings: (i) The role of the initial entanglement between the donor and its bath is found to be crucial in both the emission spectrum and the MCFT rate. (ii) The absorption spectra obtained by the cumulant expansion method are nearly identical to the exact spectra for both localized and delocalized systems, even when the system-bath coupling is far from the perturbative regime. (iii) For the emission spectra, the cumulant expansion can give reliable results for localized systems, but fail to provide reliable spectra of the high-lying excited states of a delocalized system, when the system-bath coupling is large and the thermal energy is small. This paper also provides a simple golden-rule derivation of the MCFT, reviews existing methods, and motivates further developments in the subsequent papers.

  12. Quasar broad absorption line variability measurements using reconstructions of unabsorbed spectra

    NASA Astrophysics Data System (ADS)

    Wildy, C.; Goad, M. R.; Allen, J. T.

    2014-01-01

    We present a two-epoch Sloan Digital Sky Survey and Gemini/GMOS+William Herschel Telescope/ISIS variability study of 50 broad absorption line (BAL) quasars of redshift range 1.9 < z < 4.2, containing 38 Si IV and 59 C IV BALs and spanning rest-frame time intervals of ≈10 months to 3.7 years. We find that 35/50 quasars exhibit one or more variable BALs, with 58 per cent of Si IV and 46 per cent of C IV BALs showing variability across the entire sample. On average, Si IV BALs show larger fractional change in BAL pseudo-equivalent width than C IV BALs, as referenced to an unabsorbed continuum+emission line spectrum constructed using non-negative matrix factorization. No correlation is found between BAL variability and quasar luminosity, suggesting that ionizing continuum changes do not play a significant role in BAL variability (assuming the gas is in photoionization equilibrium with the ionizing continuum). A subset of 14 quasars have one variable BAL from each of Si IV and C IV with significant overlap in velocity space and for which variations are in the same sense (strengthening or weakening) and which appear to be correlated (98 per cent confidence). We find examples of both appearing and disappearing BALs in weaker/shallower lines with disappearance rates of 2.3 per cent for C IV and 5.3 per cent for Si IV, suggesting average lifetimes of 142 and 43 years, respectively. We identify five objects in which the BAL is coincident with the broad emission line, but appears to cover only the continuum source. Assuming a clumpy inhomogeneous absorber model and a typical size for the continuum source, we infer a maximum cloud radius of 1013 to 1014 cm, assuming Eddington limited accretion.

  13. Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy

    NASA Astrophysics Data System (ADS)

    Nozaki, Junji; Kobayashi, Yu; Miyata, Yasumitsu; Maniwa, Yutaka; Watanabe, Kenji; Taniguchi, Takashi; Yanagi, Kazuhiro

    2016-06-01

    Van der Waals (vdW) heterostructures, in which different two-dimensional layered materials are stacked, can exhibit unprecedented optical properties. Development of a technique to clarify local optical properties of vdW heterostructures is of great importance for the correct understanding of their backgrounds. Here, we examined local optical absorption spectra of h-BN–MoS2 vdW heterostructures by scanning near-field microscopy measurements with a spatial resolution of 100 nm. In an as-grown sample, there was almost no site dependence of their optical absorption spectra. However, in a degraded sample where defects and deformations were artificially induced, a significant site-dependence of optical absorption spectra was observed.

  14. Potential chlorofluorocarbon replacements: OH reaction rate constants between 250 and 315 K and infrared absorption spectra

    SciTech Connect

    Garland, N.L.; Medhurst, L.J.; Nelson, H.H.

    1993-12-20

    The authors measured the rate constant for reactions of the OH radical with several potential chlorofluorocarbon replacements over the temperature range 251-314 K using laser photolysis laser-induced fluorescence techniques. The compounds studied and Arrhenius parameters determined from fits to the measured rate constants are as follows: CHF{sub 2}OCHF{sub 2} (E 134), k(T) = (5.4 {+-} 3.5) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}3.1 {+-} 0.4 kcal mol{sup {minus}1})/RT]; CF{sub 3}CH{sub 2}CF{sub 3} (FC 236fa), k(T) = (2.0 {+-} 1.0) x 10{sup {minus}14} cm{sup 3} s{sup {minus}1} exp [({minus}1.8 {+-} 0.3 kcal mol{sup {minus}1})/RT]; CF{sub 3}CHFCHF{sub 2} (FC 236ea), k(T) = (2.0 {+-} 0.9) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}2.0 {+-} 0.3 kcal mol{sup {minus}1})/RT]; and CF{sub 3}CF{sub 2}CH{sub 2}F (FC 236cb), k(T) = (2.6 {+-} 1.6) x 10{sup {minus}13} cm{sup 3} s{sup {minus}1} exp [({minus}2.2 {+-} 0.4 kcal mol{sup {minus}1})/RT]. The measured activation energies (2-3 kcal mol{sup {minus}1}) are consistent with a mechanism of H atom abstraction. The tropospheric lifetimes, estimated from the measured OH reaction rates, and measured integrated infrared absorption cross sections over the range 770 to 1430 cm{sup {minus}1} suggest that E 134 and FC 236fa may have significant global warming potential, while FC 236ea and FC 236cb do not. 17 refs., 4 figs., 3 tabs.

  15. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    PubMed

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-01

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  16. Monomeric C-phycocyanin at room temperature and 77 K. Resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants

    SciTech Connect

    Debreczeny, M.P.; Sauer, K. Univ. of California, Berkeley, CA ); Zhou, J.; Bryant, D.A. )

    1993-09-23

    At both room temperature (RT) and 77 K, the absorption and fluorescence spectra of the three individual chromophore types ([alpha][sub 84], [beta][sub 84], and [beta][sub 155]) found in monomeric C-phycocyanin ([alpha][sup PC][beta][sup PC]), isolated from the cyanobacterium Synechococcus sp. PCC 7002, were resolved along with the rates of energy transfer between the chromophores. The cpcB/C155S mutant, whose PC is missing the [beta][sub 155] chromophore, was useful in effecting this resolution. At RT, the single broad peak in the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) was resolved into its three-component spectra by comparing the steady-state absorption spectra of the isolated wild-type [alpha] subunit of PC ([alpha][sup PC]) (containing only the [alpha][sub 84] chromophore) with those of the monomeric PCs isolated from the mutant strain ([alpha][sup PC][beta]*) and the wild-type strain ([alpha][sup PC][beta][sup PC]). At 77 K, the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) splits into two peaks. This partial resolution at 77 K of the chromophore spectra of ([alpha][sup PC][beta][sup PC]) when compared with the 77 K absorption spectra of [alpha][sup PC], [beta][sup PC], and ([alpha][sup PC][beta]*) provided a confirmation of our RT assignments of the chromophore absorption spectra. 38 refs., 9 figs., 6 tabs.

  17. Analysis of the Damage Site to Oxyleghaemoglobin by H(2)O(2) on the Basis of the Changes in Absorption Spectra.

    PubMed

    Luo, Guang-Hua; Wang, Ai-Guo

    1996-01-01

    Leghaenoglobin (Lb) is a Fe-protein with a high content in the root nodules of soybean (Glycine max). Oxyleghaemoglobin (LbO(2), Fe(2+)-protein) prepared from fresh soybean root nodules in san active form of Lb. LbO(2) displays two distinct absorption bands at 577 nm and 540 nm, which are closely related to the structure of haem (iron-porphyrin). Another absorption band found at 280 nm is related to the configuration of the globin. When LbO(2) was incubated with H(2)O(2), prompt changes in visible-absorption spectra appeared and the UV-absorption spectra was relatively stable. We conclude that the position of damage by H(2)O(2) was located on the Fe(2+)-porphyrin ring rather than in the globin of LbO(2). PMID:12237710

  18. Quantum mechanical calculation of the collision-induced absorption spectra of N{sub 2}–N{sub 2} with anisotropic interactions

    SciTech Connect

    Karman, Tijs; Groenenboom, Gerrit C.; Avoird, Ad van der; Miliordos, Evangelos; Hunt, Katharine L. C.

    2015-02-28

    We present quantum mechanical calculations of the collision-induced absorption spectra of nitrogen molecules, using ab initio dipole moment and potential energy surfaces. Collision-induced spectra are first calculated using the isotropic interaction approximation. Then, we improve upon these results by considering the full anisotropic interaction potential. We also develop the computationally less expensive coupled-states approximation for calculating collision-induced spectra and validate this approximation by comparing the results to numerically exact close-coupling calculations for low energies. Angular localization of the scattering wave functions due to anisotropic interactions affects the line strength at low energies by two orders of magnitude. The effect of anisotropy decreases at higher energy, which validates the isotropic interaction approximation as a high-temperature approximation for calculating collision-induced spectra. Agreement with experimental data is reasonable in the isotropic interaction approximation, and improves when the full anisotropic potential is considered. Calculated absorption coefficients are tabulated for application in atmospheric modeling.

  19. Analysis of the collision-induced absorption spectra in the second overtone region of H2-H2 at 298 K

    NASA Astrophysics Data System (ADS)

    Abu-Kharma, M.

    2015-02-01

    The collision-induced absorption (CIA) spectra of the second overtone band of normal hydrogen in a pure gas were recorded for a number of gas densities up to 750 amagat (1 amagat = 44.614981 mol/m3) with a two meter stainless steel absorption cell at 298 K. The profile analyses of these spectra were carried out using the Birnbaum-Cohen line shape function for the quadrupolar vibrational transitions and the Levine-Birnbaum line shape function for the overlap transitions.

  20. Application of support vector machine method for the analysis of absorption spectra of exhaled air of patients with broncho-pulmonary diseases

    NASA Astrophysics Data System (ADS)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with respiratory diseases (chronic obstructive pulmonary disease, pneumonia and lung cancer) are presented. The absorption spectra of exhaled breath of all volunteers were measured, the classification methods of the scans of the absorption spectra were applied, the sensitivity/specificity of the classification results were determined. It were obtained a result of nosological in pairs classification for all investigated volunteers, indices of sensitivity and specificity.

  1. Site-selective excitation and polarized absorption and emission spectra of trivalent thulium and erbium in strontium fluorapatite

    SciTech Connect

    Gruber, J.B.; Wright, A.O.; Seltzer, M.D.; Zandi, B.; Merkle, L.D.; Hutchinson, J.A.; Morrison, C.A.; Allik, T.H.; Chai, B.H.

    1997-05-01

    Polarized fluorescence spectra produced by site-selective excitation and conventional polarized absorption spectra were obtained for Tm{sup 3+} and Er{sup 3+} ions individually incorporated into single crystals of strontium fluorapatite, Sr{sub 5}(PO{sub 4}){sub 3}F. Substitution of the trivalent rare earth ion for divalent strontium was achieved by passive charge compensation during Czochralski growth of the fluorapatite crystals. Spectra were obtained between 1780 and 345 nm at temperatures from 4 K to room temperature on crystals having the hexagonal structure [P6{sub 3}/m(C{sub 6h}{sup 2})]. The polarized fluorescence spectra due to transitions from multiplet manifolds of Tm{sup 3+}(4f{sup 12}), including {sup 1}D{sub 2}, {sup 1}G{sub 4}, and {sup 3}H{sub 4} to manifolds {sup 3}H{sub 6} (the ground-state manifold), {sup 3}F{sub 4}, {sup 3}H{sub 5}, {sup 3}H{sub 4}, and {sup 3}F{sub 3} were analyzed for the details of the crystal-field splitting of the manifolds. Fluorescence lifetimes were measured for Tm{sup 3+} transitions from {sup 1}D{sub 2}, {sup 1}G{sub 4}, and {sup 3}H{sub 4} at room temperature and from {sup 1}G{sub 4} at 16 K. Results of the analysis indicate that the majority of Tm{sup 3+} ions occupy sites having C{sub s} symmetry. A point-charge lattice-sum calculation was made in which the crystal-field components, A{sub nm}, were determined assuming that trivalent thulium replaces divalent strontium in the metal site having C{sub s} symmetry. Results support the conclusion that the nearest-neighbor fluoride (F{sup {minus}}) is replaced by divalent oxygen (O{sup 2{minus}}), thus preserving overall charge neutrality and local symmetry. Crystal-field splitting calculations predict energy levels in agreement with experimental data. By varying the crystal-field parameters, B{sub nm}, we obtained a rms difference of 7cm{sup {minus}1} between 43 calculated and experimental Stark levels for Tm{sup 3+}(4f{sup 12}) in Tm:SFAP. (Abstract Truncated)

  2. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    PubMed

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  3. X-ray absorption and infrared spectra of water and ice: A first-principles electronic structure study

    NASA Astrophysics Data System (ADS)

    Chen, Wei

    Water is of essential importance for chemistry and biology, yet the physics concerning many of its distinctive properties is not well known. In this thesis we present a theoretical study of the x-ray absorption (XA) and infrared (IR) spectra of water in liquid and solid phase. Our theoretical tools are the density functional theory (DFT), Car-Parrinello (CP) molecular dynamics (MD), and the so-called GW method. Since a systematic review of these ab initio methods is not the task of this thesis, we only briefly recall the main concepts of these methods as needed in the course of our exposition. The focus is, instead, an investigation of what is the important physics necessary for a better description of these excitation processes, in particular, core electron excitations (in XA) that reveal the local electronic structure, and vibrational excitations (in IR) associated to the molecular dynamics. The most interesting question we are trying to answer is: as we include better approximations and more complete physical descriptions of these processes, how do the aforementioned spectra reflect the underlying hydrogen-bonding network of water? The first part of this thesis consists of the first four chapters, which focus on the study of core level excitation of water and ice. The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, even the small effects of a temperature change in the liquid, are reproduced with quantitative detail using molecular configurations generated by ab initio molecular dynamics. We find that the spectral shape is controlled by two major modifications of the short range order that mark the transition from ice to water. One is associated to dynamic breaking of the hydrogen bonds which leads to a strong enhancement of the pre-edge intensity in the liquid. The other is due to densification, which follows the partial collapse of the hydrogen bond network and is

  4. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K. [Planetary atmospheres

    SciTech Connect

    Borysow, A. )

    1991-08-01

    The 20-300 K free-free rotovibrational collision-induced absorption (RV CIA) spectra of H2-H2 pairs are presently obtained by a numerical method which, in addition to closely matching known CIA spectra of H2-H2, can reproduce the results of the quantum-mechanical computations to within a few percent. Since the spectral lineshape parameters are derivable by these means from the lowest three quantum-mechanical spectral moments, these outer-planet atmosphere-pertinent model spectra may be computed on even small computers. 35 refs.

  5. Detection of emission lines from z ˜ 3 DLAs towards the QSO J2358+0149

    NASA Astrophysics Data System (ADS)

    Srianand, Raghunathan; Hussain, Tanvir; Noterdaeme, Pasquier; Petitjean, Patrick; Krühler, Thomas; Japelj, Jure; Pâris, Isabelle; Kashikawa, Nobunari

    2016-04-01

    Using VLT/X-shooter we searched for emission line galaxies associated to four damped Lyman-α systems (DLAs) and one sub-DLA at 2.73≤z ≤3.25 towards QSO J2358+0149. We detect [O III] emission from a "low-cool" DLA at zabs= 2.9791 (having log N(H I) = 21.69 ± 0.10, [Zn/H] = -1.83 ± 0.18) at an impact parameter of, ρ ˜ 12 kpc. The associated galaxy is compact with a dynamical mass of (1 - 6) × 109 M⊙, very high excitation ([O III]/[O II] and [O III]/[Hβ] both greater than 10), 12+[O/H]≤8.5 and moderate star formation rate (SFR≤2 M⊙ yr-1). Such properties are typically seen in the low-z extreme blue compact dwarf galaxies. The kinematics of the gas is inconsistent with that of an extended disk and the gas is part of either a large scale wind or cold accretion. We detect Lyα emission from the zabs= 3.2477 DLA (having log N(H I)=21.12±0.10 and [Zn/H]=-0.97 ± 0.13). The Lyα emission is redshifted with respect to the metal absorption lines by 320 km s-1, consistent with the location of the red hump expected in radiative transport models. We derive SFR˜0.2-1.7 M⊙ yr-1 and Lyα escape fraction of ≥10 per cent. No other emission line is detected from this system. Because the DLA has a small velocity separation from the quasar (˜500 km s-1) and the DLA emission is located within a small projected distance (ρ < 5 kpc), we also explore the possibility that the Lyα emission is being induced by the QSO itself. QSO induced Lyα fluorescence is possible if the DLA is within a physical separation of 340 kpc to the QSO. Detection of stellar continuum light and/or the oxygen emission lines would disfavor this possibility. We do not detect any emission line from the remaining three systems.

  6. Detection of emission lines from z ˜ 3 DLAs towards the QSO J2358+0149

    NASA Astrophysics Data System (ADS)

    Srianand, Raghunathan; Hussain, Tanvir; Noterdaeme, Pasquier; Petitjean, Patrick; Krühler, Thomas; Japelj, Jure; Pâris, Isabelle; Kashikawa, Nobunari

    2016-07-01

    Using VLT/X-shooter, we searched for emission line galaxies associated with four damped Lyman α systems (DLAs) and one sub-DLA at 2.73 ≤z ≤3.25 towards QSO J2358+0149. We detect [O III] emission from a `low-cool' DLA at zabs = 2.9791 (having log N(H I) = 21.69 ± 0.10, [Zn/H] = -1.83 ± 0.18) at an impact parameter of, ρ ˜ 12 kpc. The associated galaxy is compact with a dynamical mass of (1-6) × 109 M⊙, very high excitation ([O III]/[O II] and [O III]/[Hβ] both greater than 10), 12+[O/H]≤8.5 and moderate star formation rate (SFR ≤2 M⊙ yr-1). Such properties are typically seen in the low-z extreme blue compact dwarf galaxies. The kinematics of the gas is inconsistent with that of an extended disc and the gas is part of either a large scale wind or cold accretion. We detect Lyα emission from the zabs = 3.2477 DLA [having log N(H I) = 21.12 ± 0.10 and [Zn/H] = -0.97 ± 0.13]. The Lyα emission is redshifted with respect to the metal absorption lines by 320 km s-1, consistent with the location of the red hump expected in radiative transport models. We derive SFR ˜0.2-1.7 M⊙ yr-1 and Lyα escape fraction of ≥10 per cent. No other emission line is detected from this system. Because the DLA has a small velocity separation from the quasar (˜500 km s-1) and the DLA emission is located within a small projected distance (ρ < 5 kpc), we also explore the possibility that the Lyα emission is being induced by the QSO itself. QSO-induced Lyα fluorescence is possible if the DLA is within a physical separation of 340 kpc to the QSO. Detection of stellar continuum light and/or the oxygen emission lines would disfavour this possibility. We do not detect any emission line from the remaining three systems.

  7. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-01

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5'-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5'-monophosphate, and adenosine 5'-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  8. On the sizes of neutral hydrogen regions giving rise to damped Lyα absorption systems

    NASA Astrophysics Data System (ADS)

    Monier, E. M.; Turnshek, D. A.; Rao, S.

    2009-08-01

    Using quasi-stellar object (QSO) absorption-line spectra obtained along closely spaced sightlines, we examine the transverse sizes of regions containing large columns of neutral hydrogen gas at redshifts z ~ 1.5. The observations are primarily of intervening damped Lyα (DLA) and sub-DLA absorption-line systems in gravitationally lensed QSOs. In particular, Hubble Space Telescope spectroscopy of the four-component Cloverleaf QSO (H1413+1143) reveals three new DLA/sub-DLA systems at z ~ 1.44, 1.49 and 1.66. A neutral hydrogen column density of NHI >= 2 × 1020atomscm-2 is required for a system to be classified as a DLA, but none of the three systems has an HI column density above the DLA threshold in all four components. Over component separations <1.4 arcsec in the Cloverleaf, corresponding to transverse sizes of ~5-12h-170kpc, the HI column densities typically change by factors of ~2-40. Similar observations of other QSOs containing absorption systems in the DLA regime are summarized from the literature. In addition to establishing approximate sizes for DLA regions, the results have implications for their volume-averaged HI gas number densities and neutral gas masses. By combining our results on DLA absorber sizes with published results on the sizes of lower column density QSO absorbers, which however arise in very ionized regions, we infer the useful relation that the typical transverse size of an absorber in the redshift interval z ~ [1, 2] is Sabs ~ 11h-170[NHI/1020]-1/4kpc. Based on observations made with the NASA/ESA Hubble Space Telescope. E-mail: emonier@brockport.edu

  9. The distribution of equivalent widths in long GRB afterglow spectra

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Fynbo, J. P. U.; Thöne, C. C.; Christensen, L.; Gorosabel, J.; Milvang-Jensen, B.; Schulze, S.; Jakobsson, P.; Wiersema, K.; Sánchez-Ramírez, R.; Leloudas, G.; Zafar, T.; Malesani, D.; Hjorth, J.

    2012-12-01

    Context. The extreme brightness of gamma-ray burst (GRB) afterglows and their simple spectral shape make them ideal beacons to study the interstellar medium of their host galaxies through absorption line spectroscopy at almost any redshift. Aims: We describe the distribution of rest-frame equivalent widths (EWs) of the most prominent absorption features in GRB afterglow spectra, providing the means to compare individual spectra to the sample and identify its peculiarities. Methods: Using 69 low-resolution GRB afterglow spectra, we conduct a study of the rest-frame EWs distribution of features with an average rest-frame EW larger than 0.5 Å. To compare an individual GRB with the sample, we develop EW diagrams as a graphical tool, and we give a catalogue with diagrams for the 69 spectra. We introduce a line strength parameter (LSP) that allows us to quantify the strength of the absorption features in a GRB spectrum as compared to the sample by a single number. Using the distributions of EWs of single-species features, we derive the distribution of their column densities by a curve of growth (CoG) fit. Results: We find correlations between the LSP and the extinction of the GRB, the UV brightness of the host galaxies and the neutral hydrogen column density. However, we see no significant evolution of the LSP with the redshift. There is a weak correlation between the ionisation of the absorbers and the energy of the GRB, indicating that, either the GRB event is responsible for part of the ionisation, or that galaxies with high-ionisation media produce more energetic GRBs. Spectral features in GRB spectra are, on average, 2.5 times stronger than those seen in QSO intervening damped Lyman-α (DLA) systems and slightly more ionised. In particular we find a larger excess in the EW of C ivλλ1549 relative to QSO DLAs, which could be related to an excess of Wolf-Rayet stars in the environments of GRBs. From the CoG fitting we obtain an average number of components in the

  10. Study on erythrosine-phen-Cd(II) systems by resonance Rayleigh scattering, absorption spectra and their analytical applications

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Zhang, Qiqi; Liu, Shaopu; Yang, Jidong; Teng, Ping; Zhu, Jinghui; Qiao, Man; Shi, Ying; Duan, Ruilin; Hu, Xiaoli

    2015-04-01

    In pH 7.0-8.0 KH2PO4-Na2HPO4 buffer solution, Cd(II) reacted with 1,10-phenanthroline to form chelate cation [Cd(phen)3]2+, which further reacted with anion of erythrosine to form ternary ion-association complex through electrostatic attraction and hydrophobic effect. This process could result in remarkable absorption spectra change and produce obvious fading reaction at 528 nm. Absorbance change (ΔA) of system was directly proportional to the concentration of Cd(II). Hereby, a highly sensitive spectrophotometric method for the determination of Cd(II) was established. The molar absorption coefficient was 2.29 × 105 L mol-1 cm-1 and the detection limit of Cd(II) was 26.5 ng mL-1. Furthermore, the resonance Rayleigh scattering (RRS) of this system with two peaks located at 371 and 590 nm enhanced significantly, and second-order scattering (SOS) and frequence doubling scattering (FDS) of this system changed notably at 640 and 350 nm, respectively. Under the optimum conditions, the scattering intensities (ΔIRRS, ΔIDWO-RRS, ΔISOS and ΔIFDS) had good linear relationship with the concentration of Cd(II) in certain ranges. The detection limits of Cd(II) were 1.27 ng mL-1, 1.39 ng mL-1, 4.03 ng mL-1, 5.92 ng mL-1 and 14.7 ng mL-1 for dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS), RRS (371 nm), RRS (590 nm), SOS and FDS, respectively. In addition, the suitable reaction conditions and effects of coexisting substances were investigated. The methods had been successfully applied to the determination of Cd(II) in environmental water samples. The recovery range was between 93.0% and 103.0% and the relative standard deviation (RSD) was between 2.5% and 4.3%. The results were in agreement with those obtained from atomic absorption spectroscopy.

  11. Data of fluorescence, UV-vis absorption and FTIR spectra for the study of interaction between two food colourants and BSA.

    PubMed

    Li, Tian; Cheng, Zhengjun; Cao, Lijun; Jiang, Xiaohui; Fan, Lei

    2016-09-01

    In this data article, the fluorescence, UV-vis absorption and FTIR spectra data of BSA-AR1/AG50 system were presented, which were used for obtaining the binding characterization (such as binding constant, binding distance, binding site, thermodynamics, and structural stability of protein) between BSA and AR1/AG50. PMID:27508228

  12. Systematic trend of water vapour absorption in red giant atmospheres revealed by high resolution TEXES 12 μm spectra

    NASA Astrophysics Data System (ADS)

    Ryde, N.; Lambert, J.; Farzone, M.; Richter, M. J.; Josselin, E.; Harper, G. M.; Eriksson, K.; Greathouse, T. K.

    2015-01-01

    Context. The structures of the outer atmospheres of red giants are very complex. Recent interpretations of a range of different observations have led to contradictory views of these regions. It is clear, however, that classical model photospheres are inadequate to describe the nature of the outer atmospheres. The notion of large optically thick molecular spheres around the stars (MOLspheres) has been invoked in order to explain spectro-interferometric observations and low- and high-resolution spectra. On the other hand high-resolution spectra in the mid-IR do not easily fit into this picture because they rule out any large sphere of water vapour in LTE surrounding red giants. Aims: In order to approach a unified scenario for these outer regions of red giants, more empirical evidence from different diagnostics are needed. Our aim here is to investigate high-resolution, mid-IR spectra for a range of red giants, spanning spectral types from early K to mid M. We want to study how the pure rotational lines of water vapour change with effective temperature, and whether we can find common properties that can put new constraints on the modelling of these regions, so that we can gain new insights. Methods: We have recorded mid-IR spectra at 12.2 - 12.4 μm at high spectral resolution of ten well-studied bright red giants, with TEXES mounted on the IRTF on Mauna Kea. These stars span effective temperatures from 3450 K to 4850 K. Results: We find that all red giants in our study cooler than 4300 K, spanning a wide range of effective temperatures (down to 3450 K), show water absorption lines stronger than expected and none are detected in emission, in line with what has been previously observed for a few stars. The strengths of the lines vary smoothly with spectral type. We identify several spectral features in the wavelength region that are undoubtedly formed in the photosphere. From a study of water-line ratios of the stars, we find that the excitation temperatures, in the

  13. BREAKING THE OBSCURING SCREEN: A RESOLVED MOLECULAR OUTFLOW IN A BURIED QSO

    SciTech Connect

    Rupke, David S. N.; Veilleux, Sylvain

    2013-09-20

    We present Keck laser guide star adaptive optics observations of the nearby buried quasi-stellar object (QSO) F08572+3915:NW. We use near-infrared integral field data taken with the OH-Suppressing Infra-Red Imaging Spectrograph to reveal a compact disk and molecular outflow using Paα and H{sub 2} rotational-vibrational transitions at a spatial resolution of 100 pc. The outflow emerges perpendicular to the disk into a bicone of one-sided opening angle 100° up to distances of 400 pc from the nucleus. The integrated outflow velocities, which reach at least –1300 km s{sup –1}, correspond exactly to those observed in (unresolved) OH absorption, but are smaller (larger) than those observed on larger scales in the ionized (neutral atomic) outflow. These data represent a factor of >10 improvement in the spatial resolution of molecular outflows from mergers/QSOs, and plausibly represent the early stages of the excavation of the dust screen from a buried QSO.

  14. INTEGRAL FIELD SPECTROSCOPY OF MASSIVE, KILOPARSEC-SCALE OUTFLOWS IN THE INFRARED-LUMINOUS QSO Mrk 231

    SciTech Connect

    Rupke, David S. N.; Veilleux, Sylvain

    2011-03-10

    The quasi-stellar object (QSO)/merger Mrk 231 is arguably the nearest and best laboratory for studying QSO feedback. It hosts several outflows, including broad-line winds, radio jets, and a poorly understood kpc-scale outflow. In this Letter, we present integral field spectroscopy from the Gemini telescope that represents the first unambiguous detection of a wide-angle, kiloparsec-scale outflow from a powerful QSO. Using neutral gas absorption, we show that the nuclear region hosts an outflow with blueshifted velocities reaching 1100 km s{sup -1}, extending 2-3 kpc from the nucleus in all directions in the plane of the sky. A radio jet impacts the outflow north of the nucleus, accelerating it to even higher velocities (up to 1400 km s{sup -1}). Finally, 3.5 kpc south of the nucleus, star formation is simultaneously powering an outflow that reaches more modest velocities of only 570 km s{sup -1}. Blueshifted ionized gas is also detected around the nucleus at lower velocities and smaller scales. The mass and energy flux from the outflow are {approx}>2.5 times the star formation rate and {approx}>0.7% of the active galactic nucleus luminosity, consistent with negative feedback models of QSOs.

  15. Integral-field spectrophotometry of the quadruple QSO HE 0435-1223: Evidence for microlensing

    NASA Astrophysics Data System (ADS)

    Wisotzki, L.; Becker, T.; Christensen, L.; Helms, A.; Jahnke, K.; Kelz, A.; Roth, M. M.; Sanchez, S. F.

    2003-09-01

    We present the first spatially resolved spectroscopic observations of the recently discovered quadruple QSO and gravitational lens HE 0435-1223. Using the Potsdam Multi-Aperture Spectrophotometer (PMAS), we show that all four QSO components have very similar but not identical spectra. In particular, the spectral slopes of components A, B, and D are indistinguishable, implying that extinction due to dust plays no major role in the lensing galaxy. While also the emission line profiles are identical within the error bars, as expected from lensing, the equivalent widths show significant differences between components. Most likely, microlensing is responsible for this phenomenon. This is also consistent with the fact that component D, which shows the highest relative continuum level, has brightened by 0.07 mag since Dec. 2001. We find that the emission line flux ratios between the components are in better agreement with simple lens models than broad band or continuum measurements, but that the discrepancies between model and data are still unacceptably large. Finally, we present a detection of the lensing galaxy, although this is close to the limits of the data. Comparing with a model galaxy spectrum, we obtain a redshift estimate of zlens=0.44+/- 0.02.

  16. Absolute calibration and atmospheric versus mineralogic origin of absorption features in 2.0 to 2.5 micron Mars spectra obtained during 1993

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Pollack, James B.; Geballe, Thomas R.; Cruikshank, Dale P.; Freedman, Richard

    1994-01-01

    We obtained new high resolution reflectance spectra of Mars during the 1993 opposition from Mauna Kea Observatory using the UKIRT CGS4 spectrometer. Fifty spectra of 1600-2000 km surface regions and a number of standard star spectra were obtained in the 2.04 to 2.44 micron wavelength region on 4 February 1993 UT. Near-simultaneous observations of bright standard stars were used to perform terrestrial atmospheric corrections and an absolute flux calibration. Using the known magnitude of the stars and assuming blackbody continuum behavior, the flux from Mars could be derived. A radiative transfer model and the HITRAN spectral line data base were used to compute atmospheric transmission spectra for Mars and the Earth in order to simulate the contributions of these atmospheres to our observed data. Also, we examined the ATMOS solar spectrum in the near-IR to try to identify absorption features in the spectrum of the Sun that could be misinterpreted as Mars features. Eleven absorption features were detected in our Mars spectra. Our data provide no conclusive identification of the mineralogy responsible for the absorption features we detected. However, examination of terrestrial spectral libraries and previous high spectral resolution mineral studies indicates that the most likely origin of these features is either CO3(sup 2-), HCO3(-), or HSO4(-) anions in framework silicates or possibly (Fe, Mg)-OH bonds in sheet silicates.

  17. A census of quasar-intrinsic absorption in the Hubble Space Telescope archive: systems from high-resolution echelle spectra

    NASA Astrophysics Data System (ADS)

    Ganguly, Rajib; Lynch, Ryan S.; Charlton, Jane C.; Eracleous, Michael; Tripp, Todd M.; Palma, Christopher; Sembach, Kenneth R.; Misawa, Toru; Masiero, Joseph R.; Milutinovic, Nikola; Lackey, Benjamin D.; Jones, Therese M.

    2013-10-01

    We present a census of zabs ≲ 2 intrinsic (those showing partial coverage) and associated (zabs ˜ zem) quasar absorption-line systems detected in the Hubble Space Telescope archive of Space Telescope Imaging Spectrograph echelle spectra. This work complements the Misawa et al. survey of 2 < zem < 4 quasars that selects systems using similar techniques. We confirm the existence of so-called strong N V intrinsic systems (where the equivalent width of H I Lyα is small compared to N V λ1238) presented in that work, but find no convincing cases of `strong C IV' intrinsic systems at low redshift/luminosity. Moreover, we also report on the existence of `strong O VI' systems. From a comparison of partial coverage results as a function of ion, we conclude that systems selected by the N V ion have the highest probability of being intrinsic. By contrast, the C IV and O VI ions are poor selectors. Of the 30 O VI systems tested, only two of the systems in the spectrum on 3C 351 show convincing evidence for partial coverage. However, there is an ˜3σ excess in the number of absorbers near the quasar redshift (|Δv| ≤ 5000 km s-1) over absorbers at large redshift differences. In at least two cases, the associated O VI systems are known not to arise close to the accretion disc of the quasar.

  18. Solvent Effects on the Electronic Absorption and Fluorescence Spectra of HNP: Estimation of Ground and Excited State Dipole Moments.

    PubMed

    Desai, Vani R; Hunagund, Shirajahammad M; Basanagouda, Mahantesha; Kadadevarmath, Jagadish S; Sidarai, Ashok H

    2016-07-01

    We report the effect of solvents on absorption and fluorescence spectra of biologically active 3(2H)-pyridazinone namely 5-(2-hydroxy-naphthalen-1-yl)-2-phenyl-2H-pyridazin-3-one (HNP) in different solvents at room temperature. The ground and the excited state dipole moments of HNP molecule was estimated from Lippert's, Bakshiev's and Kawski-Chamma-Viallet's equations using the solvatochromic shift method. The ground state dipole moment (μ g ) was also estimated by Guggenheim and Higasi method using the dielectric constant and refractive index of solute at different concentrations, the μ g value obtained from these two methods are comparable to the μ g value obtained by the solvatochromic shift method. The excited state dipole moment (μ e ) is greater than the ground state dipole moment (μ g ), which indicates that the excited state is more polar than the ground state. Further, we have evaluated the change in dipole moment (Δμ) from the solvatochromic shift method and on the basis of molecular-microscopic solvent polarity parameter[Formula: see text], later on the values were compared. PMID:27220623

  19. Band Structure of the Rhodobacter sphaeroides Photosynthetic Reaction Center from Low-Temperature Absorption and Hole-Burned Spectra.

    PubMed

    Rancova, Olga; Jankowiak, Ryszard; Kell, Adam; Jassas, Mahboobe; Abramavicius, Darius

    2016-06-30

    Persistent/transient spectral hole burning (HB) and computer simulations are used to provide new insight into the excitonic structure and excitation energy transfer of the widely studied bacterial reaction center (bRC) of Rhodobacter (Rb.) sphaeroides. We focus on site energies of its cofactors and electrochromic shifts induced in the chemically oxidized (P(+)) and charge-separated (P(+)QM(-)) states. Theoretical models lead to two alternative interpretations of the H-band. On the basis of our experimental and simulation data, we suggest that the bleach near 813-825 nm in transient HB spectra in the P(+)QM(-) state, often assigned to the upper exciton component of the special pair, is mostly due to different electrochromic shifts of the BL/M cofactors. From the exciton compositions in the charge-neutral (CN) bRC, the weak fourth excitonic band near 780 nm can be denoted PY+, that is, the upper excitonic band of the special pair, which in the CN bRC behaves as a delocalized state over PM and PL pigments that weakly mixes with accessory BChls. Thus, the shoulder in the absorption of Rb. sphaeroides near 813-815 nm does not contain the PY+ exciton band. PMID:27266271

  20. A comparison of fine structures in high-resolution x-ray-absorption spectra of various condensed organic molecules.

    PubMed

    Schoell, A; Zou, Y; Huebner, D; Urquhart, S G; Schmidt, Th; Fink, R; Umbach, E

    2005-07-22

    We report on a high-resolution C-K and O-K near-edge x-ray-absorption fine-structure (NEXAFS) study of large aromatic molecules in condensed thin films, namely, anhydrides 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride, 3,4,9,10-perylene-tetracarboxylic acid dianhydride, benzoperylene-(1,2)-dicarboxylic acid anhydride, and 1,8-naphthalene-dicarboxylic acid anhydride and the quinoic acenaphthenequinone. Due to the high-energy resolution of the third-generation synchrotron source BESSY II we observe large differences in the NEXAFS fine structures even for very similar molecules, resulting in a wealth of new information. The rich fine structure can unambiguously be assigned to the coupling of electronic transitions to vibronic excitations. Backed by ab initio calculations we present a detailed analysis of the spectra that allows the complete interpretation of the near-edge features. It also yields information on the vibronic properties in the electronically excited state as well as on the response of the electronic system upon core excitation. The strong differences in the electron-vibron coupling for different molecules are discussed. PMID:16095371

  1. Substituent and solvent effects on the UV/Vis absorption spectra of 5-(4-substituted arylazo)-6-hydroxy-4-methyl-3-cyano-2-pyridones

    NASA Astrophysics Data System (ADS)

    Ušćumlić, Gordana S.; Mijin, Dusanˇ Z. ˇ; Valentić, Nataša V.; Vajs, Vlatka V.; Sušić, Biljana M.

    2004-10-01

    Absorption spectra of ten 5-(4-substituted arylazo)-6-hydroxy-4-methyl-3-cyano-2-pyridones have been recorded in fifteen solvents in the range 200-600 nm. The substituents at the phenyl nucleus are as follows: OH, OCH 3, CH 3, C 2H 5, H, Cl, Br, I, COOH and NO 2. The effects of substituents on the absorption spectra of investigated compounds are interpreted by correlation of absorption frequencies with simple Hammett equation. The effects of solvent polarity and solvent/solute hydrogen bonding interactions are analyzed by means of linear solvation energy relationships concept proposed by Kamlet and Taft. The azo-hydrazone tuatomeric equilibration is found to depend upon substituents as well as on solvents.

  2. Determination of the texture of arrays of aligned carbon nanotubes from the angular dependence of the X-ray emission and X-ray absorption spectra

    SciTech Connect

    Okotrub, A. V. Belavin, V. V.; Bulusheva, L. G.; Gusel'nikov, A. V.; Kudashov, A. G.; Vyalikh, D. V.; Molodtsov, S. L.

    2008-09-15

    The properties of materials containing carbon nanotubes depend on the degree of alignment and the internal structure of nanotubes. It is shown that the degree of misorientation of carbon nanotubes in samples can be evaluated from the measurements of the angular dependences of the carbon X-ray emission and carbon X-ray absorption spectra. The CK{sub {alpha}} emission and CK X-ray absorption spectra of the array of multiwalled carbon nanotubes synthesized by catalytic thermolysis of a mixture of fullerene and ferrocene are measured. A comparison of the calculated model dependences of the relative intensities of the {pi} and {sigma} bands in the spectra with the experimental results makes it possible to evaluate the degree of misorientation of nanotubes in the sample and their internal texture.

  3. HST/COS SPECTRA OF THREE QSOs THAT PROBE THE CIRCUMGALACTIC MEDIUM OF A SINGLE SPIRAL GALAXY: EVIDENCE FOR GAS RECYCLING AND OUTFLOW

    SciTech Connect

    Keeney, Brian A.; Stocke, John T.; Danforth, Charles W.; Shull, J. Michael; Green, James C.; Rosenberg, Jessica L.; Ryan-Weber, Emma V.; Savage, Blair D.

    2013-03-01

    We have used the Cosmic Origins Spectrograph (COS) to obtain far-UV spectra of three closely spaced QSO sight lines that probe the circumgalactic medium (CGM) of an edge-on spiral galaxy, ESO 157-49, at impact parameters of 74 and 93 h {sup -1} {sub 70} kpc near its major axis and 172 h {sup -1} {sub 70} kpc along its minor axis. H I Ly{alpha} absorption is detected at the galaxy redshift in the spectra of all three QSOs, and metal lines of Si III, Si IV, and C IV are detected along the two major-axis sight lines. Photoionization models of these clouds suggest metallicities close to the galaxy metallicity, cloud sizes of {approx}1 kpc, and gas masses of {approx}10{sup 4} M {sub Sun }. Given the high covering factor of these clouds, ESO 157-49 could harbor {approx}2 Multiplication-Sign 10{sup 9} M {sub Sun} of warm CGM gas. We detect no metals in the sight line that probes the galaxy along its minor axis, but gas at the galaxy metallicity would not have detectable metal absorption with ionization conditions similar to the major-axis clouds. The kinematics of the major-axis clouds favor these being portions of a 'galactic fountain' of recycled gas, while two of the three minor-axis clouds are constrained geometrically to be outflowing gas. In addition, one of our QSO sight lines probes a second more distant spiral, ESO 157-50, along its major axis at an impact parameter of 88 h {sup -1} {sub 70} kpc. Strong H I Ly{alpha} and C IV absorption only are detected in the QSO spectrum at the redshift of ESO 157-50.

  4. How to calculate linear absorption spectra with lifetime broadening using fewest switches surface hopping trajectories: A simple generalization of ground-state Kubo theory

    SciTech Connect

    Petit, Andrew S.; Subotnik, Joseph E.

    2014-07-07

    In this paper, we develop a surface hopping approach for calculating linear absorption spectra using ensembles of classical trajectories propagated on both the ground and excited potential energy surfaces. We demonstrate that our method allows the dipole-dipole correlation function to be determined exactly for the model problem of two shifted, uncoupled harmonic potentials with the same harmonic frequency. For systems where nonadiabatic dynamics and electronic relaxation are present, preliminary results show that our method produces spectra in better agreement with the results of exact quantum dynamics calculations than spectra obtained using the standard ground-state Kubo formalism. As such, our proposed surface hopping approach should find immediate use for modeling condensed phase spectra, especially for expensive calculations using ab initio potential energy surfaces.

  5. Onset of the Electronic Absorption Spectra of Isolated and π-Stacked Oligomers of 5,6-Dihydroxyindole: An Ab Initio Study of the Building Blocks of Eumelanin.

    PubMed

    Tuna, Deniz; Udvarhelyi, Anikó; Sobolewski, Andrzej L; Domcke, Wolfgang; Domratcheva, Tatiana

    2016-04-14

    Eumelanin is a naturally occurring skin pigment which is responsible for developing a suntan. The complex structure of eumelanin consists of π-stacked oligomers of various indole derivatives, such as the monomeric building block 5,6-dihydroxyindole (DHI). In this work, we present an ab initio wave-function study of the absorption behavior of DHI oligomers and of doubly and triply π-stacked species of these oligomers. We have simulated the onset of the electronic absorption spectra by employing the MP2 and the linear-response CC2 methods. Our results demonstrate the effect of an increasing degree of oligomerization of DHI and of an increasing degree of π-stacking of DHI oligomers on the onset of the absorption spectra and on the degree of red-shift toward the visible region of the spectrum. We find that π-stacking of DHI and its oligomers substantially red-shifts the onset of the absorption spectra. Our results also suggest that the optical properties of biological eumelanin cannot be simulated by considering the DHI building blocks alone, but instead the building blocks indole-semiquinone and indole-quinone have to be considered as well. This study contributes to advancing the understanding of the complex photophysics of the eumelanin biopolymer. PMID:27005558

  6. Influence of Duschinsky and Herzberg-Teller effects on S₀→ S₁ vibrationally resolved absorption spectra of several porphyrin-like compounds.

    PubMed

    Yang, Pan; Qi, Dan; You, Guojian; Shen, Wei; Li, Ming; He, Rongxing

    2014-09-28

    The S0 → S1 (Q band) high-resolved absorption spectra of three porphyrin-like compounds, porphycene, magnesium porphyrin, and zinc tetraazaporphyrin, were simulated in the framework of the Franck-Condon approximation including the Duschinsky and Herzberg-Teller (HT) contributions. Substitution of meso-aza on porphyrin macrocycle framework could change severely the absorption energy, vibrational intensity, and spectral profile of Q band. Therefore, we focused attention on the spectral similarities and contrasts among the three compounds based on the density functional theory and its time-dependent extension calculations. The simulated spectra agreed well with the experimental ones and further confirmed that the HT and Duschinsky effects have significant influence on the weakly allowed or forbidden transition of sizable organic molecules. The pure HT and Duschinsky effects were explored separately to clarify their contributions on changing vibrational intensities of different modes. Moreover, we tentatively assigned most of the vibrational modes which appeared in the experimental spectra but corresponding assignments were not given. The present work provided a useful method to simulate and interpret the absorption spectra of porphyrin-like compounds. PMID:25273434

  7. Influence of Duschinsky and Herzberg-Teller effects on S0 → S1 vibrationally resolved absorption spectra of several porphyrin-like compounds

    NASA Astrophysics Data System (ADS)

    Yang, Pan; Qi, Dan; You, Guojian; Shen, Wei; Li, Ming; He, Rongxing

    2014-09-01

    The S0 → S1 (Q band) high-resolved absorption spectra of three porphyrin-like compounds, porphycene, magnesium porphyrin, and zinc tetraazaporphyrin, were simulated in the framework of the Franck-Condon approximation including the Duschinsky and Herzberg-Teller (HT) contributions. Substitution of meso-aza on porphyrin macrocycle framework could change severely the absorption energy, vibrational intensity, and spectral profile of Q band. Therefore, we focused attention on the spectral similarities and contrasts among the three compounds based on the density functional theory and its time-dependent extension calculations. The simulated spectra agreed well with the experimental ones and further confirmed that the HT and Duschinsky effects have significant influence on the weakly allowed or forbidden transition of sizable organic molecules. The pure HT and Duschinsky effects were explored separately to clarify their contributions on changing vibrational intensities of different modes. Moreover, we tentatively assigned most of the vibrational modes which appeared in the experimental spectra but corresponding assignments were not given. The present work provided a useful method to simulate and interpret the absorption spectra of porphyrin-like compounds.

  8. Calibration of scalar relativistic density functional theory for the calculation of sulfur K-edge X-ray absorption spectra.

    PubMed

    Debeer George, Serena; Neese, Frank

    2010-02-15

    Sulfur K-edge X-ray absorption spectroscopy has been proven to be a powerful tool for investigating the electronic structures of sulfur-containing coordination complexes. The full information content of the spectra can be developed through a combination of experiment and time-dependent density functional theory (TD-DFT). In this work, the necessary calibration is carried out for a range of contemporary functionals (BP86, PBE, OLYP, OPBE, B3LYP, PBE0, TPSSh) in a scalar relativistic (0(th) order regular approximation, ZORA) DFT framework. It is shown that with recently developed segmented all-electron scalar relativistic (SARC) basis sets one obtains results that are as good as with large, uncontracted basis sets. The errors in the calibrated transition energies are on the order of 0.1 eV. The error in calibrated intensities is slightly larger, but the calculations are still in excellent agreement with experiment. The behavior of full TD-DFT linear response versus the Tamm-Dancoff approximation has been evaluated with the result that two methods are almost indistinguishable. The inclusion of relativistic effects barely changes the results for first row transition metal complexes, however, the contributions become visible for second-row transition metals and reach a maximum (of an approximately 10% change in the calibration parameters) for third row transition metal species. The protocol developed here is approximately 10 times more efficient than the previously employed protocol, which was based on large, uncontracted basis sets. The calibration strategy followed here may be readily extended to other edges. PMID:20092349

  9. A study on the magnetic susceptibilities and optical absorption spectra on single crystals of Gd(III) pyrogermanate

    NASA Astrophysics Data System (ADS)

    Kundu, T.; Ghosh, D.; Wanklyn, B. M.

    1990-04-01

    The paper reports for the first time the experimental results of the measurements of magnetic susceptibilities ( K⊥ and K|) and their anisotropy (Δ K) between 300 and 21.8 K and the optical absorption spectra (UV region) at 12.5 K on single crystals of gadolinium pyrogermanate (GdPG). The anisotropy, which is only 211×10 -6 emu/mol at room temperature and increases by two orders of magnitude at 21 K, is predominantly a crystal field (CF) effect on the 8S {7}/{2} ground term, through higher order perturbations. Interpretation of the observed magnetic data was carried out by considering a conventional spin Hamiltonian ( Hs) to derive expressions for K⊥ and K| in terms of four effective crystal field parameters (ECFP). The value s of ECFP were varied to obtain a very close fitting between the theoretical and experimental values of K⊥, K|, δ K and K¯ The splitting of the 8S {7}/{2} term corresponding to these values of ECFP was found to be large, which suggests a strong CF effect in GdPG, as also observed in other RPG crystal studied earlier. The thermal characteristics of the magnetic anisotropy below 30 K deviate by about 5% which could not be explained by CF effects alone. A series expansion method was adopted to analyse the results of K⊥ and K| below 30 K, however the corresponding coefficient B2α and B3α were observed t o be unusually high indicating the presence of CF effect even in this temperature region. The Schottky specific heat, Csch, between 300 and 21 K for GdPG has been calculated and this shows a maximum at Tmax=17 K.

  10. XAS spectroelectrochemistry: reliable measurement of X-ray absorption spectra from redox manipulated solutions at room temperature.

    PubMed

    Best, Stephen P; Levina, Aviva; Glover, Chris; Johannessen, Bernt; Kappen, Peter; Lay, Peter A

    2016-05-01

    The design and operation of a low-volume spectroelectrochemical cell for X-ray absorption spectroscopy (XAS) of solutions at room temperature is described. Fluorescence XAS measurements are obtained from samples contained in the void space of a 50 µL reticulated vitreous carbon (sponge) working electrode. Both rapid electrosynthesis and control of the effects of photoreduction are achieved by control over the flow properties of the solution through the working electrode, where a good balance between the rate of consumption of sample and the minimization of decomposition was obtained by pulsing the flow of the solution by 1-2 µL with duty cycle of ∼3 s while maintaining a small net flow rate (26-100 µL h(-1)). The performance of the cell in terms of control of the redox state of the sample and minimization of the effects of photoreduction was demonstrated by XAS measurements of aqueous solutions of the photosensitive Fe(III) species, [Fe(C2O4)3](3-), together with that of the electrogenerated [Fe(C2O4)3](4-) product. The current response from the cell during the collection of XAS spectra provides an independent measure of the stability of the sample of the measurement. The suitability of the approach for the study of small volumes of mM concentrations of protein samples was demonstrated by the measurement of the oxidized and electrochemically reduced forms of cytochrome c. PMID:27140154

  11. HST/COS SPECTRA OF DF Tau AND V4046 Sgr: FIRST DETECTION OF MOLECULAR HYDROGEN ABSORPTION AGAINST THE Ly{alpha} EMISSION LINE

    SciTech Connect

    Yang Hao; Linsky, Jeffrey L.; France, Kevin E-mail: jlinsky@jilau1.colorado.edu

    2011-03-20

    We report the first detection of molecular hydrogen (H{sub 2}) absorption in the Ly{alpha} emission line profiles of two classical T Tauri stars (CTTSs), DF Tau and V4046 Sgr, observed by the Hubble Space Telescope/Cosmic Origins Spectrograph. This absorption is the energy source for many of the Lyman-band H{sub 2} fluorescent lines commonly seen in the far-ultraviolet spectra of CTTSs. We find that the absorbed energy in the H{sub 2} pumping transitions from a portion of the Ly{alpha} line significantly differ from the amount of energy in the resulting fluorescent emission. By assuming additional absorption in the H I Ly{alpha} profile along our light of sight, we can correct the H{sub 2} absorption/emission ratios so that they are close to unity. The required H I absorption for DF Tau is at a velocity close to the radial velocity of the star, consistent with H I absorption in the edge-on disk and interstellar medium. For V4046 Sgr, a nearly face-on system, the required absorption is between +100 km s{sup -1} and +290 km s{sup -1}, most likely resulting from H I gas in the accretion columns falling onto the star.

  12. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations.

    PubMed

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-08-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules. PMID:20707545

  13. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations

    NASA Astrophysics Data System (ADS)

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-08-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules.

  14. MODELING THE HARD TeV SPECTRA OF BLAZARS 1ES 0229+200 AND 3C 66A WITH AN INTERNAL ABSORPTION SCENARIO

    SciTech Connect

    Zacharopoulou, O.; Aharonian, F. A.; Khangulyan, D.

    2011-09-10

    We study the applicability of the idea of internal absorption of {gamma}-rays produced through synchrotron radiation of ultrarelativistic protons in highly magnetized blobs to 1ES 0229+200 and 3C 66A, the two TeV blazars which show unusually hard intrinsic {gamma}-ray spectra after being corrected for the intergalactic absorption. We show that for certain combinations of reasonable model parameters, even with quite modest energy requirements, the scenario allows a self-consistent explanation of the non-thermal emission of these objects in the keV, GeV, and TeV energy bands.

  15. UV-VIS Absorption Spectra of Molten AgCl and AgBr and of their Mixtures with Group I and II Halide Salts

    NASA Astrophysics Data System (ADS)

    Greening, Giorgio G. W.

    2015-10-01

    The UV-VIS absorption spectra of (Ag1-X[Li-Cs, Ba]X)Cl and of (Ag1-X[Na, K, Cs]X)Br at 823 K at the concentrations X=0.0, 0.1, 0.2 have been measured. The findings show that on adding the respective halides to molten silver chloride and silver bromide, shifts of the fundamental absorption edge to shorter wavelengths result. A correlation between the observed shifts and the expansion of the silver sub-lattice is found, which is valid for both silver halide systems studied in this work.

  16. Analysis of the absorption spectra of complex pentavalent actinide halides: LiUF/sub 6/,. cap alpha. -NaUF/sub 6/, and CsUF/sub 6/

    SciTech Connect

    Hecht, H.G.; Malm, J.G.; Foropoulos, J.; Carnall, W.T.

    1986-04-01

    Absorption spectra of polycrystalline samples of LiUF/sub 6/, ..cap alpha..-NaUF/sub 6/, and CsUF/sub 6/ have been recorded at 4, 77, and 298 K. This group of compounds has a common sixfold U--F coordination that approaches an octahedral site symmetry for LiUF/sub 6/ but exhibits increasing trigonal distortion (D/sub 3d/ symmetry) along the indicated series. Spectra have been systematically interpreted as consisting of sequences of vibronic transitions coupled to well-defined electronic excited states. Crystal-field calculations have been performed.

  17. FIRST ULTRAVIOLET REFLECTANCE SPECTRA OF PLUTO AND CHARON BY THE HUBBLE SPACE TELESCOPE COSMIC ORIGINS SPECTROGRAPH: DETECTION OF ABSORPTION FEATURES AND EVIDENCE FOR TEMPORAL CHANGE

    SciTech Connect

    Stern, S. A.; Spencer, J. R.; Shinn, A.; Cunningham, N. J.; Hain, M. J.

    2012-01-15

    We have observed the mid-UV spectra of both Pluto and its large satellite, Charon, at two rotational epochs using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) in 2010. These are the first HST/COS measurements of Pluto and Charon. Here we describe the observations and our reduction of them, and present the albedo spectra, average mid-UV albedos, and albedo slopes we derive from these data. These data reveal evidence for a strong absorption feature in the mid-UV spectrum of Pluto; evidence for temporal change in Pluto's spectrum since the 1990s is reported, and indirect evidence for a near-UV spectral absorption on Charon is also reported.

  18. FTIR measurements of mid-IR absorption spectra of gaseous fatty acid methyl esters at T=25-500 °C

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Freeman, K. G.; Davidson, D. F.; Hanson, R. K.

    2014-09-01

    Gas-phase mid-infrared (IR) absorption spectra (2500-3400 cm-1) for eleven fatty acid methyl esters (FAMEs) have been quantitatively measured at temperatures between 25 and 500 °C using an FTIR spectrometer with a resolution of 1 cm-1. Using these spectra, the absorption cross section at 3.39 μm, corresponding to the monochromatic output of a helium-neon laser, is reported for each of these fuels as a function of temperature. The data indicate that the 3.39 μm cross section values of saturated FAMEs vary linearly with the logarithm of the number of Csbnd H bonds in the molecule.

  19. Ultraviolet Absorption Spectra, AB Initio Calculations, and Carbonyl Wagging Potential Energy Functions of Cyclobutanone, Cyclopentanone, BICYCLO[3.1.0]HEXAN-3-ONE, and TETRAHYDROFURAN-3-ONE

    NASA Astrophysics Data System (ADS)

    Lee, Soono; Dakkouri, Marwan; Choo, Jaebum; Laane, Jaan

    2000-03-01

    The electronic absorption spectra of cyclobutanone, cyclopentanone, bicyclo[3.1.0]hexan-3-one, and tetrahydrofuran-3-one were recorded and analyzed in the 28,000 - 44,000 cm-1 region. Several dozen absorption bands were assigned for each molecule. These arise from combinations of the ring vibrations and the C=O wagging vibrations. Assigned bands were compared with previously recorded jet-cooled fluorescence excitation spectra. Additional C=O out-of-plane wagging bands were found for cyclopentanone and tetrahydrofuran-3-one, and the potential energy functions for this vibration in these molecules were recalculated. These potential energy functions have barriers to inversion reflecting the fact that the carbonyl group is bent out of the ring plane in the S1(n, π*) excited electronic state.

  20. Temperature Dependence of Crystal Structure and THz Absorption Spectra of Organic Nonlinear Optical Stilbazolium Material for High-Output THz-Wave Generation

    NASA Astrophysics Data System (ADS)

    Matsukawa, Takeshi; Hoshina, Hiromichi; Hoshikawa, Akinori; Otani, Chiko; Ishigaki, Toru

    2016-06-01

    A stilbazolium material comprising 4-dimethylamino- N'-methyl-4'-stilbazolium tosylate (DAST), which has a large nonlinear optical susceptibility, was studied for application in terahertz (THz)-wave generation. The temperature-dependent structure of the DAST crystal was measured by using powder X-ray diffraction from -100 to 200 °C, indicating a volume expansion of 4.6 %. The lattice constants show anisotropic thermal expansion. Also, the temperature dependence of THz absorption spectra was measured by terahertz time-domain spectroscopy (THz-TDS) in the temperature range varying from -80 to 88.1 °C. A strong absorption peak was found at around 1 THz, shifting slightly toward a lower frequency with increasing temperature. The temperature dependence of the THz spectra was compared with that of X-ray diffraction. The shifting of THz-vibrational frequencies of the DAST crystal suggests that the change in its lattice structure is temperature dependent.

  1. Resonance Raman spectra of transient species of a respiration enzyme detected with an artificial cardiovascular system and Raman/absorption simultaneous measurement system

    NASA Astrophysics Data System (ADS)

    Kitagawa, Teizo; Ogura, Takashi

    1991-05-01

    Developments of our techniques for detecting resonance Ranian spectra of reaction intermediates of cytochroxne oxidase are suiainarized. It is demonstrated that combination of a device for Ranian/absorption simultaneous ineasurenient system with an artificial cardiovascular system enabled us to detect the FeO2 and Fe" O stretching vibrations for intermediates and thus to conclude that compounds A and B have the Fe''1-02 and Fe hexnes respectively. 1.

  2. Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System. Measuring the Absorption of CDOM in the Field Using a Multiple Pathlength Liquid Waveguide System

    NASA Technical Reports Server (NTRS)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2000-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.

  3. Absolute absorption coefficient of C6H2 in the mid-UV range at low temperature; implications for the interpretation of Titan atmospheric spectra.

    PubMed

    Bénilan, Y; Bruston, P; Raulin, F; Courtin, R; Guillemin, J C

    1995-01-01

    The interpretation of mid-UV albedo spectra of planetary atmospheres, especially that of Titan, is the main goal of the SIPAT (Spectroscopie uv d'Interet Prebiologique dans l'Atmosphere de Titan) research program. This laboratory experiment has been developed in order to systematically determine the absorption coefficients of molecular compounds which are potential absorbers of scattered sunlight in planetary atmospheres, with high spectral resolution, and at various temperatures below room temperature. From photochemical modelling and experimental simulations, we may expect triacetylene (C6H2) to be present in the atmosphere of Titan, even though it has not yet been detected. We present here the first determination of the absolute absorption coefficient of that compound in the 200-300 nm range and at two temperatures (296 K and 233 K). The temperature dependence of the C6H2 absorption coefficient in that wavelength range is compared to that previously observed in the case of cyanoacetylene (HC3N). We then discuss the implications of the present results for the interpretation of Titan UV spectra, where it appears that large uncertainities can be introduced either by the presence of trace impurities in laboratory samples or by the variations of absorption coefficients with temperature. PMID:11538441

  4. Simulating One-Photon Absorption and Resonance Raman Scattering Spectra Using Analytical Excited State Energy Gradients within Time-Dependent Density Functional Theory

    SciTech Connect

    Silverstein, Daniel W.; Govind, Niranjan; van Dam, Hubertus J. J.; Jensen, Lasse

    2013-12-10

    A parallel implementation of analytical time-dependent density functional theory gradients is presented for the quantum chemistry program NWChem. The implementation is based on the Lagrangian approach developed by Furche and Ahlrichs. To validate our implementation, we first calculate the Stokes shifts for a range of organic dye molecules using a diverse set of exchange-correlation functionals (traditional density functionals, global hybrids, and range-separated hybrids) followed by simulations of the one-photon absorption and resonance Raman scattering spectrum of the phenoxyl radical, the well-studied dye molecule rhodamine 6G, and a molecular host–guest complex (TTFcCBPQT4+). The study of organic dye molecules illustrates that B3LYP and CAM-B3LYP generally give the best agreement with experimentally determined Stokes shifts unless the excited state is a charge transfer state. Absorption, resonance Raman, and fluorescence simulations for the phenoxyl radical indicate that explicit solvation may be required for accurate characterization. For the host–guest complex and rhodamine 6G, it is demonstrated that absorption spectra can be simulated in good agreement with experimental data for most exchange-correlation functionals. Finally, however, because one-photon absorption spectra generally lack well-resolved vibrational features, resonance Raman simulations are necessary to evaluate the accuracy of the exchange-correlation functional for describing a potential energy surface.

  5. The mystery of spectral breaks: Lyman continuum absorption by photon-photon pair production in the Fermi GeV spectra of bright blazars

    SciTech Connect

    Stern, Boris E.; Poutanen, Juri E-mail: juri.poutanen@utu.fi

    2014-10-10

    We re-analyze Fermi/LAT γ-ray spectra of bright blazars using the new Pass 7 version of the detector response files and detect breaks at ∼5 GeV in the rest-frame spectra of 3C 454.3 and possibly also 4C +21.35, associated with the photon-photon pair production absorption by the He II Lyman continuum (LyC). We also detect significant breaks at ∼20 GeV associated with hydrogen LyC in both the individual spectra and the stacked redshift-corrected spectrum of several bright blazars. The detected breaks in the stacked spectra univocally prove that they are associated with atomic ultraviolet emission features of the quasar broad-line region (BLR). The dominance of the absorption by the hydrogen Ly complex over He II, a small detected optical depth, and break energy consistent with head-on collisions with LyC photons imply that the γ-ray emission site is located within the BLR, but most of the BLR emission comes from a flat disk-like structure producing little opacity. Alternatively, the LyC emission region size might be larger than the BLR size measured from reverberation mapping, and/or the γ-ray emitting region is extended. These solutions would resolve the long-standing issue of how the multi-hundred GeV photons can escape from the emission zone without being absorbed by softer photons.

  6. Study of the Effect of the Pulse Width of the Excitation Source on the Two-Photon Absorption and Two-Photon Circular Dichroism Spectra of Biaryl Derivatives.

    PubMed

    Vesga, Yuly; Hernandez, Florencio E

    2016-09-01

    Herein we report on the expanded theoretical calculations and the experimental measurements of the two-photon absorption (TPA) and two-photon circular dichroism (TPCD) spectra of a series of optically active biaryl derivatives (R-BINOL, R-VANOL, and R-VAPOL) using femtosecond pulses. The comparative analysis of the experimental TPCD spectra obtained with our tunable amplified femtosecond system with those previously measured in our group on the same series of compounds in the picosecond regime reveals a decrease in the amplitude of the signal and an improvement in matching with the theory in the former. These results can be explained based on the negligible contribution of excited state absorption (ESA) using femtosecond pulses compared to the picosecond regime. We show how ESA affects both the strength of the signal and the shape of the TPA and TPCD spectra. TPA and TPCD spectra were obtained using the double L-scan technique over a broad spectral range (450-750 nm) using 90 fs pulses at 50 Hz repetition rate produced by an amplified femtosecond system. The theoretical calculations were performed using modern analytical response theory within the time-dependent density functional theory (TD-DFT) approach using CAM-B3LYP and 6-311++G(d,p) basis sets. PMID:27525702

  7. Infrared Measurements of Atmospheric Ethane (C2H6) From Aircraft and Ground-Based Solar Absorption Spectra in the 3000/ cm Region

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, W. G.; Goldman, A.; Rinsland, C. P.; Harvey, G. A.; Devi, V. Malathy; Stokes, G. M.

    1985-01-01

    A number or prominent Q-branches or the upsilon(sub 7) band or C2H6 have been identified near 3000/ cm in aircraft and ground-based infrared solar absorption spectra. The aircraft spectra provide the column amount above 12 km at various altitudes. The column amount is strongly correlated with tropopause height and can be described by a constant mixing ratio of 0.46 ppbv in the upper troposphere and a mixing ratio scale height of 3.9 km above the tropopause. The, ground-based spectra yield a column of 9.0 x 10(exp 15) molecules/sq cm above 2.1 km; combining these results implies a tropospheric mixing ratio of approximately 0.63 ppbv.

  8. Infrared measurements of atmospheric ethane (C2H6) from aircraft and ground-based solar absorption spectra in the 3000/cm region

    NASA Technical Reports Server (NTRS)

    Coffey, M. T.; Mankin, W. G.; Goldman, A.; Rinsland, C. P.; Harvey, G. A.; Devi, V. M.; Stokes, G. M.

    1985-01-01

    A number of prominent Q-branches of the nu-7 band of C2H6 have been identified near 3000/cm in aircraft and ground-based infrared solar absorption spectra. The aircraft spectra provide the column amount above 12 km at various altitudes. The column amount is strongly correlated with tropopause height and can be described by a constant mixing ratio of 0.46 ppbv in the upper troposphere and a mixing ratio scale height of 3.9 km above the tropopause. The ground-based spectra yield a column of 9.0 x 10 to the 15th molecules/sq cm above 2.1 km; combining these results implies a tropospheric mixing ratio of approximately 0.63 ppbv.

  9. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    USGS Publications Warehouse

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2014-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and Mössbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, römerite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3·5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750–4000 cm−1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. Mössbauer spectra of selected samples were obtained at room temperature and 80 K for ferric minerals jarosite and rhomboclase and mixed ferric–ferrous minerals römerite, voltaite, and copiapite. Values of Fe2+/[Fe2+ + Fe3+] determined by Mössbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases.

  10. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    USGS Publications Warehouse

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2011-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and M??ssbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, r??merite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3??5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750-4000cm-1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. M??ssbauer spectra of selected samples were obtained at room temperature and 80K for ferric minerals jarosite and rhomboclase and mixed ferric-ferrous minerals r??merite, voltaite, and copiapite. Values of Fe2+/[Fe2++Fe3+] determined by M??ssbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases. ?? 2011 Elsevier B.V.

  11. The stability of QSO/AGN broad emission line clouds

    NASA Astrophysics Data System (ADS)

    Krinsky, I. S.; Puetter, R. C.

    1992-08-01

    Results of a numerical linear stability analysis of QSO/AGN emission-line clouds (ELCs) embedded within a confining hot intercloud medium (HIM) are reported. A first-order linear perturbation analysis reveals two important ionstabilities. The first instability is thermal in nature and arises in the interface region between the HIM and the ELC where thermal convection dominates gas heating; the growth time of the instability is approximately 1000 s, resulting in an ELC evaporation time of about 10 yr. The second instability is dynamic in nature, with the sound wave amplitude growing in response to radiative forces. The growth time of this instability is about 10 exp 6 s and essentially independent of the wavelength. The results suggest that if QSO/AGN ELCs have properties similar to those of the standard ELC model, then the broad-line region is in a constant state of flux in which ELCs continually form, are destroyed, and then re-formed.

  12. Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.

  13. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    SciTech Connect

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  14. Calculation and interpretation of vibronic absorption and fluorescence spectra of the first electronic nπ* transitions of pyridine and pyrimidine

    NASA Astrophysics Data System (ADS)

    Ten, G. N.; Kadrov, D. M.; Berezin, M. K.; Baranov, V. I.

    2014-11-01

    We have calculated vibronic spectra of the first electronic nπ* transitions of pyridine and pyrimidine in the isolated state using the DFT method in the Franck-Condon approximation. Vibrational spectra for the ground and excited states have been calculated in the anharmonic approximation, which allowed us to refine the assignment of normal vibrations of pyridine and pyrimidine. We have done a complete interpretation of the vibrational structure of the absorption and fluorescence spectra of pyridine and pyrimidine. It has been shown that Fermi resonances between fundamental and combination vibrations and overtones 12 and 16 b + 4, 6 a and 2 × 16 b affect the formation of the vibrational structure of electronic spectra of pyrimidine. Good agreement between calculated and experimental spectra confirms the correctness of the models of the two molecules in their ground and excited states, which makes it possible to use the models in further investigations of various properties of these molecules in electronically excited states, e.g., tautomerism of pyrimidine bases of nucleic acids.

  15. Ultraviolet Spectra of Two Magnetic White Dwarfs and Ultraviolet Spectra of Subluminous Objects Found in the Kiso Schmidt Survey and Ultraviolet Absorptions in the Spectra of DA White Dwarfds

    NASA Technical Reports Server (NTRS)

    Wegner, Gary A.

    1988-01-01

    Research under NASA Grant NAG5-287 has carried out a number of projects in conjunction with the International Ultraviolet Explorer (IUE) satellite. These include: (1) studies of the UV spectra of DA white dwarfs which show quasi-molecular bands of H2 and H2(+); (2) the peculiar star HR6560; (3) the UV spectra of two magnetic white dwarfs that also show the quasi-molecular features; (4) investigations of the UV spectra of subluminous stars, primarily identified from visual wavelength spectroscopy in the Kiso survey of UV excess stars, some of which show interesting metal lines in their UV spectra; and (5) completion of studies of UV spectra of DB stars. The main result of this research has been to further knowledge of the structure and compositions of subluminous stars which helps cast light on their formation and evolution.

  16. Circular dichroism and optical absorption spectra of mononuclear and trinuclear chiral Cu(II) amino-alcohol coordinated compounds: A combined theoretical and experimental study

    NASA Astrophysics Data System (ADS)

    Valencia, Israel; Ávila-Torres, Yenny; Barba-Behrens, Norah; Garzón, Ignacio L.

    2015-04-01

    Studies on the physicochemical properties of biomimetic compounds of multicopper oxidases are fundamental to understand their reaction mechanisms and catalytic behavior. In this work, electronic, optical, and chiroptical properties of copper(II) complexes with amino-alcohol chiral ligands are theoretically studied by means of time-dependent density functional theory. The calculated absorption and circular dichroism spectra are compared with experimental measurements of these spectra for an uncoordinated pseudoephedrine derivative, as well as for the corresponding mononuclear and trinuclear copper(II)-coordinated complexes. This comparison is useful to gain insights into their electronic structure, optical absorption and optical activity. The optical absorption and circular dichroism bands of the pseudoephedrine derivative are located in the UV-region. They are mainly due to transitions originated from n to π anti-bonding orbitals of the alcohol and amino groups, as well as from π bonding to π anti-bonding orbitals of carboxyl and phenyl groups. In the case of the mononuclear and trinuclear compounds, additional signals in the visible spectral region are present. In both systems, the origin of these bands is due to charge transfer from ligand to metal and d-d transitions.

  17. A time-dependent density-functional theory and complete active space self-consistent field method study of vibronic absorption and emission spectra of coumarin

    NASA Astrophysics Data System (ADS)

    Li, Junfeng; Rinkevicius, Zilvinas; Cao, Zexing

    2014-07-01

    Time-dependent density-functional theory (TD-DFT) and complete active space multiconfiguration self-consistent field (CASSCF) calculations have been used to determine equilibrium structures and vibrational frequencies of the ground state and several singlet low-lying excited states of coumarin. Vertical and adiabatic transition energies of S1, S2, and S3 have been estimated by TD-B3LYP and CASSCF/PT2. Calculations predict that the dipole-allowed S1 and S3 states have a character of 1(ππ*), while the dipole-forbidden 1(nπ*) state is responsible for S2. The vibronic absorption and emission spectra of coumarin have been simulated by TD-B3LYP and CASSCF calculations within the Franck-Condon approximation, respectively. The simulated vibronic spectra show good agreement with the experimental observations available, which allow us to reasonably interpret vibronic features in the S0→S1 and S0→S3 absorption and the S0←S1 emission spectra. Based on the calculated results, activity, intensity, and density of the vibronic transitions and their contribution to the experimental spectrum profile have been discussed.

  18. General Method for Determination of the Surface Composition in Bimetallic Nanoparticle Catalysts from the L Edge X-ray Absorption Near-Edge Spectra

    SciTech Connect

    Wu, Tiapin; Childers, David; Gomez, Carolina; Karim, Ayman M.; Schweitzer, Neil; Kropf, Arthur; Wang, Hui; Bolin, Trudy B.; Hu, Yongfeng; Kovarik, Libor; Meyer, Randall; Miller, Jeffrey T.

    2012-10-08

    Bimetallic PtPd on silica nano-particle catalysts have been synthesized and their average structure determined by Pt L3 and Pd K-edge extended X-ray absorption finestructure (EXAFS) spectroscopy. The bimetallic structure is confirmed from elemental line scans by STEM for the individual 1-2 nm sized particles. A general method is described to determine the surface composition in bimetallic nanoparticles even when both metals adsorb, for example, CO. By measuring the change in the L3 X-ray absorption near-edge structure (XANES) spectra with and without CO in bimetallic particles and comparing these changes to those in monometallic particles of known size the fraction of surface atoms can be determined. The turnover rates (TOR) and neopentane hydrogenolysis and isomerization selectivities based on the surface composition suggest that the catalytic and spectroscopic properties are different from those in monometallic nano-particle catalysts. At the same neo-pentane conversion, the isomerization selectivity is higher for the PtPd catalyst while the TOR is lower than that of both Pt and Pd. As with the catalytic performance, the infrared spectra of adsorbed CO are not a linear combination of the spectra on monometallic catalysts. Density functional theory calculations indicate that the Pt-CO adsorption enthalpy increases while the Pd-CO bond energy decreases. The ability to determine the surface composition allows for a better understanding of the spectroscopic and catalytic properties of bimetallic nanoparticle catalysts.

  19. A time-dependent density-functional theory and complete active space self-consistent field method study of vibronic absorption and emission spectra of coumarin.

    PubMed

    Li, Junfeng; Rinkevicius, Zilvinas; Cao, Zexing

    2014-07-01

    Time-dependent density-functional theory (TD-DFT) and complete active space multiconfiguration self-consistent field (CASSCF) calculations have been used to determine equilibrium structures and vibrational frequencies of the ground state and several singlet low-lying excited states of coumarin. Vertical and adiabatic transition energies of S1, S2, and S3 have been estimated by TD-B3LYP and CASSCF/PT2. Calculations predict that the dipole-allowed S1 and S3 states have a character of (1)(ππ*), while the dipole-forbidden (1)(nπ*) state is responsible for S2. The vibronic absorption and emission spectra of coumarin have been simulated by TD-B3LYP and CASSCF calculations within the Franck-Condon approximation, respectively. The simulated vibronic spectra show good agreement with the experimental observations available, which allow us to reasonably interpret vibronic features in the S0→S1 and S0→S3 absorption and the S0←S1 emission spectra. Based on the calculated results, activity, intensity, and density of the vibronic transitions and their contribution to the experimental spectrum profile have been discussed. PMID:25005288

  20. Theoretical calculations of X-ray absorption spectra of a copper mixed ligand complex using computer code FEFF9

    NASA Astrophysics Data System (ADS)

    Gaur, A.; Shrivastava, B. D.

    2014-09-01

    The terms X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) refer, respectively, to the structure in the X-ray absorption spectrum at low and high energies relative to the absorption edge. Routine analysis of EXAFS experiments generally makes use of simplified models and several many-body parameters, e.g. mean free paths, many-body amplitude factors, and Debye-Waller factors, as incorporated in EXAFS analysis software packages like IFEFFIT which includes Artemis. Similar considerations apply to XANES, where the agreement between theory and experiment is often less satisfactory. The recently available computer code FEFF9 uses the real-space Green's function (RSGF) approach to calculate dielectric response over a broad spectrum including the dominant low-energy region. This code includes improved treatments of many-body effects such as inelastic losses, core-hole effects, vibrational amplitudes, and the extension to full spectrum calculations of optical constants including solid state effects. In the present work, using FEFF9, we have calculated the X-ray absorption spectrum at the K-edge of copper in a complex, viz., aqua (diethylenetriamine) (isonicotinato) copper(II), the crystal structure of which is unknown. The theoretical spectrum has been compared with the experimental spectrum, recorded by us at the XAFS beamline 11.1 at ELETTRA synchrotron source, Italy, in both XANES and EXAFS regions.

  1. QSO color selection in the SDSS

    SciTech Connect

    Newberg, H.J.; Yanny, B.

    1998-01-01

    The Sloan Digital Sky Survey (SDSS) will image 10,000 square degrees in the north galactic cap in five filters. We hope to identify and obtain spectra for about 100,000 quasars brighter than 20th magnitude in this area. The selection will be primarily on the basis of point spread function and colors, but we will also identify quasars from a catalog of FIRST radio sources. The selection areas in color space must be determined during the testing period prior to the official start of the survey. This task may determine the length of the test period. In anticipation of this becoming the critical path, we have written a body of software that will allow us to quickly analyze a set of multicolor data and make a first cut at the selection limits.

  2. Classifying broad absorption line quasars: metrics, issues and a new catalogue constructed from SDSS DR5

    NASA Astrophysics Data System (ADS)

    Scaringi, S.; Cottis, C. E.; Knigge, C.; Goad, M. R.

    2009-11-01

    We apply a recently developed method for classifying broad absorption line quasars (BALQSOs) to the latest quasi-stellar object (QSO) catalogue constructed from Data Release 5 of the Sloan Digital Sky Survey. Our new hybrid classification scheme combines the power of simple metrics, supervised neural networks and visual inspection. In our view, the resulting BALQSO catalogue is both more complete and more robust than all previous BALQSO catalogues, containing 3552 sources selected from a parent sample of 28421 QSOs in the redshift range 1.7 < z < 4.2. This equates to a raw BALQSO fraction of 12.5 per cent. In the process of constructing a robust catalogue, we shed light on the main problems encountered when dealing with BALQSO classification, many of which arise due to the lack of a proper physical definition of what constitutes a BAL. This introduces some subjectivity in what is meant by the term BALQSO, and because of this, we also provide all of the meta-data used in constructing our catalogue, for every object in the parent QSO sample. This makes it easy to quickly isolate and explore subsamples constructed with different metrics and techniques. By constructing composite QSO spectra from subsamples classified according to the meta-data, we show that no single existing metric produces clean and robust BALQSO classifications. Rather, we demonstrate that a variety of complementary metrics are required at the moment to accomplish this task. Along the way, we confirm the finding that BALQSOs are redder than non-BALQSOs and that the raw BALQSO fraction displays an apparent trend with signal-to-noise ratio steadily increasing from 9 per cent in low signal-to-noise ratio data up to 15 per cent.

  3. Detected CFCs: UV Absorption Spectra, Atmospheric Lifetimes, Global Warming and Ozone Depletion Potentials for CFC-112, CFC-112a, CFC-113a and CFC-114a

    NASA Astrophysics Data System (ADS)

    Bernard, F.; Davis, M. E.; McGillen, M.; Fleming, E. L.; Burkholder, J. B.

    2015-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting substances (ODSs) and potent greenhouse gases. Measurements have observed CFC-112 (CFCl2CFCl2), CFC-112a (CF2ClCCl3), and CFC-113a (CCl3CF3) in the atmosphere (Laube et al., 2014). The current atmospheric abundances of CFC-112 and CFC-112a are ~0.4 and ~0.06 ppt, respectively, with decreasing abundance since 1995. In contrast, CFC-113a was found to show continuous growth over the past 50 years with a current atmospheric abundance of ~0.5 ppt. The major atmospheric removal process for these compounds is expected to be UV photolysis in the stratosphere. To date there is, however, no UV absorption spectra for these compounds available in the literature. To better determine the atmospheric lifetimes and environmental impact of these CFCs, laboratory measurements of the UV absorption spectra of CFC-112, CFC-112a, CFC-113a, and CFC-114a (Cl2FCF3) between 195 and 235 nm and over the temperature range 207 to 323 K were performed. Spectrum parametrizations were developed for use in atmospheric models. Atmospheric lifetimes and ozone depletion potentials (ODPs) were calculated using the Goddard Space Flight Center 2-D atmospheric chemistry model. Infrared absorption spectra of these compounds were also measured and used to calculate their global warming potentials. The results of the laboratory measurements and model calculations will be presented. J. C. Laube et al., Newly detected ozone-depleting substances in the atmosphere, Nature Geoscience, 7, 266-269, 2014

  4. N2O vertical profiles retrieved from ground-based solar absorption spectra taken at McMurdo station during austral spring of 1989

    SciTech Connect

    Liu, X.; Murcray, F.J.

    1995-01-01

    N2O can be a tracer of atmospheric air motion due to its long life time. Ground-based FTIR solar spectra contain information on the vertical distributions of N2O due to pressure broadening of absorption lines. The authors have combined the Chahine-Twomey` relaxation method with a line-by-line layer-by-layer radiative transfer code to retrieve N2O VMR profiles from ground based solar absorption spectra. The spectra were taken at McMurdo station during the austral spring of 1989 with a 0.02 wavenumber resolution FTIR spectrometer. Since N2O is released from troposphere and is photolyzed in the stratosphere, the line shape of its absorption is mainly due Lorentz broadening. The 0.02 wavenumber resolution is high enough for the authors to retrieve N2O VMR profiles up to 25 kilometers. Figures show a typical observed N2O solar spectrum near 1993.15 wavenumber and a calculated spectrum using the authors profile retrieval program. The best fit is obtained by iteratively adjusting N20 VMR profile according to the formulation of Chahine and Twomey. The lower tropospheric N2O VMR`s have an average value around 310 ppb. Correlations of the N2O contour with that of temperature shows interesting features of tropospheric and lower stratospheric air motions. The authors have also compared the total N2O column amounts retrieved from this profile retrieval method and from the PC version of the non-linear least square spectral fitting algorithm (SFIT). The temporal variations of the N2O total column amounts retrieved from the two methods show excellent correlation.

  5. Effect of Acid-Base Equilibrium on Absorption Spectra of Humic acid in the Presence of Copper Ions

    NASA Astrophysics Data System (ADS)

    Lavrik, N. L.; Mulloev, N. U.

    2014-03-01

    The reaction between humic acid (HA, sample IHSS) and a metal ion (Cu2+) that was manifested as absorption bands in the range 210-350 nm was recorded using absorption spectroscopy. The reaction was found to be more effective as the pH increased. These data were interpreted in the framework of generally accepted concepts about the influence of acid-base equilibrium on the dissociation of salts, according to which increasing the solution pH increases the concentration of HA anions. It was suggested that [HA-Cu2+] complexes formed.

  6. First-principles calculation of optical absorption spectra in conjugated polymers: Role of electron-hole interaction

    SciTech Connect

    Rohlfing, Michael; Tiago, M.L.; Louie, Steven G.

    2000-03-20

    Experimental and theoretical studies have shown that excitonic effects play an important role in the optical properties of conjugated polymers. The optical absorption spectrum of trans-polyacetylene, for example, can be understood as completely dominated by the formation of exciton bound states. We review a recently developed first-principles method for computing the excitonic effects and optical spectrum, with no adjustable parameters. This theory is used to study the absorption spectrum of two conjugated polymers: trans-polyacetylene and poly-phenylene-vinylene(PPV).

  7. Resonance and absorption spectra of the Schwarzschild black hole for massive scalar perturbations: A complex angular momentum analysis

    SciTech Connect

    Decanini, Yves; Raffaelli, Bernard; Folacci, Antoine

    2011-10-15

    We reexamine some aspects of scattering by a Schwarzschild black hole in the framework of complex angular momentum techniques. More precisely, we consider, for massive scalar perturbations, the high-energy behavior of the resonance spectrum and of the absorption cross section by emphasizing analytically the role of the mass. This is achieved (i) by deriving asymptotic expansions for the Regge poles of the S-matrix and then for the associated weakly damped quasinormal frequencies and (ii) by taking into account the analytic structure of the greybody factors which allows us to extract by resummation the physical information encoded in the absorption cross section.

  8. Ionization yield and absorption spectra reveal superexcited Rydberg state relaxation processes in H2O and D2O

    NASA Astrophysics Data System (ADS)

    Fillion, J.-H.; Dulieu, F.; Baouche, S.; Lemaire, J.-L.; Jochims, H. W.; Leach, S.

    2003-07-01

    The absorption cross section and the ionization quantum yield of H2O have been measured using a synchrotron radiation source between 9 and 22 eV. Comparison between the two curves highlights competition between relaxation processes for Rydberg states converging to the first tilde A 2A 1 and to the second tilde B 2B 2 excited states of H2O+. Comparison with D2O absorption and ionization yields, derived from Katayama et al (1973 J. Chem. Phys. 59 4309), reveals specific energy-dependent deuteration effects on competitive predissociation and autoionization relaxation channels. Direct ionization was found to be only slightly affected by deuteration.

  9. The effect of temperature and pressure on optical absorption spectra of transition zone minerals - Implications for the radiative conductivity of the Earth's interior

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Jacobsen, S. D.; Bina, C. R.; Goncharov, A. F.; Frost, D. J.; McCammon, C. A.

    2010-12-01

    Optical absorption spectra of high-pressure minerals can be used as indirect tools to calculate radiative conductivities of the Earth’s interior [e.g., 1]. Recent high-pressure studies imply that e.g. ringwoodite, γ-(Mg,Fe)2SiO4, does not become opaque in the near infrared and visible region, as previously assumed, but remains transparent to 21.5 GPa [2]. Therefore, it has been concluded that radiative heat transfer does not necessarily become blocked at high pressures of the mantle and ferromagnesian minerals actually might contribute to the heat flow in the Earth’s interior [2]. However, experimental results on temperature effects on radiative heat transfer are not available. We studied the effect of both, pressure and temperature, on the optical absorption of hydrous Fe-bearing ringwoodite, γ-(Mg,Fe)2SiO4, and hydrous Fe-bearing wadsleyite, β-(Mg,Fe)2SiO4, which are the main components of the Earth’s transition zone. Gem-quality single-crystals were synthesized at 18 GPa and 1400 °C in a 5000t multianvil apparatus. Crystals were analyzed by Mössbauer and Raman spectroscopy, electron microprobe analysis and single-crystal X-ray diffraction. For optical absorption measurements in the IR - VIS - UV spectral range (400 - 50000 cm-1) 50 µm sized single-crystals of ringwoodite and wadsleyite were double polished to thicknesses of 13 µm and 18 µm, respectively, and loaded in resistively heated diamond-anvil cells with argon as pressure medium. After taking measurements at high pressure and room temperature, ringwoodite was studied at 26 GPa up to 650 °C and wadsleyite spectra were recorded at 16 GPa up to 450 °C. At ambient pressure the absorption spectrum of ringwoodite reveals a crystal field band (Fe2+) at 12075 cm-1, an intervalence charge transfer band (Fe2+ to Fe3+) at 16491 cm-1, and an absorption edge due to ligand-metal charge transfer close to 30000 cm-1. The wadsleyite spectrum is characterized by a similar absorption edge in the VIS-UV range

  10. Calculated Hanle transmission and absorption spectra of the {sup 87}Rb D{sub 1} line with residual magnetic field for arbitrarily polarized light

    SciTech Connect

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-09-15

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  11. Correlation between N 1s core level x-ray photoelectron and x-ray absorption spectra of amorphous carbon nitride films

    NASA Astrophysics Data System (ADS)

    Quirós, C.; Gómez-García, J.; Palomares, F. J.; Soriano, L.; Elizalde, E.; Sanz, J. M.

    2000-08-01

    This work presents a comparative analysis of the N 1s core level spectra, as measured by x-ray photoelectron spectroscopy (XPS) and x-ray absorption spectroscopy (XAS), of amorphous CNx films which gives evidence of the existing correlation between the different components that constitute the respective spectra. After annealing, the contribution of XPS at 399.3 eV and the components of XAS at 399.6 and 400.8 eV are clearly enhanced. They are assigned to sp2 with two neighbors and to sp states of nitrogen. In addition, the XPS component at 401.3 eV is related to the XAS feature at 402.0 eV and has been assigned to sp2 nitrogen bonded to three carbon neighbors.

  12. Review of the absorption spectra of solid O2 and N2 as they relate to contamination of a cooled infrared telescope

    NASA Technical Reports Server (NTRS)

    Smith, S. M.

    1977-01-01

    During contamination studies for the liquid helium cooled shuttle infrared telescope facility, a literature search was conducted to determine the absorption spectra of the solid state of homonuclear molecules of O2 and N2, and ascertain what laboratory measurements of the solid have been made in the infrared. With the inclusion of one unpublished spectrum, the absorption spectrum of the solid oxygen molecule has been thoroughly studied from visible to millimeter wavelengths. Only two lines appear in the solid that do not also appear in the gas or liquid. A similar result is implied for the solid nitrogen molecule because it also is homonuclear. The observed infrared absorption lines result from lattice modes of the alpha phase of the solid, and disappear at the warmer temperatures of the beta, gamma, and liquid phases. They are not observed from polycrystalline forms of O2, while strong scattering is. Scattering, rather than absorption, is considered to be the principal natural contamination problem for cooled infrared telescopes in low earth orbit.

  13. Excited state dipole moments of chloroanilines and chlorophenols from solvatochromic shifts in electronic absorption spectra: Support for the concept of excited state group moments

    NASA Astrophysics Data System (ADS)

    Prabhumirashi, L. S.; Satpute, R. S.

    The dipole moments of isomeric o-, m- and p-chloroanilines and chlorophenols in electronically excited L a and L b states are estimated from solvent induced polarization shifts in electronic absorption spectra. It is observed that μ e( L a) > μ e( L b) > μ g, which is consistent with the general theory of polarization red shift. The μ es are found to be approximately co-linear with the corresponding μ gs. The concept of group moments is extended to aromatic molecules in excited states. This approach is found to be useful in understanding correlations among the excited states of mono- and disubstituted benzenes.

  14. The Production of Polycyclic Aromatic Hydrocarbon Anions in Inert Gas Matrices Doped with Alkali Metals. Electronic Absorption Spectra of the Pentacene Anion (C22H14(-))

    NASA Technical Reports Server (NTRS)

    Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)

    1999-01-01

    The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).

  15. DFT/TDDFT investigation on the chemical reactivities, aromatic properties, and UV-Vis absorption spectra of 1-butoxy-4-methoxybenzenepillar[5]arene constitutional isomers.

    PubMed

    Zhang, Jian; Ren, Shuqing

    2016-09-01

    We investigate the chemical reactivities, aromatic properties, and UV-Vis absorption spectra of four constitutional isomers of 1-butoxy-4-methoxybenzenepillar[5]arene with the DFT and TDDFT methods. These characteristics in the gas and solvent phases are discussed on the basis of electronic energy, the highest occupied molecular orbital energy, electrophilicity, global hardness, chemical potential, and nucleus-independent chemical shift. The out-of-plane component of the NICS values reveals that there is a great contrast between aromatic rings of the isomer and benzene. The most intense wavelengths of BMpillar[5]arenes are all made up of delocalized-delocalized π → π* transition. PMID:27535850

  16. Modeling of collision-induced infrared absorption spectra of H2 pairs in the first overtone band at temperatures from 20 to 500 K

    NASA Technical Reports Server (NTRS)

    Zheng, Chunguang; Borysow, Aleksandra

    1995-01-01

    A simple formalism is presented that permits quick computations of the low-resolution, rotovibrational collision-induced absorption (RV CIA) spectra of H2 pairs in the first overtone band of hydrogen, at temperatures from 20 to 500 K. These spectra account for the free-free transitions. The sharp dimer features, originating from the bound-free, free-bound, and bound-bound transitions are ignored, though their integrated intensities are properly accounted for. The method employs spectral model line- shapes with parameters computed from the three lowest spectral moments. The moments are obtained from first principles expressed as analytical functions of temperature. Except for the sharp dimer features, which are absent in this model, the computed spectra reproduce closely the results of exact quantum mechanical lineshape computations. Comparisons of the computed spectra with existing experimental data also show good agreement. The work interest for the modeling of the atmospheres of the outer planets in the near-infrared region of the spectrum. The user-friendly Fortran program developed here is available on request from the authors.

  17. Analysis of Absorption Spectra of Polycyclic Aromatic Hydrocarbons in Gaseous- and Particle- Phase Emissions from Peat Fuel Combustion Under Controlled Conditions

    NASA Astrophysics Data System (ADS)

    Connolly, J. I.; Samburova, V.; Moosmüller, H.; Khlystov, A.

    2015-12-01

    Biomass and fossil fuel burning processes emit important organic pollutants called polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. Smoldering combustion of peat is one of the largest contributors (up to 70%) of carbonaceous species and, therefore, it may be one of the main sources of these PAHs. PAHs can be detrimental to health, they are known to be potent mutagens and suspected carcinogens. They may also contribute to solar light absorption as the particles absorb in the blue and near ultraviolet (UV) region of the solar spectrum ("brown carbon" species). There is very little knowledge and large ambiguity regarding the contribution of PAHs to optical properties of organic carbon (OC) emitted from smoldering biomass combustion. This study focuses on quantifying and analyzing PAHs emitted from peat smoldering combustion to gain more knowledge on their optical properties. Five peat fuels collected in different regions of the world (Russia, USA) were burned under controlled conditions (e.g., relative humidity, combustion efficiency, fuel-moisture content) at the Desert Research Institute Biomass Burning facility (Reno, NV, USA). Combustion aerosols collected on TIGF filters followed by XAD resin cartridges were extracted and analyzed for gas-phase (semi-volatile) and particle-phase PAHs. Filter and XAD samples were extracted separately with dichloromethane followed by acetone using Accelerated Solvent Extractor (ACE 300, Dionex). To determine absorption properties, absorption spectra of extracts and standard PAHs were recorded between 190 and 900 nm with a UV/VIS spectrophotometer (PerkinElmer, Lambda 650). This poster will discuss the potential contribution of PAHs to brown carbon emitted from peat combustion and give a brief comparison with absorption spectra from biomass burning aerosols.

  18. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies.

    PubMed

    El-Shishtawy, Reda M; Elroby, Shaaban A; Asiri, Abdullah M; Müllen, Klaus

    2016-01-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1-SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (-4.26 eV) of the conduction band of TiO₂ nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO₂ in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices. PMID:27043556

  19. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    PubMed Central

    El-Shishtawy, Reda M.; Elroby, Shaaban A.; Asiri, Abdullah M.; Müllen, Klaus

    2016-01-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV) of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices. PMID:27043556

  20. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach

    SciTech Connect

    Ma, HuiLi; Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 ; Zhao, Yi; Liang, WanZhen

    2014-03-07

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI{sup −})), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI{sup −} although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm{sup −1} agrees well with the experimental measurement.